Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRotating neutron stars: anisotropy model comparison
We build slowly rotating anisotropic neutron stars using the Hartle-Thorne formalism, employing three distinct anisotropy models--Horvat, Bowers-Liang, and a covariant model--to characterize the relationship between radial and tangential pressure. We analyze how anisotropy influences stellar properties such as the mass-radius relation, angular momentum, moment of inertia, and binding energy. Our findings reveal that the maximum stable mass of non-rotating stars depends strongly on the anisotropy model, with some configurations supporting up to 60% more mass than their isotropic counterparts with the same central density. This mass increase is most pronounced in the models where the anisotropy grows toward the star's surface, as seen in the covariant model. Furthermore, slowly rotating anisotropic stars adhere to universal relations for the moment of inertia and binding energy, regardless of the chosen anisotropy model or equation of state.
Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning Based on Gaussian Moments
We propose a machine learning method to model molecular tensorial quantities, namely the magnetic anisotropy tensor, based on the Gaussian-moment neural-network approach. We demonstrate that the proposed methodology can achieve an accuracy of 0.3--0.4 cm^{-1} and has excellent generalization capability for out-of-sample configurations. Moreover, in combination with machine-learned interatomic potential energies based on Gaussian moments, our approach can be applied to study the dynamic behavior of magnetic anisotropy tensors and provide a unique insight into spin-phonon relaxation.
Searching For Anisotropic Gravitational-wave Backgrounds Using Pulsar Timing Arrays
We present the results of simulated injections testing the first Bayesian search-pipeline capable of investigating the angular-structure of a gravitational-wave (GW) background influencing pulsar signals. A stochastic background of GWs from the incoherent superposition of many inspiraling supermassive black hole binaries at nHz frequencies is likely to be the dominant GW signal detectable by pulsar timing arrays (PTAs). Even though one might expect a background composed of a high-redshift cosmological population of sources to be fairly isotropic, deviations from isotropy may be indicative of local GW hotspots or some form of continuous anisotropy in the angular-distribution of GW-power. A GWB induces time-of-arrival deviations in pulsar signals which are correlated between separated pulsars. In an isotropic background this cross-correlation follows a distinctive relationship, known as the Hellings and Downs curve, that depends only on the angular separation of the pulsars. If the background is anisotropic, the cross-correlation is different, but predictable, and also depends on the absolute position of the pulsars. By simulating datasets containing GWBs with various anisotropic configurations, we have explored the prospects for constraining anisotropy using near future data. We find that at moderate to high signal to noise ratio the assumption of isotropy is no longer an appropriate description of the simulated background. Furthermore, we can recover the nature of the injected anisotropy in a Bayesian parameter-estimation search, and propose a prior on the anisotropy search-space motivated by the physicality of the implied distribution of sources.
Gravity Duals of Lifshitz-like Fixed Points
We find candidate macroscopic gravity duals for scale-invariant but non-Lorentz invariant fixed points, which do not have particle number as a conserved quantity. We compute two-point correlation functions which exhibit novel behavior relative to their AdS counterparts, and find holographic renormalization group flows to conformal field theories. Our theories are characterized by a dynamical critical exponent z, which governs the anisotropy between spatial and temporal scaling t to lambda^z t, x to lambda x; we focus on the case with z=2. Such theories describe multicritical points in certain magnetic materials and liquid crystals, and have been shown to arise at quantum critical points in toy models of the cuprate superconductors. This work can be considered a small step towards making useful dual descriptions of such critical points.
A noncommutative Bianchi I model with radiation
In the present work, we study the dynamical evolution of an homogeneous and anisotropic, noncommutative (NC) Bianchi I (BI) model coupled to a radiation perfect fluid. Our first motivation is determining if the present model tends to an homogeneous and isotropic NC Friedmann-Robertson-Walker (FRW) model, during its evolution. In order to simplify our task, we use the Misner parametrization of the BI metric. In terms of that parametrization the BI metric has three metric functions: the scale factor a(t) and the two parameters beta_pm (t), which measure the spatial anisotropy of the model. Our second motivation is trying to describe the present accelerated expansion of the universe using noncommutativity (NCTY). The NCTY is introduced by two nontrivial Poisson brackets between some geometrical as well as matter variables of the model. We recover the description in terms of commutative variables by introducing some variables transformations that depend on the NC parameter. Using those variables transformations, we rewrite the total NC Hamiltonian of the model in terms of commutative variables. From the resulting Hamiltonian, we obtain the dynamical equations for a generic perfect fluid. In order to solve these equations, we restrict our attention to a model where the perfect fluid is radiation. We solve, numerically, these equations and compare the NC solutions to the corresponding commutative ones. The comparison shows that the NC model may be considered as a possible candidate for describing the accelerated expansion of the universe. Finally, we obtain estimates for the NC parameter and compare the main results of the NC BI model coupled to radiation with the same NC BI model coupled to other perfect fluids. As our main result, we show that the solutions, after some time, produce an isotropic universe.
Dynamical Cosmological Constant
The dynamical realisation of the equation of state p +rho =0 is studied. A non-pathological dynamics for the perturbations of such a system mimicking a dynamical cosmological constant (DCC) requires to go beyond the perfect fluid paradigm. It is shown that an anisotropic stress must be always present. The Hamiltonian of the system in isolation resembles the one of a Pais-Uhlenbeck oscillator and linear stability requires that it cannot be positive definite. The dynamics of linear cosmological perturbations in a DCC dominated Universe is studied in detail showing that when DCC is minimally coupled to gravity no dramatic instability is present. In contrast to what happens in a cosmological constant dominated Universe, the non-relativistic matter contrast is no longer constant and exhibits an oscillator behaviour at small scales while it grows weakly at large scales. In the gravitational waves sector, at small scales, the amplitude is still suppressed as the inverse power of the scale factor while it grows logarithmically at large scales. Also the vector modes propagate, though no growing mode is found.
Characterising gravitational wave stochastic background anisotropy with Pulsar Timing Arrays
Detecting a stochastic gravitational wave background, particularly radiation from individually unresolvable super-massive black hole binary systems, is one of the primary targets for Pulsar Timing Arrays. Increasingly more stringent upper limits are being set on these signals under the assumption that the background radiation is isotropic. However, some level of anisotropy may be present and the characterisation of the power at different angular scales carries important information. We show that the standard analysis for isotropic backgrounds can be generalised in a conceptually straightforward way to the case of generic anisotropic background radiation by decomposing the angular distribution of the gravitational wave power on the sky into multipole moments. We introduce the concept of generalised overlap reduction functions which characterise the effect of the anisotropy multipoles on the correlation of the timing residuals from the pulsars timed by a Pulsar Timing Array. In a search for a signal characterised by a generic anisotropy, the generalised overlap reduction functions play the role of the so-called Hellings and Downs curve used for isotropic radiation. We compute the generalised overlap reduction functions for a generic level of anisotropy and Pulsar Timing Array configuration. We also provide an order of magnitude estimate of the level of anisotropy that can be expected in the background generated by super-massive black hole binary systems.
Roto-translated Local Coordinate Frames For Interacting Dynamical Systems
Modelling interactions is critical in learning complex dynamical systems, namely systems of interacting objects with highly non-linear and time-dependent behaviour. A large class of such systems can be formalized as geometric graphs, i.e., graphs with nodes positioned in the Euclidean space given an arbitrarily chosen global coordinate system, for instance vehicles in a traffic scene. Notwithstanding the arbitrary global coordinate system, the governing dynamics of the respective dynamical systems are invariant to rotations and translations, also known as Galilean invariance. As ignoring these invariances leads to worse generalization, in this work we propose local coordinate frames per node-object to induce roto-translation invariance to the geometric graph of the interacting dynamical system. Further, the local coordinate frames allow for a natural definition of anisotropic filtering in graph neural networks. Experiments in traffic scenes, 3D motion capture, and colliding particles demonstrate that the proposed approach comfortably outperforms the recent state-of-the-art.
Phase diagram of a three-dimensional dipolar model on a FCC lattice
The magnetic phase diagram at zero external field of an ensemble of dipoles with uniaxial anisotropy on a FCC lattice is investigated from tempered Monte Carlo simulations. The uniaxial anisotropy is characterized by a random distribution of easy axes and its magnitude lambda_u is the driving force of disorder and consequently frustration. The phase diagram, separating the paramagnetic, ferromagnetic, quasi long range ordered ferromagnetic and spin-glass regions is thus considered in the temperature, lambda_u plane. This system is aimed at modeling the magnetic phase diagram of supracrystals of magnetic nanoparticles.
Modeling transport in weakly collisional plasmas using thermodynamic forcing
How momentum, energy, and magnetic fields are transported in the presence of macroscopic gradients is a fundamental question in plasma physics. Answering this question is especially challenging for weakly collisional, magnetized plasmas, where macroscopic gradients influence the plasma's microphysical structure. In this paper, we introduce thermodynamic forcing, a new method for systematically modeling how macroscopic gradients in magnetized or unmagnetized plasmas shape the distribution functions of constituent particles. In this method, we propose to apply an anomalous force to those particles inducing the anisotropy that would naturally emerge due to macroscopic gradients in weakly collisional plasmas. We implement thermodynamic forcing in particle-in-cell (TF-PIC) simulations using a modified Vay particle pusher and validate it against analytic solutions of the equations of motion. We then carry out a series of simulations of electron-proton plasmas with periodic boundary conditions using TF-PIC. First, we confirm that the properties of two electron-scale kinetic instabilities -- one driven by a temperature gradient and the other by pressure anisotropy -- are consistent with previous results. Then, we demonstrate that in the presence of multiple macroscopic gradients, the saturated state can differ significantly from current expectations. This work enables, for the first time, systematic and self-consistent transport modeling in weakly collisional plasmas, with broad applications in astrophysics, laser-plasma physics, and inertial confinement fusion.
First confirmation of anisotropic halo bias from statistically anisotropic matter distributions
We confirm for the first time the existence of distinctive halo bias associated with the quadrupolar type of statistical anisotropy (SA) of the linear matter density field using cosmological N-body simulations. We find that the coefficient of the SA-induced bias for cluster-sized halos takes negative values and exhibits a decreasing trend with increasing halo mass. This results in the quadrupole halo power spectra in a statistically anisotropic universe being less amplified compared to the monopole spectra. The anisotropic feature in halo bias that we found presents a promising new tool for testing the hypothesis of a statistically anisotropic universe, with significant implications for the precise verification of anisotropic inflation scenarios and vector dark matter and dark energy models.
CausalDynamics: A large-scale benchmark for structural discovery of dynamical causal models
Causal discovery for dynamical systems poses a major challenge in fields where active interventions are infeasible. Most methods used to investigate these systems and their associated benchmarks are tailored to deterministic, low-dimensional and weakly nonlinear time-series data. To address these limitations, we present CausalDynamics, a large-scale benchmark and extensible data generation framework to advance the structural discovery of dynamical causal models. Our benchmark consists of true causal graphs derived from thousands of coupled ordinary and stochastic differential equations as well as two idealized climate models. We perform a comprehensive evaluation of state-of-the-art causal discovery algorithms for graph reconstruction on systems with noisy, confounded, and lagged dynamics. CausalDynamics consists of a plug-and-play, build-your-own coupling workflow that enables the construction of a hierarchy of physical systems. We anticipate that our framework will facilitate the development of robust causal discovery algorithms that are broadly applicable across domains while addressing their unique challenges. We provide a user-friendly implementation and documentation on https://kausable.github.io/CausalDynamics.
A Multi-Branched Radial Basis Network Approach to Predicting Complex Chaotic Behaviours
In this study, we propose a multi branched network approach to predict the dynamics of a physics attractor characterized by intricate and chaotic behavior. We introduce a unique neural network architecture comprised of Radial Basis Function (RBF) layers combined with an attention mechanism designed to effectively capture nonlinear inter-dependencies inherent in the attractor's temporal evolution. Our results demonstrate successful prediction of the attractor's trajectory across 100 predictions made using a real-world dataset of 36,700 time-series observations encompassing approximately 28 minutes of activity. To further illustrate the performance of our proposed technique, we provide comprehensive visualizations depicting the attractor's original and predicted behaviors alongside quantitative measures comparing observed versus estimated outcomes. Overall, this work showcases the potential of advanced machine learning algorithms in elucidating hidden structures in complex physical systems while offering practical applications in various domains requiring accurate short-term forecasting capabilities.
Particle-Grid Neural Dynamics for Learning Deformable Object Models from RGB-D Videos
Modeling the dynamics of deformable objects is challenging due to their diverse physical properties and the difficulty of estimating states from limited visual information. We address these challenges with a neural dynamics framework that combines object particles and spatial grids in a hybrid representation. Our particle-grid model captures global shape and motion information while predicting dense particle movements, enabling the modeling of objects with varied shapes and materials. Particles represent object shapes, while the spatial grid discretizes the 3D space to ensure spatial continuity and enhance learning efficiency. Coupled with Gaussian Splattings for visual rendering, our framework achieves a fully learning-based digital twin of deformable objects and generates 3D action-conditioned videos. Through experiments, we demonstrate that our model learns the dynamics of diverse objects -- such as ropes, cloths, stuffed animals, and paper bags -- from sparse-view RGB-D recordings of robot-object interactions, while also generalizing at the category level to unseen instances. Our approach outperforms state-of-the-art learning-based and physics-based simulators, particularly in scenarios with limited camera views. Furthermore, we showcase the utility of our learned models in model-based planning, enabling goal-conditioned object manipulation across a range of tasks. The project page is available at https://kywind.github.io/pgnd .
A mechanism to generate varying speed of light via Higgs-dilaton coupling: Theory and cosmological applications
We allow the Higgs field Phi to interact with a dilaton field chi of the background spacetime via the coupling chi^2,Phi^daggerPhi. Upon spontaneous gauge symmetry breaking, the Higgs VEV becomes proportional to chi. While traditionally this linkage is employed to make the Planck mass and particle masses dependent on chi, we present an textit alternative mechanism: the Higgs VEV will be used to construct Planck's constant hbar and speed of light c. Specifically, each open set vicinity of a given point x^* on the spacetime manifold is equipped with a replica of the Glashow-Weinberg-Salam action operating with its own effective values of hbar_* and c_* per hbar_*proptochi^{-1/2}(x^*) and c_*proptochi^{1/2}(x^*), causing these ``fundamental constants'' to vary alongside the dynamical field chi. Moreover, in each open set around x^*, the prevailing value chi(x^*) determines the length and time scales for physical processes occurring in this region as lproptochi^{-1}(x^*) and tauproptochi^{-3/2}(x^*). This leads to an textit anisotropic relation tau^{-1}propto l^{-3/2} between the rate of clocks and the length of rods, resulting in a distinct set of novel physical phenomena. For late-time cosmology, the variation of c along the trajectory of light waves from distant supernovae towards the Earth-based observer necessitates modifications to the Lema\^itre redshift relation and the Hubble law. These modifications are capable of: (1) Accounting for the Pantheon Catalog of SNeIa through a declining speed of light in an expanding Einstein--de Sitter universe, thus avoiding the need for dark energy; (2) Revitalizing Blanchard-Douspis-Rowan-Robinson-Sarkar's CMB power spectrum analysis that bypassed dark energy [A&A 412, 35 (2003)]; and (3) Resolving the H_0 tension without requiring a dynamical dark energy component.
Force-Free Molecular Dynamics Through Autoregressive Equivariant Networks
Molecular dynamics (MD) simulations play a crucial role in scientific research. Yet their computational cost often limits the timescales and system sizes that can be explored. Most data-driven efforts have been focused on reducing the computational cost of accurate interatomic forces required for solving the equations of motion. Despite their success, however, these machine learning interatomic potentials (MLIPs) are still bound to small time-steps. In this work, we introduce TrajCast, a transferable and data-efficient framework based on autoregressive equivariant message passing networks that directly updates atomic positions and velocities lifting the constraints imposed by traditional numerical integration. We benchmark our framework across various systems, including a small molecule, crystalline material, and bulk liquid, demonstrating excellent agreement with reference MD simulations for structural, dynamical, and energetic properties. Depending on the system, TrajCast allows for forecast intervals up to 30times larger than traditional MD time-steps, generating over 15 ns of trajectory data per day for a solid with more than 4,000 atoms. By enabling efficient large-scale simulations over extended timescales, TrajCast can accelerate materials discovery and explore physical phenomena beyond the reach of traditional simulations and experiments. An open-source implementation of TrajCast is accessible under https://github.com/IBM/trajcast.
FlashMD: long-stride, universal prediction of molecular dynamics
Molecular dynamics (MD) provides insights into atomic-scale processes by integrating over time the equations that describe the motion of atoms under the action of interatomic forces. Machine learning models have substantially accelerated MD by providing inexpensive predictions of the forces, but they remain constrained to minuscule time integration steps, which are required by the fast time scale of atomic motion. In this work, we propose FlashMD, a method to predict the evolution of positions and momenta over strides that are between one and two orders of magnitude longer than typical MD time steps. We incorporate considerations on the mathematical and physical properties of Hamiltonian dynamics in the architecture, generalize the approach to allow the simulation of any thermodynamic ensemble, and carefully assess the possible failure modes of such a long-stride MD approach. We validate FlashMD's accuracy in reproducing equilibrium and time-dependent properties, using both system-specific and general-purpose models, extending the ability of MD simulation to reach the long time scales needed to model microscopic processes of high scientific and technological relevance.
Geometric Trajectory Diffusion Models
Generative models have shown great promise in generating 3D geometric systems, which is a fundamental problem in many natural science domains such as molecule and protein design. However, existing approaches only operate on static structures, neglecting the fact that physical systems are always dynamic in nature. In this work, we propose geometric trajectory diffusion models (GeoTDM), the first diffusion model for modeling the temporal distribution of 3D geometric trajectories. Modeling such distribution is challenging as it requires capturing both the complex spatial interactions with physical symmetries and temporal correspondence encapsulated in the dynamics. We theoretically justify that diffusion models with equivariant temporal kernels can lead to density with desired symmetry, and develop a novel transition kernel leveraging SE(3)-equivariant spatial convolution and temporal attention. Furthermore, to induce an expressive trajectory distribution for conditional generation, we introduce a generalized learnable geometric prior into the forward diffusion process to enhance temporal conditioning. We conduct extensive experiments on both unconditional and conditional generation in various scenarios, including physical simulation, molecular dynamics, and pedestrian motion. Empirical results on a wide suite of metrics demonstrate that GeoTDM can generate realistic geometric trajectories with significantly higher quality.
Mapping gravitational-wave backgrounds in modified theories of gravity using pulsar timing arrays
We extend our previous work on applying CMB techniques to the mapping of gravitational-wave backgrounds to backgrounds which have non-GR polarisations. Our analysis and results are presented in the context of pulsar-timing array observations, but the overarching methods are general, and can be easily applied to LIGO or eLISA observations using appropriately modified response functions. Analytic expressions for the pulsar-timing response to gravitational waves with non-GR polarisation are given for each mode of a spin-weighted spherical-harmonic decomposition of the background, which permit the signal to be mapped across the sky to any desired resolution. We also derive the pulsar-timing overlap reduction functions for the various non-GR polarisations, finding analytic forms for anisotropic backgrounds with scalar-transverse ("breathing") and vector-longitudinal polarisations, and a semi-analytic form for scalar-longitudinal backgrounds. Our results indicate that pulsar-timing observations will be completely insensitive to scalar-transverse mode anisotropies in the polarisation amplitude beyond dipole, and anisotropies in the power beyond quadrupole. Analogously to our previous findings that pulsar-timing observations lack sensitivity to tensor-curl modes for a transverse-traceless tensor background, we also find insensitivity to vector-curl modes for a vector-longitudinal background.
Generative Modeling of Molecular Dynamics Trajectories
Molecular dynamics (MD) is a powerful technique for studying microscopic phenomena, but its computational cost has driven significant interest in the development of deep learning-based surrogate models. We introduce generative modeling of molecular trajectories as a paradigm for learning flexible multi-task surrogate models of MD from data. By conditioning on appropriately chosen frames of the trajectory, we show such generative models can be adapted to diverse tasks such as forward simulation, transition path sampling, and trajectory upsampling. By alternatively conditioning on part of the molecular system and inpainting the rest, we also demonstrate the first steps towards dynamics-conditioned molecular design. We validate the full set of these capabilities on tetrapeptide simulations and show that our model can produce reasonable ensembles of protein monomers. Altogether, our work illustrates how generative modeling can unlock value from MD data towards diverse downstream tasks that are not straightforward to address with existing methods or even MD itself. Code is available at https://github.com/bjing2016/mdgen.
Learning Neural Constitutive Laws From Motion Observations for Generalizable PDE Dynamics
We propose a hybrid neural network (NN) and PDE approach for learning generalizable PDE dynamics from motion observations. Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and constitutive models (or material models). Without explicit PDE knowledge, these approaches cannot guarantee physical correctness and have limited generalizability. We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned. Instead, constitutive models are particularly suitable for learning due to their data-fitting nature. To this end, we introduce a new framework termed "Neural Constitutive Laws" (NCLaw), which utilizes a network architecture that strictly guarantees standard constitutive priors, including rotation equivariance and undeformed state equilibrium. We embed this network inside a differentiable simulation and train the model by minimizing a loss function based on the difference between the simulation and the motion observation. We validate NCLaw on various large-deformation dynamical systems, ranging from solids to fluids. After training on a single motion trajectory, our method generalizes to new geometries, initial/boundary conditions, temporal ranges, and even multi-physics systems. On these extremely out-of-distribution generalization tasks, NCLaw is orders-of-magnitude more accurate than previous NN approaches. Real-world experiments demonstrate our method's ability to learn constitutive laws from videos.
Tensor Gaussian Process with Contraction for Multi-Channel Imaging Analysis
Multi-channel imaging data is a prevalent data format in scientific fields such as astronomy and biology. The structured information and the high dimensionality of these 3-D tensor data makes the analysis an intriguing but challenging topic for statisticians and practitioners. The low-rank scalar-on-tensor regression model, in particular, has received widespread attention and has been re-formulated as a tensor Gaussian Process (Tensor-GP) model with multi-linear kernel in Yu et al. (2018). In this paper, we extend the Tensor-GP model by integrating a dimensionality reduction technique, called tensor contraction, with a Tensor-GP for a scalar-on-tensor regression task with multi-channel imaging data. This is motivated by the solar flare forecasting problem with high dimensional multi-channel imaging data. We first estimate a latent, reduced-size tensor for each data tensor and then apply a multi-linear Tensor-GP on the latent tensor data for prediction. We introduce an anisotropic total-variation regularization when conducting the tensor contraction to obtain a sparse and smooth latent tensor. We then propose an alternating proximal gradient descent algorithm for estimation. We validate our approach via extensive simulation studies and applying it to the solar flare forecasting problem.
Respecting causality is all you need for training physics-informed neural networks
While the popularity of physics-informed neural networks (PINNs) is steadily rising, to this date PINNs have not been successful in simulating dynamical systems whose solution exhibits multi-scale, chaotic or turbulent behavior. In this work we attribute this shortcoming to the inability of existing PINNs formulations to respect the spatio-temporal causal structure that is inherent to the evolution of physical systems. We argue that this is a fundamental limitation and a key source of error that can ultimately steer PINN models to converge towards erroneous solutions. We address this pathology by proposing a simple re-formulation of PINNs loss functions that can explicitly account for physical causality during model training. We demonstrate that this simple modification alone is enough to introduce significant accuracy improvements, as well as a practical quantitative mechanism for assessing the convergence of a PINNs model. We provide state-of-the-art numerical results across a series of benchmarks for which existing PINNs formulations fail, including the chaotic Lorenz system, the Kuramoto-Sivashinsky equation in the chaotic regime, and the Navier-Stokes equations in the turbulent regime. To the best of our knowledge, this is the first time that PINNs have been successful in simulating such systems, introducing new opportunities for their applicability to problems of industrial complexity.
