new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 30

MM-DREX: Multimodal-Driven Dynamic Routing of LLM Experts for Financial Trading

The inherent non-stationarity of financial markets and the complexity of multi-modal information pose significant challenges to existing quantitative trading models. Traditional methods relying on fixed structures and unimodal data struggle to adapt to market regime shifts, while large language model (LLM)-driven solutions - despite their multi-modal comprehension - suffer from static strategies and homogeneous expert designs, lacking dynamic adjustment and fine-grained decision mechanisms. To address these limitations, we propose MM-DREX: a Multimodal-driven, Dynamically-Routed EXpert framework based on large language models. MM-DREX explicitly decouples market state perception from strategy execution to enable adaptive sequential decision-making in non-stationary environments. Specifically, it (1) introduces a vision-language model (VLM)-powered dynamic router that jointly analyzes candlestick chart patterns and long-term temporal features to allocate real-time expert weights; (2) designs four heterogeneous trading experts (trend, reversal, breakout, positioning) generating specialized fine-grained sub-strategies; and (3) proposes an SFT-RL hybrid training paradigm to synergistically optimize the router's market classification capability and experts' risk-adjusted decision-making. Extensive experiments on multi-modal datasets spanning stocks, futures, and cryptocurrencies demonstrate that MM-DREX significantly outperforms 15 baselines (including state-of-the-art financial LLMs and deep reinforcement learning models) across key metrics: total return, Sharpe ratio, and maximum drawdown, validating its robustness and generalization. Additionally, an interpretability module traces routing logic and expert behavior in real time, providing an audit trail for strategy transparency.

  • 9 authors
·
Sep 5

ContestTrade: A Multi-Agent Trading System Based on Internal Contest Mechanism

In financial trading, large language model (LLM)-based agents demonstrate significant potential. However, the high sensitivity to market noise undermines the performance of LLM-based trading systems. To address this limitation, we propose a novel multi-agent system featuring an internal competitive mechanism inspired by modern corporate management structures. The system consists of two specialized teams: (1) Data Team - responsible for processing and condensing massive market data into diversified text factors, ensuring they fit the model's constrained context. (2) Research Team - tasked with making parallelized multipath trading decisions based on deep research methods. The core innovation lies in implementing a real-time evaluation and ranking mechanism within each team, driven by authentic market feedback. Each agent's performance undergoes continuous scoring and ranking, with only outputs from top-performing agents being adopted. The design enables the system to adaptively adjust to dynamic environment, enhances robustness against market noise and ultimately delivers superior trading performance. Experimental results demonstrate that our proposed system significantly outperforms prevailing multi-agent systems and traditional quantitative investment methods across diverse evaluation metrics. ContestTrade is open-sourced on GitHub at https://github.com/FinStep-AI/ContestTrade.

  • 9 authors
·
Aug 1

GLEE: A Unified Framework and Benchmark for Language-based Economic Environments

Large Language Models (LLMs) show significant potential in economic and strategic interactions, where communication via natural language is often prevalent. This raises key questions: Do LLMs behave rationally? Can they mimic human behavior? Do they tend to reach an efficient and fair outcome? What is the role of natural language in the strategic interaction? How do characteristics of the economic environment influence these dynamics? These questions become crucial concerning the economic and societal implications of integrating LLM-based agents into real-world data-driven systems, such as online retail platforms and recommender systems. While the ML community has been exploring the potential of LLMs in such multi-agent setups, varying assumptions, design choices and evaluation criteria across studies make it difficult to draw robust and meaningful conclusions. To address this, we introduce a benchmark for standardizing research on two-player, sequential, language-based games. Inspired by the economic literature, we define three base families of games with consistent parameterization, degrees of freedom and economic measures to evaluate agents' performance (self-gain), as well as the game outcome (efficiency and fairness). We develop an open-source framework for interaction simulation and analysis, and utilize it to collect a dataset of LLM vs. LLM interactions across numerous game configurations and an additional dataset of human vs. LLM interactions. Through extensive experimentation, we demonstrate how our framework and dataset can be used to: (i) compare the behavior of LLM-based agents to human players in various economic contexts; (ii) evaluate agents in both individual and collective performance measures; and (iii) quantify the effect of the economic characteristics of the environments on the behavior of agents.

  • 6 authors
·
Oct 7, 2024 2

Dynamic Factor Analysis of Price Movements in the Philippine Stock Exchange

The intricate dynamics of stock markets have led to extensive research on models that are able to effectively explain their inherent complexities. This study leverages the econometrics literature to explore the dynamic factor model as an interpretable model with sufficient predictive capabilities for capturing essential market phenomena. Although the model has been extensively applied for predictive purposes, this study focuses on analyzing the extracted loadings and common factors as an alternative framework for understanding stock price dynamics. The results reveal novel insights into traditional market theories when applied to the Philippine Stock Exchange using the Kalman method and maximum likelihood estimation, with subsequent validation against the capital asset pricing model. Notably, a one-factor model extracts a common factor representing systematic or market dynamics similar to the composite index, whereas a two-factor model extracts common factors representing market trends and volatility. Furthermore, an application of the model for nowcasting the growth rates of the Philippine gross domestic product highlights the potential of the extracted common factors as viable real-time market indicators, yielding over a 34% decrease in the out-of-sample prediction error. Overall, the results underscore the value of dynamic factor analysis in gaining a deeper understanding of market price movement dynamics.

