Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRuleReasoner: Reinforced Rule-based Reasoning via Domain-aware Dynamic Sampling
Rule-based reasoning has been acknowledged as one of the fundamental problems in reasoning, while deviations in rule formats, types, and complexity in real-world applications pose severe challenges. Recent studies have shown that large reasoning models (LRMs) have remarkable reasoning capabilities, and their performance is substantially enhanced by reinforcement learning (RL). However, it remains an open question whether small reasoning models (SRMs) can learn rule-based reasoning effectively with robust generalization across diverse tasks and domains. To address this, we introduce Reinforced Rule-based Reasoning, a.k.a. RuleReasoner, a simple yet effective method to conduct rule-based reasoning via a wide collection of curated tasks and a novel domain-aware dynamic sampling approach. Specifically, RuleReasoner resamples each training batch by updating the sampling weights of different domains based on historical rewards. This facilitates domain augmentation and flexible online learning schedules for RL, obviating the need for pre-hoc human-engineered mix-training recipes used in existing methods. Empirical evaluations on in-distribution (ID) and out-of-distribution (OOD) benchmarks reveal that RuleReasoner outperforms frontier LRMs by a significant margin (Delta4.1% average points on eight ID tasks and Delta10.4% average points on three OOD tasks over OpenAI-o1). Notably, our approach also exhibits higher computational efficiency compared to prior dynamic sampling methods for RL.
Optimizing Chain-of-Thought Reasoners via Gradient Variance Minimization in Rejection Sampling and RL
Chain-of-thought (CoT) reasoning in large language models (LLMs) can be formalized as a latent variable problem, where the model needs to generate intermediate reasoning steps. While prior approaches such as iterative reward-ranked fine-tuning (RAFT) have relied on such formulations, they typically apply uniform inference budgets across prompts, which fails to account for variability in difficulty and convergence behavior. This work identifies the main bottleneck in CoT training as inefficient stochastic gradient estimation due to static sampling strategies. We propose GVM-RAFT, a prompt-specific Dynamic Sample Allocation Strategy designed to minimize stochastic gradient variance under a computational budget constraint. The method dynamically allocates computational resources by monitoring prompt acceptance rates and stochastic gradient norms, ensuring that the resulting gradient variance is minimized. Our theoretical analysis shows that the proposed dynamic sampling strategy leads to accelerated convergence guarantees under suitable conditions. Experiments on mathematical reasoning show that GVM-RAFT achieves a 2-4x speedup and considerable accuracy improvements over vanilla RAFT. The proposed dynamic sampling strategy is general and can be incorporated into other reinforcement learning algorithms, such as GRPO, leading to similar improvements in convergence and test accuracy. Our code is available at https://github.com/RLHFlow/GVM.
Rethinking the Sampling Criteria in Reinforcement Learning for LLM Reasoning: A Competence-Difficulty Alignment Perspective
Reinforcement learning exhibits potential in enhancing the reasoning abilities of large language models, yet it is hard to scale for the low sample efficiency during the rollout phase. Existing methods attempt to improve efficiency by scheduling problems based on problem difficulties. However, these approaches suffer from unstable and biased estimations of problem difficulty and fail to capture the alignment between model competence and problem difficulty in RL training, leading to suboptimal results. To tackle these limitations, this paper introduces Competence-Difficulty Alignment Sampling (CDAS), which enables accurate and stable estimation of problem difficulties by aggregating historical performance discrepancies of problems. Then the model competence is quantified to adaptively select problems whose difficulty is in alignment with the model's current competence using a fixed-point system. Experimental results across a range of challenging mathematical benchmarks show that CDAS achieves great improvements in both accuracy and efficiency. CDAS attains the highest average accuracy against baselines and exhibits significant speed advantages compared to Dynamic Sampling, a competitive strategy in DAPO, which is 2.33 times slower than CDAS.
ESRL: Efficient Sampling-based Reinforcement Learning for Sequence Generation
Applying Reinforcement Learning (RL) to sequence generation models enables the direct optimization of long-term rewards (e.g., BLEU and human feedback), but typically requires large-scale sampling over a space of action sequences. This is a computational challenge as presented by the practice of sequence generation problems, such as machine translation, where we often deal with a large action space (e.g., a vocabulary) and a long action sequence (e.g., a translation). In this work, we introduce two-stage sampling and dynamic sampling approaches to improve the sampling efficiency during training sequence generation models via RL. We experiment with our approaches on the traditional sequence generation tasks, including machine translation and abstractive summarization. Furthermore, we evaluate our approaches in RL from human feedback (RLHF) through training a large language model using the reward model. Experimental results show that the efficient sampling-based RL, referred to as ESRL, can outperform all baselines in terms of both training efficiency and memory consumption. Notably, ESRL yields consistent performance gains over the strong REINFORCE, minimum risk training, and proximal policy optimization methods.
FameMind: Frame-Interleaved Video Reasoning via Reinforcement Learning
Current video understanding models rely on fixed frame sampling strategies, processing predetermined visual inputs regardless of the specific reasoning requirements of each question. This static approach limits their ability to adaptively gather visual evidence, leading to suboptimal performance on tasks that require either broad temporal coverage or fine-grained spatial detail. In this paper, we introduce FrameMind, an end-to-end framework trained with reinforcement learning that enables models to dynamically request visual information during reasoning through Frame-Interleaved Chain-of-Thought (FiCOT). Unlike traditional approaches, FrameMind operates in multiple turns where the model alternates between textual reasoning and active visual perception, using tools to extract targeted frames or video clips based on identified knowledge gaps. To train effective dynamic sampling policies, we propose Dynamic Resolution Frame Sampling (DRFS), which exposes models to diverse temporal-spatial trade-offs during learning, and DRFS-GRPO, a group-relative policy optimization algorithm that learns from outcome-based rewards without requiring frame-level annotations. Extensive experiments on challenging benchmarks like MLVU and VideoMME demonstrate that our method significantly outperforms existing models, advancing the state of the art in flexible and efficient video understanding.
Tool-Augmented Policy Optimization: Synergizing Reasoning and Adaptive Tool Use with Reinforcement Learning
Recent advances in large language models (LLMs) have popularized test-time scaling, where models generate additional reasoning tokens before producing final answers. These approaches have demonstrated significant performance improvements on benchmarks involving mathematical reasoning. However, language models relying solely on direct inference still struggle with tasks demanding up-to-date knowledge or computational tools such as calculators and code interpreters for complex arithmetic operations. To overcome these limitations, we propose Tool-Augmented Policy Optimization (TAPO), a novel reinforcement learning framework that systematically integrates multi-hop reasoning with adaptive tool-calling capabilities. Our approach employs a modified version of Dynamic Sampling Policy Optimization (DAPO), a recently developed RL paradigm, which we adapt specifically for tool invocation scenarios, enabling models to dynamically interleave complex reasoning with on-demand tool usage (including search APIs and Python interpreters). To support this research, we introduce two new datasets: TAPO-easy-60K and TAPO-hard-18K, specifically designed to train and evaluate both fact-based reasoning and mathematical calculation capabilities. Our experiments on Qwen2.5-3B and Qwen2.5-7B models demonstrate the effectiveness of our approach, with both models achieving state-of-the-art performance on tasks requiring external knowledge and mathematical computation among methods with comparable parameters. Notably, TAPO achieves more efficient tool utilization than baseline methods while preventing excessive calls caused by reward hacking. These results highlight the significant potential of combining advanced reasoning with tool usage to enhance model performance in knowledge-intensive and computationally demanding tasks.
MITS: Enhanced Tree Search Reasoning for LLMs via Pointwise Mutual Information
Tree search has become as a representative framework for test-time reasoning with large language models (LLMs), exemplified by methods such as Tree-of-Thought and Monte Carlo Tree Search that explore multiple reasoning paths. However, it remains difficult to provide instant and reliable quantitative assessments of intermediate reasoning step quality, and extensive path exploration is computationally costly. To address this, we propose Mutual Information Tree Search (MITS), a novel framework that guides reasoning with information-theoretic principles. MITS introduces an effective scoring function based on pointwise mutual information (PMI), which enables step-wise evaluation of reasoning paths and search tree expansion via beam search without expensive look-ahead simulations, achieving superior reasoning performances while maintaining computational efficiency. The framework is complemented by an entropy-based dynamic sampling strategy that adaptively allocates computational resources to uncertain reasoning steps where exploration is most beneficial. For final prediction, MITS employs a weighted voting scheme that combines PMI scores with prediction consensus. Through comprehensive experiments on diverse reasoning benchmarks, MITS consistently surpasses baseline methods, establishing a principled and efficient framework for LLM reasoning.
Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models
Recent advancements in Chain-of-Thought prompting have facilitated significant breakthroughs for Large Language Models (LLMs) in complex reasoning tasks. Current research enhances the reasoning performance of LLMs by sampling multiple reasoning chains and ensembling based on the answer frequency. However, this approach fails in scenarios where the correct answers are in the minority. We identify this as a primary factor constraining the reasoning capabilities of LLMs, a limitation that cannot be resolved solely based on the predicted answers. To address this shortcoming, we introduce a hierarchical reasoning aggregation framework AoR (Aggregation of Reasoning), which selects answers based on the evaluation of reasoning chains. Additionally, AoR incorporates dynamic sampling, adjusting the number of reasoning chains in accordance with the complexity of the task. Experimental results on a series of complex reasoning tasks show that AoR outperforms prominent ensemble methods. Further analysis reveals that AoR not only adapts various LLMs but also achieves a superior performance ceiling when compared to current methods.
GP-GS: Gaussian Processes for Enhanced Gaussian Splatting
3D Gaussian Splatting has emerged as an efficient photorealistic novel view synthesis method. However, its reliance on sparse Structure-from-Motion (SfM) point clouds consistently compromises the scene reconstruction quality. To address these limitations, this paper proposes a novel 3D reconstruction framework Gaussian Processes Gaussian Splatting (GP-GS), where a multi-output Gaussian Process model is developed to achieve adaptive and uncertainty-guided densification of sparse SfM point clouds. Specifically, we propose a dynamic sampling and filtering pipeline that adaptively expands the SfM point clouds by leveraging GP-based predictions to infer new candidate points from the input 2D pixels and depth maps. The pipeline utilizes uncertainty estimates to guide the pruning of high-variance predictions, ensuring geometric consistency and enabling the generation of dense point clouds. The densified point clouds provide high-quality initial 3D Gaussians to enhance reconstruction performance. Extensive experiments conducted on synthetic and real-world datasets across various scales validate the effectiveness and practicality of the proposed framework.
HopTrack: A Real-time Multi-Object Tracking System for Embedded Devices
Multi-Object Tracking (MOT) poses significant challenges in computer vision. Despite its wide application in robotics, autonomous driving, and smart manufacturing, there is limited literature addressing the specific challenges of running MOT on embedded devices. State-of-the-art MOT trackers designed for high-end GPUs often experience low processing rates (<11fps) when deployed on embedded devices. Existing MOT frameworks for embedded devices proposed strategies such as fusing the detector model with the feature embedding model to reduce inference latency or combining different trackers to improve tracking accuracy, but tend to compromise one for the other. This paper introduces HopTrack, a real-time multi-object tracking system tailored for embedded devices. Our system employs a novel discretized static and dynamic matching approach along with an innovative content-aware dynamic sampling technique to enhance tracking accuracy while meeting the real-time requirement. Compared with the best high-end GPU modified baseline Byte (Embed) and the best existing baseline on embedded devices MobileNet-JDE, HopTrack achieves a processing speed of up to 39.29 fps on NVIDIA AGX Xavier with a multi-object tracking accuracy (MOTA) of up to 63.12% on the MOT16 benchmark, outperforming both counterparts by 2.15% and 4.82%, respectively. Additionally, the accuracy improvement is coupled with the reduction in energy consumption (20.8%), power (5%), and memory usage (8%), which are crucial resources on embedded devices. HopTrack is also detector agnostic allowing the flexibility of plug-and-play.
Pointer-Guided Pre-Training: Infusing Large Language Models with Paragraph-Level Contextual Awareness
We introduce "pointer-guided segment ordering" (SO), a novel pre-training technique aimed at enhancing the contextual understanding of paragraph-level text representations in large language models. Our methodology leverages a self-attention-driven pointer network to restore the original sequence of shuffled text segments, addressing the challenge of capturing the structural coherence and contextual dependencies within documents. This pre-training approach is complemented by a fine-tuning methodology that incorporates dynamic sampling, augmenting the diversity of training instances and improving sample efficiency for various downstream applications. We evaluate our method on a diverse set of datasets, demonstrating its efficacy in tasks requiring sequential text classification across scientific literature and financial reporting domains. Our experiments show that pointer-guided pre-training significantly enhances the model's ability to understand complex document structures, leading to state-of-the-art performance in downstream classification tasks.
