new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 27

Supervised Learning-enhanced Multi-Group Actor Critic for Live Stream Allocation in Feed

In the context of a short video & live stream mixed recommendation scenario, the live stream recommendation system (RS) decides whether to allocate at most one live stream into the video feed for each user request. To maximize long-term user engagement, it is crucial to determine an optimal live stream policy for accurate live stream allocation. The inappropriate live stream allocation policy can significantly affect the duration of the usage app and user retention, which ignores the long-term negative impact of live stream allocation. Recently, reinforcement learning (RL) has been widely applied in recommendation systems to capture long-term user engagement. However, traditional RL algorithms often face divergence and instability problems, which restricts the application and deployment in the large-scale industrial recommendation systems, especially in the aforementioned challenging scenario. To address these challenges, we propose a novel Supervised Learning-enhanced Multi-Group Actor Critic algorithm (SL-MGAC). Specifically, we introduce a supervised learning-enhanced actor-critic framework that incorporates variance reduction techniques, where multi-task reward learning helps restrict bootstrapping error accumulation during critic learning. Additionally, we design a multi-group state decomposition module for both actor and critic networks to reduce prediction variance and improve model stability. We also propose a novel reward function to prevent overly greedy live stream allocation. Empirically, we evaluate the SL-MGAC algorithm using offline policy evaluation (OPE) and online A/B testing. Experimental results demonstrate that the proposed method not only outperforms baseline methods under the platform-level constraints but also exhibits enhanced stability in online recommendation scenarios.

Reinforcement Learning-based Control via Y-wise Affine Neural Networks (YANNs)

This work presents a novel reinforcement learning (RL) algorithm based on Y-wise Affine Neural Networks (YANNs). YANNs provide an interpretable neural network which can exactly represent known piecewise affine functions of arbitrary input and output dimensions defined on any amount of polytopic subdomains. One representative application of YANNs is to reformulate explicit solutions of multi-parametric linear model predictive control. Built on this, we propose the use of YANNs to initialize RL actor and critic networks, which enables the resulting YANN-RL control algorithm to start with the confidence of linear optimal control. The YANN-actor is initialized by representing the multi-parametric control solutions obtained via offline computation using an approximated linear system model. The YANN-critic represents the explicit form of the state-action value function for the linear system and the reward function as the objective in an optimal control problem (OCP). Additional network layers are injected to extend YANNs for nonlinear expressions, which can be trained online by directly interacting with the true complex nonlinear system. In this way, both the policy and state-value functions exactly represent a linear OCP initially and are able to eventually learn the solution of a general nonlinear OCP. Continuous policy improvement is also implemented to provide heuristic confidence that the linear OCP solution serves as an effective lower bound to the performance of RL policy. The YANN-RL algorithm is demonstrated on a clipped pendulum and a safety-critical chemical-reactive system. Our results show that YANN-RL significantly outperforms the modern RL algorithm using deep deterministic policy gradient, especially when considering safety constraints.

  • 2 authors
·
Aug 22

Context-Aware Bayesian Network Actor-Critic Methods for Cooperative Multi-Agent Reinforcement Learning

Executing actions in a correlated manner is a common strategy for human coordination that often leads to better cooperation, which is also potentially beneficial for cooperative multi-agent reinforcement learning (MARL). However, the recent success of MARL relies heavily on the convenient paradigm of purely decentralized execution, where there is no action correlation among agents for scalability considerations. In this work, we introduce a Bayesian network to inaugurate correlations between agents' action selections in their joint policy. Theoretically, we establish a theoretical justification for why action dependencies are beneficial by deriving the multi-agent policy gradient formula under such a Bayesian network joint policy and proving its global convergence to Nash equilibria under tabular softmax policy parameterization in cooperative Markov games. Further, by equipping existing MARL algorithms with a recent method of differentiable directed acyclic graphs (DAGs), we develop practical algorithms to learn the context-aware Bayesian network policies in scenarios with partial observability and various difficulty. We also dynamically decrease the sparsity of the learned DAG throughout the training process, which leads to weakly or even purely independent policies for decentralized execution. Empirical results on a range of MARL benchmarks show the benefits of our approach.

