- Divisibility by $p$ for Markoff-like Surfaces We study orbits in a family of Markoff-like surfaces with extra off-diagonal terms over prime fields F_p. It is shown that, for a typical surface of this form, every non-trivial orbit has size divisible by p. This extends a theorem of W.Y. Chen from the Markoff surface itself to others in this family. The proof closely follows and elaborates on a recent argument of D.E. Martin. We expect that there is just one orbit generically. For some special parameters, we prove that there are at least two or four orbits. Cayley's cubic surface plays a role in parametrising the exceptional cases and dictating the number of solutions mod p. 3 authors · Sep 2
- Class Numbers and Pell's Equation x^2 + 105y^2 = z^2 Two well-studied Diophantine equations are those of Pythagorean triples and elliptic curves, for the first we have a parametrization through rational points on the unit circle, and for the second we have a structure theorem for the group of rational solutions. Recently, Yekutieli discussed a connection between these two problems, and described the group structure of Pythagorean triples and the number of triples for a given hypotenuse. In arXiv:2112.03663 we generalized these methods and results to Pell's equation. We find a similar group structure and count on the number of solutions for a given z to x^2 + Dy^2 = z^2 when D is 1 or 2 modulo 4 and the class group of Q[-D] is a free Z_2 module, which always happens if the class number is at most 2. In this paper, we discuss the main results of arXiv:2112.03663 using some concrete examples in the case of D=105. 4 authors · Mar 30, 2022
- Learning the greatest common divisor: explaining transformer predictions The predictions of small transformers, trained to calculate the greatest common divisor (GCD) of two positive integers, can be fully characterized by looking at model inputs and outputs. As training proceeds, the model learns a list mathcal D of integers, products of divisors of the base used to represent integers and small primes, and predicts the largest element of mathcal D that divides both inputs. Training distributions impact performance. Models trained from uniform operands only learn a handful of GCD (up to 38 GCD leq100). Log-uniform operands boost performance to 73 GCD leq 100, and a log-uniform distribution of outcomes (i.e. GCD) to 91. However, training from uniform (balanced) GCD breaks explainability. 1 authors · Aug 29, 2023
- Product representation of perfect cubes Let F_{k,d}(n) be the maximal size of a set {A}subseteq [n] such that the equation \[a_1a_2\dots a_k=x^d, \; a_1<a_2<\ldots<a_k\] has no solution with a_1,a_2,ldots,a_kA and integer x. Erdos, S\'ark\"ozy and T. S\'os studied F_{k,2}, and gave bounds when k=2,3,4,6 and also in the general case. We study the problem for d=3, and provide bounds for k=2,3,4,6 and 9, furthermore, in the general case, as well. In particular, we refute an 18 years old conjecture of Verstra\"ete. We also introduce another function f_{k,d} closely related to F_{k,d}: While the original problem requires a_1, ldots , a_k to all be distinct, we can relax this and only require that the multiset of the a_i's cannot be partitioned into d-tuples where each d-tuple consists of d copies of the same number. 5 authors · May 20, 2024
- Automated Search for Conjectures on Mathematical Constants using Analysis of Integer Sequences Formulas involving fundamental mathematical constants had a great impact on various fields of science and mathematics, for example aiding in proofs of irrationality of constants. However, the discovery of such formulas has historically remained scarce, often perceived as an act of mathematical genius by great mathematicians such as Ramanujan, Euler, and Gauss. Recent efforts to automate the discovery of formulas for mathematical constants, such as the Ramanujan Machine project, relied on exhaustive search. Despite several successful discoveries, exhaustive search remains limited by the space of options that can be covered and by the need for vast amounts of computational resources. Here we propose a fundamentally different method to search for conjectures on mathematical constants: through analysis of integer sequences. We introduce the Enumerated Signed-continued-fraction Massey Approve (ESMA) algorithm, which builds on the Berlekamp-Massey algorithm to identify patterns in integer sequences that represent mathematical constants. The ESMA algorithm found various known formulas for e, e^2, tan(1), and ratios of values of Bessel functions. The algorithm further discovered a large number of new conjectures for these constants, some providing simpler representations and some providing faster numerical convergence than the corresponding simple continued fractions. Along with the algorithm, we present mathematical tools for manipulating continued fractions. These connections enable us to characterize what space of constants can be found by ESMA and quantify its algorithmic advantage in certain scenarios. Altogether, this work continues in the development of augmenting mathematical intuition by computer algorithms, to help reveal mathematical structures and accelerate mathematical research. 6 authors · Dec 13, 2022