Automatic Biomedical Term Clustering by Learning Fine-grained Term Representations
Term clustering is important in biomedical knowledge graph construction. Using similarities between terms embedding is helpful for term clustering. State-of-the-art term embeddings leverage pretrained language models to encode terms, and use synonyms and relation knowledge from knowledge graphs to guide contrastive learning. These embeddings provide close embeddings for terms belonging to the same concept. However, from our probing experiments, these embeddings are not sensitive to minor textual differences which leads to failure for biomedical term clustering. To alleviate this problem, we adjust the sampling strategy in pretraining term embeddings by providing dynamic hard positive and negative samples during contrastive learning to learn fine-grained representations which result in better biomedical term clustering. We name our proposed method as CODER++, and it has been applied in clustering biomedical concepts in the newly released Biomedical Knowledge Graph named BIOS.
DAPO: An Open-Source LLM Reinforcement Learning System at Scale
Inference scaling empowers LLMs with unprecedented reasoning ability, with reinforcement learning as the core technique to elicit complex reasoning. However, key technical details of state-of-the-art reasoning LLMs are concealed (such as in OpenAI o1 blog and DeepSeek R1 technical report), thus the community still struggles to reproduce their RL training results. We propose the Decoupled Clip and Dynamic sAmpling Policy Optimization (DAPO) algorithm, and fully open-source a state-of-the-art large-scale RL system that achieves 50 points on AIME 2024 using Qwen2.5-32B base model. Unlike previous works that withhold training details, we introduce four key techniques of our algorithm that make large-scale LLM RL a success. In addition, we open-source our training code, which is built on the verl framework, along with a carefully curated and processed dataset. These components of our open-source system enhance reproducibility and support future research in large-scale LLM RL.
DLER: Doing Length pEnalty Right - Incentivizing More Intelligence per Token via Reinforcement Learning
Reasoning language models such as OpenAI-o1, DeepSeek-R1, and Qwen achieve strong performance via extended chains of thought but often generate unnecessarily long outputs. Maximizing intelligence per token--accuracy relative to response length--remains an open problem. We revisit reinforcement learning (RL) with the simplest length penalty--truncation--and show that accuracy degradation arises not from the lack of sophisticated penalties but from inadequate RL optimization. We identify three key challenges: (i) large bias in advantage estimation, (ii) entropy collapse, and (iii) sparse reward signal. We address them with Doing Length pEnalty Right (DLER), a training recipe combining batch-wise reward normalization, higher clipping, dynamic sampling, and a simple truncation length penalty. DLER achieves state-of-the-art accuracy--efficiency trade-offs, cutting output length by over 70 percent while surpassing all previous baseline accuracy. It also improves test-time scaling: compared to DeepSeek-R1-7B, DLER-7B generates multiple concise responses in parallel with 28 percent higher accuracy and lower latency. We further introduce Difficulty-Aware DLER, which adaptively tightens truncation on easier questions for additional efficiency gains. We also propose an update-selective merging method that preserves baseline accuracy while retaining the concise reasoning ability of the DLER model, which is useful for scenarios where RL training data is scarce.
Walk Before You Run! Concise LLM Reasoning via Reinforcement Learning
As test-time scaling becomes a pivotal research frontier in Large Language Models (LLMs) development, contemporary and advanced post-training methodologies increasingly focus on extending the generation length of long Chain-of-Thought (CoT) responses to enhance reasoning capabilities toward DeepSeek R1-like performance. However, recent studies reveal a persistent overthinking phenomenon in state-of-the-art reasoning models, manifesting as excessive redundancy or repetitive thinking patterns in long CoT responses. To address this issue, in this paper, we propose a simple yet effective two-stage reinforcement learning framework for achieving concise reasoning in LLMs, named ConciseR. Specifically, the first stage, using more training steps, aims to incentivize the model's reasoning capabilities via Group Relative Policy Optimization with clip-higher and dynamic sampling components (GRPO++), and the second stage, using fewer training steps, explicitly enforces conciseness and improves efficiency via Length-aware Group Relative Policy Optimization (L-GRPO). Significantly, ConciseR only optimizes response length once all rollouts of a sample are correct, following the "walk before you run" principle. Extensive experimental results demonstrate that our ConciseR model, which generates more concise CoT reasoning responses, outperforms recent state-of-the-art reasoning models with zero RL paradigm across AIME 2024, MATH-500, AMC 2023, Minerva, and Olympiad benchmarks.
ARISE: An Adaptive Resolution-Aware Metric for Test-Time Scaling Evaluation in Large Reasoning Models
Test-time scaling has emerged as a transformative paradigm for enhancing the performance of large reasoning models, enabling dynamic allocation of computational resources during inference. However, as the landscape of reasoning models rapidly expands, a critical question remains: how can we systematically compare and evaluate the test-time scaling capabilities across different models? In this paper, we introduce ARISE (Adaptive Resolution-aware Scaling Evaluation), a novel metric specifically designed to assess the test-time scaling effectiveness of large reasoning models. Unlike existing evaluation approaches, ARISE incorporates two key innovations: (1) sample-level awareness that effectively penalizes negative scaling behaviors where increased computation leads to performance degradation, and (2) a dynamic sampling mechanism that mitigates the impact of accuracy fluctuations and token count instability on the final assessment. We conduct comprehensive experiments evaluating state-of-the-art reasoning models across diverse domains including mathematical reasoning, code generation, and agentic tasks. Our results demonstrate that ARISE provides a reliable and fine-grained measurement of test-time scaling capabilities, revealing significant variations in scaling efficiency across models. Notably, our evaluation identifies Claude Opus as exhibiting superior scaling characteristics compared to other contemporary reasoning models.
Patho-R1: A Multimodal Reinforcement Learning-Based Pathology Expert Reasoner
Recent advances in vision language models (VLMs) have enabled broad progress in the general medical field. However, pathology still remains a more challenging subdomain, with current pathology specific VLMs exhibiting limitations in both diagnostic accuracy and reasoning plausibility. Such shortcomings are largely attributable to the nature of current pathology datasets, which are primarily composed of image description pairs that lack the depth and structured diagnostic paradigms employed by real world pathologists. In this study, we leverage pathology textbooks and real world pathology experts to construct high-quality, reasoning-oriented datasets. Building on this, we introduce Patho-R1, a multimodal RL-based pathology Reasoner, trained through a three-stage pipeline: (1) continued pretraining on 3.5 million image-text pairs for knowledge infusion; (2) supervised fine-tuning on 500k high-quality Chain-of-Thought samples for reasoning incentivizing; (3) reinforcement learning using Group Relative Policy Optimization and Decoupled Clip and Dynamic sAmpling Policy Optimization strategies for multimodal reasoning quality refinement. To further assess the alignment quality of our dataset, we propose PathoCLIP, trained on the same figure-caption corpus used for continued pretraining. Comprehensive experimental results demonstrate that both PathoCLIP and Patho-R1 achieve robust performance across a wide range of pathology-related tasks, including zero-shot classification, cross-modal retrieval, Visual Question Answering, and Multiple Choice Question. Our project is available at the Patho-R1 repository: https://github.com/Wenchuan-Zhang/Patho-R1.
Pick-or-Mix: Dynamic Channel Sampling for ConvNets
Channel pruning approaches for convolutional neural networks (ConvNets) deactivate the channels, statically or dynamically, and require special implementation. In addition, channel squeezing in representative ConvNets is carried out via 1x1 convolutions which dominates a large portion of computations and network parameters. Given these challenges, we propose an effective multi-purpose module for dynamic channel sampling, namely Pick-or-Mix (PiX), which does not require special implementation. PiX divides a set of channels into subsets and then picks from them, where the picking decision is dynamically made per each pixel based on the input activations. We plug PiX into prominent ConvNet architectures and verify its multi-purpose utilities. After replacing 1x1 channel squeezing layers in ResNet with PiX, the network becomes 25% faster without losing accuracy. We show that PiX allows ConvNets to learn better data representation than widely adopted approaches to enhance networks' representation power (e.g., SE, CBAM, AFF, SKNet, and DWP). We also show that PiX achieves state-of-the-art performance on network downscaling and dynamic channel pruning applications.
EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling
Recently, Large Language Models (LLMs) have demonstrated outstanding performance across a wide range of downstream language tasks. Temperature sampling is a commonly used decoding strategy for LLMs' generation process. However, a fixed temperature parameter is used in most cases, which may not always be an optimal choice for balancing generation quality and diversity. In this paper, we propose an effective Entropy-based Dynamic Temperature (EDT) Sampling method, to achieve a more balanced performance in terms of both generation quality and diversity by dynamically selecting the temperature parameter. Additionally, we also show model performance and comprehensive analyses for 4 different generation benchmarks. Our experiments show that EDT significantly outperforms the existing strategies across different tasks.
Enhancing Link Prediction with Fuzzy Graph Attention Networks and Dynamic Negative Sampling
Link prediction is crucial for understanding complex networks but traditional Graph Neural Networks (GNNs) often rely on random negative sampling, leading to suboptimal performance. This paper introduces Fuzzy Graph Attention Networks (FGAT), a novel approach integrating fuzzy rough sets for dynamic negative sampling and enhanced node feature aggregation. Fuzzy Negative Sampling (FNS) systematically selects high-quality negative edges based on fuzzy similarities, improving training efficiency. FGAT layer incorporates fuzzy rough set principles, enabling robust and discriminative node representations. Experiments on two research collaboration networks demonstrate FGAT's superior link prediction accuracy, outperforming state-of-the-art baselines by leveraging the power of fuzzy rough sets for effective negative sampling and node feature learning.
GRAFT: Gradient-Aware Fast MaxVol Technique for Dynamic Data Sampling
Training modern neural networks on large datasets is computationally and environmentally costly. We introduce GRAFT, a scalable in-training subset selection method that (i) extracts a low-rank feature representation for each batch, (ii) applies a Fast MaxVol sampler to select a small, diverse subset that spans the batch's dominant subspace, and (iii) dynamically adjusts the subset size using a gradient-approximation criterion. By operating in low-rank subspaces and training on carefully chosen examples instead of full batches, GRAFT preserves the training trajectory while reducing wall-clock time, energy consumption, and CO_2 emissions. Across multiple benchmarks, GRAFT matches or exceeds recent selection baselines in both accuracy and efficiency, providing a favorable trade-off between accuracy, efficiency, and emissions.
Learning More with Less: A Dynamic Dual-Level Down-Sampling Framework for Efficient Policy Optimization
Critic-free methods like GRPO reduce memory demands by estimating advantages from multiple rollouts but tend to converge slowly, as critical learning signals are diluted by an abundance of uninformative samples and tokens. To tackle this challenge, we propose the Dynamic Dual-Level Down-Sampling (D^3S) framework that prioritizes the most informative samples and tokens across groups to improve the efficient of policy optimization. D^3S operates along two levels: (1) the sample-level, which selects a subset of rollouts to maximize advantage variance (Var(A)). We theoretically proven that this selection is positively correlated with the upper bound of the policy gradient norms, yielding higher policy gradients. (2) the token-level, which prioritizes tokens with a high product of advantage magnitude and policy entropy (|A_{i,t}|times H_{i,t}), focusing updates on tokens where the policy is both uncertain and impactful. Moreover, to prevent overfitting to high-signal data, D^3S employs a dynamic down-sampling schedule inspired by curriculum learning. This schedule starts with aggressive down-sampling to accelerate early learning and gradually relaxes to promote robust generalization. Extensive experiments on Qwen2.5 and Llama3.1 demonstrate that integrating D^3S into advanced RL algorithms achieves state-of-the-art performance and generalization while requiring fewer samples and tokens across diverse reasoning benchmarks. Our code is added in the supplementary materials and will be made publicly available.
Quantum Speedups for Zero-Sum Games via Improved Dynamic Gibbs Sampling
We give a quantum algorithm for computing an epsilon-approximate Nash equilibrium of a zero-sum game in a m times n payoff matrix with bounded entries. Given a standard quantum oracle for accessing the payoff matrix our algorithm runs in time O(m + ncdot epsilon^{-2.5} + epsilon^{-3}) and outputs a classical representation of the epsilon-approximate Nash equilibrium. This improves upon the best prior quantum runtime of O(m + n cdot epsilon^{-3}) obtained by [vAG19] and the classic O((m + n) cdot epsilon^{-2}) runtime due to [GK95] whenever epsilon = Omega((m +n)^{-1}). We obtain this result by designing new quantum data structures for efficiently sampling from a slowly-changing Gibbs distribution.
