Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeEnvTrace: Simulation-Based Semantic Evaluation of LLM Code via Execution Trace Alignment -- Demonstrated at Synchrotron Beamlines
Evaluating large language models (LLMs) for instrument control requires methods that go beyond standard, stateless algorithmic benchmarks, since the behavior of physical systems cannot be fully captured by unit tests alone. Here we introduce EnvTrace, a simulation-based method that evaluates execution traces to assess semantic code equivalence. EnvTrace is demonstrated with a beamline control-logic digital twin to facilitate the evaluation of instrument control code, with the digital twin itself also enabling the pre-execution validation of live experiments. Over 30 LLMs were evaluated using trace alignment to generate a multi-faceted score for functional correctness across key behavioral dimensions, showing that many top-tier models can approach human-level performance in rapid control-code generation. This is a first step toward a broader vision where LLMs and digital twins work symbiotically: LLMs providing intuitive control and agentic orchestration, and digital twins offering safe and high-fidelity environments, paving the way towards autonomous embodied AI.
HealthBench: Evaluating Large Language Models Towards Improved Human Health
We present HealthBench, an open-source benchmark measuring the performance and safety of large language models in healthcare. HealthBench consists of 5,000 multi-turn conversations between a model and an individual user or healthcare professional. Responses are evaluated using conversation-specific rubrics created by 262 physicians. Unlike previous multiple-choice or short-answer benchmarks, HealthBench enables realistic, open-ended evaluation through 48,562 unique rubric criteria spanning several health contexts (e.g., emergencies, transforming clinical data, global health) and behavioral dimensions (e.g., accuracy, instruction following, communication). HealthBench performance over the last two years reflects steady initial progress (compare GPT-3.5 Turbo's 16% to GPT-4o's 32%) and more rapid recent improvements (o3 scores 60%). Smaller models have especially improved: GPT-4.1 nano outperforms GPT-4o and is 25 times cheaper. We additionally release two HealthBench variations: HealthBench Consensus, which includes 34 particularly important dimensions of model behavior validated via physician consensus, and HealthBench Hard, where the current top score is 32%. We hope that HealthBench grounds progress towards model development and applications that benefit human health.
A Hierarchy-based Analysis Approach for Blended Learning: A Case Study with Chinese Students
Blended learning is generally defined as the combination of traditional face-to-face learning and online learning. This learning mode has been widely used in advanced education across the globe due to the COVID-19 pandemic's social distance restriction as well as the development of technology. Online learning plays an important role in blended learning, and as it requires more student autonomy, the quality of blended learning in advanced education has been a persistent concern. Existing literature offers several elements and frameworks regarding evaluating the quality of blended learning. However, most of them either have different favours for evaluation perspectives or simply offer general guidance for evaluation, reducing the completeness, objectivity and practicalness of related works. In order to carry out a more intuitive and comprehensive evaluation framework, this paper proposes a hierarchy-based analysis approach. Applying gradient boosting model and feature importance evaluation method, this approach mainly analyses student engagement and its three identified dimensions (behavioral engagement, emotional engagement, cognitive engagement) to eliminate some existing stubborn problems when it comes to blended learning evaluation. The results show that cognitive engagement and emotional engagement play a more important role in blended learning evaluation, implying that these two should be considered to improve for better learning as well as teaching quality.
Humanizing Machines: Rethinking LLM Anthropomorphism Through a Multi-Level Framework of Design
Large Language Models (LLMs) increasingly exhibit anthropomorphism characteristics -- human-like qualities portrayed across their outlook, language, behavior, and reasoning functions. Such characteristics enable more intuitive and engaging human-AI interactions. However, current research on anthropomorphism remains predominantly risk-focused, emphasizing over-trust and user deception while offering limited design guidance. We argue that anthropomorphism should instead be treated as a concept of design that can be intentionally tuned to support user goals. Drawing from multiple disciplines, we propose that the anthropomorphism of an LLM-based artifact should reflect the interaction between artifact designers and interpreters. This interaction is facilitated by cues embedded in the artifact by the designers and the (cognitive) responses of the interpreters to the cues. Cues are categorized into four dimensions: perceptive, linguistic, behavioral, and cognitive. By analyzing the manifestation and effectiveness of each cue, we provide a unified taxonomy with actionable levers for practitioners. Consequently, we advocate for function-oriented evaluations of anthropomorphic design.
