1 Air Traffic Controller Task Demand via Graph Neural Networks: An Interpretable Approach to Airspace Complexity Real-time assessment of near-term Air Traffic Controller (ATCO) task demand is a critical challenge in an increasingly crowded airspace, as existing complexity metrics often fail to capture nuanced operational drivers beyond simple aircraft counts. This work introduces an interpretable Graph Neural Network (GNN) framework to address this gap. Our attention-based model predicts the number of upcoming clearances, the instructions issued to aircraft by ATCOs, from interactions within static traffic scenarios. Crucially, we derive an interpretable, per-aircraft task demand score by systematically ablating aircraft and measuring the impact on the model's predictions. Our framework significantly outperforms an ATCO-inspired heuristic and is a more reliable estimator of scenario complexity than established baselines. The resulting tool can attribute task demand to specific aircraft, offering a new way to analyse and understand the drivers of complexity for applications in controller training and airspace redesign. 5 authors · Jul 17, 2025
1 AirTrafficGen: Configurable Air Traffic Scenario Generation with Large Language Models The manual design of scenarios for Air Traffic Control (ATC) training is a demanding and time-consuming bottleneck that limits the diversity of simulations available to controllers. To address this, we introduce a novel, end-to-end approach, AirTrafficGen, that leverages large language models (LLMs) to automate and control the generation of complex ATC scenarios. Our method uses a purpose-built, graph-based representation to encode sector topology (including airspace geometry, routes, and fixes) into a format LLMs can process. Through rigorous benchmarking, we show that state-of-the-art models like Gemini 2.5 Pro and OpenAI o3 can generate high-traffic scenarios whilst maintaining operational realism. Our engineered prompting enables fine-grained control over interaction presence, type, and location. Initial findings suggest these models are also capable of iterative refinement, correcting flawed scenarios based on simple textual feedback. This approach provides a scalable alternative to manual scenario design, addressing the need for a greater volume and variety of ATC training and validation simulations. More broadly, this work showcases the potential of LLMs for complex planning in safety-critical domains. 4 authors · Aug 4, 2025
- Applicability and Surrogacy of Uncorrelated Airspace Encounter Models at Low Altitudes The National Airspace System (NAS) is a complex and evolving system that enables safe and efficient aviation. Advanced air mobility concepts and new airspace entrants, such as unmanned aircraft, must integrate into the NAS without degrading overall safety or efficiency. For instance, regulations, standards, and systems are required to mitigate the risk of a midair collision between aircraft. Monte Carlo simulations have been a foundational capability for decades to develop, assess, and certify aircraft conflict avoidance systems. These are often validated through human-in-the-loop experiments and flight testing. For many aviation safety studies, manned aircraft behavior is represented using dynamic Bayesian networks. The original statistical models were developed from 2008-2013 to support safety simulations for altitudes above 500 feet Above Ground Level (AGL). However, these models were not sufficient to assess the safety of smaller UAS operations below 500 feet AGL. In response, newer models with altitude floors below 500 feet AGL have been in development since 2018. Many of the models assume that aircraft behavior is uncorrelated and not dependent on air traffic services or nearby aircraft. Our research objective was to compare the various uncorrelated models of conventional aircraft and identify how the models differ. Particularly if models of rotorcraft were sufficiently different than models of fixed-wing aircraft to require type specific models. The primary contribution is guidance on which uncorrelated models to leverage when evaluating the performance of a collision avoidance system designed for low altitude operations. We also address which models can be surrogates for noncooperative aircraft without transponders. 2 authors · Mar 4, 2021