- On Two Orderings of Lattice Paths The Markov numbers are positive integers appearing as solutions to the Diophantine equation x^2 + y^2 + z^2 = 3xyz. These numbers are very well-studied and have many combinatorial properties, as well as being the source of the long-standing unicity conjecture. In 2018, Canakc{\i} and Schiffler showed that the Markov number m_{a{b}} is the number of perfect matchings of a certain snake graph corresponding to the Christoffel path from (0,0) to (a,b). Based on this correspondence, Schiffler in 2023 introduced two orderings on lattice paths. For any path omega, associate a snake graph G(omega) and a continued fraction g(omega). The ordering <_M is given by the number of perfect matchings on G(omega), and the ordering <_L is given by the Lagrange number of g(omega). In this work, we settle two conjectures of Schiffler. First, we show that the path omega(a,b) = RRcdots R UU cdots U is the unique maximum over all lattice paths from (0,0) to (a,b) with respect to both orderings <_M and <_L. We then use this result to prove that sup L(omega) over all lattice paths is exactly 1+sqrt5. 2 authors · Oct 25, 2023
- Block occurrences in the binary expansion The binary sum-of-digits function s returns the number of ones in the binary expansion of a nonnegative integer. Cusick's Hamming weight conjecture states that, for all integers tgeq 0, the set of nonnegative integers n such that s(n+t)geq s(n) has asymptotic density strictly larger than 1/2. We are concerned with the block-additive function r returning the number of (overlapping) occurrences of the block 11 in the binary expansion of n. The main result of this paper is a central limit-type theorem for the difference r(n+t)-r(n): the corresponding probability function is uniformly close to a Gaussian, where the uniform error tends to 0 as the number of blocks of ones in the binary expansion of t tends to infty. 2 authors · Aug 31, 2023
- Some Questions of Uniformity in Algorithmic Randomness The Omega numbers-the halting probabilities of universal prefix-free machines-are known to be exactly the Martin-L{\"o}f random left-c.e. reals. We show that one cannot uniformly produce, from a Martin-L{\"o}f random left-c.e. real alpha, a universal prefix-free machine U whose halting probability is alpha. We also answer a question of Barmpalias and Lewis-Pye by showing that given a left-c.e. real alpha, one cannot uniformly produce a left-c.e. real beta such that alpha -- beta is neither left-c.e. nor right-c.e. 3 authors · Nov 2, 2021
- Continued Fractions and Probability Estimations in the Shor Algorithm -- A Detailed and Self-Contained Treatise The algorithm of Shor for prime factorization is a hybrid algorithm consisting of a quantum part and a classical part. The main focus of the classical part is a continued fraction analysis. The presentation of this is often short, pointing to text books on number theory. In this contribution, we present the relevant results and proofs from the theory of continued fractions in detail (even in more detail than in text books) filling the gap to allow a complete comprehension of the algorithm of Shor. Similarly, we provide a detailed computation of the estimation of the probability that convergents will provide the period required for determining a prime factor. 2 authors · May 4, 2022
1 Two Algorithms for Additive and Fair Division of Mixed Manna We consider a fair division model in which agents have positive, zero and negative utilities for items. For this model, we analyse one existing fairness property - EFX - and three new and related properties - EFX_0, EFX^3 and EF1^3 - in combination with Pareto-optimality. With general utilities, we give a modified version of an existing algorithm for computing an EF1^3 allocation. With -alpha/0/alpha utilities, this algorithm returns an EFX^3 and PO allocation. With absolute identical utilities, we give a new algorithm for an EFX and PO allocation. With -alpha/0/beta utilities, this algorithm also returns such an allocation. We report some new impossibility results as well. 2 authors · Jul 8, 2020
