new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 1

Dropping Experts, Recombining Neurons: Retraining-Free Pruning for Sparse Mixture-of-Experts LLMs

Sparse Mixture-of-Experts (SMoE) architectures are widely used in large language models (LLMs) due to their computational efficiency. However, though only a few experts are activated for each token, SMoE still requires loading all expert parameters, leading to high memory usage and challenges in deployment. Previous work has tried to reduce the overhead by pruning and merging experts, but primarily focused on expert-level operations, leaving neuron-level structure underexplored. We propose DERN (Dropping Experts, Recombining Neurons), a task-agnostic and retraining-free framework for expert pruning and reconstruction. We observe that experts are often misaligned and contain semantic conflicts at the neuron level, which poses challenges for direct merging. To solve this, DERN works in three steps: it first prunes redundant experts using router statistics; then it decomposes them into neuron-level expert segments, assigning each segment to its most compatible retained expert; and finally, it merges segments within each retained expert to build a compact representation. Experiments on Mixtral, Qwen, and DeepSeek SMoE models show that DERN improves performance by more than 5% on commonsense reasoning and MMLU benchmarks under 50% expert sparsity, without extra training. It also greatly reduces the number of experts and memory usage, making SMoE LLMs easier to deploy in practice.

  • 9 authors
·
Sep 12

LoCoCo: Dropping In Convolutions for Long Context Compression

This paper tackles the memory hurdle of processing long context sequences in Large Language Models (LLMs), by presenting a novel approach, Dropping In Convolutions for Long Context Compression (LoCoCo). LoCoCo employs only a fixed-size Key-Value (KV) cache, and can enhance efficiency in both inference and fine-tuning stages. Diverging from prior methods that selectively drop KV pairs based on heuristics, LoCoCo leverages a data-driven adaptive fusion technique, blending previous KV pairs with incoming tokens to minimize the loss of contextual information and ensure accurate attention modeling. This token integration is achieved through injecting one-dimensional convolutional kernels that dynamically calculate mixing weights for each KV cache slot. Designed for broad compatibility with existing LLM frameworks, LoCoCo allows for straightforward "drop-in" integration without needing architectural modifications, while incurring minimal tuning overhead. Experiments demonstrate that LoCoCo maintains consistently outstanding performance across various context lengths and can achieve a high context compression rate during both inference and fine-tuning phases. During inference, we successfully compressed up to 3482 tokens into a 128-size KV cache, while retaining comparable performance to the full sequence - an accuracy improvement of up to 0.2791 compared to baselines at the same cache size. During post-training tuning, we also effectively extended the context length from 4K to 32K using a KV cache of fixed size 512, achieving performance similar to fine-tuning with entire sequences.

  • 4 authors
·
Jun 7, 2024 2

HiRED: Attention-Guided Token Dropping for Efficient Inference of High-Resolution Vision-Language Models in Resource-Constrained Environments

High-resolution Vision-Language Models (VLMs) have been widely used in multimodal tasks to enhance accuracy by preserving detailed image information. However, these models often generate excessive visual tokens due to encoding multiple partitions of the input image. Processing these excessive visual tokens is computationally challenging, especially in resource-constrained environments with commodity GPUs. To support high-resolution images while meeting resource constraints, we propose High-Resolution Early Dropping (HiRED), a token-dropping scheme that operates within a fixed token budget before the Large Language Model (LLM) stage. HiRED can be integrated with existing high-resolution VLMs in a plug-and-play manner, as it requires no additional training while still maintaining superior accuracy. We strategically use the vision encoder's attention in the initial layers to assess the visual content of each image partition and allocate the token budget accordingly. Then, using the attention in the final layer, we select the most important visual tokens from each partition within the allocated budget, dropping the rest. Empirically, when applied to LLaVA-Next-7B on NVIDIA TESLA P40 GPU, HiRED with a 20% token budget increases token generation throughput by 4.7, reduces first-token generation latency by 15 seconds, and saves 2.3 GB of GPU memory for a single inference.

  • 6 authors
·
Aug 20, 2024 2

Multi-Stage Vision Token Dropping: Towards Efficient Multimodal Large Language Model

The vision tokens in multimodal large language models usually exhibit significant spatial and temporal redundancy and take up most of the input tokens, which harms their inference efficiency. To solve this problem, some recent works were introduced to drop the unimportant tokens during inference where the importance of each token is decided only by the information in either the vision encoding stage or the prefilling stage. In this paper, we propose Multi-stage Token Dropping (MustDrop) to measure the importance of each token from the whole lifecycle, including the vision encoding stage, prefilling stage, and decoding stage. Concretely, in the visual encoding stage, MustDrop merges spatially adjacent tokens with high similarity, and establishes a key token set to retain the most vision-critical tokens, preventing them from being discarded in later stages. In the prefilling stage, MustDrop further compresses vision tokens by the guidance of text semantics, with a dual-attention filtering strategy. In the decoding stage, an output-aware cache policy is proposed to further reduce the size of the KV cache. By leveraging tailored strategies in the multi-stage process, MustDrop can more precisely recognize the important and redundant tokens, thus achieving an optimal balance between performance and efficiency. For instance, MustDrop reduces about 88.5\% FLOPs on LLaVA with a compression ratio of 92.2\% while maintaining comparable accuracy. Our codes are available at https://github.com/liuting20/MustDrop.

  • 6 authors
·
Nov 16, 2024