new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 12

Active Prompting with Chain-of-Thought for Large Language Models

The increasing scale of large language models (LLMs) brings emergent abilities to various complex tasks requiring reasoning, such as arithmetic and commonsense reasoning. It is known that the effective design of task-specific prompts is critical for LLMs' ability to produce high-quality answers. In particular, an effective approach for complex question-and-answer tasks is example-based prompting with chain-of-thought (CoT) reasoning, which significantly improves the performance of LLMs. However, current CoT methods rely on a fixed set of human-annotated exemplars, which are not necessarily the most effective examples for different tasks. This paper proposes a new method, Active-Prompt, to adapt LLMs to different tasks with task-specific example prompts (annotated with human-designed CoT reasoning). For this purpose, we propose a solution to the key problem of determining which questions are the most important and helpful ones to annotate from a pool of task-specific queries. By borrowing ideas from the related problem of uncertainty-based active learning, we introduce several metrics to characterize the uncertainty so as to select the most uncertain questions for annotation. Experimental results demonstrate the superiority of our proposed method, achieving state-of-the-art on eight complex reasoning tasks. Further analyses of different uncertainty metrics, pool sizes, zero-shot learning, and accuracy-uncertainty relationship demonstrate the effectiveness of our method. Our code will be available at https://github.com/shizhediao/active-prompt.

  • 4 authors
·
Feb 23, 2023

RAPO++: Cross-Stage Prompt Optimization for Text-to-Video Generation via Data Alignment and Test-Time Scaling

Prompt design plays a crucial role in text-to-video (T2V) generation, yet user-provided prompts are often short, unstructured, and misaligned with training data, limiting the generative potential of diffusion-based T2V models. We present RAPO++, a cross-stage prompt optimization framework that unifies training-data--aligned refinement, test-time iterative scaling, and large language model (LLM) fine-tuning to substantially improve T2V generation without modifying the underlying generative backbone. In Stage 1, Retrieval-Augmented Prompt Optimization (RAPO) enriches user prompts with semantically relevant modifiers retrieved from a relation graph and refactors them to match training distributions, enhancing compositionality and multi-object fidelity. Stage 2 introduces Sample-Specific Prompt Optimization (SSPO), a closed-loop mechanism that iteratively refines prompts using multi-source feedback -- including semantic alignment, spatial fidelity, temporal coherence, and task-specific signals such as optical flow -- yielding progressively improved video generation quality. Stage 3 leverages optimized prompt pairs from SSPO to fine-tune the rewriter LLM, internalizing task-specific optimization patterns and enabling efficient, high-quality prompt generation even before inference. Extensive experiments across five state-of-the-art T2V models and five benchmarks demonstrate that RAPO++ achieves significant gains in semantic alignment, compositional reasoning, temporal stability, and physical plausibility, outperforming existing methods by large margins. Our results highlight RAPO++ as a model-agnostic, cost-efficient, and scalable solution that sets a new standard for prompt optimization in T2V generation. The code is available at https://github.com/Vchitect/RAPO.

PromptAgent: Strategic Planning with Language Models Enables Expert-level Prompt Optimization

Highly effective, task-specific prompts are often heavily engineered by experts to integrate detailed instructions and domain insights based on a deep understanding of both instincts of large language models (LLMs) and the intricacies of the target task. However, automating the generation of such expert-level prompts remains elusive. Existing prompt optimization methods tend to overlook the depth of domain knowledge and struggle to efficiently explore the vast space of expert-level prompts. Addressing this, we present PromptAgent, an optimization method that autonomously crafts prompts equivalent in quality to those handcrafted by experts. At its core, PromptAgent views prompt optimization as a strategic planning problem and employs a principled planning algorithm, rooted in Monte Carlo tree search, to strategically navigate the expert-level prompt space. Inspired by human-like trial-and-error exploration, PromptAgent induces precise expert-level insights and in-depth instructions by reflecting on model errors and generating constructive error feedback. Such a novel framework allows the agent to iteratively examine intermediate prompts (states), refine them based on error feedbacks (actions), simulate future rewards, and search for high-reward paths leading to expert prompts. We apply PromptAgent to 12 tasks spanning three practical domains: BIG-Bench Hard (BBH), as well as domain-specific and general NLP tasks, showing it significantly outperforms strong Chain-of-Thought and recent prompt optimization baselines. Extensive analyses emphasize its capability to craft expert-level, detailed, and domain-insightful prompts with great efficiency and generalizability.

  • 9 authors
·
Oct 25, 2023

PromptFlow: Training Prompts Like Neural Networks

Large Language Models (LLMs) have demonstrated profound impact on Natural Language Processing (NLP) tasks. However, their effective deployment across diverse domains often require domain-specific adaptation strategies, as generic models may underperform when faced with specialized data distributions. Recent advances in prompt engineering (PE) offer a promising alternative to extensive retraining by refining input instructions to align LLM outputs with task objectives. This paradigm has emerged as a rapid and versatile approach for model fine-tuning. Despite its potential, manual prompt design remains labor-intensive and heavily depends on specialized expertise, often requiring iterative human effort to achieve optimal formulations. To address this limitation, automated prompt engineering methodologies have been developed to systematically generate task-specific prompts. However, current implementations predominantly employ static update rules and lack mechanisms for dynamic strategy selection, resulting in suboptimal adaptation to varying NLP task requirements. Furthermore, most methods treat and update the whole prompts at each step, without considering editing prompt sections at a finer granularity. At last, in particular, the problem of how to recycle experience in LLM is still underexplored. To this end, we propose the PromptFlow, a modular training framework inspired by TensorFlow, which integrates meta-prompts, operators, optimization, and evaluator. Our framework can be equipped with the latest optimization methods and autonomously explores optimal prompt refinement trajectories through gradient-based meta-learning, requiring minimal task-specific training data. Specifically, we devise a reinforcement learning method to recycle experience for LLM in the PE process. Finally, we conduct extensive experiments on various datasets, and demonstrate the effectiveness of PromptFlow.

  • 4 authors
·
Oct 14

Free Video-LLM: Prompt-guided Visual Perception for Efficient Training-free Video LLMs

Vision-language large models have achieved remarkable success in various multi-modal tasks, yet applying them to video understanding remains challenging due to the inherent complexity and computational demands of video data. While training-based video-LLMs deliver high performance, they often require substantial resources for training and inference. Conversely, training-free approaches offer a more efficient alternative by adapting pre-trained image-LLMs models for video tasks without additional training, but they face inference efficiency bottlenecks due to the large number of visual tokens generated from video frames. In this work, we present a novel prompt-guided visual perception framework (abbreviated as Free Video-LLM) for efficient inference of training-free video LLMs. The proposed framework decouples spatial-temporal dimension and performs temporal frame sampling and spatial RoI cropping respectively based on task-specific prompts. Our method effectively reduces the number of visual tokens while maintaining high performance across multiple video question-answering benchmarks. Extensive experiments demonstrate that our approach achieves competitive results with significantly fewer tokens, offering an optimal trade-off between accuracy and computational efficiency compared to state-of-the-art video LLMs. The code will be available at https://github.com/contrastive/FreeVideoLLM.

  • 6 authors
·
Oct 14, 2024

Prompt Engineering or Fine Tuning: An Empirical Assessment of Large Language Models in Automated Software Engineering Tasks

In this paper, we investigate the effectiveness of state-of-the-art LLM, i.e., GPT-4, with three different prompting engineering techniques (i.e., basic prompting, in-context learning, and task-specific prompting) against 18 fine-tuned LLMs on three typical ASE tasks, i.e., code generation, code summarization, and code translation. Our quantitative analysis of these prompting strategies suggests that prompt engineering GPT-4 cannot necessarily and significantly outperform fine-tuning smaller/older LLMs in all three tasks. For comment generation, GPT-4 with the best prompting strategy (i.e., task-specific prompt) had outperformed the first-ranked fine-tuned model by 8.33% points on average in BLEU. However, for code generation, the first-ranked fine-tuned model outperforms GPT-4 with best prompting by 16.61% and 28.3% points, on average in BLEU. For code translation, GPT-4 and fine-tuned baselines tie as they outperform each other on different translation tasks. To explore the impact of different prompting strategies, we conducted a user study with 27 graduate students and 10 industry practitioners. From our qualitative analysis, we find that the GPT-4 with conversational prompts (i.e., when a human provides feedback and instructions back and forth with a model to achieve best results) showed drastic improvement compared to GPT-4 with automatic prompting strategies. Moreover, we observe that participants tend to request improvements, add more context, or give specific instructions as conversational prompts, which goes beyond typical and generic prompting strategies. Our study suggests that, at its current state, GPT-4 with conversational prompting has great potential for ASE tasks, but fully automated prompt engineering with no human in the loop requires more study and improvement.

  • 6 authors
·
Oct 10, 2023

Eureka: Human-Level Reward Design via Coding Large Language Models

Large Language Models (LLMs) have excelled as high-level semantic planners for sequential decision-making tasks. However, harnessing them to learn complex low-level manipulation tasks, such as dexterous pen spinning, remains an open problem. We bridge this fundamental gap and present Eureka, a human-level reward design algorithm powered by LLMs. Eureka exploits the remarkable zero-shot generation, code-writing, and in-context improvement capabilities of state-of-the-art LLMs, such as GPT-4, to perform evolutionary optimization over reward code. The resulting rewards can then be used to acquire complex skills via reinforcement learning. Without any task-specific prompting or pre-defined reward templates, Eureka generates reward functions that outperform expert human-engineered rewards. In a diverse suite of 29 open-source RL environments that include 10 distinct robot morphologies, Eureka outperforms human experts on 83% of the tasks, leading to an average normalized improvement of 52%. The generality of Eureka also enables a new gradient-free in-context learning approach to reinforcement learning from human feedback (RLHF), readily incorporating human inputs to improve the quality and the safety of the generated rewards without model updating. Finally, using Eureka rewards in a curriculum learning setting, we demonstrate for the first time, a simulated Shadow Hand capable of performing pen spinning tricks, adeptly manipulating a pen in circles at rapid speed.

  • 9 authors
·
Oct 19, 2023 3

OVOR: OnePrompt with Virtual Outlier Regularization for Rehearsal-Free Class-Incremental Learning

Recent works have shown that by using large pre-trained models along with learnable prompts, rehearsal-free methods for class-incremental learning (CIL) settings can achieve superior performance to prominent rehearsal-based ones. Rehearsal-free CIL methods struggle with distinguishing classes from different tasks, as those are not trained together. In this work we propose a regularization method based on virtual outliers to tighten decision boundaries of the classifier, such that confusion of classes among different tasks is mitigated. Recent prompt-based methods often require a pool of task-specific prompts, in order to prevent overwriting knowledge of previous tasks with that of the new task, leading to extra computation in querying and composing an appropriate prompt from the pool. This additional cost can be eliminated, without sacrificing accuracy, as we reveal in the paper. We illustrate that a simplified prompt-based method can achieve results comparable to previous state-of-the-art (SOTA) methods equipped with a prompt pool, using much less learnable parameters and lower inference cost. Our regularization method has demonstrated its compatibility with different prompt-based methods, boosting those previous SOTA rehearsal-free CIL methods' accuracy on the ImageNet-R and CIFAR-100 benchmarks. Our source code is available at https://github.com/jpmorganchase/ovor.