- CayleyPy Growth: Efficient growth computations and hundreds of new conjectures on Cayley graphs (Brief version) This is the third paper of the CayleyPy project applying artificial intelligence to problems in group theory. We announce the first public release of CayleyPy, an open source Python library for computations with Cayley and Schreier graphs. Compared with systems such as GAP and Sage, CayleyPy handles much larger graphs and performs several orders of magnitude faster. Using CayleyPy we obtained about 200 new conjectures on Cayley and Schreier graphs, focused on diameters and growth. For many Cayley graphs of symmetric groups Sn we observe quasi polynomial diameter formulas: a small set of quadratic or linear polynomials indexed by n mod s. We conjecture that this is a general phenomenon, giving efficient diameter computation despite the problem being NP hard. We propose a refinement of the Babai type conjecture on diameters of Sn: n^2/2 + 4n upper bounds in the undirected case, compared to previous O(n^2) bounds. We also provide explicit generator families, related to involutions in a square with whiskers pattern, conjectured to maximize the diameter; search confirms this for all n up to 15. We further conjecture an answer to a question posed by V M Glushkov in 1968 on directed Cayley graphs generated by a cyclic shift and a transposition. For nilpotent groups we conjecture an improvement of J S Ellenberg's results on upper unitriangular matrices over Z/pZ, showing linear dependence of diameter on p. Moreover. Some conjectures are LLM friendly, naturally stated as sorting problems verifiable by algorithms or Python code. To benchmark path finding we created more than 10 Kaggle datasets. CayleyPy works with arbitrary permutation or matrix groups and includes over 100 predefined generators. Our growth computation code outperforms GAP and Sage up to 1000 times in speed and size. 49 authors · Sep 23
- Algorithm-assisted discovery of an intrinsic order among mathematical constants In recent decades, a growing number of discoveries in fields of mathematics have been assisted by computer algorithms, primarily for exploring large parameter spaces that humans would take too long to investigate. As computers and algorithms become more powerful, an intriguing possibility arises - the interplay between human intuition and computer algorithms can lead to discoveries of novel mathematical concepts that would otherwise remain elusive. To realize this perspective, we have developed a massively parallel computer algorithm that discovers an unprecedented number of continued fraction formulas for fundamental mathematical constants. The sheer number of formulas discovered by the algorithm unveils a novel mathematical structure that we call the conservative matrix field. Such matrix fields (1) unify thousands of existing formulas, (2) generate infinitely many new formulas, and most importantly, (3) lead to unexpected relations between different mathematical constants, including multiple integer values of the Riemann zeta function. Conservative matrix fields also enable new mathematical proofs of irrationality. In particular, we can use them to generalize the celebrated proof by Ap\'ery for the irrationality of zeta(3). Utilizing thousands of personal computers worldwide, our computer-supported research strategy demonstrates the power of experimental mathematics, highlighting the prospects of large-scale computational approaches to tackle longstanding open problems and discover unexpected connections across diverse fields of science. 9 authors · Aug 22, 2023
1 Mixed Fair Division: A Survey Fair division considers the allocation of scarce resources among agents in such a way that every agent gets a fair share. It is a fundamental problem in society and has received significant attention and rapid developments from the game theory and artificial intelligence communities in recent years. The majority of the fair division literature can be divided along at least two orthogonal directions: goods versus chores, and divisible versus indivisible resources. In this survey, besides describing the state of the art, we outline a number of interesting open questions and future directions in three mixed fair division settings: (i) indivisible goods and chores, (ii) divisible and indivisible goods (mixed goods), and (iii) indivisible goods with subsidy which can be viewed like a divisible good. 4 authors · Jun 15, 2023
- A Fundamental Duality in the Mathematical and Natural Sciences: From Logic to Biology This is an essay in what might be called ``mathematical metaphysics.'' There is a fundamental duality that run through mathematics and the natural sciences. The duality starts as the logical level; it is represented by the Boolean logic of subsets and the logic of partitions since subsets and partitions are category-theoretic dual concepts. In more basic terms, it starts with the duality between the elements (Its) of subsets and the distinctions (Dits, i.e., ordered pairs of elements in different blocks) of a partition. Mathematically, the Its & Dits duality is fully developed in category theory as the reverse-the-arrows duality. The quantitative versions of subsets and partitions are developed as probability theory and information theory (based on logical entropy). Classical physics was based on a view of reality as definite all the way down. In contrast, quantum physics embodies (objective) indefiniteness. And finally, there are the two fundamental dual mechanisms at work in biology, the selectionist mechanism and the generative mechanism, two mechanisms that embody the fundamental duality. 1 authors · Sep 6, 2024