Min P Sampling: Balancing Creativity and Coherence at High Temperature
Large Language Models (LLMs) generate longform text by successively sampling the next token based on the probability distribution of the token vocabulary at each decoding step. Current popular truncation sampling methods such as top-p sampling, also known as nucleus sampling, often struggle to balance coherence and creativity in generating text, particularly when using higher temperatures. To address this issue, we propose min-p, a dynamic truncation sampling method, that establishes a minimum base percentage threshold for tokens, which the scales according to the probability of the top candidate token. Through experiments on several benchmarks, such as GPQA, GSM8K and AlpacaEval Creative Writing, we demonstrate that min-p improves the coherence and quality of generated text even at high temperatures, while also facilitating more creative and diverse outputs compared to top-p and other sampling methods. As of writing, min-p has been adopted by multiple open-source LLM implementations, and have been independently assessed by members of the open-source LLM community, further validating its practical utility and potential.
TreePO: Bridging the Gap of Policy Optimization and Efficacy and Inference Efficiency with Heuristic Tree-based Modeling
Recent advancements in aligning large language models via reinforcement learning have achieved remarkable gains in solving complex reasoning problems, but at the cost of expensive on-policy rollouts and limited exploration of diverse reasoning paths. In this work, we introduce TreePO, involving a self-guided rollout algorithm that views sequence generation as a tree-structured searching process. Composed of dynamic tree sampling policy and fixed-length segment decoding, TreePO leverages local uncertainty to warrant additional branches. By amortizing computation across common prefixes and pruning low-value paths early, TreePO essentially reduces the per-update compute burden while preserving or enhancing exploration diversity. Key contributions include: (1) a segment-wise sampling algorithm that alleviates the KV cache burden through contiguous segments and spawns new branches along with an early-stop mechanism; (2) a tree-based segment-level advantage estimation that considers both global and local proximal policy optimization. and (3) analysis on the effectiveness of probability and quality-driven dynamic divergence and fallback strategy. We empirically validate the performance gain of TreePO on a set reasoning benchmarks and the efficiency saving of GPU hours from 22\% up to 43\% of the sampling design for the trained models, meanwhile showing up to 40\% reduction at trajectory-level and 35\% at token-level sampling compute for the existing models. While offering a free lunch of inference efficiency, TreePO reveals a practical path toward scaling RL-based post-training with fewer samples and less compute. Home page locates at https://m-a-p.ai/TreePO.
TimeMarker: A Versatile Video-LLM for Long and Short Video Understanding with Superior Temporal Localization Ability
Rapid development of large language models (LLMs) has significantly advanced multimodal large language models (LMMs), particularly in vision-language tasks. However, existing video-language models often overlook precise temporal localization and struggle with videos of varying lengths. We introduce TimeMarker, a versatile Video-LLM designed for high-quality dialogue based on video content, emphasizing temporal localization. TimeMarker integrates Temporal Separator Tokens to enhance temporal awareness, accurately marking specific moments within videos. It employs the AnyLength mechanism for dynamic frame sampling and adaptive token merging, enabling effective handling of both short and long videos. Additionally, TimeMarker utilizes diverse datasets, including further transformed temporal-related video QA datasets, to bolster its temporal understanding capabilities. Image and interleaved data are also employed to further enhance the model's semantic perception ability. Evaluations demonstrate that TimeMarker achieves state-of-the-art performance across multiple benchmarks, excelling in both short and long video categories. Our project page is at https://github.com/TimeMarker-LLM/TimeMarker/.
GeoMultiTaskNet: remote sensing unsupervised domain adaptation using geographical coordinates
Land cover maps are a pivotal element in a wide range of Earth Observation (EO) applications. However, annotating large datasets to develop supervised systems for remote sensing (RS) semantic segmentation is costly and time-consuming. Unsupervised Domain Adaption (UDA) could tackle these issues by adapting a model trained on a source domain, where labels are available, to a target domain, without annotations. UDA, while gaining importance in computer vision, is still under-investigated in RS. Thus, we propose a new lightweight model, GeoMultiTaskNet, based on two contributions: a GeoMultiTask module (GeoMT), which utilizes geographical coordinates to align the source and target domains, and a Dynamic Class Sampling (DCS) strategy, to adapt the semantic segmentation loss to the frequency of classes. This approach is the first to use geographical metadata for UDA in semantic segmentation. It reaches state-of-the-art performances (47,22% mIoU), reducing at the same time the number of parameters (33M), on a subset of the FLAIR dataset, a recently proposed dataset properly shaped for RS UDA, used for the first time ever for research scopes here.
Interactive Post-Training for Vision-Language-Action Models
We introduce RIPT-VLA, a simple and scalable reinforcement-learning-based interactive post-training paradigm that fine-tunes pretrained Vision-Language-Action (VLA) models using only sparse binary success rewards. Existing VLA training pipelines rely heavily on offline expert demonstration data and supervised imitation, limiting their ability to adapt to new tasks and environments under low-data regimes. RIPT-VLA addresses this by enabling interactive post-training with a stable policy optimization algorithm based on dynamic rollout sampling and leave-one-out advantage estimation. RIPT-VLA has the following characteristics. First, it applies to various VLA models, resulting in an improvement on the lightweight QueST model by 21.2%, and the 7B OpenVLA-OFT model to an unprecedented 97.5% success rate. Second, it is computationally efficient and data-efficient: with only one demonstration, RIPT-VLA enables an unworkable SFT model (4%) to succeed with a 97% success rate within 15 iterations. Furthermore, we demonstrate that the policy learned by RIPT-VLA generalizes across different tasks and scenarios and is robust to the initial state context. These results highlight RIPT-VLA as a practical and effective paradigm for post-training VLA models through minimal supervision.
PP-DocBee: Improving Multimodal Document Understanding Through a Bag of Tricks
With the rapid advancement of digitalization, various document images are being applied more extensively in production and daily life, and there is an increasingly urgent need for fast and accurate parsing of the content in document images. Therefore, this report presents PP-DocBee, a novel multimodal large language model designed for end-to-end document image understanding. First, we develop a data synthesis strategy tailored to document scenarios in which we build a diverse dataset to improve the model generalization. Then, we apply a few training techniques, including dynamic proportional sampling, data preprocessing, and OCR postprocessing strategies. Extensive evaluations demonstrate the superior performance of PP-DocBee, achieving state-of-the-art results on English document understanding benchmarks and even outperforming existing open source and commercial models in Chinese document understanding. The source code and pre-trained models are publicly available at https://github.com/PaddlePaddle/PaddleMIX{https://github.com/PaddlePaddle/PaddleMIX}.
AIGVE-MACS: Unified Multi-Aspect Commenting and Scoring Model for AI-Generated Video Evaluation
The rapid advancement of AI-generated video models has created a pressing need for robust and interpretable evaluation frameworks. Existing metrics are limited to producing numerical scores without explanatory comments, resulting in low interpretability and human evaluation alignment. To address those challenges, we introduce AIGVE-MACS, a unified model for AI-Generated Video Evaluation(AIGVE), which can provide not only numerical scores but also multi-aspect language comment feedback in evaluating these generated videos. Central to our approach is AIGVE-BENCH 2, a large-scale benchmark comprising 2,500 AI-generated videos and 22,500 human-annotated detailed comments and numerical scores across nine critical evaluation aspects. Leveraging AIGVE-BENCH 2, AIGVE-MACS incorporates recent Vision-Language Models with a novel token-wise weighted loss and a dynamic frame sampling strategy to better align with human evaluators. Comprehensive experiments across supervised and zero-shot benchmarks demonstrate that AIGVE-MACS achieves state-of-the-art performance in both scoring correlation and comment quality, significantly outperforming prior baselines including GPT-4o and VideoScore. In addition, we further showcase a multi-agent refinement framework where feedback from AIGVE-MACS drives iterative improvements in video generation, leading to 53.5% quality enhancement. This work establishes a new paradigm for comprehensive, human-aligned evaluation of AI-generated videos. We release the AIGVE-BENCH 2 and AIGVE-MACS at https://huggingface.co/xiaoliux/AIGVE-MACS.
pyhgf: A neural network library for predictive coding
Bayesian models of cognition have gained considerable traction in computational neuroscience and psychiatry. Their scopes are now expected to expand rapidly to artificial intelligence, providing general inference frameworks to support embodied, adaptable, and energy-efficient autonomous agents. A central theory in this domain is predictive coding, which posits that learning and behaviour are driven by hierarchical probabilistic inferences about the causes of sensory inputs. Biological realism constrains these networks to rely on simple local computations in the form of precision-weighted predictions and prediction errors. This can make this framework highly efficient, but its implementation comes with unique challenges on the software development side. Embedding such models in standard neural network libraries often becomes limiting, as these libraries' compilation and differentiation backends can force a conceptual separation between optimization algorithms and the systems being optimized. This critically departs from other biological principles such as self-monitoring, self-organisation, cellular growth and functional plasticity. In this paper, we introduce pyhgf: a Python package backed by JAX and Rust for creating, manipulating and sampling dynamic networks for predictive coding. We improve over other frameworks by enclosing the network components as transparent, modular and malleable variables in the message-passing steps. The resulting graphs can implement arbitrary computational complexities as beliefs propagation. But the transparency of core variables can also translate into inference processes that leverage self-organisation principles, and express structure learning, meta-learning or causal discovery as the consequence of network structural adaptation to surprising inputs. The code, tutorials and documentation are hosted at: https://github.com/ilabcode/pyhgf.
PATS: Proficiency-Aware Temporal Sampling for Multi-View Sports Skill Assessment
Automated sports skill assessment requires capturing fundamental movement patterns that distinguish expert from novice performance, yet current video sampling methods disrupt the temporal continuity essential for proficiency evaluation. To this end, we introduce Proficiency-Aware Temporal Sampling (PATS), a novel sampling strategy that preserves complete fundamental movements within continuous temporal segments for multi-view skill assessment. PATS adaptively segments videos to ensure each analyzed portion contains full execution of critical performance components, repeating this process across multiple segments to maximize information coverage while maintaining temporal coherence. Evaluated on the EgoExo4D benchmark with SkillFormer, PATS surpasses the state-of-the-art accuracy across all viewing configurations (+0.65% to +3.05%) and delivers substantial gains in challenging domains (+26.22% bouldering, +2.39% music, +1.13% basketball). Systematic analysis reveals that PATS successfully adapts to diverse activity characteristics-from high-frequency sampling for dynamic sports to fine-grained segmentation for sequential skills-demonstrating its effectiveness as an adaptive approach to temporal sampling that advances automated skill assessment for real-world applications.
CustomCrafter: Customized Video Generation with Preserving Motion and Concept Composition Abilities
Customized video generation aims to generate high-quality videos guided by text prompts and subject's reference images. However, since it is only trained on static images, the fine-tuning process of subject learning disrupts abilities of video diffusion models (VDMs) to combine concepts and generate motions. To restore these abilities, some methods use additional video similar to the prompt to fine-tune or guide the model. This requires frequent changes of guiding videos and even re-tuning of the model when generating different motions, which is very inconvenient for users. In this paper, we propose CustomCrafter, a novel framework that preserves the model's motion generation and conceptual combination abilities without additional video and fine-tuning to recovery. For preserving conceptual combination ability, we design a plug-and-play module to update few parameters in VDMs, enhancing the model's ability to capture the appearance details and the ability of concept combinations for new subjects. For motion generation, we observed that VDMs tend to restore the motion of video in the early stage of denoising, while focusing on the recovery of subject details in the later stage. Therefore, we propose Dynamic Weighted Video Sampling Strategy. Using the pluggability of our subject learning modules, we reduce the impact of this module on motion generation in the early stage of denoising, preserving the ability to generate motion of VDMs. In the later stage of denoising, we restore this module to repair the appearance details of the specified subject, thereby ensuring the fidelity of the subject's appearance. Experimental results show that our method has a significant improvement compared to previous methods.
Dynamic-TreeRPO: Breaking the Independent Trajectory Bottleneck with Structured Sampling
The integration of Reinforcement Learning (RL) into flow matching models for text-to-image (T2I) generation has driven substantial advances in generation quality. However, these gains often come at the cost of exhaustive exploration and inefficient sampling strategies due to slight variation in the sampling group. Building on this insight, we propose Dynamic-TreeRPO, which implements the sliding-window sampling strategy as a tree-structured search with dynamic noise intensities along depth. We perform GRPO-guided optimization and constrained Stochastic Differential Equation (SDE) sampling within this tree structure. By sharing prefix paths of the tree, our design effectively amortizes the computational overhead of trajectory search. With well-designed noise intensities for each tree layer, Dynamic-TreeRPO can enhance the variation of exploration without any extra computational cost. Furthermore, we seamlessly integrate Supervised Fine-Tuning (SFT) and RL paradigm within Dynamic-TreeRPO to construct our proposed LayerTuning-RL, reformulating the loss function of SFT as a dynamically weighted Progress Reward Model (PRM) rather than a separate pretraining method. By associating this weighted PRM with dynamic-adaptive clipping bounds, the disruption of exploration process in Dynamic-TreeRPO is avoided. Benefiting from the tree-structured sampling and the LayerTuning-RL paradigm, our model dynamically explores a diverse search space along effective directions. Compared to existing baselines, our approach demonstrates significant superiority in terms of semantic consistency, visual fidelity, and human preference alignment on established benchmarks, including HPS-v2.1, PickScore, and ImageReward. In particular, our model outperforms SoTA by 4.9%, 5.91%, and 8.66% on those benchmarks, respectively, while improving the training efficiency by nearly 50%.