  • 3 authors
·
Feb 6, 2024

Improving the Language Understanding Capabilities of Large Language Models Using Reinforcement Learning

Large language models (LLMs), built on decoder-only transformers, excel in natural language generation and adapt to diverse tasks using zero-shot and few-shot prompting. However, these prompting methods often struggle on natural language understanding (NLU) tasks, where encoder-only models like BERT-base outperform LLMs on benchmarks like GLUE and SuperGLUE. This paper explores two approaches-supervised fine-tuning (SFT) and proximal policy optimization (PPO)-to enhance LLMs' NLU abilities. To reduce the cost of full-model fine-tuning, we integrate low-rank adaptation (LoRA) layers, limiting updates to these layers during both SFT and PPO. In SFT, task-specific prompts are concatenated with input queries and ground-truth labels, optimizing with next-token prediction. Despite this, LLMs still underperform compared to models like BERT-base on several NLU tasks. To close this gap, we apply PPO, a reinforcement learning technique that treats each token generation as an action and uses a reward function based on alignment with ground-truth answers. PPO then updates the model to maximize these rewards, aligning outputs with correct labels. Our experiments with LLAMA2-7B show that PPO improves performance, with a 6.3-point gain over SFT on GLUE. PPO exceeds zero-shot by 38.7 points and few-shot by 26.1 points on GLUE, while surpassing these by 28.8 and 28.5 points on SuperGLUE. Additionally, PPO outperforms BERT-large by 2.7 points on GLUE and 9.3 points on SuperGLUE. The improvements are consistent across models like Qwen2.5-7B and MPT-7B, highlighting PPO's robustness in enhancing LLMs' NLU capabilities.

  • 5 authors
·
Oct 14, 2024

SAM 2++: Tracking Anything at Any Granularity

Video tracking aims at finding the specific target in subsequent frames given its initial state. Due to the varying granularity of target states across different tasks, most existing trackers are tailored to a single task and heavily rely on custom-designed modules within the individual task, which limits their generalization and leads to redundancy in both model design and parameters. To unify video tracking tasks, we present SAM 2++, a unified model towards tracking at any granularity, including masks, boxes, and points. First, to extend target granularity, we design task-specific prompts to encode various task inputs into general prompt embeddings, and a unified decoder to unify diverse task results into a unified form pre-output. Next, to satisfy memory matching, the core operation of tracking, we introduce a task-adaptive memory mechanism that unifies memory across different granularities. Finally, we introduce a customized data engine to support tracking training at any granularity, producing a large and diverse video tracking dataset with rich annotations at three granularities, termed Tracking-Any-Granularity, which represents a comprehensive resource for training and benchmarking on unified tracking. Comprehensive experiments on multiple benchmarks confirm that SAM 2++ sets a new state of the art across diverse tracking tasks at different granularities, establishing a unified and robust tracking framework.

Thought Propagation: An Analogical Approach to Complex Reasoning with Large Language Models

Large Language Models (LLMs) have achieved remarkable success in reasoning tasks with the development of prompting methods. However, existing prompting approaches cannot reuse insights of solving similar problems and suffer from accumulated errors in multi-step reasoning, since they prompt LLMs to reason from scratch. To address these issues, we propose \textit{Thought Propagation (TP)}, which explores the analogous problems and leverages their solutions to enhance the complex reasoning ability of LLMs. These analogous problems are related to the input one, with reusable solutions and problem-solving strategies. Thus, it is promising to propagate insights of solving previous analogous problems to inspire new problem-solving. To achieve this, TP first prompts LLMs to propose and solve a set of analogous problems that are related to the input one. Then, TP reuses the results of analogous problems to directly yield a new solution or derive a knowledge-intensive plan for execution to amend the initial solution obtained from scratch. TP is compatible with existing prompting approaches, allowing plug-and-play generalization and enhancement in a wide range of tasks without much labor in task-specific prompt engineering. Experiments across three challenging tasks demonstrate TP enjoys a substantial improvement over the baselines by an average of 12\% absolute increase in finding the optimal solutions in Shortest-path Reasoning, 13\% improvement of human preference in Creative Writing, and 15\% enhancement in the task completion rate of LLM-Agent Planning.

  • 3 authors
·
Oct 5, 2023

Can GNN be Good Adapter for LLMs?

Recently, large language models (LLMs) have demonstrated superior capabilities in understanding and zero-shot learning on textual data, promising significant advances for many text-related domains. In the graph domain, various real-world scenarios also involve textual data, where tasks and node features can be described by text. These text-attributed graphs (TAGs) have broad applications in social media, recommendation systems, etc. Thus, this paper explores how to utilize LLMs to model TAGs. Previous methods for TAG modeling are based on million-scale LMs. When scaled up to billion-scale LLMs, they face huge challenges in computational costs. Additionally, they also ignore the zero-shot inference capabilities of LLMs. Therefore, we propose GraphAdapter, which uses a graph neural network (GNN) as an efficient adapter in collaboration with LLMs to tackle TAGs. In terms of efficiency, the GNN adapter introduces only a few trainable parameters and can be trained with low computation costs. The entire framework is trained using auto-regression on node text (next token prediction). Once trained, GraphAdapter can be seamlessly fine-tuned with task-specific prompts for various downstream tasks. Through extensive experiments across multiple real-world TAGs, GraphAdapter based on Llama 2 gains an average improvement of approximately 5\% in terms of node classification. Furthermore, GraphAdapter can also adapt to other language models, including RoBERTa, GPT-2. The promising results demonstrate that GNNs can serve as effective adapters for LLMs in TAG modeling.

  • 7 authors
·
Feb 20, 2024

VL-Adapter: Parameter-Efficient Transfer Learning for Vision-and-Language Tasks

Recently, fine-tuning language models pre-trained on large text corpora have provided huge improvements on vision-and-language (V&L) tasks as well as on pure language tasks. However, fine-tuning the entire parameter set of pre-trained models becomes impractical since the model size is growing rapidly. Hence, in this paper, we introduce adapter-based parameter-efficient transfer learning techniques to V&L models such as VL-BART and VLT5. We evaluate our methods in a unified multi-task setup on both image-text and video-text benchmarks. For the image-text tasks, we use four diverse V&L datasets: VQAv2, GQA, NLVR2 , and MSCOCO image captioning. For video-text tasks, we use TVQA, How2QA, TVC, and YC2C. With careful training and thorough experiments, we benchmark three popular adapter-based methods (Adapter, Hyperformer, Compacter) against the standard full fine-tuning and the recently proposed prompt-tuning approach. We also enhance the efficiency and performance of adapters by sharing their weights to attain knowledge across tasks. Our results demonstrate that training the adapter with the weight-sharing technique (4.18% of total parameters for image-text tasks and 3.39% for video-text tasks) can match the performance of fine-tuning the entire model. Lastly, we present a comprehensive analysis including the combination of adapter and task-specific prompts and the impact of V&L pre-training on adapters. Our code is available at: https://github.com/ylsung/VL_adapter.

  • 3 authors
·
Dec 13, 2021

CrossTune: Black-Box Few-Shot Classification with Label Enhancement

Training or finetuning large-scale language models (LLMs) requires substantial computation resources, motivating recent efforts to explore parameter-efficient adaptation to downstream tasks. One approach is to treat these models as black boxes and use forward passes (Inference APIs) to interact with them. Current research focuses on adapting these black-box models to downstream tasks using gradient-free prompt optimization, but this often involves an expensive process of searching task-specific prompts. Therefore, we are motivated to study black-box language model adaptation without prompt search. Specifically, we introduce a label-enhanced cross-attention network called CrossTune, which models the semantic relatedness between the input text sequence and task-specific label descriptions. Its effectiveness is examined in the context of few-shot text classification. To improve the generalization of CrossTune, we utilize ChatGPT to generate additional training data through in-context learning. A switch mechanism is implemented to exclude low-quality ChatGPT-generated data. Through extensive experiments on seven benchmark text classification datasets, we demonstrate that our proposed approach outperforms the previous state-of-the-art gradient-free black-box tuning method by 5.7% on average. Even without using ChatGPT-augmented data, CrossTune performs better or comparably than previous black-box tuning methods, suggesting the effectiveness of our approach.

  • 4 authors
·
Mar 19, 2024 2

DocRes: A Generalist Model Toward Unifying Document Image Restoration Tasks

Document image restoration is a crucial aspect of Document AI systems, as the quality of document images significantly influences the overall performance. Prevailing methods address distinct restoration tasks independently, leading to intricate systems and the incapability to harness the potential synergies of multi-task learning. To overcome this challenge, we propose DocRes, a generalist model that unifies five document image restoration tasks including dewarping, deshadowing, appearance enhancement, deblurring, and binarization. To instruct DocRes to perform various restoration tasks, we propose a novel visual prompt approach called Dynamic Task-Specific Prompt (DTSPrompt). The DTSPrompt for different tasks comprises distinct prior features, which are additional characteristics extracted from the input image. Beyond its role as a cue for task-specific execution, DTSPrompt can also serve as supplementary information to enhance the model's performance. Moreover, DTSPrompt is more flexible than prior visual prompt approaches as it can be seamlessly applied and adapted to inputs with high and variable resolutions. Experimental results demonstrate that DocRes achieves competitive or superior performance compared to existing state-of-the-art task-specific models. This underscores the potential of DocRes across a broader spectrum of document image restoration tasks. The source code is publicly available at https://github.com/ZZZHANG-jx/DocRes

  • 5 authors
·
May 7, 2024

HALO: Hierarchical Autonomous Logic-Oriented Orchestration for Multi-Agent LLM Systems

Recent advancements in Multi-Agent Systems (MAS) powered by Large Language Models (LLMs) have demonstrated tremendous potential in diverse task scenarios. Nonetheless, existing agentic systems typically rely on predefined agent-role design spaces and static communication structures, limiting their adaptability as well as flexibility in complex interaction environments and leading to subpar performance on highly specialized and expert-level tasks. To address these issues, we introduce HALO, a multi-agent collaboration framework based on a hierarchical reasoning architecture. Specifically, we incorporate a high-level planning agent for task decomposition, mid-level role-design agents for subtask-specific agent instantiation, and low-level inference agents for subtask execution. Particularly, subtask execution is reformulated as a structured workflow search problem, where Monte Carlo Tree Search (MCTS) systematically explores the agentic action space to construct optimal reasoning trajectories. Additionally, as the majority of users lack expertise in prompt engineering, we leverage an Adaptive Prompt Refinement module to transform raw queries into task-specific prompts. Empirical evaluations on Code Generation (HumanEval), General Reasoning (MMLU), and Arithmetic Reasoning (MATH) benchmark datasets highlight the effectiveness of HALO, yielding a 14.4% average improvement over state-of-the-art baselines. Notably, HALO achieves up to 13.3% performance gain on the Moral Scenarios subject in the MMLU benchmark and up to 19.6% performance gain on the Algebra subarea in the MATH benchmark, indicating its advanced proficiency in tackling highly specialized and expert-level tasks. The code repository is available at https://github.com/23japhone/HALO.