- New infinite families in the stable homotopy groups of spheres We identify seven new 192-periodic infinite families of elements in the 2-primary stable homotopy groups of spheres. Although their Hurewicz image is trivial for topological modular forms, they remain nontrivial after T(2)- as well as K(2)-localization. We also obtain new information about 2-torsion and 2-divisibility of some of the previously known 192-periodic infinite families in the stable stems. 3 authors · Apr 15, 2024
1 Strategy Proof Mechanisms for Facility Location in Euclidean and Manhattan Space We study the impact on mechanisms for facility location of moving from one dimension to two (or more) dimensions and Euclidean or Manhattan distances. We consider three fundamental axiomatic properties: anonymity which is a basic fairness property, Pareto optimality which is one of the most important efficiency properties, and strategy proofness which ensures agents do not have an incentive to mis-report. We also consider how well such mechanisms can approximate the optimal welfare. Our results are somewhat negative. Moving from one dimension to two (or more) dimensions often makes these axiomatic properties more difficult to achieve. For example, with two facilities in Euclidean space or with just a single facility in Manhattan space, no mechanism is anonymous, Pareto optimal and strategy proof. By contrast, mechanisms on the line exist with all three properties.We also show that approximation ratios may increase when moving to two (or more) dimensions. All our impossibility results are minimal. If we drop one of the three axioms (anonymity, Pareto optimality or strategy proofness) multiple mechanisms satisfy the other two axioms. 1 authors · Sep 16, 2020
- The fractional chromatic number of double cones over graphs Assume n, m are positive integers and G is a graph. Let P_{n,m} be the graph obtained from the path with vertices {-m, -(m-1), ldots, 0, ldots, n} by adding a loop at vertex 0. The double cone Delta_{n,m}(G) over a graph G is obtained from the direct product G times P_{n,m} by identifying V(G) times {n} into a single vertex (star, n), identifying V(G) times {-m} into a single vertex (star, -m), and adding an edge connecting (star, -m) and (star, n). This paper determines the fractional chromatic number of Delta_{n,m}(G). In particular, if n < m or n=m is even, then chi_f(Delta_{n,m}(G)) = chi_f(Delta_n(G)), where Delta_n(G) is the nth cone over G. If n=m is odd, then chi_f(Delta_{n,m}(G)) > chi_f(Delta_n(G)). The chromatic number of Delta_{n,m}(G) is also discussed. 2 authors · Sep 2, 2021
- ARC Sort: Enhanced and Time Efficient Sorting Algorithm This paper discusses about a sorting algorithm which uses the concept of buckets where each bucket represents a certain number of digits. A two dimensional data structure is used where one dimension represents buckets i. e; number of digits and each bucket's corresponding dimensions represents the input numbers that belong to that bucket. Each bucket is then individually sorted. Since every preceding bucket elements will always be smaller than the succeeding buckets no comparison between them is required. By doing this we can significantly reduced the time complexity of any sorting algorithm used to sort the given set of inputs. 4 authors · Jun 6, 2014
- On affine spaces of alternating matrices with constant rank Let F be a field, and n geq r>0 be integers, with r even. Denote by A_n(F) the space of all n-by-n alternating matrices with entries in F. We consider the problem of determining the greatest possible dimension for an affine subspace of A_n(F) in which every matrix has rank equal to r (or rank at least r). Recently Rubei has solved this problem over the field of real numbers. We extend her result to all fields with large enough cardinality. Provided that n geq r+3 and |F|geq minbigl(r-1,r{2}+2bigr), we also determine the affine subspaces of rank r matrices in A_n(F) that have the greatest possible dimension, and we point to difficulties for the corresponding problem in the case nleq r+2. 1 authors · Jul 19, 2023
- Is Computational Complexity a Barrier to Manipulation? When agents are acting together, they may need a simple mechanism to decide on joint actions. One possibility is to have the agents express their preferences in the form of a ballot and use a voting rule to decide the winning action(s). Unfortunately, agents may try to manipulate such an election by misreporting their preferences. Fortunately, it has been shown that it is NP-hard to compute how to manipulate a number of different voting rules. However, NP-hardness only bounds the worst-case complexity. Recent theoretical results suggest that manipulation may often be easy in practice. To address this issue, I suggest studying empirically if computational complexity is in practice a barrier to manipulation. The basic tool used in my investigations is the identification of computational "phase transitions". Such an approach has been fruitful in identifying hard instances of propositional satisfiability and other NP-hard problems. I show that phase transition behaviour gives insight into the hardness of manipulating voting rules, increasing concern that computational complexity is indeed any sort of barrier. Finally, I look at the problem of computing manipulation of other, related problems like stable marriage and tournament problems. 1 authors · Jul 5, 2010
