new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 27

CURVALID: Geometrically-guided Adversarial Prompt Detection

Adversarial prompts capable of jailbreaking large language models (LLMs) and inducing undesirable behaviours pose a significant obstacle to their safe deployment. Current mitigation strategies rely on activating built-in defence mechanisms or fine-tuning the LLMs, but the fundamental distinctions between adversarial and benign prompts are yet to be understood. In this work, we introduce CurvaLID, a novel defense framework that efficiently detects adversarial prompts by leveraging their geometric properties. It is agnostic to the type of LLM, offering a unified detection framework across diverse adversarial prompts and LLM architectures. CurvaLID builds on the geometric analysis of text prompts to uncover their underlying differences. We theoretically extend the concept of curvature via the Whewell equation into an n-dimensional word embedding space, enabling us to quantify local geometric properties, including semantic shifts and curvature in the underlying manifolds. Additionally, we employ Local Intrinsic Dimensionality (LID) to capture geometric features of text prompts within adversarial subspaces. Our findings reveal that adversarial prompts differ fundamentally from benign prompts in terms of their geometric characteristics. Our results demonstrate that CurvaLID delivers superior detection and rejection of adversarial queries, paving the way for safer LLM deployment. The source code can be found at https://github.com/Cancanxxx/CurvaLID

  • 4 authors
·
Mar 5

Can Adversarial Examples Be Parsed to Reveal Victim Model Information?

Numerous adversarial attack methods have been developed to generate imperceptible image perturbations that can cause erroneous predictions of state-of-the-art machine learning (ML) models, in particular, deep neural networks (DNNs). Despite intense research on adversarial attacks, little effort was made to uncover 'arcana' carried in adversarial attacks. In this work, we ask whether it is possible to infer data-agnostic victim model (VM) information (i.e., characteristics of the ML model or DNN used to generate adversarial attacks) from data-specific adversarial instances. We call this 'model parsing of adversarial attacks' - a task to uncover 'arcana' in terms of the concealed VM information in attacks. We approach model parsing via supervised learning, which correctly assigns classes of VM's model attributes (in terms of architecture type, kernel size, activation function, and weight sparsity) to an attack instance generated from this VM. We collect a dataset of adversarial attacks across 7 attack types generated from 135 victim models (configured by 5 architecture types, 3 kernel size setups, 3 activation function types, and 3 weight sparsity ratios). We show that a simple, supervised model parsing network (MPN) is able to infer VM attributes from unseen adversarial attacks if their attack settings are consistent with the training setting (i.e., in-distribution generalization assessment). We also provide extensive experiments to justify the feasibility of VM parsing from adversarial attacks, and the influence of training and evaluation factors in the parsing performance (e.g., generalization challenge raised in out-of-distribution evaluation). We further demonstrate how the proposed MPN can be used to uncover the source VM attributes from transfer attacks, and shed light on a potential connection between model parsing and attack transferability.

  • 7 authors
·
Mar 13, 2023

Conditional Generative Adversarial Networks for Speed Control in Trajectory Simulation

Motion behaviour is driven by several factors -- goals, presence and actions of neighbouring agents, social relations, physical and social norms, the environment with its variable characteristics, and further. Most factors are not directly observable and must be modelled from context. Trajectory prediction, is thus a hard problem, and has seen increasing attention from researchers in the recent years. Prediction of motion, in application, must be realistic, diverse and controllable. In spite of increasing focus on multimodal trajectory generation, most methods still lack means for explicitly controlling different modes of the data generation. Further, most endeavours invest heavily in designing special mechanisms to learn the interactions in latent space. We present Conditional Speed GAN (CSG), that allows controlled generation of diverse and socially acceptable trajectories, based on user controlled speed. During prediction, CSG forecasts future speed from latent space and conditions its generation based on it. CSG is comparable to state-of-the-art GAN methods in terms of the benchmark distance metrics, while being simple and useful for simulation and data augmentation for different contexts such as fast or slow paced environments. Additionally, we compare the effect of different aggregation mechanisms and show that a naive approach of concatenation works comparable to its attention and pooling alternatives.

  • 4 authors
·
Mar 21, 2021

Large Language Models for Code: Security Hardening and Adversarial Testing

Large language models (large LMs) are increasingly trained on massive codebases and used to generate code. However, LMs lack awareness of security and are found to frequently produce unsafe code. This work studies the security of LMs along two important axes: (i) security hardening, which aims to enhance LMs' reliability in generating secure code, and (ii) adversarial testing, which seeks to evaluate LMs' security at an adversarial standpoint. We address both of these by formulating a new security task called controlled code generation. The task is parametric and takes as input a binary property to guide the LM to generate secure or unsafe code, while preserving the LM's capability of generating functionally correct code. We propose a novel learning-based approach called SVEN to solve this task. SVEN leverages property-specific continuous vectors to guide program generation towards the given property, without modifying the LM's weights. Our training procedure optimizes these continuous vectors by enforcing specialized loss terms on different regions of code, using a high-quality dataset carefully curated by us. Our extensive evaluation shows that SVEN is highly effective in achieving strong security control. For instance, a state-of-the-art CodeGen LM with 2.7B parameters generates secure code for 59.1% of the time. When we employ SVEN to perform security hardening (or adversarial testing) on this LM, the ratio is significantly boosted to 92.3% (or degraded to 36.8%). Importantly, SVEN closely matches the original LMs in functional correctness.

  • 2 authors
·
Feb 10, 2023

Doubly Robust Instance-Reweighted Adversarial Training

Assigning importance weights to adversarial data has achieved great success in training adversarially robust networks under limited model capacity. However, existing instance-reweighted adversarial training (AT) methods heavily depend on heuristics and/or geometric interpretations to determine those importance weights, making these algorithms lack rigorous theoretical justification/guarantee. Moreover, recent research has shown that adversarial training suffers from a severe non-uniform robust performance across the training distribution, e.g., data points belonging to some classes can be much more vulnerable to adversarial attacks than others. To address both issues, in this paper, we propose a novel doubly-robust instance reweighted AT framework, which allows to obtain the importance weights via exploring distributionally robust optimization (DRO) techniques, and at the same time boosts the robustness on the most vulnerable examples. In particular, our importance weights are obtained by optimizing the KL-divergence regularized loss function, which allows us to devise new algorithms with a theoretical convergence guarantee. Experiments on standard classification datasets demonstrate that our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance, and at the same time improves the robustness against attacks on the weakest data points. Codes will be available soon.

  • 4 authors
·
Aug 1, 2023

Reverse Engineering of Imperceptible Adversarial Image Perturbations

It has been well recognized that neural network based image classifiers are easily fooled by images with tiny perturbations crafted by an adversary. There has been a vast volume of research to generate and defend such adversarial attacks. However, the following problem is left unexplored: How to reverse-engineer adversarial perturbations from an adversarial image? This leads to a new adversarial learning paradigm--Reverse Engineering of Deceptions (RED). If successful, RED allows us to estimate adversarial perturbations and recover the original images. However, carefully crafted, tiny adversarial perturbations are difficult to recover by optimizing a unilateral RED objective. For example, the pure image denoising method may overfit to minimizing the reconstruction error but hardly preserve the classification properties of the true adversarial perturbations. To tackle this challenge, we formalize the RED problem and identify a set of principles crucial to the RED approach design. Particularly, we find that prediction alignment and proper data augmentation (in terms of spatial transformations) are two criteria to achieve a generalizable RED approach. By integrating these RED principles with image denoising, we propose a new Class-Discriminative Denoising based RED framework, termed CDD-RED. Extensive experiments demonstrate the effectiveness of CDD-RED under different evaluation metrics (ranging from the pixel-level, prediction-level to the attribution-level alignment) and a variety of attack generation methods (e.g., FGSM, PGD, CW, AutoAttack, and adaptive attacks).

  • 7 authors
·
Mar 26, 2022

Your Attack Is Too DUMB: Formalizing Attacker Scenarios for Adversarial Transferability

Evasion attacks are a threat to machine learning models, where adversaries attempt to affect classifiers by injecting malicious samples. An alarming side-effect of evasion attacks is their ability to transfer among different models: this property is called transferability. Therefore, an attacker can produce adversarial samples on a custom model (surrogate) to conduct the attack on a victim's organization later. Although literature widely discusses how adversaries can transfer their attacks, their experimental settings are limited and far from reality. For instance, many experiments consider both attacker and defender sharing the same dataset, balance level (i.e., how the ground truth is distributed), and model architecture. In this work, we propose the DUMB attacker model. This framework allows analyzing if evasion attacks fail to transfer when the training conditions of surrogate and victim models differ. DUMB considers the following conditions: Dataset soUrces, Model architecture, and the Balance of the ground truth. We then propose a novel testbed to evaluate many state-of-the-art evasion attacks with DUMB; the testbed consists of three computer vision tasks with two distinct datasets each, four types of balance levels, and three model architectures. Our analysis, which generated 13K tests over 14 distinct attacks, led to numerous novel findings in the scope of transferable attacks with surrogate models. In particular, mismatches between attackers and victims in terms of dataset source, balance levels, and model architecture lead to non-negligible loss of attack performance.

  • 5 authors
·
Jun 27, 2023

Refined Regret for Adversarial MDPs with Linear Function Approximation

We consider learning in an adversarial Markov Decision Process (MDP) where the loss functions can change arbitrarily over K episodes and the state space can be arbitrarily large. We assume that the Q-function of any policy is linear in some known features, that is, a linear function approximation exists. The best existing regret upper bound for this setting (Luo et al., 2021) is of order mathcal O(K^{2/3}) (omitting all other dependencies), given access to a simulator. This paper provides two algorithms that improve the regret to mathcal O(sqrt K) in the same setting. Our first algorithm makes use of a refined analysis of the Follow-the-Regularized-Leader (FTRL) algorithm with the log-barrier regularizer. This analysis allows the loss estimators to be arbitrarily negative and might be of independent interest. Our second algorithm develops a magnitude-reduced loss estimator, further removing the polynomial dependency on the number of actions in the first algorithm and leading to the optimal regret bound (up to logarithmic terms and dependency on the horizon). Moreover, we also extend the first algorithm to simulator-free linear MDPs, which achieves mathcal O(K^{8/9}) regret and greatly improves over the best existing bound mathcal O(K^{14/15}). This algorithm relies on a better alternative to the Matrix Geometric Resampling procedure by Neu & Olkhovskaya (2020), which could again be of independent interest.

  • 4 authors
·
Jan 30, 2023

Be Your Own Neighborhood: Detecting Adversarial Example by the Neighborhood Relations Built on Self-Supervised Learning

Deep Neural Networks (DNNs) have achieved excellent performance in various fields. However, DNNs' vulnerability to Adversarial Examples (AE) hinders their deployments to safety-critical applications. This paper presents a novel AE detection framework, named BEYOND, for trustworthy predictions. BEYOND performs the detection by distinguishing the AE's abnormal relation with its augmented versions, i.e. neighbors, from two prospects: representation similarity and label consistency. An off-the-shelf Self-Supervised Learning (SSL) model is used to extract the representation and predict the label for its highly informative representation capacity compared to supervised learning models. For clean samples, their representations and predictions are closely consistent with their neighbors, whereas those of AEs differ greatly. Furthermore, we explain this observation and show that by leveraging this discrepancy BEYOND can effectively detect AEs. We develop a rigorous justification for the effectiveness of BEYOND. Furthermore, as a plug-and-play model, BEYOND can easily cooperate with the Adversarial Trained Classifier (ATC), achieving the state-of-the-art (SOTA) robustness accuracy. Experimental results show that BEYOND outperforms baselines by a large margin, especially under adaptive attacks. Empowered by the robust relation net built on SSL, we found that BEYOND outperforms baselines in terms of both detection ability and speed. Our code will be publicly available.

