Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeENT-DESC: Entity Description Generation by Exploring Knowledge Graph
Previous works on knowledge-to-text generation take as input a few RDF triples or key-value pairs conveying the knowledge of some entities to generate a natural language description. Existing datasets, such as WIKIBIO, WebNLG, and E2E, basically have a good alignment between an input triple/pair set and its output text. However, in practice, the input knowledge could be more than enough, since the output description may only cover the most significant knowledge. In this paper, we introduce a large-scale and challenging dataset to facilitate the study of such a practical scenario in KG-to-text. Our dataset involves retrieving abundant knowledge of various types of main entities from a large knowledge graph (KG), which makes the current graph-to-sequence models severely suffer from the problems of information loss and parameter explosion while generating the descriptions. We address these challenges by proposing a multi-graph structure that is able to represent the original graph information more comprehensively. Furthermore, we also incorporate aggregation methods that learn to extract the rich graph information. Extensive experiments demonstrate the effectiveness of our model architecture.
RL Zero: Zero-Shot Language to Behaviors without any Supervision
Rewards remain an uninterpretable way to specify tasks for Reinforcement Learning, as humans are often unable to predict the optimal behavior of any given reward function, leading to poor reward design and reward hacking. Language presents an appealing way to communicate intent to agents and bypass reward design, but prior efforts to do so have been limited by costly and unscalable labeling efforts. In this work, we propose a method for a completely unsupervised alternative to grounding language instructions in a zero-shot manner to obtain policies. We present a solution that takes the form of imagine, project, and imitate: The agent imagines the observation sequence corresponding to the language description of a task, projects the imagined sequence to our target domain, and grounds it to a policy. Video-language models allow us to imagine task descriptions that leverage knowledge of tasks learned from internet-scale video-text mappings. The challenge remains to ground these generations to a policy. In this work, we show that we can achieve a zero-shot language-to-behavior policy by first grounding the imagined sequences in real observations of an unsupervised RL agent and using a closed-form solution to imitation learning that allows the RL agent to mimic the grounded observations. Our method, RLZero, is the first to our knowledge to show zero-shot language to behavior generation abilities without any supervision on a variety of tasks on simulated domains. We further show that RLZero can also generate policies zero-shot from cross-embodied videos such as those scraped from YouTube.
SMF: Template-free and Rig-free Animation Transfer using Kinetic Codes
Animation retargetting applies sparse motion description (e.g., keypoint sequences) to a character mesh to produce a semantically plausible and temporally coherent full-body mesh sequence. Existing approaches come with restrictions -- they require access to template-based shape priors or artist-designed deformation rigs, suffer from limited generalization to unseen motion and/or shapes, or exhibit motion jitter. We propose Self-supervised Motion Fields (SMF), a self-supervised framework that is trained with only sparse motion representations, without requiring dataset-specific annotations, templates, or rigs. At the heart of our method are Kinetic Codes, a novel autoencoder-based sparse motion encoding, that exposes a semantically rich latent space, simplifying large-scale training. Our architecture comprises dedicated spatial and temporal gradient predictors, which are jointly trained in an end-to-end fashion. The combined network, regularized by the Kinetic Codes' latent space, has good generalization across both unseen shapes and new motions. We evaluated our method on unseen motion sampled from AMASS, D4D, Mixamo, and raw monocular video for animation transfer on various characters with varying shapes and topology. We report a new SoTA on the AMASS dataset in the context of generalization to unseen motion. Code, weights, and supplementary are available on the project webpage at https://motionfields.github.io/
Seamless Human Motion Composition with Blended Positional Encodings
Conditional human motion generation is an important topic with many applications in virtual reality, gaming, and robotics. While prior works have focused on generating motion guided by text, music, or scenes, these typically result in isolated motions confined to short durations. Instead, we address the generation of long, continuous sequences guided by a series of varying textual descriptions. In this context, we introduce FlowMDM, the first diffusion-based model that generates seamless Human Motion Compositions (HMC) without any postprocessing or redundant denoising steps. For this, we introduce the Blended Positional Encodings, a technique that leverages both absolute and relative positional encodings in the denoising chain. More specifically, global motion coherence is recovered at the absolute stage, whereas smooth and realistic transitions are built at the relative stage. As a result, we achieve state-of-the-art results in terms of accuracy, realism, and smoothness on the Babel and HumanML3D datasets. FlowMDM excels when trained with only a single description per motion sequence thanks to its Pose-Centric Cross-ATtention, which makes it robust against varying text descriptions at inference time. Finally, to address the limitations of existing HMC metrics, we propose two new metrics: the Peak Jerk and the Area Under the Jerk, to detect abrupt transitions.
InstructProtein: Aligning Human and Protein Language via Knowledge Instruction
Large Language Models (LLMs) have revolutionized the field of natural language processing, but they fall short in comprehending biological sequences such as proteins. To address this challenge, we propose InstructProtein, an innovative LLM that possesses bidirectional generation capabilities in both human and protein languages: (i) taking a protein sequence as input to predict its textual function description and (ii) using natural language to prompt protein sequence generation. To achieve this, we first pre-train an LLM on both protein and natural language corpora, enabling it to comprehend individual languages. Then supervised instruction tuning is employed to facilitate the alignment of these two distinct languages. Herein, we introduce a knowledge graph-based instruction generation framework to construct a high-quality instruction dataset, addressing annotation imbalance and instruction deficits in existing protein-text corpus. In particular, the instructions inherit the structural relations between proteins and function annotations in knowledge graphs, which empowers our model to engage in the causal modeling of protein functions, akin to the chain-of-thought processes in natural languages. Extensive experiments on bidirectional protein-text generation tasks show that InstructProtein outperforms state-of-the-art LLMs by large margins. Moreover, InstructProtein serves as a pioneering step towards text-based protein function prediction and sequence design, effectively bridging the gap between protein and human language understanding.
Learning to Generate Task-Specific Adapters from Task Description
Pre-trained text-to-text transformers such as BART have achieved impressive performance across a range of NLP tasks. Recent study further shows that they can learn to generalize to novel tasks, by including task descriptions as part of the source sequence and training the model with (source, target) examples. At test time, these fine-tuned models can make inferences on new tasks using the new task descriptions as part of the input. However, this approach has potential limitations, as the model learns to solve individual (source, target) examples (i.e., at the instance level), instead of learning to solve tasks by taking all examples within a task as a whole (i.e., at the task level). To this end, we introduce Hypter, a framework that improves text-to-text transformer's generalization ability to unseen tasks by training a hypernetwork to generate task-specific, light-weight adapters from task descriptions. Experiments on ZEST dataset and a synthetic SQuAD dataset demonstrate that Hypter improves upon fine-tuning baselines. Notably, when using BART-Large as the main network, Hypter brings 11.3% comparative improvement on ZEST dataset.
WonderJourney: Going from Anywhere to Everywhere
We introduce WonderJourney, a modularized framework for perpetual 3D scene generation. Unlike prior work on view generation that focuses on a single type of scenes, we start at any user-provided location (by a text description or an image) and generate a journey through a long sequence of diverse yet coherently connected 3D scenes. We leverage an LLM to generate textual descriptions of the scenes in this journey, a text-driven point cloud generation pipeline to make a compelling and coherent sequence of 3D scenes, and a large VLM to verify the generated scenes. We show compelling, diverse visual results across various scene types and styles, forming imaginary "wonderjourneys". Project website: https://kovenyu.com/WonderJourney/
Phenaki: Variable Length Video Generation From Open Domain Textual Description
We present Phenaki, a model capable of realistic video synthesis, given a sequence of textual prompts. Generating videos from text is particularly challenging due to the computational cost, limited quantities of high quality text-video data and variable length of videos. To address these issues, we introduce a new model for learning video representation which compresses the video to a small representation of discrete tokens. This tokenizer uses causal attention in time, which allows it to work with variable-length videos. To generate video tokens from text we are using a bidirectional masked transformer conditioned on pre-computed text tokens. The generated video tokens are subsequently de-tokenized to create the actual video. To address data issues, we demonstrate how joint training on a large corpus of image-text pairs as well as a smaller number of video-text examples can result in generalization beyond what is available in the video datasets. Compared to the previous video generation methods, Phenaki can generate arbitrary long videos conditioned on a sequence of prompts (i.e. time variable text or a story) in open domain. To the best of our knowledge, this is the first time a paper studies generating videos from time variable prompts. In addition, compared to the per-frame baselines, the proposed video encoder-decoder computes fewer tokens per video but results in better spatio-temporal consistency.
TGIF: A New Dataset and Benchmark on Animated GIF Description
With the recent popularity of animated GIFs on social media, there is need for ways to index them with rich metadata. To advance research on animated GIF understanding, we collected a new dataset, Tumblr GIF (TGIF), with 100K animated GIFs from Tumblr and 120K natural language descriptions obtained via crowdsourcing. The motivation for this work is to develop a testbed for image sequence description systems, where the task is to generate natural language descriptions for animated GIFs or video clips. To ensure a high quality dataset, we developed a series of novel quality controls to validate free-form text input from crowdworkers. We show that there is unambiguous association between visual content and natural language descriptions in our dataset, making it an ideal benchmark for the visual content captioning task. We perform extensive statistical analyses to compare our dataset to existing image and video description datasets. Next, we provide baseline results on the animated GIF description task, using three representative techniques: nearest neighbor, statistical machine translation, and recurrent neural networks. Finally, we show that models fine-tuned from our animated GIF description dataset can be helpful for automatic movie description.
Learning Video Context as Interleaved Multimodal Sequences
Narrative videos, such as movies, pose significant challenges in video understanding due to their rich contexts (characters, dialogues, storylines) and diverse demands (identify who, relationship, and reason). In this paper, we introduce MovieSeq, a multimodal language model developed to address the wide range of challenges in understanding video contexts. Our core idea is to represent videos as interleaved multimodal sequences (including images, plots, videos, and subtitles), either by linking external knowledge databases or using offline models (such as whisper for subtitles). Through instruction-tuning, this approach empowers the language model to interact with videos using interleaved multimodal instructions. For example, instead of solely relying on video as input, we jointly provide character photos alongside their names and dialogues, allowing the model to associate these elements and generate more comprehensive responses. To demonstrate its effectiveness, we validate MovieSeq's performance on six datasets (LVU, MAD, Movienet, CMD, TVC, MovieQA) across five settings (video classification, audio description, video-text retrieval, video captioning, and video question-answering). The code will be public at https://github.com/showlab/MovieSeq.
ImageChain: Advancing Sequential Image-to-Text Reasoning in Multimodal Large Language Models
Reasoning over sequences of images remains a challenge for multimodal large language models (MLLMs). While recent models incorporate multi-image data during pre-training, they still struggle to recognize sequential structures, often treating images independently. This work introduces ImageChain, a framework that enhances MLLMs with sequential reasoning capabilities over image data by modeling visual sequences as a multi-turn conversation. In ImageChain, images are interleaved with corresponding textual descriptions to form a controlled dialogue that explicitly captures temporal dependencies and narrative progression. Our method optimizes for the task of next-scene description, where the model generates a context-aware description of an upcoming scene based on preceding visual and textual cues. We demonstrate that our approach improves performance on the next-scene description task -- achieving an average improvement from 3.7% to 19% in SimRate, a metric that quantifies semantic similarity to human-annotated ground truths. Moreover, ImageChain achieves robust zero-shot out-of-domain performance in applications ranging from comics to robotics. Extensive experiments validate that instruction-tuning in a multimodal, multi-turn conversation design is key to bridging the gap between static image understanding and temporally-aware reasoning.
ConvMath: A Convolutional Sequence Network for Mathematical Expression Recognition
Despite the recent advances in optical character recognition (OCR), mathematical expressions still face a great challenge to recognize due to their two-dimensional graphical layout. In this paper, we propose a convolutional sequence modeling network, ConvMath, which converts the mathematical expression description in an image into a LaTeX sequence in an end-to-end way. The network combines an image encoder for feature extraction and a convolutional decoder for sequence generation. Compared with other Long Short Term Memory(LSTM) based encoder-decoder models, ConvMath is entirely based on convolution, thus it is easy to perform parallel computation. Besides, the network adopts multi-layer attention mechanism in the decoder, which allows the model to align output symbols with source feature vectors automatically, and alleviates the problem of lacking coverage while training the model. The performance of ConvMath is evaluated on an open dataset named IM2LATEX-100K, including 103556 samples. The experimental results demonstrate that the proposed network achieves state-of-the-art accuracy and much better efficiency than previous methods.
GraphInsight: Unlocking Insights in Large Language Models for Graph Structure Understanding
Although Large Language Models (LLMs) have demonstrated potential in processing graphs, they struggle with comprehending graphical structure information through prompts of graph description sequences, especially as the graph size increases. We attribute this challenge to the uneven memory performance of LLMs across different positions in graph description sequences, known as ''positional biases''. To address this, we propose GraphInsight, a novel framework aimed at improving LLMs' comprehension of both macro- and micro-level graphical information. GraphInsight is grounded in two key strategies: 1) placing critical graphical information in positions where LLMs exhibit stronger memory performance, and 2) investigating a lightweight external knowledge base for regions with weaker memory performance, inspired by retrieval-augmented generation (RAG). Moreover, GraphInsight explores integrating these two strategies into LLM agent processes for composite graph tasks that require multi-step reasoning. Extensive empirical studies on benchmarks with a wide range of evaluation tasks show that GraphInsight significantly outperforms all other graph description methods (e.g., prompting techniques and reordering strategies) in understanding graph structures of varying sizes.
Growing Visual Generative Capacity for Pre-Trained MLLMs
Multimodal large language models (MLLMs) extend the success of language models to visual understanding, and recent efforts have sought to build unified MLLMs that support both understanding and generation. However, constructing such models remains challenging: hybrid approaches combine continuous embeddings with diffusion or flow-based objectives, producing high-quality images but breaking the autoregressive paradigm, while pure autoregressive approaches unify text and image prediction over discrete visual tokens but often face trade-offs between semantic alignment and pixel-level fidelity. In this work, we present Bridge, a pure autoregressive unified MLLM that augments pre-trained visual understanding models with generative ability through a Mixture-of-Transformers architecture, enabling both image understanding and generation within a single next-token prediction framework. To further improve visual generation fidelity, we propose a semantic-to-pixel discrete representation that integrates compact semantic tokens with fine-grained pixel tokens, achieving strong language alignment and precise description of visual details with only a 7.9% increase in sequence length. Extensive experiments across diverse multimodal benchmarks demonstrate that Bridge achieves competitive or superior results in both understanding and generation benchmarks, while requiring less training data and reduced training time compared to prior unified MLLMs.
Tem-adapter: Adapting Image-Text Pretraining for Video Question Answer
Video-language pre-trained models have shown remarkable success in guiding video question-answering (VideoQA) tasks. However, due to the length of video sequences, training large-scale video-based models incurs considerably higher costs than training image-based ones. This motivates us to leverage the knowledge from image-based pretraining, despite the obvious gaps between image and video domains. To bridge these gaps, in this paper, we propose Tem-Adapter, which enables the learning of temporal dynamics and complex semantics by a visual Temporal Aligner and a textual Semantic Aligner. Unlike conventional pretrained knowledge adaptation methods that only concentrate on the downstream task objective, the Temporal Aligner introduces an extra language-guided autoregressive task aimed at facilitating the learning of temporal dependencies, with the objective of predicting future states based on historical clues and language guidance that describes event progression. Besides, to reduce the semantic gap and adapt the textual representation for better event description, we introduce a Semantic Aligner that first designs a template to fuse question and answer pairs as event descriptions and then learns a Transformer decoder with the whole video sequence as guidance for refinement. We evaluate Tem-Adapter and different pre-train transferring methods on two VideoQA benchmarks, and the significant performance improvement demonstrates the effectiveness of our method.
VideoComposer: Compositional Video Synthesis with Motion Controllability
The pursuit of controllability as a higher standard of visual content creation has yielded remarkable progress in customizable image synthesis. However, achieving controllable video synthesis remains challenging due to the large variation of temporal dynamics and the requirement of cross-frame temporal consistency. Based on the paradigm of compositional generation, this work presents VideoComposer that allows users to flexibly compose a video with textual conditions, spatial conditions, and more importantly temporal conditions. Specifically, considering the characteristic of video data, we introduce the motion vector from compressed videos as an explicit control signal to provide guidance regarding temporal dynamics. In addition, we develop a Spatio-Temporal Condition encoder (STC-encoder) that serves as a unified interface to effectively incorporate the spatial and temporal relations of sequential inputs, with which the model could make better use of temporal conditions and hence achieve higher inter-frame consistency. Extensive experimental results suggest that VideoComposer is able to control the spatial and temporal patterns simultaneously within a synthesized video in various forms, such as text description, sketch sequence, reference video, or even simply hand-crafted motions. The code and models will be publicly available at https://videocomposer.github.io.
Don't Classify, Translate: Multi-Level E-Commerce Product Categorization Via Machine Translation
E-commerce platforms categorize their products into a multi-level taxonomy tree with thousands of leaf categories. Conventional methods for product categorization are typically based on machine learning classification algorithms. These algorithms take product information as input (e.g., titles and descriptions) to classify a product into a leaf category. In this paper, we propose a new paradigm based on machine translation. In our approach, we translate a product's natural language description into a sequence of tokens representing a root-to-leaf path in a product taxonomy. In our experiments on two large real-world datasets, we show that our approach achieves better predictive accuracy than a state-of-the-art classification system for product categorization. In addition, we demonstrate that our machine translation models can propose meaningful new paths between previously unconnected nodes in a taxonomy tree, thereby transforming the taxonomy into a directed acyclic graph (DAG). We discuss how the resultant taxonomy DAG promotes user-friendly navigation, and how it is more adaptable to new products.
Persona-Guided Planning for Controlling the Protagonist's Persona in Story Generation
Endowing the protagonist with a specific personality is essential for writing an engaging story. In this paper, we aim to control the protagonist's persona in story generation, i.e., generating a story from a leading context and a persona description, where the protagonist should exhibit the specified personality through a coherent event sequence. Considering that personas are usually embodied implicitly and sparsely in stories, we propose a planning-based generation model named CONPER to explicitly model the relationship between personas and events. CONPER first plans events of the protagonist's behavior which are motivated by the specified persona through predicting one target sentence, then plans the plot as a sequence of keywords with the guidance of the predicted persona-related events and commonsense knowledge, and finally generates the whole story. Both automatic and manual evaluation results demonstrate that CONPER outperforms state-of-the-art baselines for generating more coherent and persona-controllable stories.
Transformer with Controlled Attention for Synchronous Motion Captioning
In this paper, we address a challenging task, synchronous motion captioning, that aim to generate a language description synchronized with human motion sequences. This task pertains to numerous applications, such as aligned sign language transcription, unsupervised action segmentation and temporal grounding. Our method introduces mechanisms to control self- and cross-attention distributions of the Transformer, allowing interpretability and time-aligned text generation. We achieve this through masking strategies and structuring losses that push the model to maximize attention only on the most important frames contributing to the generation of a motion word. These constraints aim to prevent undesired mixing of information in attention maps and to provide a monotonic attention distribution across tokens. Thus, the cross attentions of tokens are used for progressive text generation in synchronization with human motion sequences. We demonstrate the superior performance of our approach through evaluation on the two available benchmark datasets, KIT-ML and HumanML3D. As visual evaluation is essential for this task, we provide a comprehensive set of animated visual illustrations in the code repository: https://github.com/rd20karim/Synch-Transformer.
MULTISCRIPT: Multimodal Script Learning for Supporting Open Domain Everyday Tasks
Automatically generating scripts (i.e. sequences of key steps described in text) from video demonstrations and reasoning about the subsequent steps are crucial to the modern AI virtual assistants to guide humans to complete everyday tasks, especially unfamiliar ones. However, current methods for generative script learning rely heavily on well-structured preceding steps described in text and/or images or are limited to a certain domain, resulting in a disparity with real-world user scenarios. To address these limitations, we present a new benchmark challenge -- MultiScript, with two new tasks on task-oriented multimodal script learning: (1) multimodal script generation, and (2) subsequent step prediction. For both tasks, the input consists of a target task name and a video illustrating what has been done to complete the target task, and the expected output is (1) a sequence of structured step descriptions in text based on the demonstration video, and (2) a single text description for the subsequent step, respectively. Built from WikiHow, MultiScript covers multimodal scripts in videos and text descriptions for over 6,655 human everyday tasks across 19 diverse domains. To establish baseline performance on MultiScript, we propose two knowledge-guided multimodal generative frameworks that incorporate the task-related knowledge prompted from large language models such as Vicuna. Experimental results show that our proposed approaches significantly improve over the competitive baselines.
$How^{2}$: How to learn from procedural How-to questions
An agent facing a planning problem can use answers to how-to questions to reduce uncertainty and fill knowledge gaps, helping it solve both current and future tasks. However, their open ended nature, where valid answers to "How do I X?" range from executable actions to high-level descriptions of X's sub-goals, makes them challenging for AI agents to ask, and for AI experts to answer, in ways that support efficient planning. We introduce How^{2}, a memory agent framework that enables agents to ask how-to questions, store the answers, and reuse them for lifelong learning in interactive environments. We evaluate our approach in Plancraft, a Minecraft crafting environment, where agents must complete an assembly task by manipulating inventory items. Using teacher models that answer at varying levels of abstraction, from executable action sequences to high-level subgoal descriptions, we show that lifelong learning agents benefit most from answers that are abstracted and decoupled from the current state. How^{2} offers a way for LLM-based agents to improve their planning capabilities over time by asking questions in interactive environments.
Prot2Text-V2: Protein Function Prediction with Multimodal Contrastive Alignment
Predicting protein function from sequence is a central challenge in computational biology. While existing methods rely heavily on structured ontologies or similarity-based techniques, they often lack the flexibility to express structure-free functional descriptions and novel biological functions. In this work, we introduce Prot2Text-V2, a novel multimodal sequence-to-text model that generates free-form natural language descriptions of protein function directly from amino acid sequences. Our method combines a protein language model as a sequence encoder (ESM-3B) and a decoder-only language model (LLaMA-3.1-8B-Instruct) through a lightweight nonlinear modality projector. A key innovation is our Hybrid Sequence-level Contrastive Alignment Learning (H-SCALE), which improves cross-modal learning by matching mean- and std-pooled protein embeddings with text representations via contrastive loss. After the alignment phase, we apply instruction-based fine-tuning using LoRA on the decoder to teach the model how to generate accurate protein function descriptions conditioned on the protein sequence. We train Prot2Text-V2 on about 250K curated entries from SwissProt and evaluate it under low-homology conditions, where test sequences have low similarity with training samples. Prot2Text-V2 consistently outperforms traditional and LLM-based baselines across various metrics.
TPP-LLM: Modeling Temporal Point Processes by Efficiently Fine-Tuning Large Language Models
Temporal point processes (TPPs) are widely used to model the timing and occurrence of events in domains such as social networks, transportation systems, and e-commerce. In this paper, we introduce TPP-LLM, a novel framework that integrates large language models (LLMs) with TPPs to capture both the semantic and temporal aspects of event sequences. Unlike traditional methods that rely on categorical event type representations, TPP-LLM directly utilizes the textual descriptions of event types, enabling the model to capture rich semantic information embedded in the text. While LLMs excel at understanding event semantics, they are less adept at capturing temporal patterns. To address this, TPP-LLM incorporates temporal embeddings and employs parameter-efficient fine-tuning (PEFT) methods to effectively learn temporal dynamics without extensive retraining. This approach improves both predictive accuracy and computational efficiency. Experimental results across diverse real-world datasets demonstrate that TPP-LLM outperforms state-of-the-art baselines in sequence modeling and event prediction, highlighting the benefits of combining LLMs with TPPs.
Omni-DNA: A Unified Genomic Foundation Model for Cross-Modal and Multi-Task Learning
Large Language Models (LLMs) demonstrate remarkable generalizability across diverse tasks, yet genomic foundation models (GFMs) still require separate finetuning for each downstream application, creating significant overhead as model sizes grow. Moreover, existing GFMs are constrained by rigid output formats, limiting their applicability to various genomic tasks. In this work, we revisit the transformer-based auto-regressive models and introduce Omni-DNA, a family of cross-modal multi-task models ranging from 20 million to 1 billion parameters. Our approach consists of two stages: (i) pretraining on DNA sequences with next token prediction objective, and (ii) expanding the multi-modal task-specific tokens and finetuning for multiple downstream tasks simultaneously. When evaluated on the Nucleotide Transformer and GB benchmarks, Omni-DNA achieves state-of-the-art performance on 18 out of 26 tasks. Through multi-task finetuning, Omni-DNA addresses 10 acetylation and methylation tasks at once, surpassing models trained on each task individually. Finally, we design two complex genomic tasks, DNA2Function and Needle-in-DNA, which map DNA sequences to textual functional descriptions and images, respectively, indicating Omni-DNA's cross-modal capabilities to broaden the scope of genomic applications. All the models are available through https://huggingface.co/collections/zehui127
ProtST: Multi-Modality Learning of Protein Sequences and Biomedical Texts
Current protein language models (PLMs) learn protein representations mainly based on their sequences, thereby well capturing co-evolutionary information, but they are unable to explicitly acquire protein functions, which is the end goal of protein representation learning. Fortunately, for many proteins, their textual property descriptions are available, where their various functions are also described. Motivated by this fact, we first build the ProtDescribe dataset to augment protein sequences with text descriptions of their functions and other important properties. Based on this dataset, we propose the ProtST framework to enhance Protein Sequence pre-training and understanding by biomedical Texts. During pre-training, we design three types of tasks, i.e., unimodal mask prediction, multimodal representation alignment and multimodal mask prediction, to enhance a PLM with protein property information with different granularities and, at the same time, preserve the PLM's original representation power. On downstream tasks, ProtST enables both supervised learning and zero-shot prediction. We verify the superiority of ProtST-induced PLMs over previous ones on diverse representation learning benchmarks. Under the zero-shot setting, we show the effectiveness of ProtST on zero-shot protein classification, and ProtST also enables functional protein retrieval from a large-scale database without any function annotation.
ViSMaP: Unsupervised Hour-long Video Summarisation by Meta-Prompting
We introduce ViSMap: Unsupervised Video Summarisation by Meta Prompting, a system to summarise hour long videos with no-supervision. Most existing video understanding models work well on short videos of pre-segmented events, yet they struggle to summarise longer videos where relevant events are sparsely distributed and not pre-segmented. Moreover, long-form video understanding often relies on supervised hierarchical training that needs extensive annotations which are costly, slow and prone to inconsistency. With ViSMaP we bridge the gap between short videos (where annotated data is plentiful) and long ones (where it's not). We rely on LLMs to create optimised pseudo-summaries of long videos using segment descriptions from short ones. These pseudo-summaries are used as training data for a model that generates long-form video summaries, bypassing the need for expensive annotations of long videos. Specifically, we adopt a meta-prompting strategy to iteratively generate and refine creating pseudo-summaries of long videos. The strategy leverages short clip descriptions obtained from a supervised short video model to guide the summary. Each iteration uses three LLMs working in sequence: one to generate the pseudo-summary from clip descriptions, another to evaluate it, and a third to optimise the prompt of the generator. This iteration is necessary because the quality of the pseudo-summaries is highly dependent on the generator prompt, and varies widely among videos. We evaluate our summaries extensively on multiple datasets; our results show that ViSMaP achieves performance comparable to fully supervised state-of-the-art models while generalising across domains without sacrificing performance. Code will be released upon publication.
PlanLLM: Video Procedure Planning with Refinable Large Language Models
Video procedure planning, i.e., planning a sequence of action steps given the video frames of start and goal states, is an essential ability for embodied AI. Recent works utilize Large Language Models (LLMs) to generate enriched action step description texts to guide action step decoding. Although LLMs are introduced, these methods decode the action steps into a closed-set of one-hot vectors, limiting the model's capability of generalizing to new steps or tasks. Additionally, fixed action step descriptions based on world-level commonsense may contain noise in specific instances of visual states. In this paper, we propose PlanLLM, a cross-modal joint learning framework with LLMs for video procedure planning. We propose an LLM-Enhanced Planning module which fully uses the generalization ability of LLMs to produce free-form planning output and to enhance action step decoding. We also propose Mutual Information Maximization module to connect world-level commonsense of step descriptions and sample-specific information of visual states, enabling LLMs to employ the reasoning ability to generate step sequences. With the assistance of LLMs, our method can both closed-set and open vocabulary procedure planning tasks. Our PlanLLM achieves superior performance on three benchmarks, demonstrating the effectiveness of our designs.