- Optimal Embeddings of Posets in Hypercubes Given a finite poset mathcal P, the hypercube-height, denoted by h^*(mathcal P), is defined to be the largest h such that, for any natural number n, the subsets of [n] of size less than h do not contain an induced copy of mathcal P. The hypercube-width, denoted by w^*(mathcal P), is the smallest w such that the subsets of [w] of size at most h^*(mathcal P) contain an induced copy of mathcal P. In other words, h^*(mathcal P) asks how `low' can a poset be embedded, and w^*(mathcal P) asks for the first hypercube in which such an `optimal' embedding occurs. These notions were introduced by Bastide, Groenland, Ivan and Johnston in connection to upper bounds for the poset saturation numbers. While it is not hard to see that h^*(mathcal P)leq |mathcal P|-1 (and this bound can be tight), the hypercube-width has proved to be much more elusive. It was shown by the authors mentioned above that w^*(mathcal P)leq|mathcal P|^2/4, but they conjectured that in fact w^*(mathcal P)leq |mathcal P| for any finite poset mathcal P. In this paper we prove this conjecture. The proof uses Hall's theorem for bipartite graphs as a precision tool for modifing an existing copy of our poset. 3 authors · Sep 30
- An elementary and unified proof of Grothendieck's inequality We present an elementary, self-contained proof of Grothendieck's inequality that unifies the real and complex cases and yields both the Krivine and Haagerup bounds, the current best-known explicit bounds for the real and complex Grothendieck constants respectively. This article is intended to be pedagogical, combining and streamlining known ideas of Lindenstrauss--Pe{\l}czy\'nski, Krivine, and Haagerup into a proof that need only univariate calculus, basic complex variables, and a modicum of linear algebra as prerequisites. 3 authors · Nov 28, 2017
1 Machine Learning meets Algebraic Combinatorics: A Suite of Datasets Capturing Research-level Conjecturing Ability in Pure Mathematics With recent dramatic increases in AI system capabilities, there has been growing interest in utilizing machine learning for reasoning-heavy, quantitative tasks, particularly mathematics. While there are many resources capturing mathematics at the high-school, undergraduate, and graduate level, there are far fewer resources available that align with the level of difficulty and open endedness encountered by professional mathematicians working on open problems. To address this, we introduce a new collection of datasets, the Algebraic Combinatorics Dataset Repository (ACD Repo), representing either foundational results or open problems in algebraic combinatorics, a subfield of mathematics that studies discrete structures arising from abstract algebra. Further differentiating our dataset collection is the fact that it aims at the conjecturing process. Each dataset includes an open-ended research-level question and a large collection of examples (up to 10M in some cases) from which conjectures should be generated. We describe all nine datasets, the different ways machine learning models can be applied to them (e.g., training with narrow models followed by interpretability analysis or program synthesis with LLMs), and discuss some of the challenges involved in designing datasets like these. 7 authors · Mar 8
1 Squares: A Fast Counter-Based RNG In this article, we propose a new counter-based implementation of John von Neumann's middle-square random number generator (RNG). Several rounds of squaring are applied to a counter to produce a random output. We discovered that four rounds are sufficient to provide satisfactory data. Two versions of the RNG are presented, a 4-round version with 32-bit output and a 5-round version with 64-bit output. Both pass stringent tests of randomness and may be the fastest counter-based generators. 1 authors · Apr 13, 2020
3 Optimal Bounds for Open Addressing Without Reordering In this paper, we revisit one of the simplest problems in data structures: the task of inserting elements into an open-addressed hash table so that elements can later be retrieved with as few probes as possible. We show that, even without reordering elements over time, it is possible to construct a hash table that achieves far better expected search complexities (both amortized and worst-case) than were previously thought possible. Along the way, we disprove the central conjecture left by Yao in his seminal paper ``Uniform Hashing is Optimal''. All of our results come with matching lower bounds. 3 authors · Jan 4