  • 5 authors
·
Aug 31, 2022

Explore and Control with Adversarial Surprise

Unsupervised reinforcement learning (RL) studies how to leverage environment statistics to learn useful behaviors without the cost of reward engineering. However, a central challenge in unsupervised RL is to extract behaviors that meaningfully affect the world and cover the range of possible outcomes, without getting distracted by inherently unpredictable, uncontrollable, and stochastic elements in the environment. To this end, we propose an unsupervised RL method designed for high-dimensional, stochastic environments based on an adversarial game between two policies (which we call Explore and Control) controlling a single body and competing over the amount of observation entropy the agent experiences. The Explore agent seeks out states that maximally surprise the Control agent, which in turn aims to minimize surprise, and thereby manipulate the environment to return to familiar and predictable states. The competition between these two policies drives them to seek out increasingly surprising parts of the environment while learning to gain mastery over them. We show formally that the resulting algorithm maximizes coverage of the underlying state in block MDPs with stochastic observations, providing theoretical backing to our hypothesis that this procedure avoids uncontrollable and stochastic distractions. Our experiments further demonstrate that Adversarial Surprise leads to the emergence of complex and meaningful skills, and outperforms state-of-the-art unsupervised reinforcement learning methods in terms of both exploration and zero-shot transfer to downstream tasks.

  • 8 authors
·
Jul 12, 2021

ZipGAN: Super-Resolution-based Generative Adversarial Network Framework for Data Compression of Direct Numerical Simulations

The advancement of high-performance computing has enabled the generation of large direct numerical simulation (DNS) datasets of turbulent flows, driving the need for efficient compression/decompression techniques that reduce storage demands while maintaining fidelity. Traditional methods, such as the discrete wavelet transform, cannot achieve compression ratios of 8 or higher for complex turbulent flows without introducing significant encoding/decoding errors. On the other hand, a super-resolution-based generative adversarial network (SR-GAN), called ZipGAN, can accurately reconstruct fine-scale features, preserving velocity gradients and structural details, even at a compression ratio of 512, thanks to the more efficient representation of the data in compact latent space. Additional benefits are ascribed to adversarial training. The high GAN training time is significantly reduced with a progressive transfer learning approach and, once trained, they can be applied independently of the Reynolds number. It is demonstrated that ZipGAN can enhance dataset temporal resolution without additional simulation overhead by generating high-quality intermediate fields from compressed snapshots. The ZipGAN discriminator can reliably evaluate the quality of decoded fields, ensuring fidelity even in the absence of original DNS fields. Hence, ZipGAN compression/decompression method presents a highly efficient and scalable alternative for large-scale DNS storage and transfer, offering substantial advantages over the DWT methods in terms of compression efficiency, reconstruction fidelity, and temporal resolution enhancement.

  • 8 authors
·
Dec 18, 2024

Video Adverse-Weather-Component Suppression Network via Weather Messenger and Adversarial Backpropagation

Although convolutional neural networks (CNNs) have been proposed to remove adverse weather conditions in single images using a single set of pre-trained weights, they fail to restore weather videos due to the absence of temporal information. Furthermore, existing methods for removing adverse weather conditions (e.g., rain, fog, and snow) from videos can only handle one type of adverse weather. In this work, we propose the first framework for restoring videos from all adverse weather conditions by developing a video adverse-weather-component suppression network (ViWS-Net). To achieve this, we first devise a weather-agnostic video transformer encoder with multiple transformer stages. Moreover, we design a long short-term temporal modeling mechanism for weather messenger to early fuse input adjacent video frames and learn weather-specific information. We further introduce a weather discriminator with gradient reversion, to maintain the weather-invariant common information and suppress the weather-specific information in pixel features, by adversarially predicting weather types. Finally, we develop a messenger-driven video transformer decoder to retrieve the residual weather-specific feature, which is spatiotemporally aggregated with hierarchical pixel features and refined to predict the clean target frame of input videos. Experimental results, on benchmark datasets and real-world weather videos, demonstrate that our ViWS-Net outperforms current state-of-the-art methods in terms of restoring videos degraded by any weather condition.

  • 6 authors
·
Sep 24, 2023

A Multi Camera Unsupervised Domain Adaptation Pipeline for Object Detection in Cultural Sites through Adversarial Learning and Self-Training

Object detection algorithms allow to enable many interesting applications which can be implemented in different devices, such as smartphones and wearable devices. In the context of a cultural site, implementing these algorithms in a wearable device, such as a pair of smart glasses, allow to enable the use of augmented reality (AR) to show extra information about the artworks and enrich the visitors' experience during their tour. However, object detection algorithms require to be trained on many well annotated examples to achieve reasonable results. This brings a major limitation since the annotation process requires human supervision which makes it expensive in terms of time and costs. A possible solution to reduce these costs consist in exploiting tools to automatically generate synthetic labeled images from a 3D model of the site. However, models trained with synthetic data do not generalize on real images acquired in the target scenario in which they are supposed to be used. Furthermore, object detectors should be able to work with different wearable devices or different mobile devices, which makes generalization even harder. In this paper, we present a new dataset collected in a cultural site to study the problem of domain adaptation for object detection in the presence of multiple unlabeled target domains corresponding to different cameras and a labeled source domain obtained considering synthetic images for training purposes. We present a new domain adaptation method which outperforms current state-of-the-art approaches combining the benefits of aligning the domains at the feature and pixel level with a self-training process. We release the dataset at the following link https://iplab.dmi.unict.it/OBJ-MDA/ and the code of the proposed architecture at https://github.com/fpv-iplab/STMDA-RetinaNet.

  • 3 authors
·
Oct 3, 2022

Single Image BRDF Parameter Estimation with a Conditional Adversarial Network

Creating plausible surfaces is an essential component in achieving a high degree of realism in rendering. To relieve artists, who create these surfaces in a time-consuming, manual process, automated retrieval of the spatially-varying Bidirectional Reflectance Distribution Function (SVBRDF) from a single mobile phone image is desirable. By leveraging a deep neural network, this casual capturing method can be achieved. The trained network can estimate per pixel normal, base color, metallic and roughness parameters from the Disney BRDF. The input image is taken with a mobile phone lit by the camera flash. The network is trained to compensate for environment lighting and thus learned to reduce artifacts introduced by other light sources. These losses contain a multi-scale discriminator with an additional perceptual loss, a rendering loss using a differentiable renderer, and a parameter loss. Besides the local precision, this loss formulation generates material texture maps which are globally more consistent. The network is set up as a generator network trained in an adversarial fashion to ensure that only plausible maps are produced. The estimated parameters not only reproduce the material faithfully in rendering but capture the style of hand-authored materials due to the more global loss terms compared to previous works without requiring additional post-processing. Both the resolution and the quality is improved.

  • 2 authors
·
Oct 11, 2019

Arabic Synonym BERT-based Adversarial Examples for Text Classification

Text classification systems have been proven vulnerable to adversarial text examples, modified versions of the original text examples that are often unnoticed by human eyes, yet can force text classification models to alter their classification. Often, research works quantifying the impact of adversarial text attacks have been applied only to models trained in English. In this paper, we introduce the first word-level study of adversarial attacks in Arabic. Specifically, we use a synonym (word-level) attack using a Masked Language Modeling (MLM) task with a BERT model in a black-box setting to assess the robustness of the state-of-the-art text classification models to adversarial attacks in Arabic. To evaluate the grammatical and semantic similarities of the newly produced adversarial examples using our synonym BERT-based attack, we invite four human evaluators to assess and compare the produced adversarial examples with their original examples. We also study the transferability of these newly produced Arabic adversarial examples to various models and investigate the effectiveness of defense mechanisms against these adversarial examples on the BERT models. We find that fine-tuned BERT models were more susceptible to our synonym attacks than the other Deep Neural Networks (DNN) models like WordCNN and WordLSTM we trained. We also find that fine-tuned BERT models were more susceptible to transferred attacks. We, lastly, find that fine-tuned BERT models successfully regain at least 2% in accuracy after applying adversarial training as an initial defense mechanism.

  • 4 authors
·
Feb 5, 2024

Benchmarking Vision Language Model Unlearning via Fictitious Facial Identity Dataset

Machine unlearning has emerged as an effective strategy for forgetting specific information in the training data. However, with the increasing integration of visual data, privacy concerns in Vision Language Models (VLMs) remain underexplored. To address this, we introduce Facial Identity Unlearning Benchmark (FIUBench), a novel VLM unlearning benchmark designed to robustly evaluate the effectiveness of unlearning algorithms under the Right to be Forgotten setting. Specifically, we formulate the VLM unlearning task via constructing the Fictitious Facial Identity VQA dataset and apply a two-stage evaluation pipeline that is designed to precisely control the sources of information and their exposure levels. In terms of evaluation, since VLM supports various forms of ways to ask questions with the same semantic meaning, we also provide robust evaluation metrics including membership inference attacks and carefully designed adversarial privacy attacks to evaluate the performance of algorithms. Through the evaluation of four baseline VLM unlearning algorithms within FIUBench, we find that all methods remain limited in their unlearning performance, with significant trade-offs between model utility and forget quality. Furthermore, our findings also highlight the importance of privacy attacks for robust evaluations. We hope FIUBench will drive progress in developing more effective VLM unlearning algorithms.

  • 13 authors
·
Nov 5, 2024

Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models

Large-scale pre-trained language models have achieved tremendous success across a wide range of natural language understanding (NLU) tasks, even surpassing human performance. However, recent studies reveal that the robustness of these models can be challenged by carefully crafted textual adversarial examples. While several individual datasets have been proposed to evaluate model robustness, a principled and comprehensive benchmark is still missing. In this paper, we present Adversarial GLUE (AdvGLUE), a new multi-task benchmark to quantitatively and thoroughly explore and evaluate the vulnerabilities of modern large-scale language models under various types of adversarial attacks. In particular, we systematically apply 14 textual adversarial attack methods to GLUE tasks to construct AdvGLUE, which is further validated by humans for reliable annotations. Our findings are summarized as follows. (i) Most existing adversarial attack algorithms are prone to generating invalid or ambiguous adversarial examples, with around 90% of them either changing the original semantic meanings or misleading human annotators as well. Therefore, we perform a careful filtering process to curate a high-quality benchmark. (ii) All the language models and robust training methods we tested perform poorly on AdvGLUE, with scores lagging far behind the benign accuracy. We hope our work will motivate the development of new adversarial attacks that are more stealthy and semantic-preserving, as well as new robust language models against sophisticated adversarial attacks. AdvGLUE is available at https://adversarialglue.github.io.