Nuclear spin-lattice relaxation time in UCoGe
The NMR measurements performed on a single orthorhombic crystal of superconducting ferromagnet UCoGe (Y.Ihara et al, Phys. Rev. Lett. v.105, 206403 (2010)) demonstrate strongly anisotropic magnetic properties of this material. The presented calculations allow to establish the dependence of longitudinal spin-lattice relaxation rate from temperature and magnetic field. The value 1/T_1T in field perpendicular to spontaneous magnetisation directed along c-axis has maximum in vicinity of Curie temperature whereas it does not reveal similar behaviour in field parallel to the direction of spontaneous magnetisation. Also there was shown that the longitudinal spin-lattice relaxation rate is strongly field dependent when the field directed in b-crystallographic direction but field independent if magnetic field is oriented along a-axis.
Impulsive mixing of stellar populations in dwarf spheroidal galaxies
We study the response of mono-energetic stellar populations with initially isotropic kinematics to impulsive and adiabatic changes to an underlying dark matter potential. Half-light radii expand and velocity dispersions decrease as enclosed dark matter is removed. The details of this expansion and cooling depend on the time scale on which the underlying potential changes. In the adiabatic regime, the product of half-light radius and average velocity dispersion is conserved. We show that the stellar populations maintain centrally isotropic kinematics throughout their adiabatic evolution, and their densities can be approximated by a family of analytical radial profiles. Metallicity gradients within the galaxy flatten as dark matter is slowly removed. In the case of strong impulsive perturbations, stellar populations develop power-law-like density tails with radially biased kinematics. We show that the distribution of stellar binding energies within the dark matter halo substantially widens after an impulsive perturbation, no matter the sign of the perturbation. This allows initially energetically separated stellar populations to mix, to the extent that previously chemo-dynamically distinct populations may masquerade as a single population with large metallicity and energy spread. Finally, we show that in response to an impulsive perturbation, stellar populations that are deeply embedded in cored dark matter halos undergo a series of damped oscillations before reaching a virialised equilibrium state, driven by inefficient phase mixing in the harmonic potentials of cored halos. This slow return to equilibrium adds substantial systematic uncertainty to dynamical masses estimated from Jeans modeling or the virial theorem.
Consistent Modeling of Velocity Statistics and Redshift-Space Distortions in One-Loop Perturbation Theory
The peculiar velocities of biased tracers of the cosmic density field contain important information about the growth of large scale structure and generate anisotropy in the observed clustering of galaxies. Using N-body data, we show that velocity expansions for halo redshift-space power spectra are converged at the percent-level at perturbative scales for most line-of-sight angles mu when the first three pairwise velocity moments are included, and that the third moment is well-approximated by a counterterm-like contribution. We compute these pairwise-velocity statistics in Fourier space using both Eulerian and Lagrangian one-loop perturbation theory using a cubic bias scheme and a complete set of counterterms and stochastic contributions. We compare the models and show that our models fit both real-space velocity statistics and redshift-space power spectra for both halos and a mock sample of galaxies at sub-percent level on perturbative scales using consistent sets of parameters, making them appealing choices for the upcoming era of spectroscopic, peculiar-velocity and kSZ surveys.
Generative Modeling with Phase Stochastic Bridges
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs. DMs work by constructing a Stochastic Differential Equation (SDE) in the input space (ie, position space), and using a neural network to reverse it. In this work, we introduce a novel generative modeling framework grounded in phase space dynamics, where a phase space is defined as {an augmented space encompassing both position and velocity.} Leveraging insights from Stochastic Optimal Control, we construct a path measure in the phase space that enables efficient sampling. {In contrast to DMs, our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.} This early prediction sets the stage for efficient data generation by leveraging additional velocity information along the trajectory. On standard image generation benchmarks, our model yields favorable performance over baselines in the regime of small Number of Function Evaluations (NFEs). Furthermore, our approach rivals the performance of diffusion models equipped with efficient sampling techniques, underscoring its potential as a new tool generative modeling.
DyFraNet: Forecasting and Backcasting Dynamic Fracture Mechanics in Space and Time Using a 2D-to-3D Deep Neural Network
The dynamics of materials failure is one of the most critical phenomena in a range of scientific and engineering fields, from healthcare to structural materials to transportation. In this paper we propose a specially designed deep neural network, DyFraNet, which can predict dynamic fracture behaviors by identifying a complete history of fracture propagation - from cracking onset, as a crack grows through the material, modeled as a series of frames evolving over time and dependent on each other. Furthermore, this model can not only forecast future fracture processes but also backcast to elucidate the past fracture history. In this scenario, once provided with the outcome of a fracture event, the model will elucidate past events that led to this state and will predict the future evolution of the failure process. By comparing the predicted results with atomistic-level simulations and theory, we show that DyFraNet can capture dynamic fracture mechanics by accurately predicting how cracks develop over time, including measures such as the crack speed, as well as when cracks become unstable. We use GradCAM to interpret how DyFraNet perceives the relationship between geometric conditions and fracture dynamics and we find DyFraNet pays special attention to the areas around crack tips, which have a critical influence in the early stage of fracture propagation. In later stages, the model pays increased attention to the existing or newly formed damage distribution in the material. The proposed approach offers significant potential to accelerate the exploration of the dynamics in material design against fracture failures and can be beneficially adapted for all kinds of dynamical engineering problems.
True Zero-Shot Inference of Dynamical Systems Preserving Long-Term Statistics
Complex, temporally evolving phenomena, from climate to brain activity, are governed by dynamical systems (DS). DS reconstruction (DSR) seeks to infer generative surrogate models of these from observed data, reproducing their long-term behavior. Existing DSR approaches require purpose-training for any new system observed, lacking the zero-shot and in-context inference capabilities known from LLMs. Here we introduce DynaMix, a novel multivariate ALRNN-based mixture-of-experts architecture pre-trained for DSR, the first DSR model able to generalize zero-shot to out-of-domain DS. Just from a provided context signal, without any re-training, DynaMix faithfully forecasts the long-term evolution of novel DS where existing time series (TS) foundation models, like Chronos, fail -- at a fraction of the number of parameters and orders of magnitude faster inference times. DynaMix outperforms TS foundation models in terms of long-term statistics, and often also short-term forecasts, even on real-world time series, like traffic or weather data, typically used for training and evaluating TS models, but not at all part of DynaMix' training corpus. We illustrate some of the failure modes of TS models for DSR problems, and conclude that models built on DS principles may bear a huge potential also for advancing the TS prediction field.
Learning Collective Variables for Protein Folding with Labeled Data Augmentation through Geodesic Interpolation
In molecular dynamics (MD) simulations, rare events, such as protein folding, are typically studied by means of enhanced sampling techniques, most of which rely on the definition of a collective variable (CV) along which the acceleration occurs. Obtaining an expressive CV is crucial, but often hindered by the lack of information about the particular event, e.g., the transition from unfolded to folded conformation. We propose a simulation-free data augmentation strategy using physics-inspired metrics to generate geodesic interpolations resembling protein folding transitions, thereby improving sampling efficiency without true transition state samples. Leveraging interpolation progress parameters, we introduce a regression-based learning scheme for CV models, which outperforms classifier-based methods when transition state data is limited and noisy
Generative Latent Space Dynamics of Electron Density
Modeling the time-dependent evolution of electron density is essential for understanding quantum mechanical behaviors of condensed matter and enabling predictive simulations in spectroscopy, photochemistry, and ultrafast science. Yet, while machine learning methods have advanced static density prediction, modeling its spatiotemporal dynamics remains largely unexplored. In this work, we introduce a generative framework that combines a 3D convolutional autoencoder with a latent diffusion model (LDM) to learn electron density trajectories from ab-initio molecular dynamics (AIMD) simulations. Our method encodes electron densities into a compact latent space and predicts their future states by sampling from the learned conditional distribution, enabling stable long-horizon rollouts without drift or collapse. To preserve statistical fidelity, we incorporate a scaled Jensen-Shannon divergence regularization that aligns generated and reference density distributions. On AIMD trajectories of liquid lithium at 800 K, our model accurately captures both the spatial correlations and the log-normal-like statistical structure of the density. The proposed framework has the potential to accelerate the simulation of quantum dynamics and overcome key challenges faced by current spatiotemporal machine learning methods as surrogates of quantum mechanical simulators.
Physics-aware registration based auto-encoder for convection dominated PDEs
We design a physics-aware auto-encoder to specifically reduce the dimensionality of solutions arising from convection-dominated nonlinear physical systems. Although existing nonlinear manifold learning methods seem to be compelling tools to reduce the dimensionality of data characterized by a large Kolmogorov n-width, they typically lack a straightforward mapping from the latent space to the high-dimensional physical space. Moreover, the realized latent variables are often hard to interpret. Therefore, many of these methods are often dismissed in the reduced order modeling of dynamical systems governed by the partial differential equations (PDEs). Accordingly, we propose an auto-encoder type nonlinear dimensionality reduction algorithm. The unsupervised learning problem trains a diffeomorphic spatio-temporal grid, that registers the output sequence of the PDEs on a non-uniform parameter/time-varying grid, such that the Kolmogorov n-width of the mapped data on the learned grid is minimized. We demonstrate the efficacy and interpretability of our approach to separate convection/advection from diffusion/scaling on various manufactured and physical systems.
DDGS-CT: Direction-Disentangled Gaussian Splatting for Realistic Volume Rendering
Digitally reconstructed radiographs (DRRs) are simulated 2D X-ray images generated from 3D CT volumes, widely used in preoperative settings but limited in intraoperative applications due to computational bottlenecks, especially for accurate but heavy physics-based Monte Carlo methods. While analytical DRR renderers offer greater efficiency, they overlook anisotropic X-ray image formation phenomena, such as Compton scattering. We present a novel approach that marries realistic physics-inspired X-ray simulation with efficient, differentiable DRR generation using 3D Gaussian splatting (3DGS). Our direction-disentangled 3DGS (DDGS) method separates the radiosity contribution into isotropic and direction-dependent components, approximating complex anisotropic interactions without intricate runtime simulations. Additionally, we adapt the 3DGS initialization to account for tomography data properties, enhancing accuracy and efficiency. Our method outperforms state-of-the-art techniques in image accuracy. Furthermore, our DDGS shows promise for intraoperative applications and inverse problems such as pose registration, delivering superior registration accuracy and runtime performance compared to analytical DRR methods.
Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs
We present a neural operator architecture to simulate Lagrangian dynamics, such as fluid flow, granular flows, and elastoplasticity. Traditional numerical methods, such as the finite element method (FEM), suffer from long run times and large memory consumption. On the other hand, approaches based on graph neural networks are faster but still suffer from long computation times on dense graphs, which are often required for high-fidelity simulations. Our model, GIOROM or Graph Interaction Operator for Reduced-Order Modeling, learns temporal dynamics within a reduced-order setting, capturing spatial features from a highly sparse graph representation of the input and generalizing to arbitrary spatial locations during inference. The model is geometry-aware and discretization-agnostic and can generalize to different initial conditions, velocities, and geometries after training. We show that point clouds of the order of 100,000 points can be inferred from sparse graphs with sim1000 points, with negligible change in computation time. We empirically evaluate our model on elastic solids, Newtonian fluids, Non-Newtonian fluids, Drucker-Prager granular flows, and von Mises elastoplasticity. On these benchmarks, our approach results in a 25times speedup compared to other neural network-based physics simulators while delivering high-fidelity predictions of complex physical systems and showing better performance on most benchmarks. The code and the demos are provided at https://github.com/HrishikeshVish/GIOROM.
Spacetime Neural Network for High Dimensional Quantum Dynamics
We develop a spacetime neural network method with second order optimization for solving quantum dynamics from the high dimensional Schr\"{o}dinger equation. In contrast to the standard iterative first order optimization and the time-dependent variational principle, our approach utilizes the implicit mid-point method and generates the solution for all spatial and temporal values simultaneously after optimization. We demonstrate the method in the Schr\"{o}dinger equation with a self-normalized autoregressive spacetime neural network construction. Future explorations for solving different high dimensional differential equations are discussed.
Observational Signatures of Galactic Turbulent Dynamos
We analyse the observational signatures of galactic magnetic fields that are self-consistently generated in magnetohydrodynamic simulations of the interstellar medium through turbulence driven by supernova (SN) explosions and differential rotation. In particular, we study the time evolution of the Faraday rotation measure (RM), synchrotron radiation, and Stokes parameters by characterising the typical structures formed in the plane of observation. We do this by defining two distinct models for both thermal and cosmic ray (CR) electron distributions. Our results indicate that the maps of RM have structures which are sheared and rendered anisotropically by differential rotation and that they depend on the choice of thermal electrons model as well as the SN rate. Synchrotron maps are qualitatively similar to the maps of the mean magnetic field along the line of sight and structures are only marginally affected by the CR model. Stokes parameters and related quantities, such as the degree of linear polarisation, are highly dependent on both frequency and resolution of the observation.
Multi-marginal temporal Schrödinger Bridge Matching for video generation from unpaired data
Many natural dynamic processes -- such as in vivo cellular differentiation or disease progression -- can only be observed through the lens of static sample snapshots. While challenging, reconstructing their temporal evolution to decipher underlying dynamic properties is of major interest to scientific research. Existing approaches enable data transport along a temporal axis but are poorly scalable in high dimension and require restrictive assumptions to be met. To address these issues, we propose \textbf{Multi-Marginal temporal Schr\"odinger Bridge Matching} (MMtSBM) for video generation from unpaired data, extending the theoretical guarantees and empirical efficiency of Diffusion Schr\"odinger Bridge Matching (arXiv:archive/2303.16852) by deriving the Iterative Markovian Fitting algorithm to multiple marginals in a novel factorized fashion. Experiments show that MMtSBM retains theoretical properties on toy examples, achieves state-of-the-art performance on real world datasets such as transcriptomic trajectory inference in 100 dimensions, and for the first time recovers couplings and dynamics in very high dimensional image settings. Our work establishes multi-marginal Schr\"odinger bridges as a practical and principled approach for recovering hidden dynamics from static data.
Mitigating Propagation Failures in Physics-informed Neural Networks using Retain-Resample-Release (R3) Sampling
Despite the success of physics-informed neural networks (PINNs) in approximating partial differential equations (PDEs), PINNs can sometimes fail to converge to the correct solution in problems involving complicated PDEs. This is reflected in several recent studies on characterizing the "failure modes" of PINNs, although a thorough understanding of the connection between PINN failure modes and sampling strategies is missing. In this paper, we provide a novel perspective of failure modes of PINNs by hypothesizing that training PINNs relies on successful "propagation" of solution from initial and/or boundary condition points to interior points. We show that PINNs with poor sampling strategies can get stuck at trivial solutions if there are propagation failures, characterized by highly imbalanced PDE residual fields. To mitigate propagation failures, we propose a novel Retain-Resample-Release sampling (R3) algorithm that can incrementally accumulate collocation points in regions of high PDE residuals with little to no computational overhead. We provide an extension of R3 sampling to respect the principle of causality while solving time-dependent PDEs. We theoretically analyze the behavior of R3 sampling and empirically demonstrate its efficacy and efficiency in comparison with baselines on a variety of PDE problems.
Towards Cross Domain Generalization of Hamiltonian Representation via Meta Learning
Recent advances in deep learning for physics have focused on discovering shared representations of target systems by incorporating physics priors or inductive biases into neural networks. While effective, these methods are limited to the system domain, where the type of system remains consistent and thus cannot ensure the adaptation to new, or unseen physical systems governed by different laws. For instance, a neural network trained on a mass-spring system cannot guarantee accurate predictions for the behavior of a two-body system or any other system with different physical laws. In this work, we take a significant leap forward by targeting cross domain generalization within the field of Hamiltonian dynamics. We model our system with a graph neural network and employ a meta learning algorithm to enable the model to gain experience over a distribution of tasks and make it adapt to new physics. Our approach aims to learn a unified Hamiltonian representation that is generalizable across multiple system domains, thereby overcoming the limitations of system-specific models. Our results demonstrate that the meta-trained model not only adapts effectively to new systems but also captures a generalized Hamiltonian representation that is consistent across different physical domains. Overall, through the use of meta learning, we offer a framework that achieves cross domain generalization, providing a step towards a unified model for understanding a wide array of dynamical systems via deep learning.
Mean-field underdamped Langevin dynamics and its spacetime discretization
We propose a new method called the N-particle underdamped Langevin algorithm for optimizing a special class of non-linear functionals defined over the space of probability measures. Examples of problems with this formulation include training mean-field neural networks, maximum mean discrepancy minimization and kernel Stein discrepancy minimization. Our algorithm is based on a novel spacetime discretization of the mean-field underdamped Langevin dynamics, for which we provide a new, fast mixing guarantee. In addition, we demonstrate that our algorithm converges globally in total variation distance, bridging the theoretical gap between the dynamics and its practical implementation.
Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion
In recent years, there has been rapid development in 3D generation models, opening up new possibilities for applications such as simulating the dynamic movements of 3D objects and customizing their behaviors. However, current 3D generative models tend to focus only on surface features such as color and shape, neglecting the inherent physical properties that govern the behavior of objects in the real world. To accurately simulate physics-aligned dynamics, it is essential to predict the physical properties of materials and incorporate them into the behavior prediction process. Nonetheless, predicting the diverse materials of real-world objects is still challenging due to the complex nature of their physical attributes. In this paper, we propose Physics3D, a novel method for learning various physical properties of 3D objects through a video diffusion model. Our approach involves designing a highly generalizable physical simulation system based on a viscoelastic material model, which enables us to simulate a wide range of materials with high-fidelity capabilities. Moreover, we distill the physical priors from a video diffusion model that contains more understanding of realistic object materials. Extensive experiments demonstrate the effectiveness of our method with both elastic and plastic materials. Physics3D shows great potential for bridging the gap between the physical world and virtual neural space, providing a better integration and application of realistic physical principles in virtual environments. Project page: https://liuff19.github.io/Physics3D.
Multimarginal generative modeling with stochastic interpolants
Given a set of K probability densities, we consider the multimarginal generative modeling problem of learning a joint distribution that recovers these densities as marginals. The structure of this joint distribution should identify multi-way correspondences among the prescribed marginals. We formalize an approach to this task within a generalization of the stochastic interpolant framework, leading to efficient learning algorithms built upon dynamical transport of measure. Our generative models are defined by velocity and score fields that can be characterized as the minimizers of simple quadratic objectives, and they are defined on a simplex that generalizes the time variable in the usual dynamical transport framework. The resulting transport on the simplex is influenced by all marginals, and we show that multi-way correspondences can be extracted. The identification of such correspondences has applications to style transfer, algorithmic fairness, and data decorruption. In addition, the multimarginal perspective enables an efficient algorithm for reducing the dynamical transport cost in the ordinary two-marginal setting. We demonstrate these capacities with several numerical examples.
Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey: II. Anisotropic large-scale coherence in hot gas, galaxies, and dark matter
Statistics that capture the directional dependence of the baryon distribution in the cosmic web enable unique tests of cosmology and astrophysical feedback. We use constrained oriented stacking of thermal Sunyaev-Zel'dovich (tSZ) maps to measure the anisotropic distribution of hot gas 2.5-40 Mpc away from galaxy clusters embedded in massive filaments and superclusters. The cluster selection and orientation (at a scale of sim15 Mpc) use Dark Energy Survey (DES) Year 3 data, while expanded tSZ maps from the Atacama Cosmology Telescope Data Release 6 enable a sim3times more significant measurement of the extended gas compared to the technique's proof-of-concept. Decomposing stacks into cosine multipoles of order m, we detect a dipole (m=1) and quadrupole (m=2) at 8-10sigma, as well as evidence for m=4 signal at up to 6sigma, indicating sensitivity to late-time non-Gaussianity. We compare to the Cardinal simulations with spherical gas models pasted onto dark matter halos. The fiducial tSZ data can discriminate between two models that deplete pressure differently in low-mass halos (mimicking astrophysical feedback), preferring higher average pressure in extended structures. However, uncertainty in the amount of cosmic infrared background contamination reduces the constraining power. Additionally, we apply the technique to DES galaxy density and weak lensing to study for the first time their oriented relationships with tSZ. In the tSZ-to-lensing relation, averaged on 7.5 Mpc (transverse) scales, we observe dependence on redshift but not shape or radial distance. Thus, on large scales, the superclustering of gas pressure, galaxies, and total matter is coherent in shape and extent.
Stochastic acceleration in arbitrary astrophysical environments
Turbulent magnetic fields are to some extent a universal feature in astrophysical phenomena. Charged particles that encounter these turbulence get on average accelerated according to the so-called second-order Fermi process. However, in most astrophysical environments there are additional competing processes, such as different kinds of first-order energy changes and particle escape, that effect the resulting momentum distribution of the particles. In this work we provide to our knowledge the first semi-analytical solution of the isotropic steady-state momentum diffusion equation including continuous and catastrophic momentum changes that can be applied to any arbitrary astrophysical system of interest. Here, we adopt that the assigned magnetic turbulence is constrained on a finite range and the particle flux vanishes beyond these boundaries. Consequently, we show that the so-called pile-up bump -- that has for some special cases long been established -- is a universal feature of stochastic acceleration that emerges around the momentum chi_{rm eq} where acceleration and continuous loss are in equilibrium if the particle's residence time in the system is sufficient at chi_{rm eq}. In general, the impact of continuous and catastrophic momentum changes plays a crucial role in the shape of the steady-state momentum distribution of the accelerated particles, where simplified unbroken power-law approximations are often not adequate.
Geometric Clifford Algebra Networks
We propose Geometric Clifford Algebra Networks (GCANs) for modeling dynamical systems. GCANs are based on symmetry group transformations using geometric (Clifford) algebras. We first review the quintessence of modern (plane-based) geometric algebra, which builds on isometries encoded as elements of the Pin(p,q,r) group. We then propose the concept of group action layers, which linearly combine object transformations using pre-specified group actions. Together with a new activation and normalization scheme, these layers serve as adjustable geometric templates that can be refined via gradient descent. Theoretical advantages are strongly reflected in the modeling of three-dimensional rigid body transformations as well as large-scale fluid dynamics simulations, showing significantly improved performance over traditional methods.
Phase diagram and eigenvalue dynamics of stochastic gradient descent in multilayer neural networks
Hyperparameter tuning is one of the essential steps to guarantee the convergence of machine learning models. We argue that intuition about the optimal choice of hyperparameters for stochastic gradient descent can be obtained by studying a neural network's phase diagram, in which each phase is characterised by distinctive dynamics of the singular values of weight matrices. Taking inspiration from disordered systems, we start from the observation that the loss landscape of a multilayer neural network with mean squared error can be interpreted as a disordered system in feature space, where the learnt features are mapped to soft spin degrees of freedom, the initial variance of the weight matrices is interpreted as the strength of the disorder, and temperature is given by the ratio of the learning rate and the batch size. As the model is trained, three phases can be identified, in which the dynamics of weight matrices is qualitatively different. Employing a Langevin equation for stochastic gradient descent, previously derived using Dyson Brownian motion, we demonstrate that the three dynamical regimes can be classified effectively, providing practical guidance for the choice of hyperparameters of the optimiser.