Dynamic PlenOctree for Adaptive Sampling Refinement in Explicit NeRF
The explicit neural radiance field (NeRF) has gained considerable interest for its efficient training and fast inference capabilities, making it a promising direction such as virtual reality and gaming. In particular, PlenOctree (POT)[1], an explicit hierarchical multi-scale octree representation, has emerged as a structural and influential framework. However, POT's fixed structure for direct optimization is sub-optimal as the scene complexity evolves continuously with updates to cached color and density, necessitating refining the sampling distribution to capture signal complexity accordingly. To address this issue, we propose the dynamic PlenOctree DOT, which adaptively refines the sample distribution to adjust to changing scene complexity. Specifically, DOT proposes a concise yet novel hierarchical feature fusion strategy during the iterative rendering process. Firstly, it identifies the regions of interest through training signals to ensure adaptive and efficient refinement. Next, rather than directly filtering out valueless nodes, DOT introduces the sampling and pruning operations for octrees to aggregate features, enabling rapid parameter learning. Compared with POT, our DOT outperforms it by enhancing visual quality, reducing over 55.15/68.84% parameters, and providing 1.7/1.9 times FPS for NeRF-synthetic and Tanks & Temples, respectively. Project homepage:https://vlislab22.github.io/DOT. [1] Yu, Alex, et al. "Plenoctrees for real-time rendering of neural radiance fields." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.
Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sampling
We consider the problem of recommending relevant content to users of an internet platform in the form of lists of items, called slates. We introduce a variational Bayesian Recurrent Neural Net recommender system that acts on time series of interactions between the internet platform and the user, and which scales to real world industrial situations. The recommender system is tested both online on real users, and on an offline dataset collected from a Norwegian web-based marketplace, FINN.no, that is made public for research. This is one of the first publicly available datasets which includes all the slates that are presented to users as well as which items (if any) in the slates were clicked on. Such a data set allows us to move beyond the common assumption that implicitly assumes that users are considering all possible items at each interaction. Instead we build our likelihood using the items that are actually in the slate, and evaluate the strengths and weaknesses of both approaches theoretically and in experiments. We also introduce a hierarchical prior for the item parameters based on group memberships. Both item parameters and user preferences are learned probabilistically. Furthermore, we combine our model with bandit strategies to ensure learning, and introduce `in-slate Thompson Sampling' which makes use of the slates to maximise explorative opportunities. We show experimentally that explorative recommender strategies perform on par or above their greedy counterparts. Even without making use of exploration to learn more effectively, click rates increase simply because of improved diversity in the recommended slates.
MagicPIG: LSH Sampling for Efficient LLM Generation
Large language models (LLMs) with long context windows have gained significant attention. However, the KV cache, stored to avoid re-computation, becomes a bottleneck. Various dynamic sparse or TopK-based attention approximation methods have been proposed to leverage the common insight that attention is sparse. In this paper, we first show that TopK attention itself suffers from quality degradation in certain downstream tasks because attention is not always as sparse as expected. Rather than selecting the keys and values with the highest attention scores, sampling with theoretical guarantees can provide a better estimation for attention output. To make the sampling-based approximation practical in LLM generation, we propose MagicPIG, a heterogeneous system based on Locality Sensitive Hashing (LSH). MagicPIG significantly reduces the workload of attention computation while preserving high accuracy for diverse tasks. MagicPIG stores the LSH hash tables and runs the attention computation on the CPU, which allows it to serve longer contexts and larger batch sizes with high approximation accuracy. MagicPIG can improve decoding throughput by up to 5times across various GPU hardware and achieve 54ms decoding latency on a single RTX 4090 for Llama-3.1-8B-Instruct model with a context of 96k tokens. The code is available at https://github.com/Infini-AI-Lab/MagicPIG.
Optimal Stepsize for Diffusion Sampling
Diffusion models achieve remarkable generation quality but suffer from computational intensive sampling due to suboptimal step discretization. While existing works focus on optimizing denoising directions, we address the principled design of stepsize schedules. This paper proposes Optimal Stepsize Distillation, a dynamic programming framework that extracts theoretically optimal schedules by distilling knowledge from reference trajectories. By reformulating stepsize optimization as recursive error minimization, our method guarantees global discretization bounds through optimal substructure exploitation. Crucially, the distilled schedules demonstrate strong robustness across architectures, ODE solvers, and noise schedules. Experiments show 10x accelerated text-to-image generation while preserving 99.4% performance on GenEval. Our code is available at https://github.com/bebebe666/OptimalSteps.
Dynamic Experts Search: Enhancing Reasoning in Mixture-of-Experts LLMs at Test Time
Test-Time Scaling (TTS) enhances the reasoning ability of large language models (LLMs) by allocating additional computation during inference. However, existing approaches primarily rely on output-level sampling while overlooking the role of model architecture. In mainstream Mixture-of-Experts (MoE) LLMs, we observe that varying the number of activated experts yields complementary solution sets with stable accuracy, revealing a new and underexplored source of diversity. Motivated by this observation, we propose Dynamic Experts Search (DES), a TTS strategy that elevates expert activation into a controllable dimension of the search space. DES integrates two key components: (1) Dynamic MoE, which enables direct control of expert counts during inference to generate diverse reasoning trajectories without additional cost; and (2) Expert Configuration Inheritance, which preserves consistent expert counts within a reasoning path while varying them across runs, thereby balancing stability and diversity throughout the search. Extensive experiments across MoE architectures, verifiers and reasoning benchmarks (i.e., math, code and knowledge) demonstrate that DES reliably outperforms TTS baselines, enhancing accuracy and stability without additional cost. These results highlight DES as a practical and scalable form of architecture-aware TTS, illustrating how structural flexibility in modern LLMs can advance reasoning.
DATE: Dynamic Absolute Time Enhancement for Long Video Understanding
Long video understanding remains a fundamental challenge for multimodal large language models (MLLMs), particularly in tasks requiring precise temporal reasoning and event localization. Existing approaches typically adopt uniform frame sampling and rely on implicit position encodings to model temporal order. However, these methods struggle with long-range dependencies, leading to critical information loss and degraded temporal comprehension. In this paper, we propose Dynamic Absolute Time Enhancement (DATE) that enhances temporal awareness in MLLMs through the Timestamp Injection Mechanism (TIM) and a semantically guided Temporal-Aware Similarity Sampling (TASS) strategy. Specifically, we interleave video frame embeddings with textual timestamp tokens to construct a continuous temporal reference system. We further reformulate the video sampling problem as a vision-language retrieval task and introduce a two-stage algorithm to ensure both semantic relevance and temporal coverage: enriching each query into a descriptive caption to better align with the vision feature, and sampling key event with a similarity-driven temporally regularized greedy strategy. Our method achieves remarkable improvements w.r.t. absolute time understanding and key event localization, resulting in state-of-the-art performance among 7B and 72B models on hour-long video benchmarks. Particularly, our 7B model even exceeds many 72B models on some benchmarks.
FlowState: Sampling Rate Invariant Time Series Forecasting
Foundation models (FMs) have transformed natural language processing, but their success has not yet translated to time series forecasting. Existing time series foundation models (TSFMs), often based on transformer variants, struggle with generalization across varying context and target lengths, lack adaptability to different sampling rates, and are computationally inefficient. We introduce FlowState, a novel TSFM architecture that addresses these challenges through two key innovations: a state space model (SSM) based encoder and a functional basis decoder. This design enables continuous-time modeling and dynamic time-scale adjustment, allowing FlowState to inherently generalize across all possible temporal resolutions, and dynamically adjust the forecasting horizons. In contrast to other state-of-the-art TSFMs, which require training data across all possible sampling rates to memorize patterns at each scale, FlowState inherently adapts its internal dynamics to the input scale, enabling smaller models, reduced data requirements, and improved efficiency. We further propose an efficient pretraining strategy that improves robustness and accelerates training. Despite being the smallest model, FlowState outperforms all other models and is state-of-the-art for the GIFT-ZS and the Chronos-ZS benchmarks. Ablation studies confirm the effectiveness of its components, and we demonstrate its unique ability to adapt online to varying input sampling rates.
BANSAC: A dynamic BAyesian Network for adaptive SAmple Consensus
RANSAC-based algorithms are the standard techniques for robust estimation in computer vision. These algorithms are iterative and computationally expensive; they alternate between random sampling of data, computing hypotheses, and running inlier counting. Many authors tried different approaches to improve efficiency. One of the major improvements is having a guided sampling, letting the RANSAC cycle stop sooner. This paper presents a new adaptive sampling process for RANSAC. Previous methods either assume no prior information about the inlier/outlier classification of data points or use some previously computed scores in the sampling. In this paper, we derive a dynamic Bayesian network that updates individual data points' inlier scores while iterating RANSAC. At each iteration, we apply weighted sampling using the updated scores. Our method works with or without prior data point scorings. In addition, we use the updated inlier/outlier scoring for deriving a new stopping criterion for the RANSAC loop. We test our method in multiple real-world datasets for several applications and obtain state-of-the-art results. Our method outperforms the baselines in accuracy while needing less computational time.
FlexDiT: Dynamic Token Density Control for Diffusion Transformer
Diffusion Transformers (DiT) deliver impressive generative performance but face prohibitive computational demands due to both the quadratic complexity of token-based self-attention and the need for extensive sampling steps. While recent research has focused on accelerating sampling, the structural inefficiencies of DiT remain underexplored. We propose FlexDiT, a framework that dynamically adapts token density across both spatial and temporal dimensions to achieve computational efficiency without compromising generation quality. Spatially, FlexDiT employs a three-segment architecture that allocates token density based on feature requirements at each layer: Poolingformer in the bottom layers for efficient global feature extraction, Sparse-Dense Token Modules (SDTM) in the middle layers to balance global context with local detail, and dense tokens in the top layers to refine high-frequency details. Temporally, FlexDiT dynamically modulates token density across denoising stages, progressively increasing token count as finer details emerge in later timesteps. This synergy between FlexDiT's spatially adaptive architecture and its temporal pruning strategy enables a unified framework that balances efficiency and fidelity throughout the generation process. Our experiments demonstrate FlexDiT's effectiveness, achieving a 55% reduction in FLOPs and a 175% improvement in inference speed on DiT-XL with only a 0.09 increase in FID score on 512times512 ImageNet images, a 56% reduction in FLOPs across video generation datasets including FaceForensics, SkyTimelapse, UCF101, and Taichi-HD, and a 69% improvement in inference speed on PixArt-alpha on text-to-image generation task with a 0.24 FID score decrease. FlexDiT provides a scalable solution for high-quality diffusion-based generation compatible with further sampling optimization techniques.
Dynamic Gradient Alignment for Online Data Mixing
The composition of training data mixtures is critical for effectively training large language models (LLMs), as it directly impacts their performance on downstream tasks. Our goal is to identify an optimal data mixture to specialize an LLM for a specific task with access to only a few examples. Traditional approaches to this problem include ad-hoc reweighting methods, importance sampling, and gradient alignment techniques. This paper focuses on gradient alignment and introduces Dynamic Gradient Alignment (DGA), a scalable online gradient alignment algorithm. DGA dynamically estimates the pre-training data mixture on which the models' gradients align as well as possible with those of the model on the specific task. DGA is the first gradient alignment approach that incurs minimal overhead compared to standard pre-training and outputs a competitive model, eliminating the need for retraining the model. Experimentally, we demonstrate significant improvements over importance sampling in two key scenarios: (i) when the pre-training set is small and importance sampling overfits due to limited data; and (ii) when there is insufficient specialized data, trapping importance sampling on narrow pockets of data. Our findings underscore the effectiveness of gradient alignment methods in optimizing training data mixtures, particularly in data-constrained environments, and offer a practical solution for enhancing LLM performance on specific tasks with limited data availability.
Dynamic Data Mixing Maximizes Instruction Tuning for Mixture-of-Experts
Mixture-of-Experts (MoE) models have shown remarkable capability in instruction tuning, especially when the number of tasks scales. However, previous methods simply merge all training tasks (e.g. creative writing, coding, and mathematics) and apply fixed sampling weights, without considering the importance of different tasks as the model training state changes. In this way, the most helpful data cannot be effectively distinguished, leading to suboptimal model performance. To reduce the potential redundancies of datasets, we make the first attempt and propose a novel dynamic data mixture for MoE instruction tuning. Specifically, inspired by MoE's token routing preference, we build dataset-level representations and then capture the subtle differences among datasets. Finally, we propose to dynamically adjust the sampling weight of datasets by their inter-redundancies, thus maximizing global performance under a limited training budget. The experimental results on two MoE models demonstrate the effectiveness of our approach on both downstream knowledge \& reasoning tasks and open-ended queries. Code and models are available at https://github.com/Spico197/MoE-SFT .