  • 8 authors
·
Nov 4, 2021

Benchmarking Ultra-High-Definition Image Reflection Removal

Deep learning based methods have achieved significant success in the task of single image reflection removal (SIRR). However, the majority of these methods are focused on High-Definition/Standard-Definition (HD/SD) images, while ignoring higher resolution images such as Ultra-High-Definition (UHD) images. With the increasing prevalence of UHD images captured by modern devices, in this paper, we aim to address the problem of UHD SIRR. Specifically, we first synthesize two large-scale UHD datasets, UHDRR4K and UHDRR8K. The UHDRR4K dataset consists of 2,999 and 168 quadruplets of images for training and testing respectively, and the UHDRR8K dataset contains 1,014 and 105 quadruplets. To the best of our knowledge, these two datasets are the first largest-scale UHD datasets for SIRR. Then, we conduct a comprehensive evaluation of six state-of-the-art SIRR methods using the proposed datasets. Based on the results, we provide detailed discussions regarding the strengths and limitations of these methods when applied to UHD images. Finally, we present a transformer-based architecture named RRFormer for reflection removal. RRFormer comprises three modules, namely the Prepossessing Embedding Module, Self-attention Feature Extraction Module, and Multi-scale Spatial Feature Extraction Module. These modules extract hypercolumn features, global and partial attention features, and multi-scale spatial features, respectively. To ensure effective training, we utilize three terms in our loss function: pixel loss, feature loss, and adversarial loss. We demonstrate through experimental results that RRFormer achieves state-of-the-art performance on both the non-UHD dataset and our proposed UHDRR datasets. The code and datasets are publicly available at https://github.com/Liar-zzy/Benchmarking-Ultra-High-Definition-Single-Image-Reflection-Removal.

  • 6 authors
·
Jul 31, 2023

SneakyPrompt: Jailbreaking Text-to-image Generative Models

Text-to-image generative models such as Stable Diffusion and DALLcdotE raise many ethical concerns due to the generation of harmful images such as Not-Safe-for-Work (NSFW) ones. To address these ethical concerns, safety filters are often adopted to prevent the generation of NSFW images. In this work, we propose SneakyPrompt, the first automated attack framework, to jailbreak text-to-image generative models such that they generate NSFW images even if safety filters are adopted. Given a prompt that is blocked by a safety filter, SneakyPrompt repeatedly queries the text-to-image generative model and strategically perturbs tokens in the prompt based on the query results to bypass the safety filter. Specifically, SneakyPrompt utilizes reinforcement learning to guide the perturbation of tokens. Our evaluation shows that SneakyPrompt successfully jailbreaks DALLcdotE 2 with closed-box safety filters to generate NSFW images. Moreover, we also deploy several state-of-the-art, open-source safety filters on a Stable Diffusion model. Our evaluation shows that SneakyPrompt not only successfully generates NSFW images, but also outperforms existing text adversarial attacks when extended to jailbreak text-to-image generative models, in terms of both the number of queries and qualities of the generated NSFW images. SneakyPrompt is open-source and available at this repository: https://github.com/Yuchen413/text2image_safety.

  • 5 authors
·
May 19, 2023

Self-Improving Robust Preference Optimization

Both online and offline RLHF methods such as PPO and DPO have been extremely successful in aligning AI with human preferences. Despite their success, the existing methods suffer from a fundamental problem that their optimal solution is highly task-dependent (i.e., not robust to out-of-distribution (OOD) tasks). Here we address this challenge by proposing Self-Improving Robust Preference Optimization SRPO, a practical and mathematically principled offline RLHF framework that is completely robust to the changes in the task. The key idea of SRPO is to cast the problem of learning from human preferences as a self-improvement process, which can be mathematically expressed in terms of a min-max objective that aims at joint optimization of self-improvement policy and the generative policy in an adversarial fashion. The solution for this optimization problem is independent of the training task and thus it is robust to its changes. We then show that this objective can be re-expressed in the form of a non-adversarial offline loss which can be optimized using standard supervised optimization techniques at scale without any need for reward model and online inference. We show the effectiveness of SRPO in terms of AI Win-Rate (WR) against human (GOLD) completions. In particular, when SRPO is evaluated on the OOD XSUM dataset, it outperforms the celebrated DPO by a clear margin of 15% after 5 self-revisions, achieving WR of 90%.

  • 5 authors
·
Jun 3, 2024 1

Transformer-based Image Generation from Scene Graphs

Graph-structured scene descriptions can be efficiently used in generative models to control the composition of the generated image. Previous approaches are based on the combination of graph convolutional networks and adversarial methods for layout prediction and image generation, respectively. In this work, we show how employing multi-head attention to encode the graph information, as well as using a transformer-based model in the latent space for image generation can improve the quality of the sampled data, without the need to employ adversarial models with the subsequent advantage in terms of training stability. The proposed approach, specifically, is entirely based on transformer architectures both for encoding scene graphs into intermediate object layouts and for decoding these layouts into images, passing through a lower dimensional space learned by a vector-quantized variational autoencoder. Our approach shows an improved image quality with respect to state-of-the-art methods as well as a higher degree of diversity among multiple generations from the same scene graph. We evaluate our approach on three public datasets: Visual Genome, COCO, and CLEVR. We achieve an Inception Score of 13.7 and 12.8, and an FID of 52.3 and 60.3, on COCO and Visual Genome, respectively. We perform ablation studies on our contributions to assess the impact of each component. Code is available at https://github.com/perceivelab/trf-sg2im

  • 3 authors
·
Mar 8, 2023

Shedding More Light on Robust Classifiers under the lens of Energy-based Models

By reinterpreting a robust discriminative classifier as Energy-based Model (EBM), we offer a new take on the dynamics of adversarial training (AT). Our analysis of the energy landscape during AT reveals that untargeted attacks generate adversarial images much more in-distribution (lower energy) than the original data from the point of view of the model. Conversely, we observe the opposite for targeted attacks. On the ground of our thorough analysis, we present new theoretical and practical results that show how interpreting AT energy dynamics unlocks a better understanding: (1) AT dynamic is governed by three phases and robust overfitting occurs in the third phase with a drastic divergence between natural and adversarial energies (2) by rewriting the loss of TRadeoff-inspired Adversarial DEfense via Surrogate-loss minimization (TRADES) in terms of energies, we show that TRADES implicitly alleviates overfitting by means of aligning the natural energy with the adversarial one (3) we empirically show that all recent state-of-the-art robust classifiers are smoothing the energy landscape and we reconcile a variety of studies about understanding AT and weighting the loss function under the umbrella of EBMs. Motivated by rigorous evidence, we propose Weighted Energy Adversarial Training (WEAT), a novel sample weighting scheme that yields robust accuracy matching the state-of-the-art on multiple benchmarks such as CIFAR-10 and SVHN and going beyond in CIFAR-100 and Tiny-ImageNet. We further show that robust classifiers vary in the intensity and quality of their generative capabilities, and offer a simple method to push this capability, reaching a remarkable Inception Score (IS) and FID using a robust classifier without training for generative modeling. The code to reproduce our results is available at http://github.com/OmnAI-Lab/Robust-Classifiers-under-the-lens-of-EBM/ .

  • 4 authors
·
Jul 8, 2024

A Boundary Tilting Persepective on the Phenomenon of Adversarial Examples

Deep neural networks have been shown to suffer from a surprising weakness: their classification outputs can be changed by small, non-random perturbations of their inputs. This adversarial example phenomenon has been explained as originating from deep networks being "too linear" (Goodfellow et al., 2014). We show here that the linear explanation of adversarial examples presents a number of limitations: the formal argument is not convincing, linear classifiers do not always suffer from the phenomenon, and when they do their adversarial examples are different from the ones affecting deep networks. We propose a new perspective on the phenomenon. We argue that adversarial examples exist when the classification boundary lies close to the submanifold of sampled data, and present a mathematical analysis of this new perspective in the linear case. We define the notion of adversarial strength and show that it can be reduced to the deviation angle between the classifier considered and the nearest centroid classifier. Then, we show that the adversarial strength can be made arbitrarily high independently of the classification performance due to a mechanism that we call boundary tilting. This result leads us to defining a new taxonomy of adversarial examples. Finally, we show that the adversarial strength observed in practice is directly dependent on the level of regularisation used and the strongest adversarial examples, symptomatic of overfitting, can be avoided by using a proper level of regularisation.

  • 2 authors
·
Aug 27, 2016

Gradient-Based Word Substitution for Obstinate Adversarial Examples Generation in Language Models

In this paper, we study the problem of generating obstinate (over-stability) adversarial examples by word substitution in NLP, where input text is meaningfully changed but the model's prediction does not, even though it should. Previous word substitution approaches have predominantly focused on manually designed antonym-based strategies for generating obstinate adversarial examples, which hinders its application as these strategies can only find a subset of obstinate adversarial examples and require human efforts. To address this issue, in this paper, we introduce a novel word substitution method named GradObstinate, a gradient-based approach that automatically generates obstinate adversarial examples without any constraints on the search space or the need for manual design principles. To empirically evaluate the efficacy of GradObstinate, we conduct comprehensive experiments on five representative models (Electra, ALBERT, Roberta, DistillBERT, and CLIP) finetuned on four NLP benchmarks (SST-2, MRPC, SNLI, and SQuAD) and a language-grounding benchmark (MSCOCO). Extensive experiments show that our proposed GradObstinate generates more powerful obstinate adversarial examples, exhibiting a higher attack success rate compared to antonym-based methods. Furthermore, to show the transferability of obstinate word substitutions found by GradObstinate, we replace the words in four representative NLP benchmarks with their obstinate substitutions. Notably, obstinate substitutions exhibit a high success rate when transferred to other models in black-box settings, including even GPT-3 and ChatGPT. Examples of obstinate adversarial examples found by GradObstinate are available at https://huggingface.co/spaces/anonauthors/SecretLanguage.

  • 3 authors
·
Jul 23, 2023

Attention Meets Perturbations: Robust and Interpretable Attention with Adversarial Training

Although attention mechanisms have been applied to a variety of deep learning models and have been shown to improve the prediction performance, it has been reported to be vulnerable to perturbations to the mechanism. To overcome the vulnerability to perturbations in the mechanism, we are inspired by adversarial training (AT), which is a powerful regularization technique for enhancing the robustness of the models. In this paper, we propose a general training technique for natural language processing tasks, including AT for attention (Attention AT) and more interpretable AT for attention (Attention iAT). The proposed techniques improved the prediction performance and the model interpretability by exploiting the mechanisms with AT. In particular, Attention iAT boosts those advantages by introducing adversarial perturbation, which enhances the difference in the attention of the sentences. Evaluation experiments with ten open datasets revealed that AT for attention mechanisms, especially Attention iAT, demonstrated (1) the best performance in nine out of ten tasks and (2) more interpretable attention (i.e., the resulting attention correlated more strongly with gradient-based word importance) for all tasks. Additionally, the proposed techniques are (3) much less dependent on perturbation size in AT. Our code is available at https://github.com/shunk031/attention-meets-perturbation

  • 2 authors
·
Sep 25, 2020

Variational Inference with Latent Space Quantization for Adversarial Resilience

Despite their tremendous success in modelling high-dimensional data manifolds, deep neural networks suffer from the threat of adversarial attacks - Existence of perceptually valid input-like samples obtained through careful perturbation that lead to degradation in the performance of the underlying model. Major concerns with existing defense mechanisms include non-generalizability across different attacks, models and large inference time. In this paper, we propose a generalized defense mechanism capitalizing on the expressive power of regularized latent space based generative models. We design an adversarial filter, devoid of access to classifier and adversaries, which makes it usable in tandem with any classifier. The basic idea is to learn a Lipschitz constrained mapping from the data manifold, incorporating adversarial perturbations, to a quantized latent space and re-map it to the true data manifold. Specifically, we simultaneously auto-encode the data manifold and its perturbations implicitly through the perturbations of the regularized and quantized generative latent space, realized using variational inference. We demonstrate the efficacy of the proposed formulation in providing resilience against multiple attack types (black and white box) and methods, while being almost real-time. Our experiments show that the proposed method surpasses the state-of-the-art techniques in several cases.

