4 LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models Large language models (LLMs) have been applied in various applications due to their astonishing capabilities. With advancements in technologies such as chain-of-thought (CoT) prompting and in-context learning (ICL), the prompts fed to LLMs are becoming increasingly lengthy, even exceeding tens of thousands of tokens. To accelerate model inference and reduce cost, this paper presents LLMLingua, a coarse-to-fine prompt compression method that involves a budget controller to maintain semantic integrity under high compression ratios, a token-level iterative compression algorithm to better model the interdependence between compressed contents, and an instruction tuning based method for distribution alignment between language models. We conduct experiments and analysis over four datasets from different scenarios, i.e., GSM8K, BBH, ShareGPT, and Arxiv-March23; showing that the proposed approach yields state-of-the-art performance and allows for up to 20x compression with little performance loss. Our code is available at https://aka.ms/LLMLingua. 5 authors · Oct 9, 2023
- Progressive Prompt Detailing for Improved Alignment in Text-to-Image Generative Models Text-to-image generative models often struggle with long prompts detailing complex scenes, diverse objects with distinct visual characteristics and spatial relationships. In this work, we propose SCoPE (Scheduled interpolation of Coarse-to-fine Prompt Embeddings), a training-free method to improve text-to-image alignment by progressively refining the input prompt in a coarse-to-fine-grained manner. Given a detailed input prompt, we first decompose it into multiple sub-prompts which evolve from describing broad scene layout to highly intricate details. During inference, we interpolate between these sub-prompts and thus progressively introduce finer-grained details into the generated image. Our training-free plug-and-play approach significantly enhances prompt alignment, achieves an average improvement of more than +8 in Visual Question Answering (VQA) scores over the Stable Diffusion baselines on 83% of the prompts from the GenAI-Bench dataset. 4 authors · Mar 22