CADmium: Fine-Tuning Code Language Models for Text-Driven Sequential CAD Design
Computer-aided design (CAD) is the digital construction of 2D and 3D objects, and is central to a wide range of engineering and manufacturing applications like automobile and aviation. Despite its importance, CAD modeling remains largely a time-intensive, manual task. Recent works have attempted to automate this process with small transformer-based models and handcrafted CAD sequence representations. However, there has been little effort to leverage the potential of large language models (LLMs) for sequential CAD design. In this work, we introduce a new large-scale dataset of more than 170k CAD models annotated with high-quality, human-like descriptions generated with our pipeline based on GPT-4.1. Using this dataset, we fine-tune powerful code-LLMs to generate CAD sequences represented in a JSON-based format from natural language descriptions, demonstrating the viability and effectiveness of this approach for text-conditioned CAD generation. Because simple metrics often fail to reflect the quality of generated objects, we introduce geometric and topological metrics based on sphericity, mean curvature, and Euler characteristic to provide richer structural insights. Our experiments and ablation studies on both synthetic and human-annotated data demonstrate that CADmium is able to automate CAD design, drastically speeding up the design of new objects. The dataset, code, and fine-tuned models are available online.
Efficient Retrieval of Temporal Event Sequences from Textual Descriptions
Retrieving temporal event sequences from textual descriptions is essential for applications such as analyzing e-commerce behavior, monitoring social media activities, and tracking criminal incidents. In this paper, we introduce TPP-LLM-Embedding, a unified model for efficiently embedding and retrieving event sequences based on natural language descriptions. Built on the TPP-LLM framework, which integrates large language models with temporal point processes, our model encodes both event types and times, generating a sequence-level representation through pooling. Textual descriptions are embedded using the same architecture, ensuring a shared embedding space for both sequences and descriptions. We optimize a contrastive loss based on similarity between these embeddings, bringing matching pairs closer and separating non-matching ones. TPP-LLM-Embedding enables efficient retrieval and demonstrates superior performance compared to baseline models across diverse datasets.
Mapping Natural Language Instructions to Mobile UI Action Sequences
We present a new problem: grounding natural language instructions to mobile user interface actions, and create three new datasets for it. For full task evaluation, we create PIXELHELP, a corpus that pairs English instructions with actions performed by people on a mobile UI emulator. To scale training, we decouple the language and action data by (a) annotating action phrase spans in HowTo instructions and (b) synthesizing grounded descriptions of actions for mobile user interfaces. We use a Transformer to extract action phrase tuples from long-range natural language instructions. A grounding Transformer then contextually represents UI objects using both their content and screen position and connects them to object descriptions. Given a starting screen and instruction, our model achieves 70.59% accuracy on predicting complete ground-truth action sequences in PIXELHELP.
Contrastive Sequential-Diffusion Learning: An approach to Multi-Scene Instructional Video Synthesis
Action-centric sequence descriptions like recipe instructions and do-it-yourself projects include non-linear patterns in which the next step may require to be visually consistent not on the immediate previous step but on earlier steps. Current video synthesis approaches fail to generate consistent multi-scene videos for such task descriptions. We propose a contrastive sequential video diffusion method that selects the most suitable previously generated scene to guide and condition the denoising process of the next scene. The result is a multi-scene video that is grounded in the scene descriptions and coherent w.r.t the scenes that require consistent visualisation. Our experiments with real-world data demonstrate the practicality and improved consistency of our model compared to prior work.
Go to Zero: Towards Zero-shot Motion Generation with Million-scale Data
Generating diverse and natural human motion sequences based on textual descriptions constitutes a fundamental and challenging research area within the domains of computer vision, graphics, and robotics. Despite significant advancements in this field, current methodologies often face challenges regarding zero-shot generalization capabilities, largely attributable to the limited size of training datasets. Moreover, the lack of a comprehensive evaluation framework impedes the advancement of this task by failing to identify directions for improvement. In this work, we aim to push text-to-motion into a new era, that is, to achieve the generalization ability of zero-shot. To this end, firstly, we develop an efficient annotation pipeline and introduce MotionMillion-the largest human motion dataset to date, featuring over 2,000 hours and 2 million high-quality motion sequences. Additionally, we propose MotionMillion-Eval, the most comprehensive benchmark for evaluating zero-shot motion generation. Leveraging a scalable architecture, we scale our model to 7B parameters and validate its performance on MotionMillion-Eval. Our results demonstrate strong generalization to out-of-domain and complex compositional motions, marking a significant step toward zero-shot human motion generation. The code is available at https://github.com/VankouF/MotionMillion-Codes.
Text-to-CAD Generation Through Infusing Visual Feedback in Large Language Models
Creating Computer-Aided Design (CAD) models requires significant expertise and effort. Text-to-CAD, which converts textual descriptions into CAD parametric sequences, is crucial in streamlining this process. Recent studies have utilized ground-truth parametric sequences, known as sequential signals, as supervision to achieve this goal. However, CAD models are inherently multimodal, comprising parametric sequences and corresponding rendered visual objects. Besides,the rendering process from parametric sequences to visual objects is many-to-one. Therefore, both sequential and visual signals are critical for effective training. In this work, we introduce CADFusion, a framework that uses Large Language Models (LLMs) as the backbone and alternates between two training stages: the sequential learning (SL) stage and the visual feedback (VF) stage. In the SL stage, we train LLMs using ground-truth parametric sequences, enabling the generation of logically coherent parametric sequences. In the VF stage, we reward parametric sequences that render into visually preferred objects and penalize those that do not, allowing LLMs to learn how rendered visual objects are perceived and evaluated. These two stages alternate throughout the training, ensuring balanced learning and preserving benefits of both signals. Experiments demonstrate that CADFusion significantly improves performance, both qualitatively and quantitatively.
Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling
In the endeavor to make autonomous robots take actions, task planning is a major challenge that requires translating high-level task descriptions into long-horizon action sequences. Despite recent advances in language model agents, they remain prone to planning errors and limited in their ability to plan ahead. To address these limitations in robotic planning, we advocate a self-refining scheme that iteratively refines a draft plan until an equilibrium is reached. Remarkably, this process can be optimized end-to-end from an analytical perspective without the need to curate additional verifiers or reward models, allowing us to train self-refining planners in a simple supervised learning fashion. Meanwhile, a nested equilibrium sequence modeling procedure is devised for efficient closed-loop planning that incorporates useful feedback from the environment (or an internal world model). Our method is evaluated on the VirtualHome-Env benchmark, showing advanced performance with better scaling for inference computation. Code is available at https://github.com/Singularity0104/equilibrium-planner.
A Parse-Then-Place Approach for Generating Graphic Layouts from Textual Descriptions
Creating layouts is a fundamental step in graphic design. In this work, we propose to use text as the guidance to create graphic layouts, i.e., Text-to-Layout, aiming to lower the design barriers. Text-to-Layout is a challenging task, because it needs to consider the implicit, combined, and incomplete layout constraints from text, each of which has not been studied in previous work. To address this, we present a two-stage approach, named parse-then-place. The approach introduces an intermediate representation (IR) between text and layout to represent diverse layout constraints. With IR, Text-to-Layout is decomposed into a parse stage and a place stage. The parse stage takes a textual description as input and generates an IR, in which the implicit constraints from the text are transformed into explicit ones. The place stage generates layouts based on the IR. To model combined and incomplete constraints, we use a Transformer-based layout generation model and carefully design a way to represent constraints and layouts as sequences. Besides, we adopt the pretrain-then-finetune strategy to boost the performance of the layout generation model with large-scale unlabeled layouts. To evaluate our approach, we construct two Text-to-Layout datasets and conduct experiments on them. Quantitative results, qualitative analysis, and user studies demonstrate the effectiveness of our approach.
Explainable Deep Behavioral Sequence Clustering for Transaction Fraud Detection
In e-commerce industry, user behavior sequence data has been widely used in many business units such as search and merchandising to improve their products. However, it is rarely used in financial services not only due to its 3V characteristics - i.e. Volume, Velocity and Variety - but also due to its unstructured nature. In this paper, we propose a Financial Service scenario Deep learning based Behavior data representation method for Clustering (FinDeepBehaviorCluster) to detect fraudulent transactions. To utilize the behavior sequence data, we treat click stream data as event sequence, use time attention based Bi-LSTM to learn the sequence embedding in an unsupervised fashion, and combine them with intuitive features generated by risk experts to form a hybrid feature representation. We also propose a GPU powered HDBSCAN (pHDBSCAN) algorithm, which is an engineering optimization for the original HDBSCAN algorithm based on FAISS project, so that clustering can be carried out on hundreds of millions of transactions within a few minutes. The computation efficiency of the algorithm has increased 500 times compared with the original implementation, which makes flash fraud pattern detection feasible. Our experimental results show that the proposed FinDeepBehaviorCluster framework is able to catch missed fraudulent transactions with considerable business values. In addition, rule extraction method is applied to extract patterns from risky clusters using intuitive features, so that narrative descriptions can be attached to the risky clusters for case investigation, and unknown risk patterns can be mined for real-time fraud detection. In summary, FinDeepBehaviorCluster as a complementary risk management strategy to the existing real-time fraud detection engine, can further increase our fraud detection and proactive risk defense capabilities.
BiPO: Bidirectional Partial Occlusion Network for Text-to-Motion Synthesis
Generating natural and expressive human motions from textual descriptions is challenging due to the complexity of coordinating full-body dynamics and capturing nuanced motion patterns over extended sequences that accurately reflect the given text. To address this, we introduce BiPO, Bidirectional Partial Occlusion Network for Text-to-Motion Synthesis, a novel model that enhances text-to-motion synthesis by integrating part-based generation with a bidirectional autoregressive architecture. This integration allows BiPO to consider both past and future contexts during generation while enhancing detailed control over individual body parts without requiring ground-truth motion length. To relax the interdependency among body parts caused by the integration, we devise the Partial Occlusion technique, which probabilistically occludes the certain motion part information during training. In our comprehensive experiments, BiPO achieves state-of-the-art performance on the HumanML3D dataset, outperforming recent methods such as ParCo, MoMask, and BAMM in terms of FID scores and overall motion quality. Notably, BiPO excels not only in the text-to-motion generation task but also in motion editing tasks that synthesize motion based on partially generated motion sequences and textual descriptions. These results reveal the BiPO's effectiveness in advancing text-to-motion synthesis and its potential for practical applications.
Neural Pipeline for Zero-Shot Data-to-Text Generation
In data-to-text (D2T) generation, training on in-domain data leads to overfitting to the data representation and repeating training data noise. We examine how to avoid finetuning pretrained language models (PLMs) on D2T generation datasets while still taking advantage of surface realization capabilities of PLMs. Inspired by pipeline approaches, we propose to generate text by transforming single-item descriptions with a sequence of modules trained on general-domain text-based operations: ordering, aggregation, and paragraph compression. We train PLMs for performing these operations on a synthetic corpus WikiFluent which we build from English Wikipedia. Our experiments on two major triple-to-text datasets -- WebNLG and E2E -- show that our approach enables D2T generation from RDF triples in zero-shot settings.
Kosmos-2: Grounding Multimodal Large Language Models to the World
We introduce Kosmos-2, a Multimodal Large Language Model (MLLM), enabling new capabilities of perceiving object descriptions (e.g., bounding boxes) and grounding text to the visual world. Specifically, we represent refer expressions as links in Markdown, i.e., ``[text span](bounding boxes)'', where object descriptions are sequences of location tokens. Together with multimodal corpora, we construct large-scale data of grounded image-text pairs (called GrIT) to train the model. In addition to the existing capabilities of MLLMs (e.g., perceiving general modalities, following instructions, and performing in-context learning), Kosmos-2 integrates the grounding capability into downstream applications. We evaluate Kosmos-2 on a wide range of tasks, including (i) multimodal grounding, such as referring expression comprehension, and phrase grounding, (ii) multimodal referring, such as referring expression generation, (iii) perception-language tasks, and (iv) language understanding and generation. This work lays out the foundation for the development of Embodiment AI and sheds light on the big convergence of language, multimodal perception, action, and world modeling, which is a key step toward artificial general intelligence. Data, demo, and pretrained models are available at https://aka.ms/kosmos-2.
Through-The-Mask: Mask-based Motion Trajectories for Image-to-Video Generation
We consider the task of Image-to-Video (I2V) generation, which involves transforming static images into realistic video sequences based on a textual description. While recent advancements produce photorealistic outputs, they frequently struggle to create videos with accurate and consistent object motion, especially in multi-object scenarios. To address these limitations, we propose a two-stage compositional framework that decomposes I2V generation into: (i) An explicit intermediate representation generation stage, followed by (ii) A video generation stage that is conditioned on this representation. Our key innovation is the introduction of a mask-based motion trajectory as an intermediate representation, that captures both semantic object information and motion, enabling an expressive but compact representation of motion and semantics. To incorporate the learned representation in the second stage, we utilize object-level attention objectives. Specifically, we consider a spatial, per-object, masked-cross attention objective, integrating object-specific prompts into corresponding latent space regions and a masked spatio-temporal self-attention objective, ensuring frame-to-frame consistency for each object. We evaluate our method on challenging benchmarks with multi-object and high-motion scenarios and empirically demonstrate that the proposed method achieves state-of-the-art results in temporal coherence, motion realism, and text-prompt faithfulness. Additionally, we introduce \benchmark, a new challenging benchmark for single-object and multi-object I2V generation, and demonstrate our method's superiority on this benchmark. Project page is available at https://guyyariv.github.io/TTM/.
DanceEditor: Towards Iterative Editable Music-driven Dance Generation with Open-Vocabulary Descriptions
Generating coherent and diverse human dances from music signals has gained tremendous progress in animating virtual avatars. While existing methods support direct dance synthesis, they fail to recognize that enabling users to edit dance movements is far more practical in real-world choreography scenarios. Moreover, the lack of high-quality dance datasets incorporating iterative editing also limits addressing this challenge. To achieve this goal, we first construct DanceRemix, a large-scale multi-turn editable dance dataset comprising the prompt featuring over 25.3M dance frames and 84.5K pairs. In addition, we propose a novel framework for iterative and editable dance generation coherently aligned with given music signals, namely DanceEditor. Considering the dance motion should be both musical rhythmic and enable iterative editing by user descriptions, our framework is built upon a prediction-then-editing paradigm unifying multi-modal conditions. At the initial prediction stage, our framework improves the authority of generated results by directly modeling dance movements from tailored, aligned music. Moreover, at the subsequent iterative editing stages, we incorporate text descriptions as conditioning information to draw the editable results through a specifically designed Cross-modality Editing Module (CEM). Specifically, CEM adaptively integrates the initial prediction with music and text prompts as temporal motion cues to guide the synthesized sequences. Thereby, the results display music harmonics while preserving fine-grained semantic alignment with text descriptions. Extensive experiments demonstrate that our method outperforms the state-of-the-art models on our newly collected DanceRemix dataset. Code is available at https://lzvsdy.github.io/DanceEditor/.
OmniMotionGPT: Animal Motion Generation with Limited Data
Our paper aims to generate diverse and realistic animal motion sequences from textual descriptions, without a large-scale animal text-motion dataset. While the task of text-driven human motion synthesis is already extensively studied and benchmarked, it remains challenging to transfer this success to other skeleton structures with limited data. In this work, we design a model architecture that imitates Generative Pretraining Transformer (GPT), utilizing prior knowledge learned from human data to the animal domain. We jointly train motion autoencoders for both animal and human motions and at the same time optimize through the similarity scores among human motion encoding, animal motion encoding, and text CLIP embedding. Presenting the first solution to this problem, we are able to generate animal motions with high diversity and fidelity, quantitatively and qualitatively outperforming the results of training human motion generation baselines on animal data. Additionally, we introduce AnimalML3D, the first text-animal motion dataset with 1240 animation sequences spanning 36 different animal identities. We hope this dataset would mediate the data scarcity problem in text-driven animal motion generation, providing a new playground for the research community.
Joint Visual Grounding and Tracking with Natural Language Specification
Tracking by natural language specification aims to locate the referred target in a sequence based on the natural language description. Existing algorithms solve this issue in two steps, visual grounding and tracking, and accordingly deploy the separated grounding model and tracking model to implement these two steps, respectively. Such a separated framework overlooks the link between visual grounding and tracking, which is that the natural language descriptions provide global semantic cues for localizing the target for both two steps. Besides, the separated framework can hardly be trained end-to-end. To handle these issues, we propose a joint visual grounding and tracking framework, which reformulates grounding and tracking as a unified task: localizing the referred target based on the given visual-language references. Specifically, we propose a multi-source relation modeling module to effectively build the relation between the visual-language references and the test image. In addition, we design a temporal modeling module to provide a temporal clue with the guidance of the global semantic information for our model, which effectively improves the adaptability to the appearance variations of the target. Extensive experimental results on TNL2K, LaSOT, OTB99, and RefCOCOg demonstrate that our method performs favorably against state-of-the-art algorithms for both tracking and grounding. Code is available at https://github.com/lizhou-cs/JointNLT.
AgentAvatar: Disentangling Planning, Driving and Rendering for Photorealistic Avatar Agents
In this study, our goal is to create interactive avatar agents that can autonomously plan and animate nuanced facial movements realistically, from both visual and behavioral perspectives. Given high-level inputs about the environment and agent profile, our framework harnesses LLMs to produce a series of detailed text descriptions of the avatar agents' facial motions. These descriptions are then processed by our task-agnostic driving engine into motion token sequences, which are subsequently converted into continuous motion embeddings that are further consumed by our standalone neural-based renderer to generate the final photorealistic avatar animations. These streamlined processes allow our framework to adapt to a variety of non-verbal avatar interactions, both monadic and dyadic. Our extensive study, which includes experiments on both newly compiled and existing datasets featuring two types of agents -- one capable of monadic interaction with the environment, and the other designed for dyadic conversation -- validates the effectiveness and versatility of our approach. To our knowledge, we advanced a leap step by combining LLMs and neural rendering for generalized non-verbal prediction and photo-realistic rendering of avatar agents.
IconShop: Text-Guided Vector Icon Synthesis with Autoregressive Transformers
Scalable Vector Graphics (SVG) is a popular vector image format that offers good support for interactivity and animation. Despite its appealing characteristics, creating custom SVG content can be challenging for users due to the steep learning curve required to understand SVG grammars or get familiar with professional editing software. Recent advancements in text-to-image generation have inspired researchers to explore vector graphics synthesis using either image-based methods (i.e., text -> raster image -> vector graphics) combining text-to-image generation models with image vectorization, or language-based methods (i.e., text -> vector graphics script) through pretrained large language models. However, these methods still suffer from limitations in terms of generation quality, diversity, and flexibility. In this paper, we introduce IconShop, a text-guided vector icon synthesis method using autoregressive transformers. The key to success of our approach is to sequentialize and tokenize SVG paths (and textual descriptions as guidance) into a uniquely decodable token sequence. With that, we are able to fully exploit the sequence learning power of autoregressive transformers, while enabling both unconditional and text-conditioned icon synthesis. Through standard training to predict the next token on a large-scale vector icon dataset accompanied by textural descriptions, the proposed IconShop consistently exhibits better icon synthesis capability than existing image-based and language-based methods both quantitatively and qualitatively. Meanwhile, we observe a dramatic improvement in generation diversity, which is validated by the objective Uniqueness and Novelty measures. More importantly, we demonstrate the flexibility of IconShop with multiple novel icon synthesis tasks, including icon editing, icon interpolation, icon semantic combination, and icon design auto-suggestion.
BioT5+: Towards Generalized Biological Understanding with IUPAC Integration and Multi-task Tuning
Recent research trends in computational biology have increasingly focused on integrating text and bio-entity modeling, especially in the context of molecules and proteins. However, previous efforts like BioT5 faced challenges in generalizing across diverse tasks and lacked a nuanced understanding of molecular structures, particularly in their textual representations (e.g., IUPAC). This paper introduces BioT5+, an extension of the BioT5 framework, tailored to enhance biological research and drug discovery. BioT5+ incorporates several novel features: integration of IUPAC names for molecular understanding, inclusion of extensive bio-text and molecule data from sources like bioRxiv and PubChem, the multi-task instruction tuning for generality across tasks, and a novel numerical tokenization technique for improved processing of numerical data. These enhancements allow BioT5+ to bridge the gap between molecular representations and their textual descriptions, providing a more holistic understanding of biological entities, and largely improving the grounded reasoning of bio-text and bio-sequences. The model is pre-trained and fine-tuned with a large number of experiments, including 3 types of problems (classification, regression, generation), 15 kinds of tasks, and 21 total benchmark datasets, demonstrating the remarkable performance and state-of-the-art results in most cases. BioT5+ stands out for its ability to capture intricate relationships in biological data, thereby contributing significantly to bioinformatics and computational biology. Our code is available at https://github.com/QizhiPei/BioT5.
Weakly-Supervised Text-driven Contrastive Learning for Facial Behavior Understanding
Contrastive learning has shown promising potential for learning robust representations by utilizing unlabeled data. However, constructing effective positive-negative pairs for contrastive learning on facial behavior datasets remains challenging. This is because such pairs inevitably encode the subject-ID information, and the randomly constructed pairs may push similar facial images away due to the limited number of subjects in facial behavior datasets. To address this issue, we propose to utilize activity descriptions, coarse-grained information provided in some datasets, which can provide high-level semantic information about the image sequences but is often neglected in previous studies. More specifically, we introduce a two-stage Contrastive Learning with Text-Embeded framework for Facial behavior understanding (CLEF). The first stage is a weakly-supervised contrastive learning method that learns representations from positive-negative pairs constructed using coarse-grained activity information. The second stage aims to train the recognition of facial expressions or facial action units by maximizing the similarity between image and the corresponding text label names. The proposed CLEF achieves state-of-the-art performance on three in-the-lab datasets for AU recognition and three in-the-wild datasets for facial expression recognition.
Multimodal Contrastive Representation Learning in Augmented Biomedical Knowledge Graphs
Biomedical Knowledge Graphs (BKGs) integrate diverse datasets to elucidate complex relationships within the biomedical field. Effective link prediction on these graphs can uncover valuable connections, such as potential novel drug-disease relations. We introduce a novel multimodal approach that unifies embeddings from specialized Language Models (LMs) with Graph Contrastive Learning (GCL) to enhance intra-entity relationships while employing a Knowledge Graph Embedding (KGE) model to capture inter-entity relationships for effective link prediction. To address limitations in existing BKGs, we present PrimeKG++, an enriched knowledge graph incorporating multimodal data, including biological sequences and textual descriptions for each entity type. By combining semantic and relational information in a unified representation, our approach demonstrates strong generalizability, enabling accurate link predictions even for unseen nodes. Experimental results on PrimeKG++ and the DrugBank drug-target interaction dataset demonstrate the effectiveness and robustness of our method across diverse biomedical datasets. Our source code, pre-trained models, and data are publicly available at https://github.com/HySonLab/BioMedKG
WildVidFit: Video Virtual Try-On in the Wild via Image-Based Controlled Diffusion Models
Video virtual try-on aims to generate realistic sequences that maintain garment identity and adapt to a person's pose and body shape in source videos. Traditional image-based methods, relying on warping and blending, struggle with complex human movements and occlusions, limiting their effectiveness in video try-on applications. Moreover, video-based models require extensive, high-quality data and substantial computational resources. To tackle these issues, we reconceptualize video try-on as a process of generating videos conditioned on garment descriptions and human motion. Our solution, WildVidFit, employs image-based controlled diffusion models for a streamlined, one-stage approach. This model, conditioned on specific garments and individuals, is trained on still images rather than videos. It leverages diffusion guidance from pre-trained models including a video masked autoencoder for segment smoothness improvement and a self-supervised model for feature alignment of adjacent frame in the latent space. This integration markedly boosts the model's ability to maintain temporal coherence, enabling more effective video try-on within an image-based framework. Our experiments on the VITON-HD and DressCode datasets, along with tests on the VVT and TikTok datasets, demonstrate WildVidFit's capability to generate fluid and coherent videos. The project page website is at wildvidfit-project.github.io.
Language-TPP: Integrating Temporal Point Processes with Language Models for Event Analysis
Temporal Point Processes (TPPs) have been widely used for event sequence modeling, but they often struggle to incorporate rich textual event descriptions effectively. Conversely, while Large Language Models (LLMs) have been shown remarkable capabilities in processing textual data, they lack mechanisms for handling temporal dynamics. To bridge this gap, we introduce Language-TPP, a unified framework that integrates TPPs with LLMs for enhanced event sequence modeling. Language-TPP introduces a novel temporal encoding mechanism that converts continuous time intervals into specialized byte-tokens, enabling seamless integration with standard LLM architectures. This approach allows Language-TPP to achieve state-of-the-art performance across multiple TPP tasks, including event time prediction, type prediction, and intensity estimation, on five datasets. Additionally, we demonstrate that incorporating temporal information significantly improves the quality of generated event descriptions.
Vid2Seq: Large-Scale Pretraining of a Visual Language Model for Dense Video Captioning
In this work, we introduce Vid2Seq, a multi-modal single-stage dense event captioning model pretrained on narrated videos which are readily-available at scale. The Vid2Seq architecture augments a language model with special time tokens, allowing it to seamlessly predict event boundaries and textual descriptions in the same output sequence. Such a unified model requires large-scale training data, which is not available in current annotated datasets. We show that it is possible to leverage unlabeled narrated videos for dense video captioning, by reformulating sentence boundaries of transcribed speech as pseudo event boundaries, and using the transcribed speech sentences as pseudo event captions. The resulting Vid2Seq model pretrained on the YT-Temporal-1B dataset improves the state of the art on a variety of dense video captioning benchmarks including YouCook2, ViTT and ActivityNet Captions. Vid2Seq also generalizes well to the tasks of video paragraph captioning and video clip captioning, and to few-shot settings. Our code is publicly available at https://antoyang.github.io/vid2seq.html.
Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)
For a long time, different recommendation tasks typically require designing task-specific architectures and training objectives. As a result, it is hard to transfer the learned knowledge and representations from one task to another, thus restricting the generalization ability of existing recommendation approaches, e.g., a sequential recommendation model can hardly be applied or transferred to a review generation method. To deal with such issues, considering that language can describe almost anything and language grounding is a powerful medium to represent various problems or tasks, we present a flexible and unified text-to-text paradigm called "Pretrain, Personalized Prompt, and Predict Paradigm" (P5) for recommendation, which unifies various recommendation tasks in a shared framework. In P5, all data such as user-item interactions, user descriptions, item metadata, and user reviews are converted to a common format -- natural language sequences. The rich information from natural language assists P5 to capture deeper semantics for personalization and recommendation. Specifically, P5 learns different tasks with the same language modeling objective during pretraining. Thus, it serves as the foundation model for various downstream recommendation tasks, allows easy integration with other modalities, and enables instruction-based recommendation based on prompts. P5 advances recommender systems from shallow model to deep model to big model, and will revolutionize the technical form of recommender systems towards universal recommendation engine. With adaptive personalized prompt for different users, P5 is able to make predictions in a zero-shot or few-shot manner and largely reduces the necessity for extensive fine-tuning. On several recommendation benchmarks, we conduct experiments to show the effectiveness of P5. We release the source code at https://github.com/jeykigung/P5.
A Fine-tuning Dataset and Benchmark for Large Language Models for Protein Understanding
The parallels between protein sequences and natural language in their sequential structures have inspired the application of large language models (LLMs) to protein understanding. Despite the success of LLMs in NLP, their effectiveness in comprehending protein sequences remains an open question, largely due to the absence of datasets linking protein sequences to descriptive text. Researchers have then attempted to adapt LLMs for protein understanding by integrating a protein sequence encoder with a pre-trained LLM. However, this adaptation raises a fundamental question: "Can LLMs, originally designed for NLP, effectively comprehend protein sequences as a form of language?" Current datasets fall short in addressing this question due to the lack of a direct correlation between protein sequences and corresponding text descriptions, limiting the ability to train and evaluate LLMs for protein understanding effectively. To bridge this gap, we introduce ProteinLMDataset, a dataset specifically designed for further self-supervised pretraining and supervised fine-tuning (SFT) of LLMs to enhance their capability for protein sequence comprehension. Specifically, ProteinLMDataset includes 17.46 billion tokens for pretraining and 893,000 instructions for SFT. Additionally, we present ProteinLMBench, the first benchmark dataset consisting of 944 manually verified multiple-choice questions for assessing the protein understanding capabilities of LLMs. ProteinLMBench incorporates protein-related details and sequences in multiple languages, establishing a new standard for evaluating LLMs' abilities in protein comprehension. The large language model InternLM2-7B, pretrained and fine-tuned on the ProteinLMDataset, outperforms GPT-4 on ProteinLMBench, achieving the highest accuracy score. The dataset and the benchmark are available at https://huggingface.co/datasets/tsynbio/ProteinLMBench.