  • 3 authors
·
May 17

ChatGPT for Robotics: Design Principles and Model Abilities

This paper presents an experimental study regarding the use of OpenAI's ChatGPT for robotics applications. We outline a strategy that combines design principles for prompt engineering and the creation of a high-level function library which allows ChatGPT to adapt to different robotics tasks, simulators, and form factors. We focus our evaluations on the effectiveness of different prompt engineering techniques and dialog strategies towards the execution of various types of robotics tasks. We explore ChatGPT's ability to use free-form dialog, parse XML tags, and to synthesize code, in addition to the use of task-specific prompting functions and closed-loop reasoning through dialogues. Our study encompasses a range of tasks within the robotics domain, from basic logical, geometrical, and mathematical reasoning all the way to complex domains such as aerial navigation, manipulation, and embodied agents. We show that ChatGPT can be effective at solving several of such tasks, while allowing users to interact with it primarily via natural language instructions. In addition to these studies, we introduce an open-sourced research tool called PromptCraft, which contains a platform where researchers can collaboratively upload and vote on examples of good prompting schemes for robotics applications, as well as a sample robotics simulator with ChatGPT integration, making it easier for users to get started with using ChatGPT for robotics.

  • 4 authors
·
Feb 20, 2023

EMMA: End-to-End Multimodal Model for Autonomous Driving

We introduce EMMA, an End-to-end Multimodal Model for Autonomous driving. Built on a multi-modal large language model foundation, EMMA directly maps raw camera sensor data into various driving-specific outputs, including planner trajectories, perception objects, and road graph elements. EMMA maximizes the utility of world knowledge from the pre-trained large language models, by representing all non-sensor inputs (e.g. navigation instructions and ego vehicle status) and outputs (e.g. trajectories and 3D locations) as natural language text. This approach allows EMMA to jointly process various driving tasks in a unified language space, and generate the outputs for each task using task-specific prompts. Empirically, we demonstrate EMMA's effectiveness by achieving state-of-the-art performance in motion planning on nuScenes as well as competitive results on the Waymo Open Motion Dataset (WOMD). EMMA also yields competitive results for camera-primary 3D object detection on the Waymo Open Dataset (WOD). We show that co-training EMMA with planner trajectories, object detection, and road graph tasks yields improvements across all three domains, highlighting EMMA's potential as a generalist model for autonomous driving applications. However, EMMA also exhibits certain limitations: it can process only a small amount of image frames, does not incorporate accurate 3D sensing modalities like LiDAR or radar and is computationally expensive. We hope that our results will inspire further research to mitigate these issues and to further evolve the state of the art in autonomous driving model architectures.

  • 13 authors
·
Oct 30, 2024

Multitask Vision-Language Prompt Tuning

Prompt Tuning, conditioning on task-specific learned prompt vectors, has emerged as a data-efficient and parameter-efficient method for adapting large pretrained vision-language models to multiple downstream tasks. However, existing approaches usually consider learning prompt vectors for each task independently from scratch, thereby failing to exploit the rich shareable knowledge across different vision-language tasks. In this paper, we propose multitask vision-language prompt tuning (MVLPT), which incorporates cross-task knowledge into prompt tuning for vision-language models. Specifically, (i) we demonstrate the effectiveness of learning a single transferable prompt from multiple source tasks to initialize the prompt for each target task; (ii) we show many target tasks can benefit each other from sharing prompt vectors and thus can be jointly learned via multitask prompt tuning. We benchmark the proposed MVLPT using three representative prompt tuning methods, namely text prompt tuning, visual prompt tuning, and the unified vision-language prompt tuning. Results in 20 vision tasks demonstrate that the proposed approach outperforms all single-task baseline prompt tuning methods, setting the new state-of-the-art on the few-shot ELEVATER benchmarks and cross-task generalization benchmarks. To understand where the cross-task knowledge is most effective, we also conduct a large-scale study on task transferability with 20 vision tasks in 400 combinations for each prompt tuning method. It shows that the most performant MVLPT for each prompt tuning method prefers different task combinations and many tasks can benefit each other, depending on their visual similarity and label similarity. Code is available at https://github.com/sIncerass/MVLPT.

  • 7 authors
·
Nov 21, 2022

Cross-lingual Prompting: Improving Zero-shot Chain-of-Thought Reasoning across Languages

Chain-of-thought (CoT) is capable of eliciting models to explicitly generate reasoning paths, thus promoting reasoning accuracy and attracting increasing attention. Specifically, zero-shot CoT achieves remarkable improvements in a wide range of reasoning tasks by simply instructing the LLM with the prompt "Let's think step by step!". Despite the success of zero-shot CoT, the existing zero-shot prompting techniques remain limited to a single language, making it challenging to generalize to other languages and hindering global development. In this work, we introduce cross-lingual prompting (CLP), aiming to improve zero-shot CoT reasoning across languages. Specifically, CLP consists of two main components: (1) cross-lingual alignment prompting and (2) task-specific solver prompting. The cross-lingual alignment prompting is responsible for aligning representations across different languages, whereas the task-specific solver prompting is used to generate the final chain of thoughts and results for the reasoning task. In addition, we further introduce cross-lingual self-consistent prompting (CLSP) to ensemble different reasoning paths across languages. Our experimental evaluations on several benchmarks demonstrate that CLP and CLSP significantly outperform the existing prompting methods and achieve state-of-the-art performance. We hope this work will inspire further breakthroughs in cross-lingual CoT.

  • 5 authors
·
Oct 23, 2023

Soft Prompt Tuning for Augmenting Dense Retrieval with Large Language Models

Dense retrieval (DR) converts queries and documents into dense embeddings and measures the similarity between queries and documents in vector space. One of the challenges in DR is the lack of domain-specific training data. While DR models can learn from large-scale public datasets like MS MARCO through transfer learning, evidence shows that not all DR models and domains can benefit from transfer learning equally. Recently, some researchers have resorted to large language models (LLMs) to improve the zero-shot and few-shot DR models. However, the hard prompts or human-written prompts utilized in these works cannot guarantee the good quality of generated weak queries. To tackle this, we propose soft prompt tuning for augmenting DR (SPTAR): For each task, we leverage soft prompt-tuning to optimize a task-specific soft prompt on limited ground truth data and then prompt the LLMs to tag unlabeled documents with weak queries, yielding enough weak document-query pairs to train task-specific dense retrievers. We design a filter to select high-quality example document-query pairs in the prompt to further improve the quality of weak tagged queries. To the best of our knowledge, there is no prior work utilizing soft prompt tuning to augment DR models. The experiments demonstrate that SPTAR outperforms the unsupervised baselines BM25 and the recently proposed LLMs-based augmentation method for DR.

  • 3 authors
·
Jul 17, 2023

Self-Refined Generative Foundation Models for Wireless Traffic Prediction

With a broad range of emerging applications in 6G networks, wireless traffic prediction has become a critical component of network management. However, the dynamically shifting distribution of wireless traffic in non-stationary 6G networks presents significant challenges to achieving accurate and stable predictions. Motivated by recent advancements in Generative AI (GAI)-enabled 6G networks, this paper proposes a novel self-refined Large Language Model (LLM) for wireless traffic prediction, namely TrafficLLM, through in-context learning without parameter fine-tuning or model training. The proposed TrafficLLM harnesses the powerful few-shot learning abilities of LLMs to enhance the scalability of traffic prediction in dynamically changing wireless environments. Specifically, our proposed TrafficLLM embraces an LLM to iteratively refine its predictions through a three-step process: traffic prediction, feedback generation, and prediction refinement. Initially, the proposed TrafficLLM conducts traffic predictions using task-specific demonstration prompts. Recognizing that LLMs may generate incorrect predictions on the first attempt, we subsequently incorporate feedback demonstration prompts designed to provide multifaceted and valuable feedback related to these initial predictions. Following this comprehensive feedback, our proposed TrafficLLM introduces refinement demonstration prompts, enabling the same LLM to further refine its predictions and thereby enhance prediction performance. The evaluations on two realistic datasets demonstrate that the proposed TrafficLLM outperforms state-of-the-art methods with performance improvements of 23.17% and 17.09%, respectively.

  • 6 authors
·
Aug 19, 2024

DocETL: Agentic Query Rewriting and Evaluation for Complex Document Processing

Analyzing unstructured data, such as complex documents, has been a persistent challenge in data processing. Large Language Models (LLMs) have shown promise in this regard, leading to recent proposals for declarative frameworks for LLM-powered unstructured data processing. However, these frameworks focus on reducing cost when executing user-specified operations using LLMs, rather than improving accuracy, executing most operations as-is. This is problematic for complex tasks and data, where LLM outputs for user-defined operations are often inaccurate, even with optimized prompts. We present DocETL, a system that optimizes complex document processing pipelines, while accounting for LLM shortcomings. DocETL offers a declarative interface for users to define such pipelines and uses an agent-based framework to automatically optimize them, leveraging novel agent-based rewrites (that we call {\em rewrite directives}) and an optimization and evaluation framework that we introduce. We introduce {\em (i)} logical rewriting of pipelines, tailored for LLM-based tasks, {\em (ii)} an agent-guided plan evaluation mechanism that synthesizes and orchestrates task-specific validation prompts, and {\em (iii)} an optimization algorithm that efficiently finds promising plans, considering the time constraints of LLM-based plan generation and evaluation. Our evaluation on three different unstructured document analysis tasks demonstrates that DocETL finds plans with outputs that are 1.34 to 4.6times higher quality (e.g., more accurate, comprehensive) than well-engineered baselines, addressing a critical gap in existing declarative frameworks for unstructured data analysis. DocETL is open-source at docetl.org, and as of October 2024, has amassed over 800 GitHub Stars, with users spanning a variety of domains.