1 Estimating See and Be Seen Performance with an Airborne Visual Acquisition Model Separation provision and collision avoidance to avoid other air traffic are fundamental components of the layered conflict management system to ensure safe and efficient operations. Pilots have visual-based separation responsibilities to see and be seen to maintain separation between aircraft. To safely integrate into the airspace, drones should be required to have a minimum level of performance based on the safety achieved as baselined by crewed aircraft seen and be seen interactions. Drone interactions with crewed aircraft should not be more hazardous than interactions between traditional aviation aircraft. Accordingly, there is need for a methodology to design and evaluate detect and avoid systems, to be equipped by drones to mitigate the risk of a midair collision, where the methodology explicitly addresses, both semantically and mathematically, the appropriate operating rules associated with see and be seen. In response, we simulated how onboard pilots safely operate through see and be seen interactions using an updated visual acquisition model that was originally developed by J.W. Andrews decades ago. Monte Carlo simulations were representative two aircraft flying under visual flight rules and results were analyzed with respect to drone detect and avoid performance standards. 4 authors · Jun 29, 2023
- Benchmarking the Processing of Aircraft Tracks with Triples Mode and Self-Scheduling As unmanned aircraft systems (UASs) continue to integrate into the U.S. National Airspace System (NAS), there is a need to quantify the risk of airborne collisions between unmanned and manned aircraft to support regulation and standards development. Developing and certifying collision avoidance systems often rely on the extensive use of Monte Carlo collision risk analysis simulations using probabilistic models of aircraft flight. To train these models, high performance computing resources are required. We've prototyped a high performance computing workflow designed and deployed on the Lincoln Laboratory Supercomputing Center to process billions of observations of aircraft. However, the prototype has various computational and storage bottlenecks that limited rapid or more comprehensive analyses and models. In response, we have developed a novel workflow to take advantage of various job launch and task distribution technologies to improve performance. The workflow was benchmarked using two datasets of observations of aircraft, including a new dataset focused on the environment around aerodromes. Optimizing how the workflow was parallelized drastically reduced the execution time from weeks to days. 4 authors · Aug 30, 2021
1 Graph Learning-based Fleet Scheduling for Urban Air Mobility under Operational Constraints, Varying Demand & Uncertainties This paper develops a graph reinforcement learning approach to online planning of the schedule and destinations of electric aircraft that comprise an urban air mobility (UAM) fleet operating across multiple vertiports. This fleet scheduling problem is formulated to consider time-varying demand, constraints related to vertiport capacity, aircraft capacity and airspace safety guidelines, uncertainties related to take-off delay, weather-induced route closures, and unanticipated aircraft downtime. Collectively, such a formulation presents greater complexity, and potentially increased realism, than in existing UAM fleet planning implementations. To address these complexities, a new policy architecture is constructed, primary components of which include: graph capsule conv-nets for encoding vertiport and aircraft-fleet states both abstracted as graphs; transformer layers encoding time series information on demand and passenger fare; and a Multi-head Attention-based decoder that uses the encoded information to compute the probability of selecting each available destination for an aircraft. Trained with Proximal Policy Optimization, this policy architecture shows significantly better performance in terms of daily averaged profits on unseen test scenarios involving 8 vertiports and 40 aircraft, when compared to a random baseline and genetic algorithm-derived optimal solutions, while being nearly 1000 times faster in execution than the latter. 3 authors · Jan 9, 2024
- Wing Optimisation for a tractor propeller driven Micro Aerial Vehicle This paper describes an investigation of the possible benefits from wing optimisation in improving the performance of Micro Air Vehicles (MAVs). As an example we study the Avion (3.64 kg mass, 1.60 m span), being designed at the CSIR National Aerospace Laboratories (NAL), Bengaluru. The optimisation is first carried out using the methodology described by Rakshith et al. (using an in\textendash house software PROWING), developed for large transport aircraft, with certain modifications to adapt the code to the special features of the MAV. The chief among such features is the use of low Reynolds number aerofoils with significantly different aerodynamic characteristics on a small MAV. These characteristics are taken from test data when available, and/or estimated by the XFOIL code of Drela. A total of 