Text Is All You Need: Learning Language Representations for Sequential Recommendation
Sequential recommendation aims to model dynamic user behavior from historical interactions. Existing methods rely on either explicit item IDs or general textual features for sequence modeling to understand user preferences. While promising, these approaches still struggle to model cold-start items or transfer knowledge to new datasets. In this paper, we propose to model user preferences and item features as language representations that can be generalized to new items and datasets. To this end, we present a novel framework, named Recformer, which effectively learns language representations for sequential recommendation. Specifically, we propose to formulate an item as a "sentence" (word sequence) by flattening item key-value attributes described by text so that an item sequence for a user becomes a sequence of sentences. For recommendation, Recformer is trained to understand the "sentence" sequence and retrieve the next "sentence". To encode item sequences, we design a bi-directional Transformer similar to the model Longformer but with different embedding layers for sequential recommendation. For effective representation learning, we propose novel pretraining and finetuning methods which combine language understanding and recommendation tasks. Therefore, Recformer can effectively recommend the next item based on language representations. Extensive experiments conducted on six datasets demonstrate the effectiveness of Recformer for sequential recommendation, especially in low-resource and cold-start settings.
Improving Sequence-to-Sequence Learning via Optimal Transport
Sequence-to-sequence models are commonly trained via maximum likelihood estimation (MLE). However, standard MLE training considers a word-level objective, predicting the next word given the previous ground-truth partial sentence. This procedure focuses on modeling local syntactic patterns, and may fail to capture long-range semantic structure. We present a novel solution to alleviate these issues. Our approach imposes global sequence-level guidance via new supervision based on optimal transport, enabling the overall characterization and preservation of semantic features. We further show that this method can be understood as a Wasserstein gradient flow trying to match our model to the ground truth sequence distribution. Extensive experiments are conducted to validate the utility of the proposed approach, showing consistent improvements over a wide variety of NLP tasks, including machine translation, abstractive text summarization, and image captioning.
Evaluating Sequence-to-Sequence Models for Handwritten Text Recognition
Encoder-decoder models have become an effective approach for sequence learning tasks like machine translation, image captioning and speech recognition, but have yet to show competitive results for handwritten text recognition. To this end, we propose an attention-based sequence-to-sequence model. It combines a convolutional neural network as a generic feature extractor with a recurrent neural network to encode both the visual information, as well as the temporal context between characters in the input image, and uses a separate recurrent neural network to decode the actual character sequence. We make experimental comparisons between various attention mechanisms and positional encodings, in order to find an appropriate alignment between the input and output sequence. The model can be trained end-to-end and the optional integration of a hybrid loss allows the encoder to retain an interpretable and usable output, if desired. We achieve competitive results on the IAM and ICFHR2016 READ data sets compared to the state-of-the-art without the use of a language model, and we significantly improve over any recent sequence-to-sequence approaches.
Cold Fusion: Training Seq2Seq Models Together with Language Models
Sequence-to-sequence (Seq2Seq) models with attention have excelled at tasks which involve generating natural language sentences such as machine translation, image captioning and speech recognition. Performance has further been improved by leveraging unlabeled data, often in the form of a language model. In this work, we present the Cold Fusion method, which leverages a pre-trained language model during training, and show its effectiveness on the speech recognition task. We show that Seq2Seq models with Cold Fusion are able to better utilize language information enjoying i) faster convergence and better generalization, and ii) almost complete transfer to a new domain while using less than 10% of the labeled training data.
SQLNet: Generating Structured Queries From Natural Language Without Reinforcement Learning
Synthesizing SQL queries from natural language is a long-standing open problem and has been attracting considerable interest recently. Toward solving the problem, the de facto approach is to employ a sequence-to-sequence-style model. Such an approach will necessarily require the SQL queries to be serialized. Since the same SQL query may have multiple equivalent serializations, training a sequence-to-sequence-style model is sensitive to the choice from one of them. This phenomenon is documented as the "order-matters" problem. Existing state-of-the-art approaches rely on reinforcement learning to reward the decoder when it generates any of the equivalent serializations. However, we observe that the improvement from reinforcement learning is limited. In this paper, we propose a novel approach, i.e., SQLNet, to fundamentally solve this problem by avoiding the sequence-to-sequence structure when the order does not matter. In particular, we employ a sketch-based approach where the sketch contains a dependency graph so that one prediction can be done by taking into consideration only the previous predictions that it depends on. In addition, we propose a sequence-to-set model as well as the column attention mechanism to synthesize the query based on the sketch. By combining all these novel techniques, we show that SQLNet can outperform the prior art by 9% to 13% on the WikiSQL task.
Order Matters: Sequence to sequence for sets
Sequences have become first class citizens in supervised learning thanks to the resurgence of recurrent neural networks. Many complex tasks that require mapping from or to a sequence of observations can now be formulated with the sequence-to-sequence (seq2seq) framework which employs the chain rule to efficiently represent the joint probability of sequences. In many cases, however, variable sized inputs and/or outputs might not be naturally expressed as sequences. For instance, it is not clear how to input a set of numbers into a model where the task is to sort them; similarly, we do not know how to organize outputs when they correspond to random variables and the task is to model their unknown joint probability. In this paper, we first show using various examples that the order in which we organize input and/or output data matters significantly when learning an underlying model. We then discuss an extension of the seq2seq framework that goes beyond sequences and handles input sets in a principled way. In addition, we propose a loss which, by searching over possible orders during training, deals with the lack of structure of output sets. We show empirical evidence of our claims regarding ordering, and on the modifications to the seq2seq framework on benchmark language modeling and parsing tasks, as well as two artificial tasks -- sorting numbers and estimating the joint probability of unknown graphical models.
Modeling Graph Structure in Transformer for Better AMR-to-Text Generation
Recent studies on AMR-to-text generation often formalize the task as a sequence-to-sequence (seq2seq) learning problem by converting an Abstract Meaning Representation (AMR) graph into a word sequence. Graph structures are further modeled into the seq2seq framework in order to utilize the structural information in the AMR graphs. However, previous approaches only consider the relations between directly connected concepts while ignoring the rich structure in AMR graphs. In this paper we eliminate such a strong limitation and propose a novel structure-aware self-attention approach to better modeling the relations between indirectly connected concepts in the state-of-the-art seq2seq model, i.e., the Transformer. In particular, a few different methods are explored to learn structural representations between two concepts. Experimental results on English AMR benchmark datasets show that our approach significantly outperforms the state of the art with 29.66 and 31.82 BLEU scores on LDC2015E86 and LDC2017T10, respectively. To the best of our knowledge, these are the best results achieved so far by supervised models on the benchmarks.
WikiHow: A Large Scale Text Summarization Dataset
Sequence-to-sequence models have recently gained the state of the art performance in summarization. However, not too many large-scale high-quality datasets are available and almost all the available ones are mainly news articles with specific writing style. Moreover, abstractive human-style systems involving description of the content at a deeper level require data with higher levels of abstraction. In this paper, we present WikiHow, a dataset of more than 230,000 article and summary pairs extracted and constructed from an online knowledge base written by different human authors. The articles span a wide range of topics and therefore represent high diversity styles. We evaluate the performance of the existing methods on WikiHow to present its challenges and set some baselines to further improve it.
Efficiently Modeling Long Sequences with Structured State Spaces
A central goal of sequence modeling is designing a single principled model that can address sequence data across a range of modalities and tasks, particularly on long-range dependencies. Although conventional models including RNNs, CNNs, and Transformers have specialized variants for capturing long dependencies, they still struggle to scale to very long sequences of 10000 or more steps. A promising recent approach proposed modeling sequences by simulating the fundamental state space model (SSM) \( x'(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) \), and showed that for appropriate choices of the state matrix \( A \), this system could handle long-range dependencies mathematically and empirically. However, this method has prohibitive computation and memory requirements, rendering it infeasible as a general sequence modeling solution. We propose the Structured State Space sequence model (S4) based on a new parameterization for the SSM, and show that it can be computed much more efficiently than prior approaches while preserving their theoretical strengths. Our technique involves conditioning \( A \) with a low-rank correction, allowing it to be diagonalized stably and reducing the SSM to the well-studied computation of a Cauchy kernel. S4 achieves strong empirical results across a diverse range of established benchmarks, including (i) 91\% accuracy on sequential CIFAR-10 with no data augmentation or auxiliary losses, on par with a larger 2-D ResNet, (ii) substantially closing the gap to Transformers on image and language modeling tasks, while performing generation 60times faster (iii) SoTA on every task from the Long Range Arena benchmark, including solving the challenging Path-X task of length 16k that all prior work fails on, while being as efficient as all competitors.
code2seq: Generating Sequences from Structured Representations of Code
The ability to generate natural language sequences from source code snippets has a variety of applications such as code summarization, documentation, and retrieval. Sequence-to-sequence (seq2seq) models, adopted from neural machine translation (NMT), have achieved state-of-the-art performance on these tasks by treating source code as a sequence of tokens. We present {scriptsize CODE2SEQ}: an alternative approach that leverages the syntactic structure of programming languages to better encode source code. Our model represents a code snippet as the set of compositional paths in its abstract syntax tree (AST) and uses attention to select the relevant paths while decoding. We demonstrate the effectiveness of our approach for two tasks, two programming languages, and four datasets of up to 16M examples. Our model significantly outperforms previous models that were specifically designed for programming languages, as well as state-of-the-art NMT models. An interactive online demo of our model is available at http://code2seq.org. Our code, data and trained models are available at http://github.com/tech-srl/code2seq.
An Interdisciplinary Comparison of Sequence Modeling Methods for Next-Element Prediction
Data of sequential nature arise in many application domains in forms of, e.g. textual data, DNA sequences, and software execution traces. Different research disciplines have developed methods to learn sequence models from such datasets: (i) in the machine learning field methods such as (hidden) Markov models and recurrent neural networks have been developed and successfully applied to a wide-range of tasks, (ii) in process mining process discovery techniques aim to generate human-interpretable descriptive models, and (iii) in the grammar inference field the focus is on finding descriptive models in the form of formal grammars. Despite their different focuses, these fields share a common goal - learning a model that accurately describes the behavior in the underlying data. Those sequence models are generative, i.e, they can predict what elements are likely to occur after a given unfinished sequence. So far, these fields have developed mainly in isolation from each other and no comparison exists. This paper presents an interdisciplinary experimental evaluation that compares sequence modeling techniques on the task of next-element prediction on four real-life sequence datasets. The results indicate that machine learning techniques that generally have no aim at interpretability in terms of accuracy outperform techniques from the process mining and grammar inference fields that aim to yield interpretable models.
Document Ranking with a Pretrained Sequence-to-Sequence Model
This work proposes a novel adaptation of a pretrained sequence-to-sequence model to the task of document ranking. Our approach is fundamentally different from a commonly-adopted classification-based formulation of ranking, based on encoder-only pretrained transformer architectures such as BERT. We show how a sequence-to-sequence model can be trained to generate relevance labels as "target words", and how the underlying logits of these target words can be interpreted as relevance probabilities for ranking. On the popular MS MARCO passage ranking task, experimental results show that our approach is at least on par with previous classification-based models and can surpass them with larger, more-recent models. On the test collection from the TREC 2004 Robust Track, we demonstrate a zero-shot transfer-based approach that outperforms previous state-of-the-art models requiring in-dataset cross-validation. Furthermore, we find that our approach significantly outperforms an encoder-only model in a data-poor regime (i.e., with few training examples). We investigate this observation further by varying target words to probe the model's use of latent knowledge.
Improving Human Text Comprehension through Semi-Markov CRF-based Neural Section Title Generation
Titles of short sections within long documents support readers by guiding their focus towards relevant passages and by providing anchor-points that help to understand the progression of the document. The positive effects of section titles are even more pronounced when measured on readers with less developed reading abilities, for example in communities with limited labeled text resources. We, therefore, aim to develop techniques to generate section titles in low-resource environments. In particular, we present an extractive pipeline for section title generation by first selecting the most salient sentence and then applying deletion-based compression. Our compression approach is based on a Semi-Markov Conditional Random Field that leverages unsupervised word-representations such as ELMo or BERT, eliminating the need for a complex encoder-decoder architecture. The results show that this approach leads to competitive performance with sequence-to-sequence models with high resources, while strongly outperforming it with low resources. In a human-subject study across subjects with varying reading abilities, we find that our section titles improve the speed of completing comprehension tasks while retaining similar accuracy.
SEQ^3: Differentiable Sequence-to-Sequence-to-Sequence Autoencoder for Unsupervised Abstractive Sentence Compression
Neural sequence-to-sequence models are currently the dominant approach in several natural language processing tasks, but require large parallel corpora. We present a sequence-to-sequence-to-sequence autoencoder (SEQ^3), consisting of two chained encoder-decoder pairs, with words used as a sequence of discrete latent variables. We apply the proposed model to unsupervised abstractive sentence compression, where the first and last sequences are the input and reconstructed sentences, respectively, while the middle sequence is the compressed sentence. Constraining the length of the latent word sequences forces the model to distill important information from the input. A pretrained language model, acting as a prior over the latent sequences, encourages the compressed sentences to be human-readable. Continuous relaxations enable us to sample from categorical distributions, allowing gradient-based optimization, unlike alternatives that rely on reinforcement learning. The proposed model does not require parallel text-summary pairs, achieving promising results in unsupervised sentence compression on benchmark datasets.
A Neural Conversational Model
Conversational modeling is an important task in natural language understanding and machine intelligence. Although previous approaches exist, they are often restricted to specific domains (e.g., booking an airline ticket) and require hand-crafted rules. In this paper, we present a simple approach for this task which uses the recently proposed sequence to sequence framework. Our model converses by predicting the next sentence given the previous sentence or sentences in a conversation. The strength of our model is that it can be trained end-to-end and thus requires much fewer hand-crafted rules. We find that this straightforward model can generate simple conversations given a large conversational training dataset. Our preliminary results suggest that, despite optimizing the wrong objective function, the model is able to converse well. It is able extract knowledge from both a domain specific dataset, and from a large, noisy, and general domain dataset of movie subtitles. On a domain-specific IT helpdesk dataset, the model can find a solution to a technical problem via conversations. On a noisy open-domain movie transcript dataset, the model can perform simple forms of common sense reasoning. As expected, we also find that the lack of consistency is a common failure mode of our model.
Pretraining-Based Natural Language Generation for Text Summarization
In this paper, we propose a novel pretraining-based encoder-decoder framework, which can generate the output sequence based on the input sequence in a two-stage manner. For the encoder of our model, we encode the input sequence into context representations using BERT. For the decoder, there are two stages in our model, in the first stage, we use a Transformer-based decoder to generate a draft output sequence. In the second stage, we mask each word of the draft sequence and feed it to BERT, then by combining the input sequence and the draft representation generated by BERT, we use a Transformer-based decoder to predict the refined word for each masked position. To the best of our knowledge, our approach is the first method which applies the BERT into text generation tasks. As the first step in this direction, we evaluate our proposed method on the text summarization task. Experimental results show that our model achieves new state-of-the-art on both CNN/Daily Mail and New York Times datasets.
Sequence Transduction with Recurrent Neural Networks
Many machine learning tasks can be expressed as the transformation---or transduction---of input sequences into output sequences: speech recognition, machine translation, protein secondary structure prediction and text-to-speech to name but a few. One of the key challenges in sequence transduction is learning to represent both the input and output sequences in a way that is invariant to sequential distortions such as shrinking, stretching and translating. Recurrent neural networks (RNNs) are a powerful sequence learning architecture that has proven capable of learning such representations. However RNNs traditionally require a pre-defined alignment between the input and output sequences to perform transduction. This is a severe limitation since finding the alignment is the most difficult aspect of many sequence transduction problems. Indeed, even determining the length of the output sequence is often challenging. This paper introduces an end-to-end, probabilistic sequence transduction system, based entirely on RNNs, that is in principle able to transform any input sequence into any finite, discrete output sequence. Experimental results for phoneme recognition are provided on the TIMIT speech corpus.
Streaming Sequence-to-Sequence Learning with Delayed Streams Modeling
We introduce Delayed Streams Modeling (DSM), a flexible formulation for streaming, multimodal sequence-to-sequence learning. Sequence-to-sequence generation is often cast in an offline manner, where the model consumes the complete input sequence before generating the first output timestep. Alternatively, streaming sequence-to-sequence rely on learning a policy for choosing when to advance on the input stream, or write to the output stream. DSM instead models already time-aligned streams with a decoder-only language model. By moving the alignment to a pre-processing step,and introducing appropriate delays between streams, DSM provides streaming inference of arbitrary output sequences, from any input combination, making it applicable to many sequence-to-sequence problems. In particular, given text and audio streams, automatic speech recognition (ASR) corresponds to the text stream being delayed, while the opposite gives a text-to-speech (TTS) model. We perform extensive experiments for these two major sequence-to-sequence tasks, showing that DSM provides state-of-the-art performance and latency while supporting arbitrary long sequences, being even competitive with offline baselines. Code, samples and demos are available at https://github.com/kyutai-labs/delayed-streams-modeling
PeptideBERT: A Language Model based on Transformers for Peptide Property Prediction
Recent advances in Language Models have enabled the protein modeling community with a powerful tool since protein sequences can be represented as text. Specifically, by taking advantage of Transformers, sequence-to-property prediction will be amenable without the need for explicit structural data. In this work, inspired by recent progress in Large Language Models (LLMs), we introduce PeptideBERT, a protein language model for predicting three key properties of peptides (hemolysis, solubility, and non-fouling). The PeptideBert utilizes the ProtBERT pretrained transformer model with 12 attention heads and 12 hidden layers. We then finetuned the pretrained model for the three downstream tasks. Our model has achieved state of the art (SOTA) for predicting Hemolysis, which is a task for determining peptide's potential to induce red blood cell lysis. Our PeptideBert non-fouling model also achieved remarkable accuracy in predicting peptide's capacity to resist non-specific interactions. This model, trained predominantly on shorter sequences, benefits from the dataset where negative examples are largely associated with insoluble peptides. Codes, models, and data used in this study are freely available at: https://github.com/ChakradharG/PeptideBERT
Reverse Ordering Techniques for Attention-Based Channel Prediction
This work aims to predict channels in wireless communication systems based on noisy observations, utilizing sequence-to-sequence models with attention (Seq2Seq-attn) and transformer models. Both models are adapted from natural language processing to tackle the complex challenge of channel prediction. Additionally, a new technique called reverse positional encoding is introduced in the transformer model to improve the robustness of the model against varying sequence lengths. Similarly, the encoder outputs of the Seq2Seq-attn model are reversed before applying attention. Simulation results demonstrate that the proposed ordering techniques allow the models to better capture the relationships between the channel snapshots within the sequence, irrespective of the sequence length, as opposed to existing methods.
Decoder-Only or Encoder-Decoder? Interpreting Language Model as a Regularized Encoder-Decoder
The sequence-to-sequence (seq2seq) task aims at generating the target sequence based on the given input source sequence. Traditionally, most of the seq2seq task is resolved by the Encoder-Decoder framework which requires an encoder to encode the source sequence and a decoder to generate the target text. Recently, a bunch of new approaches have emerged that apply decoder-only language models directly to the seq2seq task. Despite the significant advancements in applying language models to the seq2seq task, there is still a lack of thorough analysis on the effectiveness of the decoder-only language model architecture. This paper aims to address this gap by conducting a detailed comparison between the encoder-decoder architecture and the decoder-only language model framework through the analysis of a regularized encoder-decoder structure. This structure is designed to replicate all behaviors in the classical decoder-only language model but has an encoder and a decoder making it easier to be compared with the classical encoder-decoder structure. Based on the analysis, we unveil the attention degeneration problem in the language model, namely, as the generation step number grows, less and less attention is focused on the source sequence. To give a quantitative understanding of this problem, we conduct a theoretical sensitivity analysis of the attention output with respect to the source input. Grounded on our analysis, we propose a novel partial attention language model to solve the attention degeneration problem. Experimental results on machine translation, summarization, and data-to-text generation tasks support our analysis and demonstrate the effectiveness of our proposed model.
STable: Table Generation Framework for Encoder-Decoder Models
The output structure of database-like tables, consisting of values structured in horizontal rows and vertical columns identifiable by name, can cover a wide range of NLP tasks. Following this constatation, we propose a framework for text-to-table neural models applicable to problems such as extraction of line items, joint entity and relation extraction, or knowledge base population. The permutation-based decoder of our proposal is a generalized sequential method that comprehends information from all cells in the table. The training maximizes the expected log-likelihood for a table's content across all random permutations of the factorization order. During the content inference, we exploit the model's ability to generate cells in any order by searching over possible orderings to maximize the model's confidence and avoid substantial error accumulation, which other sequential models are prone to. Experiments demonstrate a high practical value of the framework, which establishes state-of-the-art results on several challenging datasets, outperforming previous solutions by up to 15%.
SeaD: End-to-end Text-to-SQL Generation with Schema-aware Denoising
In text-to-SQL task, seq-to-seq models often lead to sub-optimal performance due to limitations in their architecture. In this paper, we present a simple yet effective approach that adapts transformer-based seq-to-seq model to robust text-to-SQL generation. Instead of inducing constraint to decoder or reformat the task as slot-filling, we propose to train seq-to-seq model with Schema aware Denoising (SeaD), which consists of two denoising objectives that train model to either recover input or predict output from two novel erosion and shuffle noises. These denoising objectives acts as the auxiliary tasks for better modeling the structural data in S2S generation. In addition, we improve and propose a clause-sensitive execution guided (EG) decoding strategy to overcome the limitation of EG decoding for generative model. The experiments show that the proposed method improves the performance of seq-to-seq model in both schema linking and grammar correctness and establishes new state-of-the-art on WikiSQL benchmark. The results indicate that the capacity of vanilla seq-to-seq architecture for text-to-SQL may have been under-estimated.
Mamba-ND: Selective State Space Modeling for Multi-Dimensional Data
In recent years, Transformers have become the de-facto architecture for sequence modeling on text and a variety of multi-dimensional data, such as images and video. However, the use of self-attention layers in a Transformer incurs prohibitive compute and memory complexity that scales quadratically w.r.t. the sequence length. A recent architecture, Mamba, based on state space models has been shown to achieve comparable performance for modeling text sequences, while scaling linearly with the sequence length. In this work, we present Mamba-ND, a generalized design extending the Mamba architecture to arbitrary multi-dimensional data. Our design alternatively unravels the input data across different dimensions following row-major orderings. We provide a systematic comparison of Mamba-ND with several other alternatives, based on prior multi-dimensional extensions such as Bi-directional LSTMs and S4ND. Empirically, we show that Mamba-ND demonstrates performance competitive with the state-of-the-art on a variety of multi-dimensional benchmarks, including ImageNet-1K classification, HMDB-51 action recognition, and ERA5 weather forecasting.
Representation, Exploration and Recommendation of Music Playlists
Playlists have become a significant part of our listening experience because of the digital cloud-based services such as Spotify, Pandora, Apple Music. Owing to the meteoric rise in the usage of playlists, recommending playlists is crucial to music services today. Although there has been a lot of work done in playlist prediction, the area of playlist representation hasn't received that level of attention. Over the last few years, sequence-to-sequence models, especially in the field of natural language processing, have shown the effectiveness of learned embeddings in capturing the semantic characteristics of sequences. We can apply similar concepts to music to learn fixed length representations for playlists and use those representations for downstream tasks such as playlist discovery, browsing, and recommendation. In this work, we formulate the problem of learning a fixed-length playlist representation in an unsupervised manner, using Sequence-to-sequence (Seq2seq) models, interpreting playlists as sentences and songs as words. We compare our model with two other encoding architectures for baseline comparison. We evaluate our work using the suite of tasks commonly used for assessing sentence embeddings, along with a few additional tasks pertaining to music, and a recommendation task to study the traits captured by the playlist embeddings and their effectiveness for the purpose of music recommendation.
LLM Tree Search
This project aims to investigate a novel sequence generation method inspired by the AlphaGo paradigm, adapting it for use with large language models (LLMs). The proposed approach involves creating search trees of different possible completions and evaluating these completions based on model confidence. By considering various paths in the search tree and scoring them according to the model's confidence in each completion, we can generate diverse and high-quality sequences. This research explores the implementation of this paradigm by using confidence as a proxy for response quality akin to beam search vijayakumar2016diverse. The primary goal of this paper is to outline the paradigm and demonstrate its potential, rather than focusing on achieving perfect results. The paper will outline the reasons why we believe this paradigm has the potential to improve LLMs in the following manners: 1) increase output quality, 2) decrease errors, 3) eliminate or reduce the compound error problems, 4) generate diverse and creative completions, 5) allow for iterative problem-solving, and 6) self-training. We expect this approach to yield a set of diverse and coherent sequences, offering insights into balancing exploration and exploitation in sequence generation. Potential applications include creative text generation tasks, such as storytelling and content creation, as well as other natural language processing domains, like machine translation and automated summarization. The goal is that the model will be far more effective as it will be able to consider many possible variations allowing it to find the ideal completion. This research aims to contribute to the understanding of effective search strategies in sequence generation and their impact on generating high-quality, varied textual outputs.
Exploring Sequence-to-Sequence Models for SPARQL Pattern Composition
A booming amount of information is continuously added to the Internet as structured and unstructured data, feeding knowledge bases such as DBpedia and Wikidata with billions of statements describing millions of entities. The aim of Question Answering systems is to allow lay users to access such data using natural language without needing to write formal queries. However, users often submit questions that are complex and require a certain level of abstraction and reasoning to decompose them into basic graph patterns. In this short paper, we explore the use of architectures based on Neural Machine Translation called Neural SPARQL Machines to learn pattern compositions. We show that sequence-to-sequence models are a viable and promising option to transform long utterances into complex SPARQL queries.
Mamba-360: Survey of State Space Models as Transformer Alternative for Long Sequence Modelling: Methods, Applications, and Challenges
Sequence modeling is a crucial area across various domains, including Natural Language Processing (NLP), speech recognition, time series forecasting, music generation, and bioinformatics. Recurrent Neural Networks (RNNs) and Long Short Term Memory Networks (LSTMs) have historically dominated sequence modeling tasks like Machine Translation, Named Entity Recognition (NER), etc. However, the advancement of transformers has led to a shift in this paradigm, given their superior performance. Yet, transformers suffer from O(N^2) attention complexity and challenges in handling inductive bias. Several variations have been proposed to address these issues which use spectral networks or convolutions and have performed well on a range of tasks. However, they still have difficulty in dealing with long sequences. State Space Models(SSMs) have emerged as promising alternatives for sequence modeling paradigms in this context, especially with the advent of S4 and its variants, such as S4nd, Hippo, Hyena, Diagnol State Spaces (DSS), Gated State Spaces (GSS), Linear Recurrent Unit (LRU), Liquid-S4, Mamba, etc. In this survey, we categorize the foundational SSMs based on three paradigms namely, Gating architectures, Structural architectures, and Recurrent architectures. This survey also highlights diverse applications of SSMs across domains such as vision, video, audio, speech, language (especially long sequence modeling), medical (including genomics), chemical (like drug design), recommendation systems, and time series analysis, including tabular data. Moreover, we consolidate the performance of SSMs on benchmark datasets like Long Range Arena (LRA), WikiText, Glue, Pile, ImageNet, Kinetics-400, sstv2, as well as video datasets such as Breakfast, COIN, LVU, and various time series datasets. The project page for Mamba-360 work is available on this webpage.https://github.com/badripatro/mamba360.
Byte-Pair Encoding for Text-to-SQL Generation
Neural sequence-to-sequence models provide a competitive approach to the task of mapping a question in natural language to an SQL query, also referred to as text-to-SQL generation. The Byte-Pair Encoding algorithm (BPE) has previously been used to improve machine translation (MT) between natural languages. In this work, we adapt BPE for text-to-SQL generation. As the datasets for this task are rather small compared to MT, we present a novel stopping criterion that prevents overfitting the BPE encoding to the training set. Additionally, we present AST BPE, which is a version of BPE that uses the Abstract Syntax Tree (AST) of the SQL statement to guide BPE merges and therefore produce BPE encodings that generalize better. We improved the accuracy of a strong attentive seq2seq baseline on five out of six English text-to-SQL tasks while reducing training time by more than 50% on four of them due to the shortened targets. Finally, on two of these tasks we exceeded previously reported accuracies.
