Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAnyLoss: Transforming Classification Metrics into Loss Functions
Many evaluation metrics can be used to assess the performance of models in binary classification tasks. However, most of them are derived from a confusion matrix in a non-differentiable form, making it very difficult to generate a differentiable loss function that could directly optimize them. The lack of solutions to bridge this challenge not only hinders our ability to solve difficult tasks, such as imbalanced learning, but also requires the deployment of computationally expensive hyperparameter search processes in model selection. In this paper, we propose a general-purpose approach that transforms any confusion matrix-based metric into a loss function, AnyLoss, that is available in optimization processes. To this end, we use an approximation function to make a confusion matrix represented in a differentiable form, and this approach enables any confusion matrix-based metric to be directly used as a loss function. The mechanism of the approximation function is provided to ensure its operability and the differentiability of our loss functions is proved by suggesting their derivatives. We conduct extensive experiments under diverse neural networks with many datasets, and we demonstrate their general availability to target any confusion matrix-based metrics. Our method, especially, shows outstanding achievements in dealing with imbalanced datasets, and its competitive learning speed, compared to multiple baseline models, underscores its efficiency.
Manifold Learning by Mixture Models of VAEs for Inverse Problems
Representing a manifold of very high-dimensional data with generative models has been shown to be computationally efficient in practice. However, this requires that the data manifold admits a global parameterization. In order to represent manifolds of arbitrary topology, we propose to learn a mixture model of variational autoencoders. Here, every encoder-decoder pair represents one chart of a manifold. We propose a loss function for maximum likelihood estimation of the model weights and choose an architecture that provides us the analytical expression of the charts and of their inverses. Once the manifold is learned, we use it for solving inverse problems by minimizing a data fidelity term restricted to the learned manifold. To solve the arising minimization problem we propose a Riemannian gradient descent algorithm on the learned manifold. We demonstrate the performance of our method for low-dimensional toy examples as well as for deblurring and electrical impedance tomography on certain image manifolds.
LegendreTron: Uprising Proper Multiclass Loss Learning
Loss functions serve as the foundation of supervised learning and are often chosen prior to model development. To avoid potentially ad hoc choices of losses, statistical decision theory describes a desirable property for losses known as properness, which asserts that Bayes' rule is optimal. Recent works have sought to learn losses and models jointly. Existing methods do this by fitting an inverse canonical link function which monotonically maps R to [0,1] to estimate probabilities for binary problems. In this paper, we extend monotonicity to maps between R^{C-1} and the projected probability simplex Delta^{C-1} by using monotonicity of gradients of convex functions. We present {\sc LegendreTron} as a novel and practical method that jointly learns proper canonical losses and probabilities for multiclass problems. Tested on a benchmark of domains with up to 1,000 classes, our experimental results show that our method consistently outperforms the natural multiclass baseline under a t-test at 99% significance on all datasets with greater than 10 classes.
PolyLoss: A Polynomial Expansion Perspective of Classification Loss Functions
Cross-entropy loss and focal loss are the most common choices when training deep neural networks for classification problems. Generally speaking, however, a good loss function can take on much more flexible forms, and should be tailored for different tasks and datasets. Motivated by how functions can be approximated via Taylor expansion, we propose a simple framework, named PolyLoss, to view and design loss functions as a linear combination of polynomial functions. Our PolyLoss allows the importance of different polynomial bases to be easily adjusted depending on the targeting tasks and datasets, while naturally subsuming the aforementioned cross-entropy loss and focal loss as special cases. Extensive experimental results show that the optimal choice within the PolyLoss is indeed dependent on the task and dataset. Simply by introducing one extra hyperparameter and adding one line of code, our Poly-1 formulation outperforms the cross-entropy loss and focal loss on 2D image classification, instance segmentation, object detection, and 3D object detection tasks, sometimes by a large margin.
I-Con: A Unifying Framework for Representation Learning
As the field of representation learning grows, there has been a proliferation of different loss functions to solve different classes of problems. We introduce a single information-theoretic equation that generalizes a large collection of modern loss functions in machine learning. In particular, we introduce a framework that shows that several broad classes of machine learning methods are precisely minimizing an integrated KL divergence between two conditional distributions: the supervisory and learned representations. This viewpoint exposes a hidden information geometry underlying clustering, spectral methods, dimensionality reduction, contrastive learning, and supervised learning. This framework enables the development of new loss functions by combining successful techniques from across the literature. We not only present a wide array of proofs, connecting over 23 different approaches, but we also leverage these theoretical results to create state-of-the-art unsupervised image classifiers that achieve a +8% improvement over the prior state-of-the-art on unsupervised classification on ImageNet-1K. We also demonstrate that I-Con can be used to derive principled debiasing methods which improve contrastive representation learners.
A Comprehensive Survey of Regression Based Loss Functions for Time Series Forecasting
Time Series Forecasting has been an active area of research due to its many applications ranging from network usage prediction, resource allocation, anomaly detection, and predictive maintenance. Numerous publications published in the last five years have proposed diverse sets of objective loss functions to address cases such as biased data, long-term forecasting, multicollinear features, etc. In this paper, we have summarized 14 well-known regression loss functions commonly used for time series forecasting and listed out the circumstances where their application can aid in faster and better model convergence. We have also demonstrated how certain categories of loss functions perform well across all data sets and can be considered as a baseline objective function in circumstances where the distribution of the data is unknown. Our code is available at GitHub: https://github.com/aryan-jadon/Regression-Loss-Functions-in-Time-Series-Forecasting-Tensorflow.
Circle Loss: A Unified Perspective of Pair Similarity Optimization
This paper provides a pair similarity optimization viewpoint on deep feature learning, aiming to maximize the within-class similarity s_p and minimize the between-class similarity s_n. We find a majority of loss functions, including the triplet loss and the softmax plus cross-entropy loss, embed s_n and s_p into similarity pairs and seek to reduce (s_n-s_p). Such an optimization manner is inflexible, because the penalty strength on every single similarity score is restricted to be equal. Our intuition is that if a similarity score deviates far from the optimum, it should be emphasized. To this end, we simply re-weight each similarity to highlight the less-optimized similarity scores. It results in a Circle loss, which is named due to its circular decision boundary. The Circle loss has a unified formula for two elemental deep feature learning approaches, i.e. learning with class-level labels and pair-wise labels. Analytically, we show that the Circle loss offers a more flexible optimization approach towards a more definite convergence target, compared with the loss functions optimizing (s_n-s_p). Experimentally, we demonstrate the superiority of the Circle loss on a variety of deep feature learning tasks. On face recognition, person re-identification, as well as several fine-grained image retrieval datasets, the achieved performance is on par with the state of the art.
Cross-Entropy Loss Functions: Theoretical Analysis and Applications
Cross-entropy is a widely used loss function in applications. It coincides with the logistic loss applied to the outputs of a neural network, when the softmax is used. But, what guarantees can we rely on when using cross-entropy as a surrogate loss? We present a theoretical analysis of a broad family of loss functions, comp-sum losses, that includes cross-entropy (or logistic loss), generalized cross-entropy, the mean absolute error and other cross-entropy-like loss functions. We give the first H-consistency bounds for these loss functions. These are non-asymptotic guarantees that upper bound the zero-one loss estimation error in terms of the estimation error of a surrogate loss, for the specific hypothesis set H used. We further show that our bounds are tight. These bounds depend on quantities called minimizability gaps. To make them more explicit, we give a specific analysis of these gaps for comp-sum losses. We also introduce a new family of loss functions, smooth adversarial comp-sum losses, that are derived from their comp-sum counterparts by adding in a related smooth term. We show that these loss functions are beneficial in the adversarial setting by proving that they admit H-consistency bounds. This leads to new adversarial robustness algorithms that consist of minimizing a regularized smooth adversarial comp-sum loss. While our main purpose is a theoretical analysis, we also present an extensive empirical analysis comparing comp-sum losses. We further report the results of a series of experiments demonstrating that our adversarial robustness algorithms outperform the current state-of-the-art, while also achieving a superior non-adversarial accuracy.
Loss Functions and Metrics in Deep Learning
When training or evaluating deep learning models, two essential parts are picking the proper loss function and deciding on performance metrics. In this paper, we provide a comprehensive overview of the most common loss functions and metrics used across many different types of deep learning tasks, from general tasks such as regression and classification to more specific tasks in Computer Vision and Natural Language Processing. We introduce the formula for each loss and metric, discuss their strengths and limitations, and describe how these methods can be applied to various problems within deep learning. This work can serve as a reference for researchers and practitioners in the field, helping them make informed decisions when selecting the most appropriate loss function and performance metrics for their deep learning projects.
SuSana Distancia is all you need: Enforcing class separability in metric learning via two novel distance-based loss functions for few-shot image classification
Few-shot learning is a challenging area of research that aims to learn new concepts with only a few labeled samples of data. Recent works based on metric-learning approaches leverage the meta-learning approach, which is encompassed by episodic tasks that make use a support (training) and query set (test) with the objective of learning a similarity comparison metric between those sets. Due to the lack of data, the learning process of the embedding network becomes an important part of the few-shot task. Previous works have addressed this problem using metric learning approaches, but the properties of the underlying latent space and the separability of the difference classes on it was not entirely enforced. In this work, we propose two different loss functions which consider the importance of the embedding vectors by looking at the intra-class and inter-class distance between the few data. The first loss function is the Proto-Triplet Loss, which is based on the original triplet loss with the modifications needed to better work on few-shot scenarios. The second loss function, which we dub ICNN loss is based on an inter and intra class nearest neighbors score, which help us to assess the quality of embeddings obtained from the trained network. Our results, obtained from a extensive experimental setup show a significant improvement in accuracy in the miniImagenNet benchmark compared to other metric-based few-shot learning methods by a margin of 2%, demonstrating the capability of these loss functions to allow the network to generalize better to previously unseen classes. In our experiments, we demonstrate competitive generalization capabilities to other domains, such as the Caltech CUB, Dogs and Cars datasets compared with the state of the art.
EnsLoss: Stochastic Calibrated Loss Ensembles for Preventing Overfitting in Classification
Empirical risk minimization (ERM) with a computationally feasible surrogate loss is a widely accepted approach for classification. Notably, the convexity and calibration (CC) properties of a loss function ensure consistency of ERM in maximizing accuracy, thereby offering a wide range of options for surrogate losses. In this article, we propose a novel ensemble method, namely EnsLoss, which extends the ensemble learning concept to combine loss functions within the ERM framework. A key feature of our method is the consideration on preserving the "legitimacy" of the combined losses, i.e., ensuring the CC properties. Specifically, we first transform the CC conditions of losses into loss-derivatives, thereby bypassing the need for explicit loss functions and directly generating calibrated loss-derivatives. Therefore, inspired by Dropout, EnsLoss enables loss ensembles through one training process with doubly stochastic gradient descent (i.e., random batch samples and random calibrated loss-derivatives). We theoretically establish the statistical consistency of our approach and provide insights into its benefits. The numerical effectiveness of EnsLoss compared to fixed loss methods is demonstrated through experiments on a broad range of 14 OpenML tabular datasets and 46 image datasets with various deep learning architectures. Python repository and source code are available on GitHub at https://github.com/statmlben/ensloss.
Balancing reconstruction error and Kullback-Leibler divergence in Variational Autoencoders
In the loss function of Variational Autoencoders there is a well known tension between two components: the reconstruction loss, improving the quality of the resulting images, and the Kullback-Leibler divergence, acting as a regularizer of the latent space. Correctly balancing these two components is a delicate issue, easily resulting in poor generative behaviours. In a recent work, Dai and Wipf obtained a sensible improvement by allowing the network to learn the balancing factor during training, according to a suitable loss function. In this article, we show that learning can be replaced by a simple deterministic computation, helping to understand the underlying mechanism, and resulting in a faster and more accurate behaviour. On typical datasets such as Cifar and Celeba, our technique sensibly outperforms all previous VAE architectures.
Decoupled Weight Decay Regularization
L_2 regularization and weight decay regularization are equivalent for standard stochastic gradient descent (when rescaled by the learning rate), but as we demonstrate this is not the case for adaptive gradient algorithms, such as Adam. While common implementations of these algorithms employ L_2 regularization (often calling it "weight decay" in what may be misleading due to the inequivalence we expose), we propose a simple modification to recover the original formulation of weight decay regularization by decoupling the weight decay from the optimization steps taken w.r.t. the loss function. We provide empirical evidence that our proposed modification (i) decouples the optimal choice of weight decay factor from the setting of the learning rate for both standard SGD and Adam and (ii) substantially improves Adam's generalization performance, allowing it to compete with SGD with momentum on image classification datasets (on which it was previously typically outperformed by the latter). Our proposed decoupled weight decay has already been adopted by many researchers, and the community has implemented it in TensorFlow and PyTorch; the complete source code for our experiments is available at https://github.com/loshchil/AdamW-and-SGDW
Diffuse and Disperse: Image Generation with Representation Regularization
The development of diffusion-based generative models over the past decade has largely proceeded independently of progress in representation learning. These diffusion models typically rely on regression-based objectives and generally lack explicit regularization. In this work, we propose Dispersive Loss, a simple plug-and-play regularizer that effectively improves diffusion-based generative models. Our loss function encourages internal representations to disperse in the hidden space, analogous to contrastive self-supervised learning, with the key distinction that it requires no positive sample pairs and therefore does not interfere with the sampling process used for regression. Compared to the recent method of representation alignment (REPA), our approach is self-contained and minimalist, requiring no pre-training, no additional parameters, and no external data. We evaluate Dispersive Loss on the ImageNet dataset across a range of models and report consistent improvements over widely used and strong baselines. We hope our work will help bridge the gap between generative modeling and representation learning.
Rethinking Loss Design for Large-scale 3D Shape Retrieval
Learning discriminative shape representations is a crucial issue for large-scale 3D shape retrieval. In this paper, we propose the Collaborative Inner Product Loss (CIP Loss) to obtain ideal shape embedding that discriminative among different categories and clustered within the same class. Utilizing simple inner product operation, CIP loss explicitly enforces the features of the same class to be clustered in a linear subspace, while inter-class subspaces are constrained to be at least orthogonal. Compared to previous metric loss functions, CIP loss could provide more clear geometric interpretation for the embedding than Euclidean margin, and is easy to implement without normalization operation referring to cosine margin. Moreover, our proposed loss term can combine with other commonly used loss functions and can be easily plugged into existing off-the-shelf architectures. Extensive experiments conducted on the two public 3D object retrieval datasets, ModelNet and ShapeNetCore 55, demonstrate the effectiveness of our proposal, and our method has achieved state-of-the-art results on both datasets.
Feature-aligned N-BEATS with Sinkhorn divergence
In this study, we propose Feature-aligned N-BEATS as a domain generalization model for univariate time series forecasting problems. The proposed model is an extension of the doubly residual stacking architecture of N-BEATS (Oreshkin et al. [34]) into a representation learning framework. The model is a new structure that involves marginal feature probability measures (i.e., pushforward measures of multiple source domains) induced by the intricate composition of residual operators of N-BEATS in each stack and aligns them stack-wise via an entropic regularized Wasserstein distance referred to as the Sinkhorn divergence (Genevay et al. [14]). The loss function consists of a typical forecasting loss for multiple source domains and an alignment loss calculated with the Sinkhorn divergence, which allows the model to learn invariant features stack-wise across multiple source data sequences while retaining N-BEATS's interpretable design. We conduct a comprehensive experimental evaluation of the proposed approach and the results demonstrate the model's forecasting and generalization capabilities in comparison with methods based on the original N-BEATS.
Topologically faithful image segmentation via induced matching of persistence barcodes
Image segmentation is a largely researched field where neural networks find vast applications in many facets of technology. Some of the most popular approaches to train segmentation networks employ loss functions optimizing pixel-overlap, an objective that is insufficient for many segmentation tasks. In recent years, their limitations fueled a growing interest in topology-aware methods, which aim to recover the correct topology of the segmented structures. However, so far, none of the existing approaches achieve a spatially correct matching between the topological features of ground truth and prediction. In this work, we propose the first topologically and feature-wise accurate metric and loss function for supervised image segmentation, which we term Betti matching. We show how induced matchings guarantee the spatially correct matching between barcodes in a segmentation setting. Furthermore, we propose an efficient algorithm to compute the Betti matching of images. We show that the Betti matching error is an interpretable metric to evaluate the topological correctness of segmentations, which is more sensitive than the well-established Betti number error. Moreover, the differentiability of the Betti matching loss enables its use as a loss function. It improves the topological performance of segmentation networks across six diverse datasets while preserving the volumetric performance. Our code is available in https://github.com/nstucki/Betti-matching.
NeuralNDCG: Direct Optimisation of a Ranking Metric via Differentiable Relaxation of Sorting
Learning to Rank (LTR) algorithms are usually evaluated using Information Retrieval metrics like Normalised Discounted Cumulative Gain (NDCG) or Mean Average Precision. As these metrics rely on sorting predicted items' scores (and thus, on items' ranks), their derivatives are either undefined or zero everywhere. This makes them unsuitable for gradient-based optimisation, which is the usual method of learning appropriate scoring functions. Commonly used LTR loss functions are only loosely related to the evaluation metrics, causing a mismatch between the optimisation objective and the evaluation criterion. In this paper, we address this mismatch by proposing NeuralNDCG, a novel differentiable approximation to NDCG. Since NDCG relies on the non-differentiable sorting operator, we obtain NeuralNDCG by relaxing that operator using NeuralSort, a differentiable approximation of sorting. As a result, we obtain a new ranking loss function which is an arbitrarily accurate approximation to the evaluation metric, thus closing the gap between the training and the evaluation of LTR models. We introduce two variants of the proposed loss function. Finally, the empirical evaluation shows that our proposed method outperforms previous work aimed at direct optimisation of NDCG and is competitive with the state-of-the-art methods.
Label Distributionally Robust Losses for Multi-class Classification: Consistency, Robustness and Adaptivity
We study a family of loss functions named label-distributionally robust (LDR) losses for multi-class classification that are formulated from distributionally robust optimization (DRO) perspective, where the uncertainty in the given label information are modeled and captured by taking the worse case of distributional weights. The benefits of this perspective are several fold: (i) it provides a unified framework to explain the classical cross-entropy (CE) loss and SVM loss and their variants, (ii) it includes a special family corresponding to the temperature-scaled CE loss, which is widely adopted but poorly understood; (iii) it allows us to achieve adaptivity to the uncertainty degree of label information at an instance level. Our contributions include: (1) we study both consistency and robustness by establishing top-k (forall kgeq 1) consistency of LDR losses for multi-class classification, and a negative result that a top-1 consistent and symmetric robust loss cannot achieve top-k consistency simultaneously for all kgeq 2; (2) we propose a new adaptive LDR loss that automatically adapts the individualized temperature parameter to the noise degree of class label of each instance; (3) we demonstrate stable and competitive performance for the proposed adaptive LDR loss on 7 benchmark datasets under 6 noisy label and 1 clean settings against 13 loss functions, and on one real-world noisy dataset. The code is open-sourced at https://github.com/Optimization-AI/ICML2023_LDR.
ShapeNet: Shape Constraint for Galaxy Image Deconvolution
Deep Learning (DL) has shown remarkable results in solving inverse problems in various domains. In particular, the Tikhonet approach is very powerful to deconvolve optical astronomical images (Sureau et al. 2020). Yet, this approach only uses the ell_2 loss, which does not guarantee the preservation of physical information (e.g. flux and shape) of the object reconstructed in the image. In Nammour et al. (2021), a new loss function was proposed in the framework of sparse deconvolution, which better preserves the shape of galaxies and reduces the pixel error. In this paper, we extend Tikhonet to take into account this shape constraint, and apply our new DL method, called ShapeNet, to optical and radio-interferometry simulated data set. The originality of the paper relies on i) the shape constraint we use in the neural network framework, ii) the application of deep learning to radio-interferometry image deconvolution for the first time, and iii) the generation of a simulated radio data set that we make available for the community. A range of examples illustrates the results.
Mean Absolute Directional Loss as a New Loss Function for Machine Learning Problems in Algorithmic Investment Strategies
This paper investigates the issue of an adequate loss function in the optimization of machine learning models used in the forecasting of financial time series for the purpose of algorithmic investment strategies (AIS) construction. We propose the Mean Absolute Directional Loss (MADL) function, solving important problems of classical forecast error functions in extracting information from forecasts to create efficient buy/sell signals in algorithmic investment strategies. Finally, based on the data from two different asset classes (cryptocurrencies: Bitcoin and commodities: Crude Oil), we show that the new loss function enables us to select better hyperparameters for the LSTM model and obtain more efficient investment strategies, with regard to risk-adjusted return metrics on the out-of-sample data.
Improving Diffusion Models's Data-Corruption Resistance using Scheduled Pseudo-Huber Loss
Diffusion models are known to be vulnerable to outliers in training data. In this paper we study an alternative diffusion loss function, which can preserve the high quality of generated data like the original squared L_{2} loss while at the same time being robust to outliers. We propose to use pseudo-Huber loss function with a time-dependent parameter to allow for the trade-off between robustness on the most vulnerable early reverse-diffusion steps and fine details restoration on the final steps. We show that pseudo-Huber loss with the time-dependent parameter exhibits better performance on corrupted datasets in both image and audio domains. In addition, the loss function we propose can potentially help diffusion models to resist dataset corruption while not requiring data filtering or purification compared to conventional training algorithms.
Normalized Loss Functions for Deep Learning with Noisy Labels
Robust loss functions are essential for training accurate deep neural networks (DNNs) in the presence of noisy (incorrect) labels. It has been shown that the commonly used Cross Entropy (CE) loss is not robust to noisy labels. Whilst new loss functions have been designed, they are only partially robust. In this paper, we theoretically show by applying a simple normalization that: any loss can be made robust to noisy labels. However, in practice, simply being robust is not sufficient for a loss function to train accurate DNNs. By investigating several robust loss functions, we find that they suffer from a problem of underfitting. To address this, we propose a framework to build robust loss functions called Active Passive Loss (APL). APL combines two robust loss functions that mutually boost each other. Experiments on benchmark datasets demonstrate that the family of new loss functions created by our APL framework can consistently outperform state-of-the-art methods by large margins, especially under large noise rates such as 60% or 80% incorrect labels.
Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression
Bounding box regression is the crucial step in object detection. In existing methods, while ell_n-norm loss is widely adopted for bounding box regression, it is not tailored to the evaluation metric, i.e., Intersection over Union (IoU). Recently, IoU loss and generalized IoU (GIoU) loss have been proposed to benefit the IoU metric, but still suffer from the problems of slow convergence and inaccurate regression. In this paper, we propose a Distance-IoU (DIoU) loss by incorporating the normalized distance between the predicted box and the target box, which converges much faster in training than IoU and GIoU losses. Furthermore, this paper summarizes three geometric factors in bounding box regression, \ie, overlap area, central point distance and aspect ratio, based on which a Complete IoU (CIoU) loss is proposed, thereby leading to faster convergence and better performance. By incorporating DIoU and CIoU losses into state-of-the-art object detection algorithms, e.g., YOLO v3, SSD and Faster RCNN, we achieve notable performance gains in terms of not only IoU metric but also GIoU metric. Moreover, DIoU can be easily adopted into non-maximum suppression (NMS) to act as the criterion, further boosting performance improvement. The source code and trained models are available at https://github.com/Zzh-tju/DIoU.
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
Recently, a popular line of research in face recognition is adopting margins in the well-established softmax loss function to maximize class separability. In this paper, we first introduce an Additive Angular Margin Loss (ArcFace), which not only has a clear geometric interpretation but also significantly enhances the discriminative power. Since ArcFace is susceptible to the massive label noise, we further propose sub-center ArcFace, in which each class contains K sub-centers and training samples only need to be close to any of the K positive sub-centers. Sub-center ArcFace encourages one dominant sub-class that contains the majority of clean faces and non-dominant sub-classes that include hard or noisy faces. Based on this self-propelled isolation, we boost the performance through automatically purifying raw web faces under massive real-world noise. Besides discriminative feature embedding, we also explore the inverse problem, mapping feature vectors to face images. Without training any additional generator or discriminator, the pre-trained ArcFace model can generate identity-preserved face images for both subjects inside and outside the training data only by using the network gradient and Batch Normalization (BN) priors. Extensive experiments demonstrate that ArcFace can enhance the discriminative feature embedding as well as strengthen the generative face synthesis.
FAdam: Adam is a natural gradient optimizer using diagonal empirical Fisher information
This paper establishes a mathematical foundation for the Adam optimizer, elucidating its connection to natural gradient descent through Riemannian and information geometry. We rigorously analyze the diagonal empirical Fisher information matrix (FIM) in Adam, clarifying all detailed approximations and advocating for the use of log probability functions as loss, which should be based on discrete distributions, due to the limitations of empirical FIM. Our analysis uncovers flaws in the original Adam algorithm, leading to proposed corrections such as enhanced momentum calculations, adjusted bias corrections, and gradient clipping. We refine the weight decay term based on our theoretical framework. Our modified algorithm, Fisher Adam (FAdam), demonstrates superior performance across diverse domains including LLM, ASR, and VQ-VAE, achieving state-of-the-art results in ASR.