StreamSplat: Towards Online Dynamic 3D Reconstruction from Uncalibrated Video Streams
Real-time reconstruction of dynamic 3D scenes from uncalibrated video streams is crucial for numerous real-world applications. However, existing methods struggle to jointly address three key challenges: 1) processing uncalibrated inputs in real time, 2) accurately modeling dynamic scene evolution, and 3) maintaining long-term stability and computational efficiency. To this end, we introduce StreamSplat, the first fully feed-forward framework that transforms uncalibrated video streams of arbitrary length into dynamic 3D Gaussian Splatting (3DGS) representations in an online manner, capable of recovering scene dynamics from temporally local observations. We propose two key technical innovations: a probabilistic sampling mechanism in the static encoder for 3DGS position prediction, and a bidirectional deformation field in the dynamic decoder that enables robust and efficient dynamic modeling. Extensive experiments on static and dynamic benchmarks demonstrate that StreamSplat consistently outperforms prior works in both reconstruction quality and dynamic scene modeling, while uniquely supporting online reconstruction of arbitrarily long video streams. Code and models are available at https://github.com/nickwzk/StreamSplat.
EAGLE-2: Faster Inference of Language Models with Dynamic Draft Trees
Inference with modern Large Language Models (LLMs) is expensive and time-consuming, and speculative sampling has proven to be an effective solution. Most speculative sampling methods such as EAGLE use a static draft tree, implicitly assuming that the acceptance rate of draft tokens depends only on their position. Interestingly, we found that the acceptance rate of draft tokens is also context-dependent. In this paper, building upon EAGLE, we propose EAGLE-2, which introduces a new technique of context-aware dynamic draft tree into drafting modeling. This improvement leverages the fact that the draft model of EAGLE is well-calibrated: the confidence scores from the draft model approximate acceptance rates with small errors. We conducted extensive evaluations on three series of LLMs and six tasks, with EAGLE-2 achieving speedup ratios 3.05x-4.26x, which is 20%-40% faster than EAGLE-1. EAGLE-2 also ensures that the distribution of the generated text remains unchanged, making it a lossless acceleration algorithm.
On the Trajectory Regularity of ODE-based Diffusion Sampling
Diffusion-based generative models use stochastic differential equations (SDEs) and their equivalent ordinary differential equations (ODEs) to establish a smooth connection between a complex data distribution and a tractable prior distribution. In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models. We characterize an implicit denoising trajectory and discuss its vital role in forming the coupled sampling trajectory with a strong shape regularity, regardless of the generated content. We also describe a dynamic programming-based scheme to make the time schedule in sampling better fit the underlying trajectory structure. This simple strategy requires minimal modification to any given ODE-based numerical solvers and incurs negligible computational cost, while delivering superior performance in image generation, especially in 5sim 10 function evaluations.
Dynamic Search for Inference-Time Alignment in Diffusion Models
Diffusion models have shown promising generative capabilities across diverse domains, yet aligning their outputs with desired reward functions remains a challenge, particularly in cases where reward functions are non-differentiable. Some gradient-free guidance methods have been developed, but they often struggle to achieve optimal inference-time alignment. In this work, we newly frame inference-time alignment in diffusion as a search problem and propose Dynamic Search for Diffusion (DSearch), which subsamples from denoising processes and approximates intermediate node rewards. It also dynamically adjusts beam width and tree expansion to efficiently explore high-reward generations. To refine intermediate decisions, DSearch incorporates adaptive scheduling based on noise levels and a lookahead heuristic function. We validate DSearch across multiple domains, including biological sequence design, molecular optimization, and image generation, demonstrating superior reward optimization compared to existing approaches.
FACT-AUDIT: An Adaptive Multi-Agent Framework for Dynamic Fact-Checking Evaluation of Large Language Models
Large Language Models (LLMs) have significantly advanced the fact-checking studies. However, existing automated fact-checking evaluation methods rely on static datasets and classification metrics, which fail to automatically evaluate the justification production and uncover the nuanced limitations of LLMs in fact-checking. In this work, we introduce FACT-AUDIT, an agent-driven framework that adaptively and dynamically assesses LLMs' fact-checking capabilities. Leveraging importance sampling principles and multi-agent collaboration, FACT-AUDIT generates adaptive and scalable datasets, performs iterative model-centric evaluations, and updates assessments based on model-specific responses. By incorporating justification production alongside verdict prediction, this framework provides a comprehensive and evolving audit of LLMs' factual reasoning capabilities, to investigate their trustworthiness. Extensive experiments demonstrate that FACT-AUDIT effectively differentiates among state-of-the-art LLMs, providing valuable insights into model strengths and limitations in model-centric fact-checking analysis.
DynVideo-E: Harnessing Dynamic NeRF for Large-Scale Motion- and View-Change Human-Centric Video Editing
Despite remarkable research advances in diffusion-based video editing, existing methods are limited to short-length videos due to the contradiction between long-range consistency and frame-wise editing. Recent approaches attempt to tackle this challenge by introducing video-2D representations to degrade video editing to image editing. However, they encounter significant difficulties in handling large-scale motion- and view-change videos especially for human-centric videos. This motivates us to introduce the dynamic Neural Radiance Fields (NeRF) as the human-centric video representation to ease the video editing problem to a 3D space editing task. As such, editing can be performed in the 3D spaces and propagated to the entire video via the deformation field. To provide finer and direct controllable editing, we propose the image-based 3D space editing pipeline with a set of effective designs. These include multi-view multi-pose Score Distillation Sampling (SDS) from both 2D personalized diffusion priors and 3D diffusion priors, reconstruction losses on the reference image, text-guided local parts super-resolution, and style transfer for 3D background space. Extensive experiments demonstrate that our method, dubbed as DynVideo-E, significantly outperforms SOTA approaches on two challenging datasets by a large margin of 50% ~ 95% in terms of human preference. Compelling video comparisons are provided in the project page https://showlab.github.io/DynVideo-E/. Our code and data will be released to the community.
Str2Str: A Score-based Framework for Zero-shot Protein Conformation Sampling
The dynamic nature of proteins is crucial for determining their biological functions and properties, for which Monte Carlo (MC) and molecular dynamics (MD) simulations stand as predominant tools to study such phenomena. By utilizing empirically derived force fields, MC or MD simulations explore the conformational space through numerically evolving the system via Markov chain or Newtonian mechanics. However, the high-energy barrier of the force fields can hamper the exploration of both methods by the rare event, resulting in inadequately sampled ensemble without exhaustive running. Existing learning-based approaches perform direct sampling yet heavily rely on target-specific simulation data for training, which suffers from high data acquisition cost and poor generalizability. Inspired by simulated annealing, we propose Str2Str, a novel structure-to-structure translation framework capable of zero-shot conformation sampling with roto-translation equivariant property. Our method leverages an amortized denoising score matching objective trained on general crystal structures and has no reliance on simulation data during both training and inference. Experimental results across several benchmarking protein systems demonstrate that Str2Str outperforms previous state-of-the-art generative structure prediction models and can be orders of magnitude faster compared to long MD simulations. Our open-source implementation is available at https://github.com/lujiarui/Str2Str
DRESS: Dynamic REal-time Sparse Subnets
The limited and dynamically varied resources on edge devices motivate us to deploy an optimized deep neural network that can adapt its sub-networks to fit in different resource constraints. However, existing works often build sub-networks through searching different network architectures in a hand-crafted sampling space, which not only can result in a subpar performance but also may cause on-device re-configuration overhead. In this paper, we propose a novel training algorithm, Dynamic REal-time Sparse Subnets (DRESS). DRESS samples multiple sub-networks from the same backbone network through row-based unstructured sparsity, and jointly trains these sub-networks in parallel with weighted loss. DRESS also exploits strategies including parameter reusing and row-based fine-grained sampling for efficient storage consumption and efficient on-device adaptation. Extensive experiments on public vision datasets show that DRESS yields significantly higher accuracy than state-of-the-art sub-networks.
DC-Solver: Improving Predictor-Corrector Diffusion Sampler via Dynamic Compensation
Diffusion probabilistic models (DPMs) have shown remarkable performance in visual synthesis but are computationally expensive due to the need for multiple evaluations during the sampling. Recent predictor-corrector diffusion samplers have significantly reduced the required number of function evaluations (NFE), but inherently suffer from a misalignment issue caused by the extra corrector step, especially with a large classifier-free guidance scale (CFG). In this paper, we introduce a new fast DPM sampler called DC-Solver, which leverages dynamic compensation (DC) to mitigate the misalignment of the predictor-corrector samplers. The dynamic compensation is controlled by compensation ratios that are adaptive to the sampling steps and can be optimized on only 10 datapoints by pushing the sampling trajectory toward a ground truth trajectory. We further propose a cascade polynomial regression (CPR) which can instantly predict the compensation ratios on unseen sampling configurations. Additionally, we find that the proposed dynamic compensation can also serve as a plug-and-play module to boost the performance of predictor-only samplers. Extensive experiments on both unconditional sampling and conditional sampling demonstrate that our DC-Solver can consistently improve the sampling quality over previous methods on different DPMs with a wide range of resolutions up to 1024times1024. Notably, we achieve 10.38 FID (NFE=5) on unconditional FFHQ and 0.394 MSE (NFE=5, CFG=7.5) on Stable-Diffusion-2.1. Code is available at https://github.com/wl-zhao/DC-Solver
Sampling-Efficient Test-Time Scaling: Self-Estimating the Best-of-N Sampling in Early Decoding
Test-time scaling improves large language model performance by adding extra compute during decoding. Best-of-N (BoN) sampling serves as a common scaling technique, broadening the search space for finding better solutions from the model distribution. However, traditional BoN requires N full generations, leading to high GPU memory overhead and time latency. Moreover, some methods depend on reward models, adding computational cost and limiting domain generalization. In this paper, we propose Self-Truncation Best-of-N (ST-BoN), a novel decoding method that avoids fully generating all samplings and eliminates the need for reward models. ST-BoN introduces early sampling consistency to estimate the most promising sample, truncating suboptimal ones to free memory and accelerate inference. This pushes the sampling-efficient test-time scaling. Compared to traditional BoN, ST-BoN can reduce dynamic GPU memory overhead by over 90% and time latency by 50%, while achieving comparable or even better performance across reasoning and open-ended domains.
DyPE: Dynamic Position Extrapolation for Ultra High Resolution Diffusion
Diffusion Transformer models can generate images with remarkable fidelity and detail, yet training them at ultra-high resolutions remains extremely costly due to the self-attention mechanism's quadratic scaling with the number of image tokens. In this paper, we introduce Dynamic Position Extrapolation (DyPE), a novel, training-free method that enables pre-trained diffusion transformers to synthesize images at resolutions far beyond their training data, with no additional sampling cost. DyPE takes advantage of the spectral progression inherent to the diffusion process, where low-frequency structures converge early, while high-frequencies take more steps to resolve. Specifically, DyPE dynamically adjusts the model's positional encoding at each diffusion step, matching their frequency spectrum with the current stage of the generative process. This approach allows us to generate images at resolutions that exceed the training resolution dramatically, e.g., 16 million pixels using FLUX. On multiple benchmarks, DyPE consistently improves performance and achieves state-of-the-art fidelity in ultra-high-resolution image generation, with gains becoming even more pronounced at higher resolutions. Project page is available at https://noamissachar.github.io/DyPE/.
Dynamic View Synthesis as an Inverse Problem
In this work, we address dynamic view synthesis from monocular videos as an inverse problem in a training-free setting. By redesigning the noise initialization phase of a pre-trained video diffusion model, we enable high-fidelity dynamic view synthesis without any weight updates or auxiliary modules. We begin by identifying a fundamental obstacle to deterministic inversion arising from zero-terminal signal-to-noise ratio (SNR) schedules and resolve it by introducing a novel noise representation, termed K-order Recursive Noise Representation. We derive a closed form expression for this representation, enabling precise and efficient alignment between the VAE-encoded and the DDIM inverted latents. To synthesize newly visible regions resulting from camera motion, we introduce Stochastic Latent Modulation, which performs visibility aware sampling over the latent space to complete occluded regions. Comprehensive experiments demonstrate that dynamic view synthesis can be effectively performed through structured latent manipulation in the noise initialization phase.