Implicit Neural Spatial Representations for Time-dependent PDEs
Implicit Neural Spatial Representation (INSR) has emerged as an effective representation of spatially-dependent vector fields. This work explores solving time-dependent PDEs with INSR. Classical PDE solvers introduce both temporal and spatial discretizations. Common spatial discretizations include meshes and meshless point clouds, where each degree-of-freedom corresponds to a location in space. While these explicit spatial correspondences are intuitive to model and understand, these representations are not necessarily optimal for accuracy, memory usage, or adaptivity. Keeping the classical temporal discretization unchanged (e.g., explicit/implicit Euler), we explore INSR as an alternative spatial discretization, where spatial information is implicitly stored in the neural network weights. The network weights then evolve over time via time integration. Our approach does not require any training data generated by existing solvers because our approach is the solver itself. We validate our approach on various PDEs with examples involving large elastic deformations, turbulent fluids, and multi-scale phenomena. While slower to compute than traditional representations, our approach exhibits higher accuracy and lower memory consumption. Whereas classical solvers can dynamically adapt their spatial representation only by resorting to complex remeshing algorithms, our INSR approach is intrinsically adaptive. By tapping into the rich literature of classic time integrators, e.g., operator-splitting schemes, our method enables challenging simulations in contact mechanics and turbulent flows where previous neural-physics approaches struggle. Videos and codes are available on the project page: http://www.cs.columbia.edu/cg/INSR-PDE/
Critical yielding rheology: from externally deformed glasses to active systems
In the last decade many research efforts have been focused on understanding the rheology of disordered materials, and several theoretical predictions have been put forward regarding their yielding behavior. Nevertheless, not many experiments nor molecular dynamics simulations were dedicated to testing those theoretical predictions. Here we use computer simulations to study the yielding transition under two different loading schemes: standard simple shear dynamics, and self-propelled, dense active systems. In the active systems a yielding transition is observed as expected, when the self-propulsion is increased. However, the range of self-propulsions in which a pure liquid regime exist appears to vanish upon approaching the so-called "jamming point" at which solidity of soft-sphere packings is lost. Such an "active yielding" transition shares similarities with the generic yielding transition for shear flows. A Herschel-Bulkley law is observed in both loading scenarios, with a clear difference in the critical scaling exponents between the two, suggesting the existent of different universality classes for the yielding transition under different driving conditions. In addition, we present direct measurements of length and time scales for both driving scenarios. A comparison with theoretical predictions from recent literature reveals poor agreement with our numerical results.
Recovering a Molecule's 3D Dynamics from Liquid-phase Electron Microscopy Movies
The dynamics of biomolecules are crucial for our understanding of their functioning in living systems. However, current 3D imaging techniques, such as cryogenic electron microscopy (cryo-EM), require freezing the sample, which limits the observation of their conformational changes in real time. The innovative liquid-phase electron microscopy (liquid-phase EM) technique allows molecules to be placed in the native liquid environment, providing a unique opportunity to observe their dynamics. In this paper, we propose TEMPOR, a Temporal Electron MicroscoPy Object Reconstruction algorithm for liquid-phase EM that leverages an implicit neural representation (INR) and a dynamical variational auto-encoder (DVAE) to recover time series of molecular structures. We demonstrate its advantages in recovering different motion dynamics from two simulated datasets, 7bcq and Cas9. To our knowledge, our work is the first attempt to directly recover 3D structures of a temporally-varying particle from liquid-phase EM movies. It provides a promising new approach for studying molecules' 3D dynamics in structural biology.
Collective Dynamics from Stochastic Thermodynamics
From a viewpoint of stochastic thermodynamics, we derive equations that describe the collective dynamics near the order-disorder transition in the globally coupled XY model and near the synchronization-desynchronization transition in the Kuramoto model. A new way of thinking is to interpret the deterministic time evolution of a macroscopic variable as an external operation to a thermodynamic system. We then find that the irreversible work determines the equation for the collective dynamics. When analyzing the Kuramoto model, we employ a generalized concept of irreversible work which originates from a non-equilibrium identity associated with steady state thermodynamics.
rd-spiral: An open-source Python library for learning 2D reaction-diffusion dynamics through pseudo-spectral method
We introduce rd-spiral, an open-source Python library for simulating 2D reaction-diffusion systems using pseudo-spectral methods. The framework combines FFT-based spatial discretization with adaptive Dormand-Prince time integration, achieving exponential convergence while maintaining pedagogical clarity. We analyze three dynamical regimes: stable spirals, spatiotemporal chaos, and pattern decay, revealing extreme non-Gaussian statistics (kurtosis >96) in stable states. Information-theoretic metrics show 10.7% reduction in activator-inhibitor coupling during turbulence versus 6.5% in stable regimes. The solver handles stiffness ratios >6:1 with features including automated equilibrium classification and checkpointing. Effect sizes (delta=0.37--0.78) distinguish regimes, with asymmetric field sensitivities to perturbations. By balancing computational rigor with educational transparency, rd-spiral bridges theoretical and practical nonlinear dynamics.
Accelerated Convergence of Stochastic Heavy Ball Method under Anisotropic Gradient Noise
Heavy-ball momentum with decaying learning rates is widely used with SGD for optimizing deep learning models. In contrast to its empirical popularity, the understanding of its theoretical property is still quite limited, especially under the standard anisotropic gradient noise condition for quadratic regression problems. Although it is widely conjectured that heavy-ball momentum method can provide accelerated convergence and should work well in large batch settings, there is no rigorous theoretical analysis. In this paper, we fill this theoretical gap by establishing a non-asymptotic convergence bound for stochastic heavy-ball methods with step decay scheduler on quadratic objectives, under the anisotropic gradient noise condition. As a direct implication, we show that heavy-ball momentum can provide mathcal{O}(kappa) accelerated convergence of the bias term of SGD while still achieving near-optimal convergence rate with respect to the stochastic variance term. The combined effect implies an overall convergence rate within log factors from the statistical minimax rate. This means SGD with heavy-ball momentum is useful in the large-batch settings such as distributed machine learning or federated learning, where a smaller number of iterations can significantly reduce the number of communication rounds, leading to acceleration in practice.
Str2Str: A Score-based Framework for Zero-shot Protein Conformation Sampling
The dynamic nature of proteins is crucial for determining their biological functions and properties, for which Monte Carlo (MC) and molecular dynamics (MD) simulations stand as predominant tools to study such phenomena. By utilizing empirically derived force fields, MC or MD simulations explore the conformational space through numerically evolving the system via Markov chain or Newtonian mechanics. However, the high-energy barrier of the force fields can hamper the exploration of both methods by the rare event, resulting in inadequately sampled ensemble without exhaustive running. Existing learning-based approaches perform direct sampling yet heavily rely on target-specific simulation data for training, which suffers from high data acquisition cost and poor generalizability. Inspired by simulated annealing, we propose Str2Str, a novel structure-to-structure translation framework capable of zero-shot conformation sampling with roto-translation equivariant property. Our method leverages an amortized denoising score matching objective trained on general crystal structures and has no reliance on simulation data during both training and inference. Experimental results across several benchmarking protein systems demonstrate that Str2Str outperforms previous state-of-the-art generative structure prediction models and can be orders of magnitude faster compared to long MD simulations. Our open-source implementation is available at https://github.com/lujiarui/Str2Str
Timewarp: Transferable Acceleration of Molecular Dynamics by Learning Time-Coarsened Dynamics
Molecular dynamics (MD) simulation is a widely used technique to simulate molecular systems, most commonly at the all-atom resolution where equations of motion are integrated with timesteps on the order of femtoseconds (1fs=10^{-15}s). MD is often used to compute equilibrium properties, which requires sampling from an equilibrium distribution such as the Boltzmann distribution. However, many important processes, such as binding and folding, occur over timescales of milliseconds or beyond, and cannot be efficiently sampled with conventional MD. Furthermore, new MD simulations need to be performed for each molecular system studied. We present Timewarp, an enhanced sampling method which uses a normalising flow as a proposal distribution in a Markov chain Monte Carlo method targeting the Boltzmann distribution. The flow is trained offline on MD trajectories and learns to make large steps in time, simulating the molecular dynamics of 10^{5} - 10^{6}:fs. Crucially, Timewarp is transferable between molecular systems: once trained, we show that it generalises to unseen small peptides (2-4 amino acids) at all-atom resolution, exploring their metastable states and providing wall-clock acceleration of sampling compared to standard MD. Our method constitutes an important step towards general, transferable algorithms for accelerating MD.
Structure-Preserving Operator Learning
Learning complex dynamics driven by partial differential equations directly from data holds great promise for fast and accurate simulations of complex physical systems. In most cases, this problem can be formulated as an operator learning task, where one aims to learn the operator representing the physics of interest, which entails discretization of the continuous system. However, preserving key continuous properties at the discrete level, such as boundary conditions, and addressing physical systems with complex geometries is challenging for most existing approaches. We introduce a family of operator learning architectures, structure-preserving operator networks (SPONs), that allows to preserve key mathematical and physical properties of the continuous system by leveraging finite element (FE) discretizations of the input-output spaces. SPONs are encode-process-decode architectures that are end-to-end differentiable, where the encoder and decoder follows from the discretizations of the input-output spaces. SPONs can operate on complex geometries, enforce certain boundary conditions exactly, and offer theoretical guarantees. Our framework provides a flexible way of devising structure-preserving architectures tailored to specific applications, and offers an explicit trade-off between performance and efficiency, all thanks to the FE discretization of the input-output spaces. Additionally, we introduce a multigrid-inspired SPON architecture that yields improved performance at higher efficiency. Finally, we release a software to automate the design and training of SPON architectures.
A Cartesian Encoding Graph Neural Network for Crystal Structures Property Prediction: Application to Thermal Ellipsoid Estimation
In diffraction-based crystal structure analysis, thermal ellipsoids, quantified via Anisotropic Displacement Parameters (ADPs), are critical yet challenging to determine. ADPs capture atomic vibrations, reflecting thermal and structural properties, but traditional computation is often expensive. This paper introduces CartNet, a novel graph neural network (GNN) for efficiently predicting crystal properties by encoding atomic geometry into Cartesian coordinates alongside the crystal temperature. CartNet integrates a neighbour equalization technique to emphasize covalent and contact interactions, and a Cholesky-based head to ensure valid ADP predictions. We also propose a rotational SO(3) data augmentation strategy during training to handle unseen orientations. An ADP dataset with over 200,000 experimental crystal structures from the Cambridge Structural Database (CSD) was curated to validate the approach. CartNet significantly reduces computational costs and outperforms existing methods in ADP prediction by 10.87%, while delivering a 34.77% improvement over theoretical approaches. We further evaluated CartNet on other datasets covering formation energy, band gap, total energy, energy above the convex hull, bulk moduli, and shear moduli, achieving 7.71% better results on the Jarvis Dataset and 13.16% on the Materials Project Dataset. These gains establish CartNet as a state-of-the-art solution for diverse crystal property predictions. Project website and online demo: https://www.ee.ub.edu/cartnet
General-relativistic resistive-magnetohydrodynamics simulations of self-consistent magnetized rotating neutron stars
We present the first general-relativistic resistive magnetohydrodynamics simulations of self-consistent, rotating neutron stars with mixed poloidal and toroidal magnetic fields. Specifically, we investigate the role of resistivity in the dynamical evolution of neutron stars over a period of up to 100 ms and its effects on their quasi-equilibrium configurations. Our results demonstrate that resistivity can significantly influence the development of magnetohydrodynamic instabilities, resulting in markedly different magnetic field geometries. Additionally, resistivity suppresses the growth of these instabilities, leading to a reduction in the amplitude of emitted gravitational waves. Despite the variations in magnetic field geometries, the ratio of poloidal to toroidal field energies remains consistently 9:1 throughout the simulations, for the models we investigated.
Smooth Normalizing Flows
Normalizing flows are a promising tool for modeling probability distributions in physical systems. While state-of-the-art flows accurately approximate distributions and energies, applications in physics additionally require smooth energies to compute forces and higher-order derivatives. Furthermore, such densities are often defined on non-trivial topologies. A recent example are Boltzmann Generators for generating 3D-structures of peptides and small proteins. These generative models leverage the space of internal coordinates (dihedrals, angles, and bonds), which is a product of hypertori and compact intervals. In this work, we introduce a class of smooth mixture transformations working on both compact intervals and hypertori. Mixture transformations employ root-finding methods to invert them in practice, which has so far prevented bi-directional flow training. To this end, we show that parameter gradients and forces of such inverses can be computed from forward evaluations via the inverse function theorem. We demonstrate two advantages of such smooth flows: they allow training by force matching to simulation data and can be used as potentials in molecular dynamics simulations.
Expanding covariant cosmography of the local Universe: incorporating the snap and axial symmetry
Studies show that the model-independent, fully non-perturbative covariant cosmographic approach is suitable for analyzing the local Universe (zlesssim 0.1). However, accurately characterizing large and inhomogeneous mass distributions requires the fourth-order term in the redshift expansion of the covariant luminosity distance d_L(z,n). We calculate the covariant snap parameter S and its spherical harmonic multipole moments using the matter expansion tensor and the evolution equations for lightray bundles. The fourth-order term adds 36 degrees of freedom, since the highest independent multipole of the snap is the 32-pole (dotriacontapole) (ell=5). Including this term helps to de-bias estimations of the covariant deceleration parameter. Given that observations suggest axially symmetric anisotropies in the Hubble diagram for z lesssim 0.1 and theory shows that only a subset of multipoles contributes to the signal, we demonstrate that only 12 degrees of freedom are needed for a model-independent description of the local universe. We use an analytical axisymmetric model of the local Universe, with data that matches the Zwicky Transient Facility survey, in order to provide a numerical example of the amplitude of the snap multipoles and to forecast precision.
Chaos as an interpretable benchmark for forecasting and data-driven modelling
The striking fractal geometry of strange attractors underscores the generative nature of chaos: like probability distributions, chaotic systems can be repeatedly measured to produce arbitrarily-detailed information about the underlying attractor. Chaotic systems thus pose a unique challenge to modern statistical learning techniques, while retaining quantifiable mathematical properties that make them controllable and interpretable as benchmarks. Here, we present a growing database currently comprising 131 known chaotic dynamical systems spanning fields such as astrophysics, climatology, and biochemistry. Each system is paired with precomputed multivariate and univariate time series. Our dataset has comparable scale to existing static time series databases; however, our systems can be re-integrated to produce additional datasets of arbitrary length and granularity. Our dataset is annotated with known mathematical properties of each system, and we perform feature analysis to broadly categorize the diverse dynamics present across the collection. Chaotic systems inherently challenge forecasting models, and across extensive benchmarks we correlate forecasting performance with the degree of chaos present. We also exploit the unique generative properties of our dataset in several proof-of-concept experiments: surrogate transfer learning to improve time series classification, importance sampling to accelerate model training, and benchmarking symbolic regression algorithms.
An Embedding-Dynamic Approach to Self-supervised Learning
A number of recent self-supervised learning methods have shown impressive performance on image classification and other tasks. A somewhat bewildering variety of techniques have been used, not always with a clear understanding of the reasons for their benefits, especially when used in combination. Here we treat the embeddings of images as point particles and consider model optimization as a dynamic process on this system of particles. Our dynamic model combines an attractive force for similar images, a locally dispersive force to avoid local collapse, and a global dispersive force to achieve a globally-homogeneous distribution of particles. The dynamic perspective highlights the advantage of using a delayed-parameter image embedding (a la BYOL) together with multiple views of the same image. It also uses a purely-dynamic local dispersive force (Brownian motion) that shows improved performance over other methods and does not require knowledge of other particle coordinates. The method is called MSBReg which stands for (i) a Multiview centroid loss, which applies an attractive force to pull different image view embeddings toward their centroid, (ii) a Singular value loss, which pushes the particle system toward spatially homogeneous density, (iii) a Brownian diffusive loss. We evaluate downstream classification performance of MSBReg on ImageNet as well as transfer learning tasks including fine-grained classification, multi-class object classification, object detection, and instance segmentation. In addition, we also show that applying our regularization term to other methods further improves their performance and stabilize the training by preventing a mode collapse.
Sampling with Mirrored Stein Operators
We introduce a new family of particle evolution samplers suitable for constrained domains and non-Euclidean geometries. Stein Variational Mirror Descent and Mirrored Stein Variational Gradient Descent minimize the Kullback-Leibler (KL) divergence to constrained target distributions by evolving particles in a dual space defined by a mirror map. Stein Variational Natural Gradient exploits non-Euclidean geometry to more efficiently minimize the KL divergence to unconstrained targets. We derive these samplers from a new class of mirrored Stein operators and adaptive kernels developed in this work. We demonstrate that these new samplers yield accurate approximations to distributions on the simplex, deliver valid confidence intervals in post-selection inference, and converge more rapidly than prior methods in large-scale unconstrained posterior inference. Finally, we establish the convergence of our new procedures under verifiable conditions on the target distribution.
Bouncing to coalescence transition for droplet impact onto moving liquid pools
A droplet impacting a deep fluid bath is as common as rain over the ocean. If the impact is sufficiently gentle, the mediating air layer remains intact, and the droplet may rebound completely from the interface. In this work, we experimentally investigate the role of translational bath motion on the bouncing to coalescence transition. Over a range of parameters, we find that the relative bath motion systematically decreases the normal Weber number required to transition from bouncing to merging. Direct numerical simulations demonstrate that the depression created during impact combined with the translational motion of the bath enhances the air layer drainage on the upstream side of the droplet, ultimately favoring coalescence. A simple geometric argument is presented that rationalizes the collapse of the experimental threshold data, extending what is known for the case of axisymmetric normal impacts to the more general 3D scenario of interest herein.
Quasinormal modes in two-photon autocorrelation and the geometric-optics approximation
In this work, we study the black hole light echoes in terms of the two-photon autocorrelation and explore their connection with the quasinormal modes. It is shown that the above time-domain phenomenon can be analyzed by utilizing the well-known frequency-domain relations between the quasinormal modes and characteristic parameters of null geodesics. We found that the time-domain correlator, obtained by the inverse Fourier transform, naturally acquires the echo feature, which can be attributed to a collective effect of the asymptotic poles through a weighted summation of the squared modulus of the relevant Green's functions. Specifically, the contour integral leads to a summation taking over both the overtone index and angular momentum. Moreover, the dominant contributions to the light echoes are from those in the eikonal limit, consistent with the existing findings using the geometric-optics arguments. For the Schwarzschild black holes, we demonstrate the results numerically by considering a transient spherical light source. Also, for the Kerr spacetimes, we point out a potential difference between the resulting light echoes using the geometric-optics approach and those obtained by the black hole perturbation theory. Possible astrophysical implications of the present study are addressed.
Identifying supermassive black hole recoil in elliptical galaxies
We study stellar core growth in simulations of merging massive (M_star>10^{11},M_odot) elliptical galaxies by a supermassive black hole (SMBH) displaced by gravitational wave induced recoil velocity. With controlled, dense sampling of the SMBH recoil velocity, we find the core radius originally formed by SMBH binary scouring can grow by a factor of 2-3 when the recoil velocity exceeds sim50 per cent of the central escape velocity, and the mass deficit grows by up to a factor of sim4. Using Bayesian inference we predict the distribution of stellar core sizes formed through this process to peak at sim1,kpc. An orbital decomposition of stellar particles within the core reveals that radial orbits dominate over tube orbits when the recoil velocity exceeds the velocity dispersion of the core, whereas tube orbits dominate for the lowest recoil kicks. A change in orbital structure is reflected in the anisotropy parameter, with a central tangential bias present only for recoil velocities less than the local stellar velocity dispersion. Emulating current integral field unit observations of the stellar line-of-sight velocity distribution, we uncover a distinct signature in the Gauss-Hermite symmetric deviation coefficient h_4 that uniquely constrains the core size due to binary scouring. This signature is insensitive to the later evolution of the stellar mass distribution due to SMBH recoil. Our results provide a novel method to estimate the SMBH recoil magnitude from observations of local elliptical galaxies, and implies these galaxies primarily experienced recoil velocities less than the stellar velocity dispersion of the core.
Generalized Teacher Forcing for Learning Chaotic Dynamics
Chaotic dynamical systems (DS) are ubiquitous in nature and society. Often we are interested in reconstructing such systems from observed time series for prediction or mechanistic insight, where by reconstruction we mean learning geometrical and invariant temporal properties of the system in question (like attractors). However, training reconstruction algorithms like recurrent neural networks (RNNs) on such systems by gradient-descent based techniques faces severe challenges. This is mainly due to exploding gradients caused by the exponential divergence of trajectories in chaotic systems. Moreover, for (scientific) interpretability we wish to have as low dimensional reconstructions as possible, preferably in a model which is mathematically tractable. Here we report that a surprisingly simple modification of teacher forcing leads to provably strictly all-time bounded gradients in training on chaotic systems, and, when paired with a simple architectural rearrangement of a tractable RNN design, piecewise-linear RNNs (PLRNNs), allows for faithful reconstruction in spaces of at most the dimensionality of the observed system. We show on several DS that with these amendments we can reconstruct DS better than current SOTA algorithms, in much lower dimensions. Performance differences were particularly compelling on real world data with which most other methods severely struggled. This work thus led to a simple yet powerful DS reconstruction algorithm which is highly interpretable at the same time.
Solving physics-based initial value problems with unsupervised machine learning
Initial value problems -- a system of ordinary differential equations and corresponding initial conditions -- can be used to describe many physical phenomena including those arise in classical mechanics. We have developed a novel approach to solve physics-based initial value problems using unsupervised machine learning. We propose a deep learning framework that models the dynamics of a variety of mechanical systems through neural networks. Our framework is flexible, allowing us to solve non-linear, coupled, and chaotic dynamical systems. We demonstrate the effectiveness of our approach on systems including a free particle, a particle in a gravitational field, a classical pendulum, and the H\'enon--Heiles system (a pair of coupled harmonic oscillators with a non-linear perturbation, used in celestial mechanics). Our results show that deep neural networks can successfully approximate solutions to these problems, producing trajectories which conserve physical properties such as energy and those with stationary action. We note that probabilistic activation functions, as defined in this paper, are required to learn any solutions of initial value problems in their strictest sense, and we introduce coupled neural networks to learn solutions of coupled systems.
ReZero is All You Need: Fast Convergence at Large Depth
Deep networks often suffer from vanishing or exploding gradients due to inefficient signal propagation, leading to long training times or convergence difficulties. Various architecture designs, sophisticated residual-style networks, and initialization schemes have been shown to improve deep signal propagation. Recently, Pennington et al. used free probability theory to show that dynamical isometry plays an integral role in efficient deep learning. We show that the simplest architecture change of gating each residual connection using a single zero-initialized parameter satisfies initial dynamical isometry and outperforms more complex approaches. Although much simpler than its predecessors, this gate enables training thousands of fully connected layers with fast convergence and better test performance for ResNets trained on CIFAR-10. We apply this technique to language modeling and find that we can easily train 120-layer Transformers. When applied to 12 layer Transformers, it converges 56% faster on enwiki8.