SymFace: Additional Facial Symmetry Loss for Deep Face Recognition
Over the past decade, there has been a steady advancement in enhancing face recognition algorithms leveraging advanced machine learning methods. The role of the loss function is pivotal in addressing face verification problems and playing a game-changing role. These loss functions have mainly explored variations among intra-class or inter-class separation. This research examines the natural phenomenon of facial symmetry in the face verification problem. The symmetry between the left and right hemi faces has been widely used in many research areas in recent decades. This paper adopts this simple approach judiciously by splitting the face image vertically into two halves. With the assumption that the natural phenomena of facial symmetry can enhance face verification methodology, we hypothesize that the two output embedding vectors of split faces must project close to each other in the output embedding space. Inspired by this concept, we penalize the network based on the disparity of embedding of the symmetrical pair of split faces. Symmetrical loss has the potential to minimize minor asymmetric features due to facial expression and lightning conditions, hence significantly increasing the inter-class variance among the classes and leading to more reliable face embedding. This loss function propels any network to outperform its baseline performance across all existing network architectures and configurations, enabling us to achieve SoTA results.
A Generalized Bandsplit Neural Network for Cinematic Audio Source Separation
Cinematic audio source separation is a relatively new subtask of audio source separation, with the aim of extracting the dialogue, music, and effects stems from their mixture. In this work, we developed a model generalizing the Bandsplit RNN for any complete or overcomplete partitions of the frequency axis. Psychoacoustically motivated frequency scales were used to inform the band definitions which are now defined with redundancy for more reliable feature extraction. A loss function motivated by the signal-to-noise ratio and the sparsity-promoting property of the 1-norm was proposed. We additionally exploit the information-sharing property of a common-encoder setup to reduce computational complexity during both training and inference, improve separation performance for hard-to-generalize classes of sounds, and allow flexibility during inference time with detachable decoders. Our best model sets the state of the art on the Divide and Remaster dataset with performance above the ideal ratio mask for the dialogue stem.
Neural Network Training Strategy to Enhance Anomaly Detection Performance: A Perspective on Reconstruction Loss Amplification
Unsupervised anomaly detection (UAD) is a widely adopted approach in industry due to rare anomaly occurrences and data imbalance. A desirable characteristic of an UAD model is contained generalization ability which excels in the reconstruction of seen normal patterns but struggles with unseen anomalies. Recent studies have pursued to contain the generalization capability of their UAD models in reconstruction from different perspectives, such as design of neural network (NN) structure and training strategy. In contrast, we note that containing of generalization ability in reconstruction can also be obtained simply from steep-shaped loss landscape. Motivated by this, we propose a loss landscape sharpening method by amplifying the reconstruction loss, dubbed Loss AMPlification (LAMP). LAMP deforms the loss landscape into a steep shape so the reconstruction error on unseen anomalies becomes greater. Accordingly, the anomaly detection performance is improved without any change of the NN architecture. Our findings suggest that LAMP can be easily applied to any reconstruction error metrics in UAD settings where the reconstruction model is trained with anomaly-free samples only.
Robust Angular Synchronization via Directed Graph Neural Networks
The angular synchronization problem aims to accurately estimate (up to a constant additive phase) a set of unknown angles theta_1, dots, theta_nin[0, 2pi) from m noisy measurements of their offsets theta_i-theta_j ;mod ; 2pi. Applications include, for example, sensor network localization, phase retrieval, and distributed clock synchronization. An extension of the problem to the heterogeneous setting (dubbed k-synchronization) is to estimate k groups of angles simultaneously, given noisy observations (with unknown group assignment) from each group. Existing methods for angular synchronization usually perform poorly in high-noise regimes, which are common in applications. In this paper, we leverage neural networks for the angular synchronization problem, and its heterogeneous extension, by proposing GNNSync, a theoretically-grounded end-to-end trainable framework using directed graph neural networks. In addition, new loss functions are devised to encode synchronization objectives. Experimental results on extensive data sets demonstrate that GNNSync attains competitive, and often superior, performance against a comprehensive set of baselines for the angular synchronization problem and its extension, validating the robustness of GNNSync even at high noise levels.
ConFIG: Towards Conflict-free Training of Physics Informed Neural Networks
The loss functions of many learning problems contain multiple additive terms that can disagree and yield conflicting update directions. For Physics-Informed Neural Networks (PINNs), loss terms on initial/boundary conditions and physics equations are particularly interesting as they are well-established as highly difficult tasks. To improve learning the challenging multi-objective task posed by PINNs, we propose the ConFIG method, which provides conflict-free updates by ensuring a positive dot product between the final update and each loss-specific gradient. It also maintains consistent optimization rates for all loss terms and dynamically adjusts gradient magnitudes based on conflict levels. We additionally leverage momentum to accelerate optimizations by alternating the back-propagation of different loss terms. We provide a mathematical proof showing the convergence of the ConFIG method, and it is evaluated across a range of challenging PINN scenarios. ConFIG consistently shows superior performance and runtime compared to baseline methods. We also test the proposed method in a classic multi-task benchmark, where the ConFIG method likewise exhibits a highly promising performance. Source code is available at https://tum-pbs.github.io/ConFIG
It Takes Two to Tango: Mixup for Deep Metric Learning
Metric learning involves learning a discriminative representation such that embeddings of similar classes are encouraged to be close, while embeddings of dissimilar classes are pushed far apart. State-of-the-art methods focus mostly on sophisticated loss functions or mining strategies. On the one hand, metric learning losses consider two or more examples at a time. On the other hand, modern data augmentation methods for classification consider two or more examples at a time. The combination of the two ideas is under-studied. In this work, we aim to bridge this gap and improve representations using mixup, which is a powerful data augmentation approach interpolating two or more examples and corresponding target labels at a time. This task is challenging because unlike classification, the loss functions used in metric learning are not additive over examples, so the idea of interpolating target labels is not straightforward. To the best of our knowledge, we are the first to investigate mixing both examples and target labels for deep metric learning. We develop a generalized formulation that encompasses existing metric learning loss functions and modify it to accommodate for mixup, introducing Metric Mix, or Metrix. We also introduce a new metric - utilization, to demonstrate that by mixing examples during training, we are exploring areas of the embedding space beyond the training classes, thereby improving representations. To validate the effect of improved representations, we show that mixing inputs, intermediate representations or embeddings along with target labels significantly outperforms state-of-the-art metric learning methods on four benchmark deep metric learning datasets.
Visualizing the Loss Landscape of Neural Nets
Neural network training relies on our ability to find "good" minimizers of highly non-convex loss functions. It is well-known that certain network architecture designs (e.g., skip connections) produce loss functions that train easier, and well-chosen training parameters (batch size, learning rate, optimizer) produce minimizers that generalize better. However, the reasons for these differences, and their effects on the underlying loss landscape, are not well understood. In this paper, we explore the structure of neural loss functions, and the effect of loss landscapes on generalization, using a range of visualization methods. First, we introduce a simple "filter normalization" method that helps us visualize loss function curvature and make meaningful side-by-side comparisons between loss functions. Then, using a variety of visualizations, we explore how network architecture affects the loss landscape, and how training parameters affect the shape of minimizers.
Gradient Boosting Neural Networks: GrowNet
A novel gradient boosting framework is proposed where shallow neural networks are employed as ``weak learners''. General loss functions are considered under this unified framework with specific examples presented for classification, regression, and learning to rank. A fully corrective step is incorporated to remedy the pitfall of greedy function approximation of classic gradient boosting decision tree. The proposed model rendered outperforming results against state-of-the-art boosting methods in all three tasks on multiple datasets. An ablation study is performed to shed light on the effect of each model components and model hyperparameters.
Cut your Losses with Squentropy
Nearly all practical neural models for classification are trained using cross-entropy loss. Yet this ubiquitous choice is supported by little theoretical or empirical evidence. Recent work (Hui & Belkin, 2020) suggests that training using the (rescaled) square loss is often superior in terms of the classification accuracy. In this paper we propose the "squentropy" loss, which is the sum of two terms: the cross-entropy loss and the average square loss over the incorrect classes. We provide an extensive set of experiments on multi-class classification problems showing that the squentropy loss outperforms both the pure cross entropy and rescaled square losses in terms of the classification accuracy. We also demonstrate that it provides significantly better model calibration than either of these alternative losses and, furthermore, has less variance with respect to the random initialization. Additionally, in contrast to the square loss, squentropy loss can typically be trained using exactly the same optimization parameters, including the learning rate, as the standard cross-entropy loss, making it a true "plug-and-play" replacement. Finally, unlike the rescaled square loss, multiclass squentropy contains no parameters that need to be adjusted.
ReTaSA: A Nonparametric Functional Estimation Approach for Addressing Continuous Target Shift
The presence of distribution shifts poses a significant challenge for deploying modern machine learning models in real-world applications. This work focuses on the target shift problem in a regression setting (Zhang et al., 2013; Nguyen et al., 2016). More specifically, the target variable y (also known as the response variable), which is continuous, has different marginal distributions in the training source and testing domain, while the conditional distribution of features x given y remains the same. While most literature focuses on classification tasks with finite target space, the regression problem has an infinite dimensional target space, which makes many of the existing methods inapplicable. In this work, we show that the continuous target shift problem can be addressed by estimating the importance weight function from an ill-posed integral equation. We propose a nonparametric regularized approach named ReTaSA to solve the ill-posed integral equation and provide theoretical justification for the estimated importance weight function. The effectiveness of the proposed method has been demonstrated with extensive numerical studies on synthetic and real-world datasets.
TopoMortar: A dataset to evaluate image segmentation methods focused on topology accuracy
We present TopoMortar, a brick wall dataset that is the first dataset specifically designed to evaluate topology-focused image segmentation methods, such as topology loss functions. TopoMortar enables to investigate in two ways whether methods incorporate prior topological knowledge. First, by eliminating challenges seen in real-world data, such as small training set, noisy labels, and out-of-distribution test-set images, that, as we show, impact the effectiveness of topology losses. Second, by allowing to assess in the same dataset topology accuracy across dataset challenges, isolating dataset-related effects from the effect of incorporating prior topological knowledge. In these two experiments, it is deliberately difficult to improve topology accuracy without actually using topology information, thus, permitting to attribute an improvement in topology accuracy to the incorporation of prior topological knowledge. To this end, TopoMortar includes three types of labels (accurate, noisy, pseudo-labels), two fixed training sets (large and small), and in-distribution and out-of-distribution test-set images. We compared eight loss functions on TopoMortar, and we found that clDice achieved the most topologically accurate segmentations, Skeleton Recall loss performed best particularly with noisy labels, and the relative advantageousness of the other loss functions depended on the experimental setting. Additionally, we show that simple methods, such as data augmentation and self-distillation, can elevate Cross entropy Dice loss to surpass most topology loss functions, and that those simple methods can enhance topology loss functions as well. clDice and Skeleton Recall loss, both skeletonization-based loss functions, were also the fastest to train, making this type of loss function a promising research direction. TopoMortar and our code can be found at https://github.com/jmlipman/TopoMortar
MoMo: Momentum Models for Adaptive Learning Rates
Training a modern machine learning architecture on a new task requires extensive learning-rate tuning, which comes at a high computational cost. Here we develop new adaptive learning rates that can be used with any momentum method, and require less tuning to perform well. We first develop MoMo, a Momentum Model based adaptive learning rate for SGD-M (Stochastic gradient descent with momentum). MoMo uses momentum estimates of the batch losses and gradients sampled at each iteration to build a model of the loss function. Our model also makes use of any known lower bound of the loss function by using truncation, e.g. most losses are lower-bounded by zero. We then approximately minimize this model at each iteration to compute the next step. We show how MoMo can be used in combination with any momentum-based method, and showcase this by developing MoMo-Adam - which is Adam with our new model-based adaptive learning rate. Additionally, for losses with unknown lower bounds, we develop on-the-fly estimates of a lower bound, that are incorporated in our model. Through extensive numerical experiments, we demonstrate that MoMo and MoMo-Adam improve over SGD-M and Adam in terms of accuracy and robustness to hyperparameter tuning for training image classifiers on MNIST, CIFAR10, CIFAR100, Imagenet, recommender systems on the Criteo dataset, and a transformer model on the translation task IWSLT14.
Deep Metric Learning for Computer Vision: A Brief Overview
Objective functions that optimize deep neural networks play a vital role in creating an enhanced feature representation of the input data. Although cross-entropy-based loss formulations have been extensively used in a variety of supervised deep-learning applications, these methods tend to be less adequate when there is large intra-class variance and low inter-class variance in input data distribution. Deep Metric Learning seeks to develop methods that aim to measure the similarity between data samples by learning a representation function that maps these data samples into a representative embedding space. It leverages carefully designed sampling strategies and loss functions that aid in optimizing the generation of a discriminative embedding space even for distributions having low inter-class and high intra-class variances. In this chapter, we will provide an overview of recent progress in this area and discuss state-of-the-art Deep Metric Learning approaches.
Unraveling the Hessian: A Key to Smooth Convergence in Loss Function Landscapes
The loss landscape of neural networks is a critical aspect of their training, and understanding its properties is essential for improving their performance. In this paper, we investigate how the loss surface changes when the sample size increases, a previously unexplored issue. We theoretically analyze the convergence of the loss landscape in a fully connected neural network and derive upper bounds for the difference in loss function values when adding a new object to the sample. Our empirical study confirms these results on various datasets, demonstrating the convergence of the loss function surface for image classification tasks. Our findings provide insights into the local geometry of neural loss landscapes and have implications for the development of sample size determination techniques.
Mathematical Justification of Hard Negative Mining via Isometric Approximation Theorem
In deep metric learning, the Triplet Loss has emerged as a popular method to learn many computer vision and natural language processing tasks such as facial recognition, object detection, and visual-semantic embeddings. One issue that plagues the Triplet Loss is network collapse, an undesirable phenomenon where the network projects the embeddings of all data onto a single point. Researchers predominately solve this problem by using triplet mining strategies. While hard negative mining is the most effective of these strategies, existing formulations lack strong theoretical justification for their empirical success. In this paper, we utilize the mathematical theory of isometric approximation to show an equivalence between the Triplet Loss sampled by hard negative mining and an optimization problem that minimizes a Hausdorff-like distance between the neural network and its ideal counterpart function. This provides the theoretical justifications for hard negative mining's empirical efficacy. In addition, our novel application of the isometric approximation theorem provides the groundwork for future forms of hard negative mining that avoid network collapse. Our theory can also be extended to analyze other Euclidean space-based metric learning methods like Ladder Loss or Contrastive Learning.
Effect of Choosing Loss Function when Using T-batching for Representation Learning on Dynamic Networks
Representation learning methods have revolutionized machine learning on networks by converting discrete network structures into continuous domains. However, dynamic networks that evolve over time pose new challenges. To address this, dynamic representation learning methods have gained attention, offering benefits like reduced learning time and improved accuracy by utilizing temporal information. T-batching is a valuable technique for training dynamic network models that reduces training time while preserving vital conditions for accurate modeling. However, we have identified a limitation in the training loss function used with t-batching. Through mathematical analysis, we propose two alternative loss functions that overcome these issues, resulting in enhanced training performance. We extensively evaluate the proposed loss functions on synthetic and real-world dynamic networks. The results consistently demonstrate superior performance compared to the original loss function. Notably, in a real-world network characterized by diverse user interaction histories, the proposed loss functions achieved more than 26.9% enhancement in Mean Reciprocal Rank (MRR) and more than 11.8% improvement in Recall@10. These findings underscore the efficacy of the proposed loss functions in dynamic network modeling.
Dual-Head Knowledge Distillation: Enhancing Logits Utilization with an Auxiliary Head
Traditional knowledge distillation focuses on aligning the student's predicted probabilities with both ground-truth labels and the teacher's predicted probabilities. However, the transition to predicted probabilities from logits would obscure certain indispensable information. To address this issue, it is intuitive to additionally introduce a logit-level loss function as a supplement to the widely used probability-level loss function, for exploiting the latent information of logits. Unfortunately, we empirically find that the amalgamation of the newly introduced logit-level loss and the previous probability-level loss will lead to performance degeneration, even trailing behind the performance of employing either loss in isolation. We attribute this phenomenon to the collapse of the classification head, which is verified by our theoretical analysis based on the neural collapse theory. Specifically, the gradients of the two loss functions exhibit contradictions in the linear classifier yet display no such conflict within the backbone. Drawing from the theoretical analysis, we propose a novel method called dual-head knowledge distillation, which partitions the linear classifier into two classification heads responsible for different losses, thereby preserving the beneficial effects of both losses on the backbone while eliminating adverse influences on the classification head. Extensive experiments validate that our method can effectively exploit the information inside the logits and achieve superior performance against state-of-the-art counterparts.
COMPASS: High-Efficiency Deep Image Compression with Arbitrary-scale Spatial Scalability
Recently, neural network (NN)-based image compression studies have actively been made and has shown impressive performance in comparison to traditional methods. However, most of the works have focused on non-scalable image compression (single-layer coding) while spatially scalable image compression has drawn less attention although it has many applications. In this paper, we propose a novel NN-based spatially scalable image compression method, called COMPASS, which supports arbitrary-scale spatial scalability. Our proposed COMPASS has a very flexible structure where the number of layers and their respective scale factors can be arbitrarily determined during inference. To reduce the spatial redundancy between adjacent layers for arbitrary scale factors, our COMPASS adopts an inter-layer arbitrary scale prediction method, called LIFF, based on implicit neural representation. We propose a combined RD loss function to effectively train multiple layers. Experimental results show that our COMPASS achieves BD-rate gain of -58.33% and -47.17% at maximum compared to SHVC and the state-of-the-art NN-based spatially scalable image compression method, respectively, for various combinations of scale factors. Our COMPASS also shows comparable or even better coding efficiency than the single-layer coding for various scale factors.
Proper losses for discrete generative models
We initiate the study of proper losses for evaluating generative models in the discrete setting. Unlike traditional proper losses, we treat both the generative model and the target distribution as black-boxes, only assuming ability to draw i.i.d. samples. We define a loss to be black-box proper if the generative distribution that minimizes expected loss is equal to the target distribution. Using techniques from statistical estimation theory, we give a general construction and characterization of black-box proper losses: they must take a polynomial form, and the number of draws from the model and target distribution must exceed the degree of the polynomial. The characterization rules out a loss whose expectation is the cross-entropy between the target distribution and the model. By extending the construction to arbitrary sampling schemes such as Poisson sampling, however, we show that one can construct such a loss.
Fixing the Double Penalty in Data-Driven Weather Forecasting Through a Modified Spherical Harmonic Loss Function
Recent advancements in data-driven weather forecasting models have delivered deterministic models that outperform the leading operational forecast systems based on traditional, physics-based models. However, these data-driven models are typically trained with a mean squared error loss function, which causes smoothing of fine scales through a "double penalty" effect. We develop a simple, parameter-free modification to this loss function that avoids this problem by separating the loss attributable to decorrelation from the loss attributable to spectral amplitude errors. Fine-tuning the GraphCast model with this new loss function results in sharp deterministic weather forecasts, an increase of the model's effective resolution from 1,250km to 160km, improvements to ensemble spread, and improvements to predictions of tropical cyclone strength and surface wind extremes.
Mean Field Theory in Deep Metric Learning
In this paper, we explore the application of mean field theory, a technique from statistical physics, to deep metric learning and address the high training complexity commonly associated with conventional metric learning loss functions. By adapting mean field theory for deep metric learning, we develop an approach to design classification-based loss functions from pair-based ones, which can be considered complementary to the proxy-based approach. Applying the mean field theory to two pair-based loss functions, we derive two new loss functions, MeanFieldContrastive and MeanFieldClassWiseMultiSimilarity losses, with reduced training complexity. We extensively evaluate these derived loss functions on three image-retrieval datasets and demonstrate that our loss functions outperform baseline methods in two out of the three datasets.
One-vs-the-Rest Loss to Focus on Important Samples in Adversarial Training
This paper proposes a new loss function for adversarial training. Since adversarial training has difficulties, e.g., necessity of high model capacity, focusing on important data points by weighting cross-entropy loss has attracted much attention. However, they are vulnerable to sophisticated attacks, e.g., Auto-Attack. This paper experimentally reveals that the cause of their vulnerability is their small margins between logits for the true label and the other labels. Since neural networks classify the data points based on the logits, logit margins should be large enough to avoid flipping the largest logit by the attacks. Importance-aware methods do not increase logit margins of important samples but decrease those of less-important samples compared with cross-entropy loss. To increase logit margins of important samples, we propose switching one-vs-the-rest loss (SOVR), which switches from cross-entropy to one-vs-the-rest loss for important samples that have small logit margins. We prove that one-vs-the-rest loss increases logit margins two times larger than the weighted cross-entropy loss for a simple problem. We experimentally confirm that SOVR increases logit margins of important samples unlike existing methods and achieves better robustness against Auto-Attack than importance-aware methods.
Comparison between Supervised and Unsupervised Learning in Deep Unfolded Sparse Signal Recovery
This paper investigates the impact of loss function selection in deep unfolding techniques for sparse signal recovery algorithms. Deep unfolding transforms iterative optimization algorithms into trainable lightweight neural networks by unfolding their iterations as network layers, with various loss functions employed for parameter learning depending on application contexts. We focus on deep unfolded versions of the fundamental iterative shrinkage thresholding algorithm (ISTA) and the iterative hard thresholding algorithm (IHT), comparing supervised learning using mean squared error with unsupervised learning using the objective function of the original optimization problem. Our simulation results reveal that the effect of the choice of loss function significantly depends on the convexity of the optimization problem. For convex ell_1-regularized problems, supervised-ISTA achieves better final recovery accuracy but fails to minimize the original objective function, whereas we empirically observe that unsupervised-ISTA converges to a nearly identical solution as conventional ISTA but with accelerated convergence. Conversely, for nonconvex ell_0-regularized problems, both supervised-IHT and unsupervised-IHT converge to better local minima than the original IHT, showing similar performance regardless of the loss function employed. These findings provide valuable insights into the design of effective deep unfolded networks for sparse signal recovery applications.
Preprint: Norm Loss: An efficient yet effective regularization method for deep neural networks
Convolutional neural network training can suffer from diverse issues like exploding or vanishing gradients, scaling-based weight space symmetry and covariant-shift. In order to address these issues, researchers develop weight regularization methods and activation normalization methods. In this work we propose a weight soft-regularization method based on the Oblique manifold. The proposed method uses a loss function which pushes each weight vector to have a norm close to one, i.e. the weight matrix is smoothly steered toward the so-called Oblique manifold. We evaluate our method on the very popular CIFAR-10, CIFAR-100 and ImageNet 2012 datasets using two state-of-the-art architectures, namely the ResNet and wide-ResNet. Our method introduces negligible computational overhead and the results show that it is competitive to the state-of-the-art and in some cases superior to it. Additionally, the results are less sensitive to hyperparameter settings such as batch size and regularization factor.
Tackling Data Heterogeneity in Federated Learning via Loss Decomposition
Federated Learning (FL) is a rising approach towards collaborative and privacy-preserving machine learning where large-scale medical datasets remain localized to each client. However, the issue of data heterogeneity among clients often compels local models to diverge, leading to suboptimal global models. To mitigate the impact of data heterogeneity on FL performance, we start with analyzing how FL training influence FL performance by decomposing the global loss into three terms: local loss, distribution shift loss and aggregation loss. Remarkably, our loss decomposition reveals that existing local training-based FL methods attempt to reduce the distribution shift loss, while the global aggregation-based FL methods propose better aggregation strategies to reduce the aggregation loss. Nevertheless, a comprehensive joint effort to minimize all three terms is currently limited in the literature, leading to subpar performance when dealing with data heterogeneity challenges. To fill this gap, we propose a novel FL method based on global loss decomposition, called FedLD, to jointly reduce these three loss terms. Our FedLD involves a margin control regularization in local training to reduce the distribution shift loss, and a principal gradient-based server aggregation strategy to reduce the aggregation loss. Notably, under different levels of data heterogeneity, our strategies achieve better and more robust performance on retinal and chest X-ray classification compared to other FL algorithms. Our code is available at https://github.com/Zeng-Shuang/FedLD.