8 optimisation cases are studied for the purpose, leading to 6 different options for new wing planforms (and associated twist distributions along the wing span) with an improved performance. It is found that the improvements in drag coefficient using the PROWING code are about 5%. However, by allowing the operating lift coefficient C_L to float within a specified range, drag bucket characteristics of the Eppler E423 aerofoil used on Avion can be exploited to improve the endurance, which is a major performance parameter for Avion. Thus, compared to the control wing W_0 (with operating point at C_L =0.7) used in the preliminary design, permitting a variation of C_L over a range of pm 10% is shown to enhance the endurance of wing W_4 by 18.6%, and of wing W_{6} with a permitted C_L range of pm 50% by 39.2%. Apart from the philosophy of seeking optimal operating conditions for a given configuration, the advantages of optimising design parameters such as washout of a simple wing proposed in the preliminary design stage, is also demonstrated. 2 authors · Sep 18, 2024
- Processing of Crowdsourced Observations of Aircraft in a High Performance Computing Environment As unmanned aircraft systems (UASs) continue to integrate into the U.S. National Airspace System (NAS), there is a need to quantify the risk of airborne collisions between unmanned and manned aircraft to support regulation and standards development. Both regulators and standards developing organizations have made extensive use of Monte Carlo collision risk analysis simulations using probabilistic models of aircraft flight. We've previously determined that the observations of manned aircraft by the OpenSky Network, a community network of ground-based sensors, are appropriate to develop models of the low altitude environment. This works overviews the high performance computing workflow designed and deployed on the Lincoln Laboratory Supercomputing Center to process 3.9 billion observations of aircraft. We then trained the aircraft models using more than 250,000 flight hours at 5,000 feet above ground level or below. A key feature of the workflow is that all the aircraft observations and supporting datasets are available as open source technologies or been released to the public domain. 4 authors · Aug 3, 2020
- Terrain-Aware Adaptation for Two-Dimensional UAV Path Planners Multi-UAV Coverage Path Planning (mCPP) algorithms in popular commercial software typically treat a Region of Interest (RoI) only as a 2D plane, ignoring important3D structure characteristics. This leads to incomplete 3Dreconstructions, especially around occluded or vertical surfaces. In this paper, we propose a modular algorithm that can extend commercial two-dimensional path planners to facilitate terrain-aware planning by adjusting altitude and camera orientations. To demonstrate it, we extend the well-known DARP (Divide Areas for Optimal Multi-Robot Coverage Path Planning) algorithm and produce DARP-3D. We present simulation results in multiple 3D environments and a real-world flight test using DJI hardware. Compared to baseline, our approach consistently captures improved 3D reconstructions, particularly in areas with significant vertical features. An open-source implementation of the algorithm is available here:https://github.com/konskara/TerraPlan 5 authors · Jul 23, 2025
- Method to Characterize Potential UAS Encounters Using Open Source Data As unmanned aerial systems (UASs) increasingly integrate into the US national airspace system, there is an increasing need to characterize how commercial and recreational UASs may encounter each other. To inform the development and evaluation of safety critical technologies, we demonstrate a methodology to analytically calculate all potential relative geometries between different UAS operations performing inspection missions. This method is based on a previously demonstrated technique that leverages open source geospatial information to generate representative unmanned aircraft trajectories. Using open source data and parallel processing techniques, we performed trillions of calculations to estimate the relative horizontal distance between geospatial points across sixteen locations. 1 authors · Oct 31, 2019