  • 3 authors
·
Oct 15, 2024

Less is more: Summarizing Patch Tokens for efficient Multi-Label Class-Incremental Learning

Prompt tuning has emerged as an effective rehearsal-free technique for class-incremental learning (CIL) that learns a tiny set of task-specific parameters (or prompts) to instruct a pre-trained transformer to learn on a sequence of tasks. Albeit effective, prompt tuning methods do not lend well in the multi-label class incremental learning (MLCIL) scenario (where an image contains multiple foreground classes) due to the ambiguity in selecting the correct prompt(s) corresponding to different foreground objects belonging to multiple tasks. To circumvent this issue we propose to eliminate the prompt selection mechanism by maintaining task-specific pathways, which allow us to learn representations that do not interact with the ones from the other tasks. Since independent pathways in truly incremental scenarios will result in an explosion of computation due to the quadratically complex multi-head self-attention (MSA) operation in prompt tuning, we propose to reduce the original patch token embeddings into summarized tokens. Prompt tuning is then applied to these fewer summarized tokens to compute the final representation. Our proposed method Multi-Label class incremental learning via summarising pAtch tokeN Embeddings (MULTI-LANE) enables learning disentangled task-specific representations in MLCIL while ensuring fast inference. We conduct experiments in common benchmarks and demonstrate that our MULTI-LANE achieves a new state-of-the-art in MLCIL. Additionally, we show that MULTI-LANE is also competitive in the CIL setting. Source code available at https://github.com/tdemin16/multi-lane

  • 5 authors
·
May 24, 2024

Self-Generated In-Context Examples Improve LLM Agents for Sequential Decision-Making Tasks

Many methods for improving Large Language Model (LLM) agents for sequential decision-making tasks depend on task-specific knowledge engineering--such as prompt tuning, curated in-context examples, or customized observation and action spaces. Using these approaches, agent performance improves with the quality or amount of knowledge engineering invested. Instead, we investigate how LLM agents can automatically improve their performance by learning in-context from their own successful experiences on similar tasks. Rather than relying on task-specific knowledge engineering, we focus on constructing and refining a database of self-generated examples. We demonstrate that even a naive accumulation of successful trajectories across training tasks boosts test performance on three benchmarks: ALFWorld (73% to 89%), Wordcraft (55% to 64%), and InterCode-SQL (75% to 79%)--matching the performance the initial agent achieves if allowed two to three attempts per task. We then introduce two extensions: (1) database-level selection through population-based training to identify high-performing example collections, and (2) exemplar-level selection that retains individual trajectories based on their empirical utility as in-context examples. These extensions further enhance performance, achieving 91% on ALFWorld--matching more complex approaches that employ task-specific components and prompts. Our results demonstrate that automatic trajectory database construction offers a compelling alternative to labor-intensive knowledge engineering.

  • 3 authors
·
Apr 30 1

Jatmo: Prompt Injection Defense by Task-Specific Finetuning

Large Language Models (LLMs) are attracting significant research attention due to their instruction-following abilities, allowing users and developers to leverage LLMs for a variety of tasks. However, LLMs are vulnerable to prompt-injection attacks: a class of attacks that hijack the model's instruction-following abilities, changing responses to prompts to undesired, possibly malicious ones. In this work, we introduce Jatmo, a method for generating task-specific models resilient to prompt-injection attacks. Jatmo leverages the fact that LLMs can only follow instructions once they have undergone instruction tuning. It harnesses a teacher instruction-tuned model to generate a task-specific dataset, which is then used to fine-tune a base model (i.e., a non-instruction-tuned model). Jatmo only needs a task prompt and a dataset of inputs for the task: it uses the teacher model to generate outputs. For situations with no pre-existing datasets, Jatmo can use a single example, or in some cases none at all, to produce a fully synthetic dataset. Our experiments on six tasks show that Jatmo models provide the same quality of outputs on their specific task as standard LLMs, while being resilient to prompt injections. The best attacks succeeded in less than 0.5% of cases against our models, versus over 90% success rate against GPT-3.5-Turbo. We release Jatmo at https://github.com/wagner-group/prompt-injection-defense.

  • 8 authors
·
Dec 29, 2023

SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning

Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts. However, prompting often leads models to make predictions with lower accuracy compared to finetuning a model with ample training data. On the other hand, while finetuning LLMs on task-specific data generally improves their performance, abundant annotated datasets are not available for all tasks. Previous work has explored generating task-specific data from state-of-the-art LLMs and using this data to finetune smaller models, but this approach requires access to a language model other than the one being trained, which introduces cost, scalability challenges, and legal hurdles associated with continuously relying on more powerful LLMs. In response to these, we propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM, then use these input-output pairs to finetune the student LLM itself. In our empirical evaluation of the Natural Instructions V2 benchmark, we find that SELF-GUIDE improves the performance of LLM by a substantial margin. Specifically, we report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics. This sheds light on the promise of self-synthesized data guiding LLMs towards becoming task-specific experts without any external learning signals.

  • 5 authors
·
Jul 16, 2024

Relax Image-Specific Prompt Requirement in SAM: A Single Generic Prompt for Segmenting Camouflaged Objects

Camouflaged object detection (COD) approaches heavily rely on pixel-level annotated datasets. Weakly-supervised COD (WSCOD) approaches use sparse annotations like scribbles or points to reduce annotation effort, but this can lead to decreased accuracy. The Segment Anything Model (SAM) shows remarkable segmentation ability with sparse prompts like points. However, manual prompt is not always feasible, as it may not be accessible in real-world application. Additionally, it only provides localization information instead of semantic one, which can intrinsically cause ambiguity in interpreting the targets. In this work, we aim to eliminate the need for manual prompt. The key idea is to employ Cross-modal Chains of Thought Prompting (CCTP) to reason visual prompts using the semantic information given by a generic text prompt. To that end, we introduce a test-time adaptation per-instance mechanism called Generalizable SAM (GenSAM) to automatically enerate and optimize visual prompts the generic task prompt for WSCOD. In particular, CCTP maps a single generic text prompt onto image-specific consensus foreground and background heatmaps using vision-language models, acquiring reliable visual prompts. Moreover, to test-time adapt the visual prompts, we further propose Progressive Mask Generation (PMG) to iteratively reweight the input image, guiding the model to focus on the targets in a coarse-to-fine manner. Crucially, all network parameters are fixed, avoiding the need for additional training. Experiments demonstrate the superiority of GenSAM. Experiments on three benchmarks demonstrate that GenSAM outperforms point supervision approaches and achieves comparable results to scribble supervision ones, solely relying on general task descriptions as prompts. our codes is in: https://lwpyh.github.io/GenSAM/.

  • 4 authors
·
Dec 12, 2023

From Generalist to Specialist: Adapting Vision Language Models via Task-Specific Visual Instruction Tuning

Large vision language models (VLMs) combine large language models with vision encoders, demonstrating promise across various tasks. However, they often underperform in task-specific applications due to domain gaps between pre-training and fine-tuning. We introduce VITask, a novel framework that enhances task-specific adaptability of VLMs by integrating task-specific models (TSMs). VITask employs three key strategies: exemplar prompting (EP), response distribution alignment (RDA), and contrastive response tuning (CRT) to improve the task-specific performance of VLMs by adjusting their response distributions. EP allows TSM features to guide VLMs, while RDA enables VLMs to adapt without TSMs during inference by learning from exemplar-prompted models. CRT further optimizes the ranking of correct image-response pairs, thereby reducing the risk of generating undesired responses. Experiments on 12 medical diagnosis datasets across 9 imaging modalities show that VITask outperforms both vanilla instruction-tuned VLMs and TSMs, showcasing its ability to integrate complementary features from both models effectively. Additionally, VITask offers practical advantages such as flexible TSM integration and robustness to incomplete instructions, making it a versatile and efficient solution for task-specific VLM tuning. Our code are available at https://github.com/baiyang4/VITask.

  • 6 authors
·
Oct 8, 2024 2

Meta-Prompting: Enhancing Language Models with Task-Agnostic Scaffolding

We introduce meta-prompting, an effective scaffolding technique designed to enhance the functionality of language models (LMs). This approach transforms a single LM into a multi-faceted conductor, adept at managing and integrating multiple independent LM queries. By employing high-level instructions, meta-prompting guides the LM to break down complex tasks into smaller, more manageable subtasks. These subtasks are then handled by distinct "expert" instances of the same LM, each operating under specific, tailored instructions. Central to this process is the LM itself, in its role as the conductor, which ensures seamless communication and effective integration of the outputs from these expert models. It additionally employs its inherent critical thinking and robust verification processes to refine and authenticate the end result. This collaborative prompting approach empowers a single LM to simultaneously act as a comprehensive orchestrator and a panel of diverse experts, significantly enhancing its performance across a wide array of tasks. The zero-shot, task-agnostic nature of meta-prompting greatly simplifies user interaction by obviating the need for detailed, task-specific instructions. Furthermore, our research demonstrates the seamless integration of external tools, such as a Python interpreter, into the meta-prompting framework, thereby broadening its applicability and utility. Through rigorous experimentation with GPT-4, we establish the superiority of meta-prompting over conventional scaffolding methods: When averaged across all tasks, including the Game of 24, Checkmate-in-One, and Python Programming Puzzles, meta-prompting, augmented with a Python interpreter functionality, surpasses standard prompting by 17.1%, expert (dynamic) prompting by 17.3%, and multipersona prompting by 15.2%.

  • 2 authors
·
Jan 23, 2024 5

Soft Injection of Task Embeddings Outperforms Prompt-Based In-Context Learning

In-Context Learning (ICL) enables Large Language Models (LLMs) to perform tasks by conditioning on input-output examples in the prompt, without requiring any update in model parameters. While widely adopted, it remains unclear whether prompting with multiple examples is the most effective and efficient way to convey task information. In this work, we propose Soft Injection of task embeddings. The task embeddings are constructed only once using few-shot ICL prompts and repeatedly used during inference. Soft injection is performed by softly mixing task embeddings with attention head activations using pre-optimized mixing parameters, referred to as soft head-selection parameters. This method not only allows a desired task to be performed without in-prompt demonstrations but also significantly outperforms existing ICL approaches while reducing memory usage and compute cost at inference time. An extensive evaluation is performed across 57 tasks and 12 LLMs, spanning four model families of sizes from 4B to 70B. Averaged across 57 tasks, our method outperforms 10-shot ICL by 10.2%-14.3% across 12 LLMs. Additional analyses show that our method also serves as an insightful tool for analyzing task-relevant roles of attention heads, revealing that task-relevant head positions selected by our method transfer across similar tasks but not across dissimilar ones -- underscoring the task-specific nature of head functionality. Our soft injection method opens a new paradigm for reducing prompt length and improving task performance by shifting task conditioning from the prompt space to the activation space.