SCoRe: Submodular Combinatorial Representation Learning
In this paper we introduce the SCoRe (Submodular Combinatorial Representation Learning) framework, a novel approach in representation learning that addresses inter-class bias and intra-class variance. SCoRe provides a new combinatorial viewpoint to representation learning, by introducing a family of loss functions based on set-based submodular information measures. We develop two novel combinatorial formulations for loss functions, using the Total Information and Total Correlation, that naturally minimize intra-class variance and inter-class bias. Several commonly used metric/contrastive learning loss functions like supervised contrastive loss, orthogonal projection loss, and N-pairs loss, are all instances of SCoRe, thereby underlining the versatility and applicability of SCoRe in a broad spectrum of learning scenarios. Novel objectives in SCoRe naturally model class-imbalance with up to 7.6\% improvement in classification on CIFAR-10-LT, CIFAR-100-LT, MedMNIST, 2.1% on ImageNet-LT, and 19.4% in object detection on IDD and LVIS (v1.0), demonstrating its effectiveness over existing approaches.
Unsupervised Deep Learning-based Pansharpening with Jointly-Enhanced Spectral and Spatial Fidelity
In latest years, deep learning has gained a leading role in the pansharpening of multiresolution images. Given the lack of ground truth data, most deep learning-based methods carry out supervised training in a reduced-resolution domain. However, models trained on downsized images tend to perform poorly on high-resolution target images. For this reason, several research groups are now turning to unsupervised training in the full-resolution domain, through the definition of appropriate loss functions and training paradigms. In this context, we have recently proposed a full-resolution training framework which can be applied to many existing architectures. Here, we propose a new deep learning-based pansharpening model that fully exploits the potential of this approach and provides cutting-edge performance. Besides architectural improvements with respect to previous work, such as the use of residual attention modules, the proposed model features a novel loss function that jointly promotes the spectral and spatial quality of the pansharpened data. In addition, thanks to a new fine-tuning strategy, it improves inference-time adaptation to target images. Experiments on a large variety of test images, performed in challenging scenarios, demonstrate that the proposed method compares favorably with the state of the art both in terms of numerical results and visual output. Code is available online at https://github.com/matciotola/Lambda-PNN.
Attention-based Ensemble for Deep Metric Learning
Deep metric learning aims to learn an embedding function, modeled as deep neural network. This embedding function usually puts semantically similar images close while dissimilar images far from each other in the learned embedding space. Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.
Align Your Tangent: Training Better Consistency Models via Manifold-Aligned Tangents
With diffusion and flow matching models achieving state-of-the-art generating performance, the interest of the community now turned to reducing the inference time without sacrificing sample quality. Consistency Models (CMs), which are trained to be consistent on diffusion or probability flow ordinary differential equation (PF-ODE) trajectories, enable one or two-step flow or diffusion sampling. However, CMs typically require prolonged training with large batch sizes to obtain competitive sample quality. In this paper, we examine the training dynamics of CMs near convergence and discover that CM tangents -- CM output update directions -- are quite oscillatory, in the sense that they move parallel to the data manifold, not towards the manifold. To mitigate oscillatory tangents, we propose a new loss function, called the manifold feature distance (MFD), which provides manifold-aligned tangents that point toward the data manifold. Consequently, our method -- dubbed Align Your Tangent (AYT) -- can accelerate CM training by orders of magnitude and even out-perform the learned perceptual image patch similarity metric (LPIPS). Furthermore, we find that our loss enables training with extremely small batch sizes without compromising sample quality. Code: https://github.com/1202kbs/AYT
Angular Visual Hardness
Recent convolutional neural networks (CNNs) have led to impressive performance but often suffer from poor calibration. They tend to be overconfident, with the model confidence not always reflecting the underlying true ambiguity and hardness. In this paper, we propose angular visual hardness (AVH), a score given by the normalized angular distance between the sample feature embedding and the target classifier to measure sample hardness. We validate this score with an in-depth and extensive scientific study, and observe that CNN models with the highest accuracy also have the best AVH scores. This agrees with an earlier finding that state-of-art models improve on the classification of harder examples. We observe that the training dynamics of AVH is vastly different compared to the training loss. Specifically, AVH quickly reaches a plateau for all samples even though the training loss keeps improving. This suggests the need for designing better loss functions that can target harder examples more effectively. We also find that AVH has a statistically significant correlation with human visual hardness. Finally, we demonstrate the benefit of AVH to a variety of applications such as self-training for domain adaptation and domain generalization.
Learning to Reject with a Fixed Predictor: Application to Decontextualization
We study the problem of classification with a reject option for a fixed predictor, applicable in natural language processing. We introduce a new problem formulation for this scenario, and an algorithm minimizing a new surrogate loss function. We provide a complete theoretical analysis of the surrogate loss function with a strong H-consistency guarantee. For evaluation, we choose the decontextualization task, and provide a manually-labelled dataset of 2mathord,000 examples. Our algorithm significantly outperforms the baselines considered, with a sim!!25% improvement in coverage when halving the error rate, which is only sim!! 3 % away from the theoretical limit.
Simultaneous Weight and Architecture Optimization for Neural Networks
Neural networks are trained by choosing an architecture and training the parameters. The choice of architecture is often by trial and error or with Neural Architecture Search (NAS) methods. While NAS provides some automation, it often relies on discrete steps that optimize the architecture and then train the parameters. We introduce a novel neural network training framework that fundamentally transforms the process by learning architecture and parameters simultaneously with gradient descent. With the appropriate setting of the loss function, it can discover sparse and compact neural networks for given datasets. Central to our approach is a multi-scale encoder-decoder, in which the encoder embeds pairs of neural networks with similar functionalities close to each other (irrespective of their architectures and weights). To train a neural network with a given dataset, we randomly sample a neural network embedding in the embedding space and then perform gradient descent using our custom loss function, which incorporates a sparsity penalty to encourage compactness. The decoder generates a neural network corresponding to the embedding. Experiments demonstrate that our framework can discover sparse and compact neural networks maintaining a high performance.
Near-Optimal Cryptographic Hardness of Agnostically Learning Halfspaces and ReLU Regression under Gaussian Marginals
We study the task of agnostically learning halfspaces under the Gaussian distribution. Specifically, given labeled examples (x,y) from an unknown distribution on R^n times { pm 1}, whose marginal distribution on x is the standard Gaussian and the labels y can be arbitrary, the goal is to output a hypothesis with 0-1 loss OPT+epsilon, where OPT is the 0-1 loss of the best-fitting halfspace. We prove a near-optimal computational hardness result for this task, under the widely believed sub-exponential time hardness of the Learning with Errors (LWE) problem. Prior hardness results are either qualitatively suboptimal or apply to restricted families of algorithms. Our techniques extend to yield near-optimal lower bounds for related problems, including ReLU regression.
Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss
We consider a deep matrix factorization model of covariance matrices trained with the Bures-Wasserstein distance. While recent works have made important advances in the study of the optimization problem for overparametrized low-rank matrix approximation, much emphasis has been placed on discriminative settings and the square loss. In contrast, our model considers another interesting type of loss and connects with the generative setting. We characterize the critical points and minimizers of the Bures-Wasserstein distance over the space of rank-bounded matrices. For low-rank matrices the Hessian of this loss can theoretically blow up, which creates challenges to analyze convergence of optimizaton methods. We establish convergence results for gradient flow using a smooth perturbative version of the loss and convergence results for finite step size gradient descent under certain assumptions on the initial weights.
Bridging the Gap: Addressing Discrepancies in Diffusion Model Training for Classifier-Free Guidance
Diffusion models have emerged as a pivotal advancement in generative models, setting new standards to the quality of the generated instances. In the current paper we aim to underscore a discrepancy between conventional training methods and the desired conditional sampling behavior of these models. While the prevalent classifier-free guidance technique works well, it's not without flaws. At higher values for the guidance scale parameter w, we often get out of distribution samples and mode collapse, whereas at lower values for w we may not get the desired specificity. To address these challenges, we introduce an updated loss function that better aligns training objectives with sampling behaviors. Experimental validation with FID scores on CIFAR-10 elucidates our method's ability to produce higher quality samples with fewer sampling timesteps, and be more robust to the choice of guidance scale w. We also experiment with fine-tuning Stable Diffusion on the proposed loss, to provide early evidence that large diffusion models may also benefit from this refined loss function.
Hyp-OC: Hyperbolic One Class Classification for Face Anti-Spoofing
Face recognition technology has become an integral part of modern security systems and user authentication processes. However, these systems are vulnerable to spoofing attacks and can easily be circumvented. Most prior research in face anti-spoofing (FAS) approaches it as a two-class classification task where models are trained on real samples and known spoof attacks and tested for detection performance on unknown spoof attacks. However, in practice, FAS should be treated as a one-class classification task where, while training, one cannot assume any knowledge regarding the spoof samples a priori. In this paper, we reformulate the face anti-spoofing task from a one-class perspective and propose a novel hyperbolic one-class classification framework. To train our network, we use a pseudo-negative class sampled from the Gaussian distribution with a weighted running mean and propose two novel loss functions: (1) Hyp-PC: Hyperbolic Pairwise Confusion loss, and (2) Hyp-CE: Hyperbolic Cross Entropy loss, which operate in the hyperbolic space. Additionally, we employ Euclidean feature clipping and gradient clipping to stabilize the training in the hyperbolic space. To the best of our knowledge, this is the first work extending hyperbolic embeddings for face anti-spoofing in a one-class manner. With extensive experiments on five benchmark datasets: Rose-Youtu, MSU-MFSD, CASIA-MFSD, Idiap Replay-Attack, and OULU-NPU, we demonstrate that our method significantly outperforms the state-of-the-art, achieving better spoof detection performance.
Unsupervised Cross-Domain Image Generation
We study the problem of transferring a sample in one domain to an analog sample in another domain. Given two related domains, S and T, we would like to learn a generative function G that maps an input sample from S to the domain T, such that the output of a given function f, which accepts inputs in either domains, would remain unchanged. Other than the function f, the training data is unsupervised and consist of a set of samples from each domain. The Domain Transfer Network (DTN) we present employs a compound loss function that includes a multiclass GAN loss, an f-constancy component, and a regularizing component that encourages G to map samples from T to themselves. We apply our method to visual domains including digits and face images and demonstrate its ability to generate convincing novel images of previously unseen entities, while preserving their identity.
AdaFace: Quality Adaptive Margin for Face Recognition
Recognition in low quality face datasets is challenging because facial attributes are obscured and degraded. Advances in margin-based loss functions have resulted in enhanced discriminability of faces in the embedding space. Further, previous studies have studied the effect of adaptive losses to assign more importance to misclassified (hard) examples. In this work, we introduce another aspect of adaptiveness in the loss function, namely the image quality. We argue that the strategy to emphasize misclassified samples should be adjusted according to their image quality. Specifically, the relative importance of easy or hard samples should be based on the sample's image quality. We propose a new loss function that emphasizes samples of different difficulties based on their image quality. Our method achieves this in the form of an adaptive margin function by approximating the image quality with feature norms. Extensive experiments show that our method, AdaFace, improves the face recognition performance over the state-of-the-art (SoTA) on four datasets (IJB-B, IJB-C, IJB-S and TinyFace). Code and models are released in https://github.com/mk-minchul/AdaFace.
Cauchy-Schwarz Divergence Information Bottleneck for Regression
The information bottleneck (IB) approach is popular to improve the generalization, robustness and explainability of deep neural networks. Essentially, it aims to find a minimum sufficient representation t by striking a trade-off between a compression term I(x;t) and a prediction term I(y;t), where I(cdot;cdot) refers to the mutual information (MI). MI is for the IB for the most part expressed in terms of the Kullback-Leibler (KL) divergence, which in the regression case corresponds to prediction based on mean squared error (MSE) loss with Gaussian assumption and compression approximated by variational inference. In this paper, we study the IB principle for the regression problem and develop a new way to parameterize the IB with deep neural networks by exploiting favorable properties of the Cauchy-Schwarz (CS) divergence. By doing so, we move away from MSE-based regression and ease estimation by avoiding variational approximations or distributional assumptions. We investigate the improved generalization ability of our proposed CS-IB and demonstrate strong adversarial robustness guarantees. We demonstrate its superior performance on six real-world regression tasks over other popular deep IB approaches. We additionally observe that the solutions discovered by CS-IB always achieve the best trade-off between prediction accuracy and compression ratio in the information plane. The code is available at https://github.com/SJYuCNEL/Cauchy-Schwarz-Information-Bottleneck.
Statistical Learning under Heterogenous Distribution Shift
This paper studies the prediction of a target z from a pair of random variables (x,y), where the ground-truth predictor is additive E[z mid x,y] = f_star(x) +g_{star}(y). We study the performance of empirical risk minimization (ERM) over functions f+g, f in F and g in G, fit on a given training distribution, but evaluated on a test distribution which exhibits covariate shift. We show that, when the class F is "simpler" than G (measured, e.g., in terms of its metric entropy), our predictor is more resilient to heterogenous covariate shifts in which the shift in x is much greater than that in y. These results rely on a novel H\"older style inequality for the Dudley integral which may be of independent interest. Moreover, we corroborate our theoretical findings with experiments demonstrating improved resilience to shifts in "simpler" features across numerous domains.
ACLS: Adaptive and Conditional Label Smoothing for Network Calibration
We address the problem of network calibration adjusting miscalibrated confidences of deep neural networks. Many approaches to network calibration adopt a regularization-based method that exploits a regularization term to smooth the miscalibrated confidences. Although these approaches have shown the effectiveness on calibrating the networks, there is still a lack of understanding on the underlying principles of regularization in terms of network calibration. We present in this paper an in-depth analysis of existing regularization-based methods, providing a better understanding on how they affect to network calibration. Specifically, we have observed that 1) the regularization-based methods can be interpreted as variants of label smoothing, and 2) they do not always behave desirably. Based on the analysis, we introduce a novel loss function, dubbed ACLS, that unifies the merits of existing regularization methods, while avoiding the limitations. We show extensive experimental results for image classification and semantic segmentation on standard benchmarks, including CIFAR10, Tiny-ImageNet, ImageNet, and PASCAL VOC, demonstrating the effectiveness of our loss function.
Gravity Optimizer: a Kinematic Approach on Optimization in Deep Learning
We introduce Gravity, another algorithm for gradient-based optimization. In this paper, we explain how our novel idea change parameters to reduce the deep learning model's loss. It has three intuitive hyper-parameters that the best values for them are proposed. Also, we propose an alternative to moving average. To compare the performance of the Gravity optimizer with two common optimizers, Adam and RMSProp, five standard datasets were trained on two VGGNet models with a batch size of 128 for 100 epochs. Gravity hyper-parameters did not need to be tuned for different models. As will be explained more in the paper, to investigate the direct impact of the optimizer itself on loss reduction no overfitting prevention technique was used. The obtained results show that the Gravity optimizer has more stable performance than Adam and RMSProp and gives greater values of validation accuracy for datasets with more output classes like CIFAR-100 (Fine).
Alternative Loss Function in Evaluation of Transformer Models
The proper design and architecture of testing of machine learning models, especially in their application to quantitative finance problems, is crucial. The most important in this process is selecting an adequate loss function used for training, validation, estimation purposes, and tuning of hyperparameters. Therefore, in this research, through empirical experiments on equity and cryptocurrency assets, we introduce the Mean Absolute Directional Loss (MADL) function which is more adequate for optimizing forecast-generating models used in algorithmic investment strategies. The MADL function results are compared for Transformer and LSTM models and we show that almost in every case Transformer results are significantly better than those obtained with LSTM.
Autoregressive Image Generation without Vector Quantization
Conventional wisdom holds that autoregressive models for image generation are typically accompanied by vector-quantized tokens. We observe that while a discrete-valued space can facilitate representing a categorical distribution, it is not a necessity for autoregressive modeling. In this work, we propose to model the per-token probability distribution using a diffusion procedure, which allows us to apply autoregressive models in a continuous-valued space. Rather than using categorical cross-entropy loss, we define a Diffusion Loss function to model the per-token probability. This approach eliminates the need for discrete-valued tokenizers. We evaluate its effectiveness across a wide range of cases, including standard autoregressive models and generalized masked autoregressive (MAR) variants. By removing vector quantization, our image generator achieves strong results while enjoying the speed advantage of sequence modeling. We hope this work will motivate the use of autoregressive generation in other continuous-valued domains and applications.
Expanded Gating Ranges Improve Activation Functions
Activation functions are core components of all deep learning architectures. Currently, the most popular activation functions are smooth ReLU variants like GELU and SiLU. These are self-gated activation functions where the range of the gating function is between zero and one. In this paper, we explore the viability of using arctan as a gating mechanism. A self-gated activation function that uses arctan as its gating function has a monotonically increasing first derivative. To make this activation function competitive, it is necessary to introduce a trainable parameter for every MLP block to expand the range of the gating function beyond zero and one. We find that this technique also improves existing self-gated activation functions. We conduct an empirical evaluation of Expanded ArcTan Linear Unit (xATLU), Expanded GELU (xGELU), and Expanded SiLU (xSiLU) and show that they outperform existing activation functions within a transformer architecture. Additionally, expanded gating ranges show promising results in improving first-order Gated Linear Units (GLU).
Generalized End-to-End Loss for Speaker Verification
In this paper, we propose a new loss function called generalized end-to-end (GE2E) loss, which makes the training of speaker verification models more efficient than our previous tuple-based end-to-end (TE2E) loss function. Unlike TE2E, the GE2E loss function updates the network in a way that emphasizes examples that are difficult to verify at each step of the training process. Additionally, the GE2E loss does not require an initial stage of example selection. With these properties, our model with the new loss function decreases speaker verification EER by more than 10%, while reducing the training time by 60% at the same time. We also introduce the MultiReader technique, which allows us to do domain adaptation - training a more accurate model that supports multiple keywords (i.e. "OK Google" and "Hey Google") as well as multiple dialects.
Approximate Stein Classes for Truncated Density Estimation
Estimating truncated density models is difficult, as these models have intractable normalising constants and hard to satisfy boundary conditions. Score matching can be adapted to solve the truncated density estimation problem, but requires a continuous weighting function which takes zero at the boundary and is positive elsewhere. Evaluation of such a weighting function (and its gradient) often requires a closed-form expression of the truncation boundary and finding a solution to a complicated optimisation problem. In this paper, we propose approximate Stein classes, which in turn leads to a relaxed Stein identity for truncated density estimation. We develop a novel discrepancy measure, truncated kernelised Stein discrepancy (TKSD), which does not require fixing a weighting function in advance, and can be evaluated using only samples on the boundary. We estimate a truncated density model by minimising the Lagrangian dual of TKSD. Finally, experiments show the accuracy of our method to be an improvement over previous works even without the explicit functional form of the boundary.
A representation-learning game for classes of prediction tasks
We propose a game-based formulation for learning dimensionality-reducing representations of feature vectors, when only a prior knowledge on future prediction tasks is available. In this game, the first player chooses a representation, and then the second player adversarially chooses a prediction task from a given class, representing the prior knowledge. The first player aims is to minimize, and the second player to maximize, the regret: The minimal prediction loss using the representation, compared to the same loss using the original features. For the canonical setting in which the representation, the response to predict and the predictors are all linear functions, and under the mean squared error loss function, we derive the theoretically optimal representation in pure strategies, which shows the effectiveness of the prior knowledge, and the optimal regret in mixed strategies, which shows the usefulness of randomizing the representation. For general representations and loss functions, we propose an efficient algorithm to optimize a randomized representation. The algorithm only requires the gradients of the loss function, and is based on incrementally adding a representation rule to a mixture of such rules.
Geometric Collaborative Filtering with Convergence
Latent variable collaborative filtering methods have been a standard approach to modelling user-click interactions due to their simplicity and effectiveness. However, there is limited work on analyzing the mathematical properties of these methods in particular on preventing the overfitting towards the identity, and such methods typically utilize loss functions that overlook the geometry between items. In this work, we introduce a notion of generalization gap in collaborative filtering and analyze this with respect to latent collaborative filtering models. We present a geometric upper bound that gives rise to loss functions, and a way to meaningfully utilize the geometry of item-metadata to improve recommendations. We show how these losses can be minimized and gives the recipe to a new latent collaborative filtering algorithm, which we refer to as GeoCF, due to the geometric nature of our results. We then show experimentally that our proposed GeoCF algorithm can outperform other all existing methods on the Movielens20M and Netflix datasets, as well as two large-scale internal datasets. In summary, our work proposes a theoretically sound method which paves a way to better understand generalization of collaborative filtering at large.
Concise Logarithmic Loss Function for Robust Training of Anomaly Detection Model
Recently, deep learning-based algorithms are widely adopted due to the advantage of being able to establish anomaly detection models without or with minimal domain knowledge of the task. Instead, to train the artificial neural network more stable, it should be better to define the appropriate neural network structure or the loss function. For the training anomaly detection model, the mean squared error (MSE) function is adopted widely. On the other hand, the novel loss function, logarithmic mean squared error (LMSE), is proposed in this paper to train the neural network more stable. This study covers a variety of comparisons from mathematical comparisons, visualization in the differential domain for backpropagation, loss convergence in the training process, and anomaly detection performance. In an overall view, LMSE is superior to the existing MSE function in terms of strongness of loss convergence, anomaly detection performance. The LMSE function is expected to be applicable for training not only the anomaly detection model but also the general generative neural network.
Landscape Learning for Neural Network Inversion
Many machine learning methods operate by inverting a neural network at inference time, which has become a popular technique for solving inverse problems in computer vision, robotics, and graphics. However, these methods often involve gradient descent through a highly non-convex loss landscape, causing the optimization process to be unstable and slow. We introduce a method that learns a loss landscape where gradient descent is efficient, bringing massive improvement and acceleration to the inversion process. We demonstrate this advantage on a number of methods for both generative and discriminative tasks, including GAN inversion, adversarial defense, and 3D human pose reconstruction.
Deep Clustering with Incomplete Noisy Pairwise Annotations: A Geometric Regularization Approach
The recent integration of deep learning and pairwise similarity annotation-based constrained clustering -- i.e., deep constrained clustering (DCC) -- has proven effective for incorporating weak supervision into massive data clustering: Less than 1% of pair similarity annotations can often substantially enhance the clustering accuracy. However, beyond empirical successes, there is a lack of understanding of DCC. In addition, many DCC paradigms are sensitive to annotation noise, but performance-guaranteed noisy DCC methods have been largely elusive. This work first takes a deep look into a recently emerged logistic loss function of DCC, and characterizes its theoretical properties. Our result shows that the logistic DCC loss ensures the identifiability of data membership under reasonable conditions, which may shed light on its effectiveness in practice. Building upon this understanding, a new loss function based on geometric factor analysis is proposed to fend against noisy annotations. It is shown that even under unknown annotation confusions, the data membership can still be provably identified under our proposed learning criterion. The proposed approach is tested over multiple datasets to validate our claims.
Self-Compressing Neural Networks
This work focuses on reducing neural network size, which is a major driver of neural network execution time, power consumption, bandwidth, and memory footprint. A key challenge is to reduce size in a manner that can be exploited readily for efficient training and inference without the need for specialized hardware. We propose Self-Compression: a simple, general method that simultaneously achieves two goals: (1) removing redundant weights, and (2) reducing the number of bits required to represent the remaining weights. This is achieved using a generalized loss function to minimize overall network size. In our experiments we demonstrate floating point accuracy with as few as 3% of the bits and 18% of the weights remaining in the network.
KAN: Kolmogorov-Arnold Networks
Inspired by the Kolmogorov-Arnold representation theorem, we propose Kolmogorov-Arnold Networks (KANs) as promising alternatives to Multi-Layer Perceptrons (MLPs). While MLPs have fixed activation functions on nodes ("neurons"), KANs have learnable activation functions on edges ("weights"). KANs have no linear weights at all -- every weight parameter is replaced by a univariate function parametrized as a spline. We show that this seemingly simple change makes KANs outperform MLPs in terms of accuracy and interpretability. For accuracy, much smaller KANs can achieve comparable or better accuracy than much larger MLPs in data fitting and PDE solving. Theoretically and empirically, KANs possess faster neural scaling laws than MLPs. For interpretability, KANs can be intuitively visualized and can easily interact with human users. Through two examples in mathematics and physics, KANs are shown to be useful collaborators helping scientists (re)discover mathematical and physical laws. In summary, KANs are promising alternatives for MLPs, opening opportunities for further improving today's deep learning models which rely heavily on MLPs.
Improving Pre-Trained Self-Supervised Embeddings Through Effective Entropy Maximization
A number of different architectures and loss functions have been applied to the problem of self-supervised learning (SSL), with the goal of developing embeddings that provide the best possible pre-training for as-yet-unknown, lightly supervised downstream tasks. One of these SSL criteria is to maximize the entropy of a set of embeddings in some compact space. But the goal of maximizing the embedding entropy often depends--whether explicitly or implicitly--upon high dimensional entropy estimates, which typically perform poorly in more than a few dimensions. In this paper, we motivate an effective entropy maximization criterion (E2MC), defined in terms of easy-to-estimate, low-dimensional constraints. We demonstrate that using it to continue training an already-trained SSL model for only a handful of epochs leads to a consistent and, in some cases, significant improvement in downstream performance. We perform careful ablation studies to show that the improved performance is due to the proposed add-on criterion. We also show that continued pre-training with alternative criteria does not lead to notable improvements, and in some cases, even degrades performance.