  • 6 authors
·
Oct 8

Real-Time Bidding by Reinforcement Learning in Display Advertising

The majority of online display ads are served through real-time bidding (RTB) --- each ad display impression is auctioned off in real-time when it is just being generated from a user visit. To place an ad automatically and optimally, it is critical for advertisers to devise a learning algorithm to cleverly bid an ad impression in real-time. Most previous works consider the bid decision as a static optimization problem of either treating the value of each impression independently or setting a bid price to each segment of ad volume. However, the bidding for a given ad campaign would repeatedly happen during its life span before the budget runs out. As such, each bid is strategically correlated by the constrained budget and the overall effectiveness of the campaign (e.g., the rewards from generated clicks), which is only observed after the campaign has completed. Thus, it is of great interest to devise an optimal bidding strategy sequentially so that the campaign budget can be dynamically allocated across all the available impressions on the basis of both the immediate and future rewards. In this paper, we formulate the bid decision process as a reinforcement learning problem, where the state space is represented by the auction information and the campaign's real-time parameters, while an action is the bid price to set. By modeling the state transition via auction competition, we build a Markov Decision Process framework for learning the optimal bidding policy to optimize the advertising performance in the dynamic real-time bidding environment. Furthermore, the scalability problem from the large real-world auction volume and campaign budget is well handled by state value approximation using neural networks.

  • 7 authors
·
Jan 10, 2017

What Is Your AI Agent Buying? Evaluation, Implications and Emerging Questions for Agentic E-Commerce

Online marketplaces will be transformed by autonomous AI agents acting on behalf of consumers. Rather than humans browsing and clicking, vision-language-model (VLM) agents can parse webpages, evaluate products, and transact. This raises a fundamental question: what do AI agents buy, and why? We develop ACES, a sandbox environment that pairs a platform-agnostic VLM agent with a fully programmable mock marketplace to study this question. We first conduct basic rationality checks in the context of simple tasks, and then, by randomizing product positions, prices, ratings, reviews, sponsored tags, and platform endorsements, we obtain causal estimates of how frontier VLMs actually shop. Models show strong but heterogeneous position effects: all favor the top row, yet different models prefer different columns, undermining the assumption of a universal "top" rank. They penalize sponsored tags and reward endorsements. Sensitivities to price, ratings, and reviews are directionally human-like but vary sharply in magnitude across models. Motivated by scenarios where sellers use AI agents to optimize product listings, we show that a seller-side agent that makes minor tweaks to product descriptions, targeting AI buyer preferences, can deliver substantial market-share gains if AI-mediated shopping dominates. We also find that modal product choices can differ across models and, in some cases, demand may concentrate on a few select products, raising competition questions. Together, our results illuminate how AI agents may behave in e-commerce settings and surface concrete seller strategy, platform design, and regulatory questions in an AI-mediated ecosystem.

  • 5 authors
·
Aug 4 2

Harnessing Deep Q-Learning for Enhanced Statistical Arbitrage in High-Frequency Trading: A Comprehensive Exploration

The realm of High-Frequency Trading (HFT) is characterized by rapid decision-making processes that capitalize on fleeting market inefficiencies. As the financial markets become increasingly competitive, there is a pressing need for innovative strategies that can adapt and evolve with changing market dynamics. Enter Reinforcement Learning (RL), a branch of machine learning where agents learn by interacting with their environment, making it an intriguing candidate for HFT applications. This paper dives deep into the integration of RL in statistical arbitrage strategies tailored for HFT scenarios. By leveraging the adaptive learning capabilities of RL, we explore its potential to unearth patterns and devise trading strategies that traditional methods might overlook. We delve into the intricate exploration-exploitation trade-offs inherent in RL and how they manifest in the volatile world of HFT. Furthermore, we confront the challenges of applying RL in non-stationary environments, typical of financial markets, and investigate methodologies to mitigate associated risks. Through extensive simulations and backtests, our research reveals that RL not only enhances the adaptability of trading strategies but also shows promise in improving profitability metrics and risk-adjusted returns. This paper, therefore, positions RL as a pivotal tool for the next generation of HFT-based statistical arbitrage, offering insights for both researchers and practitioners in the field.

  • 1 authors
·
Sep 13, 2023

Dynamical Linear Bandits

In many real-world sequential decision-making problems, an action does not immediately reflect on the feedback and spreads its effects over a long time frame. For instance, in online advertising, investing in a platform produces an instantaneous increase of awareness, but the actual reward, i.e., a conversion, might occur far in the future. Furthermore, whether a conversion takes place depends on: how fast the awareness grows, its vanishing effects, and the synergy or interference with other advertising platforms. Previous work has investigated the Multi-Armed Bandit framework with the possibility of delayed and aggregated feedback, without a particular structure on how an action propagates in the future, disregarding possible dynamical effects. In this paper, we introduce a novel setting, the Dynamical Linear Bandits (DLB), an extension of the linear bandits characterized by a hidden state. When an action is performed, the learner observes a noisy reward whose mean is a linear function of the hidden state and of the action. Then, the hidden state evolves according to linear dynamics, affected by the performed action too. We start by introducing the setting, discussing the notion of optimal policy, and deriving an expected regret lower bound. Then, we provide an optimistic regret minimization algorithm, Dynamical Linear Upper Confidence Bound (DynLin-UCB), that suffers an expected regret of order mathcal{O} Big( d sqrt{T}{(1-rho)^{3/2}} Big), where rho is a measure of the stability of the system, and d is the dimension of the action vector. Finally, we conduct a numerical validation on a synthetic environment and on real-world data to show the effectiveness of DynLin-UCB in comparison with several baselines.