  • 5 authors
·
Mar 24, 2019 2

Adversarial Training for High-Stakes Reliability

In the future, powerful AI systems may be deployed in high-stakes settings, where a single failure could be catastrophic. One technique for improving AI safety in high-stakes settings is adversarial training, which uses an adversary to generate examples to train on in order to achieve better worst-case performance. In this work, we used a safe language generation task (``avoid injuries'') as a testbed for achieving high reliability through adversarial training. We created a series of adversarial training techniques -- including a tool that assists human adversaries -- to find and eliminate failures in a classifier that filters text completions suggested by a generator. In our task, we determined that we can set very conservative classifier thresholds without significantly impacting the quality of the filtered outputs. We found that adversarial training increased robustness to the adversarial attacks that we trained on -- doubling the time for our contractors to find adversarial examples both with our tool (from 13 to 26 minutes) and without (from 20 to 44 minutes) -- without affecting in-distribution performance. We hope to see further work in the high-stakes reliability setting, including more powerful tools for enhancing human adversaries and better ways to measure high levels of reliability, until we can confidently rule out the possibility of catastrophic deployment-time failures of powerful models.

  • 12 authors
·
May 3, 2022

Intriguing Properties of Adversarial Examples

It is becoming increasingly clear that many machine learning classifiers are vulnerable to adversarial examples. In attempting to explain the origin of adversarial examples, previous studies have typically focused on the fact that neural networks operate on high dimensional data, they overfit, or they are too linear. Here we argue that the origin of adversarial examples is primarily due to an inherent uncertainty that neural networks have about their predictions. We show that the functional form of this uncertainty is independent of architecture, dataset, and training protocol; and depends only on the statistics of the logit differences of the network, which do not change significantly during training. This leads to adversarial error having a universal scaling, as a power-law, with respect to the size of the adversarial perturbation. We show that this universality holds for a broad range of datasets (MNIST, CIFAR10, ImageNet, and random data), models (including state-of-the-art deep networks, linear models, adversarially trained networks, and networks trained on randomly shuffled labels), and attacks (FGSM, step l.l., PGD). Motivated by these results, we study the effects of reducing prediction entropy on adversarial robustness. Finally, we study the effect of network architectures on adversarial sensitivity. To do this, we use neural architecture search with reinforcement learning to find adversarially robust architectures on CIFAR10. Our resulting architecture is more robust to white and black box attacks compared to previous attempts.

  • 4 authors
·
Nov 8, 2017

All You Need is RAW: Defending Against Adversarial Attacks with Camera Image Pipelines

Existing neural networks for computer vision tasks are vulnerable to adversarial attacks: adding imperceptible perturbations to the input images can fool these methods to make a false prediction on an image that was correctly predicted without the perturbation. Various defense methods have proposed image-to-image mapping methods, either including these perturbations in the training process or removing them in a preprocessing denoising step. In doing so, existing methods often ignore that the natural RGB images in today's datasets are not captured but, in fact, recovered from RAW color filter array captures that are subject to various degradations in the capture. In this work, we exploit this RAW data distribution as an empirical prior for adversarial defense. Specifically, we proposed a model-agnostic adversarial defensive method, which maps the input RGB images to Bayer RAW space and back to output RGB using a learned camera image signal processing (ISP) pipeline to eliminate potential adversarial patterns. The proposed method acts as an off-the-shelf preprocessing module and, unlike model-specific adversarial training methods, does not require adversarial images to train. As a result, the method generalizes to unseen tasks without additional retraining. Experiments on large-scale datasets (e.g., ImageNet, COCO) for different vision tasks (e.g., classification, semantic segmentation, object detection) validate that the method significantly outperforms existing methods across task domains.

  • 3 authors
·
Dec 16, 2021

REAP: A Large-Scale Realistic Adversarial Patch Benchmark

Machine learning models are known to be susceptible to adversarial perturbation. One famous attack is the adversarial patch, a sticker with a particularly crafted pattern that makes the model incorrectly predict the object it is placed on. This attack presents a critical threat to cyber-physical systems that rely on cameras such as autonomous cars. Despite the significance of the problem, conducting research in this setting has been difficult; evaluating attacks and defenses in the real world is exceptionally costly while synthetic data are unrealistic. In this work, we propose the REAP (REalistic Adversarial Patch) benchmark, a digital benchmark that allows the user to evaluate patch attacks on real images, and under real-world conditions. Built on top of the Mapillary Vistas dataset, our benchmark contains over 14,000 traffic signs. Each sign is augmented with a pair of geometric and lighting transformations, which can be used to apply a digitally generated patch realistically onto the sign. Using our benchmark, we perform the first large-scale assessments of adversarial patch attacks under realistic conditions. Our experiments suggest that adversarial patch attacks may present a smaller threat than previously believed and that the success rate of an attack on simpler digital simulations is not predictive of its actual effectiveness in practice. We release our benchmark publicly at https://github.com/wagner-group/reap-benchmark.

  • 4 authors
·
Dec 11, 2022

AdvPrompter: Fast Adaptive Adversarial Prompting for LLMs

While recently Large Language Models (LLMs) have achieved remarkable successes, they are vulnerable to certain jailbreaking attacks that lead to generation of inappropriate or harmful content. Manual red-teaming requires finding adversarial prompts that cause such jailbreaking, e.g. by appending a suffix to a given instruction, which is inefficient and time-consuming. On the other hand, automatic adversarial prompt generation often leads to semantically meaningless attacks that can easily be detected by perplexity-based filters, may require gradient information from the TargetLLM, or do not scale well due to time-consuming discrete optimization processes over the token space. In this paper, we present a novel method that uses another LLM, called the AdvPrompter, to generate human-readable adversarial prompts in seconds, sim800times faster than existing optimization-based approaches. We train the AdvPrompter using a novel algorithm that does not require access to the gradients of the TargetLLM. This process alternates between two steps: (1) generating high-quality target adversarial suffixes by optimizing the AdvPrompter predictions, and (2) low-rank fine-tuning of the AdvPrompter with the generated adversarial suffixes. The trained AdvPrompter generates suffixes that veil the input instruction without changing its meaning, such that the TargetLLM is lured to give a harmful response. Experimental results on popular open source TargetLLMs show state-of-the-art results on the AdvBench dataset, that also transfer to closed-source black-box LLM APIs. Further, we demonstrate that by fine-tuning on a synthetic dataset generated by AdvPrompter, LLMs can be made more robust against jailbreaking attacks while maintaining performance, i.e. high MMLU scores.

  • 5 authors
·
Apr 21, 2024 1

Controlled Caption Generation for Images Through Adversarial Attacks

Deep learning is found to be vulnerable to adversarial examples. However, its adversarial susceptibility in image caption generation is under-explored. We study adversarial examples for vision and language models, which typically adopt an encoder-decoder framework consisting of two major components: a Convolutional Neural Network (i.e., CNN) for image feature extraction and a Recurrent Neural Network (RNN) for caption generation. In particular, we investigate attacks on the visual encoder's hidden layer that is fed to the subsequent recurrent network. The existing methods either attack the classification layer of the visual encoder or they back-propagate the gradients from the language model. In contrast, we propose a GAN-based algorithm for crafting adversarial examples for neural image captioning that mimics the internal representation of the CNN such that the resulting deep features of the input image enable a controlled incorrect caption generation through the recurrent network. Our contribution provides new insights for understanding adversarial attacks on vision systems with language component. The proposed method employs two strategies for a comprehensive evaluation. The first examines if a neural image captioning system can be misled to output targeted image captions. The second analyzes the possibility of keywords into the predicted captions. Experiments show that our algorithm can craft effective adversarial images based on the CNN hidden layers to fool captioning framework. Moreover, we discover the proposed attack to be highly transferable. Our work leads to new robustness implications for neural image captioning.

  • 5 authors
·
Jul 7, 2021

I See Dead People: Gray-Box Adversarial Attack on Image-To-Text Models

Modern image-to-text systems typically adopt the encoder-decoder framework, which comprises two main components: an image encoder, responsible for extracting image features, and a transformer-based decoder, used for generating captions. Taking inspiration from the analysis of neural networks' robustness against adversarial perturbations, we propose a novel gray-box algorithm for creating adversarial examples in image-to-text models. Unlike image classification tasks that have a finite set of class labels, finding visually similar adversarial examples in an image-to-text task poses greater challenges because the captioning system allows for a virtually infinite space of possible captions. In this paper, we present a gray-box adversarial attack on image-to-text, both untargeted and targeted. We formulate the process of discovering adversarial perturbations as an optimization problem that uses only the image-encoder component, meaning the proposed attack is language-model agnostic. Through experiments conducted on the ViT-GPT2 model, which is the most-used image-to-text model in Hugging Face, and the Flickr30k dataset, we demonstrate that our proposed attack successfully generates visually similar adversarial examples, both with untargeted and targeted captions. Notably, our attack operates in a gray-box manner, requiring no knowledge about the decoder module. We also show that our attacks fool the popular open-source platform Hugging Face.

  • 2 authors
·
Jun 13, 2023

Assessing biomedical knowledge robustness in large language models by query-efficient sampling attacks

The increasing depth of parametric domain knowledge in large language models (LLMs) is fueling their rapid deployment in real-world applications. Understanding model vulnerabilities in high-stakes and knowledge-intensive tasks is essential for quantifying the trustworthiness of model predictions and regulating their use. The recent discovery of named entities as adversarial examples (i.e. adversarial entities) in natural language processing tasks raises questions about their potential impact on the knowledge robustness of pre-trained and finetuned LLMs in high-stakes and specialized domains. We examined the use of type-consistent entity substitution as a template for collecting adversarial entities for billion-parameter LLMs with biomedical knowledge. To this end, we developed an embedding-space attack based on powerscaled distance-weighted sampling to assess the robustness of their biomedical knowledge with a low query budget and controllable coverage. Our method has favorable query efficiency and scaling over alternative approaches based on random sampling and blackbox gradient-guided search, which we demonstrated for adversarial distractor generation in biomedical question answering. Subsequent failure mode analysis uncovered two regimes of adversarial entities on the attack surface with distinct characteristics and we showed that entity substitution attacks can manipulate token-wise Shapley value explanations, which become deceptive in this setting. Our approach complements standard evaluations for high-capacity models and the results highlight the brittleness of domain knowledge in LLMs.