- Higher Categories and Slices of Globular Operads In an unpublished preprint batanin, Batanin conjectures that it is possible to take `slices' of a globular operad, thereby isolating the algebraic structure in each dimension. It was further hypothesised that the slices of a globular operad for some theory of higher category contain essential information about those higher categories, namely whether or not they are equivalent to the fully weak variety. In this paper, we use the theory of presentations for globular operads developed in Me to provide a concrete definition of slices, and calculate the slices for several key theories of n-category. 1 authors · May 24, 2023
- Fixed point conditions for non-coprime actions In the setting of finite groups, suppose J acts on N via automorphisms so that the induced semidirect product Nrtimes J acts on some non-empty set Omega, with N acting transitively. Glauberman proved that if the orders of J and N are coprime, then J fixes a point in Omega. We consider the non-coprime case and show that if N is abelian and a Sylow p-subgroup of J fixes a point in Omega for each prime p, then J fixes a point in Omega. We also show that if N is nilpotent, Nrtimes J is supersoluble, and a Sylow p-subgroup of J fixes a point in Omega for each prime p, then J fixes a point in Omega. 1 authors · Aug 23, 2023
- On the impossibility of discovering a formula for primes using AI The present work explores the theoretical limits of Machine Learning (ML) within the framework of Kolmogorov's theory of Algorithmic Probability, which clarifies the notion of entropy as Expected Kolmogorov Complexity and formalizes other fundamental concepts such as Occam's razor via Levin's Universal Distribution. As a fundamental application, we develop Maximum Entropy methods that allow us to derive the Erdos--Kac Law in Probabilistic Number Theory, and establish the impossibility of discovering a formula for primes using Machine Learning via the Prime Coding Theorem. 2 authors · Jul 27, 2023
- A strictly monotone measure on tame sets that corresponds to a numerosity Adapting standard methods from geometric measure theory, we provide an example of a polynomial-valued measure mu on tame sets in R^d which satisfies many desirable properties. Among these is strict monotonicity: the measure of a proper subset is strictly less than the measure of the whole set. Using techniques from non-standard analysis, we display that the domain of mu can be extended to all subsets of R^d (up to equivalence modulo infinitesimals). The resulting extension is a numerosity function that encodes the i-dimensional Hausdorff measure for all iin N, as well as the i-th intrinsic volume functions. 1 authors · Aug 23, 2020
- On the chromatic number of random triangle-free graphs We study the chromatic number of typical triangle-free graphs with Theta left( n^{3/2} (log n)^{1/2} right) edges and establish the width of the scaling window for the transitions from chi = 3 to chi = 4 and from chi = 4 to chi = 5. The transition from 3- to 4-colorability has scaling window of width Theta(n^{4/3} (log n)^{-1/3}). To prove this, we show a high probability equivalence of the 3-colorability of a random triangle-free graph at this density and the satisfiability of an instance of bipartite random 2-SAT, for which we establish the width of the scaling window following the techniques of Bollob{\'a}s, Borgs, Chayes, Kim, and Wilson. The transition from 4- to 5-colorability has scaling window of width Theta(n^{3/2} (log n)^{-1/2}). To prove this, we show a high probability equivalence of the 4-colorability of a random triangle-free graph at this density and the simultaneous 2-colorability of two independent Erdos--R\'enyi random graphs. For this transition, we also establish the limiting probability of 4-colorability inside the scaling window. 3 authors · Sep 1
- Text vectorization via transformer-based language models and n-gram perplexities As the probability (and thus perplexity) of a text is calculated based on the product of the probabilities of individual tokens, it may happen that one unlikely token significantly reduces the probability (i.e., increase the perplexity) of some otherwise highly probable input, while potentially representing a simple typographical error. Also, given that perplexity is a scalar value that refers to the entire input, information about the probability distribution within it is lost in the calculation (a relatively good text that has one unlikely token and another text in which each token is equally likely they can have the same perplexity value), especially for longer texts. As an alternative to scalar perplexity this research proposes a simple algorithm used to calculate vector values based on n-gram perplexities within the input. Such representations consider the previously mentioned aspects, and instead of a unique value, the relative perplexity of each text token is calculated, and these values are combined into a single vector representing the input. 1 authors · Jul 18, 2023