Multi-mode Pulsations in AGB Stars: Insights from 3D RHD CO5BOLD Simulations
Stars on the AGB can exhibit acoustic pulsation modes of different radial orders, along with non-radial modes. These pulsations are essential to the mass-loss process and influence the evolutionary pathways of AGB stars. P-L relations serve as a valuable diagnostic for understanding stellar evolution along the AGB. 3D RHD simulations provide a powerful tool for investigating pulsation phenomena driven by convective processes and their non-linear coupling with stellar oscillations. We investigate multi-mode pulsations in AGB stars using advanced 3D 'star-in-a-box' simulations with the CO5BOLD code. Signatures of these multi-mode pulsations were weak in our previous 3D models. Our focus is on identifying and characterising the various pulsation modes, examining their persistence and transitions, and comparing the results with 1D model predictions and observational data where applicable. We produced a new model grid comprising AGB stars with current masses of 0.7, 0.8, and 1,M_{odot}. Fourier analysis was applied to dynamic, time-dependent quantities to extract dominant pulsation modes and their corresponding periods. Additionally, wavelet transforms were employed to identify mode-switching behaviour over time. The models successfully reproduce the P-L sequences found in AGB stars. Mode-switching phenomena are found in both the models and wavelet analyses of observational data, allowing us to infer similarities in the underlying pulsation dynamics. These 3D simulations highlight the natural emergence of multi-mode pulsations, including both radial and non-radial modes, driven by the self-consistent interplay of convection and oscillations. Our findings underscore the value of 3D RHD models in capturing the non-linear behaviour of AGB pulsations, providing insights into mode switching, envelope structures, and potential links to episodic mass-loss events.
Disentangled Generative Models for Robust Prediction of System Dynamics
Deep neural networks have become increasingly of interest in dynamical system prediction, but out-of-distribution generalization and long-term stability still remains challenging. In this work, we treat the domain parameters of dynamical systems as factors of variation of the data generating process. By leveraging ideas from supervised disentanglement and causal factorization, we aim to separate the domain parameters from the dynamics in the latent space of generative models. In our experiments we model dynamics both in phase space and in video sequences and conduct rigorous OOD evaluations. Results indicate that disentangled VAEs adapt better to domain parameters spaces that were not present in the training data. At the same time, disentanglement can improve the long-term and out-of-distribution predictions of state-of-the-art models in video sequences.
A Low-complexity Structured Neural Network to Realize States of Dynamical Systems
Data-driven learning is rapidly evolving and places a new perspective on realizing state-space dynamical systems. However, dynamical systems derived from nonlinear ordinary differential equations (ODEs) suffer from limitations in computational efficiency. Thus, this paper stems from data-driven learning to advance states of dynamical systems utilizing a structured neural network (StNN). The proposed learning technique also seeks to identify an optimal, low-complexity operator to solve dynamical systems, the so-called Hankel operator, derived from time-delay measurements. Thus, we utilize the StNN based on the Hankel operator to solve dynamical systems as an alternative to existing data-driven techniques. We show that the proposed StNN reduces the number of parameters and computational complexity compared with the conventional neural networks and also with the classical data-driven techniques, such as Sparse Identification of Nonlinear Dynamics (SINDy) and Hankel Alternative view of Koopman (HAVOK), which is commonly known as delay-Dynamic Mode Decomposition(DMD) or Hankel-DMD. More specifically, we present numerical simulations to solve dynamical systems utilizing the StNN based on the Hankel operator beginning from the fundamental Lotka-Volterra model, where we compare the StNN with the LEarning Across Dynamical Systems (LEADS), and extend our analysis to highly nonlinear and chaotic Lorenz systems, comparing the StNN with conventional neural networks, SINDy, and HAVOK. Hence, we show that the proposed StNN paves the way for realizing state-space dynamical systems with a low-complexity learning algorithm, enabling prediction and understanding of future states.
Limits and Powers of Koopman Learning
Dynamical systems provide a comprehensive way to study complex and changing behaviors across various sciences. Many modern systems are too complicated to analyze directly or we do not have access to models, driving significant interest in learning methods. Koopman operators have emerged as a dominant approach because they allow the study of nonlinear dynamics using linear techniques by solving an infinite-dimensional spectral problem. However, current algorithms face challenges such as lack of convergence, hindering practical progress. This paper addresses a fundamental open question: When can we robustly learn the spectral properties of Koopman operators from trajectory data of dynamical systems, and when can we not? Understanding these boundaries is crucial for analysis, applications, and designing algorithms. We establish a foundational approach that combines computational analysis and ergodic theory, revealing the first fundamental barriers -- universal for any algorithm -- associated with system geometry and complexity, regardless of data quality and quantity. For instance, we demonstrate well-behaved smooth dynamical systems on tori where non-trivial eigenfunctions of the Koopman operator cannot be determined by any sequence of (even randomized) algorithms, even with unlimited training data. Additionally, we identify when learning is possible and introduce optimal algorithms with verification that overcome issues in standard methods. These results pave the way for a sharp classification theory of data-driven dynamical systems based on how many limits are needed to solve a problem. These limits characterize all previous methods, presenting a unified view. Our framework systematically determines when and how Koopman spectral properties can be learned.
VisionLaw: Inferring Interpretable Intrinsic Dynamics from Visual Observations via Bilevel Optimization
The intrinsic dynamics of an object governs its physical behavior in the real world, playing a critical role in enabling physically plausible interactive simulation with 3D assets. Existing methods have attempted to infer the intrinsic dynamics of objects from visual observations, but generally face two major challenges: one line of work relies on manually defined constitutive priors, making it difficult to generalize to complex scenarios; the other models intrinsic dynamics using neural networks, resulting in limited interpretability and poor generalization. To address these challenges, we propose VisionLaw, a bilevel optimization framework that infers interpretable expressions of intrinsic dynamics from visual observations. At the upper level, we introduce an LLMs-driven decoupled constitutive evolution strategy, where LLMs are prompted as a knowledgeable physics expert to generate and revise constitutive laws, with a built-in decoupling mechanism that substantially reduces the search complexity of LLMs. At the lower level, we introduce a vision-guided constitutive evaluation mechanism, which utilizes visual simulation to evaluate the consistency between the generated constitutive law and the underlying intrinsic dynamics, thereby guiding the upper-level evolution. Experiments on both synthetic and real-world datasets demonstrate that VisionLaw can effectively infer interpretable intrinsic dynamics from visual observations. It significantly outperforms existing state-of-the-art methods and exhibits strong generalization for interactive simulation in novel scenarios.
simple-idealized-1d-nlse: Pseudo-Spectral Solver for the 1D Nonlinear Schrödinger Equation
We present an open-source Python implementation of an idealized high-order pseudo-spectral solver for the one-dimensional nonlinear Schr\"odinger equation (NLSE). The solver combines Fourier spectral spatial discretization with an adaptive eighth-order Dormand-Prince time integration scheme to achieve machine-precision conservation of mass and near-perfect preservation of momentum and energy for smooth solutions. The implementation accurately reproduces fundamental NLSE phenomena including soliton collisions with analytically predicted phase shifts, Akhmediev breather dynamics, and the development of modulation instability from noisy initial conditions. Four canonical test cases validate the numerical scheme: single soliton propagation, two-soliton elastic collision, breather evolution, and noise-seeded modulation instability. The solver employs a 2/3 dealiasing rule with exponential filtering to prevent aliasing errors from the cubic nonlinearity. Statistical analysis using Shannon, R\'enyi, and Tsallis entropies quantifies the spatio-temporal complexity of solutions, while phase space representations reveal the underlying coherence structure. The implementation prioritizes code transparency and educational accessibility over computational performance, providing a valuable pedagogical tool for exploring nonlinear wave dynamics. Complete source code, documentation, and example configurations are freely available, enabling reproducible computational experiments across diverse physical contexts where the NLSE governs wave evolution, including nonlinear optics, Bose-Einstein condensates, and ocean surface waves.
The dark matter wake of a galactic bar revealed by multichannel Singular Spectral Analysis
The Milky Way is known to contain a stellar bar, as are a significant fraction of disc galaxies across the universe. Our understanding of bar evolution, both theoretically and through analysis of simulations indicates that bars both grow in amplitude and slow down over time through interaction and angular momentum exchange with the galaxy's dark matter halo. Understanding the physical mechanisms underlying this coupling requires modelling of the structural deformations to the potential that are mutually induced between components. In this work we use Basis Function Expansion (BFE) in combination with multichannel Singular Spectral Analysis (mSSA) as a non-parametric analysis tool to illustrate the coupling between the bar and the dark halo in a single high-resolution isolated barred disc galaxy simulation. We demonstrate the power of mSSA to extract and quantify explicitly coupled dynamical modes, determining growth rates, pattern speeds and phase lags for different stages of evolution of the stellar bar and the dark matter response. BFE & mSSA together grant us the ability to explore the importance and physical mechanisms of bar-halo coupling, and other dynamically coupled structures across a wide range of dynamical environments.
Generating arbitrary polarization states by manipulating the thicknesses of a pair of uniaxial birefringent plates
We report an optical method of generating arbitrary polarization states by manipulating the thicknesses of a pair of uniaxial birefringent plates, the optical axes of which are set at a crossing angle of {\pi}/4. The method has the remarkable feature of being able to generate a distribution of arbitrary polarization states in a group of highly discrete spectra without spatially separating the individual spectral components. The target polarization-state distribution is obtained as an optimal solution through an exploration. Within a realistic exploration range, a sufficient number of near-optimal solutions are found. This property is also reproduced well by a concise model based on a distribution of exploration points on a Poincar\'e sphere, showing that the number of near-optimal solutions behaves according to a power law with respect to the number of spectral components of concern. As a typical example of an application, by applying this method to a set of phase-locked highly discrete spectra, we numerically demonstrate the continuous generation of a vector-like optical electric field waveform, the helicity of which is alternated within a single optical cycle in the time domain.
A domain splitting strategy for solving PDEs
In this work we develop a novel domain splitting strategy for the solution of partial differential equations. Focusing on a uniform discretization of the d-dimensional advection-diffusion equation, our proposal is a two-level algorithm that merges the solutions obtained from the discretization of the equation over highly anisotropic submeshes to compute an initial approximation of the fine solution. The algorithm then iteratively refines the initial guess by leveraging the structure of the residual. Performing costly calculations on anisotropic submeshes enable us to reduce the dimensionality of the problem by one, and the merging process, which involves the computation of solutions over disjoint domains, allows for parallel implementation.
Latent Field Discovery In Interacting Dynamical Systems With Neural Fields
Systems of interacting objects often evolve under the influence of field effects that govern their dynamics, yet previous works have abstracted away from such effects, and assume that systems evolve in a vacuum. In this work, we focus on discovering these fields, and infer them from the observed dynamics alone, without directly observing them. We theorize the presence of latent force fields, and propose neural fields to learn them. Since the observed dynamics constitute the net effect of local object interactions and global field effects, recently popularized equivariant networks are inapplicable, as they fail to capture global information. To address this, we propose to disentangle local object interactions -- which are SE(n) equivariant and depend on relative states -- from external global field effects -- which depend on absolute states. We model interactions with equivariant graph networks, and combine them with neural fields in a novel graph network that integrates field forces. Our experiments show that we can accurately discover the underlying fields in charged particles settings, traffic scenes, and gravitational n-body problems, and effectively use them to learn the system and forecast future trajectories.
Dynamical evolution of massless particles in star clusters with NBODY6++GPU-MASSLESS: I. Free-floating MLPs
Context. Low-mass bodies, such as comets, asteroids, planetesimals, and free-floating planets, are continuously injected into the intra-cluster environment after expulsion from their host planetary systems. These can be modeled as massless particles (MLPs, hereafter). The dynamics of large populations of MLPs, however, has yet received little attention in literature. Aims. We investigate the dynamical evolution of MLP populations in star clusters, and characterize their kinematics and ejection rates. Methods. We present NBODY6++GPU-MASSLESS, a modified version of the N-body simulation code NBODY6++GPU, that allows fast integration of star clusters that contain large numbers of massless particles (MLPs). NBODY6++GPU-MASSLESS contains routines specifically directed at the dynamical evolution of low-mass bodies, such as planets. Results. Unlike stars, MLPs do not participate in the mass segregation process. Instead, MLPs mostly follow the gravitational potential of the star cluster, which gradually decreases over time due to stellar ejections and stellar evolution. The dynamical evolution of MLPs is primarily affected by the evolution of the core of the star cluster. This is most apparent in the outer regions for clusters with higher initial densities. High escape rates of MLPs are observed before the core-collapse, after which escape rates remain stable. Denser star clusters undergo a more intense core collapse, but this does not impact the dynamical evolution of MLPs. The speeds of escaping stars are similar to those of escaping MLPs, when disregarding the high-velocity ejections of neutron stars during the first 50 Myr.
PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks
Physics-Informed Neural Networks (PINNs) have emerged as a promising deep learning framework for approximating numerical solutions to partial differential equations (PDEs). However, conventional PINNs, relying on multilayer perceptrons (MLP), neglect the crucial temporal dependencies inherent in practical physics systems and thus fail to propagate the initial condition constraints globally and accurately capture the true solutions under various scenarios. In this paper, we introduce a novel Transformer-based framework, termed PINNsFormer, designed to address this limitation. PINNsFormer can accurately approximate PDE solutions by utilizing multi-head attention mechanisms to capture temporal dependencies. PINNsFormer transforms point-wise inputs into pseudo sequences and replaces point-wise PINNs loss with a sequential loss. Additionally, it incorporates a novel activation function, Wavelet, which anticipates Fourier decomposition through deep neural networks. Empirical results demonstrate that PINNsFormer achieves superior generalization ability and accuracy across various scenarios, including PINNs failure modes and high-dimensional PDEs. Moreover, PINNsFormer offers flexibility in integrating existing learning schemes for PINNs, further enhancing its performance.
Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes
Learning the distribution of data on Riemannian manifolds is crucial for modeling data from non-Euclidean space, which is required by many applications in diverse scientific fields. Yet, existing generative models on manifolds suffer from expensive divergence computation or rely on approximations of heat kernel. These limitations restrict their applicability to simple geometries and hinder scalability to high dimensions. In this work, we introduce the Riemannian Diffusion Mixture, a principled framework for building a generative diffusion process on manifolds. Instead of following the denoising approach of previous diffusion models, we construct a diffusion process using a mixture of bridge processes derived on general manifolds without requiring heat kernel estimations. We develop a geometric understanding of the mixture process, deriving the drift as a weighted mean of tangent directions to the data points that guides the process toward the data distribution. We further propose a scalable training objective for learning the mixture process that readily applies to general manifolds. Our method achieves superior performance on diverse manifolds with dramatically reduced number of in-training simulation steps for general manifolds.
Baryonic Effects on Lagrangian Clustering and Angular Momentum Reconstruction
Recent studies illustrate the correlation between the angular momenta of cosmic structures and their Lagrangian properties. However, only baryons are observable and it is unclear whether they reliably trace the cosmic angular momenta. We study the Lagrangian mass distribution, spin correlation, and predictability of dark matter, gas, and stellar components of galaxy-halo systems using IllustrisTNG, and show that the primordial segregations between components are typically small. Their protoshapes are also similar in terms of the statistics of moment of inertia tensors. Under the common gravitational potential they are expected to exert the same tidal torque and the strong spin correlations are not destroyed by the nonlinear evolution and complicated baryonic effects, as confirmed by the high-resolution hydrodynamic simulations. We further show that their late-time angular momenta traced by total gas, stars, or the central galaxies, can be reliably reconstructed by the initial perturbations. These results suggest that baryonic angular momenta can potentially be used in reconstructing the parameters and models related to the initial perturbations.
Living Capillary Bridges
Biological tissues exhibit complex behaviors with their dynamics often resembling inert soft matter such as liquids, polymers, colloids, and liquid crystals. These analogies enable physics-based approaches for investigations of emergent behaviors in biological processes. A well-studied case is the spreading of cellular aggregates on solid surfaces, where they display dynamics similar to viscous droplets. In vivo, however, cells and tissues are in a confined environment with varying geometries and mechanical properties to which they need to adapt. In this work, we compressed cellular aggregates between two solid surfaces and studied their dynamics using microscopy, and computer simulations. The confined cellular aggregates transitioned from compressed spheres into dynamic living capillary bridges exhibiting bridge thinning and a convex-to-concave meniscus curvature transition. We found that the stability of the bridge is determined by the interplay between cell growth and cell spreading on the confining surfaces. This interaction leads to bridge rupture at a critical length scale determined by the distance between the plates. The force distributions, formation and stability regimes of the living capillary bridges were characterized with full 3D computer simulations that included cell division, migration and growth dynamics, directly showing how mechanical principles govern the behavior of the living bridges; cellular aggregates display jamming and stiffening analogously to granular matter, and cell division along the long axis enhances thinning. Based on our results, we propose a new class of active soft matter behavior, where cellular aggregates exhibit liquid-like adaptation to confinement, but with self-organized rupturing driven by biological activity.
Predicting 3D Rigid Body Dynamics with Deep Residual Network
This study investigates the application of deep residual networks for predicting the dynamics of interacting three-dimensional rigid bodies. We present a framework combining a 3D physics simulator implemented in C++ with a deep learning model constructed using PyTorch. The simulator generates training data encompassing linear and angular motion, elastic collisions, fluid friction, gravitational effects, and damping. Our deep residual network, consisting of an input layer, multiple residual blocks, and an output layer, is designed to handle the complexities of 3D dynamics. We evaluate the network's performance using a datasetof 10,000 simulated scenarios, each involving 3-5 interacting rigid bodies. The model achieves a mean squared error of 0.015 for position predictions and 0.022 for orientation predictions, representing a 25% improvement over baseline methods. Our results demonstrate the network's ability to capture intricate physical interactions, with particular success in predicting elastic collisions and rotational dynamics. This work significantly contributes to physics-informed machine learning by showcasing the immense potential of deep residual networks in modeling complex 3D physical systems. We discuss our approach's limitations and propose future directions for improving generalization to more diverse object shapes and materials.
Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to Deep Learning
Riemannian submanifold optimization with momentum is computationally challenging because, to ensure that the iterates remain on the submanifold, we often need to solve difficult differential equations. Here, we simplify such difficulties for a class of structured symmetric positive-definite matrices with the affine-invariant metric. We do so by proposing a generalized version of the Riemannian normal coordinates that dynamically orthonormalizes the metric and locally converts the problem into an unconstrained problem in the Euclidean space. We use our approach to simplify existing approaches for structured covariances and develop matrix-inverse-free 2^nd-order optimizers for deep learning in low precision settings. Code: https://github.com/yorkerlin/StructuredNGD-DL
SEGNO: Generalizing Equivariant Graph Neural Networks with Physical Inductive Biases
Graph Neural Networks (GNNs) with equivariant properties have emerged as powerful tools for modeling complex dynamics of multi-object physical systems. However, their generalization ability is limited by the inadequate consideration of physical inductive biases: (1) Existing studies overlook the continuity of transitions among system states, opting to employ several discrete transformation layers to learn the direct mapping between two adjacent states; (2) Most models only account for first-order velocity information, despite the fact that many physical systems are governed by second-order motion laws. To incorporate these inductive biases, we propose the Second-order Equivariant Graph Neural Ordinary Differential Equation (SEGNO). Specifically, we show how the second-order continuity can be incorporated into GNNs while maintaining the equivariant property. Furthermore, we offer theoretical insights into SEGNO, highlighting that it can learn a unique trajectory between adjacent states, which is crucial for model generalization. Additionally, we prove that the discrepancy between this learned trajectory of SEGNO and the true trajectory is bounded. Extensive experiments on complex dynamical systems including molecular dynamics and motion capture demonstrate that our model yields a significant improvement over the state-of-the-art baselines.
Cosmic Multipoles in Galaxy Surveys Part I: How Inferences Depend on Source Counts and Masks
We present a new approach to constructing and fitting dipoles and higher-order multipoles in synthetic galaxy samples over the sky. Within our Bayesian paradigm, we illustrate that this technique is robust to masked skies, allowing us to make credible inferences about the relative contributions of each multipole. We also show that dipoles can be recovered in surveys with small footprints, determining the requisite source counts required for concrete estimation of the dipole parameters. This work is motivated by recent probes of the cosmic dipole in galaxy catalogues. Namely, the kinematic dipole of the Cosmic Microwave Background, as arising from the motion of our heliocentric frame at approx 370 km,s^{-1}, implies that an analogous dipole should be observed in the number counts of galaxies in flux-density-limited samples. Recent studies have reported a dipole aligning with the kinematic dipole but with an anomalously large amplitude. Accordingly, our new technique will be important as forthcoming galaxy surveys are made available and for revisiting previous data.
Entropic Neural Optimal Transport via Diffusion Processes
We propose a novel neural algorithm for the fundamental problem of computing the entropic optimal transport (EOT) plan between continuous probability distributions which are accessible by samples. Our algorithm is based on the saddle point reformulation of the dynamic version of EOT which is known as the Schr\"odinger Bridge problem. In contrast to the prior methods for large-scale EOT, our algorithm is end-to-end and consists of a single learning step, has fast inference procedure, and allows handling small values of the entropy regularization coefficient which is of particular importance in some applied problems. Empirically, we show the performance of the method on several large-scale EOT tasks. https://github.com/ngushchin/EntropicNeuralOptimalTransport
On the statistical theory of self-gravitating collisionless dark matter flow: Scale and redshift variation of velocity and density distributions
This paper studies the scale and redshift variation of density and velocity distributions in self-gravitating collisionless dark matter flow by a halo-based non-projection approach. All particles are divided into halo and out-of-halo particles for redshift variation of distributions. Without projecting particle fields onto a structured grid, the scale variation is analyzed by identifying all particle pairs on different scales r. We demonstrate that: i) Delaunay tessellation can be used to reconstruct the density field. The density correlation, spectrum, and dispersion functions were obtained, modeled, and compared with the N-body simulation; ii) the velocity distributions are symmetric on both small and large scales and are non-symmetric with a negative skewness on intermediate scales due to the inverse energy cascade at a constant rate varepsilon_u; iii) On small scales, the even order moments of pairwise velocity Delta u_L follow a two-thirds law (-varepsilon_ur)^{2/3}, while the odd order moments follow a linear scaling langle(Delta u_L)^{2n+1}rangle=(2n+1)langle(Delta u_L)^{2n}ranglelangleDelta u_Lrangler; iv) The scale variation of the velocity distributions was studied for longitudinal velocities u_L or u_L^{'}, pairwise velocity (velocity difference) Delta u_L=u_L^{'}-u_L and velocity sum Sigma u_L=u^{'}_L+u_L. Fully developed velocity fields are never Gaussian on any scale, despite that they can initially be Gaussian; v) On small scales, u_L and Sigma u_L can be modeled by a X distribution to maximize the system entropy; vi) On large scales, Delta u_L and Sigma u_L can be modeled by a logistic or a X distribution; vii) the redshift variation of the velocity distributions follows the evolution of the X distribution involving a shape parameter alpha(z) decreasing with time.