  • 3 authors
·
Nov 16, 2022

Dynamic Pricing for Airline Ancillaries with Customer Context

Ancillaries have become a major source of revenue and profitability in the travel industry. Yet, conventional pricing strategies are based on business rules that are poorly optimized and do not respond to changing market conditions. This paper describes the dynamic pricing model developed by Deepair solutions, an AI technology provider for travel suppliers. We present a pricing model that provides dynamic pricing recommendations specific to each customer interaction and optimizes expected revenue per customer. The unique nature of personalized pricing provides the opportunity to search over the market space to find the optimal price-point of each ancillary for each customer, without violating customer privacy. In this paper, we present and compare three approaches for dynamic pricing of ancillaries, with increasing levels of sophistication: (1) a two-stage forecasting and optimization model using a logistic mapping function; (2) a two-stage model that uses a deep neural network for forecasting, coupled with a revenue maximization technique using discrete exhaustive search; (3) a single-stage end-to-end deep neural network that recommends the optimal price. We describe the performance of these models based on both offline and online evaluations. We also measure the real-world business impact of these approaches by deploying them in an A/B test on an airline's internet booking website. We show that traditional machine learning techniques outperform human rule-based approaches in an online setting by improving conversion by 36% and revenue per offer by 10%. We also provide results for our offline experiments which show that deep learning algorithms outperform traditional machine learning techniques for this problem. Our end-to-end deep learning model is currently being deployed by the airline in their booking system.

  • 5 authors
·
Feb 6, 2019

When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments

Can AI Agents simulate real-world trading environments to investigate the impact of external factors on stock trading activities (e.g., macroeconomics, policy changes, company fundamentals, and global events)? These factors, which frequently influence trading behaviors, are critical elements in the quest for maximizing investors' profits. Our work attempts to solve this problem through large language model based agents. We have developed a multi-agent AI system called StockAgent, driven by LLMs, designed to simulate investors' trading behaviors in response to the real stock market. The StockAgent allows users to evaluate the impact of different external factors on investor trading and to analyze trading behavior and profitability effects. Additionally, StockAgent avoids the test set leakage issue present in existing trading simulation systems based on AI Agents. Specifically, it prevents the model from leveraging prior knowledge it may have acquired related to the test data. We evaluate different LLMs under the framework of StockAgent in a stock trading environment that closely resembles real-world conditions. The experimental results demonstrate the impact of key external factors on stock market trading, including trading behavior and stock price fluctuation rules. This research explores the study of agents' free trading gaps in the context of no prior knowledge related to market data. The patterns identified through StockAgent simulations provide valuable insights for LLM-based investment advice and stock recommendation. The code is available at https://github.com/MingyuJ666/Stockagent.

  • 13 authors
·
Jul 15, 2024

Optimizing Return Distributions with Distributional Dynamic Programming

We introduce distributional dynamic programming (DP) methods for optimizing statistical functionals of the return distribution, with standard reinforcement learning as a special case. Previous distributional DP methods could optimize the same class of expected utilities as classic DP. To go beyond expected utilities, we combine distributional DP with stock augmentation, a technique previously introduced for classic DP in the context of risk-sensitive RL, where the MDP state is augmented with a statistic of the rewards obtained so far (since the first time step). We find that a number of recently studied problems can be formulated as stock-augmented return distribution optimization, and we show that we can use distributional DP to solve them. We analyze distributional value and policy iteration, with bounds and a study of what objectives these distributional DP methods can or cannot optimize. We describe a number of applications outlining how to use distributional DP to solve different stock-augmented return distribution optimization problems, for example maximizing conditional value-at-risk, and homeostatic regulation. To highlight the practical potential of stock-augmented return distribution optimization and distributional DP, we combine the core ideas of distributional value iteration with the deep RL agent DQN, and empirically evaluate it for solving instances of the applications discussed.

  • 9 authors
·
Jan 22

BleedOrigin: Dynamic Bleeding Source Localization in Endoscopic Submucosal Dissection via Dual-Stage Detection and Tracking

Intraoperative bleeding during Endoscopic Submucosal Dissection (ESD) poses significant risks, demanding precise, real-time localization and continuous monitoring of the bleeding source for effective hemostatic intervention. In particular, endoscopists have to repeatedly flush to clear blood, allowing only milliseconds to identify bleeding sources, an inefficient process that prolongs operations and elevates patient risks. However, current Artificial Intelligence (AI) methods primarily focus on bleeding region segmentation, overlooking the critical need for accurate bleeding source detection and temporal tracking in the challenging ESD environment, which is marked by frequent visual obstructions and dynamic scene changes. This gap is widened by the lack of specialized datasets, hindering the development of robust AI-assisted guidance systems. To address these challenges, we introduce BleedOrigin-Bench, the first comprehensive ESD bleeding source dataset, featuring 1,771 expert-annotated bleeding sources across 106,222 frames from 44 procedures, supplemented with 39,755 pseudo-labeled frames. This benchmark covers 8 anatomical sites and 6 challenging clinical scenarios. We also present BleedOrigin-Net, a novel dual-stage detection-tracking framework for the bleeding source localization in ESD procedures, addressing the complete workflow from bleeding onset detection to continuous spatial tracking. We compare with widely-used object detection models (YOLOv11/v12), multimodal large language models, and point tracking methods. Extensive evaluation demonstrates state-of-the-art performance, achieving 96.85% frame-level accuracy (pmleq8 frames) for bleeding onset detection, 70.24% pixel-level accuracy (leq100 px) for initial source detection, and 96.11% pixel-level accuracy (leq100 px) for point tracking.