- Sharp Noisy Binary Search with Monotonic Probabilities We revisit the noisy binary search model of Karp and Kleinberg, in which we have n coins with unknown probabilities p_i that we can flip. The coins are sorted by increasing p_i, and we would like to find where the probability crosses (to within varepsilon) of a target value tau. This generalized the fixed-noise model of Burnashev and Zigangirov , in which p_i = 1{2} pm varepsilon, to a setting where coins near the target may be indistinguishable from it. Karp and Kleinberg showed that Theta(1{varepsilon^2} log n) samples are necessary and sufficient for this task. We produce a practical algorithm by solving two theoretical challenges: high-probability behavior and sharp constants. We give an algorithm that succeeds with probability 1-delta from \[ 1{C_{\tau, \varepsilon}} \cdot \left(\lg n + O(\log^{2/3} n \log^{1/3} 1{\delta} + \log 1{\delta})\right) \] samples, where C_{tau, varepsilon} is the optimal such constant achievable. For delta > n^{-o(1)} this is within 1 + o(1) of optimal, and for delta ll 1 it is the first bound within constant factors of optimal. 2 authors · Nov 1, 2023
- FiniteFieldSolve: Exactly Solving Large Linear Systems in High-Energy Theory Large linear systems play an important role in high-energy theory, appearing in amplitude bootstraps and during integral reduction. This paper introduces FiniteFieldSolve, a general-purpose toolkit for exactly solving large linear systems over the rationals. The solver interfaces directly with Mathematica, is straightforward to install, and seamlessly replaces Mathematica's native solvers. In testing, FiniteFieldSolve is approximately two orders of magnitude faster than Mathematica and uses an order of magnitude less memory. The package also compares favorably against other public solvers in FiniteFieldSolve's intended use cases. As the name of the package suggests, solutions are obtained via well-known finite field methods. These methods suffer from introducing an inordinate number of modulo (or integer division) operations with respect to different primes. By automatically recompiling itself for each prime, FiniteFieldSolve converts the division operations into much faster combinations of instructions, dramatically improving performance. The technique of compiling the prime can be applied to any finite field solver, where the time savings will be solver dependent. The operation of the package is illustrated through a detailed example of an amplitude bootstrap. 1 authors · Nov 2, 2023
1 Equitable Mechanism Design for Facility Location We consider strategy proof mechanisms for facility location which maximize equitability between agents. As is common in the literature, we measure equitability with the Gini index. We first prove a simple but fundamental impossibility result that no strategy proof mechanism can bound the approximation ratio of the optimal Gini index of utilities for one or more facilities. We propose instead computing approximation ratios of the complemented Gini index of utilities, and consider how well both deterministic and randomized mechanisms approximate this. In addition, as Nash welfare is often put forwards as an equitable compromise between egalitarian and utilitarian outcomes, we consider how well mechanisms approximate the Nash welfare. 1 authors · Jun 12
- Dimensional Complexity and Algorithmic Efficiency This paper uses the concept of algorithmic efficiency to present a unified theory of intelligence. Intelligence is defined informally, formally, and computationally. We introduce the concept of Dimensional complexity in algorithmic efficiency and deduce that an optimally efficient algorithm has zero Time complexity, zero Space complexity, and an infinite Dimensional complexity. This algorithm is used to generate the number line. 1 authors · Dec 24, 2021
1 Megadiff: A Dataset of 600k Java Source Code Changes Categorized by Diff Size This paper presents Megadiff, a dataset of source code diffs. It focuses on Java, with strict inclusion criteria based on commit message and diff size. Megadiff contains 663 029 Java diffs that can be used for research on commit comprehension, fault localization, automated program repair, and machine learning on code changes. 6 authors · Aug 10, 2021
- PutnamBench: Evaluating Neural Theorem-Provers on the Putnam Mathematical Competition We present PutnamBench, a new multilingual benchmark for evaluating the ability of neural theorem-provers to solve competition mathematics problems. PutnamBench consists of 1697 hand-constructed formalizations of 640 theorems sourced from the William Lowell Putnam Mathematical Competition, the premier undergraduate-level mathematics competition in North America. All the theorems have formalizations in Lean 4 and Isabelle; a substantial subset also has Coq formalizations. Proving the theorems requires significant problem-solving ability and proficiency in a broad range of topics taught in undergraduate mathematics courses. We use PutnamBench to evaluate several established neural and symbolic theorem-provers. These approaches can only solve a handful of the PutnamBench problems, establishing the benchmark as a difficult open challenge for research on neural theorem-proving. PutnamBench is available at https://github.com/trishullab/PutnamBench. 8 authors · Jul 15, 2024