Quantum algorithm for collisionless Boltzmann simulation of self-gravitating systems
The collisionless Boltzmann equation (CBE) is a fundamental equation that governs the dynamics of a broad range of astrophysical systems from space plasma to star clusters and galaxies. It is computationally expensive to integrate the CBE directly in a multi-dimensional phase space, and thus the applications to realistic astrophysical problems have been limited so far. Recently, Todorova & Steijl (2020) proposed an efficient quantum algorithm to solve the CBE with significantly reduced computational complexity. We extend the algorithm to perform quantum simulations of self-gravitating systems, incorporating the method to calculate gravity with the major Fourier modes of the density distribution extracted from the solution-encoding quantum state. Our method improves the dependency of time and space complexities on Nv , the number of grid points in each velocity coordinate, compared to the classical simulation methods. We then conduct some numerical demonstrations of our method. We first run a 1+1 dimensional test calculation of free streaming motion on 64*64 grids using 13 simulated qubits and validate our method. We then perform simulations of Jeans collapse, and compare the result with analytic and linear theory calculations. It will thus allow us to perform large-scale CBE simulations on future quantum computers.
Lattice models of random advection and diffusion and their statistics
We study in detail a one-dimensional lattice model of a continuum, conserved field (mass) that is transferred deterministically between neighbouring random sites. The model falls in a wider class of lattice models capturing the joint effect of random advection and diffusion and encompassing as specific cases, some models studied in the literature, like the Kang-Redner, Kipnis-Marchioro-Presutti, Takayasu-Taguchi, etc. The motivation for our setup comes from a straightforward interpretation as advection of particles in one-dimensional turbulence, but it is also related to a problem of synchronization of dynamical systems driven by common noise. For finite lattices, we study both the coalescence of an initially spread field (interpreted as roughening), and the statistical steady-state properties. We distinguish two main size-dependent regimes, depending on the strength of the diffusion term and on the lattice size. Using numerical simulations and mean-field approach, we study the statistics of the field. For weak diffusion, we unveil a characteristic hierarchical structure of the field. We also connect the model and the iterated function systems concept.
Pseudo-magnetic fields in square lattices
We have investigated the effects of strain on two-dimensional square lattices and examined the methods for inducing pseudo-magnetic fields. In both the columnar and staggered pi-flux square lattices, we have found that strain only modulates Fermi velocities rather than inducing pseudo-magnetic fields. However, spatially non-uniform on-site potentials (anisotropic hoppings) can create pseudo-magnetic fields in columnar (staggered) pi-flux square lattices. On the other hand, we demonstrate that strain does induce pseudo-magnetic fields in staggered zero-flux square lattices. By breaking a quarter of the bonds, we clarify that a staggered zero-flux square lattice is topologically equivalent to a honeycomb lattice and displays pseudo-vector potentials and pseudo-Landau levels at the Dirac points.
Almost-Linear RNNs Yield Highly Interpretable Symbolic Codes in Dynamical Systems Reconstruction
Dynamical systems (DS) theory is fundamental for many areas of science and engineering. It can provide deep insights into the behavior of systems evolving in time, as typically described by differential or recursive equations. A common approach to facilitate mathematical tractability and interpretability of DS models involves decomposing nonlinear DS into multiple linear DS separated by switching manifolds, i.e. piecewise linear (PWL) systems. PWL models are popular in engineering and a frequent choice in mathematics for analyzing the topological properties of DS. However, hand-crafting such models is tedious and only possible for very low-dimensional scenarios, while inferring them from data usually gives rise to unnecessarily complex representations with very many linear subregions. Here we introduce Almost-Linear Recurrent Neural Networks (AL-RNNs) which automatically and robustly produce most parsimonious PWL representations of DS from time series data, using as few PWL nonlinearities as possible. AL-RNNs can be efficiently trained with any SOTA algorithm for dynamical systems reconstruction (DSR), and naturally give rise to a symbolic encoding of the underlying DS that provably preserves important topological properties. We show that for the Lorenz and R\"ossler systems, AL-RNNs discover, in a purely data-driven way, the known topologically minimal PWL representations of the corresponding chaotic attractors. We further illustrate on two challenging empirical datasets that interpretable symbolic encodings of the dynamics can be achieved, tremendously facilitating mathematical and computational analysis of the underlying systems.
Polytropic Behavior in Corotating Interaction Regions: Evidence of Alfvénic Heating
Corotating Interaction Regions (CIRs) are recurring structures in the solar wind, characterized by interactions between fast and slow solar wind streams that compress and heat plasma. This study investigates the polytropic behavior of distinct regions in and around CIRs: uncompressed slow solar wind, compressed slow solar wind, compressed fast solar wind, and uncompressed fast solar wind. Using Wind spacecraft data and an established methodology for calculating the polytropic index ({\gamma}), we analyze 117 CIR events. Results indicate varying {\gamma} values across regions, with heating observed in compressed regions driven by Alfv\'en wave dissipation originating from fast streams. In the uncompressed fast solar wind, {\gamma} exceeds adiabatic values the most and correlates well with strong Alfv\'enic wave activity.
The Principles of Diffusion Models
This monograph presents the core principles that have guided the development of diffusion models, tracing their origins and showing how diverse formulations arise from shared mathematical ideas. Diffusion modeling starts by defining a forward process that gradually corrupts data into noise, linking the data distribution to a simple prior through a continuum of intermediate distributions. The goal is to learn a reverse process that transforms noise back into data while recovering the same intermediates. We describe three complementary views. The variational view, inspired by variational autoencoders, sees diffusion as learning to remove noise step by step. The score-based view, rooted in energy-based modeling, learns the gradient of the evolving data distribution, indicating how to nudge samples toward more likely regions. The flow-based view, related to normalizing flows, treats generation as following a smooth path that moves samples from noise to data under a learned velocity field. These perspectives share a common backbone: a time-dependent velocity field whose flow transports a simple prior to the data. Sampling then amounts to solving a differential equation that evolves noise into data along a continuous trajectory. On this foundation, the monograph discusses guidance for controllable generation, efficient numerical solvers, and diffusion-motivated flow-map models that learn direct mappings between arbitrary times. It provides a conceptual and mathematically grounded understanding of diffusion models for readers with basic deep-learning knowledge.
Non-relativistic holography
We consider holography for d-dimensional scale invariant but non-Lorentz invariant field theories, which do not admit the full Schrodinger symmetry group. We find new realizations of the corresponding (d+1)-dimensional gravity duals, engineered with a variety of matter Lagrangians, and their finite temperature generalizations. The thermodynamic properties of the finite temperature backgrounds are precisely those expected for anisotropic, scale invariant field theories. The brane and string theory realizations of such backgrounds are briefly discussed, along with their holographic interpretation in terms of marginal but non Lorentz invariant deformations of conformal field theories. We initiate discussion of holographic renormalization in these backgrounds, and note that such systematic renormalization is necessary to obtain the correct behavior of correlation functions.
The Rayleigh-Boltzmann equation with shear deformations in the hyperbolic-dominated regime
In this paper we consider a particular class of solutions of the Rayleigh-Boltzmann equation, known in the nonlinear setting as homoenergetic solutions, which have the form gleft( x,v,t right) =fleft( v-Lleft( tright)x,tright) where the matrix L(t) describes a shear flow deformation. We began this analysis in [22] where we rigorously proved the existence of a stationary non-equilibrium solution and established the different behaviour of the solutions for small and large values of the shear parameter, for cut-off collision kernels with homogeneity parameter 0leq gamma <1, including Maxwell molecules and hard potentials. In this paper, we concentrate in the case where the deformation term dominates the collision term for large times (hyperbolic-dominated regime). This occurs for collision kernels with gamma < 0 and in particular we focus on gamma in (-1,0). In such a hyperbolic-dominated regime, it appears challenging to provide a clear description of the long-term asymptotics of the solutions. Here we present a formal analysis of the long-time asymptotics for the distribution of velocities and provide the explicit form for the asymptotic profile. Additionally, we discuss the different asymptotic behaviour expected in the case of homogeneity gamma < -1. Furthermore, we provide a probabilistic interpretation describing a stochastic process consisting in a combination of collisions and shear flows. The tagged particle velocity {v(t)}_{tgeq 0} is a Markov process that arises from the combination of free flights in a shear flow along with random jumps caused by collisions.
EquiNO: A Physics-Informed Neural Operator for Multiscale Simulations
Multiscale problems are ubiquitous in physics. Numerical simulations of such problems by solving partial differential equations (PDEs) at high resolution are computationally too expensive for many-query scenarios, e.g., uncertainty quantification, remeshing applications, topology optimization, and so forth. This limitation has motivated the application of data-driven surrogate models, where the microscale computations are substituted with a surrogate, usually acting as a black-box mapping between macroscale quantities. These models offer significant speedups but struggle with incorporating microscale physical constraints, such as the balance of linear momentum and constitutive models. In this contribution, we propose Equilibrium Neural Operator (EquiNO) as a complementary physics-informed PDE surrogate for predicting microscale physics and compare it with variational physics-informed neural and operator networks. Our framework, applicable to the so-called multiscale FE^{,2}, computations, introduces the FE-OL approach by integrating the finite element (FE) method with operator learning (OL). We apply the proposed FE-OL approach to quasi-static problems of solid mechanics. The results demonstrate that FE-OL can yield accurate solutions even when confronted with a restricted dataset during model development. Our results show that EquiNO achieves speedup factors exceeding 8000-fold compared to traditional methods and offers an optimal balance between data-driven and physics-based strategies.
Polarization analysis of gravitational-wave backgrounds from the correlation signals of ground-based interferometers: measuring a circular-polarization mode
The Stokes V parameter characterizes asymmetry of amplitudes between right- and left-handed waves, and non-vanishing value of the V parameter yields a circularly polarized signal. Cosmologically, V parameter may be a direct probe for parity violation in the universe. In this paper, we theoretically investigate a measurement of this parameter, particularly focusing on the gravitational-wave backgrounds observed via ground-based interferometers. In contrast to the traditional analysis that only considers the total amplitude (or equivalently Omega_{GW}), the signal analysis including a circular-polarized mode has a rich structure due to the multi-dimensionality of target parameters. We show that, by using the network of next-generation detectors, separation between polarized and unpolarized modes can be performed with small statistical loss induced by their correlation.
Manifold Diffusion Fields
We present Manifold Diffusion Fields (MDF), an approach to learn generative models of continuous functions defined over Riemannian manifolds. Leveraging insights from spectral geometry analysis, we define an intrinsic coordinate system on the manifold via the eigen-functions of the Laplace-Beltrami Operator. MDF represents functions using an explicit parametrization formed by a set of multiple input-output pairs. Our approach allows to sample continuous functions on manifolds and is invariant with respect to rigid and isometric transformations of the manifold. Empirical results on several datasets and manifolds show that MDF can capture distributions of such functions with better diversity and fidelity than previous approaches.
A parallel Basis Update and Galerkin Integrator for Tree Tensor Networks
Computing the numerical solution to high-dimensional tensor differential equations can lead to prohibitive computational costs and memory requirements. To reduce the memory and computational footprint, dynamical low-rank approximation (DLRA) has proven to be a promising approach. DLRA represents the solution as a low-rank tensor factorization and evolves the resulting low-rank factors in time. A central challenge in DLRA is to find time integration schemes that are robust to the arising small singular values. A robust parallel basis update & Galerkin integrator, which simultaneously evolves all low-rank factors, has recently been derived for matrix differential equations. This work extends the parallel low-rank matrix integrator to Tucker tensors and general tree tensor networks, yielding an algorithm in which all bases and connecting tensors are evolved in parallel over a time step. We formulate the algorithm, provide a robust error bound, and demonstrate the efficiency of the new integrators for problems in quantum many-body physics, uncertainty quantification, and radiative transfer.
Denoising Hamiltonian Network for Physical Reasoning
Machine learning frameworks for physical problems must capture and enforce physical constraints that preserve the structure of dynamical systems. Many existing approaches achieve this by integrating physical operators into neural networks. While these methods offer theoretical guarantees, they face two key limitations: (i) they primarily model local relations between adjacent time steps, overlooking longer-range or higher-level physical interactions, and (ii) they focus on forward simulation while neglecting broader physical reasoning tasks. We propose the Denoising Hamiltonian Network (DHN), a novel framework that generalizes Hamiltonian mechanics operators into more flexible neural operators. DHN captures non-local temporal relationships and mitigates numerical integration errors through a denoising mechanism. DHN also supports multi-system modeling with a global conditioning mechanism. We demonstrate its effectiveness and flexibility across three diverse physical reasoning tasks with distinct inputs and outputs.
PhysCtrl: Generative Physics for Controllable and Physics-Grounded Video Generation
Existing video generation models excel at producing photo-realistic videos from text or images, but often lack physical plausibility and 3D controllability. To overcome these limitations, we introduce PhysCtrl, a novel framework for physics-grounded image-to-video generation with physical parameters and force control. At its core is a generative physics network that learns the distribution of physical dynamics across four materials (elastic, sand, plasticine, and rigid) via a diffusion model conditioned on physics parameters and applied forces. We represent physical dynamics as 3D point trajectories and train on a large-scale synthetic dataset of 550K animations generated by physics simulators. We enhance the diffusion model with a novel spatiotemporal attention block that emulates particle interactions and incorporates physics-based constraints during training to enforce physical plausibility. Experiments show that PhysCtrl generates realistic, physics-grounded motion trajectories which, when used to drive image-to-video models, yield high-fidelity, controllable videos that outperform existing methods in both visual quality and physical plausibility. Project Page: https://cwchenwang.github.io/physctrl
Reinforcement Learning for Adaptive Time-Stepping in the Chaotic Gravitational Three-Body Problem
Many problems in astrophysics cover multiple orders of magnitude in spatial and temporal scales. While simulating systems that experience rapid changes in these conditions, it is essential to adapt the (time-) step size to capture the behavior of the system during those rapid changes and use a less accurate time step at other, less demanding, moments. We encounter three problems with traditional methods. Firstly, making such changes requires expert knowledge of the astrophysics as well as of the details of the numerical implementation. Secondly, some parameters that determine the time-step size are fixed throughout the simulation, which means that they do not adapt to the rapidly changing conditions of the problem. Lastly, we would like the choice of time-step size to balance accuracy and computation effort. We address these challenges with Reinforcement Learning by training it to select the time-step size dynamically. We use the integration of a system of three equal-mass bodies that move due to their mutual gravity as an example of its application. With our method, the selected integration parameter adapts to the specific requirements of the problem, both in terms of computation time and accuracy while eliminating the expert knowledge needed to set up these simulations. Our method produces results competitive to existing methods and improve the results found with the most commonly-used values of time-step parameter. This method can be applied to other integrators without further retraining. We show that this extrapolation works for variable time-step integrators but does not perform to the desired accuracy for fixed time-step integrators.
Stochastic Interpolants: A Unifying Framework for Flows and Diffusions
A class of generative models that unifies flow-based and diffusion-based methods is introduced. These models extend the framework proposed in Albergo & Vanden-Eijnden (2023), enabling the use of a broad class of continuous-time stochastic processes called `stochastic interpolants' to bridge any two arbitrary probability density functions exactly in finite time. These interpolants are built by combining data from the two prescribed densities with an additional latent variable that shapes the bridge in a flexible way. The time-dependent probability density function of the stochastic interpolant is shown to satisfy a first-order transport equation as well as a family of forward and backward Fokker-Planck equations with tunable diffusion coefficient. Upon consideration of the time evolution of an individual sample, this viewpoint immediately leads to both deterministic and stochastic generative models based on probability flow equations or stochastic differential equations with an adjustable level of noise. The drift coefficients entering these models are time-dependent velocity fields characterized as the unique minimizers of simple quadratic objective functions, one of which is a new objective for the score of the interpolant density. We show that minimization of these quadratic objectives leads to control of the likelihood for generative models built upon stochastic dynamics, while likelihood control for deterministic dynamics is more stringent. We also discuss connections with other methods such as score-based diffusion models, stochastic localization processes, probabilistic denoising techniques, and rectifying flows. In addition, we demonstrate that stochastic interpolants recover the Schr\"odinger bridge between the two target densities when explicitly optimizing over the interpolant. Finally, algorithmic aspects are discussed and the approach is illustrated on numerical examples.
Improved sampling via learned diffusions
Recently, a series of papers proposed deep learning-based approaches to sample from unnormalized target densities using controlled diffusion processes. In this work, we identify these approaches as special cases of the Schr\"odinger bridge problem, seeking the most likely stochastic evolution between a given prior distribution and the specified target. We further generalize this framework by introducing a variational formulation based on divergences between path space measures of time-reversed diffusion processes. This abstract perspective leads to practical losses that can be optimized by gradient-based algorithms and includes previous objectives as special cases. At the same time, it allows us to consider divergences other than the reverse Kullback-Leibler divergence that is known to suffer from mode collapse. In particular, we propose the so-called log-variance loss, which exhibits favorable numerical properties and leads to significantly improved performance across all considered approaches.
Rigid Body Flows for Sampling Molecular Crystal Structures
Normalizing flows (NF) are a class of powerful generative models that have gained popularity in recent years due to their ability to model complex distributions with high flexibility and expressiveness. In this work, we introduce a new type of normalizing flow that is tailored for modeling positions and orientations of multiple objects in three-dimensional space, such as molecules in a crystal. Our approach is based on two key ideas: first, we define smooth and expressive flows on the group of unit quaternions, which allows us to capture the continuous rotational motion of rigid bodies; second, we use the double cover property of unit quaternions to define a proper density on the rotation group. This ensures that our model can be trained using standard likelihood-based methods or variational inference with respect to a thermodynamic target density. We evaluate the method by training Boltzmann generators for two molecular examples, namely the multi-modal density of a tetrahedral system in an external field and the ice XI phase in the TIP4P water model. Our flows can be combined with flows operating on the internal degrees of freedom of molecules and constitute an important step towards the modeling of distributions of many interacting molecules.
VISION: Prompting Ocean Vertical Velocity Reconstruction from Incomplete Observations
Reconstructing subsurface ocean dynamics, such as vertical velocity fields, from incomplete surface observations poses a critical challenge in Earth science, a field long hampered by the lack of standardized, analysis-ready benchmarks. To systematically address this issue and catalyze research, we first build and release KD48, a high-resolution ocean dynamics benchmark derived from petascale simulations and curated with expert-driven denoising. Building on this benchmark, we introduce VISION, a novel reconstruction paradigm based on Dynamic Prompting designed to tackle the core problem of missing data in real-world observations. The essence of VISION lies in its ability to generate a visual prompt on-the-fly from any available subset of observations, which encodes both data availability and the ocean's physical state. More importantly, we design a State-conditioned Prompting module that efficiently injects this prompt into a universal backbone, endowed with geometry- and scale-aware operators, to guide its adaptive adjustment of computational strategies. This mechanism enables VISION to precisely handle the challenges posed by varying input combinations. Extensive experiments on the KD48 benchmark demonstrate that VISION not only substantially outperforms state-of-the-art models but also exhibits strong generalization under extreme data missing scenarios. By providing a high-quality benchmark and a robust model, our work establishes a solid infrastructure for ocean science research under data uncertainty. Our codes are available at: https://github.com/YuanGao-YG/VISION.
Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks
Physics-informed neural networks (PINNs) leverage neural-networks to find the solutions of partial differential equation (PDE)-constrained optimization problems with initial conditions and boundary conditions as soft constraints. These soft constraints are often considered to be the sources of the complexity in the training phase of PINNs. Here, we demonstrate that the challenge of training (i) persists even when the boundary conditions are strictly enforced, and (ii) is closely related to the Kolmogorov n-width associated with problems demonstrating transport, convection, traveling waves, or moving fronts. Given this realization, we describe the mechanism underlying the training schemes such as those used in eXtended PINNs (XPINN), curriculum regularization, and sequence-to-sequence learning. For an important category of PDEs, i.e., governed by non-linear convection-diffusion equation, we propose reformulating PINNs on a Lagrangian frame of reference, i.e., LPINNs, as a PDE-informed solution. A parallel architecture with two branches is proposed. One branch solves for the state variables on the characteristics, and the second branch solves for the low-dimensional characteristics curves. The proposed architecture conforms to the causality innate to the convection, and leverages the direction of travel of the information in the domain. Finally, we demonstrate that the loss landscapes of LPINNs are less sensitive to the so-called "complexity" of the problems, compared to those in the traditional PINNs in the Eulerian framework.
High-order finite element method for atomic structure calculations
We introduce featom, an open source code that implements a high-order finite element solver for the radial Schr\"odinger, Dirac, and Kohn-Sham equations. The formulation accommodates various mesh types, such as uniform or exponential, and the convergence can be systematically controlled by increasing the number and/or polynomial order of the finite element basis functions. The Dirac equation is solved using a squared Hamiltonian approach to eliminate spurious states. To address the slow convergence of the kappa=pm1 states due to divergent derivatives at the origin, we incorporate known asymptotic forms into the solutions. We achieve a high level of accuracy (10^{-8} Hartree) for total energies and eigenvalues of heavy atoms such as uranium in both Schr\"odinger and Dirac Kohn-Sham solutions. We provide detailed convergence studies and computational parameters required to attain commonly required accuracies. Finally, we compare our results with known analytic results as well as the results of other methods. In particular, we calculate benchmark results for atomic numbers (Z) from 1 to 92, verifying current benchmarks. We demonstrate significant speedup compared to the state-of-the-art shooting solver dftatom. An efficient, modular Fortran 2008 implementation, is provided under an open source, permissive license, including examples and tests, wherein particular emphasis is placed on the independence (no global variables), reusability, and generality of the individual routines.
A JWST Project on 47 Tucanae: Kinematics, energy equipartition and anisotropy of multiple populations
Recent work with JWST has demonstrated its capability to identify and chemically characterize multiple populations in globular clusters down to the H-burning limit. In this study, we explore the kinematics of multiple populations in the globular cluster 47 Tucanae by combining data from JWST, HST, and Gaia. We analyzed velocity dispersion and anisotropy profiles from the cluster center out to sim10R_h. Our findings indicate that while 1G stars are isotropic, 2G stars are significantly radially anisotropic. These results align with the predictions of simulations of the dynamical evolution of clusters where 2G stars are initially more centrally concentrated than 1G stars. Furthermore, we subdivided the 2G population into two subpopulations: 2G_A and 2G_B, with the latter being more chemically extreme. We compared their dynamical profiles and found no significant differences. For the first time, we measured the degree of energy equipartition among the multiple populations of 47 Tucanae. Overall, within the analyzed radial range (sim2-4R_h), both populations exhibit a low degree of energy equipartition. The most significant differences between 1G and 2G stars are observed in the tangential velocity component, where 2G stars are characterized by a stronger degree of energy equipartition than 1G stars. In the radial component, the behavior of 1G and 2G stars is more variable, with differences largely dependent on radius. Finally, our analysis reveals that the ratio of rotational velocity to velocity dispersion is larger for the 2G population, while 1G stars exhibit higher skewness in their tangential proper motions, providing further evidence of differences in the kinematic properties of the 1G and 2G populations.
Learning minimal representations of stochastic processes with variational autoencoders
Stochastic processes have found numerous applications in science, as they are broadly used to model a variety of natural phenomena. Due to their intrinsic randomness and uncertainty, they are however difficult to characterize. Here, we introduce an unsupervised machine learning approach to determine the minimal set of parameters required to effectively describe the dynamics of a stochastic process. Our method builds upon an extended beta-variational autoencoder architecture. By means of simulated datasets corresponding to paradigmatic diffusion models, we showcase its effectiveness in extracting the minimal relevant parameters that accurately describe these dynamics. Furthermore, the method enables the generation of new trajectories that faithfully replicate the expected stochastic behavior. Overall, our approach enables for the autonomous discovery of unknown parameters describing stochastic processes, hence enhancing our comprehension of complex phenomena across various fields.