WorldLens: Full-Spectrum Evaluations of Driving World Models in Real World
Generative world models are reshaping embodied AI, enabling agents to synthesize realistic 4D driving environments that look convincing but often fail physically or behaviorally. Despite rapid progress, the field still lacks a unified way to assess whether generated worlds preserve geometry, obey physics, or support reliable control. We introduce WorldLens, a full-spectrum benchmark evaluating how well a model builds, understands, and behaves within its generated world. It spans five aspects -- Generation, Reconstruction, Action-Following, Downstream Task, and Human Preference -- jointly covering visual realism, geometric consistency, physical plausibility, and functional reliability. Across these dimensions, no existing world model excels universally: those with strong textures often violate physics, while geometry-stable ones lack behavioral fidelity. To align objective metrics with human judgment, we further construct WorldLens-26K, a large-scale dataset of human-annotated videos with numerical scores and textual rationales, and develop WorldLens-Agent, an evaluation model distilled from these annotations to enable scalable, explainable scoring. Together, the benchmark, dataset, and agent form a unified ecosystem for measuring world fidelity -- standardizing how future models are judged not only by how real they look, but by how real they behave.
The Personality Illusion: Revealing Dissociation Between Self-Reports & Behavior in LLMs
Personality traits have long been studied as predictors of human behavior. Recent advances in Large Language Models (LLMs) suggest similar patterns may emerge in artificial systems, with advanced LLMs displaying consistent behavioral tendencies resembling human traits like agreeableness and self-regulation. Understanding these patterns is crucial, yet prior work primarily relied on simplified self-reports and heuristic prompting, with little behavioral validation. In this study, we systematically characterize LLM personality across three dimensions: (1) the dynamic emergence and evolution of trait profiles throughout training stages; (2) the predictive validity of self-reported traits in behavioral tasks; and (3) the impact of targeted interventions, such as persona injection, on both self-reports and behavior. Our findings reveal that instructional alignment (e.g., RLHF, instruction tuning) significantly stabilizes trait expression and strengthens trait correlations in ways that mirror human data. However, these self-reported traits do not reliably predict behavior, and observed associations often diverge from human patterns. While persona injection successfully steers self-reports in the intended direction, it exerts little or inconsistent effect on actual behavior. By distinguishing surface-level trait expression from behavioral consistency, our findings challenge assumptions about LLM personality and underscore the need for deeper evaluation in alignment and interpretability.
The Agent Behavior: Model, Governance and Challenges in the AI Digital Age
Advancements in AI have led to agents in networked environments increasingly mirroring human behavior, thereby blurring the boundary between artificial and human actors in specific contexts. This shift brings about significant challenges in trust, responsibility, ethics, security and etc. The difficulty in supervising of agent behaviors may lead to issues such as data contamination and unclear accountability. To address these challenges, this paper proposes the "Network Behavior Lifecycle" model, which divides network behavior into 6 stages and systematically analyzes the behavioral differences between humans and agents at each stage. Based on these insights, the paper further introduces the "Agent for Agent (A4A)" paradigm and the "Human-Agent Behavioral Disparity (HABD)" model, which examine the fundamental distinctions between human and agent behaviors across 5 dimensions: decision mechanism, execution efficiency, intention-behavior consistency, behavioral inertia, and irrational patterns. The effectiveness of the model is verified through real-world cases such as red team penetration and blue team defense. Finally, the paper discusses future research directions in dynamic cognitive governance architecture, behavioral disparity quantification, and meta-governance protocol stacks, aiming to provide a theoretical foundation and technical roadmap for secure and trustworthy human-agent collaboration.
Combating Financial Crimes with Unsupervised Learning Techniques: Clustering and Dimensionality Reduction for Anti-Money Laundering
Anti-Money Laundering (AML) is a crucial task in ensuring the integrity of financial systems. One keychallenge in AML is identifying high-risk groups based on their behavior. Unsupervised learning, particularly clustering, is a promising solution for this task. However, the use of hundreds of features todescribe behavior results in a highdimensional dataset that negatively impacts clustering performance.In this paper, we investigate the effectiveness of combining clustering method agglomerative hierarchicalclustering with four dimensionality reduction techniques -Independent Component Analysis (ICA), andKernel Principal Component Analysis (KPCA), Singular Value Decomposition (SVD), Locality Preserving Projections (LPP)- to overcome the issue of high-dimensionality in AML data and improve clusteringresults. This study aims to provide insights into the most effective way of reducing the dimensionality ofAML data and enhance the accuracy of clustering-based AML systems. The experimental results demonstrate that KPCA outperforms other dimension reduction techniques when combined with agglomerativehierarchical clustering. This superiority is observed in the majority of situations, as confirmed by threedistinct validation indices.