Out-Of-Domain Unlabeled Data Improves Generalization
We propose a novel framework for incorporating unlabeled data into semi-supervised classification problems, where scenarios involving the minimization of either i) adversarially robust or ii) non-robust loss functions have been considered. Notably, we allow the unlabeled samples to deviate slightly (in total variation sense) from the in-domain distribution. The core idea behind our framework is to combine Distributionally Robust Optimization (DRO) with self-supervised training. As a result, we also leverage efficient polynomial-time algorithms for the training stage. From a theoretical standpoint, we apply our framework on the classification problem of a mixture of two Gaussians in R^d, where in addition to the m independent and labeled samples from the true distribution, a set of n (usually with ngg m) out of domain and unlabeled samples are given as well. Using only the labeled data, it is known that the generalization error can be bounded by proptoleft(d/mright)^{1/2}. However, using our method on both isotropic and non-isotropic Gaussian mixture models, one can derive a new set of analytically explicit and non-asymptotic bounds which show substantial improvement on the generalization error compared to ERM. Our results underscore two significant insights: 1) out-of-domain samples, even when unlabeled, can be harnessed to narrow the generalization gap, provided that the true data distribution adheres to a form of the ``cluster assumption", and 2) the semi-supervised learning paradigm can be regarded as a special case of our framework when there are no distributional shifts. We validate our claims through experiments conducted on a variety of synthetic and real-world datasets.
Generalized Differentiable RANSAC
We propose nabla-RANSAC, a generalized differentiable RANSAC that allows learning the entire randomized robust estimation pipeline. The proposed approach enables the use of relaxation techniques for estimating the gradients in the sampling distribution, which are then propagated through a differentiable solver. The trainable quality function marginalizes over the scores from all the models estimated within nabla-RANSAC to guide the network learning accurate and useful inlier probabilities or to train feature detection and matching networks. Our method directly maximizes the probability of drawing a good hypothesis, allowing us to learn better sampling distribution. We test nabla-RANSAC on a number of real-world scenarios on fundamental and essential matrix estimation, both outdoors and indoors, with handcrafted and learning-based features. It is superior to the state-of-the-art in terms of accuracy while running at a similar speed to its less accurate alternatives. The code and trained models are available at https://github.com/weitong8591/differentiable_ransac.
AERO: Audio Super Resolution in the Spectral Domain
We present AERO, a audio super-resolution model that processes speech and music signals in the spectral domain. AERO is based on an encoder-decoder architecture with U-Net like skip connections. We optimize the model using both time and frequency domain loss functions. Specifically, we consider a set of reconstruction losses together with perceptual ones in the form of adversarial and feature discriminator loss functions. To better handle phase information the proposed method operates over the complex-valued spectrogram using two separate channels. Unlike prior work which mainly considers low and high frequency concatenation for audio super-resolution, the proposed method directly predicts the full frequency range. We demonstrate high performance across a wide range of sample rates considering both speech and music. AERO outperforms the evaluated baselines considering Log-Spectral Distance, ViSQOL, and the subjective MUSHRA test. Audio samples and code are available at https://pages.cs.huji.ac.il/adiyoss-lab/aero
Facial Landmark Points Detection Using Knowledge Distillation-Based Neural Networks
Facial landmark detection is a vital step for numerous facial image analysis applications. Although some deep learning-based methods have achieved good performances in this task, they are often not suitable for running on mobile devices. Such methods rely on networks with many parameters, which makes the training and inference time-consuming. Training lightweight neural networks such as MobileNets are often challenging, and the models might have low accuracy. Inspired by knowledge distillation (KD), this paper presents a novel loss function to train a lightweight Student network (e.g., MobileNetV2) for facial landmark detection. We use two Teacher networks, a Tolerant-Teacher and a Tough-Teacher in conjunction with the Student network. The Tolerant-Teacher is trained using Soft-landmarks created by active shape models, while the Tough-Teacher is trained using the ground truth (aka Hard-landmarks) landmark points. To utilize the facial landmark points predicted by the Teacher networks, we define an Assistive Loss (ALoss) for each Teacher network. Moreover, we define a loss function called KD-Loss that utilizes the facial landmark points predicted by the two pre-trained Teacher networks (EfficientNet-b3) to guide the lightweight Student network towards predicting the Hard-landmarks. Our experimental results on three challenging facial datasets show that the proposed architecture will result in a better-trained Student network that can extract facial landmark points with high accuracy.
Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression
Intersection over Union (IoU) is the most popular evaluation metric used in the object detection benchmarks. However, there is a gap between optimizing the commonly used distance losses for regressing the parameters of a bounding box and maximizing this metric value. The optimal objective for a metric is the metric itself. In the case of axis-aligned 2D bounding boxes, it can be shown that IoU can be directly used as a regression loss. However, IoU has a plateau making it infeasible to optimize in the case of non-overlapping bounding boxes. In this paper, we address the weaknesses of IoU by introducing a generalized version as both a new loss and a new metric. By incorporating this generalized IoU (GIoU) as a loss into the state-of-the art object detection frameworks, we show a consistent improvement on their performance using both the standard, IoU based, and new, GIoU based, performance measures on popular object detection benchmarks such as PASCAL VOC and MS COCO.
Rethinking Adam: A Twofold Exponential Moving Average Approach
Adaptive gradient methods, e.g. Adam, have achieved tremendous success in machine learning. Scaling the learning rate element-wisely by a certain form of second moment estimate of gradients, such methods are able to attain rapid training of modern deep neural networks. Nevertheless, they are observed to suffer from compromised generalization ability compared with stochastic gradient descent (SGD) and tend to be trapped in local minima at an early stage during training. Intriguingly, we discover that substituting the gradient in the second raw moment estimate term with its momentumized version in Adam can resolve the issue. The intuition is that gradient with momentum contains more accurate directional information and therefore its second moment estimation is a more favorable option for learning rate scaling than that of the raw gradient. Thereby we propose AdaMomentum as a new optimizer reaching the goal of training fast while generalizing much better. We further develop a theory to back up the improvement in generalization and provide convergence guarantees under both convex and nonconvex settings. Extensive experiments on a wide range of tasks and models demonstrate that AdaMomentum exhibits state-of-the-art performance and superior training stability consistently.
Sharpness-Aware Minimization for Efficiently Improving Generalization
In today's heavily overparameterized models, the value of the training loss provides few guarantees on model generalization ability. Indeed, optimizing only the training loss value, as is commonly done, can easily lead to suboptimal model quality. Motivated by prior work connecting the geometry of the loss landscape and generalization, we introduce a novel, effective procedure for instead simultaneously minimizing loss value and loss sharpness. In particular, our procedure, Sharpness-Aware Minimization (SAM), seeks parameters that lie in neighborhoods having uniformly low loss; this formulation results in a min-max optimization problem on which gradient descent can be performed efficiently. We present empirical results showing that SAM improves model generalization across a variety of benchmark datasets (e.g., CIFAR-10, CIFAR-100, ImageNet, finetuning tasks) and models, yielding novel state-of-the-art performance for several. Additionally, we find that SAM natively provides robustness to label noise on par with that provided by state-of-the-art procedures that specifically target learning with noisy labels. We open source our code at https://github.com/google-research/sam.
On the Importance of Gradient Norm in PAC-Bayesian Bounds
Generalization bounds which assess the difference between the true risk and the empirical risk, have been studied extensively. However, to obtain bounds, current techniques use strict assumptions such as a uniformly bounded or a Lipschitz loss function. To avoid these assumptions, in this paper, we follow an alternative approach: we relax uniform bounds assumptions by using on-average bounded loss and on-average bounded gradient norm assumptions. Following this relaxation, we propose a new generalization bound that exploits the contractivity of the log-Sobolev inequalities. These inequalities add an additional loss-gradient norm term to the generalization bound, which is intuitively a surrogate of the model complexity. We apply the proposed bound on Bayesian deep nets and empirically analyze the effect of this new loss-gradient norm term on different neural architectures.
DAAL: Density-Aware Adaptive Line Margin Loss for Multi-Modal Deep Metric Learning
Multi-modal deep metric learning is crucial for effectively capturing diverse representations in tasks such as face verification, fine-grained object recognition, and product search. Traditional approaches to metric learning, whether based on distance or margin metrics, primarily emphasize class separation, often overlooking the intra-class distribution essential for multi-modal feature learning. In this context, we propose a novel loss function called Density-Aware Adaptive Margin Loss(DAAL), which preserves the density distribution of embeddings while encouraging the formation of adaptive sub-clusters within each class. By employing an adaptive line strategy, DAAL not only enhances intra-class variance but also ensures robust inter-class separation, facilitating effective multi-modal representation. Comprehensive experiments on benchmark fine-grained datasets demonstrate the superior performance of DAAL, underscoring its potential in advancing retrieval applications and multi-modal deep metric learning.
Adversarial Weight Perturbation Helps Robust Generalization
The study on improving the robustness of deep neural networks against adversarial examples grows rapidly in recent years. Among them, adversarial training is the most promising one, which flattens the input loss landscape (loss change with respect to input) via training on adversarially perturbed examples. However, how the widely used weight loss landscape (loss change with respect to weight) performs in adversarial training is rarely explored. In this paper, we investigate the weight loss landscape from a new perspective, and identify a clear correlation between the flatness of weight loss landscape and robust generalization gap. Several well-recognized adversarial training improvements, such as early stopping, designing new objective functions, or leveraging unlabeled data, all implicitly flatten the weight loss landscape. Based on these observations, we propose a simple yet effective Adversarial Weight Perturbation (AWP) to explicitly regularize the flatness of weight loss landscape, forming a double-perturbation mechanism in the adversarial training framework that adversarially perturbs both inputs and weights. Extensive experiments demonstrate that AWP indeed brings flatter weight loss landscape and can be easily incorporated into various existing adversarial training methods to further boost their adversarial robustness.
Improving Polyphonic Sound Event Detection on Multichannel Recordings with the Sørensen-Dice Coefficient Loss and Transfer Learning
The S{\o}rensen--Dice Coefficient has recently seen rising popularity as a loss function (also known as Dice loss) due to its robustness in tasks where the number of negative samples significantly exceeds that of positive samples, such as semantic segmentation, natural language processing, and sound event detection. Conventional training of polyphonic sound event detection systems with binary cross-entropy loss often results in suboptimal detection performance as the training is often overwhelmed by updates from negative samples. In this paper, we investigated the effect of the Dice loss, intra- and inter-modal transfer learning, data augmentation, and recording formats, on the performance of polyphonic sound event detection systems with multichannel inputs. Our analysis showed that polyphonic sound event detection systems trained with Dice loss consistently outperformed those trained with cross-entropy loss across different training settings and recording formats in terms of F1 score and error rate. We achieved further performance gains via the use of transfer learning and an appropriate combination of different data augmentation techniques.
CARD: Channel Aligned Robust Blend Transformer for Time Series Forecasting
Recent studies have demonstrated the great power of Transformer models for time series forecasting. One of the key elements that lead to the transformer's success is the channel-independent (CI) strategy to improve the training robustness. However, the ignorance of the correlation among different channels in CI would limit the model's forecasting capacity. In this work, we design a special Transformer, i.e., Channel Aligned Robust Blend Transformer (CARD for short), that addresses key shortcomings of CI type Transformer in time series forecasting. First, CARD introduces a channel-aligned attention structure that allows it to capture both temporal correlations among signals and dynamical dependence among multiple variables over time. Second, in order to efficiently utilize the multi-scale knowledge, we design a token blend module to generate tokens with different resolutions. Third, we introduce a robust loss function for time series forecasting to alleviate the potential overfitting issue. This new loss function weights the importance of forecasting over a finite horizon based on prediction uncertainties. Our evaluation of multiple long-term and short-term forecasting datasets demonstrates that CARD significantly outperforms state-of-the-art time series forecasting methods. The code is available at the following repository:https://github.com/wxie9/CARD
Learning Hierarchical Polynomials with Three-Layer Neural Networks
We study the problem of learning hierarchical polynomials over the standard Gaussian distribution with three-layer neural networks. We specifically consider target functions of the form h = g circ p where p : R^d rightarrow R is a degree k polynomial and g: R rightarrow R is a degree q polynomial. This function class generalizes the single-index model, which corresponds to k=1, and is a natural class of functions possessing an underlying hierarchical structure. Our main result shows that for a large subclass of degree k polynomials p, a three-layer neural network trained via layerwise gradient descent on the square loss learns the target h up to vanishing test error in mathcal{O}(d^k) samples and polynomial time. This is a strict improvement over kernel methods, which require widetilde Theta(d^{kq}) samples, as well as existing guarantees for two-layer networks, which require the target function to be low-rank. Our result also generalizes prior works on three-layer neural networks, which were restricted to the case of p being a quadratic. When p is indeed a quadratic, we achieve the information-theoretically optimal sample complexity mathcal{O}(d^2), which is an improvement over prior work~nichani2023provable requiring a sample size of widetildeTheta(d^4). Our proof proceeds by showing that during the initial stage of training the network performs feature learning to recover the feature p with mathcal{O}(d^k) samples. This work demonstrates the ability of three-layer neural networks to learn complex features and as a result, learn a broad class of hierarchical functions.
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
We propose a new regularization method based on virtual adversarial loss: a new measure of local smoothness of the conditional label distribution given input. Virtual adversarial loss is defined as the robustness of the conditional label distribution around each input data point against local perturbation. Unlike adversarial training, our method defines the adversarial direction without label information and is hence applicable to semi-supervised learning. Because the directions in which we smooth the model are only "virtually" adversarial, we call our method virtual adversarial training (VAT). The computational cost of VAT is relatively low. For neural networks, the approximated gradient of virtual adversarial loss can be computed with no more than two pairs of forward- and back-propagations. In our experiments, we applied VAT to supervised and semi-supervised learning tasks on multiple benchmark datasets. With a simple enhancement of the algorithm based on the entropy minimization principle, our VAT achieves state-of-the-art performance for semi-supervised learning tasks on SVHN and CIFAR-10.
A Deep Conjugate Direction Method for Iteratively Solving Linear Systems
We present a novel deep learning approach to approximate the solution of large, sparse, symmetric, positive-definite linear systems of equations. These systems arise from many problems in applied science, e.g., in numerical methods for partial differential equations. Algorithms for approximating the solution to these systems are often the bottleneck in problems that require their solution, particularly for modern applications that require many millions of unknowns. Indeed, numerical linear algebra techniques have been investigated for many decades to alleviate this computational burden. Recently, data-driven techniques have also shown promise for these problems. Motivated by the conjugate gradients algorithm that iteratively selects search directions for minimizing the matrix norm of the approximation error, we design an approach that utilizes a deep neural network to accelerate convergence via data-driven improvement of the search directions. Our method leverages a carefully chosen convolutional network to approximate the action of the inverse of the linear operator up to an arbitrary constant. We train the network using unsupervised learning with a loss function equal to the L^2 difference between an input and the system matrix times the network evaluation, where the unspecified constant in the approximate inverse is accounted for. We demonstrate the efficacy of our approach on spatially discretized Poisson equations with millions of degrees of freedom arising in computational fluid dynamics applications. Unlike state-of-the-art learning approaches, our algorithm is capable of reducing the linear system residual to a given tolerance in a small number of iterations, independent of the problem size. Moreover, our method generalizes effectively to various systems beyond those encountered during training.
AF-KAN: Activation Function-Based Kolmogorov-Arnold Networks for Efficient Representation Learning
Kolmogorov-Arnold Networks (KANs) have inspired numerous works exploring their applications across a wide range of scientific problems, with the potential to replace Multilayer Perceptrons (MLPs). While many KANs are designed using basis and polynomial functions, such as B-splines, ReLU-KAN utilizes a combination of ReLU functions to mimic the structure of B-splines and take advantage of ReLU's speed. However, ReLU-KAN is not built for multiple inputs, and its limitations stem from ReLU's handling of negative values, which can restrict feature extraction. To address these issues, we introduce Activation Function-Based Kolmogorov-Arnold Networks (AF-KAN), expanding ReLU-KAN with various activations and their function combinations. This novel KAN also incorporates parameter reduction methods, primarily attention mechanisms and data normalization, to enhance performance on image classification datasets. We explore different activation functions, function combinations, grid sizes, and spline orders to validate the effectiveness of AF-KAN and determine its optimal configuration. In the experiments, AF-KAN significantly outperforms MLP, ReLU-KAN, and other KANs with the same parameter count. It also remains competitive even when using fewer than 6 to 10 times the parameters while maintaining the same network structure. However, AF-KAN requires a longer training time and consumes more FLOPs. The repository for this work is available at https://github.com/hoangthangta/All-KAN.
Levin Tree Search with Context Models
Levin Tree Search (LTS) is a search algorithm that makes use of a policy (a probability distribution over actions) and comes with a theoretical guarantee on the number of expansions before reaching a goal node, depending on the quality of the policy. This guarantee can be used as a loss function, which we call the LTS loss, to optimize neural networks representing the policy (LTS+NN). In this work we show that the neural network can be substituted with parameterized context models originating from the online compression literature (LTS+CM). We show that the LTS loss is convex under this new model, which allows for using standard convex optimization tools, and obtain convergence guarantees to the optimal parameters in an online setting for a given set of solution trajectories -- guarantees that cannot be provided for neural networks. The new LTS+CM algorithm compares favorably against LTS+NN on several benchmarks: Sokoban (Boxoban), The Witness, and the 24-Sliding Tile puzzle (STP). The difference is particularly large on STP, where LTS+NN fails to solve most of the test instances while LTS+CM solves each test instance in a fraction of a second. Furthermore, we show that LTS+CM is able to learn a policy that solves the Rubik's cube in only a few hundred expansions, which considerably improves upon previous machine learning techniques.
Paying Attention to Astronomical Transients: Introducing the Time-series Transformer for Photometric Classification
Future surveys such as the Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will observe an order of magnitude more astrophysical transient events than any previous survey before. With this deluge of photometric data, it will be impossible for all such events to be classified by humans alone. Recent efforts have sought to leverage machine learning methods to tackle the challenge of astronomical transient classification, with ever improving success. Transformers are a recently developed deep learning architecture, first proposed for natural language processing, that have shown a great deal of recent success. In this work we develop a new transformer architecture, which uses multi-head self attention at its core, for general multi-variate time-series data. Furthermore, the proposed time-series transformer architecture supports the inclusion of an arbitrary number of additional features, while also offering interpretability. We apply the time-series transformer to the task of photometric classification, minimising the reliance of expert domain knowledge for feature selection, while achieving results comparable to state-of-the-art photometric classification methods. We achieve a logarithmic-loss of 0.507 on imbalanced data in a representative setting using data from the Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC). Moreover, we achieve a micro-averaged receiver operating characteristic area under curve of 0.98 and micro-averaged precision-recall area under curve of 0.87.
Long-Tailed Recognition by Mutual Information Maximization between Latent Features and Ground-Truth Labels
Although contrastive learning methods have shown prevailing performance on a variety of representation learning tasks, they encounter difficulty when the training dataset is long-tailed. Many researchers have combined contrastive learning and a logit adjustment technique to address this problem, but the combinations are done ad-hoc and a theoretical background has not yet been provided. The goal of this paper is to provide the background and further improve the performance. First, we show that the fundamental reason contrastive learning methods struggle with long-tailed tasks is that they try to maximize the mutual information maximization between latent features and input data. As ground-truth labels are not considered in the maximization, they are not able to address imbalances between class labels. Rather, we interpret the long-tailed recognition task as a mutual information maximization between latent features and ground-truth labels. This approach integrates contrastive learning and logit adjustment seamlessly to derive a loss function that shows state-of-the-art performance on long-tailed recognition benchmarks. It also demonstrates its efficacy in image segmentation tasks, verifying its versatility beyond image classification.
Efficient local linearity regularization to overcome catastrophic overfitting
Catastrophic overfitting (CO) in single-step adversarial training (AT) results in abrupt drops in the adversarial test accuracy (even down to 0%). For models trained with multi-step AT, it has been observed that the loss function behaves locally linearly with respect to the input, this is however lost in single-step AT. To address CO in single-step AT, several methods have been proposed to enforce local linearity of the loss via regularization. However, these regularization terms considerably slow down training due to Double Backpropagation. Instead, in this work, we introduce a regularization term, called ELLE, to mitigate CO effectively and efficiently in classical AT evaluations, as well as some more difficult regimes, e.g., large adversarial perturbations and long training schedules. Our regularization term can be theoretically linked to curvature of the loss function and is computationally cheaper than previous methods by avoiding Double Backpropagation. Our thorough experimental validation demonstrates that our work does not suffer from CO, even in challenging settings where previous works suffer from it. We also notice that adapting our regularization parameter during training (ELLE-A) greatly improves the performance, specially in large epsilon setups. Our implementation is available in https://github.com/LIONS-EPFL/ELLE .
Enhancing Certified Robustness via Block Reflector Orthogonal Layers and Logit Annealing Loss
Lipschitz neural networks are well-known for providing certified robustness in deep learning. In this paper, we present a novel, efficient Block Reflector Orthogonal (BRO) layer that enhances the capability of orthogonal layers on constructing more expressive Lipschitz neural architectures. In addition, by theoretically analyzing the nature of Lipschitz neural networks, we introduce a new loss function that employs an annealing mechanism to increase margin for most data points. This enables Lipschitz models to provide better certified robustness. By employing our BRO layer and loss function, we design BRONet - a simple yet effective Lipschitz neural network that achieves state-of-the-art certified robustness. Extensive experiments and empirical analysis on CIFAR-10/100, Tiny-ImageNet, and ImageNet validate that our method outperforms existing baselines. The implementation is available at https://github.com/ntuaislab/BRONet.
Neural Network-Based Score Estimation in Diffusion Models: Optimization and Generalization
Diffusion models have emerged as a powerful tool rivaling GANs in generating high-quality samples with improved fidelity, flexibility, and robustness. A key component of these models is to learn the score function through score matching. Despite empirical success on various tasks, it remains unclear whether gradient-based algorithms can learn the score function with a provable accuracy. As a first step toward answering this question, this paper establishes a mathematical framework for analyzing score estimation using neural networks trained by gradient descent. Our analysis covers both the optimization and the generalization aspects of the learning procedure. In particular, we propose a parametric form to formulate the denoising score-matching problem as a regression with noisy labels. Compared to the standard supervised learning setup, the score-matching problem introduces distinct challenges, including unbounded input, vector-valued output, and an additional time variable, preventing existing techniques from being applied directly. In this paper, we show that with proper designs, the evolution of neural networks during training can be accurately modeled by a series of kernel regression tasks. Furthermore, by applying an early-stopping rule for gradient descent and leveraging recent developments in neural tangent kernels, we establish the first generalization error (sample complexity) bounds for learning the score function with neural networks, despite the presence of noise in the observations. Our analysis is grounded in a novel parametric form of the neural network and an innovative connection between score matching and regression analysis, facilitating the application of advanced statistical and optimization techniques.
Learning to Reason with Neural Networks: Generalization, Unseen Data and Boolean Measures
This paper considers the Pointer Value Retrieval (PVR) benchmark introduced in [ZRKB21], where a 'reasoning' function acts on a string of digits to produce the label. More generally, the paper considers the learning of logical functions with gradient descent (GD) on neural networks. It is first shown that in order to learn logical functions with gradient descent on symmetric neural networks, the generalization error can be lower-bounded in terms of the noise-stability of the target function, supporting a conjecture made in [ZRKB21]. It is then shown that in the distribution shift setting, when the data withholding corresponds to freezing a single feature (referred to as canonical holdout), the generalization error of gradient descent admits a tight characterization in terms of the Boolean influence for several relevant architectures. This is shown on linear models and supported experimentally on other models such as MLPs and Transformers. In particular, this puts forward the hypothesis that for such architectures and for learning logical functions such as PVR functions, GD tends to have an implicit bias towards low-degree representations, which in turn gives the Boolean influence for the generalization error under quadratic loss.
Weight Conditioning for Smooth Optimization of Neural Networks
In this article, we introduce a novel normalization technique for neural network weight matrices, which we term weight conditioning. This approach aims to narrow the gap between the smallest and largest singular values of the weight matrices, resulting in better-conditioned matrices. The inspiration for this technique partially derives from numerical linear algebra, where well-conditioned matrices are known to facilitate stronger convergence results for iterative solvers. We provide a theoretical foundation demonstrating that our normalization technique smoothens the loss landscape, thereby enhancing convergence of stochastic gradient descent algorithms. Empirically, we validate our normalization across various neural network architectures, including Convolutional Neural Networks (CNNs), Vision Transformers (ViT), Neural Radiance Fields (NeRF), and 3D shape modeling. Our findings indicate that our normalization method is not only competitive but also outperforms existing weight normalization techniques from the literature.