  • 7 authors
·
Feb 16, 2024

Topic-oriented Adversarial Attacks against Black-box Neural Ranking Models

Neural ranking models (NRMs) have attracted considerable attention in information retrieval. Unfortunately, NRMs may inherit the adversarial vulnerabilities of general neural networks, which might be leveraged by black-hat search engine optimization practitioners. Recently, adversarial attacks against NRMs have been explored in the paired attack setting, generating an adversarial perturbation to a target document for a specific query. In this paper, we focus on a more general type of perturbation and introduce the topic-oriented adversarial ranking attack task against NRMs, which aims to find an imperceptible perturbation that can promote a target document in ranking for a group of queries with the same topic. We define both static and dynamic settings for the task and focus on decision-based black-box attacks. We propose a novel framework to improve topic-oriented attack performance based on a surrogate ranking model. The attack problem is formalized as a Markov decision process (MDP) and addressed using reinforcement learning. Specifically, a topic-oriented reward function guides the policy to find a successful adversarial example that can be promoted in rankings to as many queries as possible in a group. Experimental results demonstrate that the proposed framework can significantly outperform existing attack strategies, and we conclude by re-iterating that there exist potential risks for applying NRMs in the real world.

  • 7 authors
·
Apr 28, 2023

Efficient Adversarial Training in LLMs with Continuous Attacks

Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails. In many domains, adversarial training has proven to be one of the most promising methods to reliably improve robustness against such attacks. Yet, in the context of LLMs, current methods for adversarial training are hindered by the high computational costs required to perform discrete adversarial attacks at each training iteration. We address this problem by instead calculating adversarial attacks in the continuous embedding space of the LLM, which is orders of magnitudes more efficient. We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses: the first makes the model robust on continuous embedding attacks computed on an adversarial behaviour dataset; the second ensures the usefulness of the final model by fine-tuning on utility data. Moreover, we introduce C-AdvIPO, an adversarial variant of IPO that does not require utility data for adversarially robust alignment. Our empirical evaluation on four models from different families (Gemma, Phi3, Mistral, Zephyr) and at different scales (2B, 3.8B, 7B) shows that both algorithms substantially enhance LLM robustness against discrete attacks (GCG, AutoDAN, PAIR), while maintaining utility. Our results demonstrate that robustness to continuous perturbations can extrapolate to discrete threat models. Thereby, we present a path toward scalable adversarial training algorithms for robustly aligning LLMs.

  • 5 authors
·
May 24, 2024

Visual Adversarial Examples Jailbreak Large Language Models

Recently, there has been a surge of interest in introducing vision into Large Language Models (LLMs). The proliferation of large Visual Language Models (VLMs), such as Flamingo, BLIP-2, and GPT-4, signifies an exciting convergence of advancements in both visual and language foundation models. Yet, the risks associated with this integrative approach are largely unexamined. In this paper, we shed light on the security and safety implications of this trend. First, we underscore that the continuous and high-dimensional nature of the additional visual input space intrinsically makes it a fertile ground for adversarial attacks. This unavoidably expands the attack surfaces of LLMs. Second, we highlight that the broad functionality of LLMs also presents visual attackers with a wider array of achievable adversarial objectives, extending the implications of security failures beyond mere misclassification. To elucidate these risks, we study adversarial examples in the visual input space of a VLM. Specifically, against MiniGPT-4, which incorporates safety mechanisms that can refuse harmful instructions, we present visual adversarial examples that can circumvent the safety mechanisms and provoke harmful behaviors of the model. Remarkably, we discover that adversarial examples, even if optimized on a narrow, manually curated derogatory corpus against specific social groups, can universally jailbreak the model's safety mechanisms. A single such adversarial example can generally undermine MiniGPT-4's safety, enabling it to heed a wide range of harmful instructions and produce harmful content far beyond simply imitating the derogatory corpus used in optimization. Unveiling these risks, we accentuate the urgent need for comprehensive risk assessments, robust defense strategies, and the implementation of responsible practices for the secure and safe utilization of VLMs.

  • 5 authors
·
Jun 22, 2023 1

Evaluating Adversarial Robustness: A Comparison Of FGSM, Carlini-Wagner Attacks, And The Role of Distillation as Defense Mechanism

This technical report delves into an in-depth exploration of adversarial attacks specifically targeted at Deep Neural Networks (DNNs) utilized for image classification. The study also investigates defense mechanisms aimed at bolstering the robustness of machine learning models. The research focuses on comprehending the ramifications of two prominent attack methodologies: the Fast Gradient Sign Method (FGSM) and the Carlini-Wagner (CW) approach. These attacks are examined concerning three pre-trained image classifiers: Resnext50_32x4d, DenseNet-201, and VGG-19, utilizing the Tiny-ImageNet dataset. Furthermore, the study proposes the robustness of defensive distillation as a defense mechanism to counter FGSM and CW attacks. This defense mechanism is evaluated using the CIFAR-10 dataset, where CNN models, specifically resnet101 and Resnext50_32x4d, serve as the teacher and student models, respectively. The proposed defensive distillation model exhibits effectiveness in thwarting attacks such as FGSM. However, it is noted to remain susceptible to more sophisticated techniques like the CW attack. The document presents a meticulous validation of the proposed scheme. It provides detailed and comprehensive results, elucidating the efficacy and limitations of the defense mechanisms employed. Through rigorous experimentation and analysis, the study offers insights into the dynamics of adversarial attacks on DNNs, as well as the effectiveness of defensive strategies in mitigating their impact.

  • 8 authors
·
Apr 5, 2024

To Generate or Not? Safety-Driven Unlearned Diffusion Models Are Still Easy To Generate Unsafe Images ... For Now

The recent advances in diffusion models (DMs) have revolutionized the generation of realistic and complex images. However, these models also introduce potential safety hazards, such as producing harmful content and infringing data copyrights. Despite the development of safety-driven unlearning techniques to counteract these challenges, doubts about their efficacy persist. To tackle this issue, we introduce an evaluation framework that leverages adversarial prompts to discern the trustworthiness of these safety-driven DMs after they have undergone the process of unlearning harmful concepts. Specifically, we investigated the adversarial robustness of DMs, assessed by adversarial prompts, when eliminating unwanted concepts, styles, and objects. We develop an effective and efficient adversarial prompt generation approach for DMs, termed UnlearnDiffAtk. This method capitalizes on the intrinsic classification abilities of DMs to simplify the creation of adversarial prompts, thereby eliminating the need for auxiliary classification or diffusion models.Through extensive benchmarking, we evaluate the robustness of five widely-used safety-driven unlearned DMs (i.e., DMs after unlearning undesirable concepts, styles, or objects) across a variety of tasks. Our results demonstrate the effectiveness and efficiency merits of UnlearnDiffAtk over the state-of-the-art adversarial prompt generation method and reveal the lack of robustness of current safety-driven unlearning techniques when applied to DMs. Codes are available at https://github.com/OPTML-Group/Diffusion-MU-Attack. WARNING: This paper contains model outputs that may be offensive in nature.

  • 8 authors
·
Oct 18, 2023

Online Adversarial Attacks

Adversarial attacks expose important vulnerabilities of deep learning models, yet little attention has been paid to settings where data arrives as a stream. In this paper, we formalize the online adversarial attack problem, emphasizing two key elements found in real-world use-cases: attackers must operate under partial knowledge of the target model, and the decisions made by the attacker are irrevocable since they operate on a transient data stream. We first rigorously analyze a deterministic variant of the online threat model by drawing parallels to the well-studied k-secretary problem in theoretical computer science and propose Virtual+, a simple yet practical online algorithm. Our main theoretical result shows Virtual+ yields provably the best competitive ratio over all single-threshold algorithms for k<5 -- extending the previous analysis of the k-secretary problem. We also introduce the stochastic k-secretary -- effectively reducing online blackbox transfer attacks to a k-secretary problem under noise -- and prove theoretical bounds on the performance of Virtual+ adapted to this setting. Finally, we complement our theoretical results by conducting experiments on MNIST, CIFAR-10, and Imagenet classifiers, revealing the necessity of online algorithms in achieving near-optimal performance and also the rich interplay between attack strategies and online attack selection, enabling simple strategies like FGSM to outperform stronger adversaries.

  • 7 authors
·
Mar 2, 2021

Order-Disorder: Imitation Adversarial Attacks for Black-box Neural Ranking Models

Neural text ranking models have witnessed significant advancement and are increasingly being deployed in practice. Unfortunately, they also inherit adversarial vulnerabilities of general neural models, which have been detected but remain underexplored by prior studies. Moreover, the inherit adversarial vulnerabilities might be leveraged by blackhat SEO to defeat better-protected search engines. In this study, we propose an imitation adversarial attack on black-box neural passage ranking models. We first show that the target passage ranking model can be transparentized and imitated by enumerating critical queries/candidates and then train a ranking imitation model. Leveraging the ranking imitation model, we can elaborately manipulate the ranking results and transfer the manipulation attack to the target ranking model. For this purpose, we propose an innovative gradient-based attack method, empowered by the pairwise objective function, to generate adversarial triggers, which causes premeditated disorderliness with very few tokens. To equip the trigger camouflages, we add the next sentence prediction loss and the language model fluency constraint to the objective function. Experimental results on passage ranking demonstrate the effectiveness of the ranking imitation attack model and adversarial triggers against various SOTA neural ranking models. Furthermore, various mitigation analyses and human evaluation show the effectiveness of camouflages when facing potential mitigation approaches. To motivate other scholars to further investigate this novel and important problem, we make the experiment data and code publicly available.

  • 8 authors
·
Sep 14, 2022

Adversarial Defence without Adversarial Defence: Enhancing Language Model Robustness via Instance-level Principal Component Removal

Pre-trained language models (PLMs) have driven substantial progress in natural language processing but remain vulnerable to adversarial attacks, raising concerns about their robustness in real-world applications. Previous studies have sought to mitigate the impact of adversarial attacks by introducing adversarial perturbations into the training process, either implicitly or explicitly. While both strategies enhance robustness, they often incur high computational costs. In this work, we propose a simple yet effective add-on module that enhances the adversarial robustness of PLMs by removing instance-level principal components, without relying on conventional adversarial defences or perturbing the original training data. Our approach transforms the embedding space to approximate Gaussian properties, thereby reducing its susceptibility to adversarial perturbations while preserving semantic relationships. This transformation aligns embedding distributions in a way that minimises the impact of adversarial noise on decision boundaries, enhancing robustness without requiring adversarial examples or costly training-time augmentation. Evaluations on eight benchmark datasets show that our approach improves adversarial robustness while maintaining comparable before-attack accuracy to baselines, achieving a balanced trade-off between robustness and generalisation.

  • 6 authors
·
Jul 29

Survey of Vulnerabilities in Large Language Models Revealed by Adversarial Attacks

Large Language Models (LLMs) are swiftly advancing in architecture and capability, and as they integrate more deeply into complex systems, the urgency to scrutinize their security properties grows. This paper surveys research in the emerging interdisciplinary field of adversarial attacks on LLMs, a subfield of trustworthy ML, combining the perspectives of Natural Language Processing and Security. Prior work has shown that even safety-aligned LLMs (via instruction tuning and reinforcement learning through human feedback) can be susceptible to adversarial attacks, which exploit weaknesses and mislead AI systems, as evidenced by the prevalence of `jailbreak' attacks on models like ChatGPT and Bard. In this survey, we first provide an overview of large language models, describe their safety alignment, and categorize existing research based on various learning structures: textual-only attacks, multi-modal attacks, and additional attack methods specifically targeting complex systems, such as federated learning or multi-agent systems. We also offer comprehensive remarks on works that focus on the fundamental sources of vulnerabilities and potential defenses. To make this field more accessible to newcomers, we present a systematic review of existing works, a structured typology of adversarial attack concepts, and additional resources, including slides for presentations on related topics at the 62nd Annual Meeting of the Association for Computational Linguistics (ACL'24).