Making the Most of your Model: Methods for Finetuning and Applying Pretrained Transformers
This thesis provides methods and analysis of models which make progress on this goal. The techniques outlined are task agnostic, and should provide benefit when used with nearly any transformer LM. We introduce two new finetuning methods which add new capabilities to the models they are used on. The first adds a recurrence mechanism, which removes the fixed-window sized constraint and improves the efficiency of a transformer decoder. The second allows masked language models (MLMs) to be used for initialization of both the encoder and decoder of a non-autoregressive sequence-to-sequence transformer, opening up generative applications of models which were previously only used for natural language understanding tasks. We also introduce two new techniques for improving the quality of predictions of any transformer decoder without additional finetuning. One, hidden state optimization, can be applied to any transformer decoder to improve the quality of predictions at inference time, especially for few-shot classification. The other, conditional beam search, allows practitioners to search for natural language generation (NLG) model outputs with high likelihood while conditioning on the event that the output is not degenerate (e.g. empty, repetitive, etc.). Finally, we provide theoretical and empirical insights on the divergence of model-likelihood and output quality which has widely been observed in prior work. These insights apply to any model which represents a distribution over text, and apply to language models which are not transformers or even autoregressive. We argue that the NLP community has, to some extent, misunderstood the implications of these findings, and encourage a point of view which has more nuance.
Read, Highlight and Summarize: A Hierarchical Neural Semantic Encoder-based Approach
Traditional sequence-to-sequence (seq2seq) models and other variations of the attention-mechanism such as hierarchical attention have been applied to the text summarization problem. Though there is a hierarchy in the way humans use language by forming paragraphs from sentences and sentences from words, hierarchical models have usually not worked that much better than their traditional seq2seq counterparts. This effect is mainly because either the hierarchical attention mechanisms are too sparse using hard attention or noisy using soft attention. In this paper, we propose a method based on extracting the highlights of a document; a key concept that is conveyed in a few sentences. In a typical text summarization dataset consisting of documents that are 800 tokens in length (average), capturing long-term dependencies is very important, e.g., the last sentence can be grouped with the first sentence of a document to form a summary. LSTMs (Long Short-Term Memory) proved useful for machine translation. However, they often fail to capture long-term dependencies while modeling long sequences. To address these issues, we have adapted Neural Semantic Encoders (NSE) to text summarization, a class of memory-augmented neural networks by improving its functionalities and proposed a novel hierarchical NSE that outperforms similar previous models significantly. The quality of summarization was improved by augmenting linguistic factors, namely lemma, and Part-of-Speech (PoS) tags, to each word in the dataset for improved vocabulary coverage and generalization. The hierarchical NSE model on factored dataset outperformed the state-of-the-art by nearly 4 ROUGE points. We further designed and used the first GPU-based self-critical Reinforcement Learning model.
Learning to Ask: Neural Question Generation for Reading Comprehension
We study automatic question generation for sentences from text passages in reading comprehension. We introduce an attention-based sequence learning model for the task and investigate the effect of encoding sentence- vs. paragraph-level information. In contrast to all previous work, our model does not rely on hand-crafted rules or a sophisticated NLP pipeline; it is instead trainable end-to-end via sequence-to-sequence learning. Automatic evaluation results show that our system significantly outperforms the state-of-the-art rule-based system. In human evaluations, questions generated by our system are also rated as being more natural (i.e., grammaticality, fluency) and as more difficult to answer (in terms of syntactic and lexical divergence from the original text and reasoning needed to answer).
RankT5: Fine-Tuning T5 for Text Ranking with Ranking Losses
Recently, substantial progress has been made in text ranking based on pretrained language models such as BERT. However, there are limited studies on how to leverage more powerful sequence-to-sequence models such as T5. Existing attempts usually formulate text ranking as classification and rely on postprocessing to obtain a ranked list. In this paper, we propose RankT5 and study two T5-based ranking model structures, an encoder-decoder and an encoder-only one, so that they not only can directly output ranking scores for each query-document pair, but also can be fine-tuned with "pairwise" or "listwise" ranking losses to optimize ranking performances. Our experiments show that the proposed models with ranking losses can achieve substantial ranking performance gains on different public text ranking data sets. Moreover, when fine-tuned with listwise ranking losses, the ranking model appears to have better zero-shot ranking performance on out-of-domain data sets compared to the model fine-tuned with classification losses.
From Vision To Language through Graph of Events in Space and Time: An Explainable Self-supervised Approach
The task of describing video content in natural language is commonly referred to as video captioning. Unlike conventional video captions, which are typically brief and widely available, long-form paragraph descriptions in natural language are scarce. This limitation of current datasets is due to the expensive human manual annotation required and to the highly challenging task of explaining the language formation process from the perspective of the underlying story, as a complex system of interconnected events in space and time. Through a thorough analysis of recently published methods and available datasets, we identify a general lack of published resources dedicated to the problem of describing videos in complex language, beyond the level of descriptions in the form of enumerations of simple captions. Furthermore, while state-of-the-art methods produce impressive results on the task of generating shorter captions from videos by direct end-to-end learning between the videos and text, the problem of explaining the relationship between vision and language is still beyond our reach. In this work, we propose a shared representation between vision and language, based on graphs of events in space and time, which can be obtained in an explainable and analytical way, to integrate and connect multiple vision tasks to produce the final natural language description. Moreover, we also demonstrate how our automated and explainable video description generation process can function as a fully automatic teacher to effectively train direct, end-to-end neural student pathways, within a self-supervised neuro-analytical system. We validate that our explainable neuro-analytical approach generates coherent, rich and relevant textual descriptions on videos collected from multiple varied datasets, using both standard evaluation metrics, human annotations and consensus from ensembles of state-of-the-art VLMs.
Talking Drums: Generating drum grooves with neural networks
Presented is a method of generating a full drum kit part for a provided kick-drum sequence. A sequence to sequence neural network model used in natural language translation was adopted to encode multiple musical styles and an online survey was developed to test different techniques for sampling the output of the softmax function. The strongest results were found using a sampling technique that drew from the three most probable outputs at each subdivision of the drum pattern but the consistency of output was found to be heavily dependent on style.
Discovering Useful Sentence Representations from Large Pretrained Language Models
Despite the extensive success of pretrained language models as encoders for building NLP systems, they haven't seen prominence as decoders for sequence generation tasks. We explore the question of whether these models can be adapted to be used as universal decoders. To be considered "universal," a decoder must have an implicit representation for any target sentence s, such that it can recover that sentence exactly when conditioned on its representation. For large transformer-based language models trained on vast amounts of English text, we investigate whether such representations can be easily discovered using standard optimization methods. We present and compare three representation injection techniques for transformer-based models and three accompanying methods which map sentences to and from this representation space. Experiments show that not only do representations exist for sentences from a variety of genres. More importantly, without needing complex optimization algorithms, our methods recover these sentences almost perfectly without fine-tuning the underlying language model at all.
Fine-grained Audible Video Description
We explore a new task for audio-visual-language modeling called fine-grained audible video description (FAVD). It aims to provide detailed textual descriptions for the given audible videos, including the appearance and spatial locations of each object, the actions of moving objects, and the sounds in videos. Existing visual-language modeling tasks often concentrate on visual cues in videos while undervaluing the language and audio modalities. On the other hand, FAVD requires not only audio-visual-language modeling skills but also paragraph-level language generation abilities. We construct the first fine-grained audible video description benchmark (FAVDBench) to facilitate this research. For each video clip, we first provide a one-sentence summary of the video, ie, the caption, followed by 4-6 sentences describing the visual details and 1-2 audio-related descriptions at the end. The descriptions are provided in both English and Chinese. We create two new metrics for this task: an EntityScore to gauge the completeness of entities in the visual descriptions, and an AudioScore to assess the audio descriptions. As a preliminary approach to this task, we propose an audio-visual-language transformer that extends existing video captioning model with an additional audio branch. We combine the masked language modeling and auto-regressive language modeling losses to optimize our model so that it can produce paragraph-level descriptions. We illustrate the efficiency of our model in audio-visual-language modeling by evaluating it against the proposed benchmark using both conventional captioning metrics and our proposed metrics. We further put our benchmark to the test in video generation models, demonstrating that employing fine-grained video descriptions can create more intricate videos than using captions.
SPAFormer: Sequential 3D Part Assembly with Transformers
We introduce SPAFormer, an innovative model designed to overcome the combinatorial explosion challenge in the 3D Part Assembly (3D-PA) task. This task requires accurate prediction of each part's poses in sequential steps. As the number of parts increases, the possible assembly combinations increase exponentially, leading to a combinatorial explosion that severely hinders the efficacy of 3D-PA. SPAFormer addresses this problem by leveraging weak constraints from assembly sequences, effectively reducing the solution space's complexity. Since the sequence of parts conveys construction rules similar to sentences structured through words, our model explores both parallel and autoregressive generation. We further strengthen SPAFormer through knowledge enhancement strategies that utilize the attributes of parts and their sequence information, enabling it to capture the inherent assembly pattern and relationships among sequentially ordered parts. We also construct a more challenging benchmark named PartNet-Assembly covering 21 varied categories to more comprehensively validate the effectiveness of SPAFormer. Extensive experiments demonstrate the superior generalization capabilities of SPAFormer, particularly with multi-tasking and in scenarios requiring long-horizon assembly. Code is available at https://github.com/xuboshen/SPAFormer.
LLM4ES: Learning User Embeddings from Event Sequences via Large Language Models
This paper presents LLM4ES, a novel framework that exploits large pre-trained language models (LLMs) to derive user embeddings from event sequences. Event sequences are transformed into a textual representation, which is subsequently used to fine-tune an LLM through next-token prediction to generate high-quality embeddings. We introduce a text enrichment technique that enhances LLM adaptation to event sequence data, improving representation quality for low-variability domains. Experimental results demonstrate that LLM4ES achieves state-of-the-art performance in user classification tasks in financial and other domains, outperforming existing embedding methods. The resulting user embeddings can be incorporated into a wide range of applications, from user segmentation in finance to patient outcome prediction in healthcare.
PubMed 200k RCT: a Dataset for Sequential Sentence Classification in Medical Abstracts
We present PubMed 200k RCT, a new dataset based on PubMed for sequential sentence classification. The dataset consists of approximately 200,000 abstracts of randomized controlled trials, totaling 2.3 million sentences. Each sentence of each abstract is labeled with their role in the abstract using one of the following classes: background, objective, method, result, or conclusion. The purpose of releasing this dataset is twofold. First, the majority of datasets for sequential short-text classification (i.e., classification of short texts that appear in sequences) are small: we hope that releasing a new large dataset will help develop more accurate algorithms for this task. Second, from an application perspective, researchers need better tools to efficiently skim through the literature. Automatically classifying each sentence in an abstract would help researchers read abstracts more efficiently, especially in fields where abstracts may be long, such as the medical field.
SPARQL as a Foreign Language
In the last years, the Linked Data Cloud has achieved a size of more than 100 billion facts pertaining to a multitude of domains. However, accessing this information has been significantly challenging for lay users. Approaches to problems such as Question Answering on Linked Data and Link Discovery have notably played a role in increasing information access. These approaches are often based on handcrafted and/or statistical models derived from data observation. Recently, Deep Learning architectures based on Neural Networks called seq2seq have shown to achieve state-of-the-art results at translating sequences into sequences. In this direction, we propose Neural SPARQL Machines, end-to-end deep architectures to translate any natural language expression into sentences encoding SPARQL queries. Our preliminary results, restricted on selected DBpedia classes, show that Neural SPARQL Machines are a promising approach for Question Answering on Linked Data, as they can deal with known problems such as vocabulary mismatch and perform graph pattern composition.
On the Universality of Linear Recurrences Followed by Nonlinear Projections
In this note (work in progress towards a full-length paper) we show that a family of sequence models based on recurrent linear layers~(including S4, S5, and the LRU) interleaved with position-wise multi-layer perceptrons~(MLPs) can approximate arbitrarily well any sufficiently regular non-linear sequence-to-sequence map. The main idea behind our result is to see recurrent layers as compression algorithms that can faithfully store information about the input sequence into an inner state, before it is processed by the highly expressive MLP.
Out of Order: How Important Is The Sequential Order of Words in a Sentence in Natural Language Understanding Tasks?
Do state-of-the-art natural language understanding models care about word order - one of the most important characteristics of a sequence? Not always! We found 75% to 90% of the correct predictions of BERT-based classifiers, trained on many GLUE tasks, remain constant after input words are randomly shuffled. Despite BERT embeddings are famously contextual, the contribution of each individual word to downstream tasks is almost unchanged even after the word's context is shuffled. BERT-based models are able to exploit superficial cues (e.g. the sentiment of keywords in sentiment analysis; or the word-wise similarity between sequence-pair inputs in natural language inference) to make correct decisions when tokens are arranged in random orders. Encouraging classifiers to capture word order information improves the performance on most GLUE tasks, SQuAD 2.0 and out-of-samples. Our work suggests that many GLUE tasks are not challenging machines to understand the meaning of a sentence.
Randomized Positional Encodings Boost Length Generalization of Transformers
Transformers have impressive generalization capabilities on tasks with a fixed context length. However, they fail to generalize to sequences of arbitrary length, even for seemingly simple tasks such as duplicating a string. Moreover, simply training on longer sequences is inefficient due to the quadratic computation complexity of the global attention mechanism. In this work, we demonstrate that this failure mode is linked to positional encodings being out-of-distribution for longer sequences (even for relative encodings) and introduce a novel family of positional encodings that can overcome this problem. Concretely, our randomized positional encoding scheme simulates the positions of longer sequences and randomly selects an ordered subset to fit the sequence's length. Our large-scale empirical evaluation of 6000 models across 15 algorithmic reasoning tasks shows that our method allows Transformers to generalize to sequences of unseen length (increasing test accuracy by 12.0% on average).
Recommender Systems with Generative Retrieval
Modern recommender systems leverage large-scale retrieval models consisting of two stages: training a dual-encoder model to embed queries and candidates in the same space, followed by an Approximate Nearest Neighbor (ANN) search to select top candidates given a query's embedding. In this paper, we propose a new single-stage paradigm: a generative retrieval model which autoregressively decodes the identifiers for the target candidates in one phase. To do this, instead of assigning randomly generated atomic IDs to each item, we generate Semantic IDs: a semantically meaningful tuple of codewords for each item that serves as its unique identifier. We use a hierarchical method called RQ-VAE to generate these codewords. Once we have the Semantic IDs for all the items, a Transformer based sequence-to-sequence model is trained to predict the Semantic ID of the next item. Since this model predicts the tuple of codewords identifying the next item directly in an autoregressive manner, it can be considered a generative retrieval model. We show that our recommender system trained in this new paradigm improves the results achieved by current SOTA models on the Amazon dataset. Moreover, we demonstrate that the sequence-to-sequence model coupled with hierarchical Semantic IDs offers better generalization and hence improves retrieval of cold-start items for recommendations.
Pre-training via Paraphrasing
We introduce MARGE, a pre-trained sequence-to-sequence model learned with an unsupervised multi-lingual multi-document paraphrasing objective. MARGE provides an alternative to the dominant masked language modeling paradigm, where we self-supervise the reconstruction of target text by retrieving a set of related texts (in many languages) and conditioning on them to maximize the likelihood of generating the original. We show it is possible to jointly learn to do retrieval and reconstruction, given only a random initialization. The objective noisily captures aspects of paraphrase, translation, multi-document summarization, and information retrieval, allowing for strong zero-shot performance on several tasks. For example, with no additional task-specific training we achieve BLEU scores of up to 35.8 for document translation. We further show that fine-tuning gives strong performance on a range of discriminative and generative tasks in many languages, making MARGE the most generally applicable pre-training method to date.
Compressive Transformers for Long-Range Sequence Modelling
We present the Compressive Transformer, an attentive sequence model which compresses past memories for long-range sequence learning. We find the Compressive Transformer obtains state-of-the-art language modelling results in the WikiText-103 and Enwik8 benchmarks, achieving 17.1 ppl and 0.97 bpc respectively. We also find it can model high-frequency speech effectively and can be used as a memory mechanism for RL, demonstrated on an object matching task. To promote the domain of long-range sequence learning, we propose a new open-vocabulary language modelling benchmark derived from books, PG-19.
Autoregressive Models in Vision: A Survey
Autoregressive modeling has been a huge success in the field of natural language processing (NLP). Recently, autoregressive models have emerged as a significant area of focus in computer vision, where they excel in producing high-quality visual content. Autoregressive models in NLP typically operate on subword tokens. However, the representation strategy in computer vision can vary in different levels, i.e., pixel-level, token-level, or scale-level, reflecting the diverse and hierarchical nature of visual data compared to the sequential structure of language. This survey comprehensively examines the literature on autoregressive models applied to vision. To improve readability for researchers from diverse research backgrounds, we start with preliminary sequence representation and modeling in vision. Next, we divide the fundamental frameworks of visual autoregressive models into three general sub-categories, including pixel-based, token-based, and scale-based models based on the strategy of representation. We then explore the interconnections between autoregressive models and other generative models. Furthermore, we present a multi-faceted categorization of autoregressive models in computer vision, including image generation, video generation, 3D generation, and multi-modal generation. We also elaborate on their applications in diverse domains, including emerging domains such as embodied AI and 3D medical AI, with about 250 related references. Finally, we highlight the current challenges to autoregressive models in vision with suggestions about potential research directions. We have also set up a Github repository to organize the papers included in this survey at: https://github.com/ChaofanTao/Autoregressive-Models-in-Vision-Survey.
Predicting Anti-microbial Resistance using Large Language Models
During times of increasing antibiotic resistance and the spread of infectious diseases like COVID-19, it is important to classify genes related to antibiotic resistance. As natural language processing has advanced with transformer-based language models, many language models that learn characteristics of nucleotide sequences have also emerged. These models show good performance in classifying various features of nucleotide sequences. When classifying nucleotide sequences, not only the sequence itself, but also various background knowledge is utilized. In this study, we use not only a nucleotide sequence-based language model but also a text language model based on PubMed articles to reflect more biological background knowledge in the model. We propose a method to fine-tune the nucleotide sequence language model and the text language model based on various databases of antibiotic resistance genes. We also propose an LLM-based augmentation technique to supplement the data and an ensemble method to effectively combine the two models. We also propose a benchmark for evaluating the model. Our method achieved better performance than the nucleotide sequence language model in the drug resistance class prediction.
Deconvolutional Paragraph Representation Learning
Learning latent representations from long text sequences is an important first step in many natural language processing applications. Recurrent Neural Networks (RNNs) have become a cornerstone for this challenging task. However, the quality of sentences during RNN-based decoding (reconstruction) decreases with the length of the text. We propose a sequence-to-sequence, purely convolutional and deconvolutional autoencoding framework that is free of the above issue, while also being computationally efficient. The proposed method is simple, easy to implement and can be leveraged as a building block for many applications. We show empirically that compared to RNNs, our framework is better at reconstructing and correcting long paragraphs. Quantitative evaluation on semi-supervised text classification and summarization tasks demonstrate the potential for better utilization of long unlabeled text data.
QASem Parsing: Text-to-text Modeling of QA-based Semantics
Several recent works have suggested to represent semantic relations with questions and answers, decomposing textual information into separate interrogative natural language statements. In this paper, we consider three QA-based semantic tasks - namely, QA-SRL, QANom and QADiscourse, each targeting a certain type of predication - and propose to regard them as jointly providing a comprehensive representation of textual information. To promote this goal, we investigate how to best utilize the power of sequence-to-sequence (seq2seq) pre-trained language models, within the unique setup of semi-structured outputs, consisting of an unordered set of question-answer pairs. We examine different input and output linearization strategies, and assess the effect of multitask learning and of simple data augmentation techniques in the setting of imbalanced training data. Consequently, we release the first unified QASem parsing tool, practical for downstream applications who can benefit from an explicit, QA-based account of information units in a text.
DeFINE: DEep Factorized INput Token Embeddings for Neural Sequence Modeling
For sequence models with large vocabularies, a majority of network parameters lie in the input and output layers. In this work, we describe a new method, DeFINE, for learning deep token representations efficiently. Our architecture uses a hierarchical structure with novel skip-connections which allows for the use of low dimensional input and output layers, reducing total parameters and training time while delivering similar or better performance versus existing methods. DeFINE can be incorporated easily in new or existing sequence models. Compared to state-of-the-art methods including adaptive input representations, this technique results in a 6% to 20% drop in perplexity. On WikiText-103, DeFINE reduces the total parameters of Transformer-XL by half with minimal impact on performance. On the Penn Treebank, DeFINE improves AWD-LSTM by 4 points with a 17% reduction in parameters, achieving comparable performance to state-of-the-art methods with fewer parameters. For machine translation, DeFINE improves the efficiency of the Transformer model by about 1.4 times while delivering similar performance.
PARADE: Passage Representation Aggregation for Document Reranking
Pretrained transformer models, such as BERT and T5, have shown to be highly effective at ad-hoc passage and document ranking. Due to inherent sequence length limits of these models, they need to be run over a document's passages, rather than processing the entire document sequence at once. Although several approaches for aggregating passage-level signals have been proposed, there has yet to be an extensive comparison of these techniques. In this work, we explore strategies for aggregating relevance signals from a document's passages into a final ranking score. We find that passage representation aggregation techniques can significantly improve over techniques proposed in prior work, such as taking the maximum passage score. We call this new approach PARADE. In particular, PARADE can significantly improve results on collections with broad information needs where relevance signals can be spread throughout the document (such as TREC Robust04 and GOV2). Meanwhile, less complex aggregation techniques may work better on collections with an information need that can often be pinpointed to a single passage (such as TREC DL and TREC Genomics). We also conduct efficiency analyses, and highlight several strategies for improving transformer-based aggregation.
Learning Semantic Correspondences in Technical Documentation
We consider the problem of translating high-level textual descriptions to formal representations in technical documentation as part of an effort to model the meaning of such documentation. We focus specifically on the problem of learning translational correspondences between text descriptions and grounded representations in the target documentation, such as formal representation of functions or code templates. Our approach exploits the parallel nature of such documentation, or the tight coupling between high-level text and the low-level representations we aim to learn. Data is collected by mining technical documents for such parallel text-representation pairs, which we use to train a simple semantic parsing model. We report new baseline results on sixteen novel datasets, including the standard library documentation for nine popular programming languages across seven natural languages, and a small collection of Unix utility manuals.
Foundation Models for Natural Language Processing -- Pre-trained Language Models Integrating Media
This open access book provides a comprehensive overview of the state of the art in research and applications of Foundation Models and is intended for readers familiar with basic Natural Language Processing (NLP) concepts. Over the recent years, a revolutionary new paradigm has been developed for training models for NLP. These models are first pre-trained on large collections of text documents to acquire general syntactic knowledge and semantic information. Then, they are fine-tuned for specific tasks, which they can often solve with superhuman accuracy. When the models are large enough, they can be instructed by prompts to solve new tasks without any fine-tuning. Moreover, they can be applied to a wide range of different media and problem domains, ranging from image and video processing to robot control learning. Because they provide a blueprint for solving many tasks in artificial intelligence, they have been called Foundation Models. After a brief introduction to basic NLP models the main pre-trained language models BERT, GPT and sequence-to-sequence transformer are described, as well as the concepts of self-attention and context-sensitive embedding. Then, different approaches to improving these models are discussed, such as expanding the pre-training criteria, increasing the length of input texts, or including extra knowledge. An overview of the best-performing models for about twenty application areas is then presented, e.g., question answering, translation, story generation, dialog systems, generating images from text, etc. For each application area, the strengths and weaknesses of current models are discussed, and an outlook on further developments is given. In addition, links are provided to freely available program code. A concluding chapter summarizes the economic opportunities, mitigation of risks, and potential developments of AI.
Movie Description
Audio Description (AD) provides linguistic descriptions of movies and allows visually impaired people to follow a movie along with their peers. Such descriptions are by design mainly visual and thus naturally form an interesting data source for computer vision and computational linguistics. In this work we propose a novel dataset which contains transcribed ADs, which are temporally aligned to full length movies. In addition we also collected and aligned movie scripts used in prior work and compare the two sources of descriptions. In total the Large Scale Movie Description Challenge (LSMDC) contains a parallel corpus of 118,114 sentences and video clips from 202 movies. First we characterize the dataset by benchmarking different approaches for generating video descriptions. Comparing ADs to scripts, we find that ADs are indeed more visual and describe precisely what is shown rather than what should happen according to the scripts created prior to movie production. Furthermore, we present and compare the results of several teams who participated in a challenge organized in the context of the workshop "Describing and Understanding Video & The Large Scale Movie Description Challenge (LSMDC)", at ICCV 2015.
Bio-xLSTM: Generative modeling, representation and in-context learning of biological and chemical sequences
Language models for biological and chemical sequences enable crucial applications such as drug discovery, protein engineering, and precision medicine. Currently, these language models are predominantly based on Transformer architectures. While Transformers have yielded impressive results, their quadratic runtime dependency on the sequence length complicates their use for long genomic sequences and in-context learning on proteins and chemical sequences. Recently, the recurrent xLSTM architecture has been shown to perform favorably compared to Transformers and modern state-space model (SSM) architectures in the natural language domain. Similar to SSMs, xLSTMs have a linear runtime dependency on the sequence length and allow for constant-memory decoding at inference time, which makes them prime candidates for modeling long-range dependencies in biological and chemical sequences. In this work, we tailor xLSTM towards these domains and propose a suite of architectural variants called Bio-xLSTM. Extensive experiments in three large domains, genomics, proteins, and chemistry, were performed to assess xLSTM's ability to model biological and chemical sequences. The results show that models based on Bio-xLSTM a) can serve as proficient generative models for DNA, protein, and chemical sequences, b) learn rich representations for those modalities, and c) can perform in-context learning for proteins and small molecules.
σ-GPTs: A New Approach to Autoregressive Models
Autoregressive models, such as the GPT family, use a fixed order, usually left-to-right, to generate sequences. However, this is not a necessity. In this paper, we challenge this assumption and show that by simply adding a positional encoding for the output, this order can be modulated on-the-fly per-sample which offers key advantageous properties. It allows for the sampling of and conditioning on arbitrary subsets of tokens, and it also allows sampling in one shot multiple tokens dynamically according to a rejection strategy, leading to a sub-linear number of model evaluations. We evaluate our method across various domains, including language modeling, path-solving, and aircraft vertical rate prediction, decreasing the number of steps required for generation by an order of magnitude.
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
In this paper, we propose a novel neural network model called RNN Encoder-Decoder that consists of two recurrent neural networks (RNN). One RNN encodes a sequence of symbols into a fixed-length vector representation, and the other decodes the representation into another sequence of symbols. The encoder and decoder of the proposed model are jointly trained to maximize the conditional probability of a target sequence given a source sequence. The performance of a statistical machine translation system is empirically found to improve by using the conditional probabilities of phrase pairs computed by the RNN Encoder-Decoder as an additional feature in the existing log-linear model. Qualitatively, we show that the proposed model learns a semantically and syntactically meaningful representation of linguistic phrases.
Compositional Generalization and Natural Language Variation: Can a Semantic Parsing Approach Handle Both?
Sequence-to-sequence models excel at handling natural language variation, but have been shown to struggle with out-of-distribution compositional generalization. This has motivated new specialized architectures with stronger compositional biases, but most of these approaches have only been evaluated on synthetically-generated datasets, which are not representative of natural language variation. In this work we ask: can we develop a semantic parsing approach that handles both natural language variation and compositional generalization? To better assess this capability, we propose new train and test splits of non-synthetic datasets. We demonstrate that strong existing approaches do not perform well across a broad set of evaluations. We also propose NQG-T5, a hybrid model that combines a high-precision grammar-based approach with a pre-trained sequence-to-sequence model. It outperforms existing approaches across several compositional generalization challenges on non-synthetic data, while also being competitive with the state-of-the-art on standard evaluations. While still far from solving this problem, our study highlights the importance of diverse evaluations and the open challenge of handling both compositional generalization and natural language variation in semantic parsing.
Generating Summaries with Topic Templates and Structured Convolutional Decoders
Existing neural generation approaches create multi-sentence text as a single sequence. In this paper we propose a structured convolutional decoder that is guided by the content structure of target summaries. We compare our model with existing sequential decoders on three data sets representing different domains. Automatic and human evaluation demonstrate that our summaries have better content coverage.
Challenges in Data-to-Document Generation
Recent neural models have shown significant progress on the problem of generating short descriptive texts conditioned on a small number of database records. In this work, we suggest a slightly more difficult data-to-text generation task, and investigate how effective current approaches are on this task. In particular, we introduce a new, large-scale corpus of data records paired with descriptive documents, propose a series of extractive evaluation methods for analyzing performance, and obtain baseline results using current neural generation methods. Experiments show that these models produce fluent text, but fail to convincingly approximate human-generated documents. Moreover, even templated baselines exceed the performance of these neural models on some metrics, though copy- and reconstruction-based extensions lead to noticeable improvements.