BiPer: Binary Neural Networks using a Periodic Function
Quantized neural networks employ reduced precision representations for both weights and activations. This quantization process significantly reduces the memory requirements and computational complexity of the network. Binary Neural Networks (BNNs) are the extreme quantization case, representing values with just one bit. Since the sign function is typically used to map real values to binary values, smooth approximations are introduced to mimic the gradients during error backpropagation. Thus, the mismatch between the forward and backward models corrupts the direction of the gradient, causing training inconsistency problems and performance degradation. In contrast to current BNN approaches, we propose to employ a binary periodic (BiPer) function during binarization. Specifically, we use a square wave for the forward pass to obtain the binary values and employ the trigonometric sine function with the same period of the square wave as a differentiable surrogate during the backward pass. We demonstrate that this approach can control the quantization error by using the frequency of the periodic function and improves network performance. Extensive experiments validate the effectiveness of BiPer in benchmark datasets and network architectures, with improvements of up to 1% and 0.69% with respect to state-of-the-art methods in the classification task over CIFAR-10 and ImageNet, respectively. Our code is publicly available at https://github.com/edmav4/BiPer.
Up or Down? Adaptive Rounding for Post-Training Quantization
When quantizing neural networks, assigning each floating-point weight to its nearest fixed-point value is the predominant approach. We find that, perhaps surprisingly, this is not the best we can do. In this paper, we propose AdaRound, a better weight-rounding mechanism for post-training quantization that adapts to the data and the task loss. AdaRound is fast, does not require fine-tuning of the network, and only uses a small amount of unlabelled data. We start by theoretically analyzing the rounding problem for a pre-trained neural network. By approximating the task loss with a Taylor series expansion, the rounding task is posed as a quadratic unconstrained binary optimization problem. We simplify this to a layer-wise local loss and propose to optimize this loss with a soft relaxation. AdaRound not only outperforms rounding-to-nearest by a significant margin but also establishes a new state-of-the-art for post-training quantization on several networks and tasks. Without fine-tuning, we can quantize the weights of Resnet18 and Resnet50 to 4 bits while staying within an accuracy loss of 1%.
The Z-loss: a shift and scale invariant classification loss belonging to the Spherical Family
Despite being the standard loss function to train multi-class neural networks, the log-softmax has two potential limitations. First, it involves computations that scale linearly with the number of output classes, which can restrict the size of problems we are able to tackle with current hardware. Second, it remains unclear how close it matches the task loss such as the top-k error rate or other non-differentiable evaluation metrics which we aim to optimize ultimately. In this paper, we introduce an alternative classification loss function, the Z-loss, which is designed to address these two issues. Unlike the log-softmax, it has the desirable property of belonging to the spherical loss family (Vincent et al., 2015), a class of loss functions for which training can be performed very efficiently with a complexity independent of the number of output classes. We show experimentally that it significantly outperforms the other spherical loss functions previously investigated. Furthermore, we show on a word language modeling task that it also outperforms the log-softmax with respect to certain ranking scores, such as top-k scores, suggesting that the Z-loss has the flexibility to better match the task loss. These qualities thus makes the Z-loss an appealing candidate to train very efficiently large output networks such as word-language models or other extreme classification problems. On the One Billion Word (Chelba et al., 2014) dataset, we are able to train a model with the Z-loss 40 times faster than the log-softmax and more than 4 times faster than the hierarchical softmax.
Fairness-aware Agnostic Federated Learning
Federated learning is an emerging framework that builds centralized machine learning models with training data distributed across multiple devices. Most of the previous works about federated learning focus on the privacy protection and communication cost reduction. However, how to achieve fairness in federated learning is under-explored and challenging especially when testing data distribution is different from training distribution or even unknown. Introducing simple fairness constraints on the centralized model cannot achieve model fairness on unknown testing data. In this paper, we develop a fairness-aware agnostic federated learning framework (AgnosticFair) to deal with the challenge of unknown testing distribution. We use kernel reweighing functions to assign a reweighing value on each training sample in both loss function and fairness constraint. Therefore, the centralized model built from AgnosticFair can achieve high accuracy and fairness guarantee on unknown testing data. Moreover, the built model can be directly applied to local sites as it guarantees fairness on local data distributions. To our best knowledge, this is the first work to achieve fairness in federated learning. Experimental results on two real datasets demonstrate the effectiveness in terms of both utility and fairness under data shift scenarios.
On Sequential Loss Approximation for Continual Learning
We introduce for continual learning Autodiff Quadratic Consolidation (AQC), which approximates the previous loss function with a quadratic function, and Neural Consolidation (NC), which approximates the previous loss function with a neural network. Although they are not scalable to large neural networks, they can be used with a fixed pre-trained feature extractor. We empirically study these methods in class-incremental learning, for which regularization-based methods produce unsatisfactory results, unless combined with replay. We find that for small datasets, quadratic approximation of the previous loss function leads to poor results, even with full Hessian computation, and NC could significantly improve the predictive performance, while for large datasets, when used with a fixed pre-trained feature extractor, AQC provides superior predictive performance. We also find that using tanh-output features can improve the predictive performance of AQC. In particular, in class-incremental Split MNIST, when a Convolutional Neural Network (CNN) with tanh-output features is pre-trained on EMNIST Letters and used as a fixed pre-trained feature extractor, AQC can achieve predictive performance comparable to joint training.
Jaccard Metric Losses: Optimizing the Jaccard Index with Soft Labels
IoU losses are surrogates that directly optimize the Jaccard index. In semantic segmentation, leveraging IoU losses as part of the loss function is shown to perform better with respect to the Jaccard index measure than optimizing pixel-wise losses such as the cross-entropy loss alone. The most notable IoU losses are the soft Jaccard loss and the Lovasz-Softmax loss. However, these losses are incompatible with soft labels which are ubiquitous in machine learning. In this paper, we propose Jaccard metric losses (JMLs), which are identical to the soft Jaccard loss in a standard setting with hard labels, but are compatible with soft labels. With JMLs, we study two of the most popular use cases of soft labels: label smoothing and knowledge distillation. With a variety of architectures, our experiments show significant improvements over the cross-entropy loss on three semantic segmentation datasets (Cityscapes, PASCAL VOC and DeepGlobe Land), and our simple approach outperforms state-of-the-art knowledge distillation methods by a large margin. Code is available at: https://github.com/zifuwanggg/JDTLosses{https://github.com/zifuwanggg/JDTLosses}.
DOT: A Distillation-Oriented Trainer
Knowledge distillation transfers knowledge from a large model to a small one via task and distillation losses. In this paper, we observe a trade-off between task and distillation losses, i.e., introducing distillation loss limits the convergence of task loss. We believe that the trade-off results from the insufficient optimization of distillation loss. The reason is: The teacher has a lower task loss than the student, and a lower distillation loss drives the student more similar to the teacher, then a better-converged task loss could be obtained. To break the trade-off, we propose the Distillation-Oriented Trainer (DOT). DOT separately considers gradients of task and distillation losses, then applies a larger momentum to distillation loss to accelerate its optimization. We empirically prove that DOT breaks the trade-off, i.e., both losses are sufficiently optimized. Extensive experiments validate the superiority of DOT. Notably, DOT achieves a +2.59% accuracy improvement on ImageNet-1k for the ResNet50-MobileNetV1 pair. Conclusively, DOT greatly benefits the student's optimization properties in terms of loss convergence and model generalization. Code will be made publicly available.
Fast and Unified Path Gradient Estimators for Normalizing Flows
Recent work shows that path gradient estimators for normalizing flows have lower variance compared to standard estimators for variational inference, resulting in improved training. However, they are often prohibitively more expensive from a computational point of view and cannot be applied to maximum likelihood training in a scalable manner, which severely hinders their widespread adoption. In this work, we overcome these crucial limitations. Specifically, we propose a fast path gradient estimator which improves computational efficiency significantly and works for all normalizing flow architectures of practical relevance. We then show that this estimator can also be applied to maximum likelihood training for which it has a regularizing effect as it can take the form of a given target energy function into account. We empirically establish its superior performance and reduced variance for several natural sciences applications.
Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization
Image clustering is one of the most important computer vision applications, which has been extensively studied in literature. However, current clustering methods mostly suffer from lack of efficiency and scalability when dealing with large-scale and high-dimensional data. In this paper, we propose a new clustering model, called DEeP Embedded RegularIzed ClusTering (DEPICT), which efficiently maps data into a discriminative embedding subspace and precisely predicts cluster assignments. DEPICT generally consists of a multinomial logistic regression function stacked on top of a multi-layer convolutional autoencoder. We define a clustering objective function using relative entropy (KL divergence) minimization, regularized by a prior for the frequency of cluster assignments. An alternating strategy is then derived to optimize the objective by updating parameters and estimating cluster assignments. Furthermore, we employ the reconstruction loss functions in our autoencoder, as a data-dependent regularization term, to prevent the deep embedding function from overfitting. In order to benefit from end-to-end optimization and eliminate the necessity for layer-wise pretraining, we introduce a joint learning framework to minimize the unified clustering and reconstruction loss functions together and train all network layers simultaneously. Experimental results indicate the superiority and faster running time of DEPICT in real-world clustering tasks, where no labeled data is available for hyper-parameter tuning.
Long-tailed Classification from a Bayesian-decision-theory Perspective
Long-tailed classification poses a challenge due to its heavy imbalance in class probabilities and tail-sensitivity risks with asymmetric misprediction costs. Recent attempts have used re-balancing loss and ensemble methods, but they are largely heuristic and depend heavily on empirical results, lacking theoretical explanation. Furthermore, existing methods overlook the decision loss, which characterizes different costs associated with tailed classes. This paper presents a general and principled framework from a Bayesian-decision-theory perspective, which unifies existing techniques including re-balancing and ensemble methods, and provides theoretical justifications for their effectiveness. From this perspective, we derive a novel objective based on the integrated risk and a Bayesian deep-ensemble approach to improve the accuracy of all classes, especially the "tail". Besides, our framework allows for task-adaptive decision loss which provides provably optimal decisions in varying task scenarios, along with the capability to quantify uncertainty. Finally, We conduct comprehensive experiments, including standard classification, tail-sensitive classification with a new False Head Rate metric, calibration, and ablation studies. Our framework significantly improves the current SOTA even on large-scale real-world datasets like ImageNet.
Conformal Risk Control
We extend conformal prediction to control the expected value of any monotone loss function. The algorithm generalizes split conformal prediction together with its coverage guarantee. Like conformal prediction, the conformal risk control procedure is tight up to an O(1/n) factor. We also introduce extensions of the idea to distribution shift, quantile risk control, multiple and adversarial risk control, and expectations of U-statistics. Worked examples from computer vision and natural language processing demonstrate the usage of our algorithm to bound the false negative rate, graph distance, and token-level F1-score.
Estimator Meets Equilibrium Perspective: A Rectified Straight Through Estimator for Binary Neural Networks Training
Binarization of neural networks is a dominant paradigm in neural networks compression. The pioneering work BinaryConnect uses Straight Through Estimator (STE) to mimic the gradients of the sign function, but it also causes the crucial inconsistency problem. Most of the previous methods design different estimators instead of STE to mitigate it. However, they ignore the fact that when reducing the estimating error, the gradient stability will decrease concomitantly. These highly divergent gradients will harm the model training and increase the risk of gradient vanishing and gradient exploding. To fully take the gradient stability into consideration, we present a new perspective to the BNNs training, regarding it as the equilibrium between the estimating error and the gradient stability. In this view, we firstly design two indicators to quantitatively demonstrate the equilibrium phenomenon. In addition, in order to balance the estimating error and the gradient stability well, we revise the original straight through estimator and propose a power function based estimator, Rectified Straight Through Estimator (ReSTE for short). Comparing to other estimators, ReSTE is rational and capable of flexibly balancing the estimating error with the gradient stability. Extensive experiments on CIFAR-10 and ImageNet datasets show that ReSTE has excellent performance and surpasses the state-of-the-art methods without any auxiliary modules or losses.
Sharpness-Aware Training for Free
Modern deep neural networks (DNNs) have achieved state-of-the-art performances but are typically over-parameterized. The over-parameterization may result in undesirably large generalization error in the absence of other customized training strategies. Recently, a line of research under the name of Sharpness-Aware Minimization (SAM) has shown that minimizing a sharpness measure, which reflects the geometry of the loss landscape, can significantly reduce the generalization error. However, SAM-like methods incur a two-fold computational overhead of the given base optimizer (e.g. SGD) for approximating the sharpness measure. In this paper, we propose Sharpness-Aware Training for Free, or SAF, which mitigates the sharp landscape at almost zero additional computational cost over the base optimizer. Intuitively, SAF achieves this by avoiding sudden drops in the loss in the sharp local minima throughout the trajectory of the updates of the weights. Specifically, we suggest a novel trajectory loss, based on the KL-divergence between the outputs of DNNs with the current weights and past weights, as a replacement of the SAM's sharpness measure. This loss captures the rate of change of the training loss along the model's update trajectory. By minimizing it, SAF ensures the convergence to a flat minimum with improved generalization capabilities. Extensive empirical results show that SAF minimizes the sharpness in the same way that SAM does, yielding better results on the ImageNet dataset with essentially the same computational cost as the base optimizer.
Space-Variant Total Variation boosted by learning techniques in few-view tomographic imaging
This paper focuses on the development of a space-variant regularization model for solving an under-determined linear inverse problem. The case study is a medical image reconstruction from few-view tomographic noisy data. The primary objective of the proposed optimization model is to achieve a good balance between denoising and the preservation of fine details and edges, overcoming the performance of the popular and largely used Total Variation (TV) regularization through the application of appropriate pixel-dependent weights. The proposed strategy leverages the role of gradient approximations for the computation of the space-variant TV weights. For this reason, a convolutional neural network is designed, to approximate both the ground truth image and its gradient using an elastic loss function in its training. Additionally, the paper provides a theoretical analysis of the proposed model, showing the uniqueness of its solution, and illustrates a Chambolle-Pock algorithm tailored to address the specific problem at hand. This comprehensive framework integrates innovative regularization techniques with advanced neural network capabilities, demonstrating promising results in achieving high-quality reconstructions from low-sampled tomographic data.
Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data
Modern deep neural networks have achieved impressive performance on tasks from image classification to natural language processing. Surprisingly, these complex systems with massive amounts of parameters exhibit the same structural properties in their last-layer features and classifiers across canonical datasets when training until convergence. In particular, it has been observed that the last-layer features collapse to their class-means, and those class-means are the vertices of a simplex Equiangular Tight Frame (ETF). This phenomenon is known as Neural Collapse (NC). Recent papers have theoretically shown that NC emerges in the global minimizers of training problems with the simplified "unconstrained feature model". In this context, we take a step further and prove the NC occurrences in deep linear networks for the popular mean squared error (MSE) and cross entropy (CE) losses, showing that global solutions exhibit NC properties across the linear layers. Furthermore, we extend our study to imbalanced data for MSE loss and present the first geometric analysis of NC under bias-free setting. Our results demonstrate the convergence of the last-layer features and classifiers to a geometry consisting of orthogonal vectors, whose lengths depend on the amount of data in their corresponding classes. Finally, we empirically validate our theoretical analyses on synthetic and practical network architectures with both balanced and imbalanced scenarios.
Omnipredictors for Constrained Optimization
The notion of omnipredictors (Gopalan, Kalai, Reingold, Sharan and Wieder ITCS 2021), suggested a new paradigm for loss minimization. Rather than learning a predictor based on a known loss function, omnipredictors can easily be post-processed to minimize any one of a rich family of loss functions compared with the loss of hypotheses in a class mathcal C. It has been shown that such omnipredictors exist and are implied (for all convex and Lipschitz loss functions) by the notion of multicalibration from the algorithmic fairness literature. In this paper, we introduce omnipredictors for constrained optimization and study their complexity and implications. The notion that we introduce allows the learner to be unaware of the loss function that will be later assigned as well as the constraints that will be later imposed, as long as the subpopulations that are used to define these constraints are known. We show how to obtain omnipredictors for constrained optimization problems, relying on appropriate variants of multicalibration. We also investigate the implications of this notion when the constraints used are so-called group fairness notions.
Highly Imbalanced Regression with Tabular Data in SEP and Other Applications
We investigate imbalanced regression with tabular data that have an imbalance ratio larger than 1,000 ("highly imbalanced"). Accurately estimating the target values of rare instances is important in applications such as forecasting the intensity of rare harmful Solar Energetic Particle (SEP) events. For regression, the MSE loss does not consider the correlation between predicted and actual values. Typical inverse importance functions allow only convex functions. Uniform sampling might yield mini-batches that do not have rare instances. We propose CISIR that incorporates correlation, Monotonically Decreasing Involution (MDI) importance, and stratified sampling. Based on five datasets, our experimental results indicate that CISIR can achieve lower error and higher correlation than some recent methods. Also, adding our correlation component to other recent methods can improve their performance. Lastly, MDI importance can outperform other importance functions. Our code can be found in https://github.com/Machine-Earning/CISIR.
Fundamental Limits of Two-layer Autoencoders, and Achieving Them with Gradient Methods
Autoencoders are a popular model in many branches of machine learning and lossy data compression. However, their fundamental limits, the performance of gradient methods and the features learnt during optimization remain poorly understood, even in the two-layer setting. In fact, earlier work has considered either linear autoencoders or specific training regimes (leading to vanishing or diverging compression rates). Our paper addresses this gap by focusing on non-linear two-layer autoencoders trained in the challenging proportional regime in which the input dimension scales linearly with the size of the representation. Our results characterize the minimizers of the population risk, and show that such minimizers are achieved by gradient methods; their structure is also unveiled, thus leading to a concise description of the features obtained via training. For the special case of a sign activation function, our analysis establishes the fundamental limits for the lossy compression of Gaussian sources via (shallow) autoencoders. Finally, while the results are proved for Gaussian data, numerical simulations on standard datasets display the universality of the theoretical predictions.
Spectral Alignment as Predictor of Loss Explosion in Neural Network Training
Loss explosions in training deep neural networks can nullify multi-million dollar training runs. Conventional monitoring metrics like weight and gradient norms are often lagging and ambiguous predictors, as their values vary dramatically across different models and even between layers of the same model, making it difficult to establish a unified standard for detecting impending failure. We introduce Spectral Alignment (SA), a novel, theoretically-grounded metric that monitors the distributional alignment between layer inputs and the principal singular vectors of weight matrices. We show that a collapse in the sign diversity of this alignment is a powerful early predictor of representational collapse and training divergence. Empirical results on language models demonstrate that monitoring the SA distribution provides a significantly earlier and clearer warning of loss explosions than traditional scalar metrics. SA's low computational overhead makes it a practical tool for safeguarding model training.
Geometry-Aware Adaptation for Pretrained Models
Machine learning models -- including prominent zero-shot models -- are often trained on datasets whose labels are only a small proportion of a larger label space. Such spaces are commonly equipped with a metric that relates the labels via distances between them. We propose a simple approach to exploit this information to adapt the trained model to reliably predict new classes -- or, in the case of zero-shot prediction, to improve its performance -- without any additional training. Our technique is a drop-in replacement of the standard prediction rule, swapping argmax with the Fr\'echet mean. We provide a comprehensive theoretical analysis for this approach, studying (i) learning-theoretic results trading off label space diameter, sample complexity, and model dimension, (ii) characterizations of the full range of scenarios in which it is possible to predict any unobserved class, and (iii) an optimal active learning-like next class selection procedure to obtain optimal training classes for when it is not possible to predict the entire range of unobserved classes. Empirically, using easily-available external metrics, our proposed approach, Loki, gains up to 29.7% relative improvement over SimCLR on ImageNet and scales to hundreds of thousands of classes. When no such metric is available, Loki can use self-derived metrics from class embeddings and obtains a 10.5% improvement on pretrained zero-shot models such as CLIP.
On Second-Order Scoring Rules for Epistemic Uncertainty Quantification
It is well known that accurate probabilistic predictors can be trained through empirical risk minimisation with proper scoring rules as loss functions. While such learners capture so-called aleatoric uncertainty of predictions, various machine learning methods have recently been developed with the goal to let the learner also represent its epistemic uncertainty, i.e., the uncertainty caused by a lack of knowledge and data. An emerging branch of the literature proposes the use of a second-order learner that provides predictions in terms of distributions on probability distributions. However, recent work has revealed serious theoretical shortcomings for second-order predictors based on loss minimisation. In this paper, we generalise these findings and prove a more fundamental result: There seems to be no loss function that provides an incentive for a second-order learner to faithfully represent its epistemic uncertainty in the same manner as proper scoring rules do for standard (first-order) learners. As a main mathematical tool to prove this result, we introduce the generalised notion of second-order scoring rules.
Barlow Twins: Self-Supervised Learning via Redundancy Reduction
Self-supervised learning (SSL) is rapidly closing the gap with supervised methods on large computer vision benchmarks. A successful approach to SSL is to learn embeddings which are invariant to distortions of the input sample. However, a recurring issue with this approach is the existence of trivial constant solutions. Most current methods avoid such solutions by careful implementation details. We propose an objective function that naturally avoids collapse by measuring the cross-correlation matrix between the outputs of two identical networks fed with distorted versions of a sample, and making it as close to the identity matrix as possible. This causes the embedding vectors of distorted versions of a sample to be similar, while minimizing the redundancy between the components of these vectors. The method is called Barlow Twins, owing to neuroscientist H. Barlow's redundancy-reduction principle applied to a pair of identical networks. Barlow Twins does not require large batches nor asymmetry between the network twins such as a predictor network, gradient stopping, or a moving average on the weight updates. Intriguingly it benefits from very high-dimensional output vectors. Barlow Twins outperforms previous methods on ImageNet for semi-supervised classification in the low-data regime, and is on par with current state of the art for ImageNet classification with a linear classifier head, and for transfer tasks of classification and object detection.
Improving Autoencoder-based Outlier Detection with Adjustable Probabilistic Reconstruction Error and Mean-shift Outlier Scoring
Autoencoders were widely used in many machine learning tasks thanks to their strong learning ability which has drawn great interest among researchers in the field of outlier detection. However, conventional autoencoder-based methods lacked considerations in two aspects. This limited their performance in outlier detection. First, the mean squared error used in conventional autoencoders ignored the judgment uncertainty of the autoencoder, which limited their representation ability. Second, autoencoders suffered from the abnormal reconstruction problem: some outliers can be unexpectedly reconstructed well, making them difficult to identify from the inliers. To mitigate the aforementioned issues, two novel methods were proposed in this paper. First, a novel loss function named Probabilistic Reconstruction Error (PRE) was constructed to factor in both reconstruction bias and judgment uncertainty. To further control the trade-off of these two factors, two weights were introduced in PRE producing Adjustable Probabilistic Reconstruction Error (APRE), which benefited the outlier detection in different applications. Second, a conceptually new outlier scoring method based on mean-shift (MSS) was proposed to reduce the false inliers caused by the autoencoder. Experiments on 32 real-world outlier detection datasets proved the effectiveness of the proposed methods. The combination of the proposed methods achieved 41% of the relative performance improvement compared to the best baseline. The MSS improved the performance of multiple autoencoder-based outlier detectors by an average of 20%. The proposed two methods have the potential to advance autoencoder's development in outlier detection. The code is available on www.OutlierNet.com for reproducibility.
Scalable Neural Network Kernels
We introduce the concept of scalable neural network kernels (SNNKs), the replacements of regular feedforward layers (FFLs), capable of approximating the latter, but with favorable computational properties. SNNKs effectively disentangle the inputs from the parameters of the neural network in the FFL, only to connect them in the final computation via the dot-product kernel. They are also strictly more expressive, as allowing to model complicated relationships beyond the functions of the dot-products of parameter-input vectors. We also introduce the neural network bundling process that applies SNNKs to compactify deep neural network architectures, resulting in additional compression gains. In its extreme version, it leads to the fully bundled network whose optimal parameters can be expressed via explicit formulae for several loss functions (e.g. mean squared error), opening a possibility to bypass backpropagation. As a by-product of our analysis, we introduce the mechanism of the universal random features (or URFs), applied to instantiate several SNNK variants, and interesting on its own in the context of scalable kernel methods. We provide rigorous theoretical analysis of all these concepts as well as an extensive empirical evaluation, ranging from point-wise kernel estimation to Transformers' fine-tuning with novel adapter layers inspired by SNNKs. Our mechanism provides up to 5x reduction in the number of trainable parameters, while maintaining competitive accuracy.