  • 7 authors
·
Jul 20

Deep Reinforcement Learning for ESG financial portfolio management

This paper investigates the application of Deep Reinforcement Learning (DRL) for Environment, Social, and Governance (ESG) financial portfolio management, with a specific focus on the potential benefits of ESG score-based market regulation. We leveraged an Advantage Actor-Critic (A2C) agent and conducted our experiments using environments encoded within the OpenAI Gym, adapted from the FinRL platform. The study includes a comparative analysis of DRL agent performance under standard Dow Jones Industrial Average (DJIA) market conditions and a scenario where returns are regulated in line with company ESG scores. In the ESG-regulated market, grants were proportionally allotted to portfolios based on their returns and ESG scores, while taxes were assigned to portfolios below the mean ESG score of the index. The results intriguingly reveal that the DRL agent within the ESG-regulated market outperforms the standard DJIA market setup. Furthermore, we considered the inclusion of ESG variables in the agent state space, and compared this with scenarios where such data were excluded. This comparison adds to the understanding of the role of ESG factors in portfolio management decision-making. We also analyze the behaviour of the DRL agent in IBEX 35 and NASDAQ-100 indexes. Both the A2C and Proximal Policy Optimization (PPO) algorithms were applied to these additional markets, providing a broader perspective on the generalization of our findings. This work contributes to the evolving field of ESG investing, suggesting that market regulation based on ESG scoring can potentially improve DRL-based portfolio management, with significant implications for sustainable investing strategies.

  • 3 authors
·
Jun 19, 2023

Deep Reinforcement Learning for Quantitative Trading

Artificial Intelligence (AI) and Machine Learning (ML) are transforming the domain of Quantitative Trading (QT) through the deployment of advanced algorithms capable of sifting through extensive financial datasets to pinpoint lucrative investment openings. AI-driven models, particularly those employing ML techniques such as deep learning and reinforcement learning, have shown great prowess in predicting market trends and executing trades at a speed and accuracy that far surpass human capabilities. Its capacity to automate critical tasks, such as discerning market conditions and executing trading strategies, has been pivotal. However, persistent challenges exist in current QT methods, especially in effectively handling noisy and high-frequency financial data. Striking a balance between exploration and exploitation poses another challenge for AI-driven trading agents. To surmount these hurdles, our proposed solution, QTNet, introduces an adaptive trading model that autonomously formulates QT strategies through an intelligent trading agent. Incorporating deep reinforcement learning (DRL) with imitative learning methodologies, we bolster the proficiency of our model. To tackle the challenges posed by volatile financial datasets, we conceptualize the QT mechanism within the framework of a Partially Observable Markov Decision Process (POMDP). Moreover, by embedding imitative learning, the model can capitalize on traditional trading tactics, nurturing a balanced synergy between discovery and utilization. For a more realistic simulation, our trading agent undergoes training using minute-frequency data sourced from the live financial market. Experimental findings underscore the model's proficiency in extracting robust market features and its adaptability to diverse market conditions.

  • 5 authors
·
Dec 25, 2023

Research on Optimizing Real-Time Data Processing in High-Frequency Trading Algorithms using Machine Learning

High-frequency trading (HFT) represents a pivotal and intensely competitive domain within the financial markets. The velocity and accuracy of data processing exert a direct influence on profitability, underscoring the significance of this field. The objective of this work is to optimise the real-time processing of data in high-frequency trading algorithms. The dynamic feature selection mechanism is responsible for monitoring and analysing market data in real time through clustering and feature weight analysis, with the objective of automatically selecting the most relevant features. This process employs an adaptive feature extraction method, which enables the system to respond and adjust its feature set in a timely manner when the data input changes, thus ensuring the efficient utilisation of data. The lightweight neural networks are designed in a modular fashion, comprising fast convolutional layers and pruning techniques that facilitate the expeditious completion of data processing and output prediction. In contrast to conventional deep learning models, the neural network architecture has been specifically designed to minimise the number of parameters and computational complexity, thereby markedly reducing the inference time. The experimental results demonstrate that the model is capable of maintaining consistent performance in the context of varying market conditions, thereby illustrating its advantages in terms of processing speed and revenue enhancement.

  • 6 authors
·
Dec 1, 2024

Adaptability in Multi-Agent Reinforcement Learning: A Framework and Unified Review

Multi-Agent Reinforcement Learning (MARL) has shown clear effectiveness in coordinating multiple agents across simulated benchmarks and constrained scenarios. However, its deployment in real-world multi-agent systems (MAS) remains limited, primarily due to the complex and dynamic nature of such environments. These challenges arise from multiple interacting sources of variability, including fluctuating agent populations, evolving task goals, and inconsistent execution conditions. Together, these factors demand that MARL algorithms remain effective under continuously changing system configurations and operational demands. To better capture and assess this capacity for adjustment, we introduce the concept of adaptability as a unified and practically grounded lens through which to evaluate the reliability of MARL algorithms under shifting conditions, broadly referring to any changes in the environment dynamics that may occur during learning or execution. Centred on the notion of adaptability, we propose a structured framework comprising three key dimensions: learning adaptability, policy adaptability, and scenario-driven adaptability. By adopting this adaptability perspective, we aim to support more principled assessments of MARL performance beyond narrowly defined benchmarks. Ultimately, this survey contributes to the development of algorithms that are better suited for deployment in dynamic, real-world multi-agent systems.