  • 2 authors
·
Jul 28

Self-regulating Prompts: Foundational Model Adaptation without Forgetting

Prompt learning has emerged as an efficient alternative for fine-tuning foundational models, such as CLIP, for various downstream tasks. Conventionally trained using the task-specific objective, i.e., cross-entropy loss, prompts tend to overfit downstream data distributions and find it challenging to capture task-agnostic general features from the frozen CLIP. This leads to the loss of the model's original generalization capability. To address this issue, our work introduces a self-regularization framework for prompting called PromptSRC (Prompting with Self-regulating Constraints). PromptSRC guides the prompts to optimize for both task-specific and task-agnostic general representations using a three-pronged approach by: (a) regulating prompted representations via mutual agreement maximization with the frozen model, (b) regulating with self-ensemble of prompts over the training trajectory to encode their complementary strengths, and (c) regulating with textual diversity to mitigate sample diversity imbalance with the visual branch. To the best of our knowledge, this is the first regularization framework for prompt learning that avoids overfitting by jointly attending to pre-trained model features, the training trajectory during prompting, and the textual diversity. PromptSRC explicitly steers the prompts to learn a representation space that maximizes performance on downstream tasks without compromising CLIP generalization. We perform extensive experiments on 4 benchmarks where PromptSRC overall performs favorably well compared to the existing methods. Our code and pre-trained models are publicly available at: https://github.com/muzairkhattak/PromptSRC.

  • 6 authors
·
Jul 13, 2023

FluoroSAM: A Language-promptable Foundation Model for Flexible X-ray Image Segmentation

Language promptable X-ray image segmentation would enable greater flexibility for human-in-the-loop workflows in diagnostic and interventional precision medicine. Prior efforts have contributed task-specific models capable of solving problems within a narrow scope, but expanding to broader use requires additional data, annotations, and training time. Recently, language-aligned foundation models (LFMs) -- machine learning models trained on large amounts of highly variable image and text data thus enabling broad applicability -- have emerged as promising tools for automated image analysis. Existing foundation models for medical image analysis focus on scenarios and modalities where large, richly annotated datasets are available. However, the X-ray imaging modality features highly variable image appearance and applications, from diagnostic chest X-rays to interventional fluoroscopy, with varying availability of data. To pave the way toward an LFM for comprehensive and language-aligned analysis of arbitrary medical X-ray images, we introduce FluoroSAM, a language-promptable variant of the Segment Anything Model, trained from scratch on 3M synthetic X-ray images from a wide variety of human anatomies, imaging geometries, and viewing angles. These include pseudo-ground truth masks for 128 organ types and 464 tools with associated text descriptions. FluoroSAM is capable of segmenting myriad anatomical structures and tools based on natural language prompts, thanks to the novel incorporation of vector quantization (VQ) of text embeddings in the training process. We demonstrate FluoroSAM's performance quantitatively on real X-ray images and showcase on several applications how FluoroSAM is a key enabler for rich human-machine interaction in the X-ray image acquisition and analysis context. Code is available at https://github.com/arcadelab/fluorosam.

  • 8 authors
·
Mar 12, 2024

A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications

Prompt engineering has emerged as an indispensable technique for extending the capabilities of large language models (LLMs) and vision-language models (VLMs). This approach leverages task-specific instructions, known as prompts, to enhance model efficacy without modifying the core model parameters. Rather than updating the model parameters, prompts allow seamless integration of pre-trained models into downstream tasks by eliciting desired model behaviors solely based on the given prompt. Prompts can be natural language instructions that provide context to guide the model or learned vector representations that activate relevant knowledge. This burgeoning field has enabled success across various applications, from question-answering to commonsense reasoning. However, there remains a lack of systematic organization and understanding of the diverse prompt engineering methods and techniques. This survey paper addresses the gap by providing a structured overview of recent advancements in prompt engineering, categorized by application area. For each prompting approach, we provide a summary detailing the prompting methodology, its applications, the models involved, and the datasets utilized. We also delve into the strengths and limitations of each approach and include a taxonomy diagram and table summarizing datasets, models, and critical points of each prompting technique. This systematic analysis enables a better understanding of this rapidly developing field and facilitates future research by illuminating open challenges and opportunities for prompt engineering.

  • 6 authors
·
Feb 5, 2024 1

A Unified Generative Retriever for Knowledge-Intensive Language Tasks via Prompt Learning

Knowledge-intensive language tasks (KILTs) benefit from retrieving high-quality relevant contexts from large external knowledge corpora. Learning task-specific retrievers that return relevant contexts at an appropriate level of semantic granularity, such as a document retriever, passage retriever, sentence retriever, and entity retriever, may help to achieve better performance on the end-to-end task. But a task-specific retriever usually has poor generalization ability to new domains and tasks, and it may be costly to deploy a variety of specialised retrievers in practice. We propose a unified generative retriever (UGR) that combines task-specific effectiveness with robust performance over different retrieval tasks in KILTs. To achieve this goal, we make two major contributions: (i) To unify different retrieval tasks into a single generative form, we introduce an n-gram-based identifier for relevant contexts at different levels of granularity in KILTs. And (ii) to address different retrieval tasks with a single model, we employ a prompt learning strategy and investigate three methods to design prompt tokens for each task. In this way, the proposed UGR model can not only share common knowledge across tasks for better generalization, but also perform different retrieval tasks effectively by distinguishing task-specific characteristics. We train UGR on a heterogeneous set of retrieval corpora with well-designed prompts in a supervised and multi-task fashion. Experimental results on the KILT benchmark demonstrate the effectiveness of UGR on in-domain datasets, out-of-domain datasets, and unseen tasks.

  • 7 authors
·
Apr 28, 2023

Geological Everything Model 3D: A Promptable Foundation Model for Unified and Zero-Shot Subsurface Understanding

Understanding Earth's subsurface is critical for energy transition, natural hazard mitigation, and planetary science. Yet subsurface analysis remains fragmented, with separate models required for structural interpretation, stratigraphic analysis, geobody segmentation, and property modeling-each tightly coupled to specific data distributions and task formulations. We introduce the Geological Everything Model 3D (GEM), a unified generative architecture that reformulates all these tasks as prompt-conditioned inference along latent structural frameworks derived from subsurface imaging. This formulation moves beyond task-specific models by enabling a shared inference mechanism, where GEM propagates human-provided prompts-such as well logs, masks, or structural sketches-along inferred structural frameworks to produce geologically coherent outputs. Through this mechanism, GEM achieves zero-shot generalization across tasks with heterogeneous prompt types, without retraining for new tasks or data sources. This capability emerges from a two-stage training process that combines self-supervised representation learning on large-scale field seismic data with adversarial fine-tuning using mixed prompts and labels across diverse subsurface tasks. GEM demonstrates broad applicability across surveys and tasks, including Martian radar stratigraphy analysis, structural interpretation in subduction zones, full seismic stratigraphic interpretation, geobody segmentation, and property modeling. By bridging expert knowledge with generative reasoning in a structurally aware manner, GEM lays the foundation for scalable, human-in-the-loop geophysical AI-transitioning from fragmented pipelines to a vertically integrated, promptable reasoning system. Project page: https://douyimin.github.io/GEM

  • 7 authors
·
Jul 1

GReaTer: Gradients over Reasoning Makes Smaller Language Models Strong Prompt Optimizers

The effectiveness of large language models (LLMs) is closely tied to the design of prompts, making prompt optimization essential for enhancing their performance across a wide range of tasks. Many existing approaches to automating prompt engineering rely exclusively on textual feedback, refining prompts based solely on inference errors identified by large, computationally expensive LLMs. Unfortunately, smaller models struggle to generate high-quality feedback, resulting in complete dependence on large LLM judgment. Moreover, these methods fail to leverage more direct and finer-grained information, such as gradients, due to operating purely in text space. To this end, we introduce GReaTer, a novel prompt optimization technique that directly incorporates gradient information over task-specific reasoning. By utilizing task loss gradients, GReaTer enables self-optimization of prompts for open-source, lightweight language models without the need for costly closed-source LLMs. This allows high-performance prompt optimization without dependence on massive LLMs, closing the gap between smaller models and the sophisticated reasoning often needed for prompt refinement. Extensive evaluations across diverse reasoning tasks including BBH, GSM8k, and FOLIO demonstrate that GReaTer consistently outperforms previous state-of-the-art prompt optimization methods, even those reliant on powerful LLMs. Additionally, GReaTer-optimized prompts frequently exhibit better transferability and, in some cases, boost task performance to levels comparable to or surpassing those achieved by larger language models, highlighting the effectiveness of prompt optimization guided by gradients over reasoning. Code of GReaTer is available at https://github.com/psunlpgroup/GreaTer.

  • 6 authors
·
Dec 12, 2024 3

GMoPE:A Prompt-Expert Mixture Framework for Graph Foundation Models

Graph Neural Networks (GNNs) have demonstrated impressive performance on task-specific benchmarks, yet their ability to generalize across diverse domains and tasks remains limited. Existing approaches often struggle with negative transfer, scalability issues, and high adaptation costs. To address these challenges, we propose GMoPE (Graph Mixture of Prompt-Experts), a novel framework that seamlessly integrates the Mixture-of-Experts (MoE) architecture with prompt-based learning for graphs. GMoPE leverages expert-specific prompt vectors and structure-aware MoE routing to enable each expert to specialize in distinct subdomains and dynamically contribute to predictions. To promote diversity and prevent expert collapse, we introduce a soft orthogonality constraint across prompt vectors, encouraging expert specialization and facilitating a more balanced expert utilization. Additionally, we adopt a prompt-only fine-tuning strategy that significantly reduces spatiotemporal complexity during transfer. We validate GMoPE through extensive experiments under various pretraining strategies and multiple downstream tasks. Results show that GMoPE consistently outperforms state-of-the-art baselines and achieves performance comparable to full parameter fine-tuning-while requiring only a fraction of the adaptation overhead. Our work provides a principled and scalable framework for advancing generalizable and efficient graph foundation models.

  • 5 authors
·
Nov 5

Textual Prompt Guided Image Restoration

Image restoration has always been a cutting-edge topic in the academic and industrial fields of computer vision. Since degradation signals are often random and diverse, "all-in-one" models that can do blind image restoration have been concerned in recent years. Early works require training specialized headers and tails to handle each degradation of concern, which are manually cumbersome. Recent works focus on learning visual prompts from data distribution to identify degradation type. However, the prompts employed in most of models are non-text, lacking sufficient emphasis on the importance of human-in-the-loop. In this paper, an effective textual prompt guided image restoration model has been proposed. In this model, task-specific BERT is fine-tuned to accurately understand user's instructions and generating textual prompt guidance. Depth-wise multi-head transposed attentions and gated convolution modules are designed to bridge the gap between textual prompts and visual features. The proposed model has innovatively introduced semantic prompts into low-level visual domain. It highlights the potential to provide a natural, precise, and controllable way to perform image restoration tasks. Extensive experiments have been done on public denoising, dehazing and deraining datasets. The experiment results demonstrate that, compared with popular state-of-the-art methods, the proposed model can obtain much more superior performance, achieving accurate recognition and removal of degradation without increasing model's complexity. Related source codes and data will be publicly available on github site https://github.com/MoTong-AI-studio/TextPromptIR.