Elucidation of Relaxation Dynamics Beyond Equilibrium Through AI-informed X-ray Photon Correlation Spectroscopy
Understanding and interpreting dynamics of functional materials in situ is a grand challenge in physics and materials science due to the difficulty of experimentally probing materials at varied length and time scales. X-ray photon correlation spectroscopy (XPCS) is uniquely well-suited for characterizing materials dynamics over wide-ranging time scales, however spatial and temporal heterogeneity in material behavior can make interpretation of experimental XPCS data difficult. In this work we have developed an unsupervised deep learning (DL) framework for automated classification and interpretation of relaxation dynamics from experimental data without requiring any prior physical knowledge of the system behavior. We demonstrate how this method can be used to rapidly explore large datasets to identify samples of interest, and we apply this approach to directly correlate bulk properties of a model system to microscopic dynamics. Importantly, this DL framework is material and process agnostic, marking a concrete step towards autonomous materials discovery.
HMC with Normalizing Flows
We propose using Normalizing Flows as a trainable kernel within the molecular dynamics update of Hamiltonian Monte Carlo (HMC). By learning (invertible) transformations that simplify our dynamics, we can outperform traditional methods at generating independent configurations. We show that, using a carefully constructed network architecture, our approach can be easily scaled to large lattice volumes with minimal retraining effort. The source code for our implementation is publicly available online at https://github.com/nftqcd/fthmc.
Comprehensive study of magnetic field evolution in relativistic jets based on 2D simulations
We use two-dimensional particle-in-cell simulations to investigate the generation and evolution of the magnetic field associated with the propagation of a jet for various initial conditions. We demonstrate that, in general, the magnetic field is initially grown by the Weibel and Mushroom instabilities. However, the field is saturated by the Alfv'en current limit. For initially non-magnetized plasma, we show that the growth of the magnetic field is delayed when the matter density of the jet environment is lower, which are in agreement with simple analytical predictions. We show that the higher Lorentz factor (gtrsim 2) prevents rapid growth of the magnetic fields. When the initial field is troidal, the position of the magnetic filaments moves away from the jet as the field strength increases. The axial initial field helps the jet maintain its shape more effectively than the troidal initial field.
On gauge freedom, conservativity and intrinsic dimensionality estimation in diffusion models
Diffusion models are generative models that have recently demonstrated impressive performances in terms of sampling quality and density estimation in high dimensions. They rely on a forward continuous diffusion process and a backward continuous denoising process, which can be described by a time-dependent vector field and is used as a generative model. In the original formulation of the diffusion model, this vector field is assumed to be the score function (i.e. it is the gradient of the log-probability at a given time in the diffusion process). Curiously, on the practical side, most studies on diffusion models implement this vector field as a neural network function and do not constrain it be the gradient of some energy function (that is, most studies do not constrain the vector field to be conservative). Even though some studies investigated empirically whether such a constraint will lead to a performance gain, they lead to contradicting results and failed to provide analytical results. Here, we provide three analytical results regarding the extent of the modeling freedom of this vector field. {Firstly, we propose a novel decomposition of vector fields into a conservative component and an orthogonal component which satisfies a given (gauge) freedom. Secondly, from this orthogonal decomposition, we show that exact density estimation and exact sampling is achieved when the conservative component is exactly equals to the true score and therefore conservativity is neither necessary nor sufficient to obtain exact density estimation and exact sampling. Finally, we show that when it comes to inferring local information of the data manifold, constraining the vector field to be conservative is desirable.
Energy-conserving equivariant GNN for elasticity of lattice architected metamaterials
Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work, we generate a big dataset of structure-property relationships for strut-based lattices. The dataset is made available to the community which can fuel the development of methods anchored in physical principles for the fitting of fourth-order tensors. In addition, we present a higher-order GNN model trained on this dataset. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate its benefits in terms of predictive performance and reduced training requirements. Finally, we demonstrate an example application of the model to an architected material design task. The methods which we developed are applicable to fourth-order tensors beyond elasticity such as piezo-optical tensor etc.
Strange Metallic Behavior in Anisotropic Background
We continue our analysis on conductivity in the anisotropic background by employing the D-brane probe technique, where the D-branes play the role of charge carriers. The DC and AC conductivity for massless charge carriers are obtained analytically, while interesting curves for the AC conductivity are also plotted. For massive charge carriers, we calculate the DC and AC conductivities in the dilute limit and we fix the parameters in the Einstein-Maxwell-dilaton theory so that the background exhibits the same scaling behaviors as those for real-world strange metals. The DC conductivity at finite density is also computed.
CHGNet: Pretrained universal neural network potential for charge-informed atomistic modeling
The simulation of large-scale systems with complex electron interactions remains one of the greatest challenges for the atomistic modeling of materials. Although classical force fields often fail to describe the coupling between electronic states and ionic rearrangements, the more accurate ab-initio molecular dynamics suffers from computational complexity that prevents long-time and large-scale simulations, which are essential to study many technologically relevant phenomena, such as reactions, ion migrations, phase transformations, and degradation. In this work, we present the Crystal Hamiltonian Graph neural Network (CHGNet) as a novel machine-learning interatomic potential (MLIP), using a graph-neural-network-based force field to model a universal potential energy surface. CHGNet is pretrained on the energies, forces, stresses, and magnetic moments from the Materials Project Trajectory Dataset, which consists of over 10 years of density functional theory static and relaxation trajectories of sim 1.5 million inorganic structures. The explicit inclusion of magnetic moments enables CHGNet to learn and accurately represent the orbital occupancy of electrons, enhancing its capability to describe both atomic and electronic degrees of freedom. We demonstrate several applications of CHGNet in solid-state materials, including charge-informed molecular dynamics in Li_xMnO_2, the finite temperature phase diagram for Li_xFePO_4 and Li diffusion in garnet conductors. We critically analyze the significance of including charge information for capturing appropriate chemistry, and we provide new insights into ionic systems with additional electronic degrees of freedom that can not be observed by previous MLIPs.
The effect of dynamical states on galaxy clusters populations. I. Classification of dynamical states
While the influence of galaxy clusters on galaxy evolution is relatively well-understood, the impact of the dynamical states of these clusters is less clear. This paper series explores how the dynamical state of galaxy clusters affects their galaxy populations' physical and morphological properties. The primary aim of this first paper is to evaluate the dynamical state of 87 massive (M_{500} geq 1.5 times 10^{14} M_{odot}) galaxy clusters at low redshifts (0.10 leq z leq 0.35). This will allow us to have a well-characterized sample for analyzing physical and morphological properties in our next work. We employ six dynamical state proxies utilizing optical and X-ray imaging data. Principal Component Analysis (PCA) is applied to integrate these proxies effectively, allowing for robust classification of galaxy clusters into relaxed, intermediate, and disturbed states based on their dynamical characteristics. The methodology successfully segregates the galaxy clusters into the three dynamical states. Examination of the galaxy distributions in optical wavelengths and gas distributions in X-ray further confirms the consistency of these classifications. The clusters' dynamical states are statistically distinguishable, providing a clear categorization for further analysis.
ANTN: Bridging Autoregressive Neural Networks and Tensor Networks for Quantum Many-Body Simulation
Quantum many-body physics simulation has important impacts on understanding fundamental science and has applications to quantum materials design and quantum technology. However, due to the exponentially growing size of the Hilbert space with respect to the particle number, a direct simulation is intractable. While representing quantum states with tensor networks and neural networks are the two state-of-the-art methods for approximate simulations, each has its own limitations in terms of expressivity and inductive bias. To address these challenges, we develop a novel architecture, Autoregressive Neural TensorNet (ANTN), which bridges tensor networks and autoregressive neural networks. We show that Autoregressive Neural TensorNet parameterizes normalized wavefunctions, allows for exact sampling, generalizes the expressivity of tensor networks and autoregressive neural networks, and inherits a variety of symmetries from autoregressive neural networks. We demonstrate our approach on quantum state learning as well as finding the ground state of the challenging 2D J_1-J_2 Heisenberg model with different systems sizes and coupling parameters, outperforming both tensor networks and autoregressive neural networks. Our work opens up new opportunities for scientific simulations of quantum many-body physics and quantum technology.
Symphony: Symmetry-Equivariant Point-Centered Spherical Harmonics for Molecule Generation
We present Symphony, an E(3)-equivariant autoregressive generative model for 3D molecular geometries that iteratively builds a molecule from molecular fragments. Existing autoregressive models such as G-SchNet and G-SphereNet for molecules utilize rotationally invariant features to respect the 3D symmetries of molecules. In contrast, Symphony uses message-passing with higher-degree E(3)-equivariant features. This allows a novel representation of probability distributions via spherical harmonic signals to efficiently model the 3D geometry of molecules. We show that Symphony is able to accurately generate small molecules from the QM9 dataset, outperforming existing autoregressive models and approaching the performance of diffusion models.
On Kinetic Optimal Probability Paths for Generative Models
Recent successful generative models are trained by fitting a neural network to an a-priori defined tractable probability density path taking noise to training examples. In this paper we investigate the space of Gaussian probability paths, which includes diffusion paths as an instance, and look for an optimal member in some useful sense. In particular, minimizing the Kinetic Energy (KE) of a path is known to make particles' trajectories simple, hence easier to sample, and empirically improve performance in terms of likelihood of unseen data and sample generation quality. We investigate Kinetic Optimal (KO) Gaussian paths and offer the following observations: (i) We show the KE takes a simplified form on the space of Gaussian paths, where the data is incorporated only through a single, one dimensional scalar function, called the data separation function. (ii) We characterize the KO solutions with a one dimensional ODE. (iii) We approximate data-dependent KO paths by approximating the data separation function and minimizing the KE. (iv) We prove that the data separation function converges to 1 in the general case of arbitrary normalized dataset consisting of n samples in d dimension as n/drightarrow 0. A consequence of this result is that the Conditional Optimal Transport (Cond-OT) path becomes kinetic optimal as n/drightarrow 0. We further support this theory with empirical experiments on ImageNet.
Phy124: Fast Physics-Driven 4D Content Generation from a Single Image
4D content generation focuses on creating dynamic 3D objects that change over time. Existing methods primarily rely on pre-trained video diffusion models, utilizing sampling processes or reference videos. However, these approaches face significant challenges. Firstly, the generated 4D content often fails to adhere to real-world physics since video diffusion models do not incorporate physical priors. Secondly, the extensive sampling process and the large number of parameters in diffusion models result in exceedingly time-consuming generation processes. To address these issues, we introduce Phy124, a novel, fast, and physics-driven method for controllable 4D content generation from a single image. Phy124 integrates physical simulation directly into the 4D generation process, ensuring that the resulting 4D content adheres to natural physical laws. Phy124 also eliminates the use of diffusion models during the 4D dynamics generation phase, significantly speeding up the process. Phy124 allows for the control of 4D dynamics, including movement speed and direction, by manipulating external forces. Extensive experiments demonstrate that Phy124 generates high-fidelity 4D content with significantly reduced inference times, achieving stateof-the-art performance. The code and generated 4D content are available at the provided link: https://anonymous.4open.science/r/BBF2/.
Animate124: Animating One Image to 4D Dynamic Scene
We introduce Animate124 (Animate-one-image-to-4D), the first work to animate a single in-the-wild image into 3D video through textual motion descriptions, an underexplored problem with significant applications. Our 4D generation leverages an advanced 4D grid dynamic Neural Radiance Field (NeRF) model, optimized in three distinct stages using multiple diffusion priors. Initially, a static model is optimized using the reference image, guided by 2D and 3D diffusion priors, which serves as the initialization for the dynamic NeRF. Subsequently, a video diffusion model is employed to learn the motion specific to the subject. However, the object in the 3D videos tends to drift away from the reference image over time. This drift is mainly due to the misalignment between the text prompt and the reference image in the video diffusion model. In the final stage, a personalized diffusion prior is therefore utilized to address the semantic drift. As the pioneering image-text-to-4D generation framework, our method demonstrates significant advancements over existing baselines, evidenced by comprehensive quantitative and qualitative assessments.
RED-PSM: Regularization by Denoising of Partially Separable Models for Dynamic Imaging
Dynamic imaging addresses the recovery of a time-varying 2D or 3D object at each time instant using its undersampled measurements. In particular, in the case of dynamic tomography, only a single projection at a single view angle may be available at a time, making the problem severely ill-posed. In this work, we propose an approach, RED-PSM, which combines for the first time two powerful techniques to address this challenging imaging problem. The first, are partially separable models, which have been used to efficiently introduce a low-rank prior for the spatio-temporal object. The second is the recent Regularization by Denoising (RED), which provides a flexible framework to exploit the impressive performance of state-of-the-art image denoising algorithms, for various inverse problems. We propose a partially separable objective with RED and a computationally efficient and scalable optimization scheme with variable splitting and ADMM. Theoretical analysis proves the convergence of our objective to a value corresponding to a stationary point satisfying the first-order optimality conditions. Convergence is accelerated by a particular projection-domain-based initialization. We demonstrate the performance and computational improvements of our proposed RED-PSM with a learned image denoiser by comparing it to a recent deep-prior-based method known as TD-DIP. Although the main focus is on dynamic tomography, we also show the performance advantages of RED-PSM in a cardiac dynamic MRI setting.
Persistent homology of the cosmic web. I: Hierarchical topology in ΛCDM cosmologies
Using a set of LambdaCDM simulations of cosmic structure formation, we study the evolving connectivity and changing topological structure of the cosmic web using state-of-the-art tools of multiscale topological data analysis (TDA). We follow the development of the cosmic web topology in terms of the evolution of Betti number curves and feature persistence diagrams of the three (topological) classes of structural features: matter concentrations, filaments and tunnels, and voids. The Betti curves specify the prominence of features as a function of density level, and their evolution with cosmic epoch reflects the changing network connections between these structural features. The persistence diagrams quantify the longevity and stability of topological features. In this study we establish, for the first time, the link between persistence diagrams, the features they show, and the gravitationally driven cosmic structure formation process. By following the diagrams' development over cosmic time, the link between the multiscale topology of the cosmic web and the hierarchical buildup of cosmic structure is established. The sharp apexes in the diagrams are intimately related to key transitions in the structure formation process. The apex in the matter concentration diagrams coincides with the density level at which, typically, they detach from the Hubble expansion and begin to collapse. At that level many individual islands merge to form the network of the cosmic web and a large number of filaments and tunnels emerge to establish its connecting bridges. The location trends of the apex possess a self-similar character that can be related to the cosmic web's hierarchical buildup. We find that persistence diagrams provide a significantly higher and more profound level of information on the structure formation process than more global summary statistics like Euler characteristic or Betti numbers.
Generalized chiral instabilities, linking numbers, and non-invertible symmetries
We demonstrate a universal mechanism of a class of instabilities in infrared regions for massless Abelian p-form gauge theories with topological interactions, which we call generalized chiral instabilities. Such instabilities occur in the presence of initial electric fields for the p-form gauge fields. We show that the dynamically generated magnetic fields tend to decrease the initial electric fields and result in configurations with linking numbers, which can be characterized by non-invertible global symmetries. The so-called chiral plasma instability and instabilities of the axion electrodynamics and (4+1)-dimensional Maxwell-Chern-Simons theory in electric fields can be described by the generalized chiral instabilities in a unified manner. We also illustrate this mechanism in the (2+1)-dimensional Goldstone-Maxwell model in electric field.
DynaGuide: Steering Diffusion Polices with Active Dynamic Guidance
Deploying large, complex policies in the real world requires the ability to steer them to fit the needs of a situation. Most common steering approaches, like goal-conditioning, require training the robot policy with a distribution of test-time objectives in mind. To overcome this limitation, we present DynaGuide, a steering method for diffusion policies using guidance from an external dynamics model during the diffusion denoising process. DynaGuide separates the dynamics model from the base policy, which gives it multiple advantages, including the ability to steer towards multiple objectives, enhance underrepresented base policy behaviors, and maintain robustness on low-quality objectives. The separate guidance signal also allows DynaGuide to work with off-the-shelf pretrained diffusion policies. We demonstrate the performance and features of DynaGuide against other steering approaches in a series of simulated and real experiments, showing an average steering success of 70% on a set of articulated CALVIN tasks and outperforming goal-conditioning by 5.4x when steered with low-quality objectives. We also successfully steer an off-the-shelf real robot policy to express preference for particular objects and even create novel behavior. Videos and more can be found on the project website: https://dynaguide.github.io
Action Matching: Learning Stochastic Dynamics from Samples
Learning the continuous dynamics of a system from snapshots of its temporal marginals is a problem which appears throughout natural sciences and machine learning, including in quantum systems, single-cell biological data, and generative modeling. In these settings, we assume access to cross-sectional samples that are uncorrelated over time, rather than full trajectories of samples. In order to better understand the systems under observation, we would like to learn a model of the underlying process that allows us to propagate samples in time and thereby simulate entire individual trajectories. In this work, we propose Action Matching, a method for learning a rich family of dynamics using only independent samples from its time evolution. We derive a tractable training objective, which does not rely on explicit assumptions about the underlying dynamics and does not require back-propagation through differential equations or optimal transport solvers. Inspired by connections with optimal transport, we derive extensions of Action Matching to learn stochastic differential equations and dynamics involving creation and destruction of probability mass. Finally, we showcase applications of Action Matching by achieving competitive performance in a diverse set of experiments from biology, physics, and generative modeling.
Partial Differential Equations is All You Need for Generating Neural Architectures -- A Theory for Physical Artificial Intelligence Systems
In this work, we generalize the reaction-diffusion equation in statistical physics, Schr\"odinger equation in quantum mechanics, Helmholtz equation in paraxial optics into the neural partial differential equations (NPDE), which can be considered as the fundamental equations in the field of artificial intelligence research. We take finite difference method to discretize NPDE for finding numerical solution, and the basic building blocks of deep neural network architecture, including multi-layer perceptron, convolutional neural network and recurrent neural networks, are generated. The learning strategies, such as Adaptive moment estimation, L-BFGS, pseudoinverse learning algorithms and partial differential equation constrained optimization, are also presented. We believe it is of significance that presented clear physical image of interpretable deep neural networks, which makes it be possible for applying to analog computing device design, and pave the road to physical artificial intelligence.
Symmetric Basis Convolutions for Learning Lagrangian Fluid Mechanics
Learning physical simulations has been an essential and central aspect of many recent research efforts in machine learning, particularly for Navier-Stokes-based fluid mechanics. Classic numerical solvers have traditionally been computationally expensive and challenging to use in inverse problems, whereas Neural solvers aim to address both concerns through machine learning. We propose a general formulation for continuous convolutions using separable basis functions as a superset of existing methods and evaluate a large set of basis functions in the context of (a) a compressible 1D SPH simulation, (b) a weakly compressible 2D SPH simulation, and (c) an incompressible 2D SPH Simulation. We demonstrate that even and odd symmetries included in the basis functions are key aspects of stability and accuracy. Our broad evaluation shows that Fourier-based continuous convolutions outperform all other architectures regarding accuracy and generalization. Finally, using these Fourier-based networks, we show that prior inductive biases, such as window functions, are no longer necessary. An implementation of our approach, as well as complete datasets and solver implementations, is available at https://github.com/tum-pbs/SFBC.
Grokking as the Transition from Lazy to Rich Training Dynamics
We propose that the grokking phenomenon, where the train loss of a neural network decreases much earlier than its test loss, can arise due to a neural network transitioning from lazy training dynamics to a rich, feature learning regime. To illustrate this mechanism, we study the simple setting of vanilla gradient descent on a polynomial regression problem with a two layer neural network which exhibits grokking without regularization in a way that cannot be explained by existing theories. We identify sufficient statistics for the test loss of such a network, and tracking these over training reveals that grokking arises in this setting when the network first attempts to fit a kernel regression solution with its initial features, followed by late-time feature learning where a generalizing solution is identified after train loss is already low. We provide an asymptotic theoretical description of the grokking dynamics in this model using dynamical mean field theory (DMFT) for high dimensional data. We find that the key determinants of grokking are the rate of feature learning -- which can be controlled precisely by parameters that scale the network output -- and the alignment of the initial features with the target function y(x). We argue this delayed generalization arises when (1) the top eigenvectors of the initial neural tangent kernel and the task labels y(x) are misaligned, but (2) the dataset size is large enough so that it is possible for the network to generalize eventually, but not so large that train loss perfectly tracks test loss at all epochs, and (3) the network begins training in the lazy regime so does not learn features immediately. We conclude with evidence that this transition from lazy (linear model) to rich training (feature learning) can control grokking in more general settings, like on MNIST, one-layer Transformers, and student-teacher networks.
HyPINO: Multi-Physics Neural Operators via HyperPINNs and the Method of Manufactured Solutions
We present HyPINO, a multi-physics neural operator designed for zero-shot generalization across a broad class of parametric PDEs without requiring task-specific fine-tuning. Our approach combines a Swin Transformer-based hypernetwork with mixed supervision: (i) labeled data from analytical solutions generated via the Method of Manufactured Solutions (MMS), and (ii) unlabeled samples optimized using physics-informed objectives. The model maps PDE parametrizations to target Physics-Informed Neural Networks (PINNs) and can handle linear elliptic, hyperbolic, and parabolic equations in two dimensions with varying source terms, geometries, and mixed Dirichlet/Neumann boundary conditions, including interior boundaries. HyPINO achieves strong zero-shot accuracy on seven benchmark problems from PINN literature, outperforming U-Nets, Poseidon, and Physics-Informed Neural Operators (PINO). Further, we introduce an iterative refinement procedure that compares the physics of the generated PINN to the requested PDE and uses the discrepancy to generate a "delta" PINN. Summing their contributions and repeating this process forms an ensemble whose combined solution progressively reduces the error on six benchmarks and achieves over 100x gain in average L_2 loss in the best case, while retaining forward-only inference. Additionally, we evaluate the fine-tuning behavior of PINNs initialized by HyPINO and show that they converge faster and to lower final error than both randomly initialized and Reptile-meta-learned PINNs on five benchmarks, performing on par on the remaining two. Our results highlight the potential of this scalable approach as a foundation for extending neural operators toward solving increasingly complex, nonlinear, and high-dimensional PDE problems with significantly improved accuracy and reduced computational cost.
Solving High Frequency and Multi-Scale PDEs with Gaussian Processes
Machine learning based solvers have garnered much attention in physical simulation and scientific computing, with a prominent example, physics-informed neural networks (PINNs). However, PINNs often struggle to solve high-frequency and multi-scale PDEs, which can be due to spectral bias during neural network training. To address this problem, we resort to the Gaussian process (GP) framework. To flexibly capture the dominant frequencies, we model the power spectrum of the PDE solution with a student t mixture or Gaussian mixture. We apply the inverse Fourier transform to obtain the covariance function (by Wiener-Khinchin theorem). The covariance derived from the Gaussian mixture spectrum corresponds to the known spectral mixture kernel. Next, we estimate the mixture weights in the log domain, which we show is equivalent to placing a Jeffreys prior. It automatically induces sparsity, prunes excessive frequencies, and adjusts the remaining toward the ground truth. Third, to enable efficient and scalable computation on massive collocation points, which are critical to capture high frequencies, we place the collocation points on a grid, and multiply our covariance function at each input dimension. We use the GP conditional mean to predict the solution and its derivatives so as to fit the boundary condition and the equation itself. As a result, we can derive a Kronecker product structure in the covariance matrix. We use Kronecker product properties and multilinear algebra to promote computational efficiency and scalability, without low-rank approximations. We show the advantage of our method in systematic experiments. The code is released at https://github.com/xuangu-fang/Gaussian-Process-Slover-for-High-Freq-PDE.