SDSC:A Structure-Aware Metric for Semantic Signal Representation Learning
We propose the Signal Dice Similarity Coefficient (SDSC), a structure-aware metric function for time series self-supervised representation learning. Most Self-Supervised Learning (SSL) methods for signals commonly adopt distance-based objectives such as mean squared error (MSE), which are sensitive to amplitude, invariant to waveform polarity, and unbounded in scale. These properties hinder semantic alignment and reduce interpretability. SDSC addresses this by quantifying structural agreement between temporal signals based on the intersection of signed amplitudes, derived from the Dice Similarity Coefficient (DSC).Although SDSC is defined as a structure-aware metric, it can be used as a loss by subtracting from 1 and applying a differentiable approximation of the Heaviside function for gradient-based optimization. A hybrid loss formulation is also proposed to combine SDSC with MSE, improving stability and preserving amplitude where necessary. Experiments on forecasting and classification benchmarks demonstrate that SDSC-based pre-training achieves comparable or improved performance over MSE, particularly in in-domain and low-resource scenarios. The results suggest that structural fidelity in signal representations enhances the semantic representation quality, supporting the consideration of structure-aware metrics as viable alternatives to conventional distance-based methods.
Generalization Analysis for Contrastive Representation Learning
Recently, contrastive learning has found impressive success in advancing the state of the art in solving various machine learning tasks. However, the existing generalization analysis is very limited or even not meaningful. In particular, the existing generalization error bounds depend linearly on the number k of negative examples while it was widely shown in practice that choosing a large k is necessary to guarantee good generalization of contrastive learning in downstream tasks. In this paper, we establish novel generalization bounds for contrastive learning which do not depend on k, up to logarithmic terms. Our analysis uses structural results on empirical covering numbers and Rademacher complexities to exploit the Lipschitz continuity of loss functions. For self-bounding Lipschitz loss functions, we further improve our results by developing optimistic bounds which imply fast rates in a low noise condition. We apply our results to learning with both linear representation and nonlinear representation by deep neural networks, for both of which we derive Rademacher complexity bounds to get improved generalization bounds.
Do Deep Neural Network Solutions Form a Star Domain?
It has recently been conjectured that neural network solution sets reachable via stochastic gradient descent (SGD) are convex, considering permutation invariances (Entezari et al., 2022). This means that a linear path can connect two independent solutions with low loss, given the weights of one of the models are appropriately permuted. However, current methods to test this theory often require very wide networks to succeed. In this work, we conjecture that more generally, the SGD solution set is a "star domain" that contains a "star model" that is linearly connected to all the other solutions via paths with low loss values, modulo permutations. We propose the Starlight algorithm that finds a star model of a given learning task. We validate our claim by showing that this star model is linearly connected with other independently found solutions. As an additional benefit of our study, we demonstrate better uncertainty estimates on the Bayesian Model Averaging over the obtained star domain. Further, we demonstrate star models as potential substitutes for model ensembles. Our code is available at https://github.com/aktsonthalia/starlight.
Grokking as the Transition from Lazy to Rich Training Dynamics
We propose that the grokking phenomenon, where the train loss of a neural network decreases much earlier than its test loss, can arise due to a neural network transitioning from lazy training dynamics to a rich, feature learning regime. To illustrate this mechanism, we study the simple setting of vanilla gradient descent on a polynomial regression problem with a two layer neural network which exhibits grokking without regularization in a way that cannot be explained by existing theories. We identify sufficient statistics for the test loss of such a network, and tracking these over training reveals that grokking arises in this setting when the network first attempts to fit a kernel regression solution with its initial features, followed by late-time feature learning where a generalizing solution is identified after train loss is already low. We provide an asymptotic theoretical description of the grokking dynamics in this model using dynamical mean field theory (DMFT) for high dimensional data. We find that the key determinants of grokking are the rate of feature learning -- which can be controlled precisely by parameters that scale the network output -- and the alignment of the initial features with the target function y(x). We argue this delayed generalization arises when (1) the top eigenvectors of the initial neural tangent kernel and the task labels y(x) are misaligned, but (2) the dataset size is large enough so that it is possible for the network to generalize eventually, but not so large that train loss perfectly tracks test loss at all epochs, and (3) the network begins training in the lazy regime so does not learn features immediately. We conclude with evidence that this transition from lazy (linear model) to rich training (feature learning) can control grokking in more general settings, like on MNIST, one-layer Transformers, and student-teacher networks.
Improve Representation for Imbalanced Regression through Geometric Constraints
In representation learning, uniformity refers to the uniform feature distribution in the latent space (i.e., unit hypersphere). Previous work has shown that improving uniformity contributes to the learning of under-represented classes. However, most of the previous work focused on classification; the representation space of imbalanced regression remains unexplored. Classification-based methods are not suitable for regression tasks because they cluster features into distinct groups without considering the continuous and ordered nature essential for regression. In a geometric aspect, we uniquely focus on ensuring uniformity in the latent space for imbalanced regression through two key losses: enveloping and homogeneity. The enveloping loss encourages the induced trace to uniformly occupy the surface of a hypersphere, while the homogeneity loss ensures smoothness, with representations evenly spaced at consistent intervals. Our method integrates these geometric principles into the data representations via a Surrogate-driven Representation Learning (SRL) framework. Experiments with real-world regression and operator learning tasks highlight the importance of uniformity in imbalanced regression and validate the efficacy of our geometry-based loss functions.
Adversarially Robust PAC Learnability of Real-Valued Functions
We study robustness to test-time adversarial attacks in the regression setting with ell_p losses and arbitrary perturbation sets. We address the question of which function classes are PAC learnable in this setting. We show that classes of finite fat-shattering dimension are learnable in both realizable and agnostic settings. Moreover, for convex function classes, they are even properly learnable. In contrast, some non-convex function classes provably require improper learning algorithms. Our main technique is based on a construction of an adversarially robust sample compression scheme of a size determined by the fat-shattering dimension. Along the way, we introduce a novel agnostic sample compression scheme for real-valued functions, which may be of independent interest.
The Monge Gap: A Regularizer to Learn All Transport Maps
Optimal transport (OT) theory has been been used in machine learning to study and characterize maps that can push-forward efficiently a probability measure onto another. Recent works have drawn inspiration from Brenier's theorem, which states that when the ground cost is the squared-Euclidean distance, the ``best'' map to morph a continuous measure in P(Rd) into another must be the gradient of a convex function. To exploit that result, [Makkuva+ 2020, Korotin+2020] consider maps T=nabla f_theta, where f_theta is an input convex neural network (ICNN), as defined by Amos+2017, and fit theta with SGD using samples. Despite their mathematical elegance, fitting OT maps with ICNNs raises many challenges, due notably to the many constraints imposed on theta; the need to approximate the conjugate of f_theta; or the limitation that they only work for the squared-Euclidean cost. More generally, we question the relevance of using Brenier's result, which only applies to densities, to constrain the architecture of candidate maps fitted on samples. Motivated by these limitations, we propose a radically different approach to estimating OT maps: Given a cost c and a reference measure rho, we introduce a regularizer, the Monge gap M^c_{rho}(T) of a map T. That gap quantifies how far a map T deviates from the ideal properties we expect from a c-OT map. In practice, we drop all architecture requirements for T and simply minimize a distance (e.g., the Sinkhorn divergence) between Tsharpmu and nu, regularized by M^c_rho(T). We study M^c_{rho}, and show how our simple pipeline outperforms significantly other baselines in practice.
Dual Focal Loss for Calibration
The use of deep neural networks in real-world applications require well-calibrated networks with confidence scores that accurately reflect the actual probability. However, it has been found that these networks often provide over-confident predictions, which leads to poor calibration. Recent efforts have sought to address this issue by focal loss to reduce over-confidence, but this approach can also lead to under-confident predictions. While different variants of focal loss have been explored, it is difficult to find a balance between over-confidence and under-confidence. In our work, we propose a new loss function by focusing on dual logits. Our method not only considers the ground truth logit, but also take into account the highest logit ranked after the ground truth logit. By maximizing the gap between these two logits, our proposed dual focal loss can achieve a better balance between over-confidence and under-confidence. We provide theoretical evidence to support our approach and demonstrate its effectiveness through evaluations on multiple models and datasets, where it achieves state-of-the-art performance. Code is available at https://github.com/Linwei94/DualFocalLoss
Exploring Weight Balancing on Long-Tailed Recognition Problem
Recognition problems in long-tailed data, in which the sample size per class is heavily skewed, have gained importance because the distribution of the sample size per class in a dataset is generally exponential unless the sample size is intentionally adjusted. Various methods have been devised to address these problems. Recently, weight balancing, which combines well-known classical regularization techniques with two-stage training, has been proposed. Despite its simplicity, it is known for its high performance compared with existing methods devised in various ways. However, there is a lack of understanding as to why this method is effective for long-tailed data. In this study, we analyze weight balancing by focusing on neural collapse and the cone effect at each training stage and found that it can be decomposed into an increase in Fisher's discriminant ratio of the feature extractor caused by weight decay and cross entropy loss and implicit logit adjustment caused by weight decay and class-balanced loss. Our analysis enables the training method to be further simplified by reducing the number of training stages to one while increasing accuracy.
Adversarial Adaptive Sampling: Unify PINN and Optimal Transport for the Approximation of PDEs
Solving partial differential equations (PDEs) is a central task in scientific computing. Recently, neural network approximation of PDEs has received increasing attention due to its flexible meshless discretization and its potential for high-dimensional problems. One fundamental numerical difficulty is that random samples in the training set introduce statistical errors into the discretization of loss functional which may become the dominant error in the final approximation, and therefore overshadow the modeling capability of the neural network. In this work, we propose a new minmax formulation to optimize simultaneously the approximate solution, given by a neural network model, and the random samples in the training set, provided by a deep generative model. The key idea is to use a deep generative model to adjust random samples in the training set such that the residual induced by the approximate PDE solution can maintain a smooth profile when it is being minimized. Such an idea is achieved by implicitly embedding the Wasserstein distance between the residual-induced distribution and the uniform distribution into the loss, which is then minimized together with the residual. A nearly uniform residual profile means that its variance is small for any normalized weight function such that the Monte Carlo approximation error of the loss functional is reduced significantly for a certain sample size. The adversarial adaptive sampling (AAS) approach proposed in this work is the first attempt to formulate two essential components, minimizing the residual and seeking the optimal training set, into one minmax objective functional for the neural network approximation of PDEs.
Escaping Saddle Points for Effective Generalization on Class-Imbalanced Data
Real-world datasets exhibit imbalances of varying types and degrees. Several techniques based on re-weighting and margin adjustment of loss are often used to enhance the performance of neural networks, particularly on minority classes. In this work, we analyze the class-imbalanced learning problem by examining the loss landscape of neural networks trained with re-weighting and margin-based techniques. Specifically, we examine the spectral density of Hessian of class-wise loss, through which we observe that the network weights converge to a saddle point in the loss landscapes of minority classes. Following this observation, we also find that optimization methods designed to escape from saddle points can be effectively used to improve generalization on minority classes. We further theoretically and empirically demonstrate that Sharpness-Aware Minimization (SAM), a recent technique that encourages convergence to a flat minima, can be effectively used to escape saddle points for minority classes. Using SAM results in a 6.2\% increase in accuracy on the minority classes over the state-of-the-art Vector Scaling Loss, leading to an overall average increase of 4\% across imbalanced datasets. The code is available at: https://github.com/val-iisc/Saddle-LongTail.
Modulate Your Spectrum in Self-Supervised Learning
Whitening loss offers a theoretical guarantee against feature collapse in self-supervised learning (SSL) with joint embedding architectures. Typically, it involves a hard whitening approach, transforming the embedding and applying loss to the whitened output. In this work, we introduce Spectral Transformation (ST), a framework to modulate the spectrum of embedding and to seek for functions beyond whitening that can avoid dimensional collapse. We show that whitening is a special instance of ST by definition, and our empirical investigations unveil other ST instances capable of preventing collapse. Additionally, we propose a novel ST instance named IterNorm with trace loss (INTL). Theoretical analysis confirms INTL's efficacy in preventing collapse and modulating the spectrum of embedding toward equal-eigenvalues during optimization. Our experiments on ImageNet classification and COCO object detection demonstrate INTL's potential in learning superior representations. The code is available at https://github.com/winci-ai/INTL.
Asymmetric Loss For Multi-Label Classification
In a typical multi-label setting, a picture contains on average few positive labels, and many negative ones. This positive-negative imbalance dominates the optimization process, and can lead to under-emphasizing gradients from positive labels during training, resulting in poor accuracy. In this paper, we introduce a novel asymmetric loss ("ASL"), which operates differently on positive and negative samples. The loss enables to dynamically down-weights and hard-thresholds easy negative samples, while also discarding possibly mislabeled samples. We demonstrate how ASL can balance the probabilities of different samples, and how this balancing is translated to better mAP scores. With ASL, we reach state-of-the-art results on multiple popular multi-label datasets: MS-COCO, Pascal-VOC, NUS-WIDE and Open Images. We also demonstrate ASL applicability for other tasks, such as single-label classification and object detection. ASL is effective, easy to implement, and does not increase the training time or complexity. Implementation is available at: https://github.com/Alibaba-MIIL/ASL.
Fully Hyperbolic Neural Networks
Hyperbolic neural networks have shown great potential for modeling complex data. However, existing hyperbolic networks are not completely hyperbolic, as they encode features in a hyperbolic space yet formalize most of their operations in the tangent space (a Euclidean subspace) at the origin of the hyperbolic space. This hybrid method greatly limits the modeling ability of networks. In this paper, we propose a fully hyperbolic framework to build hyperbolic networks based on the Lorentz model by adapting the Lorentz transformations (including boost and rotation) to formalize essential operations of neural networks. Moreover, we also prove that linear transformation in tangent spaces used by existing hyperbolic networks is a relaxation of the Lorentz rotation and does not include the boost, implicitly limiting the capabilities of existing hyperbolic networks. The experimental results on four NLP tasks show that our method has better performance for building both shallow and deep networks. Our code will be released to facilitate follow-up research.
RADIANCE: Radio-Frequency Adversarial Deep-learning Inference for Automated Network Coverage Estimation
Radio-frequency coverage maps (RF maps) are extensively utilized in wireless networks for capacity planning, placement of access points and base stations, localization, and coverage estimation. Conducting site surveys to obtain RF maps is labor-intensive and sometimes not feasible. In this paper, we propose radio-frequency adversarial deep-learning inference for automated network coverage estimation (RADIANCE), a generative adversarial network (GAN) based approach for synthesizing RF maps in indoor scenarios. RADIANCE utilizes a semantic map, a high-level representation of the indoor environment to encode spatial relationships and attributes of objects within the environment and guide the RF map generation process. We introduce a new gradient-based loss function that computes the magnitude and direction of change in received signal strength (RSS) values from a point within the environment. RADIANCE incorporates this loss function along with the antenna pattern to capture signal propagation within a given indoor configuration and generate new patterns under new configuration, antenna (beam) pattern, and center frequency. Extensive simulations are conducted to compare RADIANCE with ray-tracing simulations of RF maps. Our results show that RADIANCE achieves a mean average error (MAE) of 0.09, root-mean-squared error (RMSE) of 0.29, peak signal-to-noise ratio (PSNR) of 10.78, and multi-scale structural similarity index (MS-SSIM) of 0.80.
Improved sampling via learned diffusions
Recently, a series of papers proposed deep learning-based approaches to sample from unnormalized target densities using controlled diffusion processes. In this work, we identify these approaches as special cases of the Schr\"odinger bridge problem, seeking the most likely stochastic evolution between a given prior distribution and the specified target. We further generalize this framework by introducing a variational formulation based on divergences between path space measures of time-reversed diffusion processes. This abstract perspective leads to practical losses that can be optimized by gradient-based algorithms and includes previous objectives as special cases. At the same time, it allows us to consider divergences other than the reverse Kullback-Leibler divergence that is known to suffer from mode collapse. In particular, we propose the so-called log-variance loss, which exhibits favorable numerical properties and leads to significantly improved performance across all considered approaches.
Domain Adaptation and Entanglement: an Optimal Transport Perspective
Current machine learning systems are brittle in the face of distribution shifts (DS), where the target distribution that the system is tested on differs from the source distribution used to train the system. This problem of robustness to DS has been studied extensively in the field of domain adaptation. For deep neural networks, a popular framework for unsupervised domain adaptation (UDA) is domain matching, in which algorithms try to align the marginal distributions in the feature or output space. The current theoretical understanding of these methods, however, is limited and existing theoretical results are not precise enough to characterize their performance in practice. In this paper, we derive new bounds based on optimal transport that analyze the UDA problem. Our new bounds include a term which we dub as entanglement, consisting of an expectation of Wasserstein distance between conditionals with respect to changing data distributions. Analysis of the entanglement term provides a novel perspective on the unoptimizable aspects of UDA. In various experiments with multiple models across several DS scenarios, we show that this term can be used to explain the varying performance of UDA algorithms.
Tighter Information-Theoretic Generalization Bounds from Supersamples
In this work, we present a variety of novel information-theoretic generalization bounds for learning algorithms, from the supersample setting of Steinke & Zakynthinou (2020)-the setting of the "conditional mutual information" framework. Our development exploits projecting the loss pair (obtained from a training instance and a testing instance) down to a single number and correlating loss values with a Rademacher sequence (and its shifted variants). The presented bounds include square-root bounds, fast-rate bounds, including those based on variance and sharpness, and bounds for interpolating algorithms etc. We show theoretically or empirically that these bounds are tighter than all information-theoretic bounds known to date on the same supersample setting.
The GAN is dead; long live the GAN! A Modern GAN Baseline
There is a widely-spread claim that GANs are difficult to train, and GAN architectures in the literature are littered with empirical tricks. We provide evidence against this claim and build a modern GAN baseline in a more principled manner. First, we derive a well-behaved regularized relativistic GAN loss that addresses issues of mode dropping and non-convergence that were previously tackled via a bag of ad-hoc tricks. We analyze our loss mathematically and prove that it admits local convergence guarantees, unlike most existing relativistic losses. Second, our new loss allows us to discard all ad-hoc tricks and replace outdated backbones used in common GANs with modern architectures. Using StyleGAN2 as an example, we present a roadmap of simplification and modernization that results in a new minimalist baseline -- R3GAN. Despite being simple, our approach surpasses StyleGAN2 on FFHQ, ImageNet, CIFAR, and Stacked MNIST datasets, and compares favorably against state-of-the-art GANs and diffusion models.
Provable Benefit of Mixup for Finding Optimal Decision Boundaries
We investigate how pair-wise data augmentation techniques like Mixup affect the sample complexity of finding optimal decision boundaries in a binary linear classification problem. For a family of data distributions with a separability constant kappa, we analyze how well the optimal classifier in terms of training loss aligns with the optimal one in test accuracy (i.e., Bayes optimal classifier). For vanilla training without augmentation, we uncover an interesting phenomenon named the curse of separability. As we increase kappa to make the data distribution more separable, the sample complexity of vanilla training increases exponentially in kappa; perhaps surprisingly, the task of finding optimal decision boundaries becomes harder for more separable distributions. For Mixup training, we show that Mixup mitigates this problem by significantly reducing the sample complexity. To this end, we develop new concentration results applicable to n^2 pair-wise augmented data points constructed from n independent data, by carefully dealing with dependencies between overlapping pairs. Lastly, we study other masking-based Mixup-style techniques and show that they can distort the training loss and make its minimizer converge to a suboptimal classifier in terms of test accuracy.
Neural Field Classifiers via Target Encoding and Classification Loss
Neural field methods have seen great progress in various long-standing tasks in computer vision and computer graphics, including novel view synthesis and geometry reconstruction. As existing neural field methods try to predict some coordinate-based continuous target values, such as RGB for Neural Radiance Field (NeRF), all of these methods are regression models and are optimized by some regression loss. However, are regression models really better than classification models for neural field methods? In this work, we try to visit this very fundamental but overlooked question for neural fields from a machine learning perspective. We successfully propose a novel Neural Field Classifier (NFC) framework which formulates existing neural field methods as classification tasks rather than regression tasks. The proposed NFC can easily transform arbitrary Neural Field Regressor (NFR) into its classification variant via employing a novel Target Encoding module and optimizing a classification loss. By encoding a continuous regression target into a high-dimensional discrete encoding, we naturally formulate a multi-label classification task. Extensive experiments demonstrate the impressive effectiveness of NFC at the nearly free extra computational costs. Moreover, NFC also shows robustness to sparse inputs, corrupted images, and dynamic scenes.
Bayesian Flow Networks
This paper introduces Bayesian Flow Networks (BFNs), a new class of generative model in which the parameters of a set of independent distributions are modified with Bayesian inference in the light of noisy data samples, then passed as input to a neural network that outputs a second, interdependent distribution. Starting from a simple prior and iteratively updating the two distributions yields a generative procedure similar to the reverse process of diffusion models; however it is conceptually simpler in that no forward process is required. Discrete and continuous-time loss functions are derived for continuous, discretised and discrete data, along with sample generation procedures. Notably, the network inputs for discrete data lie on the probability simplex, and are therefore natively differentiable, paving the way for gradient-based sample guidance and few-step generation in discrete domains such as language modelling. The loss function directly optimises data compression and places no restrictions on the network architecture. In our experiments BFNs achieve competitive log-likelihoods for image modelling on dynamically binarized MNIST and CIFAR-10, and outperform all known discrete diffusion models on the text8 character-level language modelling task.
On Mitigating the Utility-Loss in Differentially Private Learning: A new Perspective by a Geometrically Inspired Kernel Approach
Privacy-utility tradeoff remains as one of the fundamental issues of differentially private machine learning. This paper introduces a geometrically inspired kernel-based approach to mitigate the accuracy-loss issue in classification. In this approach, a representation of the affine hull of given data points is learned in Reproducing Kernel Hilbert Spaces (RKHS). This leads to a novel distance measure that hides privacy-sensitive information about individual data points and improves the privacy-utility tradeoff via significantly reducing the risk of membership inference attacks. The effectiveness of the approach is demonstrated through experiments on MNIST dataset, Freiburg groceries dataset, and a real biomedical dataset. It is verified that the approach remains computationally practical. The application of the approach to federated learning is considered and it is observed that the accuracy-loss due to data being distributed is either marginal or not significantly high.
From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification
We propose sparsemax, a new activation function similar to the traditional softmax, but able to output sparse probabilities. After deriving its properties, we show how its Jacobian can be efficiently computed, enabling its use in a network trained with backpropagation. Then, we propose a new smooth and convex loss function which is the sparsemax analogue of the logistic loss. We reveal an unexpected connection between this new loss and the Huber classification loss. We obtain promising empirical results in multi-label classification problems and in attention-based neural networks for natural language inference. For the latter, we achieve a similar performance as the traditional softmax, but with a selective, more compact, attention focus.
Conformal Inference under High-Dimensional Covariate Shifts via Likelihood-Ratio Regularization
We consider the problem of conformal prediction under covariate shift. Given labeled data from a source domain and unlabeled data from a covariate shifted target domain, we seek to construct prediction sets with valid marginal coverage in the target domain. Most existing methods require estimating the unknown likelihood ratio function, which can be prohibitive for high-dimensional data such as images. To address this challenge, we introduce the likelihood ratio regularized quantile regression (LR-QR) algorithm, which combines the pinball loss with a novel choice of regularization in order to construct a threshold function without directly estimating the unknown likelihood ratio. We show that the LR-QR method has coverage at the desired level in the target domain, up to a small error term that we can control. Our proofs draw on a novel analysis of coverage via stability bounds from learning theory. Our experiments demonstrate that the LR-QR algorithm outperforms existing methods on high-dimensional prediction tasks, including a regression task for the Communities and Crime dataset, an image classification task from the WILDS repository, and an LLM question-answering task on the MMLU benchmark.
What Regularized Auto-Encoders Learn from the Data Generating Distribution
What do auto-encoders learn about the underlying data generating distribution? Recent work suggests that some auto-encoder variants do a good job of capturing the local manifold structure of data. This paper clarifies some of these previous observations by showing that minimizing a particular form of regularized reconstruction error yields a reconstruction function that locally characterizes the shape of the data generating density. We show that the auto-encoder captures the score (derivative of the log-density with respect to the input). It contradicts previous interpretations of reconstruction error as an energy function. Unlike previous results, the theorems provided here are completely generic and do not depend on the parametrization of the auto-encoder: they show what the auto-encoder would tend to if given enough capacity and examples. These results are for a contractive training criterion we show to be similar to the denoising auto-encoder training criterion with small corruption noise, but with contraction applied on the whole reconstruction function rather than just encoder. Similarly to score matching, one can consider the proposed training criterion as a convenient alternative to maximum likelihood because it does not involve a partition function. Finally, we show how an approximate Metropolis-Hastings MCMC can be setup to recover samples from the estimated distribution, and this is confirmed in sampling experiments.