  • 6 authors
·
Jul 14

Solving robust MDPs as a sequence of static RL problems

Designing control policies whose performance level is guaranteed to remain above a given threshold in a span of environments is a critical feature for the adoption of reinforcement learning (RL) in real-world applications. The search for such robust policies is a notoriously difficult problem, related to the so-called dynamic model of transition function uncertainty, where the environment dynamics are allowed to change at each time step. But in practical cases, one is rather interested in robustness to a span of static transition models throughout interaction episodes. The static model is known to be harder to solve than the dynamic one, and seminal algorithms, such as robust value iteration, as well as most recent works on deep robust RL, build upon the dynamic model. In this work, we propose to revisit the static model. We suggest an analysis of why solving the static model under some mild hypotheses is a reasonable endeavor, based on an equivalence with the dynamic model, and formalize the general intuition that robust MDPs can be solved by tackling a series of static problems. We introduce a generic meta-algorithm called IWOCS, which incrementally identifies worst-case transition models so as to guide the search for a robust policy. Discussion on IWOCS sheds light on new ways to decouple policy optimization and adversarial transition functions and opens new perspectives for analysis. We derive a deep RL version of IWOCS and demonstrate it is competitive with state-of-the-art algorithms on classical benchmarks.

  • 3 authors
·
Oct 8, 2024

MarS: a Financial Market Simulation Engine Powered by Generative Foundation Model

Generative models aim to simulate realistic effects of various actions across different contexts, from text generation to visual effects. Despite significant efforts to build real-world simulators, the application of generative models to virtual worlds, like financial markets, remains under-explored. In financial markets, generative models can simulate complex market effects of participants with various behaviors, enabling interaction under different market conditions, and training strategies without financial risk. This simulation relies on the finest structured data in financial market like orders thus building the finest realistic simulation. We propose Large Market Model (LMM), an order-level generative foundation model, for financial market simulation, akin to language modeling in the digital world. Our financial Market Simulation engine (MarS), powered by LMM, addresses the domain-specific need for realistic, interactive and controllable order generation. Key observations include LMM's strong scalability across data size and model complexity, and MarS's robust and practicable realism in controlled generation with market impact. We showcase MarS as a forecast tool, detection system, analysis platform, and agent training environment, thus demonstrating MarS's "paradigm shift" potential for a variety of financial applications. We release the code of MarS at https://github.com/microsoft/MarS/.

  • 7 authors
·
Sep 4, 2024 1

Position Auctions in AI-Generated Content

We consider an extension to the classic position auctions in which sponsored creatives can be added within AI generated content rather than shown in predefined slots. New challenges arise from the natural requirement that sponsored creatives should smoothly fit into the context. With the help of advanced LLM technologies, it becomes viable to accurately estimate the benefits of adding each individual sponsored creatives into each potential positions within the AI generated content by properly taking the context into account. Therefore, we assume one click-through rate estimation for each position-creative pair, rather than one uniform estimation for each sponsored creative across all positions in classic settings. As a result, the underlying optimization becomes a general matching problem, thus the substitution effects should be treated more carefully compared to standard position auction settings, where the slots are independent with each other. In this work, we formalize a concrete mathematical model of the extended position auction problem and study the welfare-maximization and revenue-maximization mechanism design problem. Formally, we consider two different user behavior models and solve the mechanism design problems therein respectively. For the Multinomial Logit (MNL) model, which is order-insensitive, we can efficiently implement the optimal mechanisms. For the cascade model, which is order-sensitive, we provide approximately optimal solutions.

  • 10 authors
·
Jun 3

Universal features of price formation in financial markets: perspectives from Deep Learning

Using a large-scale Deep Learning approach applied to a high-frequency database containing billions of electronic market quotes and transactions for US equities, we uncover nonparametric evidence for the existence of a universal and stationary price formation mechanism relating the dynamics of supply and demand for a stock, as revealed through the order book, to subsequent variations in its market price. We assess the model by testing its out-of-sample predictions for the direction of price moves given the history of price and order flow, across a wide range of stocks and time periods. The universal price formation model is shown to exhibit a remarkably stable out-of-sample prediction accuracy across time, for a wide range of stocks from different sectors. Interestingly, these results also hold for stocks which are not part of the training sample, showing that the relations captured by the model are universal and not asset-specific. The universal model --- trained on data from all stocks --- outperforms, in terms of out-of-sample prediction accuracy, asset-specific linear and nonlinear models trained on time series of any given stock, showing that the universal nature of price formation weighs in favour of pooling together financial data from various stocks, rather than designing asset- or sector-specific models as commonly done. Standard data normalizations based on volatility, price level or average spread, or partitioning the training data into sectors or categories such as large/small tick stocks, do not improve training results. On the other hand, inclusion of price and order flow history over many past observations is shown to improve forecasting performance, showing evidence of path-dependence in price dynamics.

  • 2 authors
·
Mar 19, 2018

Entire Chain Uplift Modeling with Context-Enhanced Learning for Intelligent Marketing

Uplift modeling, vital in online marketing, seeks to accurately measure the impact of various strategies, such as coupons or discounts, on different users by predicting the Individual Treatment Effect (ITE). In an e-commerce setting, user behavior follows a defined sequential chain, including impression, click, and conversion. Marketing strategies exert varied uplift effects at each stage within this chain, impacting metrics like click-through and conversion rate. Despite its utility, existing research has neglected to consider the inter-task across all stages impacts within a specific treatment and has insufficiently utilized the treatment information, potentially introducing substantial bias into subsequent marketing decisions. We identify these two issues as the chain-bias problem and the treatment-unadaptive problem. This paper introduces the Entire Chain UPlift method with context-enhanced learning (ECUP), devised to tackle these issues. ECUP consists of two primary components: 1) the Entire Chain-Enhanced Network, which utilizes user behavior patterns to estimate ITE throughout the entire chain space, models the various impacts of treatments on each task, and integrates task prior information to enhance context awareness across all stages, capturing the impact of treatment on different tasks, and 2) the Treatment-Enhanced Network, which facilitates fine-grained treatment modeling through bit-level feature interactions, thereby enabling adaptive feature adjustment. Extensive experiments on public and industrial datasets validate ECUPs effectiveness. Moreover, ECUP has been deployed on the Meituan food delivery platform, serving millions of daily active users, with the related dataset released for future research.