- Autonomous and cooperative design of the monitor positions for a team of UAVs to maximize the quantity and quality of detected objects This paper tackles the problem of positioning a swarm of UAVs inside a completely unknown terrain, having as objective to maximize the overall situational awareness. The situational awareness is expressed by the number and quality of unique objects of interest, inside the UAVs' fields of view. YOLOv3 and a system to identify duplicate objects of interest were employed to assign a single score to each UAVs' configuration. Then, a novel navigation algorithm, capable of optimizing the previously defined score, without taking into consideration the dynamics of either UAVs or environment, is proposed. A cornerstone of the proposed approach is that it shares the same convergence characteristics as the block coordinate descent (BCD) family of approaches. The effectiveness and performance of the proposed navigation scheme were evaluated utilizing a series of experiments inside the AirSim simulator. The experimental evaluation indicates that the proposed navigation algorithm was able to consistently navigate the swarm of UAVs to "strategic" monitoring positions and also adapt to the different number of swarm sizes. Source code is available at https://github.com/dimikout3/ConvCAOAirSim. 3 authors · Jul 2, 2020
- SuperWing: a comprehensive transonic wing dataset for data-driven aerodynamic design Machine-learning surrogate models have shown promise in accelerating aerodynamic design, yet progress toward generalizable predictors for three-dimensional wings has been limited by the scarcity and restricted diversity of existing datasets. Here, we present SuperWing, a comprehensive open dataset of transonic swept-wing aerodynamics comprising 4,239 parameterized wing geometries and 28,856 Reynolds-averaged Navier-Stokes flow field solutions. The wing shapes in the dataset are generated using a simplified yet expressive geometry parameterization that incorporates spanwise variations in airfoil shape, twist, and dihedral, allowing for an enhanced diversity without relying on perturbations of a baseline wing. All shapes are simulated under a broad range of Mach numbers and angles of attack covering the typical flight envelope. To demonstrate the dataset's utility, we benchmark two state-of-the-art Transformers that accurately predict surface flow and achieve a 2.5 drag-count error on held-out samples. Models pretrained on SuperWing further exhibit strong zero-shot generalization to complex benchmark wings such as DLR-F6 and NASA CRM, underscoring the dataset's diversity and potential for practical usage. 6 authors · Dec 16, 2025
4 ResPlan: A Large-Scale Vector-Graph Dataset of 17,000 Residential Floor Plans We introduce ResPlan, a large-scale dataset of 17,000 detailed, structurally rich, and realistic residential floor plans, created to advance spatial AI research. Each plan includes precise annotations of architectural elements (walls, doors, windows, balconies) and functional spaces (such as kitchens, bedrooms, and bathrooms). ResPlan addresses key limitations of existing datasets such as RPLAN (Wu et al., 2019) and MSD (van Engelenburg et al., 2024) by offering enhanced visual fidelity and greater structural diversity, reflecting realistic and non-idealized residential layouts. Designed as a versatile, general-purpose resource, ResPlan supports a wide range of applications including robotics, reinforcement learning, generative AI, virtual and augmented reality, simulations, and game development. Plans are provided in both geometric and graph-based formats, enabling direct integration into simulation engines and fast 3D conversion. A key contribution is an open-source pipeline for geometry cleaning, alignment, and annotation refinement. Additionally, ResPlan includes structured representations of room connectivity, supporting graph-based spatial reasoning tasks. Finally, we present comparative analyses with existing benchmarks and outline several open benchmark tasks enabled by ResPlan. Ultimately, ResPlan offers a significant advance in scale, realism, and usability, providing a robust foundation for developing and benchmarking next-generation spatial intelligence systems. 2 authors · Aug 19, 2025
- FlyMeThrough: Human-AI Collaborative 3D Indoor Mapping with Commodity Drones Indoor mapping data is crucial for routing, navigation, and building management, yet such data are widely lacking due to the manual labor and expense of data collection, especially for larger indoor spaces. Leveraging recent advancements in commodity drones and photogrammetry, we introduce FlyMeThrough -- a drone-based indoor scanning system that efficiently produces 3D reconstructions of indoor spaces with human-AI collaborative annotations for key indoor points-of-interest (POI) such as entrances, restrooms, stairs, and elevators. We evaluated FlyMeThrough in 12 indoor spaces with varying sizes and functionality. To investigate use cases and solicit feedback from target stakeholders, we also conducted a qualitative user study with five building managers and five occupants. Our findings indicate that FlyMeThrough can efficiently and precisely create indoor 3D maps for strategic space planning, resource management, and navigation. 5 authors · Aug 27, 2025