  • 6 authors
·
Dec 11, 2023

Synapse: Trajectory-as-Exemplar Prompting with Memory for Computer Control

Building agents with large language models (LLMs) for computer control is a burgeoning research area, where the agent receives computer states and performs actions to complete complex tasks. Previous computer agents have demonstrated the benefits of in-context learning (ICL); however, their performance is hindered by several issues. First, the limited context length of LLMs and complex computer states restrict the number of exemplars, as a single webpage can consume the entire context. Second, the exemplars in current methods, such as high-level plans and multi-choice questions, cannot represent complete trajectories, leading to suboptimal performance in long-horizon tasks. Third, existing computer agents rely on task-specific exemplars and overlook the similarity among tasks, resulting in poor generalization to novel tasks. To address these challenges, we introduce Synapse, a computer agent featuring three key components: i) state abstraction, which filters out task-irrelevant information from raw states, allowing more exemplars within the limited context, ii) trajectory-as-exemplar prompting, which prompts the LLM with complete trajectories of the abstracted states and actions to improve multi-step decision-making, and iii) exemplar memory, which stores the embeddings of exemplars and retrieves them via similarity search for generalization to novel tasks. We evaluate Synapse on MiniWoB++, a standard task suite, and Mind2Web, a real-world website benchmark. In MiniWoB++, Synapse achieves a 99.2% average success rate (a 10% relative improvement) across 64 tasks using demonstrations from only 48 tasks. Notably, Synapse is the first ICL method to solve the book-flight task in MiniWoB++. Synapse also exhibits a 56% relative improvement in average step success rate over the previous state-of-the-art prompting scheme in Mind2Web.

  • 4 authors
·
Jun 13, 2023

AnyRefill: A Unified, Data-Efficient Framework for Left-Prompt-Guided Vision Tasks

In this paper, we present a novel Left-Prompt-Guided (LPG) paradigm to address a diverse range of reference-based vision tasks. Inspired by the human creative process, we reformulate these tasks using a left-right stitching formulation to construct contextual input. Building upon this foundation, we propose AnyRefill, an extension of LeftRefill, that effectively adapts Text-to-Image (T2I) models to various vision tasks. AnyRefill leverages the inpainting priors of advanced T2I model based on the Diffusion Transformer (DiT) architecture, and incorporates flexible components to enhance its capabilities. By combining task-specific LoRAs with the stitching input, AnyRefill unlocks its potential across diverse tasks, including conditional generation, visual perception, and image editing, without requiring additional visual encoders. Meanwhile, AnyRefill exhibits remarkable data efficiency, requiring minimal task-specific fine-tuning while maintaining high generative performance. Through extensive ablation studies, we demonstrate that AnyRefill outperforms other image condition injection methods and achieves competitive results compared to state-of-the-art open-source methods. Notably, AnyRefill delivers results comparable to advanced commercial tools, such as IC-Light and SeedEdit, even in challenging scenarios. Comprehensive experiments and ablation studies across versatile tasks validate the strong generation of the proposed simple yet effective LPG formulation, establishing AnyRefill as a unified, highly data-efficient solution for reference-based vision tasks.

  • 6 authors
·
Feb 16

Prompt Tuned Embedding Classification for Multi-Label Industry Sector Allocation

Prompt Tuning is emerging as a scalable and cost-effective method to fine-tune Pretrained Language Models (PLMs), which are often referred to as Large Language Models (LLMs). This study benchmarks the performance and computational efficiency of Prompt Tuning and baselines for multi-label text classification. This is applied to the challenging task of classifying companies into an investment firm's proprietary industry taxonomy, supporting their thematic investment strategy. Text-to-text classification is frequently reported to outperform task-specific classification heads, but has several limitations when applied to a multi-label classification problem where each label consists of multiple tokens: (a) Generated labels may not match any label in the label taxonomy; (b) The fine-tuning process lacks permutation invariance and is sensitive to the order of the provided labels; (c) The model provides binary decisions rather than appropriate confidence scores. Limitation (a) is addressed by applying constrained decoding using Trie Search, which slightly improves classification performance. All limitations (a), (b), and (c) are addressed by replacing the PLM's language head with a classification head, which is referred to as Prompt Tuned Embedding Classification (PTEC). This improves performance significantly, while also reducing computational costs during inference. In our industrial application, the training data is skewed towards well-known companies. We confirm that the model's performance is consistent across both well-known and less-known companies. Our overall results indicate the continuing need to adapt state-of-the-art methods to domain-specific tasks, even in the era of PLMs with strong generalization abilities. We release our codebase and a benchmarking dataset at https://github.com/EQTPartners/PTEC.

  • 4 authors
·
Sep 21, 2023

Think Beyond Size: Adaptive Prompting for More Effective Reasoning

Pretrained large language models (LLMs) are increasingly utilized across a wide range of natural language processing (NLP) tasks due to their impressive capabilities as few-shot learners. Recent techniques, such as chain-of-thought (CoT) prompting, have significantly advanced multi-step reasoning by introducing step-by-step decomposition, achieving state-of-the-art results on complex reasoning benchmarks. However, these approaches often rely on static prompting templates that do not adapt to task complexity or errors during the reasoning process. In this work, we introduce Adaptive Prompting, a dynamic and iterative framework designed to enhance reasoning by incorporating real-time adjustments to prompt structures and validation mechanisms.Experimental results demonstrate that Adaptive Prompting significantly improves performance on diverse reasoning benchmarks, including arithmetic reasoning (GSM8K, MultiArith), logical reasoning and commonsense tasks, achieving substantial accuracy gains compared to static prompting baselines. By integrating guided prompts, intermediate validation, and self-corrective steps, our approach enables smaller models to achieve competitive performance with larger counterparts, such as GPT-4, while maintaining computational efficiency. The framework achieves this without requiring fine-tuning or task-specific training data, highlighting the untapped potential of iterative reasoning methods.

  • 1 authors
·
Oct 10, 2024

PromptBridge: Cross-Model Prompt Transfer for Large Language Models

Large language models (LLMs) underpin applications in code generation, mathematical reasoning, and agent-based workflows. In practice, systems access LLMs via commercial APIs or open-source deployments, and the model landscape (e.g., GPT, Claude, Llama) evolves rapidly. This rapid evolution forces frequent model switches driven by capability, cost, deployment constraints, and privacy. Yet prompts are highly model-sensitive: reusing a prompt engineered for one model on another often yields substantially worse performance than a prompt optimized for the target model. We term this phenomenon Model Drifting. Through extensive empirical analysis across diverse LLM configurations, we show that model drifting is both common and severe. To address this challenge, we introduce PromptBridge, a training-free framework that preserves prompt effectiveness under model switches, enabling cross-model prompt transfer without costly per-task or per-model re-optimization. PromptBridge requires only a small set of alignment tasks for calibration. It first applies Model-Adaptive Reflective Prompt Evolution (MAP-RPE) to obtain task- and model-specific optimal prompts via iterative reflective refinement and quantitative evaluation. Using the resulting calibrated prompt pairs for the source and target models, PromptBridge learns a cross-model prompt mapping. At test time, i.e., for an unseen task, given a source-model prompt, this mapping directly produces an optimized prompt for the target model. Experiments in single-agent and multi-agent settings show that PromptBridge consistently improves downstream accuracy while reducing migration effort. The code will be available soon.

Hierarchical Cross-modal Prompt Learning for Vision-Language Models

Pre-trained Vision-Language Models (VLMs) such as CLIP have shown excellent generalization abilities. However, adapting these large-scale models to downstream tasks while preserving their generalization capabilities remains challenging. Although prompt learning methods have shown promise, they suffer from two fundamental bottlenecks that limit generalization: (a) modality isolation, and (b) hierarchical semantic decay. To address these limitations, we propose HiCroPL, a Hierarchical Cross-modal Prompt Learning framework that establishes bidirectional knowledge flow between text and vision modalities, enabling them to refine their semantics mutually. HiCroPL routes knowledge flows by leveraging the complementary strengths of text and vision. In early layers, text prompts inject relatively clear semantics into visual prompts through a hierarchical knowledge mapper, enhancing the representation of low-level visual semantics. In later layers, visual prompts encoding specific task-relevant objects flow back to refine text prompts, enabling deeper alignment. Crucially, our hierarchical knowledge mapper allows representations at multi-scales to be fused, ensuring that deeper representations retain transferable shallow semantics thereby enhancing generalization. We further introduce a lightweight layer-specific knowledge proxy to enable efficient cross-modal interactions. Extensive evaluations across four tasks demonstrate HiCroPL's superior performance, achieving state-of-the-art results on 11 benchmarks with significant improvements. Code is available at: https://github.com/zzeoZheng/HiCroPL.

  • 5 authors
·
Jul 20

ProAPO: Progressively Automatic Prompt Optimization for Visual Classification

Vision-language models (VLMs) have made significant progress in image classification by training with large-scale paired image-text data. Their performances largely depend on the prompt quality. While recent methods show that visual descriptions generated by large language models (LLMs) enhance the generalization of VLMs, class-specific prompts may be inaccurate or lack discrimination due to the hallucination in LLMs. In this paper, we aim to find visually discriminative prompts for fine-grained categories with minimal supervision and no human-in-the-loop. An evolution-based algorithm is proposed to progressively optimize language prompts from task-specific templates to class-specific descriptions. Unlike optimizing templates, the search space shows an explosion in class-specific candidate prompts. This increases prompt generation costs, iterative times, and the overfitting problem. To this end, we first introduce several simple yet effective edit-based and evolution-based operations to generate diverse candidate prompts by one-time query of LLMs. Then, two sampling strategies are proposed to find a better initial search point and reduce traversed categories, saving iteration costs. Moreover, we apply a novel fitness score with entropy constraints to mitigate overfitting. In a challenging one-shot image classification setting, our method outperforms existing textual prompt-based methods and improves LLM-generated description methods across 13 datasets. Meanwhile, we demonstrate that our optimal prompts improve adapter-based methods and transfer effectively across different backbones.