  • 6 authors
·
Oct 16, 2023

BadRAG: Identifying Vulnerabilities in Retrieval Augmented Generation of Large Language Models

Large Language Models (LLMs) are constrained by outdated information and a tendency to generate incorrect data, commonly referred to as "hallucinations." Retrieval-Augmented Generation (RAG) addresses these limitations by combining the strengths of retrieval-based methods and generative models. This approach involves retrieving relevant information from a large, up-to-date dataset and using it to enhance the generation process, leading to more accurate and contextually appropriate responses. Despite its benefits, RAG introduces a new attack surface for LLMs, particularly because RAG databases are often sourced from public data, such as the web. In this paper, we propose to identify the vulnerabilities and attacks on retrieval parts (RAG database) and their indirect attacks on generative parts (LLMs). Specifically, we identify that poisoning several customized content passages could achieve a retrieval backdoor, where the retrieval works well for clean queries but always returns customized poisoned adversarial queries. Triggers and poisoned passages can be highly customized to implement various attacks. For example, a trigger could be a semantic group like "The Republican Party, Donald Trump, etc." Adversarial passages can be tailored to different contents, not only linked to the triggers but also used to indirectly attack generative LLMs without modifying them. These attacks can include denial-of-service attacks on RAG and semantic steering attacks on LLM generations conditioned by the triggers. Our experiments demonstrate that by just poisoning 10 adversarial passages can induce 98.2\% success rate to retrieve the adversarial passages. Then, these passages can increase the reject ratio of RAG-based GPT-4 from 0.01\% to 74.6\% or increase the rate of negative responses from 0.22\% to 72\% for targeted queries.

  • 6 authors
·
Jun 2, 2024

Universal and Transferable Adversarial Attacks on Aligned Language Models

Because "out-of-the-box" large language models are capable of generating a great deal of objectionable content, recent work has focused on aligning these models in an attempt to prevent undesirable generation. While there has been some success at circumventing these measures -- so-called "jailbreaks" against LLMs -- these attacks have required significant human ingenuity and are brittle in practice. In this paper, we propose a simple and effective attack method that causes aligned language models to generate objectionable behaviors. Specifically, our approach finds a suffix that, when attached to a wide range of queries for an LLM to produce objectionable content, aims to maximize the probability that the model produces an affirmative response (rather than refusing to answer). However, instead of relying on manual engineering, our approach automatically produces these adversarial suffixes by a combination of greedy and gradient-based search techniques, and also improves over past automatic prompt generation methods. Surprisingly, we find that the adversarial prompts generated by our approach are quite transferable, including to black-box, publicly released LLMs. Specifically, we train an adversarial attack suffix on multiple prompts (i.e., queries asking for many different types of objectionable content), as well as multiple models (in our case, Vicuna-7B and 13B). When doing so, the resulting attack suffix is able to induce objectionable content in the public interfaces to ChatGPT, Bard, and Claude, as well as open source LLMs such as LLaMA-2-Chat, Pythia, Falcon, and others. In total, this work significantly advances the state-of-the-art in adversarial attacks against aligned language models, raising important questions about how such systems can be prevented from producing objectionable information. Code is available at github.com/llm-attacks/llm-attacks.

  • 4 authors
·
Jul 27, 2023 1

FireBERT: Hardening BERT-based classifiers against adversarial attack

We present FireBERT, a set of three proof-of-concept NLP classifiers hardened against TextFooler-style word-perturbation by producing diverse alternatives to original samples. In one approach, we co-tune BERT against the training data and synthetic adversarial samples. In a second approach, we generate the synthetic samples at evaluation time through substitution of words and perturbation of embedding vectors. The diversified evaluation results are then combined by voting. A third approach replaces evaluation-time word substitution with perturbation of embedding vectors. We evaluate FireBERT for MNLI and IMDB Movie Review datasets, in the original and on adversarial examples generated by TextFooler. We also test whether TextFooler is less successful in creating new adversarial samples when manipulating FireBERT, compared to working on unhardened classifiers. We show that it is possible to improve the accuracy of BERT-based models in the face of adversarial attacks without significantly reducing the accuracy for regular benchmark samples. We present co-tuning with a synthetic data generator as a highly effective method to protect against 95% of pre-manufactured adversarial samples while maintaining 98% of original benchmark performance. We also demonstrate evaluation-time perturbation as a promising direction for further research, restoring accuracy up to 75% of benchmark performance for pre-made adversarials, and up to 65% (from a baseline of 75% orig. / 12% attack) under active attack by TextFooler.

  • 3 authors
·
Aug 10, 2020

Semantic Stealth: Adversarial Text Attacks on NLP Using Several Methods

In various real-world applications such as machine translation, sentiment analysis, and question answering, a pivotal role is played by NLP models, facilitating efficient communication and decision-making processes in domains ranging from healthcare to finance. However, a significant challenge is posed to the robustness of these natural language processing models by text adversarial attacks. These attacks involve the deliberate manipulation of input text to mislead the predictions of the model while maintaining human interpretability. Despite the remarkable performance achieved by state-of-the-art models like BERT in various natural language processing tasks, they are found to remain vulnerable to adversarial perturbations in the input text. In addressing the vulnerability of text classifiers to adversarial attacks, three distinct attack mechanisms are explored in this paper using the victim model BERT: BERT-on-BERT attack, PWWS attack, and Fraud Bargain's Attack (FBA). Leveraging the IMDB, AG News, and SST2 datasets, a thorough comparative analysis is conducted to assess the effectiveness of these attacks on the BERT classifier model. It is revealed by the analysis that PWWS emerges as the most potent adversary, consistently outperforming other methods across multiple evaluation scenarios, thereby emphasizing its efficacy in generating adversarial examples for text classification. Through comprehensive experimentation, the performance of these attacks is assessed and the findings indicate that the PWWS attack outperforms others, demonstrating lower runtime, higher accuracy, and favorable semantic similarity scores. The key insight of this paper lies in the assessment of the relative performances of three prevalent state-of-the-art attack mechanisms.

  • 7 authors
·
Apr 7, 2024

Generalizable Data-free Objective for Crafting Universal Adversarial Perturbations

Machine learning models are susceptible to adversarial perturbations: small changes to input that can cause large changes in output. It is also demonstrated that there exist input-agnostic perturbations, called universal adversarial perturbations, which can change the inference of target model on most of the data samples. However, existing methods to craft universal perturbations are (i) task specific, (ii) require samples from the training data distribution, and (iii) perform complex optimizations. Additionally, because of the data dependence, fooling ability of the crafted perturbations is proportional to the available training data. In this paper, we present a novel, generalizable and data-free approaches for crafting universal adversarial perturbations. Independent of the underlying task, our objective achieves fooling via corrupting the extracted features at multiple layers. Therefore, the proposed objective is generalizable to craft image-agnostic perturbations across multiple vision tasks such as object recognition, semantic segmentation, and depth estimation. In the practical setting of black-box attack scenario (when the attacker does not have access to the target model and it's training data), we show that our objective outperforms the data dependent objectives to fool the learned models. Further, via exploiting simple priors related to the data distribution, our objective remarkably boosts the fooling ability of the crafted perturbations. Significant fooling rates achieved by our objective emphasize that the current deep learning models are now at an increased risk, since our objective generalizes across multiple tasks without the requirement of training data for crafting the perturbations. To encourage reproducible research, we have released the codes for our proposed algorithm.

  • 3 authors
·
Jan 24, 2018

Towards Robustness of Text-to-SQL Models against Synonym Substitution

Recently, there has been significant progress in studying neural networks to translate text descriptions into SQL queries. Despite achieving good performance on some public benchmarks, existing text-to-SQL models typically rely on the lexical matching between words in natural language (NL) questions and tokens in table schemas, which may render the models vulnerable to attacks that break the schema linking mechanism. In this work, we investigate the robustness of text-to-SQL models to synonym substitution. In particular, we introduce Spider-Syn, a human-curated dataset based on the Spider benchmark for text-to-SQL translation. NL questions in Spider-Syn are modified from Spider, by replacing their schema-related words with manually selected synonyms that reflect real-world question paraphrases. We observe that the accuracy dramatically drops by eliminating such explicit correspondence between NL questions and table schemas, even if the synonyms are not adversarially selected to conduct worst-case adversarial attacks. Finally, we present two categories of approaches to improve the model robustness. The first category of approaches utilizes additional synonym annotations for table schemas by modifying the model input, while the second category is based on adversarial training. We demonstrate that both categories of approaches significantly outperform their counterparts without the defense, and the first category of approaches are more effective.

  • 7 authors
·
Jun 2, 2021

A Frustratingly Simple Yet Highly Effective Attack Baseline: Over 90% Success Rate Against the Strong Black-box Models of GPT-4.5/4o/o1

Despite promising performance on open-source large vision-language models (LVLMs), transfer-based targeted attacks often fail against black-box commercial LVLMs. Analyzing failed adversarial perturbations reveals that the learned perturbations typically originate from a uniform distribution and lack clear semantic details, resulting in unintended responses. This critical absence of semantic information leads commercial LVLMs to either ignore the perturbation entirely or misinterpret its embedded semantics, thereby causing the attack to fail. To overcome these issues, we notice that identifying core semantic objects is a key objective for models trained with various datasets and methodologies. This insight motivates our approach that refines semantic clarity by encoding explicit semantic details within local regions, thus ensuring interoperability and capturing finer-grained features, and by concentrating modifications on semantically rich areas rather than applying them uniformly. To achieve this, we propose a simple yet highly effective solution: at each optimization step, the adversarial image is cropped randomly by a controlled aspect ratio and scale, resized, and then aligned with the target image in the embedding space. Experimental results confirm our hypothesis. Our adversarial examples crafted with local-aggregated perturbations focused on crucial regions exhibit surprisingly good transferability to commercial LVLMs, including GPT-4.5, GPT-4o, Gemini-2.0-flash, Claude-3.5-sonnet, Claude-3.7-sonnet, and even reasoning models like o1, Claude-3.7-thinking and Gemini-2.0-flash-thinking. Our approach achieves success rates exceeding 90% on GPT-4.5, 4o, and o1, significantly outperforming all prior state-of-the-art attack methods. Our optimized adversarial examples under different configurations and training code are available at https://github.com/VILA-Lab/M-Attack.