Leveraging Pre-trained Checkpoints for Sequence Generation Tasks
Unsupervised pre-training of large neural models has recently revolutionized Natural Language Processing. By warm-starting from the publicly released checkpoints, NLP practitioners have pushed the state-of-the-art on multiple benchmarks while saving significant amounts of compute time. So far the focus has been mainly on the Natural Language Understanding tasks. In this paper, we demonstrate the efficacy of pre-trained checkpoints for Sequence Generation. We developed a Transformer-based sequence-to-sequence model that is compatible with publicly available pre-trained BERT, GPT-2 and RoBERTa checkpoints and conducted an extensive empirical study on the utility of initializing our model, both encoder and decoder, with these checkpoints. Our models result in new state-of-the-art results on Machine Translation, Text Summarization, Sentence Splitting, and Sentence Fusion.
PoET: A generative model of protein families as sequences-of-sequences
Generative protein language models are a natural way to design new proteins with desired functions. However, current models are either difficult to direct to produce a protein from a specific family of interest, or must be trained on a large multiple sequence alignment (MSA) from the specific family of interest, making them unable to benefit from transfer learning across families. To address this, we propose Protein Evolutionary Transformer (PoET), an autoregressive generative model of whole protein families that learns to generate sets of related proteins as sequences-of-sequences across tens of millions of natural protein sequence clusters. PoET can be used as a retrieval-augmented language model to generate and score arbitrary modifications conditioned on any protein family of interest, and can extrapolate from short context lengths to generalize well even for small families. This is enabled by a unique Transformer layer; we model tokens sequentially within sequences while attending between sequences order invariantly, allowing PoET to scale to context lengths beyond those used during training. In extensive experiments on deep mutational scanning datasets, we show that PoET outperforms existing protein language models and evolutionary sequence models for variant function prediction across proteins of all MSA depths. We also demonstrate PoET's ability to controllably generate new protein sequences.
A Critical Review of Recurrent Neural Networks for Sequence Learning
Countless learning tasks require dealing with sequential data. Image captioning, speech synthesis, and music generation all require that a model produce outputs that are sequences. In other domains, such as time series prediction, video analysis, and musical information retrieval, a model must learn from inputs that are sequences. Interactive tasks, such as translating natural language, engaging in dialogue, and controlling a robot, often demand both capabilities. Recurrent neural networks (RNNs) are connectionist models that capture the dynamics of sequences via cycles in the network of nodes. Unlike standard feedforward neural networks, recurrent networks retain a state that can represent information from an arbitrarily long context window. Although recurrent neural networks have traditionally been difficult to train, and often contain millions of parameters, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful large-scale learning with them. In recent years, systems based on long short-term memory (LSTM) and bidirectional (BRNN) architectures have demonstrated ground-breaking performance on tasks as varied as image captioning, language translation, and handwriting recognition. In this survey, we review and synthesize the research that over the past three decades first yielded and then made practical these powerful learning models. When appropriate, we reconcile conflicting notation and nomenclature. Our goal is to provide a self-contained explication of the state of the art together with a historical perspective and references to primary research.
Doc2Query--: When Less is More
Doc2Query -- the process of expanding the content of a document before indexing using a sequence-to-sequence model -- has emerged as a prominent technique for improving the first-stage retrieval effectiveness of search engines. However, sequence-to-sequence models are known to be prone to "hallucinating" content that is not present in the source text. We argue that Doc2Query is indeed prone to hallucination, which ultimately harms retrieval effectiveness and inflates the index size. In this work, we explore techniques for filtering out these harmful queries prior to indexing. We find that using a relevance model to remove poor-quality queries can improve the retrieval effectiveness of Doc2Query by up to 16%, while simultaneously reducing mean query execution time by 23% and cutting the index size by 33%. We release the code, data, and a live demonstration to facilitate reproduction and further exploration at https://github.com/terrierteam/pyterrier_doc2query.
OTSeq2Set: An Optimal Transport Enhanced Sequence-to-Set Model for Extreme Multi-label Text Classification
Extreme multi-label text classification (XMTC) is the task of finding the most relevant subset labels from an extremely large-scale label collection. Recently, some deep learning models have achieved state-of-the-art results in XMTC tasks. These models commonly predict scores for all labels by a fully connected layer as the last layer of the model. However, such models can't predict a relatively complete and variable-length label subset for each document, because they select positive labels relevant to the document by a fixed threshold or take top k labels in descending order of scores. A less popular type of deep learning models called sequence-to-sequence (Seq2Seq) focus on predicting variable-length positive labels in sequence style. However, the labels in XMTC tasks are essentially an unordered set rather than an ordered sequence, the default order of labels restrains Seq2Seq models in training. To address this limitation in Seq2Seq, we propose an autoregressive sequence-to-set model for XMTC tasks named OTSeq2Set. Our model generates predictions in student-forcing scheme and is trained by a loss function based on bipartite matching which enables permutation-invariance. Meanwhile, we use the optimal transport distance as a measurement to force the model to focus on the closest labels in semantic label space. Experiments show that OTSeq2Set outperforms other competitive baselines on 4 benchmark datasets. Especially, on the Wikipedia dataset with 31k labels, it outperforms the state-of-the-art Seq2Seq method by 16.34% in micro-F1 score. The code is available at https://github.com/caojie54/OTSeq2Set.
Improving Sequence-to-Sequence Pre-training via Sequence Span Rewriting
In this paper, we generalize text infilling (e.g., masked language models) by proposing Sequence Span Rewriting (SSR) as a self-supervised sequence-to-sequence (seq2seq) pre-training objective. SSR provides more fine-grained learning signals for text representations by supervising the model to rewrite imperfect spans to ground truth, and it is more consistent than text infilling with many downstream seq2seq tasks that rewrite a source sentences into a target sentence. Our experiments with T5 models on various seq2seq tasks show that SSR can substantially improve seq2seq pre-training. Moreover, we observe SSR is especially helpful to improve pre-training a small-size seq2seq model with a powerful imperfect span generator, which indicates a new perspective of transferring knowledge from a large model to a smaller model for seq2seq pre-training.
The Role of Complex NLP in Transformers for Text Ranking?
Even though term-based methods such as BM25 provide strong baselines in ranking, under certain conditions they are dominated by large pre-trained masked language models (MLMs) such as BERT. To date, the source of their effectiveness remains unclear. Is it their ability to truly understand the meaning through modeling syntactic aspects? We answer this by manipulating the input order and position information in a way that destroys the natural sequence order of query and passage and shows that the model still achieves comparable performance. Overall, our results highlight that syntactic aspects do not play a critical role in the effectiveness of re-ranking with BERT. We point to other mechanisms such as query-passage cross-attention and richer embeddings that capture word meanings based on aggregated context regardless of the word order for being the main attributions for its superior performance.
GENERator: A Long-Context Generative Genomic Foundation Model
Advancements in DNA sequencing technologies have significantly improved our ability to decode genomic sequences. However, the prediction and interpretation of these sequences remain challenging due to the intricate nature of genetic material. Large language models (LLMs) have introduced new opportunities for biological sequence analysis. Recent developments in genomic language models have underscored the potential of LLMs in deciphering DNA sequences. Nonetheless, existing models often face limitations in robustness and application scope, primarily due to constraints in model structure and training data scale. To address these limitations, we present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters. Trained on an expansive dataset comprising 386B bp of eukaryotic DNA, the GENERator demonstrates state-of-the-art performance across both established and newly proposed benchmarks. The model adheres to the central dogma of molecular biology, accurately generating protein-coding sequences that translate into proteins structurally analogous to known families. It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of promoter sequences with specific activity profiles. These capabilities position the GENERator as a pivotal tool for genomic research and biotechnological advancement, enhancing our ability to interpret and predict complex biological systems and enabling precise genomic interventions.
Less is More: Pre-train a Strong Text Encoder for Dense Retrieval Using a Weak Decoder
Dense retrieval requires high-quality text sequence embeddings to support effective search in the representation space. Autoencoder-based language models are appealing in dense retrieval as they train the encoder to output high-quality embedding that can reconstruct the input texts. However, in this paper, we provide theoretical analyses and show empirically that an autoencoder language model with a low reconstruction loss may not provide good sequence representations because the decoder may take shortcuts by exploiting language patterns. To address this, we propose a new self-learning method that pre-trains the autoencoder using a weak decoder, with restricted capacity and attention flexibility to push the encoder to provide better text representations. Our experiments on web search, news recommendation, and open domain question answering show that our pre-trained model significantly boosts the effectiveness and few-shot ability of dense retrieval models. Our code is available at https://github.com/microsoft/SEED-Encoder/.
Z-Code++: A Pre-trained Language Model Optimized for Abstractive Summarization
This paper presents Z-Code++, a new pre-trained language model optimized for abstractive text summarization. The model extends the state of the art encoder-decoder model using three techniques. First, we use a two-phase pre-training process to improve model's performance on low-resource summarization tasks. The model is first pre-trained using text corpora for language understanding, and then is continually pre-trained on summarization corpora for grounded text generation. Second, we replace self-attention layers in the encoder with disentangled attention layers, where each word is represented using two vectors that encode its content and position, respectively. Third, we use fusion-in-encoder, a simple yet effective method of encoding long sequences in a hierarchical manner. Z-Code++ creates new state of the art on 9 out of 13 text summarization tasks across 5 languages. Our model is parameter-efficient in that it outperforms the 600x larger PaLM-540B on XSum, and the finetuned 200x larger GPT3-175B on SAMSum. In zero-shot and few-shot settings, our model substantially outperforms the competing models.
T5-SR: A Unified Seq-to-Seq Decoding Strategy for Semantic Parsing
Translating natural language queries into SQLs in a seq2seq manner has attracted much attention recently. However, compared with abstract-syntactic-tree-based SQL generation, seq2seq semantic parsers face much more challenges, including poor quality on schematical information prediction and poor semantic coherence between natural language queries and SQLs. This paper analyses the above difficulties and proposes a seq2seq-oriented decoding strategy called SR, which includes a new intermediate representation SSQL and a reranking method with score re-estimator to solve the above obstacles respectively. Experimental results demonstrate the effectiveness of our proposed techniques and T5-SR-3b achieves new state-of-the-art results on the Spider dataset.
Learning to Model Editing Processes
Most existing sequence generation models produce outputs in one pass, usually left-to-right. However, this is in contrast with a more natural approach that humans use in generating content; iterative refinement and editing. Recent work has introduced edit-based models for various tasks (such as neural machine translation and text style transfer), but these generally model a single edit step. In this work, we propose modeling editing processes, modeling the whole process of iteratively generating sequences. We form a conceptual framework to describe the likelihood of multi-step edits, and describe neural models that can learn a generative model of sequences based on these multistep edits. We introduce baseline results and metrics on this task, finding that modeling editing processes improves performance on a variety of axes on both our proposed task and related downstream tasks compared to previous single-step models of edits.
Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models
Neural sequence models are widely used to model time-series data. Equally ubiquitous is the usage of beam search (BS) as an approximate inference algorithm to decode output sequences from these models. BS explores the search space in a greedy left-right fashion retaining only the top-B candidates - resulting in sequences that differ only slightly from each other. Producing lists of nearly identical sequences is not only computationally wasteful but also typically fails to capture the inherent ambiguity of complex AI tasks. To overcome this problem, we propose Diverse Beam Search (DBS), an alternative to BS that decodes a list of diverse outputs by optimizing for a diversity-augmented objective. We observe that our method finds better top-1 solutions by controlling for the exploration and exploitation of the search space - implying that DBS is a better search algorithm. Moreover, these gains are achieved with minimal computational or memory over- head as compared to beam search. To demonstrate the broad applicability of our method, we present results on image captioning, machine translation and visual question generation using both standard quantitative metrics and qualitative human studies. Further, we study the role of diversity for image-grounded language generation tasks as the complexity of the image changes. We observe that our method consistently outperforms BS and previously proposed techniques for diverse decoding from neural sequence models.
Sequence to Sequence Learning with Neural Networks
Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT'14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous best result on this task. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
Sequence-to-Sequence Resources for Catalan
In this work, we introduce sequence-to-sequence language resources for Catalan, a moderately under-resourced language, towards two tasks, namely: Summarization and Machine Translation (MT). We present two new abstractive summarization datasets in the domain of newswire. We also introduce a parallel Catalan-English corpus, paired with three different brand new test sets. Finally, we evaluate the data presented with competing state of the art models, and we develop baselines for these tasks using a newly created Catalan BART. We release the resulting resources of this work under open license to encourage the development of language technology in Catalan.
DefSent+: Improving sentence embeddings of language models by projecting definition sentences into a quasi-isotropic or isotropic vector space of unlimited dictionary entries
This paper presents a significant improvement on the previous conference paper known as DefSent. The prior study seeks to improve sentence embeddings of language models by projecting definition sentences into the vector space of dictionary entries. We discover that this approach is not fully explored due to the methodological limitation of using word embeddings of language models to represent dictionary entries. This leads to two hindrances. First, dictionary entries are constrained by the single-word vocabulary, and thus cannot be fully exploited. Second, semantic representations of language models are known to be anisotropic, but pre-processing word embeddings for DefSent is not allowed because its weight is frozen during training and tied to the prediction layer. In this paper, we propose a novel method to progressively build entry embeddings not subject to the limitations. As a result, definition sentences can be projected into a quasi-isotropic or isotropic vector space of unlimited dictionary entries, so that sentence embeddings of noticeably better quality are attainable. We abbreviate our approach as DefSent+ (a plus version of DefSent), involving the following strengths: 1) the task performance on measuring sentence similarities is significantly improved compared to DefSent; 2) when DefSent+ is used to further train data-augmented models like SIMCSE, SNCSE, and SynCSE, state-of-the-art performance on measuring sentence similarities can be achieved among the approaches without using manually labeled datasets; 3) DefSent+ is also competitive in feature-based transfer for NLP downstream tasks.
MASS: Masked Sequence to Sequence Pre-training for Language Generation
Pre-training and fine-tuning, e.g., BERT, have achieved great success in language understanding by transferring knowledge from rich-resource pre-training task to the low/zero-resource downstream tasks. Inspired by the success of BERT, we propose MAsked Sequence to Sequence pre-training (MASS) for the encoder-decoder based language generation tasks. MASS adopts the encoder-decoder framework to reconstruct a sentence fragment given the remaining part of the sentence: its encoder takes a sentence with randomly masked fragment (several consecutive tokens) as input, and its decoder tries to predict this masked fragment. In this way, MASS can jointly train the encoder and decoder to develop the capability of representation extraction and language modeling. By further fine-tuning on a variety of zero/low-resource language generation tasks, including neural machine translation, text summarization and conversational response generation (3 tasks and totally 8 datasets), MASS achieves significant improvements over the baselines without pre-training or with other pre-training methods. Specially, we achieve the state-of-the-art accuracy (37.5 in terms of BLEU score) on the unsupervised English-French translation, even beating the early attention-based supervised model.
VideoCLIP-XL: Advancing Long Description Understanding for Video CLIP Models
Contrastive Language-Image Pre-training (CLIP) has been widely studied and applied in numerous applications. However, the emphasis on brief summary texts during pre-training prevents CLIP from understanding long descriptions. This issue is particularly acute regarding videos given that videos often contain abundant detailed contents. In this paper, we propose the VideoCLIP-XL (eXtra Length) model, which aims to unleash the long-description understanding capability of video CLIP models. Firstly, we establish an automatic data collection system and gather a large-scale VILD pre-training dataset with VIdeo and Long-Description pairs. Then, we propose Text-similarity-guided Primary Component Matching (TPCM) to better learn the distribution of feature space while expanding the long description capability. We also introduce two new tasks namely Detail-aware Description Ranking (DDR) and Hallucination-aware Description Ranking (HDR) for further understanding improvement. Finally, we construct a Long Video Description Ranking (LVDR) benchmark for evaluating the long-description capability more comprehensively. Extensive experimental results on widely-used text-video retrieval benchmarks with both short and long descriptions and our LVDR benchmark can fully demonstrate the effectiveness of our method.
A Non-monotonic Self-terminating Language Model
Recent large-scale neural autoregressive sequence models have shown impressive performances on a variety of natural language generation tasks. However, their generated sequences often exhibit degenerate properties such as non-termination, undesirable repetition, and premature termination, when generated with decoding algorithms such as greedy search, beam search, top-k sampling, and nucleus sampling. In this paper, we focus on the problem of non-terminating sequences resulting from an incomplete decoding algorithm. We first define an incomplete probable decoding algorithm which includes greedy search, top-k sampling, and nucleus sampling, beyond the incomplete decoding algorithm originally put forward by Welleck et al. (2020). We then propose a non-monotonic self-terminating language model, which significantly relaxes the constraint of monotonically increasing termination probability in the originally proposed self-terminating language model by Welleck et al. (2020), to address the issue of non-terminating sequences when using incomplete probable decoding algorithms. We prove that our proposed model prevents non-terminating sequences when using not only incomplete probable decoding algorithms but also beam search. We empirically validate our model on sequence completion tasks with various architectures.
Drawing2CAD: Sequence-to-Sequence Learning for CAD Generation from Vector Drawings
Computer-Aided Design (CAD) generative modeling is driving significant innovations across industrial applications. Recent works have shown remarkable progress in creating solid models from various inputs such as point clouds, meshes, and text descriptions. However, these methods fundamentally diverge from traditional industrial workflows that begin with 2D engineering drawings. The automatic generation of parametric CAD models from these 2D vector drawings remains underexplored despite being a critical step in engineering design. To address this gap, our key insight is to reframe CAD generation as a sequence-to-sequence learning problem where vector drawing primitives directly inform the generation of parametric CAD operations, preserving geometric precision and design intent throughout the transformation process. We propose Drawing2CAD, a framework with three key technical components: a network-friendly vector primitive representation that preserves precise geometric information, a dual-decoder transformer architecture that decouples command type and parameter generation while maintaining precise correspondence, and a soft target distribution loss function accommodating inherent flexibility in CAD parameters. To train and evaluate Drawing2CAD, we create CAD-VGDrawing, a dataset of paired engineering drawings and parametric CAD models, and conduct thorough experiments to demonstrate the effectiveness of our method. Code and dataset are available at https://github.com/lllssc/Drawing2CAD.
A Machine Learning Perspective on Predictive Coding with PAQ
PAQ8 is an open source lossless data compression algorithm that currently achieves the best compression rates on many benchmarks. This report presents a detailed description of PAQ8 from a statistical machine learning perspective. It shows that it is possible to understand some of the modules of PAQ8 and use this understanding to improve the method. However, intuitive statistical explanations of the behavior of other modules remain elusive. We hope the description in this report will be a starting point for discussions that will increase our understanding, lead to improvements to PAQ8, and facilitate a transfer of knowledge from PAQ8 to other machine learning methods, such a recurrent neural networks and stochastic memoizers. Finally, the report presents a broad range of new applications of PAQ to machine learning tasks including language modeling and adaptive text prediction, adaptive game playing, classification, and compression using features from the field of deep learning.
A Deep Reinforced Model for Abstractive Summarization
Attentional, RNN-based encoder-decoder models for abstractive summarization have achieved good performance on short input and output sequences. For longer documents and summaries however these models often include repetitive and incoherent phrases. We introduce a neural network model with a novel intra-attention that attends over the input and continuously generated output separately, and a new training method that combines standard supervised word prediction and reinforcement learning (RL). Models trained only with supervised learning often exhibit "exposure bias" - they assume ground truth is provided at each step during training. However, when standard word prediction is combined with the global sequence prediction training of RL the resulting summaries become more readable. We evaluate this model on the CNN/Daily Mail and New York Times datasets. Our model obtains a 41.16 ROUGE-1 score on the CNN/Daily Mail dataset, an improvement over previous state-of-the-art models. Human evaluation also shows that our model produces higher quality summaries.
Tiny Neural Models for Seq2Seq
Semantic parsing models with applications in task oriented dialog systems require efficient sequence to sequence (seq2seq) architectures to be run on-device. To this end, we propose a projection based encoder-decoder model referred to as pQRNN-MAtt. Studies based on projection methods were restricted to encoder-only models, and we believe this is the first study extending it to seq2seq architectures. The resulting quantized models are less than 3.5MB in size and are well suited for on-device latency critical applications. We show that on MTOP, a challenging multilingual semantic parsing dataset, the average model performance surpasses LSTM based seq2seq model that uses pre-trained embeddings despite being 85x smaller. Furthermore, the model can be an effective student for distilling large pre-trained models such as T5/BERT.
Autoregressive Structured Prediction with Language Models
Recent years have seen a paradigm shift in NLP towards using pretrained language models ({PLM}) for a wide range of tasks. However, there are many difficult design decisions to represent structures (e.g. tagged text, coreference chains) in a way such that they can be captured by PLMs. Prior work on structured prediction with PLMs typically flattens the structured output into a sequence, which limits the quality of structural information being learned and leads to inferior performance compared to classic discriminative models. In this work, we describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs, allowing in-structure dependencies to be learned without any loss. Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at, namely, named entity recognition, end-to-end relation extraction, and coreference resolution.
3D-MolT5: Towards Unified 3D Molecule-Text Modeling with 3D Molecular Tokenization
The integration of molecule and language has garnered increasing attention in molecular science. Recent advancements in Language Models (LMs) have demonstrated potential for the comprehensive modeling of molecule and language. However, existing works exhibit notable limitations. Most existing works overlook the modeling of 3D information, which is crucial for understanding molecular structures and also functions. While some attempts have been made to leverage external structure encoding modules to inject the 3D molecular information into LMs, there exist obvious difficulties that hinder the integration of molecular structure and language text, such as modality alignment and separate tuning. To bridge this gap, we propose 3D-MolT5, a unified framework designed to model both 1D molecular sequence and 3D molecular structure. The key innovation lies in our methodology for mapping fine-grained 3D substructure representations (based on 3D molecular fingerprints) to a specialized 3D token vocabulary for 3D-MolT5. This 3D structure token vocabulary enables the seamless combination of 1D sequence and 3D structure representations in a tokenized format, allowing 3D-MolT5 to encode molecular sequence (SELFIES), molecular structure, and text sequences within a unified architecture. Alongside, we further introduce 1D and 3D joint pre-training to enhance the model's comprehension of these diverse modalities in a joint representation space and better generalize to various tasks for our foundation model. Through instruction tuning on multiple downstream datasets, our proposed 3D-MolT5 shows superior performance than existing methods in molecular property prediction, molecule captioning, and text-based molecule generation tasks. Our code will be available on GitHub soon.
Teaching Machines to Code: Neural Markup Generation with Visual Attention
We present a neural transducer model with visual attention that learns to generate LaTeX markup of a real-world math formula given its image. Applying sequence modeling and transduction techniques that have been very successful across modalities such as natural language, image, handwriting, speech and audio; we construct an image-to-markup model that learns to produce syntactically and semantically correct LaTeX markup code over 150 words long and achieves a BLEU score of 89%; improving upon the previous state-of-art for the Im2Latex problem. We also demonstrate with heat-map visualization how attention helps in interpreting the model and can pinpoint (detect and localize) symbols on the image accurately despite having been trained without any bounding box data.
Memory Tokens: Large Language Models Can Generate Reversible Sentence Embeddings
In this work, we observe an interesting phenomenon: it is possible to generate reversible sentence embeddings that allow an LLM to reconstruct the original text exactly, without modifying the model's weights. This is achieved by introducing a special memory token, whose embedding is optimized through training on a fixed sequence. When prompted with this embedding, the model reconstructs the fixed sequence exactly. We evaluate this phenomenon across English and Spanish datasets, sequences of up to approximately 240 tokens, and model scales ranging from 100M to 8B parameters. Notably, Llama 3.1 8B successfully reconstructs all tested sequences. Our findings highlight an interesting capability of LLMs and suggest potential applications in memory-based retrieval, compression, and controlled text generation.
Topic Aware Neural Response Generation
We consider incorporating topic information into the sequence-to-sequence framework to generate informative and interesting responses for chatbots. To this end, we propose a topic aware sequence-to-sequence (TA-Seq2Seq) model. The model utilizes topics to simulate prior knowledge of human that guides them to form informative and interesting responses in conversation, and leverages the topic information in generation by a joint attention mechanism and a biased generation probability. The joint attention mechanism summarizes the hidden vectors of an input message as context vectors by message attention, synthesizes topic vectors by topic attention from the topic words of the message obtained from a pre-trained LDA model, and let these vectors jointly affect the generation of words in decoding. To increase the possibility of topic words appearing in responses, the model modifies the generation probability of topic words by adding an extra probability item to bias the overall distribution. Empirical study on both automatic evaluation metrics and human annotations shows that TA-Seq2Seq can generate more informative and interesting responses, and significantly outperform the-state-of-the-art response generation models.
LLaMA-Gene: A General-purpose Gene Task Large Language Model Based on Instruction Fine-tuning
Building a general-purpose task model similar to ChatGPT has been an important research direction for gene large language models. Instruction fine-tuning is a key component in building ChatGPT, but existing instructions are primarily based on natural language. Natural language and gene sequences have significant differences in tokenization and encoding. Therefore, constructing a multilingual model that can handle both natural language and gene sequences is crucial for solving this problem.In this paper, we expand the capabilities of the LLaMA large language model to include gene language. This involves expanding the vocabulary using the Byte Pair Encoding (BPE) method, specifically tailored for DNA and protein sequences, and conducting further pre-training on these sequences. We then convert various downstream gene task data into a unified format for instruction fine-tuning and further fine-tune the model on this data.Our study demonstrates that a mixed model of gene and natural language, fine-tuned with instructions, achieves results comparable to the current state-of-the-art (SOTA) in tasks such as gene classification and gene sequence interaction. This provides a promising direction for building a unified large language model for gene tasks.
SeqPE: Transformer with Sequential Position Encoding
Since self-attention layers in Transformers are permutation invariant by design, positional encodings must be explicitly incorporated to enable spatial understanding. However, fixed-size lookup tables used in traditional learnable position embeddings (PEs) limit extrapolation capabilities beyond pre-trained sequence lengths. Expert-designed methods such as ALiBi and RoPE, mitigate this limitation but demand extensive modifications for adapting to new modalities, underscoring fundamental challenges in adaptability and scalability. In this work, we present SeqPE, a unified and fully learnable position encoding framework that represents each n-dimensional position index as a symbolic sequence and employs a lightweight sequential position encoder to learn their embeddings in an end-to-end manner. To regularize SeqPE's embedding space, we introduce two complementary objectives: a contrastive objective that aligns embedding distances with a predefined position-distance function, and a knowledge distillation loss that anchors out-of-distribution position embeddings to in-distribution teacher representations, further enhancing extrapolation performance. Experiments across language modeling, long-context question answering, and 2D image classification demonstrate that SeqPE not only surpasses strong baselines in perplexity, exact match (EM), and accuracy--particularly under context length extrapolation--but also enables seamless generalization to multi-dimensional inputs without requiring manual architectural redesign. We release our code, data, and checkpoints at https://github.com/ghrua/seqpe.
Non-Parametric Memory Guidance for Multi-Document Summarization
Multi-document summarization (MDS) is a difficult task in Natural Language Processing, aiming to summarize information from several documents. However, the source documents are often insufficient to obtain a qualitative summary. We propose a retriever-guided model combined with non-parametric memory for summary generation. This model retrieves relevant candidates from a database and then generates the summary considering the candidates with a copy mechanism and the source documents. The retriever is implemented with Approximate Nearest Neighbor Search (ANN) to search large databases. Our method is evaluated on the MultiXScience dataset which includes scientific articles. Finally, we discuss our results and possible directions for future work.
Improving large language models with concept-aware fine-tuning
Large language models (LLMs) have become the cornerstone of modern AI. However, the existing paradigm of next-token prediction fundamentally limits their ability to form coherent, high-level concepts, making it a critical barrier to human-like understanding and reasoning. Take the phrase "ribonucleic acid" as an example: an LLM will first decompose it into tokens, i.e., artificial text fragments ("rib", "on", ...), then learn each token sequentially, rather than grasping the phrase as a unified, coherent semantic entity. This fragmented representation hinders deeper conceptual understanding and, ultimately, the development of truly intelligent systems. In response, we introduce Concept-Aware Fine-Tuning (CAFT), a novel multi-token training method that redefines how LLMs are fine-tuned. By enabling the learning of sequences that span multiple tokens, this method fosters stronger concept-aware learning. Our experiments demonstrate significant improvements compared to conventional next-token finetuning methods across diverse tasks, including traditional applications like text summarization and domain-specific ones like de novo protein design. Multi-token prediction was previously only possible in the prohibitively expensive pretraining phase; CAFT, to our knowledge, is the first to bring the multi-token setting to the post-training phase, thus effectively democratizing its benefits for the broader community of practitioners and researchers. Finally, the unexpected effectiveness of our proposed method suggests wider implications for the machine learning research community. All code and data are available at https://github.com/michaelchen-lab/caft-llm
How2: A Large-scale Dataset for Multimodal Language Understanding
In this paper, we introduce How2, a multimodal collection of instructional videos with English subtitles and crowdsourced Portuguese translations. We also present integrated sequence-to-sequence baselines for machine translation, automatic speech recognition, spoken language translation, and multimodal summarization. By making available data and code for several multimodal natural language tasks, we hope to stimulate more research on these and similar challenges, to obtain a deeper understanding of multimodality in language processing.