Refined Regret for Adversarial MDPs with Linear Function Approximation
We consider learning in an adversarial Markov Decision Process (MDP) where the loss functions can change arbitrarily over K episodes and the state space can be arbitrarily large. We assume that the Q-function of any policy is linear in some known features, that is, a linear function approximation exists. The best existing regret upper bound for this setting (Luo et al., 2021) is of order mathcal O(K^{2/3}) (omitting all other dependencies), given access to a simulator. This paper provides two algorithms that improve the regret to mathcal O(sqrt K) in the same setting. Our first algorithm makes use of a refined analysis of the Follow-the-Regularized-Leader (FTRL) algorithm with the log-barrier regularizer. This analysis allows the loss estimators to be arbitrarily negative and might be of independent interest. Our second algorithm develops a magnitude-reduced loss estimator, further removing the polynomial dependency on the number of actions in the first algorithm and leading to the optimal regret bound (up to logarithmic terms and dependency on the horizon). Moreover, we also extend the first algorithm to simulator-free linear MDPs, which achieves mathcal O(K^{8/9}) regret and greatly improves over the best existing bound mathcal O(K^{14/15}). This algorithm relies on a better alternative to the Matrix Geometric Resampling procedure by Neu & Olkhovskaya (2020), which could again be of independent interest.
APNet: An All-Frame-Level Neural Vocoder Incorporating Direct Prediction of Amplitude and Phase Spectra
This paper presents a novel neural vocoder named APNet which reconstructs speech waveforms from acoustic features by predicting amplitude and phase spectra directly. The APNet vocoder is composed of an amplitude spectrum predictor (ASP) and a phase spectrum predictor (PSP). The ASP is a residual convolution network which predicts frame-level log amplitude spectra from acoustic features. The PSP also adopts a residual convolution network using acoustic features as input, then passes the output of this network through two parallel linear convolution layers respectively, and finally integrates into a phase calculation formula to estimate frame-level phase spectra. Finally, the outputs of ASP and PSP are combined to reconstruct speech waveforms by inverse short-time Fourier transform (ISTFT). All operations of the ASP and PSP are performed at the frame level. We train the ASP and PSP jointly and define multilevel loss functions based on amplitude mean square error, phase anti-wrapping error, short-time spectral inconsistency error and time domain reconstruction error. Experimental results show that our proposed APNet vocoder achieves an approximately 8x faster inference speed than HiFi-GAN v1 on a CPU due to the all-frame-level operations, while its synthesized speech quality is comparable to HiFi-GAN v1. The synthesized speech quality of the APNet vocoder is also better than that of several equally efficient models. Ablation experiments also confirm that the proposed parallel phase estimation architecture is essential to phase modeling and the proposed loss functions are helpful for improving the synthesized speech quality.
Test-time Batch Statistics Calibration for Covariate Shift
Deep neural networks have a clear degradation when applying to the unseen environment due to the covariate shift. Conventional approaches like domain adaptation requires the pre-collected target data for iterative training, which is impractical in real-world applications. In this paper, we propose to adapt the deep models to the novel environment during inference. An previous solution is test time normalization, which substitutes the source statistics in BN layers with the target batch statistics. However, we show that test time normalization may potentially deteriorate the discriminative structures due to the mismatch between target batch statistics and source parameters. To this end, we present a general formulation alpha-BN to calibrate the batch statistics by mixing up the source and target statistics for both alleviating the domain shift and preserving the discriminative structures. Based on alpha-BN, we further present a novel loss function to form a unified test time adaptation framework Core, which performs the pairwise class correlation online optimization. Extensive experiments show that our approaches achieve the state-of-the-art performance on total twelve datasets from three topics, including model robustness to corruptions, domain generalization on image classification and semantic segmentation. Particularly, our alpha-BN improves 28.4\% to 43.9\% on GTA5 rightarrow Cityscapes without any training, even outperforms the latest source-free domain adaptation method.
PI-RADS v2 Compliant Automated Segmentation of Prostate Zones Using co-training Motivated Multi-task Dual-Path CNN
The detailed images produced by Magnetic Resonance Imaging (MRI) provide life-critical information for the diagnosis and treatment of prostate cancer. To provide standardized acquisition, interpretation and usage of the complex MRI images, the PI-RADS v2 guideline was proposed. An automated segmentation following the guideline facilitates consistent and precise lesion detection, staging and treatment. The guideline recommends a division of the prostate into four zones, PZ (peripheral zone), TZ (transition zone), DPU (distal prostatic urethra) and AFS (anterior fibromuscular stroma). Not every zone shares a boundary with the others and is present in every slice. Further, the representations captured by a single model might not suffice for all zones. This motivated us to design a dual-branch convolutional neural network (CNN), where each branch captures the representations of the connected zones separately. Further, the representations from different branches act complementary to each other at the second stage of training, where they are fine-tuned through an unsupervised loss. The loss penalises the difference in predictions from the two branches for the same class. We also incorporate multi-task learning in our framework to further improve the segmentation accuracy. The proposed approach improves the segmentation accuracy of the baseline (mean absolute symmetric distance) by 7.56%, 11.00%, 58.43% and 19.67% for PZ, TZ, DPU and AFS zones respectively.
Multi-annotator Deep Learning: A Probabilistic Framework for Classification
Solving complex classification tasks using deep neural networks typically requires large amounts of annotated data. However, corresponding class labels are noisy when provided by error-prone annotators, e.g., crowd workers. Training standard deep neural networks leads to subpar performances in such multi-annotator supervised learning settings. We address this issue by presenting a probabilistic training framework named multi-annotator deep learning (MaDL). A ground truth and an annotator performance model are jointly trained in an end-to-end learning approach. The ground truth model learns to predict instances' true class labels, while the annotator performance model infers probabilistic estimates of annotators' performances. A modular network architecture enables us to make varying assumptions regarding annotators' performances, e.g., an optional class or instance dependency. Further, we learn annotator embeddings to estimate annotators' densities within a latent space as proxies of their potentially correlated annotations. Together with a weighted loss function, we improve the learning from correlated annotation patterns. In a comprehensive evaluation, we examine three research questions about multi-annotator supervised learning. Our findings indicate MaDL's state-of-the-art performance and robustness against many correlated, spamming annotators.
Optimizing What Matters: AUC-Driven Learning for Robust Neural Retrieval
Dual-encoder retrievers depend on the principle that relevant documents should score higher than irrelevant ones for a given query. Yet the dominant Noise Contrastive Estimation (NCE) objective, which underpins Contrastive Loss, optimizes a softened ranking surrogate that we rigorously prove is fundamentally oblivious to score separation quality and unrelated to AUC. This mismatch leads to poor calibration and suboptimal performance in downstream tasks like retrieval-augmented generation (RAG). To address this fundamental limitation, we introduce the MW loss, a new training objective that maximizes the Mann-Whitney U statistic, which is mathematically equivalent to the Area under the ROC Curve (AUC). MW loss encourages each positive-negative pair to be correctly ranked by minimizing binary cross entropy over score differences. We provide theoretical guarantees that MW loss directly upper-bounds the AoC, better aligning optimization with retrieval goals. We further promote ROC curves and AUC as natural threshold free diagnostics for evaluating retriever calibration and ranking quality. Empirically, retrievers trained with MW loss consistently outperform contrastive counterparts in AUC and standard retrieval metrics. Our experiments show that MW loss is an empirically superior alternative to Contrastive Loss, yielding better-calibrated and more discriminative retrievers for high-stakes applications like RAG.
PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation
In the domain of medical imaging, many supervised learning based methods for segmentation face several challenges such as high variability in annotations from multiple experts, paucity of labelled data and class imbalanced datasets. These issues may result in segmentations that lack the requisite precision for clinical analysis and can be misleadingly overconfident without associated uncertainty quantification. We propose the PULASki for biomedical image segmentation that accurately captures variability in expert annotations, even in small datasets. Our approach makes use of an improved loss function based on statistical distances in a conditional variational autoencoder structure (Probabilistic UNet), which improves learning of the conditional decoder compared to the standard cross-entropy particularly in class imbalanced problems. We analyse our method for two structurally different segmentation tasks (intracranial vessel and multiple sclerosis (MS) lesion) and compare our results to four well-established baselines in terms of quantitative metrics and qualitative output. Empirical results demonstrate the PULASKi method outperforms all baselines at the 5\% significance level. The generated segmentations are shown to be much more anatomically plausible than in the 2D case, particularly for the vessel task. Our method can also be applied to a wide range of multi-label segmentation tasks and and is useful for downstream tasks such as hemodynamic modelling (computational fluid dynamics and data assimilation), clinical decision making, and treatment planning.
Investigating the Benefits of Projection Head for Representation Learning
An effective technique for obtaining high-quality representations is adding a projection head on top of the encoder during training, then discarding it and using the pre-projection representations. Despite its proven practical effectiveness, the reason behind the success of this technique is poorly understood. The pre-projection representations are not directly optimized by the loss function, raising the question: what makes them better? In this work, we provide a rigorous theoretical answer to this question. We start by examining linear models trained with self-supervised contrastive loss. We reveal that the implicit bias of training algorithms leads to layer-wise progressive feature weighting, where features become increasingly unequal as we go deeper into the layers. Consequently, lower layers tend to have more normalized and less specialized representations. We theoretically characterize scenarios where such representations are more beneficial, highlighting the intricate interplay between data augmentation and input features. Additionally, we demonstrate that introducing non-linearity into the network allows lower layers to learn features that are completely absent in higher layers. Finally, we show how this mechanism improves the robustness in supervised contrastive learning and supervised learning. We empirically validate our results through various experiments on CIFAR-10/100, UrbanCars and shifted versions of ImageNet. We also introduce a potential alternative to projection head, which offers a more interpretable and controllable design.
Dataset Condensation with Contrastive Signals
Recent studies have demonstrated that gradient matching-based dataset synthesis, or dataset condensation (DC), methods can achieve state-of-the-art performance when applied to data-efficient learning tasks. However, in this study, we prove that the existing DC methods can perform worse than the random selection method when task-irrelevant information forms a significant part of the training dataset. We attribute this to the lack of participation of the contrastive signals between the classes resulting from the class-wise gradient matching strategy. To address this problem, we propose Dataset Condensation with Contrastive signals (DCC) by modifying the loss function to enable the DC methods to effectively capture the differences between classes. In addition, we analyze the new loss function in terms of training dynamics by tracking the kernel velocity. Furthermore, we introduce a bi-level warm-up strategy to stabilize the optimization. Our experimental results indicate that while the existing methods are ineffective for fine-grained image classification tasks, the proposed method can successfully generate informative synthetic datasets for the same tasks. Moreover, we demonstrate that the proposed method outperforms the baselines even on benchmark datasets such as SVHN, CIFAR-10, and CIFAR-100. Finally, we demonstrate the high applicability of the proposed method by applying it to continual learning tasks.
Optimizing Calibration by Gaining Aware of Prediction Correctness
Model calibration aims to align confidence with prediction correctness. The Cross-Entropy (CE) loss is widely used for calibrator training, which enforces the model to increase confidence on the ground truth class. However, we find the CE loss has intrinsic limitations. For example, for a narrow misclassification, a calibrator trained by the CE loss often produces high confidence on the wrongly predicted class (e.g., a test sample is wrongly classified and its softmax score on the ground truth class is around 0.4), which is undesirable. In this paper, we propose a new post-hoc calibration objective derived from the aim of calibration. Intuitively, the proposed objective function asks that the calibrator decrease model confidence on wrongly predicted samples and increase confidence on correctly predicted samples. Because a sample itself has insufficient ability to indicate correctness, we use its transformed versions (e.g., rotated, greyscaled and color-jittered) during calibrator training. Trained on an in-distribution validation set and tested with isolated, individual test samples, our method achieves competitive calibration performance on both in-distribution and out-of-distribution test sets compared with the state of the art. Further, our analysis points out the difference between our method and commonly used objectives such as CE loss and mean square error loss, where the latters sometimes deviates from the calibration aim.
Target-based Surrogates for Stochastic Optimization
We consider minimizing functions for which it is expensive to compute the (possibly stochastic) gradient. Such functions are prevalent in reinforcement learning, imitation learning and adversarial training. Our target optimization framework uses the (expensive) gradient computation to construct surrogate functions in a target space (e.g. the logits output by a linear model for classification) that can be minimized efficiently. This allows for multiple parameter updates to the model, amortizing the cost of gradient computation. In the full-batch setting, we prove that our surrogate is a global upper-bound on the loss, and can be (locally) minimized using a black-box optimization algorithm. We prove that the resulting majorization-minimization algorithm ensures convergence to a stationary point of the loss. Next, we instantiate our framework in the stochastic setting and propose the SSO algorithm, which can be viewed as projected stochastic gradient descent in the target space. This connection enables us to prove theoretical guarantees for SSO when minimizing convex functions. Our framework allows the use of standard stochastic optimization algorithms to construct surrogates which can be minimized by any deterministic optimization method. To evaluate our framework, we consider a suite of supervised learning and imitation learning problems. Our experiments indicate the benefits of target optimization and the effectiveness of SSO.
Radio Map Estimation -- An Open Dataset with Directive Transmitter Antennas and Initial Experiments
Over the last years, several works have explored the application of deep learning algorithms to determine the large-scale signal fading (also referred to as ``path loss'') between transmitter and receiver pairs in urban communication networks. The central idea is to replace costly measurement campaigns, inaccurate statistical models or computationally expensive ray-tracing simulations by machine learning models which, once trained, produce accurate predictions almost instantly. Although the topic has attracted attention from many researchers, there are few open benchmark datasets and codebases that would allow everyone to test and compare the developed methods and algorithms. We take a step towards filling this gap by releasing a publicly available dataset of simulated path loss radio maps together with realistic city maps from real-world locations and aerial images from open datasources. Initial experiments regarding model architectures, input feature design and estimation of radio maps from aerial images are presented and the code is made available.
Adam: A Method for Stochastic Optimization
We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.
Towards Understanding Generalization of Macro-AUC in Multi-label Learning
Macro-AUC is the arithmetic mean of the class-wise AUCs in multi-label learning and is commonly used in practice. However, its theoretical understanding is far lacking. Toward solving it, we characterize the generalization properties of various learning algorithms based on the corresponding surrogate losses w.r.t. Macro-AUC. We theoretically identify a critical factor of the dataset affecting the generalization bounds: the label-wise class imbalance. Our results on the imbalance-aware error bounds show that the widely-used univariate loss-based algorithm is more sensitive to the label-wise class imbalance than the proposed pairwise and reweighted loss-based ones, which probably implies its worse performance. Moreover, empirical results on various datasets corroborate our theory findings. To establish it, technically, we propose a new (and more general) McDiarmid-type concentration inequality, which may be of independent interest.
Certified Robust Neural Networks: Generalization and Corruption Resistance
Recent work have demonstrated that robustness (to "corruption") can be at odds with generalization. Adversarial training, for instance, aims to reduce the problematic susceptibility of modern neural networks to small data perturbations. Surprisingly, overfitting is a major concern in adversarial training despite being mostly absent in standard training. We provide here theoretical evidence for this peculiar "robust overfitting" phenomenon. Subsequently, we advance a novel distributionally robust loss function bridging robustness and generalization. We demonstrate both theoretically as well as empirically the loss to enjoy a certified level of robustness against two common types of corruption--data evasion and poisoning attacks--while ensuring guaranteed generalization. We show through careful numerical experiments that our resulting holistic robust (HR) training procedure yields SOTA performance. Finally, we indicate that HR training can be interpreted as a direct extension of adversarial training and comes with a negligible additional computational burden. A ready-to-use python library implementing our algorithm is available at https://github.com/RyanLucas3/HR_Neural_Networks.
Roughness Index for Loss Landscapes of Neural Network Models of Partial Differential Equations
Loss landscape is a useful tool to characterize and compare neural network models. The main challenge for analysis of loss landscape for the deep neural networks is that they are generally highly non-convex in very high dimensional space. In this paper, we develop "the roughness"concept for understanding such landscapes in high dimensions and apply this technique to study two neural network models arising from solving differential equations. Our main innovation is the proposal of a well-defined and easy-to-compute roughness index (RI) which is based on the mean and variance of the (normalized) total variation for one-dimensional functions projected on randomly sampled directions. A large RI at the local minimizer hints an oscillatory landscape profile and indicates a severe challenge for the first-order optimization method. Particularly, we observe the increasing-then-decreasing pattern for RI along the gradient descent path in most models. We apply our method to two types of loss functions used to solve partial differential equations (PDEs) when the solution of PDE is parametrized by neural networks. Our empirical results on these PDE problems reveal important and consistent observations that the landscapes from the deep Galerkin method around its local minimizers are less rough than the deep Ritz method.
LCOT: Linear circular optimal transport
The optimal transport problem for measures supported on non-Euclidean spaces has recently gained ample interest in diverse applications involving representation learning. In this paper, we focus on circular probability measures, i.e., probability measures supported on the unit circle, and introduce a new computationally efficient metric for these measures, denoted as Linear Circular Optimal Transport (LCOT). The proposed metric comes with an explicit linear embedding that allows one to apply Machine Learning (ML) algorithms to the embedded measures and seamlessly modify the underlying metric for the ML algorithm to LCOT. We show that the proposed metric is rooted in the Circular Optimal Transport (COT) and can be considered the linearization of the COT metric with respect to a fixed reference measure. We provide a theoretical analysis of the proposed metric and derive the computational complexities for pairwise comparison of circular probability measures. Lastly, through a set of numerical experiments, we demonstrate the benefits of LCOT in learning representations of circular measures.
HyperTrack: Neural Combinatorics for High Energy Physics
Combinatorial inverse problems in high energy physics span enormous algorithmic challenges. This work presents a new deep learning driven clustering algorithm that utilizes a space-time non-local trainable graph constructor, a graph neural network, and a set transformer. The model is trained with loss functions at the graph node, edge and object level, including contrastive learning and meta-supervision. The algorithm can be applied to problems such as charged particle tracking, calorimetry, pile-up discrimination, jet physics, and beyond. We showcase the effectiveness of this cutting-edge AI approach through particle tracking simulations. The code is available online.
Unified Negative Pair Generation toward Well-discriminative Feature Space for Face Recognition
The goal of face recognition (FR) can be viewed as a pair similarity optimization problem, maximizing a similarity set S^p over positive pairs, while minimizing similarity set S^n over negative pairs. Ideally, it is expected that FR models form a well-discriminative feature space (WDFS) that satisfies mathcal{S^p} > mathcal{S^n}. With regard to WDFS, the existing deep feature learning paradigms (i.e., metric and classification losses) can be expressed as a unified perspective on different pair generation (PG) strategies. Unfortunately, in the metric loss (ML), it is infeasible to generate negative pairs taking all classes into account in each iteration because of the limited mini-batch size. In contrast, in classification loss (CL), it is difficult to generate extremely hard negative pairs owing to the convergence of the class weight vectors to their center. This leads to a mismatch between the two similarity distributions of the sampled pairs and all negative pairs. Thus, this paper proposes a unified negative pair generation (UNPG) by combining two PG strategies (i.e., MLPG and CLPG) from a unified perspective to alleviate the mismatch. UNPG introduces useful information about negative pairs using MLPG to overcome the CLPG deficiency. Moreover, it includes filtering the similarities of noisy negative pairs to guarantee reliable convergence and improved performance. Exhaustive experiments show the superiority of UNPG by achieving state-of-the-art performance across recent loss functions on public benchmark datasets. Our code and pretrained models are publicly available.
Algorithmic Stability of Heavy-Tailed SGD with General Loss Functions
Heavy-tail phenomena in stochastic gradient descent (SGD) have been reported in several empirical studies. Experimental evidence in previous works suggests a strong interplay between the heaviness of the tails and generalization behavior of SGD. To address this empirical phenomena theoretically, several works have made strong topological and statistical assumptions to link the generalization error to heavy tails. Very recently, new generalization bounds have been proven, indicating a non-monotonic relationship between the generalization error and heavy tails, which is more pertinent to the reported empirical observations. While these bounds do not require additional topological assumptions given that SGD can be modeled using a heavy-tailed stochastic differential equation (SDE), they can only apply to simple quadratic problems. In this paper, we build on this line of research and develop generalization bounds for a more general class of objective functions, which includes non-convex functions as well. Our approach is based on developing Wasserstein stability bounds for heavy-tailed SDEs and their discretizations, which we then convert to generalization bounds. Our results do not require any nontrivial assumptions; yet, they shed more light to the empirical observations, thanks to the generality of the loss functions.
One-step Diffusion Models with f-Divergence Distribution Matching
Sampling from diffusion models involves a slow iterative process that hinders their practical deployment, especially for interactive applications. To accelerate generation speed, recent approaches distill a multi-step diffusion model into a single-step student generator via variational score distillation, which matches the distribution of samples generated by the student to the teacher's distribution. However, these approaches use the reverse Kullback-Leibler (KL) divergence for distribution matching which is known to be mode seeking. In this paper, we generalize the distribution matching approach using a novel f-divergence minimization framework, termed f-distill, that covers different divergences with different trade-offs in terms of mode coverage and training variance. We derive the gradient of the f-divergence between the teacher and student distributions and show that it is expressed as the product of their score differences and a weighting function determined by their density ratio. This weighting function naturally emphasizes samples with higher density in the teacher distribution, when using a less mode-seeking divergence. We observe that the popular variational score distillation approach using the reverse-KL divergence is a special case within our framework. Empirically, we demonstrate that alternative f-divergences, such as forward-KL and Jensen-Shannon divergences, outperform the current best variational score distillation methods across image generation tasks. In particular, when using Jensen-Shannon divergence, f-distill achieves current state-of-the-art one-step generation performance on ImageNet64 and zero-shot text-to-image generation on MS-COCO. Project page: https://research.nvidia.com/labs/genair/f-distill
Adaptive Sparse Allocation with Mutual Choice & Feature Choice Sparse Autoencoders
Sparse autoencoders (SAEs) are a promising approach to extracting features from neural networks, enabling model interpretability as well as causal interventions on model internals. SAEs generate sparse feature representations using a sparsifying activation function that implicitly defines a set of token-feature matches. We frame the token-feature matching as a resource allocation problem constrained by a total sparsity upper bound. For example, TopK SAEs solve this allocation problem with the additional constraint that each token matches with at most k features. In TopK SAEs, the k active features per token constraint is the same across tokens, despite some tokens being more difficult to reconstruct than others. To address this limitation, we propose two novel SAE variants, Feature Choice SAEs and Mutual Choice SAEs, which each allow for a variable number of active features per token. Feature Choice SAEs solve the sparsity allocation problem under the additional constraint that each feature matches with at most m tokens. Mutual Choice SAEs solve the unrestricted allocation problem where the total sparsity budget can be allocated freely between tokens and features. Additionally, we introduce a new auxiliary loss function, aux_zipf_loss, which generalises the aux_k_loss to mitigate dead and underutilised features. Our methods result in SAEs with fewer dead features and improved reconstruction loss at equivalent sparsity levels as a result of the inherent adaptive computation. More accurate and scalable feature extraction methods provide a path towards better understanding and more precise control of foundation models.
Weight Compander: A Simple Weight Reparameterization for Regularization
Regularization is a set of techniques that are used to improve the generalization ability of deep neural networks. In this paper, we introduce weight compander (WC), a novel effective method to improve generalization by reparameterizing each weight in deep neural networks using a nonlinear function. It is a general, intuitive, cheap and easy to implement method, which can be combined with various other regularization techniques. Large weights in deep neural networks are a sign of a more complex network that is overfitted to the training data. Moreover, regularized networks tend to have a greater range of weights around zero with fewer weights centered at zero. We introduce a weight reparameterization function which is applied to each weight and implicitly reduces overfitting by restricting the magnitude of the weights while forcing them away from zero at the same time. This leads to a more democratic decision-making in the network. Firstly, individual weights cannot have too much influence in the prediction process due to the restriction of their magnitude. Secondly, more weights are used in the prediction process, since they are forced away from zero during the training. This promotes the extraction of more features from the input data and increases the level of weight redundancy, which makes the network less sensitive to statistical differences between training and test data. We extend our method to learn the hyperparameters of the introduced weight reparameterization function. This avoids hyperparameter search and gives the network the opportunity to align the weight reparameterization with the training progress. We show experimentally that using weight compander in addition to standard regularization methods improves the performance of neural networks.
Riemannian Adaptive Optimization Methods
Several first order stochastic optimization methods commonly used in the Euclidean domain such as stochastic gradient descent (SGD), accelerated gradient descent or variance reduced methods have already been adapted to certain Riemannian settings. However, some of the most popular of these optimization tools - namely Adam , Adagrad and the more recent Amsgrad - remain to be generalized to Riemannian manifolds. We discuss the difficulty of generalizing such adaptive schemes to the most agnostic Riemannian setting, and then provide algorithms and convergence proofs for geodesically convex objectives in the particular case of a product of Riemannian manifolds, in which adaptivity is implemented across manifolds in the cartesian product. Our generalization is tight in the sense that choosing the Euclidean space as Riemannian manifold yields the same algorithms and regret bounds as those that were already known for the standard algorithms. Experimentally, we show faster convergence and to a lower train loss value for Riemannian adaptive methods over their corresponding baselines on the realistic task of embedding the WordNet taxonomy in the Poincare ball.