  • 5 authors
·
Mar 13 2

PubDef: Defending Against Transfer Attacks From Public Models

Adversarial attacks have been a looming and unaddressed threat in the industry. However, through a decade-long history of the robustness evaluation literature, we have learned that mounting a strong or optimal attack is challenging. It requires both machine learning and domain expertise. In other words, the white-box threat model, religiously assumed by a large majority of the past literature, is unrealistic. In this paper, we propose a new practical threat model where the adversary relies on transfer attacks through publicly available surrogate models. We argue that this setting will become the most prevalent for security-sensitive applications in the future. We evaluate the transfer attacks in this setting and propose a specialized defense method based on a game-theoretic perspective. The defenses are evaluated under 24 public models and 11 attack algorithms across three datasets (CIFAR-10, CIFAR-100, and ImageNet). Under this threat model, our defense, PubDef, outperforms the state-of-the-art white-box adversarial training by a large margin with almost no loss in the normal accuracy. For instance, on ImageNet, our defense achieves 62% accuracy under the strongest transfer attack vs only 36% of the best adversarially trained model. Its accuracy when not under attack is only 2% lower than that of an undefended model (78% vs 80%). We release our code at https://github.com/wagner-group/pubdef.

  • 5 authors
·
Oct 26, 2023

Feature-Guided Black-Box Safety Testing of Deep Neural Networks

Despite the improved accuracy of deep neural networks, the discovery of adversarial examples has raised serious safety concerns. Most existing approaches for crafting adversarial examples necessitate some knowledge (architecture, parameters, etc.) of the network at hand. In this paper, we focus on image classifiers and propose a feature-guided black-box approach to test the safety of deep neural networks that requires no such knowledge. Our algorithm employs object detection techniques such as SIFT (Scale Invariant Feature Transform) to extract features from an image. These features are converted into a mutable saliency distribution, where high probability is assigned to pixels that affect the composition of the image with respect to the human visual system. We formulate the crafting of adversarial examples as a two-player turn-based stochastic game, where the first player's objective is to minimise the distance to an adversarial example by manipulating the features, and the second player can be cooperative, adversarial, or random. We show that, theoretically, the two-player game can con- verge to the optimal strategy, and that the optimal strategy represents a globally minimal adversarial image. For Lipschitz networks, we also identify conditions that provide safety guarantees that no adversarial examples exist. Using Monte Carlo tree search we gradually explore the game state space to search for adversarial examples. Our experiments show that, despite the black-box setting, manipulations guided by a perception-based saliency distribution are competitive with state-of-the-art methods that rely on white-box saliency matrices or sophisticated optimization procedures. Finally, we show how our method can be used to evaluate robustness of neural networks in safety-critical applications such as traffic sign recognition in self-driving cars.

  • 3 authors
·
Oct 21, 2017

Certified Robustness to Word Substitution Ranking Attack for Neural Ranking Models

Neural ranking models (NRMs) have achieved promising results in information retrieval. NRMs have also been shown to be vulnerable to adversarial examples. A typical Word Substitution Ranking Attack (WSRA) against NRMs was proposed recently, in which an attacker promotes a target document in rankings by adding human-imperceptible perturbations to its text. This raises concerns when deploying NRMs in real-world applications. Therefore, it is important to develop techniques that defend against such attacks for NRMs. In empirical defenses adversarial examples are found during training and used to augment the training set. However, such methods offer no theoretical guarantee on the models' robustness and may eventually be broken by other sophisticated WSRAs. To escape this arms race, rigorous and provable certified defense methods for NRMs are needed. To this end, we first define the Certified Top-K Robustness for ranking models since users mainly care about the top ranked results in real-world scenarios. A ranking model is said to be Certified Top-K Robust on a ranked list when it is guaranteed to keep documents that are out of the top K away from the top K under any attack. Then, we introduce a Certified Defense method, named CertDR, to achieve certified top-K robustness against WSRA, based on the idea of randomized smoothing. Specifically, we first construct a smoothed ranker by applying random word substitutions on the documents, and then leverage the ranking property jointly with the statistical property of the ensemble to provably certify top-K robustness. Extensive experiments on two representative web search datasets demonstrate that CertDR can significantly outperform state-of-the-art empirical defense methods for ranking models.

  • 7 authors
·
Sep 14, 2022

Scaling Laws for Adversarial Attacks on Language Model Activations

We explore a class of adversarial attacks targeting the activations of language models. By manipulating a relatively small subset of model activations, a, we demonstrate the ability to control the exact prediction of a significant number (in some cases up to 1000) of subsequent tokens t. We empirically verify a scaling law where the maximum number of target tokens t_max predicted depends linearly on the number of tokens a whose activations the attacker controls as t_max = kappa a. We find that the number of bits of control in the input space needed to control a single bit in the output space (what we call attack resistance chi) is remarkably constant between approx 16 and approx 25 over 2 orders of magnitude of model sizes for different language models. Compared to attacks on tokens, attacks on activations are predictably much stronger, however, we identify a surprising regularity where one bit of input steered either via activations or via tokens is able to exert control over a similar amount of output bits. This gives support for the hypothesis that adversarial attacks are a consequence of dimensionality mismatch between the input and output spaces. A practical implication of the ease of attacking language model activations instead of tokens is for multi-modal and selected retrieval models, where additional data sources are added as activations directly, sidestepping the tokenized input. This opens up a new, broad attack surface. By using language models as a controllable test-bed to study adversarial attacks, we were able to experiment with input-output dimensions that are inaccessible in computer vision, especially where the output dimension dominates.

  • 1 authors
·
Dec 5, 2023

Certifying LLM Safety against Adversarial Prompting

Large language models (LLMs) are vulnerable to adversarial attacks that add malicious tokens to an input prompt to bypass the safety guardrails of an LLM and cause it to produce harmful content. In this work, we introduce erase-and-check, the first framework for defending against adversarial prompts with certifiable safety guarantees. Given a prompt, our procedure erases tokens individually and inspects the resulting subsequences using a safety filter. Our safety certificate guarantees that harmful prompts are not mislabeled as safe due to an adversarial attack up to a certain size. We implement the safety filter in two ways, using Llama 2 and DistilBERT, and compare the performance of erase-and-check for the two cases. We defend against three attack modes: i) adversarial suffix, where an adversarial sequence is appended at the end of a harmful prompt; ii) adversarial insertion, where the adversarial sequence is inserted anywhere in the middle of the prompt; and iii) adversarial infusion, where adversarial tokens are inserted at arbitrary positions in the prompt, not necessarily as a contiguous block. Our experimental results demonstrate that this procedure can obtain strong certified safety guarantees on harmful prompts while maintaining good empirical performance on safe prompts. Additionally, we propose three efficient empirical defenses: i) RandEC, a randomized subsampling version of erase-and-check; ii) GreedyEC, which greedily erases tokens that maximize the softmax score of the harmful class; and iii) GradEC, which uses gradient information to optimize tokens to erase. We demonstrate their effectiveness against adversarial prompts generated by the Greedy Coordinate Gradient (GCG) attack algorithm. The code for our experiments is available at https://github.com/aounon/certified-llm-safety.

  • 6 authors
·
Sep 6, 2023

DVERGE: Diversifying Vulnerabilities for Enhanced Robust Generation of Ensembles

Recent research finds CNN models for image classification demonstrate overlapped adversarial vulnerabilities: adversarial attacks can mislead CNN models with small perturbations, which can effectively transfer between different models trained on the same dataset. Adversarial training, as a general robustness improvement technique, eliminates the vulnerability in a single model by forcing it to learn robust features. The process is hard, often requires models with large capacity, and suffers from significant loss on clean data accuracy. Alternatively, ensemble methods are proposed to induce sub-models with diverse outputs against a transfer adversarial example, making the ensemble robust against transfer attacks even if each sub-model is individually non-robust. Only small clean accuracy drop is observed in the process. However, previous ensemble training methods are not efficacious in inducing such diversity and thus ineffective on reaching robust ensemble. We propose DVERGE, which isolates the adversarial vulnerability in each sub-model by distilling non-robust features, and diversifies the adversarial vulnerability to induce diverse outputs against a transfer attack. The novel diversity metric and training procedure enables DVERGE to achieve higher robustness against transfer attacks comparing to previous ensemble methods, and enables the improved robustness when more sub-models are added to the ensemble. The code of this work is available at https://github.com/zjysteven/DVERGE

  • 9 authors
·
Sep 30, 2020

Topic-FlipRAG: Topic-Orientated Adversarial Opinion Manipulation Attacks to Retrieval-Augmented Generation Models

Retrieval-Augmented Generation (RAG) systems based on Large Language Models (LLMs) have become essential for tasks such as question answering and content generation. However, their increasing impact on public opinion and information dissemination has made them a critical focus for security research due to inherent vulnerabilities. Previous studies have predominantly addressed attacks targeting factual or single-query manipulations. In this paper, we address a more practical scenario: topic-oriented adversarial opinion manipulation attacks on RAG models, where LLMs are required to reason and synthesize multiple perspectives, rendering them particularly susceptible to systematic knowledge poisoning. Specifically, we propose Topic-FlipRAG, a two-stage manipulation attack pipeline that strategically crafts adversarial perturbations to influence opinions across related queries. This approach combines traditional adversarial ranking attack techniques and leverages the extensive internal relevant knowledge and reasoning capabilities of LLMs to execute semantic-level perturbations. Experiments show that the proposed attacks effectively shift the opinion of the model's outputs on specific topics, significantly impacting user information perception. Current mitigation methods cannot effectively defend against such attacks, highlighting the necessity for enhanced safeguards for RAG systems, and offering crucial insights for LLM security research.

  • 8 authors
·
Feb 3

Rethinking Adversarial Policies: A Generalized Attack Formulation and Provable Defense in RL

Most existing works focus on direct perturbations to the victim's state/action or the underlying transition dynamics to demonstrate the vulnerability of reinforcement learning agents to adversarial attacks. However, such direct manipulations may not be always realizable. In this paper, we consider a multi-agent setting where a well-trained victim agent nu is exploited by an attacker controlling another agent alpha with an adversarial policy. Previous models do not account for the possibility that the attacker may only have partial control over alpha or that the attack may produce easily detectable "abnormal" behaviors. Furthermore, there is a lack of provably efficient defenses against these adversarial policies. To address these limitations, we introduce a generalized attack framework that has the flexibility to model to what extent the adversary is able to control the agent, and allows the attacker to regulate the state distribution shift and produce stealthier adversarial policies. Moreover, we offer a provably efficient defense with polynomial convergence to the most robust victim policy through adversarial training with timescale separation. This stands in sharp contrast to supervised learning, where adversarial training typically provides only empirical defenses. Using the Robosumo competition experiments, we show that our generalized attack formulation results in much stealthier adversarial policies when maintaining the same winning rate as baselines. Additionally, our adversarial training approach yields stable learning dynamics and less exploitable victim policies.

  • 4 authors
·
May 26, 2023

TechniqueRAG: Retrieval Augmented Generation for Adversarial Technique Annotation in Cyber Threat Intelligence Text

Accurately identifying adversarial techniques in security texts is critical for effective cyber defense. However, existing methods face a fundamental trade-off: they either rely on generic models with limited domain precision or require resource-intensive pipelines that depend on large labeled datasets and task-specific optimizations, such as custom hard-negative mining and denoising, resources rarely available in specialized domains. We propose TechniqueRAG, a domain-specific retrieval-augmented generation (RAG) framework that bridges this gap by integrating off-the-shelf retrievers, instruction-tuned LLMs, and minimal text-technique pairs. Our approach addresses data scarcity by fine-tuning only the generation component on limited in-domain examples, circumventing the need for resource-intensive retrieval training. While conventional RAG mitigates hallucination by coupling retrieval and generation, its reliance on generic retrievers often introduces noisy candidates, limiting domain-specific precision. To address this, we enhance retrieval quality and domain specificity through zero-shot LLM re-ranking, which explicitly aligns retrieved candidates with adversarial techniques. Experiments on multiple security benchmarks demonstrate that TechniqueRAG achieves state-of-the-art performance without extensive task-specific optimizations or labeled data, while comprehensive analysis provides further insights.