Shuffle-R1: Efficient RL framework for Multimodal Large Language Models via Data-centric Dynamic Shuffle
Reinforcement learning (RL) has emerged as an effective post-training paradigm for enhancing the reasoning capabilities of multimodal large language model (MLLM). However, current RL pipelines often suffer from training inefficiencies caused by two underexplored issues: Advantage Collapsing, where most advantages in a batch concentrate near zero, and Rollout Silencing, where the proportion of rollouts contributing non-zero gradients diminishes over time. These issues lead to suboptimal gradient updates and hinder long-term learning efficiency. To address these issues, we propose Shuffle-R1, a simple yet principled framework that improves RL fine-tuning efficiency by dynamically restructuring trajectory sampling and batch composition. It introduces (1) Pairwise Trajectory Sampling, which selects high-contrast trajectories with large advantages to improve gradient signal quality, and (2) Advantage-based Trajectory Shuffle, which increases exposure of valuable rollouts through informed batch reshuffling. Experiments across multiple reasoning benchmarks show that our framework consistently outperforms strong RL baselines with minimal overhead. These results highlight the importance of data-centric adaptations for more efficient RL training in MLLM.
Influence Scores at Scale for Efficient Language Data Sampling
Modern ML systems ingest data aggregated from diverse sources, such as synthetic, human-annotated, and live customer traffic. Understanding which examples are important to the performance of a learning algorithm is crucial for efficient model training. Recently, a growing body of literature has given rise to various "influence scores," which use training artifacts such as model confidence or checkpointed gradients to identify important subsets of data. However, these methods have primarily been developed in computer vision settings, and it remains unclear how well they generalize to language-based tasks using pretrained models. In this paper, we explore the applicability of influence scores in language classification tasks. We evaluate a diverse subset of these scores on the SNLI dataset by quantifying accuracy changes in response to pruning training data through random and influence-score-based sampling. We then stress-test one of the scores -- "variance of gradients" (VoG) from Agarwal et al. (2022) -- in an NLU model stack that was exposed to dynamic user speech patterns in a voice assistant type of setting. Our experiments demonstrate that in many cases, encoder-based language models can be finetuned on roughly 50% of the original data without degradation in performance metrics. Along the way, we summarize lessons learned from applying out-of-the-box implementations of influence scores, quantify the effects of noisy and class-imbalanced data, and offer recommendations on score-based sampling for better accuracy and training efficiency.
Velocitune: A Velocity-based Dynamic Domain Reweighting Method for Continual Pre-training
It is well-known that a diverse corpus is critical for training large language models, which are typically constructed from a mixture of various domains. In general, previous efforts resort to sampling training data from different domains with static proportions, as well as adjusting data proportions during training. However, few methods have addressed the complexities of domain-adaptive continual pre-training. To fill this gap, we propose Velocitune, a novel framework dynamically assesses learning velocity and adjusts data proportions accordingly, favoring slower-learning domains while shunning faster-learning ones, which is guided by a scaling law to indicate the desired learning goal for each domain with less associated cost. To evaluate the effectiveness of Velocitune, we conduct experiments in a reasoning-focused dataset with CodeLlama, as well as in a corpus specialised for system command generation with Llama3 and Mistral. Velocitune achieves performance gains in both math and code reasoning tasks and command-line generation benchmarks. Further analysis reveals that key factors driving Velocitune's effectiveness include target loss prediction and data ordering.
Dynamic Residual Classifier for Class Incremental Learning
The rehearsal strategy is widely used to alleviate the catastrophic forgetting problem in class incremental learning (CIL) by preserving limited exemplars from previous tasks. With imbalanced sample numbers between old and new classes, the classifier learning can be biased. Existing CIL methods exploit the long-tailed (LT) recognition techniques, e.g., the adjusted losses and the data re-sampling methods, to handle the data imbalance issue within each increment task. In this work, the dynamic nature of data imbalance in CIL is shown and a novel Dynamic Residual Classifier (DRC) is proposed to handle this challenging scenario. Specifically, DRC is built upon a recent advance residual classifier with the branch layer merging to handle the model-growing problem. Moreover, DRC is compatible with different CIL pipelines and substantially improves them. Combining DRC with the model adaptation and fusion (MAF) pipeline, this method achieves state-of-the-art results on both the conventional CIL and the LT-CIL benchmarks. Extensive experiments are also conducted for a detailed analysis. The code is publicly available.
DCPO: Dynamic Clipping Policy Optimization
Reinforcement Learning from Verifiable Rewards (RLVR) has emerged as a promising framework for enhancing the reasoning capabilities of large language models. However, existing approaches such as GRPO often suffer from zero gradients. This problem arises primarily due to fixed clipping bounds for token-level probability ratios and the standardization of identical rewards, which can lead to ineffective gradient updates and underutilization of generated responses. In this work, we propose Dynamic Clipping Policy Optimization (DCPO), which introduces a dynamic clipping strategy that adaptively adjusts the clipping bounds based on token-specific prior probabilities to enhance token-level exploration, and a smooth advantage standardization technique that standardizes rewards across cumulative training steps to improve the response-level effective utilization of generated responses. DCPO achieved state-of-the-art performance on four benchmarks based on four different models. In particular, DCPO achieved an Avg@1 of 46.7 under greedy decoding and an Avg@32 of 38.8 under 32 times sampling on the AIME24 benchmark, surpassing both DAPO (36.7/31.6) and GRPO (36.7/32.1) on the Qwen2.5-Math-7B model. On the AIME25 benchmark based on Qwen2.5-14B, DCPO achieves a performance of (23.3/19.0), surpassing GRPO (13.3/10.5) and DAPO (20.0/15.3). Furthermore, DCPO achieved an average 28% improvement in the nonzero advantage over GRPO in four models, doubled the training efficiency over DAPO, and significantly reduced the token clipping ratio by an order of magnitude compared to both GRPO and DAPO, while achieving superior performance. These results highlight DCPO's effectiveness in leveraging generated data more efficiently for reinforcement learning in large language models.
Semantic Diffusion Posterior Sampling for Cardiac Ultrasound Dehazing
Echocardiography plays a central role in cardiac imaging, offering dynamic views of the heart that are essential for diagnosis and monitoring. However, image quality can be significantly degraded by haze arising from multipath reverberations, particularly in difficult-to-image patients. In this work, we propose a semantic-guided, diffusion-based dehazing algorithm developed for the MICCAI Dehazing Echocardiography Challenge (DehazingEcho2025). Our method integrates a pixel-wise noise model, derived from semantic segmentation of hazy inputs into a diffusion posterior sampling framework guided by a generative prior trained on clean ultrasound data. Quantitative evaluation on the challenge dataset demonstrates strong performance across contrast and fidelity metrics. Code for the submitted algorithm is available at https://github.com/tristan-deep/semantic-diffusion-echo-dehazing.
Guardians of Generation: Dynamic Inference-Time Copyright Shielding with Adaptive Guidance for AI Image Generation
Modern text-to-image generative models can inadvertently reproduce copyrighted content memorized in their training data, raising serious concerns about potential copyright infringement. We introduce Guardians of Generation, a model agnostic inference time framework for dynamic copyright shielding in AI image generation. Our approach requires no retraining or modification of the generative model weights, instead integrating seamlessly with existing diffusion pipelines. It augments the generation process with an adaptive guidance mechanism comprising three components: a detection module, a prompt rewriting module, and a guidance adjustment module. The detection module monitors user prompts and intermediate generation steps to identify features indicative of copyrighted content before they manifest in the final output. If such content is detected, the prompt rewriting mechanism dynamically transforms the user's prompt by sanitizing or replacing references that could trigger copyrighted material while preserving the prompt's intended semantics. The adaptive guidance module adaptively steers the diffusion process away from flagged content by modulating the model's sampling trajectory. Together, these components form a robust shield that enables a tunable balance between preserving creative fidelity and ensuring copyright compliance. We validate our method on a variety of generative models such as Stable Diffusion, SDXL, and Flux, demonstrating substantial reductions in copyrighted content generation with negligible impact on output fidelity or alignment with user intent. This work provides a practical, plug-and-play safeguard for generative image models, enabling more responsible deployment under real-world copyright constraints. Source code is available at: https://respailab.github.io/gog
PuzzleBench: A Fully Dynamic Evaluation Framework for Large Multimodal Models on Puzzle Solving
Large Multimodal Models (LMMs) have demonstrated impressive capabilities across a wide range of multimodal tasks, achieving ever-increasing performance on various evaluation benchmarks. However, existing benchmarks are typically static and often overlap with pre-training datasets, leading to fixed complexity constraints and substantial data contamination issues. Meanwhile, manually annotated datasets are labor-intensive, time-consuming, and subject to human bias and inconsistency, leading to reliability and reproducibility issues. To address these problems, we propose a fully dynamic multimodal evaluation framework, named Open-ended Visual Puzzle Generation (OVPG), which aims to generate fresh, diverse, and verifiable evaluation data automatically in puzzle-solving tasks. Specifically, the OVPG pipeline consists of a raw material sampling module, a visual content generation module, and a puzzle rule design module, which ensures that each evaluation instance is primitive, highly randomized, and uniquely solvable, enabling continual adaptation to the evolving capabilities of LMMs. Built upon OVPG, we construct PuzzleBench, a dynamic and scalable benchmark comprising 11,840 VQA samples. It features six carefully designed puzzle tasks targeting three core LMM competencies, visual recognition, logical reasoning, and context understanding. PuzzleBench differs from static benchmarks that quickly become outdated. It enables ongoing dataset refreshing through OVPG and a rich set of open-ended puzzle designs, allowing seamless adaptation to the evolving capabilities of LMMs.
Learning Efficient Surrogate Dynamic Models with Graph Spline Networks
While complex simulations of physical systems have been widely used in engineering and scientific computing, lowering their often prohibitive computational requirements has only recently been tackled by deep learning approaches. In this paper, we present GraphSplineNets, a novel deep-learning method to speed up the forecasting of physical systems by reducing the grid size and number of iteration steps of deep surrogate models. Our method uses two differentiable orthogonal spline collocation methods to efficiently predict response at any location in time and space. Additionally, we introduce an adaptive collocation strategy in space to prioritize sampling from the most important regions. GraphSplineNets improve the accuracy-speedup tradeoff in forecasting various dynamical systems with increasing complexity, including the heat equation, damped wave propagation, Navier-Stokes equations, and real-world ocean currents in both regular and irregular domains.
DeeDiff: Dynamic Uncertainty-Aware Early Exiting for Accelerating Diffusion Model Generation
Diffusion models achieve great success in generating diverse and high-fidelity images. The performance improvements come with low generation speed per image, which hinders the application diffusion models in real-time scenarios. While some certain predictions benefit from the full computation of the model in each sample iteration, not every iteration requires the same amount of computation, potentially leading to computation waste. In this work, we propose DeeDiff, an early exiting framework that adaptively allocates computation resources in each sampling step to improve the generation efficiency of diffusion models. Specifically, we introduce a timestep-aware uncertainty estimation module (UEM) for diffusion models which is attached to each intermediate layer to estimate the prediction uncertainty of each layer. The uncertainty is regarded as the signal to decide if the inference terminates. Moreover, we propose uncertainty-aware layer-wise loss to fill the performance gap between full models and early-exited models. With such loss strategy, our model is able to obtain comparable results as full-layer models. Extensive experiments of class-conditional, unconditional, and text-guided generation on several datasets show that our method achieves state-of-the-art performance and efficiency trade-off compared with existing early exiting methods on diffusion models. More importantly, our method even brings extra benefits to baseline models and obtains better performance on CIFAR-10 and Celeb-A datasets. Full code and model are released for reproduction.
What Do You Get When You Cross Beam Search with Nucleus Sampling?
We combine beam search with the probabilistic pruning technique of nucleus sampling to create two deterministic nucleus search algorithms for natural language generation. The first algorithm, p-exact search, locally prunes the next-token distribution and performs an exact search over the remaining space. The second algorithm, dynamic beam search, shrinks and expands the beam size according to the entropy of the candidate's probability distribution. Despite the probabilistic intuition behind nucleus search, experiments on machine translation and summarization benchmarks show that both algorithms reach the same performance levels as standard beam search.
InstaRevive: One-Step Image Enhancement via Dynamic Score Matching
Image enhancement finds wide-ranging applications in real-world scenarios due to complex environments and the inherent limitations of imaging devices. Recent diffusion-based methods yield promising outcomes but necessitate prolonged and computationally intensive iterative sampling. In response, we propose InstaRevive, a straightforward yet powerful image enhancement framework that employs score-based diffusion distillation to harness potent generative capability and minimize the sampling steps. To fully exploit the potential of the pre-trained diffusion model, we devise a practical and effective diffusion distillation pipeline using dynamic control to address inaccuracies in updating direction during score matching. Our control strategy enables a dynamic diffusing scope, facilitating precise learning of denoising trajectories within the diffusion model and ensuring accurate distribution matching gradients during training. Additionally, to enrich guidance for the generative power, we incorporate textual prompts via image captioning as auxiliary conditions, fostering further exploration of the diffusion model. Extensive experiments substantiate the efficacy of our framework across a diverse array of challenging tasks and datasets, unveiling the compelling efficacy and efficiency of InstaRevive in delivering high-quality and visually appealing results. Code is available at https://github.com/EternalEvan/InstaRevive.