  • 2 authors
·
Jun 2, 2023

CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning

Program synthesis or code generation aims to generate a program that satisfies a problem specification. Recent approaches using large-scale pretrained language models (LMs) have shown promising results, yet they have some critical limitations. In particular, they often follow a standard supervised fine-tuning procedure to train a code generation model only from the pairs of natural-language problem descriptions and ground-truth programs. Such paradigm largely ignores some important but potentially useful signals in the problem specification such as unit tests, which thus often results in poor performance when solving complex unseen coding tasks. To address the limitations, we propose "CodeRL", a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning (RL). Specifically, during training, we treat the code-generating LM as an actor network, and introduce a critic network that is trained to predict the functional correctness of generated programs and provide dense feedback signals to the actor. During inference, we introduce a new generation procedure with a critical sampling strategy that allows a model to automatically regenerate programs based on feedback from example unit tests and critic scores. For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives, larger model sizes, and better pretraining data. Our method not only achieves new SOTA results on the challenging APPS benchmark, but also shows strong zero-shot transfer capability with new SOTA results on the simpler MBPP benchmark.

  • 5 authors
·
Jul 4, 2022

Deep-Reinforcement-Learning-Based Distributed Vehicle Position Controls for Coverage Expansion in mmWave V2X

In millimeter wave (mmWave) vehicular communications, multi-hop relay disconnection by line-of-sight (LOS) blockage is a critical problem, especially in the early diffusion phase of mmWave-available vehicles, where not all the vehicles have mmWave communication devices. This paper proposes a distributed position control method for autonomous vehicles to make long relays connecting to road side units (RSUs) by avoiding blockages to communicate with each other via LOS paths. Even though vehicles with the proposed method do not use the whole information of the environments and cooperate with each other, they can decide their action (e.g., lane change and overtaking) to form long relays using only information of its surroundings (e.g., surrounding vehicle positions). The decision-making problem is formulated as a Markov decision process so that autonomous vehicles can learn a practical movement strategy of making long relays by a reinforcement learning (RL) algorithm. This paper designs a learning algorithm based on a sophisticated deep reinforcement learning algorithm, asynchronous advantage actor-critic (A3C), which enables vehicles to learn a complex movement strategy quickly by its deepneural-network architecture and multi-agent-learning mechanism. Once the strategy is well trained, vehicles can distributedly move to positions where the long relay to the RSU is established. Simulations results confirm that the proposed method can increase the relay length and coverage even if the traffic conditions and penetration ratio of mmWave communication devices in learning and operation phases are different.

  • 4 authors
·
Oct 26, 2018

A Deep Reinforcement Learning Framework for Dynamic Portfolio Optimization: Evidence from China's Stock Market

Artificial intelligence is transforming financial investment decision-making frameworks, with deep reinforcement learning demonstrating substantial potential in robo-advisory applications. This paper addresses the limitations of traditional portfolio optimization methods in dynamic asset weight adjustment through the development of a deep reinforcement learning-based dynamic optimization model grounded in practical trading processes. The research advances two key innovations: first, the introduction of a novel Sharpe ratio reward function engineered for Actor-Critic deep reinforcement learning algorithms, which ensures stable convergence during training while consistently achieving positive average Sharpe ratios; second, the development of an innovative comprehensive approach to portfolio optimization utilizing deep reinforcement learning, which significantly enhances model optimization capability through the integration of random sampling strategies during training with image-based deep neural network architectures for multi-dimensional financial time series data processing, average Sharpe ratio reward functions, and deep reinforcement learning algorithms. The empirical analysis validates the model using randomly selected constituent stocks from the CSI 300 Index, benchmarking against established financial econometric optimization models. Backtesting results demonstrate the model's efficacy in optimizing portfolio allocation and mitigating investment risk, yielding superior comprehensive performance metrics.

  • 3 authors
·
Dec 24, 2024