new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 8

On the Higgs spectra of the 3-3-1 model with the sextet of scalars engendering the type II seesaw mechanism

In the 3-3-1 model with right-handed neutrinos, three triplets of scalars engender the correct sequence of symmetry breaking, SU(3)_C times SU(3)_L times U(1)_X rightarrow SU(3)_C times SU(2)_L times U(1)_Y rightarrow SU(3)_C times U(1)_{EM}, generating mass for all fermions, except neutrinos. Tiny neutrino masses may be achieved by adding one sextet of scalars to the original scalar content. As consequence, it emerges a very complex scalar sector, involving terms that violate lepton number explicitly, too. The main obstacle to the development of the phenomenology of such scenario is the knowledge of its spectrum of scalars since, now, there are 15 massive scalar particles on it. The proposal of this work is to do an exhaustive analysis of such scalar sector with lepton number being explicitly violated at low, electroweak and high energy scales by means of trilinear terms in the potential. The first case can be addressed analytically and, as a nice result, we have observed that the scalar content of such case is split into two categories: One belonging to the 331 energy scale and the other belonging to the EWSB energy scale, with the last recovering the well known THDM+triplet. For the other cases, the scalar sector can be addressed only numerically. Hence, we proposed a very general approach for the numerical study of the potential, avoiding simplifications that can make us reach conclusions without foundation. We show that, in the case of lepton number being explicitly violated at electroweak scale, it is possible to recover the same physics of the THDM+triplet, as the previous case. Among all the possibilities, we call the attention to one special case which generates the 3HDM+triplet scenario. For the last case, when lepton number is violated at high energy scale, the sextet become very massive and decouples from the original scalar content of the 3-3-1 model.

  • 2 authors
·
Dec 20, 2022

More on the Weak Gravity Conjecture via Convexity of Charged Operators

The Weak Gravity Conjecture has recently been re-formulated in terms of a particle with non-negative self-binding energy. Because of the dual conformal field theory (CFT) formulation in the anti-de Sitter space the conformal dimension Delta (Q) of the lowest-dimension operator with charge Q under some global U(1) symmetry must be a convex function of Q. This property has been conjectured to hold for any (unitary) conformal field theory and generalized to larger global symmetry groups. Here we refine and further test the convex charge conjecture via semiclassical computations for fixed charge sectors of different theories in different dimensions. We analyze the convexity properties of the leading and next-to-leading order terms stemming from the semiclassical computation, de facto, extending previous tests beyond the leading perturbative contributions and to arbitrary charges. In particular, the leading contribution is sufficient to test convexity in the semiclassical computations. We also consider intriguing cases in which the models feature a transition from real to complex conformal dimensions either as a function of the charge or number of matter fields. As a relevant example of the first kind, we investigate the O(N) model in 4+epsilon dimensions. As an example of the second type we consider the U(N)times U(M) model in 4-epsilon dimensions. Both models display a rich dynamics where, by changing the number of matter fields and/or charge, one can achieve dramatically different physical regimes. We discover that whenever a complex conformal dimension appears, the real part satisfies the convexity property.

  • 5 authors
·
Sep 10, 2021

A mechanism to generate varying speed of light via Higgs-dilaton coupling: Theory and cosmological applications

We allow the Higgs field Phi to interact with a dilaton field chi of the background spacetime via the coupling chi^2,Phi^daggerPhi. Upon spontaneous gauge symmetry breaking, the Higgs VEV becomes proportional to chi. While traditionally this linkage is employed to make the Planck mass and particle masses dependent on chi, we present an textit alternative mechanism: the Higgs VEV will be used to construct Planck's constant hbar and speed of light c. Specifically, each open set vicinity of a given point x^* on the spacetime manifold is equipped with a replica of the Glashow-Weinberg-Salam action operating with its own effective values of hbar_* and c_* per hbar_*proptochi^{-1/2}(x^*) and c_*proptochi^{1/2}(x^*), causing these ``fundamental constants'' to vary alongside the dynamical field chi. Moreover, in each open set around x^*, the prevailing value chi(x^*) determines the length and time scales for physical processes occurring in this region as lproptochi^{-1}(x^*) and tauproptochi^{-3/2}(x^*). This leads to an textit anisotropic relation tau^{-1}propto l^{-3/2} between the rate of clocks and the length of rods, resulting in a distinct set of novel physical phenomena. For late-time cosmology, the variation of c along the trajectory of light waves from distant supernovae towards the Earth-based observer necessitates modifications to the Lema\^itre redshift relation and the Hubble law. These modifications are capable of: (1) Accounting for the Pantheon Catalog of SNeIa through a declining speed of light in an expanding Einstein--de Sitter universe, thus avoiding the need for dark energy; (2) Revitalizing Blanchard-Douspis-Rowan-Robinson-Sarkar's CMB power spectrum analysis that bypassed dark energy [A&A 412, 35 (2003)]; and (3) Resolving the H_0 tension without requiring a dynamical dark energy component.