  • 8 authors
·
Feb 27

PIVOT: Iterative Visual Prompting Elicits Actionable Knowledge for VLMs

Vision language models (VLMs) have shown impressive capabilities across a variety of tasks, from logical reasoning to visual understanding. This opens the door to richer interaction with the world, for example robotic control. However, VLMs produce only textual outputs, while robotic control and other spatial tasks require outputting continuous coordinates, actions, or trajectories. How can we enable VLMs to handle such settings without fine-tuning on task-specific data? In this paper, we propose a novel visual prompting approach for VLMs that we call Prompting with Iterative Visual Optimization (PIVOT), which casts tasks as iterative visual question answering. In each iteration, the image is annotated with a visual representation of proposals that the VLM can refer to (e.g., candidate robot actions, localizations, or trajectories). The VLM then selects the best ones for the task. These proposals are iteratively refined, allowing the VLM to eventually zero in on the best available answer. We investigate PIVOT on real-world robotic navigation, real-world manipulation from images, instruction following in simulation, and additional spatial inference tasks such as localization. We find, perhaps surprisingly, that our approach enables zero-shot control of robotic systems without any robot training data, navigation in a variety of environments, and other capabilities. Although current performance is far from perfect, our work highlights potentials and limitations of this new regime and shows a promising approach for Internet-Scale VLMs in robotic and spatial reasoning domains. Website: pivot-prompt.github.io and HuggingFace: https://huggingface.co/spaces/pivot-prompt/pivot-prompt-demo.

  • 23 authors
·
Feb 12, 2024 2

Heterogeneous LLM Methods for Ontology Learning (Few-Shot Prompting, Ensemble Typing, and Attention-Based Taxonomies)

We present a comprehensive system for addressing Tasks A, B, and C of the LLMs4OL 2025 challenge, which together span the full ontology construction pipeline: term extraction, typing, and taxonomy discovery. Our approach combines retrieval-augmented prompting, zero-shot classification, and attention-based graph modeling -- each tailored to the demands of the respective task. For Task A, we jointly extract domain-specific terms and their ontological types using a retrieval-augmented generation (RAG) pipeline. Training data was reformulated into a document to terms and types correspondence, while test-time inference leverages semantically similar training examples. This single-pass method requires no model finetuning and improves overall performance through lexical augmentation Task B, which involves assigning types to given terms, is handled via a dual strategy. In the few-shot setting (for domains with labeled training data), we reuse the RAG scheme with few-shot prompting. In the zero-shot setting (for previously unseen domains), we use a zero-shot classifier that combines cosine similarity scores from multiple embedding models using confidence-based weighting. In Task C, we model taxonomy discovery as graph inference. Using embeddings of type labels, we train a lightweight cross-attention layer to predict is-a relations by approximating a soft adjacency matrix. These modular, task-specific solutions enabled us to achieve top-ranking results in the official leaderboard across all three tasks. Taken together these strategies showcase the scalability, adaptability, and robustness of LLM-based architectures for ontology learning across heterogeneous domains. Code is available at: https://github.com/BelyaevaAlex/LLMs4OL-Challenge-Alexbek

  • 2 authors
·
Aug 26

Structured Prompting and Feedback-Guided Reasoning with LLMs for Data Interpretation

Large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and task generalization. However, their application to structured data analysis remains fragile due to inconsistencies in schema interpretation, misalignment between user intent and model output, and limited mechanisms for self-correction when failures occur. This paper introduces the STROT Framework (Structured Task Reasoning and Output Transformation), a method for structured prompting and feedback-driven transformation logic generation aimed at improving the reliability and semantic alignment of LLM-based analytical workflows. STROT begins with lightweight schema introspection and sample-based field classification, enabling dynamic context construction that captures both the structure and statistical profile of the input data. This contextual information is embedded in structured prompts that guide the model toward generating task-specific, interpretable outputs. To address common failure modes in complex queries, STROT incorporates a refinement mechanism in which the model iteratively revises its outputs based on execution feedback and validation signals. Unlike conventional approaches that rely on static prompts or single-shot inference, STROT treats the LLM as a reasoning agent embedded within a controlled analysis loop -- capable of adjusting its output trajectory through planning and correction. The result is a robust and reproducible framework for reasoning over structured data with LLMs, applicable to diverse data exploration and analysis tasks where interpretability, stability, and correctness are essential.

  • 1 authors
·
May 2

Leveraging Hallucinations to Reduce Manual Prompt Dependency in Promptable Segmentation

Promptable segmentation typically requires instance-specific manual prompts to guide the segmentation of each desired object. To minimize such a need, task-generic promptable segmentation has been introduced, which employs a single task-generic prompt to segment various images of different objects in the same task. Current methods use Multimodal Large Language Models (MLLMs) to reason detailed instance-specific prompts from a task-generic prompt for improving segmentation accuracy. The effectiveness of this segmentation heavily depends on the precision of these derived prompts. However, MLLMs often suffer hallucinations during reasoning, resulting in inaccurate prompting. While existing methods focus on eliminating hallucinations to improve a model, we argue that MLLM hallucinations can reveal valuable contextual insights when leveraged correctly, as they represent pre-trained large-scale knowledge beyond individual images. In this paper, we utilize hallucinations to mine task-related information from images and verify its accuracy for enhancing precision of the generated prompts. Specifically, we introduce an iterative Prompt-Mask Cycle generation framework (ProMaC) with a prompt generator and a mask generator.The prompt generator uses a multi-scale chain of thought prompting, initially exploring hallucinations for extracting extended contextual knowledge on a test image.These hallucinations are then reduced to formulate precise instance-specific prompts, directing the mask generator to produce masks that are consistent with task semantics by mask semantic alignment. The generated masks iteratively induce the prompt generator to focus more on task-relevant image areas and reduce irrelevant hallucinations, resulting jointly in better prompts and masks. Experiments on 5 benchmarks demonstrate the effectiveness of ProMaC. Code given in https://lwpyh.github.io/ProMaC/.

  • 4 authors
·
Aug 27, 2024

A Systematic Survey of Prompt Engineering on Vision-Language Foundation Models

Prompt engineering is a technique that involves augmenting a large pre-trained model with task-specific hints, known as prompts, to adapt the model to new tasks. Prompts can be created manually as natural language instructions or generated automatically as either natural language instructions or vector representations. Prompt engineering enables the ability to perform predictions based solely on prompts without updating model parameters, and the easier application of large pre-trained models in real-world tasks. In past years, Prompt engineering has been well-studied in natural language processing. Recently, it has also been intensively studied in vision-language modeling. However, there is currently a lack of a systematic overview of prompt engineering on pre-trained vision-language models. This paper aims to provide a comprehensive survey of cutting-edge research in prompt engineering on three types of vision-language models: multimodal-to-text generation models (e.g. Flamingo), image-text matching models (e.g. CLIP), and text-to-image generation models (e.g. Stable Diffusion). For each type of model, a brief model summary, prompting methods, prompting-based applications, and the corresponding responsibility and integrity issues are summarized and discussed. Furthermore, the commonalities and differences between prompting on vision-language models, language models, and vision models are also discussed. The challenges, future directions, and research opportunities are summarized to foster future research on this topic.

  • 10 authors
·
Jul 24, 2023

Automatic Chain of Thought Prompting in Large Language Models

Large language models (LLMs) can perform complex reasoning by generating intermediate reasoning steps. Providing these steps for prompting demonstrations is called chain-of-thought (CoT) prompting. CoT prompting has two major paradigms. One leverages a simple prompt like "Let's think step by step" to facilitate step-by-step thinking before answering a question. The other uses a few manual demonstrations one by one, each composed of a question and a reasoning chain that leads to an answer. The superior performance of the second paradigm hinges on the hand-crafting of task-specific demonstrations one by one. We show that such manual efforts may be eliminated by leveraging LLMs with the "Let's think step by step" prompt to generate reasoning chains for demonstrations one by one, i.e., let's think not just step by step, but also one by one. However, these generated chains often come with mistakes. To mitigate the effect of such mistakes, we find that diversity matters for automatically constructing demonstrations. We propose an automatic CoT prompting method: Auto-CoT. It samples questions with diversity and generates reasoning chains to construct demonstrations. On ten public benchmark reasoning tasks with GPT-3, Auto-CoT consistently matches or exceeds the performance of the CoT paradigm that requires manual designs of demonstrations. Code is available at https://github.com/amazon-research/auto-cot

  • 4 authors
·
Oct 7, 2022

Aligning and Prompting Everything All at Once for Universal Visual Perception

Vision foundation models have been explored recently to build general-purpose vision systems. However, predominant paradigms, driven by casting instance-level tasks as an object-word alignment, bring heavy cross-modality interaction, which is not effective in prompting object detection and visual grounding. Another line of work that focuses on pixel-level tasks often encounters a large annotation gap of things and stuff, and suffers from mutual interference between foreground-object and background-class segmentation. In stark contrast to the prevailing methods, we present APE, a universal visual perception model for aligning and prompting everything all at once in an image to perform diverse tasks, i.e., detection, segmentation, and grounding, as an instance-level sentence-object matching paradigm. Specifically, APE advances the convergence of detection and grounding by reformulating language-guided grounding as open-vocabulary detection, which efficiently scales up model prompting to thousands of category vocabularies and region descriptions while maintaining the effectiveness of cross-modality fusion. To bridge the granularity gap of different pixel-level tasks, APE equalizes semantic and panoptic segmentation to proxy instance learning by considering any isolated regions as individual instances. APE aligns vision and language representation on broad data with natural and challenging characteristics all at once without task-specific fine-tuning. The extensive experiments on over 160 datasets demonstrate that, with only one-suit of weights, APE outperforms (or is on par with) the state-of-the-art models, proving that an effective yet universal perception for anything aligning and prompting is indeed feasible. Codes and trained models are released at https://github.com/shenyunhang/APE.

  • 9 authors
·
Dec 4, 2023

Point-PRC: A Prompt Learning Based Regulation Framework for Generalizable Point Cloud Analysis

This paper investigates the 3D domain generalization (3DDG) ability of large 3D models based on prevalent prompt learning. Recent works demonstrate the performances of 3D point cloud recognition can be boosted remarkably by parameter-efficient prompt tuning. However, we observe that the improvement on downstream tasks comes at the expense of a severe drop in 3D domain generalization. To resolve this challenge, we present a comprehensive regulation framework that allows the learnable prompts to actively interact with the well-learned general knowledge in large 3D models to maintain good generalization. Specifically, the proposed framework imposes multiple explicit constraints on the prompt learning trajectory by maximizing the mutual agreement between task-specific predictions and task-agnostic knowledge. We design the regulation framework as a plug-and-play module to embed into existing representative large 3D models. Surprisingly, our method not only realizes consistently increasing generalization ability but also enhances task-specific 3D recognition performances across various 3DDG benchmarks by a clear margin. Considering the lack of study and evaluation on 3DDG, we also create three new benchmarks, namely base-to-new, cross-dataset and few-shot generalization benchmarks, to enrich the field and inspire future research. Code and benchmarks are available at https://github.com/auniquesun/Point-PRC.