Tokenization Matters! Degrading Large Language Models through Challenging Their Tokenization

Large Language Models (LLMs) have shown remarkable capabilities in language understanding and generation. Nonetheless, it was also witnessed that LLMs tend to produce inaccurate responses to specific queries. This deficiency can be traced to the tokenization step LLMs must undergo, which is an inevitable limitation inherent to all LLMs. In fact, incorrect tokenization is the critical point that hinders LLMs in understanding the input precisely, thus leading to unsatisfactory output. To demonstrate this flaw of LLMs, we construct an adversarial dataset, named as ADT (Adversarial Dataset for Tokenizer), which draws upon the vocabularies of various open-source LLMs to challenge LLMs' tokenization. ADT consists of two subsets: the manually constructed ADT-Human and the automatically generated ADT-Auto. Our empirical results reveal that our ADT is highly effective on challenging the tokenization of leading LLMs, including GPT-4o, Llama-3, Qwen2.5-max and so on, thus degrading these LLMs' capabilities. Moreover, our method of automatic data generation has been proven efficient and robust, which can be applied to any open-source LLMs. To the best of our knowledge, our study is the first to investigating LLMs' vulnerability in terms of challenging their token segmentation, which will shed light on the subsequent research of improving LLMs' capabilities through optimizing their tokenization process and algorithms.

  • 7 authors
·
May 27, 2024

GASLITEing the Retrieval: Exploring Vulnerabilities in Dense Embedding-based Search

Dense embedding-based text retrievalx2013retrieval of relevant passages from corpora via deep learning encodingsx2013has emerged as a powerful method attaining state-of-the-art search results and popularizing the use of Retrieval Augmented Generation (RAG). Still, like other search methods, embedding-based retrieval may be susceptible to search-engine optimization (SEO) attacks, where adversaries promote malicious content by introducing adversarial passages to corpora. To faithfully assess and gain insights into the susceptibility of such systems to SEO, this work proposes the GASLITE attack, a mathematically principled gradient-based search method for generating adversarial passages without relying on the corpus content or modifying the model. Notably, GASLITE's passages (1) carry adversary-chosen information while (2) achieving high retrieval ranking for a selected query distribution when inserted to corpora. We use GASLITE to extensively evaluate retrievers' robustness, testing nine advanced models under varied threat models, while focusing on realistic adversaries targeting queries on a specific concept (e.g., a public figure). We found GASLITE consistently outperformed baselines by geq140% success rate, in all settings. Particularly, adversaries using GASLITE require minimal effort to manipulate search resultsx2013by injecting a negligible amount of adversarial passages (leq0.0001% of the corpus), they could make them visible in the top-10 results for 61-100% of unseen concept-specific queries against most evaluated models. Inspecting variance in retrievers' robustness, we identify key factors that may contribute to models' susceptibility to SEO, including specific properties in the embedding space's geometry.

  • 2 authors
·
Dec 30, 2024

Negative Token Merging: Image-based Adversarial Feature Guidance

Text-based adversarial guidance using a negative prompt has emerged as a widely adopted approach to push the output features away from undesired concepts. While useful, performing adversarial guidance using text alone can be insufficient to capture complex visual concepts and avoid undesired visual elements like copyrighted characters. In this paper, for the first time we explore an alternate modality in this direction by performing adversarial guidance directly using visual features from a reference image or other images in a batch. In particular, we introduce negative token merging (NegToMe), a simple but effective training-free approach which performs adversarial guidance by selectively pushing apart matching semantic features (between reference and output generation) during the reverse diffusion process. When used w.r.t. other images in the same batch, we observe that NegToMe significantly increases output diversity (racial, gender, visual) without sacrificing output image quality. Similarly, when used w.r.t. a reference copyrighted asset, NegToMe helps reduce visual similarity with copyrighted content by 34.57%. NegToMe is simple to implement using just few-lines of code, uses only marginally higher (<4%) inference times and generalizes to different diffusion architectures like Flux, which do not natively support the use of a separate negative prompt. Code is available at https://negtome.github.io

  • 10 authors
·
Dec 2, 2024 6

Eliminating Catastrophic Overfitting Via Abnormal Adversarial Examples Regularization

Single-step adversarial training (SSAT) has demonstrated the potential to achieve both efficiency and robustness. However, SSAT suffers from catastrophic overfitting (CO), a phenomenon that leads to a severely distorted classifier, making it vulnerable to multi-step adversarial attacks. In this work, we observe that some adversarial examples generated on the SSAT-trained network exhibit anomalous behaviour, that is, although these training samples are generated by the inner maximization process, their associated loss decreases instead, which we named abnormal adversarial examples (AAEs). Upon further analysis, we discover a close relationship between AAEs and classifier distortion, as both the number and outputs of AAEs undergo a significant variation with the onset of CO. Given this observation, we re-examine the SSAT process and uncover that before the occurrence of CO, the classifier already displayed a slight distortion, indicated by the presence of few AAEs. Furthermore, the classifier directly optimizing these AAEs will accelerate its distortion, and correspondingly, the variation of AAEs will sharply increase as a result. In such a vicious circle, the classifier rapidly becomes highly distorted and manifests as CO within a few iterations. These observations motivate us to eliminate CO by hindering the generation of AAEs. Specifically, we design a novel method, termed Abnormal Adversarial Examples Regularization (AAER), which explicitly regularizes the variation of AAEs to hinder the classifier from becoming distorted. Extensive experiments demonstrate that our method can effectively eliminate CO and further boost adversarial robustness with negligible additional computational overhead.

  • 3 authors
·
Apr 11, 2024

Imbalanced Adversarial Training with Reweighting

Adversarial training has been empirically proven to be one of the most effective and reliable defense methods against adversarial attacks. However, almost all existing studies about adversarial training are focused on balanced datasets, where each class has an equal amount of training examples. Research on adversarial training with imbalanced training datasets is rather limited. As the initial effort to investigate this problem, we reveal the facts that adversarially trained models present two distinguished behaviors from naturally trained models in imbalanced datasets: (1) Compared to natural training, adversarially trained models can suffer much worse performance on under-represented classes, when the training dataset is extremely imbalanced. (2) Traditional reweighting strategies may lose efficacy to deal with the imbalance issue for adversarial training. For example, upweighting the under-represented classes will drastically hurt the model's performance on well-represented classes, and as a result, finding an optimal reweighting value can be tremendously challenging. In this paper, to further understand our observations, we theoretically show that the poor data separability is one key reason causing this strong tension between under-represented and well-represented classes. Motivated by this finding, we propose Separable Reweighted Adversarial Training (SRAT) to facilitate adversarial training under imbalanced scenarios, by learning more separable features for different classes. Extensive experiments on various datasets verify the effectiveness of the proposed framework.

  • 6 authors
·
Jul 28, 2021

RAID: A Dataset for Testing the Adversarial Robustness of AI-Generated Image Detectors

AI-generated images have reached a quality level at which humans are incapable of reliably distinguishing them from real images. To counteract the inherent risk of fraud and disinformation, the detection of AI-generated images is a pressing challenge and an active research topic. While many of the presented methods claim to achieve high detection accuracy, they are usually evaluated under idealized conditions. In particular, the adversarial robustness is often neglected, potentially due to a lack of awareness or the substantial effort required to conduct a comprehensive robustness analysis. In this work, we tackle this problem by providing a simpler means to assess the robustness of AI-generated image detectors. We present RAID (Robust evaluation of AI-generated image Detectors), a dataset of 72k diverse and highly transferable adversarial examples. The dataset is created by running attacks against an ensemble of seven state-of-the-art detectors and images generated by four different text-to-image models. Extensive experiments show that our methodology generates adversarial images that transfer with a high success rate to unseen detectors, which can be used to quickly provide an approximate yet still reliable estimate of a detector's adversarial robustness. Our findings indicate that current state-of-the-art AI-generated image detectors can be easily deceived by adversarial examples, highlighting the critical need for the development of more robust methods. We release our dataset at https://huggingface.co/datasets/aimagelab/RAID and evaluation code at https://github.com/pralab/RAID.

  • 11 authors
·
Jun 4

Adversarial Cheap Talk

Adversarial attacks in reinforcement learning (RL) often assume highly-privileged access to the victim's parameters, environment, or data. Instead, this paper proposes a novel adversarial setting called a Cheap Talk MDP in which an Adversary can merely append deterministic messages to the Victim's observation, resulting in a minimal range of influence. The Adversary cannot occlude ground truth, influence underlying environment dynamics or reward signals, introduce non-stationarity, add stochasticity, see the Victim's actions, or access their parameters. Additionally, we present a simple meta-learning algorithm called Adversarial Cheap Talk (ACT) to train Adversaries in this setting. We demonstrate that an Adversary trained with ACT still significantly influences the Victim's training and testing performance, despite the highly constrained setting. Affecting train-time performance reveals a new attack vector and provides insight into the success and failure modes of existing RL algorithms. More specifically, we show that an ACT Adversary is capable of harming performance by interfering with the learner's function approximation, or instead helping the Victim's performance by outputting useful features. Finally, we show that an ACT Adversary can manipulate messages during train-time to directly and arbitrarily control the Victim at test-time. Project video and code are available at https://sites.google.com/view/adversarial-cheap-talk

  • 4 authors
·
Nov 20, 2022

One Surrogate to Fool Them All: Universal, Transferable, and Targeted Adversarial Attacks with CLIP

Deep Neural Networks (DNNs) have achieved widespread success yet remain prone to adversarial attacks. Typically, such attacks either involve frequent queries to the target model or rely on surrogate models closely mirroring the target model -- often trained with subsets of the target model's training data -- to achieve high attack success rates through transferability. However, in realistic scenarios where training data is inaccessible and excessive queries can raise alarms, crafting adversarial examples becomes more challenging. In this paper, we present UnivIntruder, a novel attack framework that relies solely on a single, publicly available CLIP model and publicly available datasets. By using textual concepts, UnivIntruder generates universal, transferable, and targeted adversarial perturbations that mislead DNNs into misclassifying inputs into adversary-specified classes defined by textual concepts. Our extensive experiments show that our approach achieves an Attack Success Rate (ASR) of up to 85% on ImageNet and over 99% on CIFAR-10, significantly outperforming existing transfer-based methods. Additionally, we reveal real-world vulnerabilities, showing that even without querying target models, UnivIntruder compromises image search engines like Google and Baidu with ASR rates up to 84%, and vision language models like GPT-4 and Claude-3.5 with ASR rates up to 80%. These findings underscore the practicality of our attack in scenarios where traditional avenues are blocked, highlighting the need to reevaluate security paradigms in AI applications.

  • 4 authors
·
May 26