Split and Rephrase: Better Evaluation and a Stronger Baseline
Splitting and rephrasing a complex sentence into several shorter sentences that convey the same meaning is a challenging problem in NLP. We show that while vanilla seq2seq models can reach high scores on the proposed benchmark (Narayan et al., 2017), they suffer from memorization of the training set which contains more than 89% of the unique simple sentences from the validation and test sets. To aid this, we present a new train-development-test data split and neural models augmented with a copy-mechanism, outperforming the best reported baseline by 8.68 BLEU and fostering further progress on the task.
A Systematic Study of Joint Representation Learning on Protein Sequences and Structures
Learning effective protein representations is critical in a variety of tasks in biology such as predicting protein functions. Recent sequence representation learning methods based on Protein Language Models (PLMs) excel in sequence-based tasks, but their direct adaptation to tasks involving protein structures remains a challenge. In contrast, structure-based methods leverage 3D structural information with graph neural networks and geometric pre-training methods show potential in function prediction tasks, but still suffers from the limited number of available structures. To bridge this gap, our study undertakes a comprehensive exploration of joint protein representation learning by integrating a state-of-the-art PLM (ESM-2) with distinct structure encoders (GVP, GearNet, CDConv). We introduce three representation fusion strategies and explore different pre-training techniques. Our method achieves significant improvements over existing sequence- and structure-based methods, setting new state-of-the-art for function annotation. This study underscores several important design choices for fusing protein sequence and structure information. Our implementation is available at https://github.com/DeepGraphLearning/ESM-GearNet.
Thinking Clearly, Talking Fast: Concept-Guided Non-Autoregressive Generation for Open-Domain Dialogue Systems
Human dialogue contains evolving concepts, and speakers naturally associate multiple concepts to compose a response. However, current dialogue models with the seq2seq framework lack the ability to effectively manage concept transitions and can hardly introduce multiple concepts to responses in a sequential decoding manner. To facilitate a controllable and coherent dialogue, in this work, we devise a concept-guided non-autoregressive model (CG-nAR) for open-domain dialogue generation. The proposed model comprises a multi-concept planning module that learns to identify multiple associated concepts from a concept graph and a customized Insertion Transformer that performs concept-guided non-autoregressive generation to complete a response. The experimental results on two public datasets show that CG-nAR can produce diverse and coherent responses, outperforming state-of-the-art baselines in both automatic and human evaluations with substantially faster inference speed.
AttentionHTR: Handwritten Text Recognition Based on Attention Encoder-Decoder Networks
This work proposes an attention-based sequence-to-sequence model for handwritten word recognition and explores transfer learning for data-efficient training of HTR systems. To overcome training data scarcity, this work leverages models pre-trained on scene text images as a starting point towards tailoring the handwriting recognition models. ResNet feature extraction and bidirectional LSTM-based sequence modeling stages together form an encoder. The prediction stage consists of a decoder and a content-based attention mechanism. The effectiveness of the proposed end-to-end HTR system has been empirically evaluated on a novel multi-writer dataset Imgur5K and the IAM dataset. The experimental results evaluate the performance of the HTR framework, further supported by an in-depth analysis of the error cases. Source code and pre-trained models are available at https://github.com/dmitrijsk/AttentionHTR.
Dynamic Position Encoding for Transformers
Recurrent models have been dominating the field of neural machine translation (NMT) for the past few years. Transformers vaswani2017attention, have radically changed it by proposing a novel architecture that relies on a feed-forward backbone and self-attention mechanism. Although Transformers are powerful, they could fail to properly encode sequential/positional information due to their non-recurrent nature. To solve this problem, position embeddings are defined exclusively for each time step to enrich word information. However, such embeddings are fixed after training regardless of the task and the word ordering system of the source or target language. In this paper, we propose a novel architecture with new position embeddings depending on the input text to address this shortcoming by taking the order of target words into consideration. Instead of using predefined position embeddings, our solution generates new embeddings to refine each word's position information. Since we do not dictate the position of source tokens and learn them in an end-to-end fashion, we refer to our method as dynamic position encoding (DPE). We evaluated the impact of our model on multiple datasets to translate from English into German, French, and Italian and observed meaningful improvements in comparison to the original Transformer.
Retentive Network: A Successor to Transformer for Large Language Models
In this work, we propose Retentive Network (RetNet) as a foundation architecture for large language models, simultaneously achieving training parallelism, low-cost inference, and good performance. We theoretically derive the connection between recurrence and attention. Then we propose the retention mechanism for sequence modeling, which supports three computation paradigms, i.e., parallel, recurrent, and chunkwise recurrent. Specifically, the parallel representation allows for training parallelism. The recurrent representation enables low-cost O(1) inference, which improves decoding throughput, latency, and GPU memory without sacrificing performance. The chunkwise recurrent representation facilitates efficient long-sequence modeling with linear complexity, where each chunk is encoded parallelly while recurrently summarizing the chunks. Experimental results on language modeling show that RetNet achieves favorable scaling results, parallel training, low-cost deployment, and efficient inference. The intriguing properties make RetNet a strong successor to Transformer for large language models. Code will be available at https://aka.ms/retnet.
Structured information extraction from complex scientific text with fine-tuned large language models
Intelligently extracting and linking complex scientific information from unstructured text is a challenging endeavor particularly for those inexperienced with natural language processing. Here, we present a simple sequence-to-sequence approach to joint named entity recognition and relation extraction for complex hierarchical information in scientific text. The approach leverages a pre-trained large language model (LLM), GPT-3, that is fine-tuned on approximately 500 pairs of prompts (inputs) and completions (outputs). Information is extracted either from single sentences or across sentences in abstracts/passages, and the output can be returned as simple English sentences or a more structured format, such as a list of JSON objects. We demonstrate that LLMs trained in this way are capable of accurately extracting useful records of complex scientific knowledge for three representative tasks in materials chemistry: linking dopants with their host materials, cataloging metal-organic frameworks, and general chemistry/phase/morphology/application information extraction. This approach represents a simple, accessible, and highly-flexible route to obtaining large databases of structured knowledge extracted from unstructured text. An online demo is available at http://www.matscholar.com/info-extraction.
Local Topology Measures of Contextual Language Model Latent Spaces With Applications to Dialogue Term Extraction
A common approach for sequence tagging tasks based on contextual word representations is to train a machine learning classifier directly on these embedding vectors. This approach has two shortcomings. First, such methods consider single input sequences in isolation and are unable to put an individual embedding vector in relation to vectors outside the current local context of use. Second, the high performance of these models relies on fine-tuning the embedding model in conjunction with the classifier, which may not always be feasible due to the size or inaccessibility of the underlying feature-generation model. It is thus desirable, given a collection of embedding vectors of a corpus, i.e., a datastore, to find features of each vector that describe its relation to other, similar vectors in the datastore. With this in mind, we introduce complexity measures of the local topology of the latent space of a contextual language model with respect to a given datastore. The effectiveness of our features is demonstrated through their application to dialogue term extraction. Our work continues a line of research that explores the manifold hypothesis for word embeddings, demonstrating that local structure in the space carved out by word embeddings can be exploited to infer semantic properties.
Foresight -- Generative Pretrained Transformer (GPT) for Modelling of Patient Timelines using EHRs
Background: Electronic Health Records hold detailed longitudinal information about each patient's health status and general clinical history, a large portion of which is stored within the unstructured text. Existing approaches focus mostly on structured data and a subset of single-domain outcomes. We explore how temporal modelling of patients from free text and structured data, using deep generative transformers can be used to forecast a wide range of future disorders, substances, procedures or findings. Methods: We present Foresight, a novel transformer-based pipeline that uses named entity recognition and linking tools to convert document text into structured, coded concepts, followed by providing probabilistic forecasts for future medical events such as disorders, substances, procedures and findings. We processed the entire free-text portion from three different hospital datasets totalling 811336 patients covering both physical and mental health. Findings: On tests in two UK hospitals (King's College Hospital, South London and Maudsley) and the US MIMIC-III dataset precision@10 0.68, 0.76 and 0.88 was achieved for forecasting the next disorder in a patient timeline, while precision@10 of 0.80, 0.81 and 0.91 was achieved for forecasting the next biomedical concept. Foresight was also validated on 34 synthetic patient timelines by five clinicians and achieved relevancy of 97% for the top forecasted candidate disorder. As a generative model, it can forecast follow-on biomedical concepts for as many steps as required. Interpretation: Foresight is a general-purpose model for biomedical concept modelling that can be used for real-world risk forecasting, virtual trials and clinical research to study the progression of disorders, simulate interventions and counterfactuals, and educational purposes.
VisualMRC: Machine Reading Comprehension on Document Images
Recent studies on machine reading comprehension have focused on text-level understanding but have not yet reached the level of human understanding of the visual layout and content of real-world documents. In this study, we introduce a new visual machine reading comprehension dataset, named VisualMRC, wherein given a question and a document image, a machine reads and comprehends texts in the image to answer the question in natural language. Compared with existing visual question answering (VQA) datasets that contain texts in images, VisualMRC focuses more on developing natural language understanding and generation abilities. It contains 30,000+ pairs of a question and an abstractive answer for 10,000+ document images sourced from multiple domains of webpages. We also introduce a new model that extends existing sequence-to-sequence models, pre-trained with large-scale text corpora, to take into account the visual layout and content of documents. Experiments with VisualMRC show that this model outperformed the base sequence-to-sequence models and a state-of-the-art VQA model. However, its performance is still below that of humans on most automatic evaluation metrics. The dataset will facilitate research aimed at connecting vision and language understanding.
Sketch and Refine: Towards Faithful and Informative Table-to-Text Generation
Table-to-text generation refers to generating a descriptive text from a key-value table. Traditional autoregressive methods, though can generate text with high fluency, suffer from low coverage and poor faithfulness problems. To mitigate these problems, we propose a novel Skeleton-based two-stage method that combines both Autoregressive and Non-Autoregressive generations (SANA). Our approach includes: (1) skeleton generation with an autoregressive pointer network to select key tokens from the source table; (2) edit-based non-autoregressive generation model to produce texts via iterative insertion and deletion operations. By integrating hard constraints from the skeleton, the non-autoregressive model improves the generation's coverage over the source table and thus enhances its faithfulness. We conduct automatic and human evaluations on both WikiPerson and WikiBio datasets. Experimental results demonstrate that our method outperforms the previous state-of-the-art methods in both automatic and human evaluation, especially on coverage and faithfulness. In particular, we achieve PARENT-T recall of 99.47 in WikiPerson, improving over the existing best results by more than 10 points.
An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
For most deep learning practitioners, sequence modeling is synonymous with recurrent networks. Yet recent results indicate that convolutional architectures can outperform recurrent networks on tasks such as audio synthesis and machine translation. Given a new sequence modeling task or dataset, which architecture should one use? We conduct a systematic evaluation of generic convolutional and recurrent architectures for sequence modeling. The models are evaluated across a broad range of standard tasks that are commonly used to benchmark recurrent networks. Our results indicate that a simple convolutional architecture outperforms canonical recurrent networks such as LSTMs across a diverse range of tasks and datasets, while demonstrating longer effective memory. We conclude that the common association between sequence modeling and recurrent networks should be reconsidered, and convolutional networks should be regarded as a natural starting point for sequence modeling tasks. To assist related work, we have made code available at http://github.com/locuslab/TCN .
Find Central Dogma Again
In recent years, large language models (LLMs) have achieved state-of-the-art results in various biological sequence analysis tasks, such as sequence classification, structure prediction, and function prediction. Similar to advancements in AI for other scientific fields, deeper research into biological LLMs has begun to focus on using these models to rediscover important existing biological laws or uncover entirely new patterns in biological sequences.This study leverages GPT-like LLMs to utilize language transfer capabilities to rediscover the genetic code rules of the central dogma. In our experimental design, we transformed the central dogma into a binary classification problem of aligning DNA sequences with protein sequences, where positive examples are matching DNA and protein sequences, and negative examples are non-matching pairs.We first trained a GPT-2 model from scratch using a dataset comprising protein sequences, DNA sequences, and sequences from languages such as English and Chinese. Subsequently, we fine-tuned the model using the English similarity judgment dataset from PAWS-X. When tested on a dataset for DNA and protein sequence alignment judgment, the fine-tuned model achieved a classification accuracy of 76%. The study also analyzed factors contributing to this zero-shot capability, including model training stability and types of training data.This research demonstrates that LLMs can, through the transfer of natural language capabilities and solely relying on the analysis of sequences themselves, rediscover the central dogma without prior knowledge of it. This study opens a new door for AI-driven biological research.
Efficient Natural Language Response Suggestion for Smart Reply
This paper presents a computationally efficient machine-learned method for natural language response suggestion. Feed-forward neural networks using n-gram embedding features encode messages into vectors which are optimized to give message-response pairs a high dot-product value. An optimized search finds response suggestions. The method is evaluated in a large-scale commercial e-mail application, Inbox by Gmail. Compared to a sequence-to-sequence approach, the new system achieves the same quality at a small fraction of the computational requirements and latency.
Sum-Product Networks for Sequence Labeling
We consider higher-order linear-chain conditional random fields (HO-LC-CRFs) for sequence modelling, and use sum-product networks (SPNs) for representing higher-order input- and output-dependent factors. SPNs are a recently introduced class of deep models for which exact and efficient inference can be performed. By combining HO-LC-CRFs with SPNs, expressive models over both the output labels and the hidden variables are instantiated while still enabling efficient exact inference. Furthermore, the use of higher-order factors allows us to capture relations of multiple input segments and multiple output labels as often present in real-world data. These relations can not be modelled by the commonly used first-order models and higher-order models with local factors including only a single output label. We demonstrate the effectiveness of our proposed models for sequence labeling. In extensive experiments, we outperform other state-of-the-art methods in optical character recognition and achieve competitive results in phone classification.
MolXPT: Wrapping Molecules with Text for Generative Pre-training
Generative pre-trained Transformer (GPT) has demonstrates its great success in natural language processing and related techniques have been adapted into molecular modeling. Considering that text is the most important record for scientific discovery, in this paper, we propose MolXPT, a unified language model of text and molecules pre-trained on SMILES (a sequence representation of molecules) wrapped by text. Briefly, we detect the molecule names in each sequence and replace them to the corresponding SMILES. In this way, the SMILES could leverage the information from surrounding text, and vice versa. The above wrapped sequences, text sequences from PubMed and SMILES sequences from PubChem are all fed into a language model for pre-training. Experimental results demonstrate that MolXPT outperforms strong baselines of molecular property prediction on MoleculeNet, performs comparably to the best model in text-molecule translation while using less than half of its parameters, and enables zero-shot molecular generation without finetuning.
Audience-specific Explanations for Machine Translation
In machine translation, a common problem is that the translation of certain words even if translated can cause incomprehension of the target language audience due to different cultural backgrounds. A solution to solve this problem is to add explanations for these words. In a first step, we therefore need to identify these words or phrases. In this work we explore techniques to extract example explanations from a parallel corpus. However, the sparsity of sentences containing words that need to be explained makes building the training dataset extremely difficult. In this work, we propose a semi-automatic technique to extract these explanations from a large parallel corpus. Experiments on English->German language pair show that our method is able to extract sentence so that more than 10% of the sentences contain explanation, while only 1.9% of the original sentences contain explanations. In addition, experiments on English->French and English->Chinese language pairs also show similar conclusions. This is therefore an essential first automatic step to create a explanation dataset. Furthermore we show that the technique is robust for all three language pairs.
Shortformer: Better Language Modeling using Shorter Inputs
Increasing the input length has been a driver of progress in language modeling with transformers. We identify conditions where shorter inputs are not harmful, and achieve perplexity and efficiency improvements through two new methods that decrease input length. First, we show that initially training a model on short subsequences before moving on to longer ones both reduces overall training time and, surprisingly, substantially improves perplexity. Second, we show how to improve the efficiency of recurrence methods in transformers, which let models condition on previously processed tokens when generating sequences that exceed the maximal length the transformer can handle at once. Existing methods require computationally expensive relative position embeddings; we introduce a simple alternative of adding absolute position embeddings to queries and keys instead of to word embeddings, which efficiently produces superior results. We show that these recurrent models also benefit from short input lengths. Combining these techniques speeds up training by a factor of 1.65, reduces memory usage, and substantially improves perplexity on WikiText-103, without adding any parameters.
Learning To Retrieve Prompts for In-Context Learning
In-context learning is a recent paradigm in natural language understanding, where a large pre-trained language model (LM) observes a test instance and a few training examples as its input, and directly decodes the output without any update to its parameters. However, performance has been shown to strongly depend on the selected training examples (termed prompt). In this work, we propose an efficient method for retrieving prompts for in-context learning using annotated data and a LM. Given an input-output pair, we estimate the probability of the output given the input and a candidate training example as the prompt, and label training examples as positive or negative based on this probability. We then train an efficient dense retriever from this data, which is used to retrieve training examples as prompts at test time. We evaluate our approach on three sequence-to-sequence tasks where language utterances are mapped to meaning representations, and find that it substantially outperforms prior work and multiple baselines across the board.
ENCONTER: Entity Constrained Progressive Sequence Generation via Insertion-based Transformer
Pretrained using large amount of data, autoregressive language models are able to generate high quality sequences. However, these models do not perform well under hard lexical constraints as they lack fine control of content generation process. Progressive insertion-based transformers can overcome the above limitation and efficiently generate a sequence in parallel given some input tokens as constraint. These transformers however may fail to support hard lexical constraints as their generation process is more likely to terminate prematurely. The paper analyses such early termination problems and proposes the Entity-constrained insertion transformer (ENCONTER), a new insertion transformer that addresses the above pitfall without compromising much generation efficiency. We introduce a new training strategy that considers predefined hard lexical constraints (e.g., entities to be included in the generated sequence). Our experiments show that ENCONTER outperforms other baseline models in several performance metrics rendering it more suitable in practical applications. Our code is available at https://github.com/LARC-CMU-SMU/Enconter
Embed-Search-Align: DNA Sequence Alignment using Transformer Models
DNA sequence alignment involves assigning short DNA reads to the most probable locations on an extensive reference genome. This process is crucial for various genomic analyses, including variant calling, transcriptomics, and epigenomics. Conventional methods, refined over decades, tackle this challenge in 2 steps: genome indexing followed by efficient search to locate likely positions for given reads. Building on the success of Large Language Models in encoding text into embeddings, where the distance metric captures semantic similarity, recent efforts have explored whether the same Transformer architecture can produce embeddings for DNA sequences. Such models have shown early promise in classifying short DNA sequences, such as detecting coding/non-coding regions, and enhancer, promoter sequences. However, performance at sequence classification tasks does not translate to sequence alignment, where it is necessary to search across the genome to align each read, a significantly longer-range task. We bridge this gap by framing the Sequence Alignment task for Transformer models as an "Embed-Search-Align" task. In this framework, a novel Reference-Free DNA Embedding model generates embeddings of reads and reference fragments, which are projected into a shared vector space where the read-fragment distance is used as a surrogate for alignment. Technical contributions include: (1) Contrastive loss for self-supervised training of DNA sequence representations, facilitating rich reference-free, sequence-level embeddings, and (2) a DNA vector store to enable search across fragments on a global scale. DNA-ESA is 99% accurate when aligning 250-length reads onto a human genome (3gb), rivaling conventional methods such as Bowtie and BWA-Mem. DNA-ESA exceeds the performance of 6 Transformer model baselines such as Nucleotide Transformer, Hyena-DNA, and shows task transfer across chromosomes and species.
Recite, Reconstruct, Recollect: Memorization in LMs as a Multifaceted Phenomenon
Memorization in language models is typically treated as a homogenous phenomenon, neglecting the specifics of the memorized data. We instead model memorization as the effect of a set of complex factors that describe each sample and relate it to the model and corpus. To build intuition around these factors, we break memorization down into a taxonomy: recitation of highly duplicated sequences, reconstruction of inherently predictable sequences, and recollection of sequences that are neither. We demonstrate the usefulness of our taxonomy by using it to construct a predictive model for memorization. By analyzing dependencies and inspecting the weights of the predictive model, we find that different factors influence the likelihood of memorization differently depending on the taxonomic category.
Multimodal Pretraining for Dense Video Captioning
Learning specific hands-on skills such as cooking, car maintenance, and home repairs increasingly happens via instructional videos. The user experience with such videos is known to be improved by meta-information such as time-stamped annotations for the main steps involved. Generating such annotations automatically is challenging, and we describe here two relevant contributions. First, we construct and release a new dense video captioning dataset, Video Timeline Tags (ViTT), featuring a variety of instructional videos together with time-stamped annotations. Second, we explore several multimodal sequence-to-sequence pretraining strategies that leverage large unsupervised datasets of videos and caption-like texts. We pretrain and subsequently finetune dense video captioning models using both YouCook2 and ViTT. We show that such models generalize well and are robust over a wide variety of instructional videos.
To Asymmetry and Beyond: Structured Pruning of Sequence to Sequence Models for Improved Inference Efficiency
Sequence-to-sequence language models can be used to produce abstractive summaries which are coherent, relevant, and concise. Still, model sizes can make deployment in latency-sensitive or web-scale implementations difficult. This paper studies the relationship between model size, structured pruning, inference efficiency, and summarization accuracy on widely used summarization datasets. We show that model accuracy is tied to the encoder size while inference efficiency is connected to the decoder. Using asymmetric pruning can lead to nearly 3x improvement in inference latency with ~1 point loss in Rouge-2. Moreover, we find both the average degradation and the role of asymmetry to be consistent across model sizes and variations in datasets.
Optimized Table Tokenization for Table Structure Recognition
Extracting tables from documents is a crucial task in any document conversion pipeline. Recently, transformer-based models have demonstrated that table-structure can be recognized with impressive accuracy using Image-to-Markup-Sequence (Im2Seq) approaches. Taking only the image of a table, such models predict a sequence of tokens (e.g. in HTML, LaTeX) which represent the structure of the table. Since the token representation of the table structure has a significant impact on the accuracy and run-time performance of any Im2Seq model, we investigate in this paper how table-structure representation can be optimised. We propose a new, optimised table-structure language (OTSL) with a minimized vocabulary and specific rules. The benefits of OTSL are that it reduces the number of tokens to 5 (HTML needs 28+) and shortens the sequence length to half of HTML on average. Consequently, model accuracy improves significantly, inference time is halved compared to HTML-based models, and the predicted table structures are always syntactically correct. This in turn eliminates most post-processing needs.
Insertion Language Models: Sequence Generation with Arbitrary-Position Insertions
Autoregressive models (ARMs), which predict subsequent tokens one-by-one ``from left to right,'' have achieved significant success across a wide range of sequence generation tasks. However, they struggle to accurately represent sequences that require satisfying sophisticated constraints or whose sequential dependencies are better addressed by out-of-order generation. Masked Diffusion Models (MDMs) address some of these limitations, but the process of unmasking multiple tokens simultaneously in MDMs can introduce incoherences, and MDMs cannot handle arbitrary infilling constraints when the number of tokens to be filled in is not known in advance. In this work, we introduce Insertion Language Models (ILMs), which learn to insert tokens at arbitrary positions in a sequence -- that is, they select jointly both the position and the vocabulary element to be inserted. By inserting tokens one at a time, ILMs can represent strong dependencies between tokens, and their ability to generate sequences in arbitrary order allows them to accurately model sequences where token dependencies do not follow a left-to-right sequential structure. To train ILMs, we propose a tailored network parameterization and use a simple denoising objective. Our empirical evaluation demonstrates that ILMs outperform both ARMs and MDMs on common planning tasks. Furthermore, we show that ILMs outperform MDMs and perform on par with ARMs in an unconditional text generation task while offering greater flexibility than MDMs in arbitrary-length text infilling.
Extending Memory for Language Modelling
Breakthroughs in deep learning and memory networks have made major advances in natural language understanding. Language is sequential and information carried through the sequence can be captured through memory networks. Learning the sequence is one of the key aspects in learning the language. However, memory networks are not capable of holding infinitely long sequences in their memories and are limited by various constraints such as the vanishing or exploding gradient problem. Therefore, natural language understanding models are affected when presented with long sequential text. We introduce Long Term Memory network (LTM) to learn from infinitely long sequences. LTM gives priority to the current inputs to allow it to have a high impact. Language modeling is an important factor in natural language understanding. LTM was tested in language modeling, which requires long term memory. LTM is tested on Penn Tree bank dataset, Google Billion Word dataset and WikiText-2 dataset. We compare LTM with other language models which require long term memory.
BASS: Block-wise Adaptation for Speech Summarization
End-to-end speech summarization has been shown to improve performance over cascade baselines. However, such models are difficult to train on very large inputs (dozens of minutes or hours) owing to compute restrictions and are hence trained with truncated model inputs. Truncation leads to poorer models, and a solution to this problem rests in block-wise modeling, i.e., processing a portion of the input frames at a time. In this paper, we develop a method that allows one to train summarization models on very long sequences in an incremental manner. Speech summarization is realized as a streaming process, where hypothesis summaries are updated every block based on new acoustic information. We devise and test strategies to pass semantic context across the blocks. Experiments on the How2 dataset demonstrate that the proposed block-wise training method improves by 3 points absolute on ROUGE-L over a truncated input baseline.
fairseq: A Fast, Extensible Toolkit for Sequence Modeling
fairseq is an open-source sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling, and other text generation tasks. The toolkit is based on PyTorch and supports distributed training across multiple GPUs and machines. We also support fast mixed-precision training and inference on modern GPUs. A demo video can be found at https://www.youtube.com/watch?v=OtgDdWtHvto
Abstractive Text Summarization Using Sequence-to-Sequence RNNs and Beyond
In this work, we model abstractive text summarization using Attentional Encoder-Decoder Recurrent Neural Networks, and show that they achieve state-of-the-art performance on two different corpora. We propose several novel models that address critical problems in summarization that are not adequately modeled by the basic architecture, such as modeling key-words, capturing the hierarchy of sentence-to-word structure, and emitting words that are rare or unseen at training time. Our work shows that many of our proposed models contribute to further improvement in performance. We also propose a new dataset consisting of multi-sentence summaries, and establish performance benchmarks for further research.
Document Expansion by Query Prediction
One technique to improve the retrieval effectiveness of a search engine is to expand documents with terms that are related or representative of the documents' content.From the perspective of a question answering system, this might comprise questions the document can potentially answer. Following this observation, we propose a simple method that predicts which queries will be issued for a given document and then expands it with those predictions with a vanilla sequence-to-sequence model, trained using datasets consisting of pairs of query and relevant documents. By combining our method with a highly-effective re-ranking component, we achieve the state of the art in two retrieval tasks. In a latency-critical regime, retrieval results alone (without re-ranking) approach the effectiveness of more computationally expensive neural re-rankers but are much faster.
FormNet: Structural Encoding beyond Sequential Modeling in Form Document Information Extraction
Sequence modeling has demonstrated state-of-the-art performance on natural language and document understanding tasks. However, it is challenging to correctly serialize tokens in form-like documents in practice due to their variety of layout patterns. We propose FormNet, a structure-aware sequence model to mitigate the suboptimal serialization of forms. First, we design Rich Attention that leverages the spatial relationship between tokens in a form for more precise attention score calculation. Second, we construct Super-Tokens for each word by embedding representations from their neighboring tokens through graph convolutions. FormNet therefore explicitly recovers local syntactic information that may have been lost during serialization. In experiments, FormNet outperforms existing methods with a more compact model size and less pre-training data, establishing new state-of-the-art performance on CORD, FUNSD and Payment benchmarks.
From Cloze to Comprehension: Retrofitting Pre-trained Masked Language Model to Pre-trained Machine Reader
We present Pre-trained Machine Reader (PMR), a novel method for retrofitting pre-trained masked language models (MLMs) to pre-trained machine reading comprehension (MRC) models without acquiring labeled data. PMR can resolve the discrepancy between model pre-training and downstream fine-tuning of existing MLMs. To build the proposed PMR, we constructed a large volume of general-purpose and high-quality MRC-style training data by using Wikipedia hyperlinks and designed a Wiki Anchor Extraction task to guide the MRC-style pre-training. Apart from its simplicity, PMR effectively solves extraction tasks, such as Extractive Question Answering and Named Entity Recognition. PMR shows tremendous improvements over existing approaches, especially in low-resource scenarios. When applied to the sequence classification task in the MRC formulation, PMR enables the extraction of high-quality rationales to explain the classification process, thereby providing greater prediction explainability. PMR also has the potential to serve as a unified model for tackling various extraction and classification tasks in the MRC formulation.