  • 9 authors
·
Feb 3, 2024

Labor Space: A Unifying Representation of the Labor Market via Large Language Models

The labor market is a complex ecosystem comprising diverse, interconnected entities, such as industries, occupations, skills, and firms. Due to the lack of a systematic method to map these heterogeneous entities together, each entity has been analyzed in isolation or only through pairwise relationships, inhibiting comprehensive understanding of the whole ecosystem. Here, we introduce Labor Space, a vector-space embedding of heterogeneous labor market entities, derived through applying a large language model with fine-tuning. Labor Space exposes the complex relational fabric of various labor market constituents, facilitating coherent integrative analysis of industries, occupations, skills, and firms, while retaining type-specific clustering. We demonstrate its unprecedented analytical capacities, including positioning heterogeneous entities on an economic axes, such as `Manufacturing--Healthcare'. Furthermore, by allowing vector arithmetic of these entities, Labor Space enables the exploration of complex inter-unit relations, and subsequently the estimation of the ramifications of economic shocks on individual units and their ripple effect across the labor market. We posit that Labor Space provides policymakers and business leaders with a comprehensive unifying framework for labor market analysis and simulation, fostering more nuanced and effective strategic decision-making.

  • 3 authors
·
Nov 9, 2023

Empirical Study of Market Impact Conditional on Order-Flow Imbalance

In this research, we have empirically investigated the key drivers affecting liquidity in equity markets. We illustrated how theoretical models, such as Kyle's model, of agents' interplay in the financial markets, are aligned with the phenomena observed in publicly available trades and quotes data. Specifically, we confirmed that for small signed order-flows, the price impact grows linearly with increase in the order-flow imbalance. We have, further, implemented a machine learning algorithm to forecast market impact given a signed order-flow. Our findings suggest that machine learning models can be used in estimation of financial variables; and predictive accuracy of such learning algorithms can surpass the performance of traditional statistical approaches. Understanding the determinants of price impact is crucial for several reasons. From a theoretical stance, modelling the impact provides a statistical measure of liquidity. Practitioners adopt impact models as a pre-trade tool to estimate expected transaction costs and optimize the execution of their strategies. This further serves as a post-trade valuation benchmark as suboptimal execution can significantly deteriorate a portfolio performance. More broadly, the price impact reflects the balance of liquidity across markets. This is of central importance to regulators as it provides an all-encompassing explanation of the correlation between market design and systemic risk, enabling regulators to design more stable and efficient markets.

  • 1 authors
·
Apr 17, 2020

Stockformer: A Price-Volume Factor Stock Selection Model Based on Wavelet Transform and Multi-Task Self-Attention Networks

As the Chinese stock market continues to evolve and its market structure grows increasingly complex, traditional quantitative trading methods are facing escalating challenges. Particularly, due to policy uncertainty and the frequent market fluctuations triggered by sudden economic events, existing models often struggle to accurately predict market dynamics. To address these challenges, this paper introduces Stockformer, a price-volume factor stock selection model that integrates wavelet transformation and a multitask self-attention network, aimed at enhancing responsiveness and predictive accuracy regarding market instabilities. Through discrete wavelet transform, Stockformer decomposes stock returns into high and low frequencies, meticulously capturing long-term market trends and short-term fluctuations, including abrupt events. Moreover, the model incorporates a Dual-Frequency Spatiotemporal Encoder and graph embedding techniques to effectively capture complex temporal and spatial relationships among stocks. Employing a multitask learning strategy, it simultaneously predicts stock returns and directional trends. Experimental results show that Stockformer outperforms existing advanced methods on multiple real stock market datasets. In strategy backtesting, Stockformer consistently demonstrates exceptional stability and reliability across market conditions-whether rising, falling, or fluctuating-particularly maintaining high performance during downturns or volatile periods, indicating a high adaptability to market fluctuations. To foster innovation and collaboration in the financial analysis sector, the Stockformer model's code has been open-sourced and is available on the GitHub repository: https://github.com/Eric991005/Multitask-Stockformer.

  • 4 authors
·
Nov 22, 2023

One Life to Learn: Inferring Symbolic World Models for Stochastic Environments from Unguided Exploration

Symbolic world modeling requires inferring and representing an environment's transitional dynamics as an executable program. Prior work has focused on largely deterministic environments with abundant interaction data, simple mechanics, and human guidance. We address a more realistic and challenging setting, learning in a complex, stochastic environment where the agent has only "one life" to explore a hostile environment without human guidance. We introduce OneLife, a framework that models world dynamics through conditionally-activated programmatic laws within a probabilistic programming framework. Each law operates through a precondition-effect structure, activating in relevant world states. This creates a dynamic computation graph that routes inference and optimization only through relevant laws, avoiding scaling challenges when all laws contribute to predictions about a complex, hierarchical state, and enabling the learning of stochastic dynamics even with sparse rule activation. To evaluate our approach under these demanding constraints, we introduce a new evaluation protocol that measures (a) state ranking, the ability to distinguish plausible future states from implausible ones, and (b) state fidelity, the ability to generate future states that closely resemble reality. We develop and evaluate our framework on Crafter-OO, our reimplementation of the Crafter environment that exposes a structured, object-oriented symbolic state and a pure transition function that operates on that state alone. OneLife can successfully learn key environment dynamics from minimal, unguided interaction, outperforming a strong baseline on 16 out of 23 scenarios tested. We also test OneLife's planning ability, with simulated rollouts successfully identifying superior strategies. Our work establishes a foundation for autonomously constructing programmatic world models of unknown, complex environments.