DynamicCity: Large-Scale LiDAR Generation from Dynamic Scenes
LiDAR scene generation has been developing rapidly recently. However, existing methods primarily focus on generating static and single-frame scenes, overlooking the inherently dynamic nature of real-world driving environments. In this work, we introduce DynamicCity, a novel 4D LiDAR generation framework capable of generating large-scale, high-quality LiDAR scenes that capture the temporal evolution of dynamic environments. DynamicCity mainly consists of two key models. 1) A VAE model for learning HexPlane as the compact 4D representation. Instead of using naive averaging operations, DynamicCity employs a novel Projection Module to effectively compress 4D LiDAR features into six 2D feature maps for HexPlane construction, which significantly enhances HexPlane fitting quality (up to 12.56 mIoU gain). Furthermore, we utilize an Expansion & Squeeze Strategy to reconstruct 3D feature volumes in parallel, which improves both network training efficiency and reconstruction accuracy than naively querying each 3D point (up to 7.05 mIoU gain, 2.06x training speedup, and 70.84% memory reduction). 2) A DiT-based diffusion model for HexPlane generation. To make HexPlane feasible for DiT generation, a Padded Rollout Operation is proposed to reorganize all six feature planes of the HexPlane as a squared 2D feature map. In particular, various conditions could be introduced in the diffusion or sampling process, supporting versatile 4D generation applications, such as trajectory- and command-driven generation, inpainting, and layout-conditioned generation. Extensive experiments on the CarlaSC and Waymo datasets demonstrate that DynamicCity significantly outperforms existing state-of-the-art 4D LiDAR generation methods across multiple metrics. The code will be released to facilitate future research.
Alignment through Meta-Weighted Online Sampling: Bridging the Gap between Data Generation and Preference Optimization
Preference optimization is crucial for aligning large language models (LLMs) with human values and intentions. A significant challenge in this process is the distribution mismatch between pre-collected offline preference data and the evolving model policy. Existing methods attempt to reduce this gap using static heuristics or decoupled online sampling strategies, but they often fail to adapt to the model's dynamic learning state. To bridge this gap, we propose Meta-Weighted Adaptive Preference Optimization (MetaAPO), a novel framework that dynamically couples data generation with model training. MetaAPO employs a lightweight meta-learner, as an "alignment gap estimator", to evaluate the potential benefits of on-policy sampling in relation to offline data. This guides targeted online generation and assigns sample-wise meta-weights to the optimization objective, dynamically balancing the quality and distribution of online and offline data. Experiments on AlpacaEval 2, Arena-Hard and MT-Bench demonstrate that MetaAPO consistently outperforms existing preference optimization approaches across various settings, while reducing 42% in online annotation costs.
MoEQuant: Enhancing Quantization for Mixture-of-Experts Large Language Models via Expert-Balanced Sampling and Affinity Guidance
Mixture-of-Experts (MoE) large language models (LLMs), which leverage dynamic routing and sparse activation to enhance efficiency and scalability, have achieved higher performance while reducing computational costs. However, these models face significant memory overheads, limiting their practical deployment and broader adoption. Post-training quantization (PTQ), a widely used method for compressing LLMs, encounters severe accuracy degradation and diminished generalization performance when applied to MoE models. This paper investigates the impact of MoE's sparse and dynamic characteristics on quantization and identifies two primary challenges: (1) Inter-expert imbalance, referring to the uneven distribution of samples across experts, which leads to insufficient and biased calibration for less frequently utilized experts; (2) Intra-expert imbalance, arising from MoE's unique aggregation mechanism, which leads to varying degrees of correlation between different samples and their assigned experts. To address these challenges, we propose MoEQuant, a novel quantization framework tailored for MoE LLMs. MoE-Quant includes two novel techniques: 1) Expert-Balanced Self-Sampling (EBSS) is an efficient sampling method that efficiently constructs a calibration set with balanced expert distributions by leveraging the cumulative probabilities of tokens and expert balance metrics as guiding factors. 2) Affinity-Guided Quantization (AGQ), which incorporates affinities between experts and samples into the quantization process, thereby accurately assessing the impact of individual samples on different experts within the MoE layer. Experiments demonstrate that MoEQuant achieves substantial performance gains (more than 10 points accuracy gain in the HumanEval for DeepSeekMoE-16B under 4-bit quantization) and boosts efficiency.
Do We Truly Need So Many Samples? Multi-LLM Repeated Sampling Efficiently Scales Test-Time Compute
This paper presents a simple, effective, and cost-efficient strategy to improve LLM performance by scaling test-time compute. Our strategy builds upon the repeated-sampling-then-voting framework, with a novel twist: incorporating multiple models, even weaker ones, to leverage their complementary strengths that potentially arise from diverse training data and paradigms. By using consistency as a signal, our strategy dynamically switches between models. Theoretical analysis highlights the efficiency and performance advantages of our strategy. Extensive experiments on six datasets demonstrate that our strategy not only outperforms self-consistency and state-of-the-art multi-agent debate approaches, but also significantly reduces inference costs. Additionally, ModelSwitch requires only a few comparable LLMs to achieve optimal performance and can be extended with verification methods, demonstrating the potential of leveraging multiple LLMs in the generation-verification paradigm.
DGNS: Deformable Gaussian Splatting and Dynamic Neural Surface for Monocular Dynamic 3D Reconstruction
Dynamic scene reconstruction from monocular video is critical for real-world applications. This paper tackles the dual challenges of dynamic novel-view synthesis and 3D geometry reconstruction by introducing a hybrid framework: Deformable Gaussian Splatting and Dynamic Neural Surfaces (DGNS), in which both modules can leverage each other for both tasks. During training, depth maps generated by the deformable Gaussian splatting module guide the ray sampling for faster processing and provide depth supervision within the dynamic neural surface module to improve geometry reconstruction. Simultaneously, the dynamic neural surface directs the distribution of Gaussian primitives around the surface, enhancing rendering quality. To further refine depth supervision, we introduce a depth-filtering process on depth maps derived from Gaussian rasterization. Extensive experiments on public datasets demonstrate that DGNS achieves state-of-the-art performance in both novel-view synthesis and 3D reconstruction.
Optimizing Factual Accuracy in Text Generation through Dynamic Knowledge Selection
Language models (LMs) have revolutionized the way we interact with information, but they often generate nonfactual text, raising concerns about their reliability. Previous methods use external knowledge as references for text generation to enhance factuality but often struggle with the knowledge mix-up(e.g., entity mismatch) of irrelevant references. Besides,as the length of the output text grows, the randomness of sampling can escalate, detrimentally impacting the factual accuracy of the generated text. In this paper, we present DKGen, which divide the text generation process into an iterative process. In each iteration, DKGen takes the input query, the previously generated text and a subset of the reference passages as input to generate short text. During the process, the subset is dynamically selected from the full passage set based on their relevance to the previously generated text and the query, largely eliminating the irrelevant references from input. To further enhance DKGen's ability to correctly use these external knowledge, DKGen distills the relevance order of reference passages to the cross-attention distribution of decoder. We train and evaluate DKGen on a large-scale benchmark dataset. Experiment results show that DKGen outperforms all baseline models.
KL-Divergence Guided Temperature Sampling
Temperature sampling is a conventional approach to diversify large language model predictions. As temperature increases, the prediction becomes diverse but also vulnerable to hallucinations -- generating tokens that are sensible but not factual. One common approach to mitigate hallucinations is to provide source/grounding documents and the model is trained to produce predictions that bind to and are attributable to the provided source. It appears that there is a trade-off between diversity and attribution. To mitigate any such trade-off, we propose to relax the constraint of having a fixed temperature over decoding steps, and a mechanism to guide the dynamic temperature according to its relevance to the source through KL-divergence. Our experiments justifies the trade-off, and shows that our sampling algorithm outperforms the conventional top-k and top-p algorithms in conversational question-answering and summarization tasks.
Efficient Speech Translation with Dynamic Latent Perceivers
Transformers have been the dominant architecture for Speech Translation in recent years, achieving significant improvements in translation quality. Since speech signals are longer than their textual counterparts, and due to the quadratic complexity of the Transformer, a down-sampling step is essential for its adoption in Speech Translation. Instead, in this research, we propose to ease the complexity by using a Perceiver encoder to map the speech inputs to a fixed-length latent representation. Furthermore, we introduce a novel way of training Perceivers, with Dynamic Latent Access (DLA), unlocking larger latent spaces without any additional computational overhead. Speech-to-Text Perceivers with DLA can match the performance of Transformer baselines across three language pairs in MuST-C. Finally, a DLA-trained model is easily adaptable to DLA at inference, and can be flexibly deployed with various computational budgets, without significant drops in translation quality.
City-scale Incremental Neural Mapping with Three-layer Sampling and Panoptic Representation
Neural implicit representations are drawing a lot of attention from the robotics community recently, as they are expressive, continuous and compact. However, city-scale continual implicit dense mapping based on sparse LiDAR input is still an under-explored challenge. To this end, we successfully build a city-scale continual neural mapping system with a panoptic representation that consists of environment-level and instance-level modelling. Given a stream of sparse LiDAR point cloud, it maintains a dynamic generative model that maps 3D coordinates to signed distance field (SDF) values. To address the difficulty of representing geometric information at different levels in city-scale space, we propose a tailored three-layer sampling strategy to dynamically sample the global, local and near-surface domains. Meanwhile, to realize high fidelity mapping of instance under incomplete observation, category-specific prior is introduced to better model the geometric details. We evaluate on the public SemanticKITTI dataset and demonstrate the significance of the newly proposed three-layer sampling strategy and panoptic representation, using both quantitative and qualitative results. Codes and model will be publicly available.
Spatiotemporal Skip Guidance for Enhanced Video Diffusion Sampling
Diffusion models have emerged as a powerful tool for generating high-quality images, videos, and 3D content. While sampling guidance techniques like CFG improve quality, they reduce diversity and motion. Autoguidance mitigates these issues but demands extra weak model training, limiting its practicality for large-scale models. In this work, we introduce Spatiotemporal Skip Guidance (STG), a simple training-free sampling guidance method for enhancing transformer-based video diffusion models. STG employs an implicit weak model via self-perturbation, avoiding the need for external models or additional training. By selectively skipping spatiotemporal layers, STG produces an aligned, degraded version of the original model to boost sample quality without compromising diversity or dynamic degree. Our contributions include: (1) introducing STG as an efficient, high-performing guidance technique for video diffusion models, (2) eliminating the need for auxiliary models by simulating a weak model through layer skipping, and (3) ensuring quality-enhanced guidance without compromising sample diversity or dynamics unlike CFG. For additional results, visit https://junhahyung.github.io/STGuidance.
MagicID: Hybrid Preference Optimization for ID-Consistent and Dynamic-Preserved Video Customization
Video identity customization seeks to produce high-fidelity videos that maintain consistent identity and exhibit significant dynamics based on users' reference images. However, existing approaches face two key challenges: identity degradation over extended video length and reduced dynamics during training, primarily due to their reliance on traditional self-reconstruction training with static images. To address these issues, we introduce MagicID, a novel framework designed to directly promote the generation of identity-consistent and dynamically rich videos tailored to user preferences. Specifically, we propose constructing pairwise preference video data with explicit identity and dynamic rewards for preference learning, instead of sticking to the traditional self-reconstruction. To address the constraints of customized preference data, we introduce a hybrid sampling strategy. This approach first prioritizes identity preservation by leveraging static videos derived from reference images, then enhances dynamic motion quality in the generated videos using a Frontier-based sampling method. By utilizing these hybrid preference pairs, we optimize the model to align with the reward differences between pairs of customized preferences. Extensive experiments show that MagicID successfully achieves consistent identity and natural dynamics, surpassing existing methods across various metrics.
TEDRA: Text-based Editing of Dynamic and Photoreal Actors
Over the past years, significant progress has been made in creating photorealistic and drivable 3D avatars solely from videos of real humans. However, a core remaining challenge is the fine-grained and user-friendly editing of clothing styles by means of textual descriptions. To this end, we present TEDRA, the first method allowing text-based edits of an avatar, which maintains the avatar's high fidelity, space-time coherency, as well as dynamics, and enables skeletal pose and view control. We begin by training a model to create a controllable and high-fidelity digital replica of the real actor. Next, we personalize a pretrained generative diffusion model by fine-tuning it on various frames of the real character captured from different camera angles, ensuring the digital representation faithfully captures the dynamics and movements of the real person. This two-stage process lays the foundation for our approach to dynamic human avatar editing. Utilizing this personalized diffusion model, we modify the dynamic avatar based on a provided text prompt using our Personalized Normal Aligned Score Distillation Sampling (PNA-SDS) within a model-based guidance framework. Additionally, we propose a time step annealing strategy to ensure high-quality edits. Our results demonstrate a clear improvement over prior work in functionality and visual quality.