BEACON: Behavioral Malware Classification with Large Language Model Embeddings and Deep Learning
Malware is becoming increasingly complex and widespread, making it essential to develop more effective and timely detection methods. Traditional static analysis often fails to defend against modern threats that employ code obfuscation, polymorphism, and other evasion techniques. In contrast, behavioral malware detection, which monitors runtime activities, provides a more reliable and context-aware solution. In this work, we propose BEACON, a novel deep learning framework that leverages large language models (LLMs) to generate dense, contextual embeddings from raw sandbox-generated behavior reports. These embeddings capture semantic and structural patterns of each sample and are processed by a one-dimensional convolutional neural network (1D CNN) for multi-class malware classification. Evaluated on the Avast-CTU Public CAPE Dataset, our framework consistently outperforms existing methods, highlighting the effectiveness of LLM-based behavioral embeddings and the overall design of BEACON for robust malware classification.
Multi-modal Gaussian Process Variational Autoencoders for Neural and Behavioral Data
Characterizing the relationship between neural population activity and behavioral data is a central goal of neuroscience. While latent variable models (LVMs) are successful in describing high-dimensional time-series data, they are typically only designed for a single type of data, making it difficult to identify structure shared across different experimental data modalities. Here, we address this shortcoming by proposing an unsupervised LVM which extracts temporally evolving shared and independent latents for distinct, simultaneously recorded experimental modalities. We do this by combining Gaussian Process Factor Analysis (GPFA), an interpretable LVM for neural spiking data with temporally smooth latent space, with Gaussian Process Variational Autoencoders (GP-VAEs), which similarly use a GP prior to characterize correlations in a latent space, but admit rich expressivity due to a deep neural network mapping to observations. We achieve interpretability in our model by partitioning latent variability into components that are either shared between or independent to each modality. We parameterize the latents of our model in the Fourier domain, and show improved latent identification using this approach over standard GP-VAE methods. We validate our model on simulated multi-modal data consisting of Poisson spike counts and MNIST images that scale and rotate smoothly over time. We show that the multi-modal GP-VAE (MM-GPVAE) is able to not only identify the shared and independent latent structure across modalities accurately, but provides good reconstructions of both images and neural rates on held-out trials. Finally, we demonstrate our framework on two real world multi-modal experimental settings: Drosophila whole-brain calcium imaging alongside tracked limb positions, and Manduca sexta spike train measurements from ten wing muscles as the animal tracks a visual stimulus.
Why do AI agents communicate in human language?
Large Language Models (LLMs) have become foundational to modern AI agent systems, enabling autonomous agents to reason and plan. In most existing systems, inter-agent communication relies primarily on natural language. While this design supports interpretability and human oversight, we argue that it introduces fundamental limitations in agent-to-agent coordination. The semantic space of natural language is structurally misaligned with the high-dimensional vector spaces in which LLMs operate, resulting in information loss and behavioral drift. Beyond surface-level inefficiencies, we highlight a deeper architectural limitation: current LLMs were not trained with the objective of supporting agentic behavior. As such, they lack mechanisms for modeling role continuity, task boundaries, and multi-agent dependencies. The standard next-token prediction paradigm fails to support the structural alignment required for robust, scalable agent coordination. Based on this, we argue that two core questions deserve careful examination: first, given that AI agents fundamentally operate in high-dimensional vector spaces, should they rely on a language system originally designed for human cognition as their communication medium? Second, should we consider developing a new model construction paradigm that builds models from the ground up to natively support structured communication, shared intentionality, and task alignment in multi-role, multi-agent environments? This paper calls for a reconsideration not only of how agents should communicate, but also of what it fundamentally means to train a model that natively supports multi-agent coordination and communication.
SoK: Machine Unlearning for Large Language Models
Large language model (LLM) unlearning has become a critical topic in machine learning, aiming to eliminate the influence of specific training data or knowledge without retraining the model from scratch. A variety of techniques have been proposed, including Gradient Ascent, model editing, and re-steering hidden representations. While existing surveys often organize these methods by their technical characteristics, such classifications tend to overlook a more fundamental dimension: the underlying intention of unlearning--whether it seeks to truly remove internal knowledge or merely suppress its behavioral effects. In this SoK paper, we propose a new taxonomy based on this intention-oriented perspective. Building on this taxonomy, we make three key contributions. First, we revisit recent findings suggesting that many removal methods may functionally behave like suppression, and explore whether true removal is necessary or achievable. Second, we survey existing evaluation strategies, identify limitations in current metrics and benchmarks, and suggest directions for developing more reliable and intention-aligned evaluations. Third, we highlight practical challenges--such as scalability and support for sequential unlearning--that currently hinder the broader deployment of unlearning methods. In summary, this work offers a comprehensive framework for understanding and advancing unlearning in generative AI, aiming to support future research and guide policy decisions around data removal and privacy.