  • 5 authors
·
Oct 13 2

Beating the average: how to generate profit by exploiting the inefficiencies of soccer betting

In economy, markets are denoted as efficient when it is impossible to systematically generate profits which outperform the average. In the past years, the concept has been tested in other domains such as the growing sports betting market. Surprisingly, despite its large size and its level of maturity, sports betting shows traits of inefficiency. The anomalies indicate the existence of strategies which shift betting from a game of chance towards a game of skill. This article shows an example for an inefficiency detected in the German soccer betting TOTO 13er Wette, which is operated by state-run lottery agencies. Gamblers have to guess the outcome (win, draw, loss) of 13 soccer matches listed on a lottery tip. Applying stochastic methods, a recipe is presented to determine hit rates for single match outcomes. More important, the recipe provides the number of lottery tips required to achieve a specific number of strikes (number of correct match forecasts per lottery tip) for any given level of safety. An approximation is derived to cope with large numbers in hypergeometric distributions, valid under certain constraints. Overall, the strategy does lead to returns exceeding the aggregated lottery fees, resulting in moderate, but consistent profits. It is briefly discussed if lessions learned from soccer betting can be transferred back to financial markets, because gamblers and retail investors face similar challenges and opportunities.

  • 1 authors
·
Mar 12, 2023

Evaluating Binary Decision Biases in Large Language Models: Implications for Fair Agent-Based Financial Simulations

Large Language Models (LLMs) are increasingly being used to simulate human-like decision making in agent-based financial market models (ABMs). As models become more powerful and accessible, researchers can now incorporate individual LLM decisions into ABM environments. However, integration may introduce inherent biases that need careful evaluation. In this paper we test three state-of-the-art GPT models for bias using two model sampling approaches: one-shot and few-shot API queries. We observe significant variations in distributions of outputs between specific models, and model sub versions, with GPT-4o-Mini-2024-07-18 showing notably better performance (32-43% yes responses) compared to GPT-4-0125-preview's extreme bias (98-99% yes responses). We show that sampling methods and model sub-versions significantly impact results: repeated independent API calls produce different distributions compared to batch sampling within a single call. While no current GPT model can simultaneously achieve a uniform distribution and Markovian properties in one-shot testing, few-shot sampling can approach uniform distributions under certain conditions. We explore the Temperature parameter, providing a definition and comparative results. We further compare our results to true random binary series and test specifically for the common human bias of Negative Recency - finding LLMs have a mixed ability to 'beat' humans in this one regard. These findings emphasise the critical importance of careful LLM integration into ABMs for financial markets and more broadly.

  • 2 authors
·
Jan 20

TRADES: Generating Realistic Market Simulations with Diffusion Models

Financial markets are complex systems characterized by high statistical noise, nonlinearity, and constant evolution. Thus, modeling them is extremely hard. We address the task of generating realistic and responsive Limit Order Book (LOB) market simulations, which are fundamental for calibrating and testing trading strategies, performing market impact experiments, and generating synthetic market data. Previous works lack realism, usefulness, and responsiveness of the generated simulations. To bridge this gap, we propose a novel TRAnsformer-based Denoising Diffusion Probabilistic Engine for LOB Simulations (TRADES). TRADES generates realistic order flows conditioned on the state of the market, leveraging a transformer-based architecture that captures the temporal and spatial characteristics of high-frequency market data. There is a notable absence of quantitative metrics for evaluating generative market simulation models in the literature. To tackle this problem, we adapt the predictive score, a metric measured as an MAE, by training a stock price predictive model on synthetic data and testing it on real data. We compare TRADES with previous works on two stocks, reporting an x3.27 and x3.47 improvement over SoTA according to the predictive score, demonstrating that we generate useful synthetic market data for financial downstream tasks. We assess TRADES's market simulation realism and responsiveness, showing that it effectively learns the conditional data distribution and successfully reacts to an experimental agent, giving sprout to possible calibrations and evaluations of trading strategies and market impact experiments. We developed DeepMarket, the first open-source Python framework for market simulation with deep learning. Our repository includes a synthetic LOB dataset composed of TRADES's generates simulations. We release the code at github.com/LeonardoBerti00/DeepMarket.

  • 3 authors
·
Jan 31

Random Network Distillation Based Deep Reinforcement Learning for AGV Path Planning

With the flourishing development of intelligent warehousing systems, the technology of Automated Guided Vehicle (AGV) has experienced rapid growth. Within intelligent warehousing environments, AGV is required to safely and rapidly plan an optimal path in complex and dynamic environments. Most research has studied deep reinforcement learning to address this challenge. However, in the environments with sparse extrinsic rewards, these algorithms often converge slowly, learn inefficiently or fail to reach the target. Random Network Distillation (RND), as an exploration enhancement, can effectively improve the performance of proximal policy optimization, especially enhancing the additional intrinsic rewards of the AGV agent which is in sparse reward environments. Moreover, most of the current research continues to use 2D grid mazes as experimental environments. These environments have insufficient complexity and limited action sets. To solve this limitation, we present simulation environments of AGV path planning with continuous actions and positions for AGVs, so that it can be close to realistic physical scenarios. Based on our experiments and comprehensive analysis of the proposed method, the results demonstrate that our proposed method enables AGV to more rapidly complete path planning tasks with continuous actions in our environments. A video of part of our experiments can be found at https://youtu.be/lwrY9YesGmw.