Random Grid Neural Processes for Parametric Partial Differential Equations
We introduce a new class of spatially stochastic physics and data informed deep latent models for parametric partial differential equations (PDEs) which operate through scalable variational neural processes. We achieve this by assigning probability measures to the spatial domain, which allows us to treat collocation grids probabilistically as random variables to be marginalised out. Adapting this spatial statistics view, we solve forward and inverse problems for parametric PDEs in a way that leads to the construction of Gaussian process models of solution fields. The implementation of these random grids poses a unique set of challenges for inverse physics informed deep learning frameworks and we propose a new architecture called Grid Invariant Convolutional Networks (GICNets) to overcome these challenges. We further show how to incorporate noisy data in a principled manner into our physics informed model to improve predictions for problems where data may be available but whose measurement location does not coincide with any fixed mesh or grid. The proposed method is tested on a nonlinear Poisson problem, Burgers equation, and Navier-Stokes equations, and we provide extensive numerical comparisons. We demonstrate significant computational advantages over current physics informed neural learning methods for parametric PDEs while improving the predictive capabilities and flexibility of these models.
A Comprehensive Perturbative Formalism for Phase Mixing in Perturbed Disks. II. Phase Spirals in an Inhomogeneous Disk Galaxy with a Non-responsive Dark Matter Halo
We develop a linear perturbative formalism to compute the response of an inhomogeneous stellar disk embedded in a non-responsive dark matter halo to perturbations like bars, spiral arms and satellite galaxy encounters. Without self-gravity to reinforce it, the response of a Fourier mode phase mixes away due to an intrinsic spread in the vertical (Omega_z), radial (Omega_r) and azimuthal (Omega_phi) frequencies, giving rise to local phase-space spirals. Collisional diffusion due to scattering of stars by structures like giant molecular clouds causes super-exponential damping of the phase-spiral amplitude. The z-v_z phase-spiral is 1-armed (2-armed) for vertically anti-symmetric (symmetric) bending (breathing) modes. Only transient perturbations with timescales (tau_{P}) comparable to the vertical oscillation period (tau_z sim 1/Omega_z) trigger z-v_z phase-spirals. Each (n,l,m) mode of the response to impulsive (tau_{P}<tau=1/(nOmega_z+lOmega_r+mOmega_phi)) perturbations is power law (sim tau_{P}/tau) suppressed, but that to adiabatic (tau_{P}>tau) perturbations is exponentially weak (sim left[-left(tau_{mathrm{P}/tauright)^alpharight]}) except resonant (tauto infty) modes. Slower (tau_{P}>tau_z) perturbations, e.g., distant encounters with satellite galaxies, induce stronger bending modes. If the Gaia phase-spiral was triggered by a satellite, Sagittarius is the leading contender as it dominates the Solar neighborhood response of the Milky Way disk to satellite encounters. However, survival against collisional damping necessitates that the impact occurred within sim 0.6-0.7 Gyr ago. We discuss how the detailed galactic potential dictates the phase-spiral shape: phase mixing occurs slower and phase-spirals are less wound in the outer disk and in presence of an ambient halo.
ANO : Faster is Better in Noisy Landscape
Stochastic optimizers are central to deep learning, yet widely used methods such as Adam and Adan can degrade in non-stationary or noisy environments, partly due to their reliance on momentum-based magnitude estimates. We introduce Ano, a novel optimizer that decouples direction and magnitude: momentum is used for directional smoothing, while instantaneous gradient magnitudes determine step size. This design improves robustness to gradient noise while retaining the simplicity and efficiency of first-order methods. We further propose Anolog, which removes sensitivity to the momentum coefficient by expanding its window over time via a logarithmic schedule. We establish non-convex convergence guarantees with a convergence rate similar to other sign-based methods, and empirically show that Ano provides substantial gains in noisy and non-stationary regimes such as reinforcement learning, while remaining competitive on low-noise tasks such as standard computer vision benchmarks.
Dense Hebbian neural networks: a replica symmetric picture of unsupervised learning
We consider dense, associative neural-networks trained with no supervision and we investigate their computational capabilities analytically, via a statistical-mechanics approach, and numerically, via Monte Carlo simulations. In particular, we obtain a phase diagram summarizing their performance as a function of the control parameters such as the quality and quantity of the training dataset and the network storage, valid in the limit of large network size and structureless datasets. Moreover, we establish a bridge between macroscopic observables standardly used in statistical mechanics and loss functions typically used in the machine learning. As technical remarks, from the analytic side, we implement large deviations and stability analysis within Guerra's interpolation to tackle the not-Gaussian distributions involved in the post-synaptic potentials while, from the computational counterpart, we insert Plefka approximation in the Monte Carlo scheme, to speed up the evaluation of the synaptic tensors, overall obtaining a novel and broad approach to investigate neural networks in general.
On the Dynamics of Acceleration in First order Gradient Methods
Ever since the original algorithm by Nesterov (1983), the true nature of the acceleration phenomenon has remained elusive, with various interpretations of why the method is actually faster. The diagnosis of the algorithm through the lens of Ordinary Differential Equations (ODEs) and the corresponding dynamical system formulation to explain the underlying dynamics has a rich history. In the literature, the ODEs that explain algorithms are typically derived by considering the limiting case of the algorithm maps themselves, that is, an ODE formulation follows the development of an algorithm. This obfuscates the underlying higher order principles and thus provides little evidence of the working of the algorithm. Such has been the case with Nesterov algorithm and the various analogies used to describe the acceleration phenomena, viz, momentum associated with the rolling of a Heavy-Ball down a slope, Hessian damping etc. The main focus of our work is to ideate the genesis of the Nesterov algorithm from the viewpoint of dynamical systems leading to demystifying the mathematical rigour behind the algorithm. Instead of reverse engineering ODEs from discrete algorithms, this work explores tools from the recently developed control paradigm titled Passivity and Immersion approach and the Geometric Singular Perturbation theory which are applied to arrive at the formulation of a dynamical system that explains and models the acceleration phenomena. This perspective helps to gain insights into the various terms present and the sequence of steps used in Nesterovs accelerated algorithm for the smooth strongly convex and the convex case. The framework can also be extended to derive the acceleration achieved using the triple momentum method and provides justifications for the non-convergence to the optimal solution in the Heavy-Ball method.
Learning fast, accurate, and stable closures of a kinetic theory of an active fluid
Important classes of active matter systems can be modeled using kinetic theories. However, kinetic theories can be high dimensional and challenging to simulate. Reduced-order representations based on tracking only low-order moments of the kinetic model serve as an efficient alternative, but typically require closure assumptions to model unrepresented higher-order moments. In this study, we present a learning framework based on neural networks that exploit rotational symmetries in the closure terms to learn accurate closure models directly from kinetic simulations. The data-driven closures demonstrate excellent a-priori predictions comparable to the state-of-the-art Bingham closure. We provide a systematic comparison between different neural network architectures and demonstrate that nonlocal effects can be safely ignored to model the closure terms. We develop an active learning strategy that enables accurate prediction of the closure terms across the entire parameter space using a single neural network without the need for retraining. We also propose a data-efficient training procedure based on time-stepping constraints and a differentiable pseudo-spectral solver, which enables the learning of stable closures suitable for a-posteriori inference. The coarse-grained simulations equipped with data-driven closure models faithfully reproduce the mean velocity statistics, scalar order parameters, and velocity power spectra observed in simulations of the kinetic theory. Our differentiable framework also facilitates the estimation of parameters in coarse-grained descriptions conditioned on data.
Scaling Riemannian Diffusion Models
Riemannian diffusion models draw inspiration from standard Euclidean space diffusion models to learn distributions on general manifolds. Unfortunately, the additional geometric complexity renders the diffusion transition term inexpressible in closed form, so prior methods resort to imprecise approximations of the score matching training objective that degrade performance and preclude applications in high dimensions. In this work, we reexamine these approximations and propose several practical improvements. Our key observation is that most relevant manifolds are symmetric spaces, which are much more amenable to computation. By leveraging and combining various ans\"{a}tze, we can quickly compute relevant quantities to high precision. On low dimensional datasets, our correction produces a noticeable improvement, allowing diffusion to compete with other methods. Additionally, we show that our method enables us to scale to high dimensional tasks on nontrivial manifolds. In particular, we model QCD densities on SU(n) lattices and contrastively learned embeddings on high dimensional hyperspheres.
Anisotropic Compact Star Model Satisfying Karmarkar Conditions
A new class of solutions describing the composition of compact stars has been proposed, assuming that the fluid distribution inside the star is anisotropic. This is achieved by assuming the appropriate metric potential and then solving Einstein's field equations using Karmarkar conditions [Karmarkar K. R., Proc. Indian Acad. Sci. 27 (1948) 56] to derive the expressions for star density, the radial and tangential pressures in terms of the constants A, B, a paramter `a' and the curvature parameter R. The equations thus obtained have been passed through rigorous conditional analysis. It is further shown that the model is physically viable and mathematically well-behaved, fulfilling the requisite conditions viz., regularity condition, strong energy condition, causality condition, etc. Observed star candidates including EXO 1785-248, SMC X-1, SAXJ1808.43658(SS2), HER X-1, 4U 1538-52, Cen X-3 and LMC X-4 were found to conform to a good approximation through the outcome of this model for a=0.5.
4D Diffusion for Dynamic Protein Structure Prediction with Reference Guided Motion Alignment
Protein structure prediction is pivotal for understanding the structure-function relationship of proteins, advancing biological research, and facilitating pharmaceutical development and experimental design. While deep learning methods and the expanded availability of experimental 3D protein structures have accelerated structure prediction, the dynamic nature of protein structures has received limited attention. This study introduces an innovative 4D diffusion model incorporating molecular dynamics (MD) simulation data to learn dynamic protein structures. Our approach is distinguished by the following components: (1) a unified diffusion model capable of generating dynamic protein structures, including both the backbone and side chains, utilizing atomic grouping and side-chain dihedral angle predictions; (2) a reference network that enhances structural consistency by integrating the latent embeddings of the initial 3D protein structures; and (3) a motion alignment module aimed at improving temporal structural coherence across multiple time steps. To our knowledge, this is the first diffusion-based model aimed at predicting protein trajectories across multiple time steps simultaneously. Validation on benchmark datasets demonstrates that our model exhibits high accuracy in predicting dynamic 3D structures of proteins containing up to 256 amino acids over 32 time steps, effectively capturing both local flexibility in stable states and significant conformational changes.
PCA of high dimensional random walks with comparison to neural network training
One technique to visualize the training of neural networks is to perform PCA on the parameters over the course of training and to project to the subspace spanned by the first few PCA components. In this paper we compare this technique to the PCA of a high dimensional random walk. We compute the eigenvalues and eigenvectors of the covariance of the trajectory and prove that in the long trajectory and high dimensional limit most of the variance is in the first few PCA components, and that the projection of the trajectory onto any subspace spanned by PCA components is a Lissajous curve. We generalize these results to a random walk with momentum and to an Ornstein-Uhlenbeck processes (i.e., a random walk in a quadratic potential) and show that in high dimensions the walk is not mean reverting, but will instead be trapped at a fixed distance from the minimum. We finally compare the distribution of PCA variances and the PCA projected training trajectories of a linear model trained on CIFAR-10 and ResNet-50-v2 trained on Imagenet and find that the distribution of PCA variances resembles a random walk with drift.
Feature Programming for Multivariate Time Series Prediction
We introduce the concept of programmable feature engineering for time series modeling and propose a feature programming framework. This framework generates large amounts of predictive features for noisy multivariate time series while allowing users to incorporate their inductive bias with minimal effort. The key motivation of our framework is to view any multivariate time series as a cumulative sum of fine-grained trajectory increments, with each increment governed by a novel spin-gas dynamical Ising model. This fine-grained perspective motivates the development of a parsimonious set of operators that summarize multivariate time series in an abstract fashion, serving as the foundation for large-scale automated feature engineering. Numerically, we validate the efficacy of our method on several synthetic and real-world noisy time series datasets.
The Well: a Large-Scale Collection of Diverse Physics Simulations for Machine Learning
Machine learning based surrogate models offer researchers powerful tools for accelerating simulation-based workflows. However, as standard datasets in this space often cover small classes of physical behavior, it can be difficult to evaluate the efficacy of new approaches. To address this gap, we introduce the Well: a large-scale collection of datasets containing numerical simulations of a wide variety of spatiotemporal physical systems. The Well draws from domain experts and numerical software developers to provide 15TB of data across 16 datasets covering diverse domains such as biological systems, fluid dynamics, acoustic scattering, as well as magneto-hydrodynamic simulations of extra-galactic fluids or supernova explosions. These datasets can be used individually or as part of a broader benchmark suite. To facilitate usage of the Well, we provide a unified PyTorch interface for training and evaluating models. We demonstrate the function of this library by introducing example baselines that highlight the new challenges posed by the complex dynamics of the Well. The code and data is available at https://github.com/PolymathicAI/the_well.
Transforming Simulation to Data Without Pairing
We explore a generative machine learning-based approach for estimating multi-dimensional probability density functions (PDFs) in a target sample using a statistically independent but related control sample - a common challenge in particle physics data analysis. The generative model must accurately reproduce individual observable distributions while preserving the correlations between them, based on the input multidimensional distribution from the control sample. Here we present a conditional normalizing flow model (CNF) based on a chain of bijectors which learns to transform unpaired simulation events to data events. We assess the performance of the CNF model in the context of LHC Higgs to diphoton analysis, where we use the CNF model to convert a Monte Carlo diphoton sample to one that models data. We show that the CNF model can accurately model complex data distributions and correlations. We also leverage the recently popularized Modified Differential Multiplier Method (MDMM) to improve the convergence of our model and assign physical meaning to usually arbitrary loss-function parameters.
Fast, Expressive SE(n) Equivariant Networks through Weight-Sharing in Position-Orientation Space
Based on the theory of homogeneous spaces we derive geometrically optimal edge attributes to be used within the flexible message-passing framework. We formalize the notion of weight sharing in convolutional networks as the sharing of message functions over point-pairs that should be treated equally. We define equivalence classes of point-pairs that are identical up to a transformation in the group and derive attributes that uniquely identify these classes. Weight sharing is then obtained by conditioning message functions on these attributes. As an application of the theory, we develop an efficient equivariant group convolutional network for processing 3D point clouds. The theory of homogeneous spaces tells us how to do group convolutions with feature maps over the homogeneous space of positions R^3, position and orientations R^3 {times} S^2, and the group SE(3) itself. Among these, R^3 {times} S^2 is an optimal choice due to the ability to represent directional information, which R^3 methods cannot, and it significantly enhances computational efficiency compared to indexing features on the full SE(3) group. We support this claim with state-of-the-art results -- in accuracy and speed -- on five different benchmarks in 2D and 3D, including interatomic potential energy prediction, trajectory forecasting in N-body systems, and generating molecules via equivariant diffusion models.
Task structure and nonlinearity jointly determine learned representational geometry
The utility of a learned neural representation depends on how well its geometry supports performance in downstream tasks. This geometry depends on the structure of the inputs, the structure of the target outputs, and the architecture of the network. By studying the learning dynamics of networks with one hidden layer, we discovered that the network's activation function has an unexpectedly strong impact on the representational geometry: Tanh networks tend to learn representations that reflect the structure of the target outputs, while ReLU networks retain more information about the structure of the raw inputs. This difference is consistently observed across a broad class of parameterized tasks in which we modulated the degree of alignment between the geometry of the task inputs and that of the task labels. We analyzed the learning dynamics in weight space and show how the differences between the networks with Tanh and ReLU nonlinearities arise from the asymmetric asymptotic behavior of ReLU, which leads feature neurons to specialize for different regions of input space. By contrast, feature neurons in Tanh networks tend to inherit the task label structure. Consequently, when the target outputs are low dimensional, Tanh networks generate neural representations that are more disentangled than those obtained with a ReLU nonlinearity. Our findings shed light on the interplay between input-output geometry, nonlinearity, and learned representations in neural networks.
NUNO: A General Framework for Learning Parametric PDEs with Non-Uniform Data
The neural operator has emerged as a powerful tool in learning mappings between function spaces in PDEs. However, when faced with real-world physical data, which are often highly non-uniformly distributed, it is challenging to use mesh-based techniques such as the FFT. To address this, we introduce the Non-Uniform Neural Operator (NUNO), a comprehensive framework designed for efficient operator learning with non-uniform data. Leveraging a K-D tree-based domain decomposition, we transform non-uniform data into uniform grids while effectively controlling interpolation error, thereby paralleling the speed and accuracy of learning from non-uniform data. We conduct extensive experiments on 2D elasticity, (2+1)D channel flow, and a 3D multi-physics heatsink, which, to our knowledge, marks a novel exploration into 3D PDE problems with complex geometries. Our framework has reduced error rates by up to 60% and enhanced training speeds by 2x to 30x. The code is now available at https://github.com/thu-ml/NUNO.
Physics-informed cluster analysis and a priori efficiency criterion for the construction of local reduced-order bases
Nonlinear model order reduction has opened the door to parameter optimization and uncertainty quantification in complex physics problems governed by nonlinear equations. In particular, the computational cost of solving these equations can be reduced by means of local reduced-order bases. This article examines the benefits of a physics-informed cluster analysis for the construction of cluster-specific reduced-order bases. We illustrate that the choice of the dissimilarity measure for clustering is fundamental and highly affects the performances of the local reduced-order bases. It is shown that clustering with an angle-based dissimilarity on simulation data efficiently decreases the intra-cluster Kolmogorov N-width. Additionally, an a priori efficiency criterion is introduced to assess the relevance of a ROM-net, a methodology for the reduction of nonlinear physics problems introduced in our previous work in [T. Daniel, F. Casenave, N. Akkari, D. Ryckelynck, Model order reduction assisted by deep neural networks (ROM-net), Advanced Modeling and Simulation in Engineering Sciences 7 (16), 2020]. This criterion also provides engineers with a very practical method for ROM-nets' hyperparameters calibration under constrained computational costs for the training phase. On five different physics problems, our physics-informed clustering strategy significantly outperforms classic strategies for the construction of local reduced-order bases in terms of projection errors.
Chiral effects and Joule heating in hot and dense matter
Initial states of dense matter with nonzero electron chiral imbalance could potentially give rise to strong magnetic fields through chiral plasma instability. Previous work indicated that unless chiral chemical potential is as large as the electron vector chemical potential, the growth of magnetic fields due to the instability is washed out by chirality flipping rate enabled by electron mass. We re-examine this claim in a broader range of parameters and find that at higher temperatures the hierarchy is reversed supporting a growing magnetic field for an initial electron chiral chemical potential much smaller than the electron vector chemical potential. Further, we identify a qualitatively new effect relevant for magnetized hot and dense medium where chiral magnetic effect (CME) sourced by density fluctuation acts as a powerful source of Joule heating. Remarkably, even modest chiral chemical potentials (keV) in such environment can deposit energy densities set by the QCD scale in a relatively short time of the order of a few milliseconds or seconds. We speculate how this mechanism makes CME-driven Joule heating a potentially critical ingredient in the dynamics of turbulent density fluctuation of supernovae and neutron star mergers.
Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation
The theory of open quantum systems lays the foundations for a substantial part of modern research in quantum science and engineering. Rooted in the dimensionality of their extended Hilbert spaces, the high computational complexity of simulating open quantum systems calls for the development of strategies to approximate their dynamics. In this paper, we present an approach for tackling open quantum system dynamics. Using an exact probabilistic formulation of quantum physics based on positive operator-valued measure (POVM), we compactly represent quantum states with autoregressive transformer neural networks; such networks bring significant algorithmic flexibility due to efficient exact sampling and tractable density. We further introduce the concept of String States to partially restore the symmetry of the autoregressive transformer neural network and improve the description of local correlations. Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator using a forward-backward trapezoid method and find the steady state via a variational formulation. Our approach is benchmarked on prototypical one and two-dimensional systems, finding results which closely track the exact solution and achieve higher accuracy than alternative approaches based on using Markov chain Monte Carlo to sample restricted Boltzmann machines. Our work provides general methods for understanding quantum dynamics in various contexts, as well as techniques for solving high-dimensional probabilistic differential equations in classical setups.
Depthwise Hyperparameter Transfer in Residual Networks: Dynamics and Scaling Limit
The cost of hyperparameter tuning in deep learning has been rising with model sizes, prompting practitioners to find new tuning methods using a proxy of smaller networks. One such proposal uses muP parameterized networks, where the optimal hyperparameters for small width networks transfer to networks with arbitrarily large width. However, in this scheme, hyperparameters do not transfer across depths. As a remedy, we study residual networks with a residual branch scale of 1/text{depth} in combination with the muP parameterization. We provide experiments demonstrating that residual architectures including convolutional ResNets and Vision Transformers trained with this parameterization exhibit transfer of optimal hyperparameters across width and depth on CIFAR-10 and ImageNet. Furthermore, our empirical findings are supported and motivated by theory. Using recent developments in the dynamical mean field theory (DMFT) description of neural network learning dynamics, we show that this parameterization of ResNets admits a well-defined feature learning joint infinite-width and infinite-depth limit and show convergence of finite-size network dynamics towards this limit.
Towards Multi-Layered 3D Garments Animation
Mimicking realistic dynamics in 3D garment animations is a challenging task due to the complex nature of multi-layered garments and the variety of outer forces involved. Existing approaches mostly focus on single-layered garments driven by only human bodies and struggle to handle general scenarios. In this paper, we propose a novel data-driven method, called LayersNet, to model garment-level animations as particle-wise interactions in a micro physics system. We improve simulation efficiency by representing garments as patch-level particles in a two-level structural hierarchy. Moreover, we introduce a novel Rotation Equivalent Transformation that leverages the rotation invariance and additivity of physics systems to better model outer forces. To verify the effectiveness of our approach and bridge the gap between experimental environments and real-world scenarios, we introduce a new challenging dataset, D-LAYERS, containing 700K frames of dynamics of 4,900 different combinations of multi-layered garments driven by both human bodies and randomly sampled wind. Our experiments show that LayersNet achieves superior performance both quantitatively and qualitatively. We will make the dataset and code publicly available at https://mmlab-ntu.github.io/project/layersnet/index.html .
Metrological detection of multipartite entanglement through dynamical symmetries
Multipartite entanglement, characterized by the quantum Fisher information (QFI), plays a central role in quantum-enhanced metrology and understanding quantum many-body physics. With a dynamical generalization of the Mazur-Suzuki relations, we provide a rigorous lower bound on the QFI for the thermal Gibbs states in terms of dynamical symmetries, i.e., operators with periodic time dependence. We demonstrate that this bound can be saturated when considering a complete set of dynamical symmetries. Moreover, this lower bound with dynamical symmetries can be generalized to the QFI matrix and to the QFI for the thermal pure states, predicted by the eigenstate thermalization hypothesis. Our results reveal a new perspective to detect multipartite entanglement and other generalized variances in an equilibrium system, from its nonstationary dynamical properties, and is promising for studying emergent nonequilibrium many-body physics.