SupCL-Seq: Supervised Contrastive Learning for Downstream Optimized Sequence Representations
While contrastive learning is proven to be an effective training strategy in computer vision, Natural Language Processing (NLP) is only recently adopting it as a self-supervised alternative to Masked Language Modeling (MLM) for improving sequence representations. This paper introduces SupCL-Seq, which extends the supervised contrastive learning from computer vision to the optimization of sequence representations in NLP. By altering the dropout mask probability in standard Transformer architectures, for every representation (anchor), we generate augmented altered views. A supervised contrastive loss is then utilized to maximize the system's capability of pulling together similar samples (e.g., anchors and their altered views) and pushing apart the samples belonging to the other classes. Despite its simplicity, SupCLSeq leads to large gains in many sequence classification tasks on the GLUE benchmark compared to a standard BERTbase, including 6% absolute improvement on CoLA, 5.4% on MRPC, 4.7% on RTE and 2.6% on STSB. We also show consistent gains over self supervised contrastively learned representations, especially in non-semantic tasks. Finally we show that these gains are not solely due to augmentation, but rather to a downstream optimized sequence representation. Code: https://github.com/hooman650/SupCL-Seq
Towards Neural Phrase-based Machine Translation
In this paper, we present Neural Phrase-based Machine Translation (NPMT). Our method explicitly models the phrase structures in output sequences using Sleep-WAke Networks (SWAN), a recently proposed segmentation-based sequence modeling method. To mitigate the monotonic alignment requirement of SWAN, we introduce a new layer to perform (soft) local reordering of input sequences. Different from existing neural machine translation (NMT) approaches, NPMT does not use attention-based decoding mechanisms. Instead, it directly outputs phrases in a sequential order and can decode in linear time. Our experiments show that NPMT achieves superior performances on IWSLT 2014 German-English/English-German and IWSLT 2015 English-Vietnamese machine translation tasks compared with strong NMT baselines. We also observe that our method produces meaningful phrases in output languages.
Joint Automatic Speech Recognition And Structure Learning For Better Speech Understanding
Spoken language understanding (SLU) is a structure prediction task in the field of speech. Recently, many works on SLU that treat it as a sequence-to-sequence task have achieved great success. However, This method is not suitable for simultaneous speech recognition and understanding. In this paper, we propose a joint speech recognition and structure learning framework (JSRSL), an end-to-end SLU model based on span, which can accurately transcribe speech and extract structured content simultaneously. We conduct experiments on name entity recognition and intent classification using the Chinese dataset AISHELL-NER and the English dataset SLURP. The results show that our proposed method not only outperforms the traditional sequence-to-sequence method in both transcription and extraction capabilities but also achieves state-of-the-art performance on the two datasets.
Sequence-Level Knowledge Distillation for Class-Incremental End-to-End Spoken Language Understanding
The ability to learn new concepts sequentially is a major weakness for modern neural networks, which hinders their use in non-stationary environments. Their propensity to fit the current data distribution to the detriment of the past acquired knowledge leads to the catastrophic forgetting issue. In this work we tackle the problem of Spoken Language Understanding applied to a continual learning setting. We first define a class-incremental scenario for the SLURP dataset. Then, we propose three knowledge distillation (KD) approaches to mitigate forgetting for a sequence-to-sequence transformer model: the first KD method is applied to the encoder output (audio-KD), and the other two work on the decoder output, either directly on the token-level (tok-KD) or on the sequence-level (seq-KD) distributions. We show that the seq-KD substantially improves all the performance metrics, and its combination with the audio-KD further decreases the average WER and enhances the entity prediction metric.
Best of Both Worlds: Advantages of Hybrid Graph Sequence Models
Modern sequence models (e.g., Transformers, linear RNNs, etc.) emerged as dominant backbones of recent deep learning frameworks, mainly due to their efficiency, representational power, and/or ability to capture long-range dependencies. Adopting these sequence models for graph-structured data has recently gained popularity as the alternative to Message Passing Neural Networks (MPNNs). There is, however, a lack of a common foundation about what constitutes a good graph sequence model, and a mathematical description of the benefits and deficiencies in adopting different sequence models for learning on graphs. To this end, we first present Graph Sequence Model (GSM), a unifying framework for adopting sequence models for graphs, consisting of three main steps: (1) Tokenization, which translates the graph into a set of sequences; (2) Local Encoding, which encodes local neighborhoods around each node; and (3) Global Encoding, which employs a scalable sequence model to capture long-range dependencies within the sequences. This framework allows us to understand, evaluate, and compare the power of different sequence model backbones in graph tasks. Our theoretical evaluations of the representation power of Transformers and modern recurrent models through the lens of global and local graph tasks show that there are both negative and positive sides for both types of models. Building on this observation, we present GSM++, a fast hybrid model that uses the Hierarchical Affinity Clustering (HAC) algorithm to tokenize the graph into hierarchical sequences, and then employs a hybrid architecture of Transformer to encode these sequences. Our theoretical and experimental results support the design of GSM++, showing that GSM++ outperforms baselines in most benchmark evaluations.
Machine learning applications to DNA subsequence and restriction site analysis
Based on the BioBricks standard, restriction synthesis is a novel catabolic iterative DNA synthesis method that utilizes endonucleases to synthesize a query sequence from a reference sequence. In this work, the reference sequence is built from shorter subsequences by classifying them as applicable or inapplicable for the synthesis method using three different machine learning methods: Support Vector Machines (SVMs), random forest, and Convolution Neural Networks (CNNs). Before applying these methods to the data, a series of feature selection, curation, and reduction steps are applied to create an accurate and representative feature space. Following these preprocessing steps, three different pipelines are proposed to classify subsequences based on their nucleotide sequence and other relevant features corresponding to the restriction sites of over 200 endonucleases. The sensitivity using SVMs, random forest, and CNNs are 94.9%, 92.7%, 91.4%, respectively. Moreover, each method scores lower in specificity with SVMs, random forest, and CNNs resulting in 77.4%, 85.7%, and 82.4%, respectively. In addition to analyzing these results, the misclassifications in SVMs and CNNs are investigated. Across these two models, different features with a derived nucleotide specificity visually contribute more to classification compared to other features. This observation is an important factor when considering new nucleotide sensitivity features for future studies.
Model-Agnostic Syntactical Information for Pre-Trained Programming Language Models
Pre-trained Programming Language Models (PPLMs) achieved many recent states of the art results for many code-related software engineering tasks. Though some studies use data flow or propose tree-based models that utilize Abstract Syntax Tree (AST), most PPLMs do not fully utilize the rich syntactical information in source code. Still, the input is considered a sequence of tokens. There are two issues; the first is computational inefficiency due to the quadratic relationship between input length and attention complexity. Second, any syntactical information, when needed as an extra input to the current PPLMs, requires the model to be pre-trained from scratch, wasting all the computational resources already used for pre-training the current models. In this work, we propose Named Entity Recognition (NER) adapters, lightweight modules that can be inserted into Transformer blocks to learn type information extracted from the AST. These adapters can be used with current PPLMs such as CodeBERT, GraphCodeBERT, and CodeT5. We train the NER adapters using a novel Token Type Classification objective function (TTC). We insert our proposed work in CodeBERT, building CodeBERTER, and evaluate the performance on two tasks of code refinement and code summarization. CodeBERTER improves the accuracy of code refinement from 16.4 to 17.8 while using 20% of training parameter budget compared to the fully fine-tuning approach, and the BLEU score of code summarization from 14.75 to 15.90 while reducing 77% of training parameters compared to the fully fine-tuning approach.
Mining for meaning: from vision to language through multiple networks consensus
Describing visual data into natural language is a very challenging task, at the intersection of computer vision, natural language processing and machine learning. Language goes well beyond the description of physical objects and their interactions and can convey the same abstract idea in many ways. It is both about content at the highest semantic level as well as about fluent form. Here we propose an approach to describe videos in natural language by reaching a consensus among multiple encoder-decoder networks. Finding such a consensual linguistic description, which shares common properties with a larger group, has a better chance to convey the correct meaning. We propose and train several network architectures and use different types of image, audio and video features. Each model produces its own description of the input video and the best one is chosen through an efficient, two-phase consensus process. We demonstrate the strength of our approach by obtaining state of the art results on the challenging MSR-VTT dataset.
Summarizing Patients Problems from Hospital Progress Notes Using Pre-trained Sequence-to-Sequence Models
Automatically summarizing patients' main problems from daily progress notes using natural language processing methods helps to battle against information and cognitive overload in hospital settings and potentially assists providers with computerized diagnostic decision support. Problem list summarization requires a model to understand, abstract, and generate clinical documentation. In this work, we propose a new NLP task that aims to generate a list of problems in a patient's daily care plan using input from the provider's progress notes during hospitalization. We investigate the performance of T5 and BART, two state-of-the-art seq2seq transformer architectures, in solving this problem. We provide a corpus built on top of progress notes from publicly available electronic health record progress notes in the Medical Information Mart for Intensive Care (MIMIC)-III. T5 and BART are trained on general domain text, and we experiment with a data augmentation method and a domain adaptation pre-training method to increase exposure to medical vocabulary and knowledge. Evaluation methods include ROUGE, BERTScore, cosine similarity on sentence embedding, and F-score on medical concepts. Results show that T5 with domain adaptive pre-training achieves significant performance gains compared to a rule-based system and general domain pre-trained language models, indicating a promising direction for tackling the problem summarization task.
Ord2Seq: Regarding Ordinal Regression as Label Sequence Prediction
Ordinal regression refers to classifying object instances into ordinal categories. It has been widely studied in many scenarios, such as medical disease grading, movie rating, etc. Known methods focused only on learning inter-class ordinal relationships, but still incur limitations in distinguishing adjacent categories thus far. In this paper, we propose a simple sequence prediction framework for ordinal regression called Ord2Seq, which, for the first time, transforms each ordinal category label into a special label sequence and thus regards an ordinal regression task as a sequence prediction process. In this way, we decompose an ordinal regression task into a series of recursive binary classification steps, so as to subtly distinguish adjacent categories. Comprehensive experiments show the effectiveness of distinguishing adjacent categories for performance improvement and our new approach exceeds state-of-the-art performances in four different scenarios. Codes are available at https://github.com/wjh892521292/Ord2Seq.
Memformer: A Memory-Augmented Transformer for Sequence Modeling
Transformers have reached remarkable success in sequence modeling. However, these models have efficiency issues as they need to store all the history token-level representations as memory. We present Memformer, an efficient neural network for sequence modeling, that utilizes an external dynamic memory to encode and retrieve past information. Our model achieves linear time complexity and constant memory space complexity when processing long sequences. We also propose a new optimization scheme, memory replay back-propagation (MRBP), which promotes long-range back-propagation through time with a significantly reduced memory requirement. Experimental results show that Memformer has achieved comparable performance compared to the baselines by using 8.1x less memory space and 3.2x faster on inference. Analysis of the attention pattern shows that our external memory slots can encode and retain important information through timesteps.
Low-Perplexity LLM-Generated Sequences and Where To Find Them
As Large Language Models (LLMs) become increasingly widespread, understanding how specific training data shapes their outputs is crucial for transparency, accountability, privacy, and fairness. To explore how LLMs leverage and replicate their training data, we introduce a systematic approach centered on analyzing low-perplexity sequences - high-probability text spans generated by the model. Our pipeline reliably extracts such long sequences across diverse topics while avoiding degeneration, then traces them back to their sources in the training data. Surprisingly, we find that a substantial portion of these low-perplexity spans cannot be mapped to the corpus. For those that do match, we quantify the distribution of occurrences across source documents, highlighting the scope and nature of verbatim recall and paving a way toward better understanding of how LLMs training data impacts their behavior.
Generating Wikipedia by Summarizing Long Sequences
We show that generating English Wikipedia articles can be approached as a multi- document summarization of source documents. We use extractive summarization to coarsely identify salient information and a neural abstractive model to generate the article. For the abstractive model, we introduce a decoder-only architecture that can scalably attend to very long sequences, much longer than typical encoder- decoder architectures used in sequence transduction. We show that this model can generate fluent, coherent multi-sentence paragraphs and even whole Wikipedia articles. When given reference documents, we show it can extract relevant factual information as reflected in perplexity, ROUGE scores and human evaluations.
Multimodal Abstractive Summarization for How2 Videos
In this paper, we study abstractive summarization for open-domain videos. Unlike the traditional text news summarization, the goal is less to "compress" text information but rather to provide a fluent textual summary of information that has been collected and fused from different source modalities, in our case video and audio transcripts (or text). We show how a multi-source sequence-to-sequence model with hierarchical attention can integrate information from different modalities into a coherent output, compare various models trained with different modalities and present pilot experiments on the How2 corpus of instructional videos. We also propose a new evaluation metric (Content F1) for abstractive summarization task that measures semantic adequacy rather than fluency of the summaries, which is covered by metrics like ROUGE and BLEU.
Motion2Language, unsupervised learning of synchronized semantic motion segmentation
In this paper, we investigate building a sequence to sequence architecture for motion to language translation and synchronization. The aim is to translate motion capture inputs into English natural-language descriptions, such that the descriptions are generated synchronously with the actions performed, enabling semantic segmentation as a byproduct, but without requiring synchronized training data. We propose a new recurrent formulation of local attention that is suited for synchronous/live text generation, as well as an improved motion encoder architecture better suited to smaller data and for synchronous generation. We evaluate both contributions in individual experiments, using the standard BLEU4 metric, as well as a simple semantic equivalence measure, on the KIT motion language dataset. In a follow-up experiment, we assess the quality of the synchronization of generated text in our proposed approaches through multiple evaluation metrics. We find that both contributions to the attention mechanism and the encoder architecture additively improve the quality of generated text (BLEU and semantic equivalence), but also of synchronization. Our code is available at https://github.com/rd20karim/M2T-Segmentation/tree/main
VacancySBERT: the approach for representation of titles and skills for semantic similarity search in the recruitment domain
The paper focuses on deep learning semantic search algorithms applied in the HR domain. The aim of the article is developing a novel approach to training a Siamese network to link the skills mentioned in the job ad with the title. It has been shown that the title normalization process can be based either on classification or similarity comparison approaches. While classification algorithms strive to classify a sample into predefined set of categories, similarity search algorithms take a more flexible approach, since they are designed to find samples that are similar to a given query sample, without requiring pre-defined classes and labels. In this article semantic similarity search to find candidates for title normalization has been used. A pre-trained language model has been adapted while teaching it to match titles and skills based on co-occurrence information. For the purpose of this research fifty billion title-descriptions pairs had been collected for training the model and thirty three thousand title-description-normalized title triplets, where normalized job title was picked up manually by job ad creator for testing purposes. As baselines FastText, BERT, SentenceBert and JobBert have been used. As a metric of the accuracy of the designed algorithm is Recall in top one, five and ten model's suggestions. It has been shown that the novel training objective lets it achieve significant improvement in comparison to other generic and specific text encoders. Two settings with treating titles as standalone strings, and with included skills as additional features during inference have been used and the results have been compared in this article. Improvements by 10% and 21.5% have been achieved using VacancySBERT and VacancySBERT (with skills) respectively. The benchmark has been developed as open-source to foster further research in the area.
Do Long-Range Language Models Actually Use Long-Range Context?
Language models are generally trained on short, truncated input sequences, which limits their ability to use discourse-level information present in long-range context to improve their predictions. Recent efforts to improve the efficiency of self-attention have led to a proliferation of long-range Transformer language models, which can process much longer sequences than models of the past. However, the ways in which such models take advantage of the long-range context remain unclear. In this paper, we perform a fine-grained analysis of two long-range Transformer language models (including the Routing Transformer, which achieves state-of-the-art perplexity on the PG-19 long-sequence LM benchmark dataset) that accept input sequences of up to 8K tokens. Our results reveal that providing long-range context (i.e., beyond the previous 2K tokens) to these models only improves their predictions on a small set of tokens (e.g., those that can be copied from the distant context) and does not help at all for sentence-level prediction tasks. Finally, we discover that PG-19 contains a variety of different document types and domains, and that long-range context helps most for literary novels (as opposed to textbooks or magazines).
Controllable Sentence Simplification
Text simplification aims at making a text easier to read and understand by simplifying grammar and structure while keeping the underlying information identical. It is often considered an all-purpose generic task where the same simplification is suitable for all; however multiple audiences can benefit from simplified text in different ways. We adapt a discrete parametrization mechanism that provides explicit control on simplification systems based on Sequence-to-Sequence models. As a result, users can condition the simplifications returned by a model on attributes such as length, amount of paraphrasing, lexical complexity and syntactic complexity. We also show that carefully chosen values of these attributes allow out-of-the-box Sequence-to-Sequence models to outperform their standard counterparts on simplification benchmarks. Our model, which we call ACCESS (as shorthand for AudienCe-CEntric Sentence Simplification), establishes the state of the art at 41.87 SARI on the WikiLarge test set, a +1.42 improvement over the best previously reported score.
Keeping Notes: Conditional Natural Language Generation with a Scratchpad Mechanism
We introduce the Scratchpad Mechanism, a novel addition to the sequence-to-sequence (seq2seq) neural network architecture and demonstrate its effectiveness in improving the overall fluency of seq2seq models for natural language generation tasks. By enabling the decoder at each time step to write to all of the encoder output layers, Scratchpad can employ the encoder as a "scratchpad" memory to keep track of what has been generated so far and thereby guide future generation. We evaluate Scratchpad in the context of three well-studied natural language generation tasks --- Machine Translation, Question Generation, and Text Summarization --- and obtain state-of-the-art or comparable performance on standard datasets for each task. Qualitative assessments in the form of human judgements (question generation), attention visualization (MT), and sample output (summarization) provide further evidence of the ability of Scratchpad to generate fluent and expressive output.
Longhorn: State Space Models are Amortized Online Learners
The most fundamental capability of modern AI methods such as Large Language Models (LLMs) is the ability to predict the next token in a long sequence of tokens, known as ``sequence modeling." Although the Transformers model is the current dominant approach to sequence modeling, its quadratic computational cost with respect to sequence length is a significant drawback. State-space models (SSMs) offer a promising alternative due to their linear decoding efficiency and high parallelizability during training. However, existing SSMs often rely on seemingly ad hoc linear recurrence designs. In this work, we explore SSM design through the lens of online learning, conceptualizing SSMs as meta-modules for specific online learning problems. This approach links SSM design to formulating precise online learning objectives, with state transition rules derived from optimizing these objectives. Based on this insight, we introduce a novel deep SSM architecture based on the implicit update for optimizing an online regression objective. Our experimental results show that our models outperform state-of-the-art SSMs, including the Mamba model, on standard sequence modeling benchmarks and language modeling tasks.
A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention
Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: https://github.com/C4AI/gap-text2sql.
Leveraging Biomolecule and Natural Language through Multi-Modal Learning: A Survey
The integration of biomolecular modeling with natural language (BL) has emerged as a promising interdisciplinary area at the intersection of artificial intelligence, chemistry and biology. This approach leverages the rich, multifaceted descriptions of biomolecules contained within textual data sources to enhance our fundamental understanding and enable downstream computational tasks such as biomolecule property prediction. The fusion of the nuanced narratives expressed through natural language with the structural and functional specifics of biomolecules described via various molecular modeling techniques opens new avenues for comprehensively representing and analyzing biomolecules. By incorporating the contextual language data that surrounds biomolecules into their modeling, BL aims to capture a holistic view encompassing both the symbolic qualities conveyed through language as well as quantitative structural characteristics. In this review, we provide an extensive analysis of recent advancements achieved through cross modeling of biomolecules and natural language. (1) We begin by outlining the technical representations of biomolecules employed, including sequences, 2D graphs, and 3D structures. (2) We then examine in depth the rationale and key objectives underlying effective multi-modal integration of language and molecular data sources. (3) We subsequently survey the practical applications enabled to date in this developing research area. (4) We also compile and summarize the available resources and datasets to facilitate future work. (5) Looking ahead, we identify several promising research directions worthy of further exploration and investment to continue advancing the field. The related resources and contents are updating in https://github.com/QizhiPei/Awesome-Biomolecule-Language-Cross-Modeling.
Leveraging ParsBERT and Pretrained mT5 for Persian Abstractive Text Summarization
Text summarization is one of the most critical Natural Language Processing (NLP) tasks. More and more researches are conducted in this field every day. Pre-trained transformer-based encoder-decoder models have begun to gain popularity for these tasks. This paper proposes two methods to address this task and introduces a novel dataset named pn-summary for Persian abstractive text summarization. The models employed in this paper are mT5 and an encoder-decoder version of the ParsBERT model (i.e., a monolingual BERT model for Persian). These models are fine-tuned on the pn-summary dataset. The current work is the first of its kind and, by achieving promising results, can serve as a baseline for any future work.
Improve Transformer Models with Better Relative Position Embeddings
Transformer architectures rely on explicit position encodings in order to preserve a notion of word order. In this paper, we argue that existing work does not fully utilize position information. For example, the initial proposal of a sinusoid embedding is fixed and not learnable. In this paper, we first review absolute position embeddings and existing methods for relative position embeddings. We then propose new techniques that encourage increased interaction between query, key and relative position embeddings in the self-attention mechanism. Our most promising approach is a generalization of the absolute position embedding, improving results on SQuAD1.1 compared to previous position embeddings approaches. In addition, we address the inductive property of whether a position embedding can be robust enough to handle long sequences. We demonstrate empirically that our relative position embedding method is reasonably generalized and robust from the inductive perspective. Finally, we show that our proposed method can be adopted as a near drop-in replacement for improving the accuracy of large models with a small computational budget.
A Practical Survey on Faster and Lighter Transformers
Recurrent neural networks are effective models to process sequences. However, they are unable to learn long-term dependencies because of their inherent sequential nature. As a solution, Vaswani et al. introduced the Transformer, a model solely based on the attention mechanism that is able to relate any two positions of the input sequence, hence modelling arbitrary long dependencies. The Transformer has improved the state-of-the-art across numerous sequence modelling tasks. However, its effectiveness comes at the expense of a quadratic computational and memory complexity with respect to the sequence length, hindering its adoption. Fortunately, the deep learning community has always been interested in improving the models' efficiency, leading to a plethora of solutions such as parameter sharing, pruning, mixed-precision, and knowledge distillation. Recently, researchers have directly addressed the Transformer's limitation by designing lower-complexity alternatives such as the Longformer, Reformer, Linformer, and Performer. However, due to the wide range of solutions, it has become challenging for researchers and practitioners to determine which methods to apply in practice in order to meet the desired trade-off between capacity, computation, and memory. This survey addresses this issue by investigating popular approaches to make Transformers faster and lighter and by providing a comprehensive explanation of the methods' strengths, limitations, and underlying assumptions.
Convolutional Collaborative Filter Network for Video Based Recommendation Systems
This analysis explores the temporal sequencing of objects in a movie trailer. Temporal sequencing of objects in a movie trailer (e.g., a long shot of an object vs intermittent short shots) can convey information about the type of movie, plot of the movie, role of the main characters, and the filmmakers cinematographic choices. When combined with historical customer data, sequencing analysis can be used to improve predictions of customer behavior. E.g., a customer buys tickets to a new movie and maybe the customer has seen movies in the past that contained similar sequences. To explore object sequencing in movie trailers, we propose a video convolutional network to capture actions and scenes that are predictive of customers' preferences. The model learns the specific nature of sequences for different types of objects (e.g., cars vs faces), and the role of sequences in predicting customer future behavior. We show how such a temporal-aware model outperforms simple feature pooling methods proposed in our previous works and, importantly, demonstrate the additional model explain-ability allowed by such a model.
UniGenX: Unified Generation of Sequence and Structure with Autoregressive Diffusion
Unified generation of sequence and structure for scientific data (e.g., materials, molecules, proteins) is a critical task. Existing approaches primarily rely on either autoregressive sequence models or diffusion models, each offering distinct advantages and facing notable limitations. Autoregressive models, such as GPT, Llama, and Phi-4, have demonstrated remarkable success in natural language generation and have been extended to multimodal tasks (e.g., image, video, and audio) using advanced encoders like VQ-VAE to represent complex modalities as discrete sequences. However, their direct application to scientific domains is challenging due to the high precision requirements and the diverse nature of scientific data. On the other hand, diffusion models excel at generating high-dimensional scientific data, such as protein, molecule, and material structures, with remarkable accuracy. Yet, their inability to effectively model sequences limits their potential as general-purpose multimodal foundation models. To address these challenges, we propose UniGenX, a unified framework that combines autoregressive next-token prediction with conditional diffusion models. This integration leverages the strengths of autoregressive models to ease the training of conditional diffusion models, while diffusion-based generative heads enhance the precision of autoregressive predictions. We validate the effectiveness of UniGenX on material and small molecule generation tasks, achieving a significant leap in state-of-the-art performance for material crystal structure prediction and establishing new state-of-the-art results for small molecule structure prediction, de novo design, and conditional generation. Notably, UniGenX demonstrates significant improvements, especially in handling long sequences for complex structures, showcasing its efficacy as a versatile tool for scientific data generation.
ERNIE-Layout: Layout Knowledge Enhanced Pre-training for Visually-rich Document Understanding
Recent years have witnessed the rise and success of pre-training techniques in visually-rich document understanding. However, most existing methods lack the systematic mining and utilization of layout-centered knowledge, leading to sub-optimal performances. In this paper, we propose ERNIE-Layout, a novel document pre-training solution with layout knowledge enhancement in the whole workflow, to learn better representations that combine the features from text, layout, and image. Specifically, we first rearrange input sequences in the serialization stage, and then present a correlative pre-training task, reading order prediction, to learn the proper reading order of documents. To improve the layout awareness of the model, we integrate a spatial-aware disentangled attention into the multi-modal transformer and a replaced regions prediction task into the pre-training phase. Experimental results show that ERNIE-Layout achieves superior performance on various downstream tasks, setting new state-of-the-art on key information extraction, document image classification, and document question answering datasets. The code and models are publicly available at http://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/ernie-layout.
Faster Re-translation Using Non-Autoregressive Model For Simultaneous Neural Machine Translation
Recently, simultaneous translation has gathered a lot of attention since it enables compelling applications such as subtitle translation for a live event or real-time video-call translation. Some of these translation applications allow editing of partial translation giving rise to re-translation approaches. The current re-translation approaches are based on autoregressive sequence generation models (ReTA), which generate tar-get tokens in the (partial) translation sequentially. The multiple re-translations with sequential generation inReTAmodelslead to an increased inference time gap between the incoming source input and the corresponding target output as the source input grows. Besides, due to the large number of inference operations involved, the ReTA models are not favorable for resource-constrained devices. In this work, we propose a faster re-translation system based on a non-autoregressive sequence generation model (FReTNA) to overcome the aforementioned limitations. We evaluate the proposed model on multiple translation tasks and our model reduces the inference times by several orders and achieves a competitive BLEUscore compared to the ReTA and streaming (Wait-k) models.The proposed model reduces the average computation time by a factor of 20 when compared to the ReTA model by incurring a small drop in the translation quality. It also outperforms the streaming-based Wait-k model both in terms of computation time (1.5 times lower) and translation quality.
Unsupervised Learning of Sentence Embeddings using Compositional n-Gram Features
The recent tremendous success of unsupervised word embeddings in a multitude of applications raises the obvious question if similar methods could be derived to improve embeddings (i.e. semantic representations) of word sequences as well. We present a simple but efficient unsupervised objective to train distributed representations of sentences. Our method outperforms the state-of-the-art unsupervised models on most benchmark tasks, highlighting the robustness of the produced general-purpose sentence embeddings.
Design Proteins Using Large Language Models: Enhancements and Comparative Analyses
Pre-trained LLMs have demonstrated substantial capabilities across a range of conventional natural language processing (NLP) tasks, such as summarization and entity recognition. In this paper, we explore the application of LLMs in the generation of high-quality protein sequences. Specifically, we adopt a suite of pre-trained LLMs, including Mistral-7B1, Llama-2-7B2, Llama-3-8B3, and gemma-7B4, to produce valid protein sequences. All of these models are publicly available.5 Unlike previous work in this field, our approach utilizes a relatively small dataset comprising 42,000 distinct human protein sequences. We retrain these models to process protein-related data, ensuring the generation of biologically feasible protein structures. Our findings demonstrate that even with limited data, the adapted models exhibit efficiency comparable to established protein-focused models such as ProGen varieties, ProtGPT2, and ProLLaMA, which were trained on millions of protein sequences. To validate and quantify the performance of our models, we conduct comparative analyses employing standard metrics such as pLDDT, RMSD, TM-score, and REU. Furthermore, we commit to making the trained versions of all four models publicly available, fostering greater transparency and collaboration in the field of computational biology.