A Precise Characterization of SGD Stability Using Loss Surface Geometry
Stochastic Gradient Descent (SGD) stands as a cornerstone optimization algorithm with proven real-world empirical successes but relatively limited theoretical understanding. Recent research has illuminated a key factor contributing to its practical efficacy: the implicit regularization it instigates. Several studies have investigated the linear stability property of SGD in the vicinity of a stationary point as a predictive proxy for sharpness and generalization error in overparameterized neural networks (Wu et al., 2022; Jastrzebski et al., 2019; Cohen et al., 2021). In this paper, we delve deeper into the relationship between linear stability and sharpness. More specifically, we meticulously delineate the necessary and sufficient conditions for linear stability, contingent on hyperparameters of SGD and the sharpness at the optimum. Towards this end, we introduce a novel coherence measure of the loss Hessian that encapsulates pertinent geometric properties of the loss function that are relevant to the linear stability of SGD. It enables us to provide a simplified sufficient condition for identifying linear instability at an optimum. Notably, compared to previous works, our analysis relies on significantly milder assumptions and is applicable for a broader class of loss functions than known before, encompassing not only mean-squared error but also cross-entropy loss.
Towards the Fundamental Limits of Knowledge Transfer over Finite Domains
We characterize the statistical efficiency of knowledge transfer through n samples from a teacher to a probabilistic student classifier with input space mathcal S over labels mathcal A. We show that privileged information at three progressive levels accelerates the transfer. At the first level, only samples with hard labels are known, via which the maximum likelihood estimator attains the minimax rate {|{mathcal S||{mathcal A}|}/{n}}. The second level has the teacher probabilities of sampled labels available in addition, which turns out to boost the convergence rate lower bound to {{|{mathcal S}||{mathcal A}|}/{n}}. However, under this second data acquisition protocol, minimizing a naive adaptation of the cross-entropy loss results in an asymptotically biased student. We overcome this limitation and achieve the fundamental limit by using a novel empirical variant of the squared error logit loss. The third level further equips the student with the soft labels (complete logits) on {mathcal A} given every sampled input, thereby provably enables the student to enjoy a rate {|{mathcal S}|}/{n} free of |{mathcal A}|. We find any Kullback-Leibler divergence minimizer to be optimal in the last case. Numerical simulations distinguish the four learners and corroborate our theory.
Expressive Losses for Verified Robustness via Convex Combinations
In order to train networks for verified adversarial robustness, it is common to over-approximate the worst-case loss over perturbation regions, resulting in networks that attain verifiability at the expense of standard performance. As shown in recent work, better trade-offs between accuracy and robustness can be obtained by carefully coupling adversarial training with over-approximations. We hypothesize that the expressivity of a loss function, which we formalize as the ability to span a range of trade-offs between lower and upper bounds to the worst-case loss through a single parameter (the over-approximation coefficient), is key to attaining state-of-the-art performance. To support our hypothesis, we show that trivial expressive losses, obtained via convex combinations between adversarial attacks and IBP bounds, yield state-of-the-art results across a variety of settings in spite of their conceptual simplicity. We provide a detailed analysis of the relationship between the over-approximation coefficient and performance profiles across different expressive losses, showing that, while expressivity is essential, better approximations of the worst-case loss are not necessarily linked to superior robustness-accuracy trade-offs.
GAN-EM: GAN based EM learning framework
Expectation maximization (EM) algorithm is to find maximum likelihood solution for models having latent variables. A typical example is Gaussian Mixture Model (GMM) which requires Gaussian assumption, however, natural images are highly non-Gaussian so that GMM cannot be applied to perform clustering task on pixel space. To overcome such limitation, we propose a GAN based EM learning framework that can maximize the likelihood of images and estimate the latent variables with only the constraint of L-Lipschitz continuity. We call this model GAN-EM, which is a framework for image clustering, semi-supervised classification and dimensionality reduction. In M-step, we design a novel loss function for discriminator of GAN to perform maximum likelihood estimation (MLE) on data with soft class label assignments. Specifically, a conditional generator captures data distribution for K classes, and a discriminator tells whether a sample is real or fake for each class. Since our model is unsupervised, the class label of real data is regarded as latent variable, which is estimated by an additional network (E-net) in E-step. The proposed GAN-EM achieves state-of-the-art clustering and semi-supervised classification results on MNIST, SVHN and CelebA, as well as comparable quality of generated images to other recently developed generative models.
Robustly Learning a Single Neuron via Sharpness
We study the problem of learning a single neuron with respect to the L_2^2-loss in the presence of adversarial label noise. We give an efficient algorithm that, for a broad family of activations including ReLUs, approximates the optimal L_2^2-error within a constant factor. Our algorithm applies under much milder distributional assumptions compared to prior work. The key ingredient enabling our results is a novel connection to local error bounds from optimization theory.
Fast Adversarial Training with Smooth Convergence
Fast adversarial training (FAT) is beneficial for improving the adversarial robustness of neural networks. However, previous FAT work has encountered a significant issue known as catastrophic overfitting when dealing with large perturbation budgets, \ie the adversarial robustness of models declines to near zero during training. To address this, we analyze the training process of prior FAT work and observe that catastrophic overfitting is accompanied by the appearance of loss convergence outliers. Therefore, we argue a moderately smooth loss convergence process will be a stable FAT process that solves catastrophic overfitting. To obtain a smooth loss convergence process, we propose a novel oscillatory constraint (dubbed ConvergeSmooth) to limit the loss difference between adjacent epochs. The convergence stride of ConvergeSmooth is introduced to balance convergence and smoothing. Likewise, we design weight centralization without introducing additional hyperparameters other than the loss balance coefficient. Our proposed methods are attack-agnostic and thus can improve the training stability of various FAT techniques. Extensive experiments on popular datasets show that the proposed methods efficiently avoid catastrophic overfitting and outperform all previous FAT methods. Code is available at https://github.com/FAT-CS/ConvergeSmooth.
Whitening for Self-Supervised Representation Learning
Most of the current self-supervised representation learning (SSL) methods are based on the contrastive loss and the instance-discrimination task, where augmented versions of the same image instance ("positives") are contrasted with instances extracted from other images ("negatives"). For the learning to be effective, many negatives should be compared with a positive pair, which is computationally demanding. In this paper, we propose a different direction and a new loss function for SSL, which is based on the whitening of the latent-space features. The whitening operation has a "scattering" effect on the batch samples, avoiding degenerate solutions where all the sample representations collapse to a single point. Our solution does not require asymmetric networks and it is conceptually simple. Moreover, since negatives are not needed, we can extract multiple positive pairs from the same image instance. The source code of the method and of all the experiments is available at: https://github.com/htdt/self-supervised.
Learning Unnormalized Statistical Models via Compositional Optimization
Learning unnormalized statistical models (e.g., energy-based models) is computationally challenging due to the complexity of handling the partition function. To eschew this complexity, noise-contrastive estimation~(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise. However, as found in previous works, NCE may perform poorly in many tasks due to its flat loss landscape and slow convergence. In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models from the perspective of compositional optimization. To tackle the partition function, a noise distribution is introduced such that the log partition function can be written as a compositional function whose inner function can be estimated with stochastic samples. Hence, the objective can be optimized by stochastic compositional optimization algorithms. Despite being a simple method, we demonstrate that it is more favorable than NCE by (1) establishing a fast convergence rate and quantifying its dependence on the noise distribution through the variance of stochastic estimators; (2) developing better results for one-dimensional Gaussian mean estimation by showing our objective has a much favorable loss landscape and hence our method enjoys faster convergence; (3) demonstrating better performance on multiple applications, including density estimation, out-of-distribution detection, and real image generation.
A Closer Look at Smoothness in Domain Adversarial Training
Domain adversarial training has been ubiquitous for achieving invariant representations and is used widely for various domain adaptation tasks. In recent times, methods converging to smooth optima have shown improved generalization for supervised learning tasks like classification. In this work, we analyze the effect of smoothness enhancing formulations on domain adversarial training, the objective of which is a combination of task loss (eg. classification, regression, etc.) and adversarial terms. We find that converging to a smooth minima with respect to (w.r.t.) task loss stabilizes the adversarial training leading to better performance on target domain. In contrast to task loss, our analysis shows that converging to smooth minima w.r.t. adversarial loss leads to sub-optimal generalization on the target domain. Based on the analysis, we introduce the Smooth Domain Adversarial Training (SDAT) procedure, which effectively enhances the performance of existing domain adversarial methods for both classification and object detection tasks. Our analysis also provides insight into the extensive usage of SGD over Adam in the community for domain adversarial training.
Regularizing Neural Networks via Adversarial Model Perturbation
Effective regularization techniques are highly desired in deep learning for alleviating overfitting and improving generalization. This work proposes a new regularization scheme, based on the understanding that the flat local minima of the empirical risk cause the model to generalize better. This scheme is referred to as adversarial model perturbation (AMP), where instead of directly minimizing the empirical risk, an alternative "AMP loss" is minimized via SGD. Specifically, the AMP loss is obtained from the empirical risk by applying the "worst" norm-bounded perturbation on each point in the parameter space. Comparing with most existing regularization schemes, AMP has strong theoretical justifications, in that minimizing the AMP loss can be shown theoretically to favour flat local minima of the empirical risk. Extensive experiments on various modern deep architectures establish AMP as a new state of the art among regularization schemes. Our code is available at https://github.com/hiyouga/AMP-Regularizer.
Conformal Prediction via Regression-as-Classification
Conformal prediction (CP) for regression can be challenging, especially when the output distribution is heteroscedastic, multimodal, or skewed. Some of the issues can be addressed by estimating a distribution over the output, but in reality, such approaches can be sensitive to estimation error and yield unstable intervals.~Here, we circumvent the challenges by converting regression to a classification problem and then use CP for classification to obtain CP sets for regression.~To preserve the ordering of the continuous-output space, we design a new loss function and make necessary modifications to the CP classification techniques.~Empirical results on many benchmarks shows that this simple approach gives surprisingly good results on many practical problems.
Phase-aware Single-stage Speech Denoising and Dereverberation with U-Net
In this work, we tackle a denoising and dereverberation problem with a single-stage framework. Although denoising and dereverberation may be considered two separate challenging tasks, and thus, two modules are typically required for each task, we show that a single deep network can be shared to solve the two problems. To this end, we propose a new masking method called phase-aware beta-sigmoid mask (PHM), which reuses the estimated magnitude values to estimate the clean phase by respecting the triangle inequality in the complex domain between three signal components such as mixture, source and the rest. Two PHMs are used to deal with direct and reverberant source, which allows controlling the proportion of reverberation in the enhanced speech at inference time. In addition, to improve the speech enhancement performance, we propose a new time-domain loss function and show a reasonable performance gain compared to MSE loss in the complex domain. Finally, to achieve a real-time inference, an optimization strategy for U-Net is proposed which significantly reduces the computational overhead up to 88.9% compared to the na\"ive version.
One Step of Gradient Descent is Provably the Optimal In-Context Learner with One Layer of Linear Self-Attention
Recent works have empirically analyzed in-context learning and shown that transformers trained on synthetic linear regression tasks can learn to implement ridge regression, which is the Bayes-optimal predictor, given sufficient capacity [Aky\"urek et al., 2023], while one-layer transformers with linear self-attention and no MLP layer will learn to implement one step of gradient descent (GD) on a least-squares linear regression objective [von Oswald et al., 2022]. However, the theory behind these observations remains poorly understood. We theoretically study transformers with a single layer of linear self-attention, trained on synthetic noisy linear regression data. First, we mathematically show that when the covariates are drawn from a standard Gaussian distribution, the one-layer transformer which minimizes the pre-training loss will implement a single step of GD on the least-squares linear regression objective. Then, we find that changing the distribution of the covariates and weight vector to a non-isotropic Gaussian distribution has a strong impact on the learned algorithm: the global minimizer of the pre-training loss now implements a single step of pre-conditioned GD. However, if only the distribution of the responses is changed, then this does not have a large effect on the learned algorithm: even when the response comes from a more general family of nonlinear functions, the global minimizer of the pre-training loss still implements a single step of GD on a least-squares linear regression objective.
Exact Gradients for Stochastic Spiking Neural Networks Driven by Rough Signals
We introduce a mathematically rigorous framework based on rough path theory to model stochastic spiking neural networks (SSNNs) as stochastic differential equations with event discontinuities (Event SDEs) and driven by c\`adl\`ag rough paths. Our formalism is general enough to allow for potential jumps to be present both in the solution trajectories as well as in the driving noise. We then identify a set of sufficient conditions ensuring the existence of pathwise gradients of solution trajectories and event times with respect to the network's parameters and show how these gradients satisfy a recursive relation. Furthermore, we introduce a general-purpose loss function defined by means of a new class of signature kernels indexed on c\`adl\`ag rough paths and use it to train SSNNs as generative models. We provide an end-to-end autodifferentiable solver for Event SDEs and make its implementation available as part of the diffrax library. Our framework is, to our knowledge, the first enabling gradient-based training of SSNNs with noise affecting both the spike timing and the network's dynamics.
Layer-wise Linear Mode Connectivity
Averaging neural network parameters is an intuitive method for fusing the knowledge of two independent models. It is most prominently used in federated learning. If models are averaged at the end of training, this can only lead to a good performing model if the loss surface of interest is very particular, i.e., the loss in the midpoint between the two models needs to be sufficiently low. This is impossible to guarantee for the non-convex losses of state-of-the-art networks. For averaging models trained on vastly different datasets, it was proposed to average only the parameters of particular layers or combinations of layers, resulting in better performing models. To get a better understanding of the effect of layer-wise averaging, we analyse the performance of the models that result from averaging single layers, or groups of layers. Based on our empirical and theoretical investigation, we introduce a novel notion of the layer-wise linear connectivity, and show that deep networks do not have layer-wise barriers between them.
Structured Denoising Diffusion Models in Discrete State-Spaces
Denoising diffusion probabilistic models (DDPMs) (Ho et al. 2020) have shown impressive results on image and waveform generation in continuous state spaces. Here, we introduce Discrete Denoising Diffusion Probabilistic Models (D3PMs), diffusion-like generative models for discrete data that generalize the multinomial diffusion model of Hoogeboom et al. 2021, by going beyond corruption processes with uniform transition probabilities. This includes corruption with transition matrices that mimic Gaussian kernels in continuous space, matrices based on nearest neighbors in embedding space, and matrices that introduce absorbing states. The third allows us to draw a connection between diffusion models and autoregressive and mask-based generative models. We show that the choice of transition matrix is an important design decision that leads to improved results in image and text domains. We also introduce a new loss function that combines the variational lower bound with an auxiliary cross entropy loss. For text, this model class achieves strong results on character-level text generation while scaling to large vocabularies on LM1B. On the image dataset CIFAR-10, our models approach the sample quality and exceed the log-likelihood of the continuous-space DDPM model.
On the saddle point problem for non-convex optimization
A central challenge to many fields of science and engineering involves minimizing non-convex error functions over continuous, high dimensional spaces. Gradient descent or quasi-Newton methods are almost ubiquitously used to perform such minimizations, and it is often thought that a main source of difficulty for the ability of these local methods to find the global minimum is the proliferation of local minima with much higher error than the global minimum. Here we argue, based on results from statistical physics, random matrix theory, and neural network theory, that a deeper and more profound difficulty originates from the proliferation of saddle points, not local minima, especially in high dimensional problems of practical interest. Such saddle points are surrounded by high error plateaus that can dramatically slow down learning, and give the illusory impression of the existence of a local minimum. Motivated by these arguments, we propose a new algorithm, the saddle-free Newton method, that can rapidly escape high dimensional saddle points, unlike gradient descent and quasi-Newton methods. We apply this algorithm to deep neural network training, and provide preliminary numerical evidence for its superior performance.
Equiangular Basis Vectors
We propose Equiangular Basis Vectors (EBVs) for classification tasks. In deep neural networks, models usually end with a k-way fully connected layer with softmax to handle different classification tasks. The learning objective of these methods can be summarized as mapping the learned feature representations to the samples' label space. While in metric learning approaches, the main objective is to learn a transformation function that maps training data points from the original space to a new space where similar points are closer while dissimilar points become farther apart. Different from previous methods, our EBVs generate normalized vector embeddings as "predefined classifiers" which are required to not only be with the equal status between each other, but also be as orthogonal as possible. By minimizing the spherical distance of the embedding of an input between its categorical EBV in training, the predictions can be obtained by identifying the categorical EBV with the smallest distance during inference. Various experiments on the ImageNet-1K dataset and other downstream tasks demonstrate that our method outperforms the general fully connected classifier while it does not introduce huge additional computation compared with classical metric learning methods. Our EBVs won the first place in the 2022 DIGIX Global AI Challenge, and our code is open-source and available at https://github.com/NJUST-VIPGroup/Equiangular-Basis-Vectors.
Deep Learning using Rectified Linear Units (ReLU)
We introduce the use of rectified linear units (ReLU) as the classification function in a deep neural network (DNN). Conventionally, ReLU is used as an activation function in DNNs, with Softmax function as their classification function. However, there have been several studies on using a classification function other than Softmax, and this study is an addition to those. We accomplish this by taking the activation of the penultimate layer h_{n - 1} in a neural network, then multiply it by weight parameters theta to get the raw scores o_{i}. Afterwards, we threshold the raw scores o_{i} by 0, i.e. f(o) = max(0, o_{i}), where f(o) is the ReLU function. We provide class predictions y through argmax function, i.e. argmax f(x).
Sparse-softmax: A Simpler and Faster Alternative Softmax Transformation
The softmax function is widely used in artificial neural networks for the multiclass classification problems, where the softmax transformation enforces the output to be positive and sum to one, and the corresponding loss function allows to use maximum likelihood principle to optimize the model. However, softmax leaves a large margin for loss function to conduct optimizing operation when it comes to high-dimensional classification, which results in low-performance to some extent. In this paper, we provide an empirical study on a simple and concise softmax variant, namely sparse-softmax, to alleviate the problem that occurred in traditional softmax in terms of high-dimensional classification problems. We evaluate our approach in several interdisciplinary tasks, the experimental results show that sparse-softmax is simpler, faster, and produces better results than the baseline models.
Adaptive Multi-head Contrastive Learning
In contrastive learning, two views of an original image, generated by different augmentations, are considered a positive pair, and their similarity is required to be high. Similarly, two views of distinct images form a negative pair, with encouraged low similarity. Typically, a single similarity measure, provided by a lone projection head, evaluates positive and negative sample pairs. However, due to diverse augmentation strategies and varying intra-sample similarity, views from the same image may not always be similar. Additionally, owing to inter-sample similarity, views from different images may be more akin than those from the same image. Consequently, enforcing high similarity for positive pairs and low similarity for negative pairs may be unattainable, and in some cases, such enforcement could detrimentally impact performance. To address this challenge, we propose using multiple projection heads, each producing a distinct set of features. Our pre-training loss function emerges from a solution to the maximum likelihood estimation over head-wise posterior distributions of positive samples given observations. This loss incorporates the similarity measure over positive and negative pairs, each re-weighted by an individual adaptive temperature, regulated to prevent ill solutions. Our approach, Adaptive Multi-Head Contrastive Learning (AMCL), can be applied to and experimentally enhances several popular contrastive learning methods such as SimCLR, MoCo, and Barlow Twins. The improvement remains consistent across various backbones and linear probing epochs, and becomes more significant when employing multiple augmentation methods.
EQ-Net: Elastic Quantization Neural Networks
Current model quantization methods have shown their promising capability in reducing storage space and computation complexity. However, due to the diversity of quantization forms supported by different hardware, one limitation of existing solutions is that usually require repeated optimization for different scenarios. How to construct a model with flexible quantization forms has been less studied. In this paper, we explore a one-shot network quantization regime, named Elastic Quantization Neural Networks (EQ-Net), which aims to train a robust weight-sharing quantization supernet. First of all, we propose an elastic quantization space (including elastic bit-width, granularity, and symmetry) to adapt to various mainstream quantitative forms. Secondly, we propose the Weight Distribution Regularization Loss (WDR-Loss) and Group Progressive Guidance Loss (GPG-Loss) to bridge the inconsistency of the distribution for weights and output logits in the elastic quantization space gap. Lastly, we incorporate genetic algorithms and the proposed Conditional Quantization-Aware Accuracy Predictor (CQAP) as an estimator to quickly search mixed-precision quantized neural networks in supernet. Extensive experiments demonstrate that our EQ-Net is close to or even better than its static counterparts as well as state-of-the-art robust bit-width methods. Code can be available at https://github.com/xuke225/EQ-Net.git{https://github.com/xuke225/EQ-Net}.
Revisiting Discriminative vs. Generative Classifiers: Theory and Implications
A large-scale deep model pre-trained on massive labeled or unlabeled data transfers well to downstream tasks. Linear evaluation freezes parameters in the pre-trained model and trains a linear classifier separately, which is efficient and attractive for transfer. However, little work has investigated the classifier in linear evaluation except for the default logistic regression. Inspired by the statistical efficiency of naive Bayes, the paper revisits the classical topic on discriminative vs. generative classifiers. Theoretically, the paper considers the surrogate loss instead of the zero-one loss in analyses and generalizes the classical results from binary cases to multiclass ones. We show that, under mild assumptions, multiclass naive Bayes requires O(log n) samples to approach its asymptotic error while the corresponding multiclass logistic regression requires O(n) samples, where n is the feature dimension. To establish it, we present a multiclass H-consistency bound framework and an explicit bound for logistic loss, which are of independent interests. Simulation results on a mixture of Gaussian validate our theoretical findings. Experiments on various pre-trained deep vision models show that naive Bayes consistently converges faster as the number of data increases. Besides, naive Bayes shows promise in few-shot cases and we observe the "two regimes" phenomenon in pre-trained supervised models. Our code is available at https://github.com/ML-GSAI/Revisiting-Dis-vs-Gen-Classifiers.
Muon: Training and Trade-offs with Latent Attention and MoE
We present a comprehensive theoretical and empirical study of the Muon optimizer for training transformers only with a small to medium decoder (30M - 200M parameters), with an emphasis on its mathematical foundations, convergence properties and synergistic interactions with modern architectural optimizations. Building on recent work showing Muon's scalability, we provide rigorous theoretical analysis including: (i)showing the convergence rate under standard assumptions, (ii) spectral regularization properties that prevent gradient explosion, (iii) connection to natural gradient descent on the Stiefel manifold, and (iv) equivalence to steepest gradient descent under the spectral norm. Crucially, we demonstrate that Muon expands the Pareto frontier in the compute-time trade-off by maintaining superior data efficiency at large batch sizes, a key finding of~essentialai2025muon that we validate across our model scales. Empirically, Muon reaches the target loss with 48-52\% of the training calculated by AdamW while maintaining or improving the final perplexity, consistent with larger-scale results. When combined with Multi-Head Latent Attention (MLA) and Mixture-of-Experts (MoE), we observe multiplicative efficiency gains: MLA+MoE+Muon achieves 68\% memory reduction and 3.2times inference speedup, while improving perplexity by 8-12\%. We provide detailed procedures on 15 architectural and optimizer components, stability analyzes across 100+ training runs, and practical implementation guidelines including Newton-Schulz coefficients (3.4445, -4.7750, 2.0315) optimized by~su2024muonblog. Our theoretical analysis and comprehensive experiments establish Muon as a principled, robust alternative to AdamW that particularly excels when combined with modern efficiency techniques and large-batch training regimes.
Disposable Transfer Learning for Selective Source Task Unlearning
Transfer learning is widely used for training deep neural networks (DNN) for building a powerful representation. Even after the pre-trained model is adapted for the target task, the representation performance of the feature extractor is retained to some extent. As the performance of the pre-trained model can be considered the private property of the owner, it is natural to seek the exclusive right of the generalized performance of the pre-trained weight. To address this issue, we suggest a new paradigm of transfer learning called disposable transfer learning (DTL), which disposes of only the source task without degrading the performance of the target task. To achieve knowledge disposal, we propose a novel loss named Gradient Collision loss (GC loss). GC loss selectively unlearns the source knowledge by leading the gradient vectors of mini-batches in different directions. Whether the model successfully unlearns the source task is measured by piggyback learning accuracy (PL accuracy). PL accuracy estimates the vulnerability of knowledge leakage by retraining the scrubbed model on a subset of source data or new downstream data. We demonstrate that GC loss is an effective approach to the DTL problem by showing that the model trained with GC loss retains the performance on the target task with a significantly reduced PL accuracy.

 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
	 
			 
			 
			 
			