  • 6 authors
·
Apr 18, 2024

TradingGroup: A Multi-Agent Trading System with Self-Reflection and Data-Synthesis

Recent advancements in large language models (LLMs) have enabled powerful agent-based applications in finance, particularly for sentiment analysis, financial report comprehension, and stock forecasting. However, existing systems often lack inter-agent coordination, structured self-reflection, and access to high-quality, domain-specific post-training data such as data from trading activities including both market conditions and agent decisions. These data are crucial for agents to understand the market dynamics, improve the quality of decision-making and promote effective coordination. We introduce TradingGroup, a multi-agent trading system designed to address these limitations through a self-reflective architecture and an end-to-end data-synthesis pipeline. TradingGroup consists of specialized agents for news sentiment analysis, financial report interpretation, stock trend forecasting, trading style adaptation, and a trading decision making agent that merges all signals and style preferences to produce buy, sell or hold decisions. Specifically, we design self-reflection mechanisms for the stock forecasting, style, and decision-making agents to distill past successes and failures for similar reasoning in analogous future scenarios and a dynamic risk-management model to offer configurable dynamic stop-loss and take-profit mechanisms. In addition, TradingGroup embeds an automated data-synthesis and annotation pipeline that generates high-quality post-training data for further improving the agent performance through post-training. Our backtesting experiments across five real-world stock datasets demonstrate TradingGroup's superior performance over rule-based, machine learning, reinforcement learning, and existing LLM-based trading strategies.

  • 3 authors
·
Aug 24

Early warning signals: The charted and uncharted territories

The realization that complex systems such as ecological communities can collapse or shift regimes suddenly and without rapid external forcing poses a serious challenge to our understanding and management of the natural world. The potential to identify early warning signals that would allow researchers and managers to predict such events before they happen has therefore been an invaluable discovery that offers a way forward in spite of such seemingly unpredictable behavior. Research into early warning signals has demonstrated that it is possible to define and detect such early warning signals in advance of a transition in certain contexts. Here we describe the pattern emerging as research continues to explore just how far we can generalize these results. A core of examples emerges that shares three properties: the phenomenon of rapid regime shifts, a pattern of 'critical slowing down' that can be used to detect the approaching shift, and a mechanism of bifurcation driving the sudden change. As research has expanded beyond these core examples, it is becoming clear that not all systems that show regime shifts exhibit critical slowing down, or vice versa. Even when systems exhibit critical slowing down, statistical detection is a challenge. We review the literature that explores these edge cases and highlight the need for (a) new early warning behaviors that can be used in cases where rapid shifts do not exhibit critical slowing down, (b) the development of methods to identify which behavior might be an appropriate signal when encountering a novel system; bearing in mind that a positive indication for some systems is a negative indication in others, and (c) statistical methods that can distinguish between signatures of early warning behaviors and noise.

  • 3 authors
·
May 29, 2013

StockBench: Can LLM Agents Trade Stocks Profitably In Real-world Markets?

Large language models (LLMs) have recently demonstrated strong capabilities as autonomous agents, showing promise in reasoning, tool use, and sequential decision-making. While prior benchmarks have evaluated LLM agents in domains such as software engineering and scientific discovery, the finance domain remains underexplored, despite its direct relevance to economic value and high-stakes decision-making. Existing financial benchmarks primarily test static knowledge through question answering, but they fall short of capturing the dynamic and iterative nature of trading. To address this gap, we introduce StockBench, a contamination-free benchmark designed to evaluate LLM agents in realistic, multi-month stock trading environments. Agents receive daily market signals -- including prices, fundamentals, and news -- and must make sequential buy, sell, or hold decisions. Performance is assessed using financial metrics such as cumulative return, maximum drawdown, and the Sortino ratio. Our evaluation of state-of-the-art proprietary (e.g., GPT-5, Claude-4) and open-weight (e.g., Qwen3, Kimi-K2, GLM-4.5) models shows that while most LLM agents struggle to outperform the simple buy-and-hold baseline, several models demonstrate the potential to deliver higher returns and manage risk more effectively. These findings highlight both the challenges and opportunities in developing LLM-powered financial agents, showing that excelling at static financial knowledge tasks does not necessarily translate into successful trading strategies. We release StockBench as an open-source resource to support reproducibility and advance future research in this domain.

Value Function is All You Need: A Unified Learning Framework for Ride Hailing Platforms

Large ride-hailing platforms, such as DiDi, Uber and Lyft, connect tens of thousands of vehicles in a city to millions of ride demands throughout the day, providing great promises for improving transportation efficiency through the tasks of order dispatching and vehicle repositioning. Existing studies, however, usually consider the two tasks in simplified settings that hardly address the complex interactions between the two, the real-time fluctuations between supply and demand, and the necessary coordinations due to the large-scale nature of the problem. In this paper we propose a unified value-based dynamic learning framework (V1D3) for tackling both tasks. At the center of the framework is a globally shared value function that is updated continuously using online experiences generated from real-time platform transactions. To improve the sample-efficiency and the robustness, we further propose a novel periodic ensemble method combining the fast online learning with a large-scale offline training scheme that leverages the abundant historical driver trajectory data. This allows the proposed framework to adapt quickly to the highly dynamic environment, to generalize robustly to recurrent patterns and to drive implicit coordinations among the population of managed vehicles. Extensive experiments based on real-world datasets show considerably improvements over other recently proposed methods on both tasks. Particularly, V1D3 outperforms the first prize winners of both dispatching and repositioning tracks in the KDD Cup 2020 RL competition, achieving state-of-the-art results on improving both total driver income and user experience related metrics.

  • 9 authors
·
May 18, 2021