Path-Integral Approach to Quantum Acoustics
A path-integral approach to quantum acoustics is developed here. In contrast to the commonly utilized particle perspective, this emerging field brings forth a long neglected but essential wave paradigm for lattice vibrations. Within the coherent state picture, we formulate a non-Markovian, stochastic master equation that captures the exact dynamics of any system with coupling linear in the bath coordinates and nonlinear in the system coordinates. We further demonstrate the capability of the presented master equation by applying the corresponding procedure to the eminent Fr\"ohlich model. In general, we establish a solid foundation for quantum acoustics as a kindred framework to quantum optics, while paving the way for deeper first-principle explorations of non-perturbative system dynamics driven by lattice vibrations.
Matrix approach to generalized ensemble theory
We provide a concise framework for generalized ensemble theory through a matrix-based approach. By introducing an observation matrix, any discrete probability distribution, including those for non-equilibrium steady states, can be expressed as a generalized Boltzmann distribution, with observables and conjugate variables as the basis and coordinates in a linear space. In this framework, we identify the minimal sufficient statistics required for inferring the Boltzmann distribution. Furthermore, we show that the Hadamard and Vandermonde matrices are suitable observation matrices for spin systems and random walks. In master equation systems, the probability flux observation matrix facilitates the identification of detailed balance violations. Our findings provide a new approach to developing generalized ensemble theory for non-equilibrium steady-state systems.
Enhanced proton parallel temperature inside patches of switchbacks in the inner heliosphere
Switchbacks are discrete angular deflections in the solar wind magnetic field that have been observed throughout the heliosphere. Recent observations by Parker Solar Probe (PSP) have revealed the presence of patches of switchbacks on the scale of hours to days, separated by 'quieter' radial fields. We aim to further diagnose the origin of these patches using measurements of proton temperature anisotropy that can illuminate possible links to formation processes in the solar corona. We fitted 3D bi-Maxwellian functions to the core of proton velocity distributions measured by the SPAN-Ai instrument onboard PSP to obtain the proton parallel, T_{p,|}, and perpendicular, T_{p,perp}, temperature. We show that the presence of patches is highlighted by a transverse deflection in the flow and magnetic field away from the radial direction. These deflections are correlated with enhancements in T_{p,|}, while T_{p,perp} remains relatively constant. Patches sometimes exhibit small proton and electron density enhancements. We interpret that patches are not simply a group of switchbacks, but rather switchbacks are embedded within a larger-scale structure identified by enhanced T_{p,|} that is distinct from the surrounding solar wind. We suggest that these observations are consistent with formation by reconnection-associated mechanisms in the corona.
Physics-Informed Learning of Characteristic Trajectories for Smoke Reconstruction
We delve into the physics-informed neural reconstruction of smoke and obstacles through sparse-view RGB videos, tackling challenges arising from limited observation of complex dynamics. Existing physics-informed neural networks often emphasize short-term physics constraints, leaving the proper preservation of long-term conservation less explored. We introduce Neural Characteristic Trajectory Fields, a novel representation utilizing Eulerian neural fields to implicitly model Lagrangian fluid trajectories. This topology-free, auto-differentiable representation facilitates efficient flow map calculations between arbitrary frames as well as efficient velocity extraction via auto-differentiation. Consequently, it enables end-to-end supervision covering long-term conservation and short-term physics priors. Building on the representation, we propose physics-informed trajectory learning and integration into NeRF-based scene reconstruction. We enable advanced obstacle handling through self-supervised scene decomposition and seamless integrated boundary constraints. Our results showcase the ability to overcome challenges like occlusion uncertainty, density-color ambiguity, and static-dynamic entanglements. Code and sample tests are at https://github.com/19reborn/PICT_smoke.
A Periodic Bayesian Flow for Material Generation
Generative modeling of crystal data distribution is an important yet challenging task due to the unique periodic physical symmetry of crystals. Diffusion-based methods have shown early promise in modeling crystal distribution. More recently, Bayesian Flow Networks were introduced to aggregate noisy latent variables, resulting in a variance-reduced parameter space that has been shown to be advantageous for modeling Euclidean data distributions with structural constraints (Song et al., 2023). Inspired by this, we seek to unlock its potential for modeling variables located in non-Euclidean manifolds e.g. those within crystal structures, by overcoming challenging theoretical issues. We introduce CrysBFN, a novel crystal generation method by proposing a periodic Bayesian flow, which essentially differs from the original Gaussian-based BFN by exhibiting non-monotonic entropy dynamics. To successfully realize the concept of periodic Bayesian flow, CrysBFN integrates a new entropy conditioning mechanism and empirically demonstrates its significance compared to time-conditioning. Extensive experiments over both crystal ab initio generation and crystal structure prediction tasks demonstrate the superiority of CrysBFN, which consistently achieves new state-of-the-art on all benchmarks. Surprisingly, we found that CrysBFN enjoys a significant improvement in sampling efficiency, e.g., ~100x speedup 10 v.s. 2000 steps network forwards) compared with previous diffusion-based methods on MP-20 dataset. Code is available at https://github.com/wu-han-lin/CrysBFN.
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
We introduce Adjoint Sampling, a highly scalable and efficient algorithm for learning diffusion processes that sample from unnormalized densities, or energy functions. It is the first on-policy approach that allows significantly more gradient updates than the number of energy evaluations and model samples, allowing us to scale to much larger problem settings than previously explored by similar methods. Our framework is theoretically grounded in stochastic optimal control and shares the same theoretical guarantees as Adjoint Matching, being able to train without the need for corrective measures that push samples towards the target distribution. We show how to incorporate key symmetries, as well as periodic boundary conditions, for modeling molecules in both cartesian and torsional coordinates. We demonstrate the effectiveness of our approach through extensive experiments on classical energy functions, and further scale up to neural network-based energy models where we perform amortized conformer generation across many molecular systems. To encourage further research in developing highly scalable sampling methods, we plan to open source these challenging benchmarks, where successful methods can directly impact progress in computational chemistry.
Massive neutrinos and cosmic composition
Cosmological data probe massive neutrinos via their effects on the geometry of the Universe and the growth of structure, both of which are degenerate with the late-time expansion history. We clarify the nature of these degeneracies and the individual roles of both probes in neutrino mass inference. Geometry is strongly sensitive to neutrino masses: within LambdaCDM, the primary cosmic microwave background anisotropies alone impose that the matter fraction Omega_m must increase fivefold with increasing neutrino mass. Moreover, large-scale structure observables, like weak lensing of the CMB, are dimensionless and thus depend not on the matter density (as often quoted) but in fact the matter fraction. We explore the consequential impact of this distinction on the interplay between probes of structure, low-redshift distances, and CMB anisotropies. We derive constraints on the neutrino's masses independently from their suppression of structure and impact on geometry, showing that the latter is at least as important as the former. While the Dark Energy Spectroscopic Instrument's recent baryon acoustic oscillation data place stringent bounds largely deriving from their geometric incompatibility with massive neutrinos, all recent type Ia supernova datasets drive marginal preferences for nonzero neutrino masses because they prefer substantially larger matter fractions. Recent CMB lensing data, however, neither exclude neutrinos' suppression of structure nor constrain it strongly enough to discriminate between mass hierarchies. Current data thus evince not a need for modified dynamics of neutrino perturbations or structure growth but rather an inconsistent compatibility with massive neutrinos' impact on the expansion history. We identify two of DESI's measurements that strongly influence its constraints, and we also discuss neutrino mass measurements in models that alter the sound horizon.
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
Numerous biological and physical processes can be modeled as systems of interacting entities evolving continuously over time, e.g. the dynamics of communicating cells or physical particles. Learning the dynamics of such systems is essential for predicting the temporal evolution of populations across novel samples and unseen environments. Flow-based models allow for learning these dynamics at the population level - they model the evolution of the entire distribution of samples. However, current flow-based models are limited to a single initial population and a set of predefined conditions which describe different dynamics. We argue that multiple processes in natural sciences have to be represented as vector fields on the Wasserstein manifold of probability densities. That is, the change of the population at any moment in time depends on the population itself due to the interactions between samples. In particular, this is crucial for personalized medicine where the development of diseases and their respective treatment response depends on the microenvironment of cells specific to each patient. We propose Meta Flow Matching (MFM), a practical approach to integrating along these vector fields on the Wasserstein manifold by amortizing the flow model over the initial populations. Namely, we embed the population of samples using a Graph Neural Network (GNN) and use these embeddings to train a Flow Matching model. This gives MFM the ability to generalize over the initial distributions unlike previously proposed methods. We demonstrate the ability of MFM to improve prediction of individual treatment responses on a large scale multi-patient single-cell drug screen dataset.
On the Incompressible Limit of Current-Vortex Sheets with or without Surface Tension
This is the second part of the two-paper sequence, which aims to present a comprehensive study for current-vortex sheets with or without surface tension in ideal compressible magnetohydrodynamics (MHD). The results of this paper are two-fold: First, we establish the zero-surface-tension limit of compressible current-vortex sheets under certain stability conditions on the free interface; Second, when the two-phase flows are isentropic and the density functions converge to the same constant as Mach number goes to zero, we can drop the boundedness assumption (with respect to Mach number) on high-order time derivatives by combining the paradifferential approach applied to the evolution equation of the free interface, the structure of wave equations for the total pressure and the anisotropic Sobolev spaces with suitable weights of Mach number. To our knowledge, this is the first result that rigorously justifies the incompressible limit of free-surface MHD flows. Moreover, we actually present a robust framework for the low Mach number limit of vortex-sheet problems, which was never established in any previous works.
An efficient Asymptotic-Preserving scheme for the Boltzmann mixture with disparate mass
In this paper, we develop and implement an efficient asymptotic-preserving (AP) scheme to solve the gas mixture of Boltzmann equations under the disparate mass scaling relevant to the so-called "epochal relaxation" phenomenon. The disparity in molecular masses, ranging across several orders of magnitude, leads to significant challenges in both the evaluation of collision operators and the designing of time-stepping schemes to capture the multi-scale nature of the dynamics. A direct implementation of the spectral method faces prohibitive computational costs as the mass ratio increases due to the need to resolve vastly different thermal velocities. Unlike [I. M. Gamba, S. Jin, and L. Liu, Commun. Math. Sci., 17 (2019), pp. 1257-1289], we propose an alternative approach based on proper truncation of asymptotic expansions of the collision operators, which significantly reduces the computational complexity and works well for small varepsilon. By incorporating the separation of three time scales in the model's relaxation process [P. Degond and B. Lucquin-Desreux, Math. Models Methods Appl. Sci., 6 (1996), pp. 405-436], we design an AP scheme that captures the specific dynamics of the disparate mass model while maintaining computational efficiency. Numerical experiments demonstrate the effectiveness of the proposed scheme in handling large mass ratios of heavy and light species, as well as capturing the epochal relaxation phenomenon.
An operator preconditioning perspective on training in physics-informed machine learning
In this paper, we investigate the behavior of gradient descent algorithms in physics-informed machine learning methods like PINNs, which minimize residuals connected to partial differential equations (PDEs). Our key result is that the difficulty in training these models is closely related to the conditioning of a specific differential operator. This operator, in turn, is associated to the Hermitian square of the differential operator of the underlying PDE. If this operator is ill-conditioned, it results in slow or infeasible training. Therefore, preconditioning this operator is crucial. We employ both rigorous mathematical analysis and empirical evaluations to investigate various strategies, explaining how they better condition this critical operator, and consequently improve training.
Panda: A pretrained forecast model for universal representation of chaotic dynamics
Chaotic systems are intrinsically sensitive to small errors, challenging efforts to construct predictive data-driven models of real-world dynamical systems such as fluid flows or neuronal activity. Prior efforts comprise either specialized models trained separately on individual time series, or foundation models trained on vast time series databases with little underlying dynamical structure. Motivated by dynamical systems theory, we present Panda, Patched Attention for Nonlinear DynAmics. We train Panda on a novel synthetic, extensible dataset of 2 times 10^4 chaotic dynamical systems that we discover using an evolutionary algorithm. Trained purely on simulated data, Panda exhibits emergent properties: zero-shot forecasting of unseen real world chaotic systems, and nonlinear resonance patterns in cross-channel attention heads. Despite having been trained only on low-dimensional ordinary differential equations, Panda spontaneously develops the ability to predict partial differential equations without retraining. We demonstrate a neural scaling law for differential equations, underscoring the potential of pretrained models for probing abstract mathematical domains like nonlinear dynamics.
Conditionally Strongly Log-Concave Generative Models
There is a growing gap between the impressive results of deep image generative models and classical algorithms that offer theoretical guarantees. The former suffer from mode collapse or memorization issues, limiting their application to scientific data. The latter require restrictive assumptions such as log-concavity to escape the curse of dimensionality. We partially bridge this gap by introducing conditionally strongly log-concave (CSLC) models, which factorize the data distribution into a product of conditional probability distributions that are strongly log-concave. This factorization is obtained with orthogonal projectors adapted to the data distribution. It leads to efficient parameter estimation and sampling algorithms, with theoretical guarantees, although the data distribution is not globally log-concave. We show that several challenging multiscale processes are conditionally log-concave using wavelet packet orthogonal projectors. Numerical results are shown for physical fields such as the varphi^4 model and weak lensing convergence maps with higher resolution than in previous works.
Examples of renormalization group transformations for image sets
Using the example of configurations generated with the worm algorithm for the two-dimensional Ising model, we propose renormalization group (RG) transformations, inspired by the tensor RG, that can be applied to sets of images. We relate criticality to the logarithmic divergence of the largest principal component. We discuss the changes in link occupation under the RG transformation, suggest ways to obtain data collapse, and compare with the two state tensor RG approximation near the fixed point.
Evidence of Nonlinear Signatures in Solar Wind Proton Density at the L1 Lagrange point
The solar wind is a medium characterized by strong turbulence and significant field fluctuations on various scales. Recent observations have revealed that magnetic turbulence exhibits a self-similar behavior. Similarly, high-resolution measurements of the proton density have shown comparable characteristics, prompting several studies into the multifractal properties of these density fluctuations. In this work, we show that low-resolution observations of the solar wind proton density over time, recorded by various spacecraft at Lagrange point L1, also exhibit non-linear and multifractal structures. The novelty of our study lies in the fact that this is the first systematic analysis of solar wind proton density using low-resolution (hourly) data collected by multiple spacecraft at the L1 Lagrange point over a span of 17 years. Furthermore, we interpret our results within the framework of non-extensive statistical mechanics, which appears to be consistent with the observed nonlinear behavior. Based on the data, we successfully validate the q-triplet predicted by non-extensive statistical theory. To the best of our knowledge, this represents the most rigorous and systematic validation to date of the q-triplet in the solar wind.
GyroSwin: 5D Surrogates for Gyrokinetic Plasma Turbulence Simulations
Nuclear fusion plays a pivotal role in the quest for reliable and sustainable energy production. A major roadblock to viable fusion power is understanding plasma turbulence, which significantly impairs plasma confinement, and is vital for next-generation reactor design. Plasma turbulence is governed by the nonlinear gyrokinetic equation, which evolves a 5D distribution function over time. Due to its high computational cost, reduced-order models are often employed in practice to approximate turbulent transport of energy. However, they omit nonlinear effects unique to the full 5D dynamics. To tackle this, we introduce GyroSwin, the first scalable 5D neural surrogate that can model 5D nonlinear gyrokinetic simulations, thereby capturing the physical phenomena neglected by reduced models, while providing accurate estimates of turbulent heat transport.GyroSwin (i) extends hierarchical Vision Transformers to 5D, (ii) introduces cross-attention and integration modules for latent 3Dleftrightarrow5D interactions between electrostatic potential fields and the distribution function, and (iii) performs channelwise mode separation inspired by nonlinear physics. We demonstrate that GyroSwin outperforms widely used reduced numerics on heat flux prediction, captures the turbulent energy cascade, and reduces the cost of fully resolved nonlinear gyrokinetics by three orders of magnitude while remaining physically verifiable. GyroSwin shows promising scaling laws, tested up to one billion parameters, paving the way for scalable neural surrogates for gyrokinetic simulations of plasma turbulence.
Wyckoff Transformer: Generation of Symmetric Crystals
Crystal symmetry plays a fundamental role in determining its physical, chemical, and electronic properties such as electrical and thermal conductivity, optical and polarization behavior, and mechanical strength. Almost all known crystalline materials have internal symmetry. However, this is often inadequately addressed by existing generative models, making the consistent generation of stable and symmetrically valid crystal structures a significant challenge. We introduce WyFormer, a generative model that directly tackles this by formally conditioning on space group symmetry. It achieves this by using Wyckoff positions as the basis for an elegant, compressed, and discrete structure representation. To model the distribution, we develop a permutation-invariant autoregressive model based on the Transformer encoder and an absence of positional encoding. Extensive experimentation demonstrates WyFormer's compelling combination of attributes: it achieves best-in-class symmetry-conditioned generation, incorporates a physics-motivated inductive bias, produces structures with competitive stability, predicts material properties with competitive accuracy even without atomic coordinates, and exhibits unparalleled inference speed.
Coherent Structures Governing Transport at Turbulent Interfaces
In an experiment on a turbulent jet, we detect interfacial turbulent layers in a frame that moves, on average, along with the \tnti. This significantly prolongs the observation time of scalar and velocity structures and enables the measurement of two types of Lagrangian coherent structures. One structure, the finite-time Lyapunov field (FTLE), quantifies advective transport barriers of fluid parcels while the other structure highlights barriers of diffusive momentum transport. These two complementary structures depend on large-scale and small-scale motion and are therefore associated with the growth of the turbulent region through engulfment or nibbling, respectively. We detect the \tnti\ from cluster analysis, where we divide the measured scalar field into four clusters. Not only the \tnti\ can be found this way, but also the next, internal, turbulent-turbulent interface. Conditional averages show that these interfaces are correlated with barriers of advective and diffusive transport when the Lagrangian integration time is smaller than the integral time scale. Diffusive structures decorrelate faster since they have a smaller timescale. Conditional averages of these structures at internal turbulent-turbulent interfaces show the same pattern with a more pronounced jump at the interface indicative of a shear layer. This is quite an unexpected outcome, as the internal interface is now defined not by the presence or absence of vorticity, but by conditional vorticity corresponding to two uniform concentration zones. The long-time diffusive momentum flux along Lagrangian paths represents the growth of the turbulent flow into the irrotational domain, a direct demonstration of nibbling. The diffusive flux parallel to the \tnti\ appears to be concentrated in a diffusive superlayer whose width is comparable with the Taylor microscale, which is relatively invariant in time.
The effects of AGN feedback on the structural and dynamical properties of Milky Way-mass galaxies in cosmological simulations
Feedback from active galactic nuclei (AGN) has become established as a fundamental process in the evolution of the most massive galaxies. Its impact on Milky Way (MW)-mass systems, however, remains comparatively unexplored. In this work, we use the Auriga simulations to probe the impact of AGN feedback on the dynamical and structural properties of galaxies, focussing on the bar, bulge, and disc. We analyse three galaxies -- two strongly and one unbarred/weakly barred -- using three setups: (i) the fiducial Auriga model, which includes both radio and quasar mode feedback, (ii) a setup with no radio mode, and (iii) one with neither the radio nor the quasar mode. When removing the radio mode, gas in the circumgalactic medium cools more efficiently and subsequently settles in an extended disc, with little effect on the inner disc. Contrary to previous studies, we find that although the removal of the quasar mode results in more massive central components, these are in the form of compact discs, rather than spheroidal bulges. Therefore, galaxies without quasar mode feedback are more baryon-dominated and thus prone to forming stronger and shorter bars, which reveals an anti-correlation between the ejective nature of AGN feedback and bar strength. Hence, we report that the effect of AGN feedback (i.e. ejective or preventive) can significantly alter the dynamical properties of MW-like galaxies. Therefore, the observed dynamical and structural properties of MW-mass galaxies can be used as additional constraints for calibrating the efficiency of AGN feedback models.
Coupled BEM-FEM for the convected Helmholtz equation with non-uniform flow in a bounded domain
We consider the convected Helmholtz equation modeling linear acoustic propagation at a fixed frequency in a subsonic flow around a scattering object. The flow is supposed to be uniform in the exterior domain far from the object, and potential in the interior domain close to the object. Our key idea is the reformulation of the original problem using the Prandtl--Glauert transformation on the whole flow domain, yielding (i) the classical Helmholtz equation in the exterior domain and (ii) an anisotropic diffusive PDE with skew-symmetric first-order perturbation in the interior domain such that its transmission condition at the coupling boundary naturally fits the Neumann condition from the classical Helmholtz equation. Then, efficient off-the-shelf tools can be used to perform the BEM-FEM coupling, leading to two novel variational formulations for the convected Helmholtz equation. The first formulation involves one surface unknown and can be affected by resonant frequencies, while the second formulation avoids resonant frequencies and involves two surface unknowns. Numerical simulations are presented to compare the two formulations.
Linearly-Recurrent Autoencoder Networks for Learning Dynamics
This paper describes a method for learning low-dimensional approximations of nonlinear dynamical systems, based on neural-network approximations of the underlying Koopman operator. Extended Dynamic Mode Decomposition (EDMD) provides a useful data-driven approximation of the Koopman operator for analyzing dynamical systems. This paper addresses a fundamental problem associated with EDMD: a trade-off between representational capacity of the dictionary and over-fitting due to insufficient data. A new neural network architecture combining an autoencoder with linear recurrent dynamics in the encoded state is used to learn a low-dimensional and highly informative Koopman-invariant subspace of observables. A method is also presented for balanced model reduction of over-specified EDMD systems in feature space. Nonlinear reconstruction using partially linear multi-kernel regression aims to improve reconstruction accuracy from the low-dimensional state when the data has complex but intrinsically low-dimensional structure. The techniques demonstrate the ability to identify Koopman eigenfunctions of the unforced Duffing equation, create accurate low-dimensional models of an unstable cylinder wake flow, and make short-time predictions of the chaotic Kuramoto-Sivashinsky equation.
Mamba Integrated with Physics Principles Masters Long-term Chaotic System Forecasting
Long-term forecasting of chaotic systems from short-term observations remains a fundamental and underexplored challenge due to the intrinsic sensitivity to initial conditions and the complex geometry of strange attractors. Existing approaches often rely on long-term training data or focus on short-term sequence correlations, struggling to maintain predictive stability and dynamical coherence over extended horizons. We propose PhyxMamba, a novel framework that integrates a Mamba-based state-space model with physics-informed principles to capture the underlying dynamics of chaotic systems. By reconstructing the attractor manifold from brief observations using time-delay embeddings, PhyxMamba extracts global dynamical features essential for accurate forecasting. Our generative training scheme enables Mamba to replicate the physical process, augmented by multi-token prediction and attractor geometry regularization for physical constraints, enhancing prediction accuracy and preserving key statistical invariants. Extensive evaluations on diverse simulated and real-world chaotic systems demonstrate that PhyxMamba delivers superior long-term forecasting and faithfully captures essential dynamical invariants from short-term data. This framework opens new avenues for reliably predicting chaotic systems under observation-scarce conditions, with broad implications across climate science, neuroscience, epidemiology, and beyond. Our code is open-source at https://github.com/tsinghua-fib-lab/PhyxMamba.

 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
	