- How Long It Takes for an Ordinary Node with an Ordinary ID to Output? In the context of distributed synchronous computing, processors perform in rounds, and the time-complexity of a distributed algorithm is classically defined as the number of rounds before all computing nodes have output. Hence, this complexity measure captures the running time of the slowest node(s). In this paper, we are interested in the running time of the ordinary nodes, to be compared with the running time of the slowest nodes. The node-averaged time-complexity of a distributed algorithm on a given instance is defined as the average, taken over every node of the instance, of the number of rounds before that node output. We compare the node-averaged time-complexity with the classical one in the standard LOCAL model for distributed network computing. We show that there can be an exponential gap between the node-averaged time-complexity and the classical time-complexity, as witnessed by, e.g., leader election. Our first main result is a positive one, stating that, in fact, the two time-complexities behave the same for a large class of problems on very sparse graphs. In particular, we show that, for LCL problems on cycles, the node-averaged time complexity is of the same order of magnitude as the slowest node time-complexity. In addition, in the LOCAL model, the time-complexity is computed as a worst case over all possible identity assignments to the nodes of the network. In this paper, we also investigate the ID-averaged time-complexity, when the number of rounds is averaged over all possible identity assignments. Our second main result is that the ID-averaged time-complexity is essentially the same as the expected time-complexity of randomized algorithms (where the expectation is taken over all possible random bits used by the nodes, and the number of rounds is measured for the worst-case identity assignment). Finally, we study the node-averaged ID-averaged time-complexity. 1 authors · Apr 19, 2017
- On Enumerating Higher Bruhat Orders Through Deletion and Contraction The higher Bruhat orders B(n,k) were introduced by Manin-Schechtman to study discriminantal hyperplane arrangements and subsequently studied by Ziegler, who connected B(n,k) to oriented matroids. In this paper, we consider the enumeration of B(n,k) and improve upon Balko's asymptotic lower and upper bounds on |B(n,k)| by a factor exponential in k. A proof of Ziegler's formula for |B(n,n-3)| is given and a bijection between a certain subset of B(n,n-4) and totally symmetric plane partitions is proved. Central to our proofs are deletion and contraction operations for the higher Bruhat orders, defined in analogy with matroids. Dual higher Bruhat orders are also introduced, and we construct isomorphisms relating the higher Bruhat orders and their duals. Additionally, weaving functions are introduced to generalize Felsner's encoding of elements in B(n,2) to all higher Bruhat orders B(n,k). 1 authors · Dec 13, 2024
- On Signs of eigenvalues of Modular forms satisfying Ramanujan Conjecture Let F in S_{k_1}(Gamma^{(2)}(N_1)) and G in S_{k_2}(Gamma^{(2)}(N_2)) be two Siegel cusp forms over the congruence subgroups Gamma^{(2)}(N_1) and Gamma^{(2)}(N_2) respectively. Assume that they are Hecke eigenforms in different eigenspaces and satisfy the Generalized Ramanujan Conjecture. Let lambda_F(p) denote the eigenvalue of F with respect to the Hecke operator T(p). In this article, we compute a lower bound for the density of the set of primes, { p : lambda_F(p) lambda_G(p) < 0 }. 1 authors · Dec 12, 2024
- Games and Ramsey-like cardinals We generalise the alpha-Ramsey cardinals introduced in Holy and Schlicht (2018) for cardinals alpha to arbitrary ordinals alpha, and answer several questions posed in that paper. In particular, we show that alpha-Ramseys are downwards absolute to the core model K for all alpha of uncountable cofinality, that strategic omega-Ramsey cardinals are equiconsistent with remarkable cardinals and that strategic alpha-Ramsey cardinals are equiconsistent with measurable cardinals for all alpha>omega. We also show that the n-Ramseys satisfy indescribability properties and use them to provide a game-theoretic characterisation of completely ineffable cardinals, as well as establishing further connections between the alpha-Ramsey cardinals and the Ramsey-like cardinals introduced in Gitman (2011), Feng (1990) and Sharpe and Welch (2011). 2 authors · Apr 27, 2018
- De Finetti's construction as a categorical limit This paper reformulates a classical result in probability theory from the 1930s in modern categorical terms: de Finetti's representation theorem is redescribed as limit statement for a chain of finite spaces in the Kleisli category of the Giry monad. This new limit is used to identify among exchangeable coalgebras the final one. 2 authors · Mar 4, 2020