  • 7 authors
·
Oct 27, 2024

Approximated Prompt Tuning for Vision-Language Pre-trained Models

Prompt tuning is a parameter-efficient way to deploy large-scale pre-trained models to downstream tasks by adding task-specific tokens. In terms of vision-language pre-trained (VLP) models, prompt tuning often requires a large number of learnable tokens to bridge the gap between the pre-training and downstream tasks, which greatly exacerbates the already high computational overhead. In this paper, we revisit the principle of prompt tuning for Transformer-based VLP models, and reveal that the impact of soft prompt tokens can be actually approximated via independent information diffusion steps, thereby avoiding the expensive global attention modeling and reducing the computational complexity to a large extent. Based on this finding, we propose a novel Approximated Prompt Tuning (APT) approach towards efficient VL transfer learning. To validate APT, we apply it to two representative VLP models, namely ViLT and METER, and conduct extensive experiments on a bunch of downstream tasks. Meanwhile, the generalization of APT is also validated on CLIP for image classification and StableDiffusion for text-to-image generation. The experimental results not only show the superior performance gains and computation efficiency of APT against the conventional prompt tuning methods, e.g., +7.01% accuracy and -82.30% additional computation overhead on METER, but also confirm its merits over other parameter-efficient transfer learning approaches.

  • 7 authors
·
Jun 27, 2023

Cascade Prompt Learning for Vision-Language Model Adaptation

Prompt learning has surfaced as an effective approach to enhance the performance of Vision-Language Models (VLMs) like CLIP when applied to downstream tasks. However, current learnable prompt tokens are primarily used for the single phase of adapting to tasks (i.e., adapting prompt), easily leading to overfitting risks. In this work, we propose a novel Cascade Prompt Learning CasPL framework to enable prompt learning to serve both generic and specific expertise (i.e., boosting and adapting prompt) simultaneously. Specifically, CasPL is a new learning paradigm comprising two distinct phases of learnable prompts: the first boosting prompt is crafted to extract domain-general knowledge from a senior larger CLIP teacher model by aligning their predicted logits using extensive unlabeled domain images. The second adapting prompt is then cascaded with the frozen first set to fine-tune the downstream tasks, following the approaches employed in prior research. In this manner, CasPL can effectively capture both domain-general and task-specific representations into explicitly different gradual groups of prompts, thus potentially alleviating overfitting issues in the target domain. It's worth noting that CasPL serves as a plug-and-play module that can seamlessly integrate into any existing prompt learning approach. CasPL achieves a significantly better balance between performance and inference speed, which is especially beneficial for deploying smaller VLM models in resource-constrained environments. Compared to the previous state-of-the-art method PromptSRC, CasPL shows an average improvement of 1.85% for base classes, 3.44% for novel classes, and 2.72% for the harmonic mean over 11 image classification datasets. Code is publicly available at: https://github.com/megvii-research/CasPL.

  • 7 authors
·
Sep 26, 2024

Active Prompt Learning in Vision Language Models

Pre-trained Vision Language Models (VLMs) have demonstrated notable progress in various zero-shot tasks, such as classification and retrieval. Despite their performance, because improving performance on new tasks requires task-specific knowledge, their adaptation is essential. While labels are needed for the adaptation, acquiring them is typically expensive. To overcome this challenge, active learning, a method of achieving a high performance by obtaining labels for a small number of samples from experts, has been studied. Active learning primarily focuses on selecting unlabeled samples for labeling and leveraging them to train models. In this study, we pose the question, "how can the pre-trained VLMs be adapted under the active learning framework?" In response to this inquiry, we observe that (1) simply applying a conventional active learning framework to pre-trained VLMs even may degrade performance compared to random selection because of the class imbalance in labeling candidates, and (2) the knowledge of VLMs can provide hints for achieving the balance before labeling. Based on these observations, we devise a novel active learning framework for VLMs, denoted as PCB. To assess the effectiveness of our approach, we conduct experiments on seven different real-world datasets, and the results demonstrate that PCB surpasses conventional active learning and random sampling methods. Code will be available in https://github.com/kaist-dmlab/pcb .

  • 3 authors
·
Nov 18, 2023 1

PromptCARE: Prompt Copyright Protection by Watermark Injection and Verification

Large language models (LLMs) have witnessed a meteoric rise in popularity among the general public users over the past few months, facilitating diverse downstream tasks with human-level accuracy and proficiency. Prompts play an essential role in this success, which efficiently adapt pre-trained LLMs to task-specific applications by simply prepending a sequence of tokens to the query texts. However, designing and selecting an optimal prompt can be both expensive and demanding, leading to the emergence of Prompt-as-a-Service providers who profit by providing well-designed prompts for authorized use. With the growing popularity of prompts and their indispensable role in LLM-based services, there is an urgent need to protect the copyright of prompts against unauthorized use. In this paper, we propose PromptCARE, the first framework for prompt copyright protection through watermark injection and verification. Prompt watermarking presents unique challenges that render existing watermarking techniques developed for model and dataset copyright verification ineffective. PromptCARE overcomes these hurdles by proposing watermark injection and verification schemes tailor-made for prompts and NLP characteristics. Extensive experiments on six well-known benchmark datasets, using three prevalent pre-trained LLMs (BERT, RoBERTa, and Facebook OPT-1.3b), demonstrate the effectiveness, harmlessness, robustness, and stealthiness of PromptCARE.

  • 4 authors
·
Aug 5, 2023

DVPT: Dynamic Visual Prompt Tuning of Large Pre-trained Models for Medical Image Analysis

Limited labeled data makes it hard to train models from scratch in medical domain, and an important paradigm is pre-training and then fine-tuning. Large pre-trained models contain rich representations, which can be adapted to downstream medical tasks. However, existing methods either tune all the parameters or the task-specific layers of the pre-trained models, ignoring the input variations of medical images, and thus they are not efficient or effective. In this work, we aim to study parameter-efficient fine-tuning (PEFT) for medical image analysis, and propose a dynamic visual prompt tuning method, named DVPT. It can extract knowledge beneficial to downstream tasks from large models with a few trainable parameters. Firstly, the frozen features are transformed by an lightweight bottleneck layer to learn the domain-specific distribution of downstream medical tasks, and then a few learnable visual prompts are used as dynamic queries and then conduct cross-attention with the transformed features, attempting to acquire sample-specific knowledge that are suitable for each sample. Finally, the features are projected to original feature dimension and aggregated with the frozen features. This DVPT module can be shared between different Transformer layers, further reducing the trainable parameters. To validate DVPT, we conduct extensive experiments with different pre-trained models on medical classification and segmentation tasks. We find such PEFT method can not only efficiently adapt the pre-trained models to the medical domain, but also brings data efficiency with partial labeled data. For example, with 0.5\% extra trainable parameters, our method not only outperforms state-of-the-art PEFT methods, even surpasses the full fine-tuning by more than 2.20\% Kappa score on medical classification task. It can saves up to 60\% labeled data and 99\% storage cost of ViT-B/16.

  • 5 authors
·
Jul 19, 2023

Towards Unified Conversational Recommender Systems via Knowledge-Enhanced Prompt Learning

Conversational recommender systems (CRS) aim to proactively elicit user preference and recommend high-quality items through natural language conversations. Typically, a CRS consists of a recommendation module to predict preferred items for users and a conversation module to generate appropriate responses. To develop an effective CRS, it is essential to seamlessly integrate the two modules. Existing works either design semantic alignment strategies, or share knowledge resources and representations between the two modules. However, these approaches still rely on different architectures or techniques to develop the two modules, making it difficult for effective module integration. To address this problem, we propose a unified CRS model named UniCRS based on knowledge-enhanced prompt learning. Our approach unifies the recommendation and conversation subtasks into the prompt learning paradigm, and utilizes knowledge-enhanced prompts based on a fixed pre-trained language model (PLM) to fulfill both subtasks in a unified approach. In the prompt design, we include fused knowledge representations, task-specific soft tokens, and the dialogue context, which can provide sufficient contextual information to adapt the PLM for the CRS task. Besides, for the recommendation subtask, we also incorporate the generated response template as an important part of the prompt, to enhance the information interaction between the two subtasks. Extensive experiments on two public CRS datasets have demonstrated the effectiveness of our approach.

  • 4 authors
·
Jun 19, 2022

Prompt-In-Prompt Learning for Universal Image Restoration

Image restoration, which aims to retrieve and enhance degraded images, is fundamental across a wide range of applications. While conventional deep learning approaches have notably improved the image quality across various tasks, they still suffer from (i) the high storage cost needed for various task-specific models and (ii) the lack of interactivity and flexibility, hindering their wider application. Drawing inspiration from the pronounced success of prompts in both linguistic and visual domains, we propose novel Prompt-In-Prompt learning for universal image restoration, named PIP. First, we present two novel prompts, a degradation-aware prompt to encode high-level degradation knowledge and a basic restoration prompt to provide essential low-level information. Second, we devise a novel prompt-to-prompt interaction module to fuse these two prompts into a universal restoration prompt. Third, we introduce a selective prompt-to-feature interaction module to modulate the degradation-related feature. By doing so, the resultant PIP works as a plug-and-play module to enhance existing restoration models for universal image restoration. Extensive experimental results demonstrate the superior performance of PIP on multiple restoration tasks, including image denoising, deraining, dehazing, deblurring, and low-light enhancement. Remarkably, PIP is interpretable, flexible, efficient, and easy-to-use, showing promising potential for real-world applications. The code is available at https://github.com/longzilicart/pip_universal.

  • 5 authors
·
Dec 8, 2023

Enhancing CLIP with CLIP: Exploring Pseudolabeling for Limited-Label Prompt Tuning

Fine-tuning vision-language models (VLMs) like CLIP to downstream tasks is often necessary to optimize their performance. However, a major obstacle is the limited availability of labeled data. We study the use of pseudolabels, i.e., heuristic labels for unlabeled data, to enhance CLIP via prompt tuning. Conventional pseudolabeling trains a model on labeled data and then generates labels for unlabeled data. VLMs' zero-shot capabilities enable a ``second generation'' of pseudolabeling approaches that do not require task-specific training on labeled data. By using zero-shot pseudolabels as a source of supervision, we observe that learning paradigms such as semi-supervised, transductive zero-shot, and unsupervised learning can all be seen as optimizing the same loss function. This unified view enables the development of versatile training strategies that are applicable across learning paradigms. We investigate them on image classification tasks where CLIP exhibits limitations, by varying prompt modalities, e.g., textual or visual prompts, and learning paradigms. We find that (1) unexplored prompt tuning strategies that iteratively refine pseudolabels consistently improve CLIP accuracy, by 19.5 points in semi-supervised learning, by 28.4 points in transductive zero-shot learning, and by 15.2 points in unsupervised learning, and (2) unlike conventional semi-supervised pseudolabeling, which exacerbates model biases toward classes with higher-quality pseudolabels, prompt tuning leads to a more equitable distribution of per-class accuracy. The code to reproduce the experiments is at github.com/BatsResearch/menghini-enhanceCLIPwithCLIP-code.

  • 3 authors
·
Jun 2, 2023