IndicBART: A Pre-trained Model for Indic Natural Language Generation
In this paper, we study pre-trained sequence-to-sequence models for a group of related languages, with a focus on Indic languages. We present IndicBART, a multilingual, sequence-to-sequence pre-trained model focusing on 11 Indic languages and English. IndicBART utilizes the orthographic similarity between Indic scripts to improve transfer learning between similar Indic languages. We evaluate IndicBART on two NLG tasks: Neural Machine Translation (NMT) and extreme summarization. Our experiments on NMT and extreme summarization show that a model specific to related languages like IndicBART is competitive with large pre-trained models like mBART50 despite being significantly smaller. It also performs well on very low-resource translation scenarios where languages are not included in pre-training or fine-tuning. Script sharing, multilingual training, and better utilization of limited model capacity contribute to the good performance of the compact IndicBART model.
Detecting Hallucinated Content in Conditional Neural Sequence Generation
Neural sequence models can generate highly fluent sentences, but recent studies have also shown that they are also prone to hallucinate additional content not supported by the input. These variety of fluent but wrong outputs are particularly problematic, as it will not be possible for users to tell they are being presented incorrect content. To detect these errors, we propose a task to predict whether each token in the output sequence is hallucinated (not contained in the input) and collect new manually annotated evaluation sets for this task. We also introduce a method for learning to detect hallucinations using pretrained language models fine tuned on synthetic data that includes automatically inserted hallucinations Experiments on machine translation (MT) and abstractive summarization demonstrate that our proposed approach consistently outperforms strong baselines on all benchmark datasets. We further demonstrate how to use the token-level hallucination labels to define a fine-grained loss over the target sequence in low-resource MT and achieve significant improvements over strong baseline methods. We also apply our method to word-level quality estimation for MT and show its effectiveness in both supervised and unsupervised settings. Codes and data available at https://github.com/violet-zct/fairseq-detect-hallucination.
MambaLRP: Explaining Selective State Space Sequence Models
Recent sequence modeling approaches using selective state space sequence models, referred to as Mamba models, have seen a surge of interest. These models allow efficient processing of long sequences in linear time and are rapidly being adopted in a wide range of applications such as language modeling, demonstrating promising performance. To foster their reliable use in real-world scenarios, it is crucial to augment their transparency. Our work bridges this critical gap by bringing explainability, particularly Layer-wise Relevance Propagation (LRP), to the Mamba architecture. Guided by the axiom of relevance conservation, we identify specific components in the Mamba architecture, which cause unfaithful explanations. To remedy this issue, we propose MambaLRP, a novel algorithm within the LRP framework, which ensures a more stable and reliable relevance propagation through these components. Our proposed method is theoretically sound and excels in achieving state-of-the-art explanation performance across a diverse range of models and datasets. Moreover, MambaLRP facilitates a deeper inspection of Mamba architectures, uncovering various biases and evaluating their significance. It also enables the analysis of previous speculations regarding the long-range capabilities of Mamba models.
Describing Videos by Exploiting Temporal Structure
Recent progress in using recurrent neural networks (RNNs) for image description has motivated the exploration of their application for video description. However, while images are static, working with videos requires modeling their dynamic temporal structure and then properly integrating that information into a natural language description. In this context, we propose an approach that successfully takes into account both the local and global temporal structure of videos to produce descriptions. First, our approach incorporates a spatial temporal 3-D convolutional neural network (3-D CNN) representation of the short temporal dynamics. The 3-D CNN representation is trained on video action recognition tasks, so as to produce a representation that is tuned to human motion and behavior. Second we propose a temporal attention mechanism that allows to go beyond local temporal modeling and learns to automatically select the most relevant temporal segments given the text-generating RNN. Our approach exceeds the current state-of-art for both BLEU and METEOR metrics on the Youtube2Text dataset. We also present results on a new, larger and more challenging dataset of paired video and natural language descriptions.
Distributed Representations of Words and Phrases and their Compositionality
The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada" and "Air" cannot be easily combined to obtain "Air Canada". Motivated by this example, we present a simple method for finding phrases in text, and show that learning good vector representations for millions of phrases is possible.
E2S2: Encoding-Enhanced Sequence-to-Sequence Pretraining for Language Understanding and Generation
Sequence-to-sequence (seq2seq) learning is a popular fashion for large-scale pretraining language models. However, the prior seq2seq pretraining models generally focus on reconstructive objectives on the decoder side and neglect the effect of encoder-side supervision, which we argue may lead to sub-optimal performance. To verify our hypothesis, we first empirically study the functionalities of the encoder and decoder in seq2seq pretrained language models, and find that the encoder takes an important but under-exploitation role than the decoder regarding the downstream performance and neuron activation. Therefore, we propose an encoding-enhanced seq2seq pretraining strategy, namely E2S2, which improves the seq2seq models via integrating more efficient self-supervised information into the encoders. Specifically, E2S2 adopts two self-supervised objectives on the encoder side from two aspects: 1) locally denoising the corrupted sentence (denoising objective); and 2) globally learning better sentence representations (contrastive objective). With the help of both objectives, the encoder can effectively distinguish the noise tokens and capture high-level (i.e. syntactic and semantic) knowledge, thus strengthening the ability of seq2seq model to accurately achieve the conditional generation. On a large diversity of downstream natural language understanding and generation tasks, E2S2 dominantly improves the performance of its powerful backbone models, e.g. BART and T5. For example, upon BART backbone, we achieve +1.1% averaged gain on the general language understanding evaluation (GLUE) benchmark and +1.75% F_0.5 score improvement on CoNLL2014 dataset. We also provide in-depth analyses to show the improvement stems from better linguistic representation. We hope that our work will foster future self-supervision research on seq2seq language model pretraining.
OOVs in the Spotlight: How to Inflect them?
We focus on morphological inflection in out-of-vocabulary (OOV) conditions, an under-researched subtask in which state-of-the-art systems usually are less effective. We developed three systems: a retrograde model and two sequence-to-sequence (seq2seq) models based on LSTM and Transformer. For testing in OOV conditions, we automatically extracted a large dataset of nouns in the morphologically rich Czech language, with lemma-disjoint data splits, and we further manually annotated a real-world OOV dataset of neologisms. In the standard OOV conditions, Transformer achieves the best results, with increasing performance in ensemble with LSTM, the retrograde model and SIGMORPHON baselines. On the real-world OOV dataset of neologisms, the retrograde model outperforms all neural models. Finally, our seq2seq models achieve state-of-the-art results in 9 out of 16 languages from SIGMORPHON 2022 shared task data in the OOV evaluation (feature overlap) in the large data condition. We release the Czech OOV Inflection Dataset for rigorous evaluation in OOV conditions. Further, we release the inflection system with the seq2seq models as a ready-to-use Python library.
Retrieving Texts based on Abstract Descriptions
In this work, we aim to connect two research areas: instruction models and retrieval-based models. While instruction-tuned Large Language Models (LLMs) excel at extracting information from text, they are not suitable for semantic retrieval. Similarity search over embedding vectors allows to index and query vectors, but the similarity reflected in the embedding is sub-optimal for many use cases. We identify the task of retrieving sentences based on abstract descriptions of their content. We demonstrate the inadequacy of current text embeddings and propose an alternative model that significantly improves when used in standard nearest neighbor search. The model is trained using positive and negative pairs sourced through prompting an a large language model (LLM). While it is easy to source the training material from an LLM, the retrieval task cannot be performed by the LLM directly. This demonstrates that data from LLMs can be used not only for distilling more efficient specialized models than the original LLM, but also for creating new capabilities not immediately possible using the original model.
Decoding-based Regression
Language models have recently been shown capable of performing regression tasks wherein numeric predictions are represented as decoded strings. In this work, we provide theoretical grounds for this capability and furthermore investigate the utility of causal auto-regressive sequence models when they are applied to any feature representation. We find that, despite being trained in the usual way - for next-token prediction via cross-entropy loss - decoding-based regression is as performant as traditional approaches for tabular regression tasks, while being flexible enough to capture arbitrary distributions, such as in the task of density estimation.
Unifying Autoregressive and Diffusion-Based Sequence Generation
We present significant extensions to diffusion-based sequence generation models, blurring the line with autoregressive language models. We introduce hyperschedules, which assign distinct noise schedules to individual token positions, generalizing both autoregressive models (e.g., GPT) and conventional diffusion models (e.g., SEDD, MDLM) as special cases. Second, we propose two hybrid token-wise noising processes that interpolate between absorbing and uniform processes, enabling the model to fix past mistakes, and we introduce a novel inference algorithm that leverages this new feature in a simplified context inspired from MDLM. To support efficient training and inference, we design attention masks compatible with KV-caching. Our methods achieve state-of-the-art perplexity and generate diverse, high-quality sequences across standard benchmarks, suggesting a promising path for autoregressive diffusion-based sequence generation.
Rethinking Model Selection and Decoding for Keyphrase Generation with Pre-trained Sequence-to-Sequence Models
Keyphrase Generation (KPG) is a longstanding task in NLP with widespread applications. The advent of sequence-to-sequence (seq2seq) pre-trained language models (PLMs) has ushered in a transformative era for KPG, yielding promising performance improvements. However, many design decisions remain unexplored and are often made arbitrarily. This paper undertakes a systematic analysis of the influence of model selection and decoding strategies on PLM-based KPG. We begin by elucidating why seq2seq PLMs are apt for KPG, anchored by an attention-driven hypothesis. We then establish that conventional wisdom for selecting seq2seq PLMs lacks depth: (1) merely increasing model size or performing task-specific adaptation is not parameter-efficient; (2) although combining in-domain pre-training with task adaptation benefits KPG, it does partially hinder generalization. Regarding decoding, we demonstrate that while greedy search achieves strong F1 scores, it lags in recall compared with sampling-based methods. Based on these insights, we propose DeSel, a likelihood-based decode-select algorithm for seq2seq PLMs. DeSel improves greedy search by an average of 4.7% semantic F1 across five datasets. Our collective findings pave the way for deeper future investigations into PLM-based KPG.
Attention Strategies for Multi-Source Sequence-to-Sequence Learning
Modeling attention in neural multi-source sequence-to-sequence learning remains a relatively unexplored area, despite its usefulness in tasks that incorporate multiple source languages or modalities. We propose two novel approaches to combine the outputs of attention mechanisms over each source sequence, flat and hierarchical. We compare the proposed methods with existing techniques and present results of systematic evaluation of those methods on the WMT16 Multimodal Translation and Automatic Post-editing tasks. We show that the proposed methods achieve competitive results on both tasks.
Learning Audio-Video Modalities from Image Captions
A major challenge in text-video and text-audio retrieval is the lack of large-scale training data. This is unlike image-captioning, where datasets are in the order of millions of samples. To close this gap we propose a new video mining pipeline which involves transferring captions from image captioning datasets to video clips with no additional manual effort. Using this pipeline, we create a new large-scale, weakly labelled audio-video captioning dataset consisting of millions of paired clips and captions. We show that training a multimodal transformed based model on this data achieves competitive performance on video retrieval and video captioning, matching or even outperforming HowTo100M pretraining with 20x fewer clips. We also show that our mined clips are suitable for text-audio pretraining, and achieve state of the art results for the task of audio retrieval.
CPTR: Full Transformer Network for Image Captioning
In this paper, we consider the image captioning task from a new sequence-to-sequence prediction perspective and propose CaPtion TransformeR (CPTR) which takes the sequentialized raw images as the input to Transformer. Compared to the "CNN+Transformer" design paradigm, our model can model global context at every encoder layer from the beginning and is totally convolution-free. Extensive experiments demonstrate the effectiveness of the proposed model and we surpass the conventional "CNN+Transformer" methods on the MSCOCO dataset. Besides, we provide detailed visualizations of the self-attention between patches in the encoder and the "words-to-patches" attention in the decoder thanks to the full Transformer architecture.
Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention
Transformers have emerged as a powerful tool for a broad range of natural language processing tasks. A key component that drives the impressive performance of Transformers is the self-attention mechanism that encodes the influence or dependence of other tokens on each specific token. While beneficial, the quadratic complexity of self-attention on the input sequence length has limited its application to longer sequences -- a topic being actively studied in the community. To address this limitation, we propose Nystr\"{o}mformer -- a model that exhibits favorable scalability as a function of sequence length. Our idea is based on adapting the Nystr\"{o}m method to approximate standard self-attention with O(n) complexity. The scalability of Nystr\"{o}mformer enables application to longer sequences with thousands of tokens. We perform evaluations on multiple downstream tasks on the GLUE benchmark and IMDB reviews with standard sequence length, and find that our Nystr\"{o}mformer performs comparably, or in a few cases, even slightly better, than standard self-attention. On longer sequence tasks in the Long Range Arena (LRA) benchmark, Nystr\"{o}mformer performs favorably relative to other efficient self-attention methods. Our code is available at https://github.com/mlpen/Nystromformer.
Learning to Explore and Select for Coverage-Conditioned Retrieval-Augmented Generation
Interactions with large language models (LLMs) often yield long and detailed responses, leveraging both parametric knowledge and retrieval-augmented generation (RAG). While these responses can provide rich insights, they often include redundant or less engaging content not aligned with user interests. This issue becomes apparent when users specify particular subtopics to include or exclude -- termed coverage-conditioned (C^2) queries -- as LLMs often struggle to provide tailored responses. To address this challenge, we investigate the role of query outlines, sequences of subqueries designed to guide LLMs in generating responses that meet specific user requirements. To systematically create and evaluate these outlines, we introduce QTree, a dataset of 10K hierarchical sets of information-seeking subqueries that define structured boundaries for outline creation and evaluation in C^2 scenarios. Additionally, we develop QPlanner, a 7B language model trained to generate customized outlines within boundaries of QTree. We evaluate the effectiveness of the generated outlines through automatic and human judgements, focusing on their impact within retrieval-augmented generation (RAG) systems. Experimental results demonstrate that QPlanner, especially when trained with alignment techniques like DPO, generates higher-quality outlines that better fulfill diverse user needs.
Adapting Language Models to Compress Contexts
Transformer-based language models (LMs) are powerful and widely-applicable tools, but their usefulness is constrained by a finite context window and the expensive computational cost of processing long text documents. We propose to adapt pre-trained LMs into AutoCompressors. These models are capable of compressing long contexts into compact summary vectors, which are then accessible to the model as soft prompts. Summary vectors are trained with an unsupervised objective, whereby long documents are processed in segments and summary vectors from all previous segments are used in language modeling. We fine-tune OPT models on sequences of up to 30,720 tokens and show that AutoCompressors can utilize long contexts to improve perplexity. We evaluate AutoCompressors on in-context learning by compressing task demonstrations. We find that summary vectors are good substitutes for plain-text demonstrations, increasing accuracy while reducing inference cost. Finally, we explore the benefits of pre-computing summary vectors for large corpora by applying summary vectors to retrieval-augmented language modeling. Overall, AutoCompressors emerge as a simple and inexpensive solution for extending the context window of LMs while speeding up inference over long contexts.
Depth-Adaptive Transformer
State of the art sequence-to-sequence models for large scale tasks perform a fixed number of computations for each input sequence regardless of whether it is easy or hard to process. In this paper, we train Transformer models which can make output predictions at different stages of the network and we investigate different ways to predict how much computation is required for a particular sequence. Unlike dynamic computation in Universal Transformers, which applies the same set of layers iteratively, we apply different layers at every step to adjust both the amount of computation as well as the model capacity. On IWSLT German-English translation our approach matches the accuracy of a well tuned baseline Transformer while using less than a quarter of the decoder layers.
A Multimodal In-Context Tuning Approach for E-Commerce Product Description Generation
In this paper, we propose a new setting for generating product descriptions from images, augmented by marketing keywords. It leverages the combined power of visual and textual information to create descriptions that are more tailored to the unique features of products. For this setting, previous methods utilize visual and textual encoders to encode the image and keywords and employ a language model-based decoder to generate the product description. However, the generated description is often inaccurate and generic since same-category products have similar copy-writings, and optimizing the overall framework on large-scale samples makes models concentrate on common words yet ignore the product features. To alleviate the issue, we present a simple and effective Multimodal In-Context Tuning approach, named ModICT, which introduces a similar product sample as the reference and utilizes the in-context learning capability of language models to produce the description. During training, we keep the visual encoder and language model frozen, focusing on optimizing the modules responsible for creating multimodal in-context references and dynamic prompts. This approach preserves the language generation prowess of large language models (LLMs), facilitating a substantial increase in description diversity. To assess the effectiveness of ModICT across various language model scales and types, we collect data from three distinct product categories within the E-commerce domain. Extensive experiments demonstrate that ModICT significantly improves the accuracy (by up to 3.3% on Rouge-L) and diversity (by up to 9.4% on D-5) of generated results compared to conventional methods. Our findings underscore the potential of ModICT as a valuable tool for enhancing automatic generation of product descriptions in a wide range of applications.
Recurrent Memory Transformer
Transformer-based models show their effectiveness across multiple domains and tasks. The self-attention allows to combine information from all sequence elements into context-aware representations. However, global and local information has to be stored mostly in the same element-wise representations. Moreover, the length of an input sequence is limited by quadratic computational complexity of self-attention. In this work, we propose and study a memory-augmented segment-level recurrent Transformer (RMT). Memory allows to store and process local and global information as well as to pass information between segments of the long sequence with the help of recurrence. We implement a memory mechanism with no changes to Transformer model by adding special memory tokens to the input or output sequence. Then the model is trained to control both memory operations and sequence representations processing. Results of experiments show that RMT performs on par with the Transformer-XL on language modeling for smaller memory sizes and outperforms it for tasks that require longer sequence processing. We show that adding memory tokens to Tr-XL is able to improve its performance. This makes Recurrent Memory Transformer a promising architecture for applications that require learning of long-term dependencies and general purpose in memory processing, such as algorithmic tasks and reasoning.
ATLAS: Learning to Optimally Memorize the Context at Test Time
Transformers have been established as the most popular backbones in sequence modeling, mainly due to their effectiveness in in-context retrieval tasks and the ability to learn at scale. Their quadratic memory and time complexity, however, bound their applicability in longer sequences and so has motivated researchers to explore effective alternative architectures such as modern recurrent neural networks (a.k.a long-term recurrent memory module). Despite their recent success in diverse downstream tasks, they struggle in tasks that requires long context understanding and extrapolation to longer sequences. We observe that these shortcomings come from three disjoint aspects in their design: (1) limited memory capacity that is bounded by the architecture of memory and feature mapping of the input; (2) online nature of update, i.e., optimizing the memory only with respect to the last input; and (3) less expressive management of their fixed-size memory. To enhance all these three aspects, we present ATLAS, a long-term memory module with high capacity that learns to memorize the context by optimizing the memory based on the current and past tokens, overcoming the online nature of long-term memory models. Building on this insight, we present a new family of Transformer-like architectures, called DeepTransformers, that are strict generalizations of the original Transformer architecture. Our experimental results on language modeling, common-sense reasoning, recall-intensive, and long-context understanding tasks show that ATLAS surpasses the performance of Transformers and recent linear recurrent models. ATLAS further improves the long context performance of Titans, achieving +80\% accuracy in 10M context length of BABILong benchmark.
A Dataset for Movie Description
Descriptive video service (DVS) provides linguistic descriptions of movies and allows visually impaired people to follow a movie along with their peers. Such descriptions are by design mainly visual and thus naturally form an interesting data source for computer vision and computational linguistics. In this work we propose a novel dataset which contains transcribed DVS, which is temporally aligned to full length HD movies. In addition we also collected the aligned movie scripts which have been used in prior work and compare the two different sources of descriptions. In total the Movie Description dataset contains a parallel corpus of over 54,000 sentences and video snippets from 72 HD movies. We characterize the dataset by benchmarking different approaches for generating video descriptions. Comparing DVS to scripts, we find that DVS is far more visual and describes precisely what is shown rather than what should happen according to the scripts created prior to movie production.
Endowing Protein Language Models with Structural Knowledge
Understanding the relationships between protein sequence, structure and function is a long-standing biological challenge with manifold implications from drug design to our understanding of evolution. Recently, protein language models have emerged as the preferred method for this challenge, thanks to their ability to harness large sequence databases. Yet, their reliance on expansive sequence data and parameter sets limits their flexibility and practicality in real-world scenarios. Concurrently, the recent surge in computationally predicted protein structures unlocks new opportunities in protein representation learning. While promising, the computational burden carried by such complex data still hinders widely-adopted practical applications. To address these limitations, we introduce a novel framework that enhances protein language models by integrating protein structural data. Drawing from recent advances in graph transformers, our approach refines the self-attention mechanisms of pretrained language transformers by integrating structural information with structure extractor modules. This refined model, termed Protein Structure Transformer (PST), is further pretrained on a small protein structure database, using the same masked language modeling objective as traditional protein language models. Empirical evaluations of PST demonstrate its superior parameter efficiency relative to protein language models, despite being pretrained on a dataset comprising only 542K structures. Notably, PST consistently outperforms the state-of-the-art foundation model for protein sequences, ESM-2, setting a new benchmark in protein function prediction. Our findings underscore the potential of integrating structural information into protein language models, paving the way for more effective and efficient protein modeling Code and pretrained models are available at https://github.com/BorgwardtLab/PST.
Adaptation of Biomedical and Clinical Pretrained Models to French Long Documents: A Comparative Study
Recently, pretrained language models based on BERT have been introduced for the French biomedical domain. Although these models have achieved state-of-the-art results on biomedical and clinical NLP tasks, they are constrained by a limited input sequence length of 512 tokens, which poses challenges when applied to clinical notes. In this paper, we present a comparative study of three adaptation strategies for long-sequence models, leveraging the Longformer architecture. We conducted evaluations of these models on 16 downstream tasks spanning both biomedical and clinical domains. Our findings reveal that further pre-training an English clinical model with French biomedical texts can outperform both converting a French biomedical BERT to the Longformer architecture and pre-training a French biomedical Longformer from scratch. The results underscore that long-sequence French biomedical models improve performance across most downstream tasks regardless of sequence length, but BERT based models remain the most efficient for named entity recognition tasks.
Convolutional LSTM Networks for Subcellular Localization of Proteins
Machine learning is widely used to analyze biological sequence data. Non-sequential models such as SVMs or feed-forward neural networks are often used although they have no natural way of handling sequences of varying length. Recurrent neural networks such as the long short term memory (LSTM) model on the other hand are designed to handle sequences. In this study we demonstrate that LSTM networks predict the subcellular location of proteins given only the protein sequence with high accuracy (0.902) outperforming current state of the art algorithms. We further improve the performance by introducing convolutional filters and experiment with an attention mechanism which lets the LSTM focus on specific parts of the protein. Lastly we introduce new visualizations of both the convolutional filters and the attention mechanisms and show how they can be used to extract biological relevant knowledge from the LSTM networks.
Text-To-Concept (and Back) via Cross-Model Alignment
We observe that the mapping between an image's representation in one model to its representation in another can be learned surprisingly well with just a linear layer, even across diverse models. Building on this observation, we propose text-to-concept, where features from a fixed pretrained model are aligned linearly to the CLIP space, so that text embeddings from CLIP's text encoder become directly comparable to the aligned features. With text-to-concept, we convert fixed off-the-shelf vision encoders to surprisingly strong zero-shot classifiers for free, with accuracy at times even surpassing that of CLIP, despite being much smaller models and trained on a small fraction of the data compared to CLIP. We show other immediate use-cases of text-to-concept, like building concept bottleneck models with no concept supervision, diagnosing distribution shifts in terms of human concepts, and retrieving images satisfying a set of text-based constraints. Lastly, we demonstrate the feasibility of concept-to-text, where vectors in a model's feature space are decoded by first aligning to the CLIP before being fed to a GPT-based generative model. Our work suggests existing deep models, with presumably diverse architectures and training, represent input samples relatively similarly, and a two-way communication across model representation spaces and to humans (through language) is viable.
Captions Are Worth a Thousand Words: Enhancing Product Retrieval with Pretrained Image-to-Text Models
This paper explores the usage of multimodal image-to-text models to enhance text-based item retrieval. We propose utilizing pre-trained image captioning and tagging models, such as instructBLIP and CLIP, to generate text-based product descriptions which are combined with existing text descriptions. Our work is particularly impactful for smaller eCommerce businesses who are unable to maintain the high-quality text descriptions necessary to effectively perform item retrieval for search and recommendation use cases. We evaluate the searchability of ground-truth text, image-generated text, and combinations of both texts on several subsets of Amazon's publicly available ESCI dataset. The results demonstrate the dual capability of our proposed models to enhance the retrieval of existing text and generate highly-searchable standalone descriptions.
Identifying Well-formed Natural Language Questions
Understanding search queries is a hard problem as it involves dealing with "word salad" text ubiquitously issued by users. However, if a query resembles a well-formed question, a natural language processing pipeline is able to perform more accurate interpretation, thus reducing downstream compounding errors. Hence, identifying whether or not a query is well formed can enhance query understanding. Here, we introduce a new task of identifying a well-formed natural language question. We construct and release a dataset of 25,100 publicly available questions classified into well-formed and non-wellformed categories and report an accuracy of 70.7% on the test set. We also show that our classifier can be used to improve the performance of neural sequence-to-sequence models for generating questions for reading comprehension.
A Comprehensive Survey of Accelerated Generation Techniques in Large Language Models
Despite the crucial importance of accelerating text generation in large language models (LLMs) for efficiently producing content, the sequential nature of this process often leads to high inference latency, posing challenges for real-time applications. Various techniques have been proposed and developed to address these challenges and improve efficiency. This paper presents a comprehensive survey of accelerated generation techniques in autoregressive language models, aiming to understand the state-of-the-art methods and their applications. We categorize these techniques into several key areas: speculative decoding, early exiting mechanisms, and non-autoregressive methods. We discuss each category's underlying principles, advantages, limitations, and recent advancements. Through this survey, we aim to offer insights into the current landscape of techniques in LLMs and provide guidance for future research directions in this critical area of natural language processing.
Clinical-Longformer and Clinical-BigBird: Transformers for long clinical sequences
Transformers-based models, such as BERT, have dramatically improved the performance for various natural language processing tasks. The clinical knowledge enriched model, namely ClinicalBERT, also achieved state-of-the-art results when performed on clinical named entity recognition and natural language inference tasks. One of the core limitations of these transformers is the substantial memory consumption due to their full self-attention mechanism. To overcome this, long sequence transformer models, e.g. Longformer and BigBird, were proposed with the idea of sparse attention mechanism to reduce the memory usage from quadratic to the sequence length to a linear scale. These models extended the maximum input sequence length from 512 to 4096, which enhanced the ability of modeling long-term dependency and consequently achieved optimal results in a variety of tasks. Inspired by the success of these long sequence transformer models, we introduce two domain enriched language models, namely Clinical-Longformer and Clinical-BigBird, which are pre-trained from large-scale clinical corpora. We evaluate both pre-trained models using 10 baseline tasks including named entity recognition, question answering, and document classification tasks. The results demonstrate that Clinical-Longformer and Clinical-BigBird consistently and significantly outperform ClinicalBERT as well as other short-sequence transformers in all downstream tasks. We have made our source code available at [https://github.com/luoyuanlab/Clinical-Longformer] the pre-trained models available for public download at: [https://huggingface.co/yikuan8/Clinical-Longformer].
M4LE: A Multi-Ability Multi-Range Multi-Task Multi-Domain Long-Context Evaluation Benchmark for Large Language Models
Managing long sequences has become an important and necessary feature for large language models (LLMs). However, it is still an open question of how to comprehensively and systematically evaluate the long-sequence capability of LLMs. One of the reasons is that conventional and widely-used benchmarks mainly consist of short sequences. In this paper, we propose M4LE, a Multi-ability, Multi-range, Multi-task, Multi-domain benchmark for Long-context Evaluation. M4LE is based on a diverse NLP task pool comprising 36 NLP datasets, 11 task types and 12 domains. To alleviate the scarcity of tasks with naturally long sequences and incorporate multiple-ability assessment, we propose an automatic approach (but with negligible human annotations) to convert short-sequence tasks into a unified long-sequence scenario where LLMs have to identify single or multiple relevant spans in long contexts based on explicit or semantic hints. Specifically, the scenario includes five different types of abilities: (1) explicit single-span; (2) semantic single-span; (3) explicit multiple-span; (4) semantic multiple-span; and (5) global context understanding. The resulting samples in M4LE are evenly distributed from 1k to 8k input length. We conducted a systematic evaluation on 11 well-established LLMs, especially those optimized for long-sequence inputs. Our results reveal that: 1) Current LLMs struggle to understand long context, particularly when tasks require multiple-span attention. 2) Semantic retrieval task is more difficult for competent LLMs. 3) Models fine-tuned on longer text with position interpolation have comparable performance to those using Neural Tangent Kernel (NTK) aware scaling methods without fine-tuning. We make our benchmark publicly available to encourage future research in this challenging area.