  • 1 authors
·
Aug 5, 2024

Precision holography for non-conformal branes

We set up precision holography for the non-conformal branes preserving 16 supersymmetries. The near-horizon limit of all such p-brane solutions with p \leq 4, including the case of fundamental string solutions, is conformal to AdS_{p+2} x S^{8-p} with a linear dilaton. We develop holographic renormalization for all these cases. In particular, we obtain the most general asymptotic solutions with appropriate Dirichlet boundary conditions, find the corresponding counterterms and compute the holographic 1-point functions, all in complete generality and at the full non-linear level. The result for the stress energy tensor properly defines the notion of mass for backgrounds with such asymptotics. The analysis is done both in the original formulation of the method and also using a radial Hamiltonian analysis. The latter formulation exhibits most clearly the existence of an underlying generalized conformal structure. In the cases of Dp-branes, the corresponding dual boundary theory, the maximally supersymmetric Yang-Mills theory SYM_{p+1}, indeed exhibits the generalized conformal structure found at strong coupling. We compute the holographic 2-point functions of the stress energy tensor and gluon operator and show they satisfy the expected Ward identities and the constraints of generalized conformal structure. The holographic results are also manifestly compatible with the M-theory uplift, with the asymptotic solutions, counterterms, one and two point functions etc of the IIA F1 and D4 appropriately descending from those of M2 and M5 branes, respectively. We present a few applications including the computation of condensates in Witten's model of holographic YM_4 theory.

  • 3 authors
·
Jul 21, 2008

Algorithm-assisted discovery of an intrinsic order among mathematical constants

In recent decades, a growing number of discoveries in fields of mathematics have been assisted by computer algorithms, primarily for exploring large parameter spaces that humans would take too long to investigate. As computers and algorithms become more powerful, an intriguing possibility arises - the interplay between human intuition and computer algorithms can lead to discoveries of novel mathematical concepts that would otherwise remain elusive. To realize this perspective, we have developed a massively parallel computer algorithm that discovers an unprecedented number of continued fraction formulas for fundamental mathematical constants. The sheer number of formulas discovered by the algorithm unveils a novel mathematical structure that we call the conservative matrix field. Such matrix fields (1) unify thousands of existing formulas, (2) generate infinitely many new formulas, and most importantly, (3) lead to unexpected relations between different mathematical constants, including multiple integer values of the Riemann zeta function. Conservative matrix fields also enable new mathematical proofs of irrationality. In particular, we can use them to generalize the celebrated proof by Ap\'ery for the irrationality of zeta(3). Utilizing thousands of personal computers worldwide, our computer-supported research strategy demonstrates the power of experimental mathematics, highlighting the prospects of large-scale computational approaches to tackle longstanding open problems and discover unexpected connections across diverse fields of science.

  • 9 authors
·
Aug 22, 2023

Analytic Solution for the Helicity Evolution Equations at Small x and Large N_c&N_f

We construct an exact analytic solution of the revised small-x helicity evolution equations, where the contributions of the quark-to-gluon and gluon-to-quark transition operators were newly included. These evolution equations are written in the large-N_c&N_f limit and are double-logarithmic, resumming powers of alpha_sln^2(1/x). Here N_c and N_f are the numbers of quark colors and flavors, while alpha_s is the strong coupling constant and x is the Bjorken-x variable. Using our solution, we obtain analytic expressions for the flavor singlet quark and gluon helicity parton distribution functions (PDFs) and for the g_1 structure function as double-inverse Laplace transforms. We also extract analytic expressions for the four DGLAP polarized anomalous dimensions Delta gamma_{qq}, Delta gamma_{qG}, Delta gamma_{Gq}, and Delta gamma_{GG}: these expressions resum powers of alpha_s/omega^2 to all orders at large-N_c&N_f (with omega the Mellin moment variable). We extract the leading small-x growth of the helicity distributions, align \Delta\Sigma(x,Q^2) \sim \Delta G(x,Q^2)\sim g_1(x,Q^2) \sim \left(1{x}\right)^{\alpha_h}, align where the intercept alpha_h satisfies an algebraic equation. We determine alpha_h numerically for various values of N_c and N_f. We further obtain the explicit asymptotic expressions for the helicity distributions, which yield numerical values for the ratio of the gluon helicity PDF to the flavor singlet quark helicity PDF in the small-x asymptotic limit (for different N_f/N_c). We find that all our predictions for polarized DGLAP anomalous dimensions are fully consistent with the existing finite-order calculations. Similar to the large-N_c case, our intercept alpha_h exhibits a very slight disagreement with the predictions made within the infrared evolution equations framework.

  • 2 authors
·
Jul 31