Fast Controlled Generation from Language Models with Adaptive Weighted Rejection Sampling
The dominant approach to generating from language models subject to some constraint is locally constrained decoding (LCD), incrementally sampling tokens at each time step such that the constraint is never violated. Typically, this is achieved through token masking: looping over the vocabulary and excluding non-conforming tokens. There are two important problems with this approach. (i) Evaluating the constraint on every token can be prohibitively expensive -- LM vocabularies often exceed 100,000 tokens. (ii) LCD can distort the global distribution over strings, sampling tokens based only on local information, even if they lead down dead-end paths. This work introduces a new algorithm that addresses both these problems. First, to avoid evaluating a constraint on the full vocabulary at each step of generation, we propose an adaptive rejection sampling algorithm that typically requires orders of magnitude fewer constraint evaluations. Second, we show how this algorithm can be extended to produce low-variance, unbiased estimates of importance weights at a very small additional cost -- estimates that can be soundly used within previously proposed sequential Monte Carlo algorithms to correct for the myopic behavior of local constraint enforcement. Through extensive empirical evaluation in text-to-SQL, molecular synthesis, goal inference, pattern matching, and JSON domains, we show that our approach is superior to state-of-the-art baselines, supporting a broader class of constraints and improving both runtime and performance. Additional theoretical and empirical analyses show that our method's runtime efficiency is driven by its dynamic use of computation, scaling with the divergence between the unconstrained and constrained LM, and as a consequence, runtime improvements are greater for better models.
4D-fy: Text-to-4D Generation Using Hybrid Score Distillation Sampling
Recent breakthroughs in text-to-4D generation rely on pre-trained text-to-image and text-to-video models to generate dynamic 3D scenes. However, current text-to-4D methods face a three-way tradeoff between the quality of scene appearance, 3D structure, and motion. For example, text-to-image models and their 3D-aware variants are trained on internet-scale image datasets and can be used to produce scenes with realistic appearance and 3D structure -- but no motion. Text-to-video models are trained on relatively smaller video datasets and can produce scenes with motion, but poorer appearance and 3D structure. While these models have complementary strengths, they also have opposing weaknesses, making it difficult to combine them in a way that alleviates this three-way tradeoff. Here, we introduce hybrid score distillation sampling, an alternating optimization procedure that blends supervision signals from multiple pre-trained diffusion models and incorporates benefits of each for high-fidelity text-to-4D generation. Using hybrid SDS, we demonstrate synthesis of 4D scenes with compelling appearance, 3D structure, and motion.
Improving Generalization in Intent Detection: GRPO with Reward-Based Curriculum Sampling
Intent detection, a critical component in task-oriented dialogue (TOD) systems, faces significant challenges in adapting to the rapid influx of integrable tools with complex interrelationships. Existing approaches, such as zero-shot reformulations and LLM-based dynamic recognition, struggle with performance degradation when encountering unseen intents, leading to erroneous task routing. To enhance the model's generalization performance on unseen tasks, we employ Reinforcement Learning (RL) combined with a Reward-based Curriculum Sampling (RCS) during Group Relative Policy Optimization (GRPO) training in intent detection tasks. Experiments demonstrate that RL-trained models substantially outperform supervised fine-tuning (SFT) baselines in generalization. Besides, the introduction of the RCS, significantly bolsters the effectiveness of RL in intent detection by focusing the model on challenging cases during training. Moreover, incorporating Chain-of-Thought (COT) processes in RL notably improves generalization in complex intent detection tasks, underscoring the importance of thought in challenging scenarios. This work advances the generalization of intent detection tasks, offering practical insights for deploying adaptable dialogue systems.
CoDynTrust: Robust Asynchronous Collaborative Perception via Dynamic Feature Trust Modulus
Collaborative perception, fusing information from multiple agents, can extend perception range so as to improve perception performance. However, temporal asynchrony in real-world environments, caused by communication delays, clock misalignment, or sampling configuration differences, can lead to information mismatches. If this is not well handled, then the collaborative performance is patchy, and what's worse safety accidents may occur. To tackle this challenge, we propose CoDynTrust, an uncertainty-encoded asynchronous fusion perception framework that is robust to the information mismatches caused by temporal asynchrony. CoDynTrust generates dynamic feature trust modulus (DFTM) for each region of interest by modeling aleatoric and epistemic uncertainty as well as selectively suppressing or retaining single-vehicle features, thereby mitigating information mismatches. We then design a multi-scale fusion module to handle multi-scale feature maps processed by DFTM. Compared to existing works that also consider asynchronous collaborative perception, CoDynTrust combats various low-quality information in temporally asynchronous scenarios and allows uncertainty to be propagated to downstream tasks such as planning and control. Experimental results demonstrate that CoDynTrust significantly reduces performance degradation caused by temporal asynchrony across multiple datasets, achieving state-of-the-art detection performance even with temporal asynchrony. The code is available at https://github.com/CrazyShout/CoDynTrust.
Tuning-Free Multi-Event Long Video Generation via Synchronized Coupled Sampling
While recent advancements in text-to-video diffusion models enable high-quality short video generation from a single prompt, generating real-world long videos in a single pass remains challenging due to limited data and high computational costs. To address this, several works propose tuning-free approaches, i.e., extending existing models for long video generation, specifically using multiple prompts to allow for dynamic and controlled content changes. However, these methods primarily focus on ensuring smooth transitions between adjacent frames, often leading to content drift and a gradual loss of semantic coherence over longer sequences. To tackle such an issue, we propose Synchronized Coupled Sampling (SynCoS), a novel inference framework that synchronizes denoising paths across the entire video, ensuring long-range consistency across both adjacent and distant frames. Our approach combines two complementary sampling strategies: reverse and optimization-based sampling, which ensure seamless local transitions and enforce global coherence, respectively. However, directly alternating between these samplings misaligns denoising trajectories, disrupting prompt guidance and introducing unintended content changes as they operate independently. To resolve this, SynCoS synchronizes them through a grounded timestep and a fixed baseline noise, ensuring fully coupled sampling with aligned denoising paths. Extensive experiments show that SynCoS significantly improves multi-event long video generation, achieving smoother transitions and superior long-range coherence, outperforming previous approaches both quantitatively and qualitatively.
MoDeST: Bridging the Gap between Federated and Decentralized Learning with Decentralized Sampling
Federated and decentralized machine learning leverage end-user devices for privacy-preserving training of models at lower operating costs than within a data center. In a round of Federated Learning (FL), a random sample of participants trains locally, then a central server aggregates the local models to produce a single model for the next round. In a round of Decentralized Learning (DL), all participants train locally and then aggregate with their immediate neighbors, resulting in many local models with residual variance between them. On the one hand, FL's sampling and lower model variance provides lower communication costs and faster convergence. On the other hand, DL removes the need for a central server and distributes the communication costs more evenly amongst nodes, albeit at a larger total communication cost and slower convergence. In this paper, we present MoDeST: Mostly-Consistent Decentralized Sampling Training. MoDeST implements decentralized sampling in which a random subset of nodes is responsible for training and aggregation every round: this provides the benefits of both FL and DL without their traditional drawbacks. Our evaluation of MoDeST on four common learning tasks: (i) confirms convergence as fast as FL, (ii) shows a 3x-14x reduction in communication costs compared to DL, and (iii) demonstrates that MoDeST quickly adapts to nodes joining, leaving, or failing, even when 80% of all nodes become unresponsive.
Review, Refine, Repeat: Understanding Iterative Decoding of AI Agents with Dynamic Evaluation and Selection
While AI agents have shown remarkable performance at various tasks, they still struggle with complex multi-modal applications, structured generation and strategic planning. Improvements via standard fine-tuning is often impractical, as solving agentic tasks usually relies on black box API access without control over model parameters. Inference-time methods such as Best-of-N (BON) sampling offer a simple yet effective alternative to improve performance. However, BON lacks iterative feedback integration mechanism. Hence, we propose Iterative Agent Decoding (IAD) which combines iterative refinement with dynamic candidate evaluation and selection guided by a verifier. IAD differs in how feedback is designed and integrated, specifically optimized to extract maximal signal from reward scores. We conduct a detailed comparison of baselines across key metrics on Sketch2Code, Text2SQL, and Webshop where IAD consistently outperforms baselines, achieving 3--6% absolute gains on Sketch2Code and Text2SQL (with and without LLM judges) and 8--10% gains on Webshop across multiple metrics. To better understand the source of IAD's gains, we perform controlled experiments to disentangle the effect of adaptive feedback from stochastic sampling, and find that IAD's improvements are primarily driven by verifier-guided refinement, not merely sampling diversity. We also show that both IAD and BON exhibit inference-time scaling with increased compute when guided by an optimal verifier. Our analysis highlights the critical role of verifier quality in effective inference-time optimization and examines the impact of noisy and sparse rewards on scaling behavior. Together, these findings offer key insights into the trade-offs and principles of effective inference-time optimization.
A Deep Reinforcement Learning Framework for Dynamic Portfolio Optimization: Evidence from China's Stock Market
Artificial intelligence is transforming financial investment decision-making frameworks, with deep reinforcement learning demonstrating substantial potential in robo-advisory applications. This paper addresses the limitations of traditional portfolio optimization methods in dynamic asset weight adjustment through the development of a deep reinforcement learning-based dynamic optimization model grounded in practical trading processes. The research advances two key innovations: first, the introduction of a novel Sharpe ratio reward function engineered for Actor-Critic deep reinforcement learning algorithms, which ensures stable convergence during training while consistently achieving positive average Sharpe ratios; second, the development of an innovative comprehensive approach to portfolio optimization utilizing deep reinforcement learning, which significantly enhances model optimization capability through the integration of random sampling strategies during training with image-based deep neural network architectures for multi-dimensional financial time series data processing, average Sharpe ratio reward functions, and deep reinforcement learning algorithms. The empirical analysis validates the model using randomly selected constituent stocks from the CSI 300 Index, benchmarking against established financial econometric optimization models. Backtesting results demonstrate the model's efficacy in optimizing portfolio allocation and mitigating investment risk, yielding superior comprehensive performance metrics.
DLP-LoRA: Efficient Task-Specific LoRA Fusion with a Dynamic, Lightweight Plugin for Large Language Models
Recent advancements in Large Language Models (LLMs) have achieved robust performance across diverse tasks, but fine-tuning these models for specific domains remains resource-intensive. Parameter-Efficient Fine-Tuning (PEFT) methods like Low-Rank Adaptation (LoRA) address this challenge by fine-tuning a small subset of parameters. However, existing methods for fusing multiple LoRAs lack dynamic fusion based on contextual inputs and often increase inference time due to token-level operations. We propose DLP-LoRA, a Dynamic Lightweight Plugin that employs a mini-MLP module with only 5M parameters to dynamically fuse multiple LoRAs at the sentence level using top-p sampling strategies. This approach reduces inference time to less than twice that of single LoRA inference by leveraging parallel computation. Evaluations across 26 tasks-including multiple-choice questions and question answering-demonstrate that DLP-LoRA achieves an average accuracy of 92.34% on multiple-choice datasets and significant improvements in BLEU and ROUGE scores on QA datasets, outperforming different LLMs backbones under composite task settings. DLP-LoRA effectively balances performance and efficiency, making it a practical solution for dynamic multi-task adaptation in LLMs. Our code is available at https://github.com/MeCuping/DLP-LoRA.
HyperReel: High-Fidelity 6-DoF Video with Ray-Conditioned Sampling
Volumetric scene representations enable photorealistic view synthesis for static scenes and form the basis of several existing 6-DoF video techniques. However, the volume rendering procedures that drive these representations necessitate careful trade-offs in terms of quality, rendering speed, and memory efficiency. In particular, existing methods fail to simultaneously achieve real-time performance, small memory footprint, and high-quality rendering for challenging real-world scenes. To address these issues, we present HyperReel -- a novel 6-DoF video representation. The two core components of HyperReel are: (1) a ray-conditioned sample prediction network that enables high-fidelity, high frame rate rendering at high resolutions and (2) a compact and memory-efficient dynamic volume representation. Our 6-DoF video pipeline achieves the best performance compared to prior and contemporary approaches in terms of visual quality with small memory requirements, while also rendering at up to 18 frames-per-second at megapixel resolution without any custom CUDA code.
Unleashing the Potential of Multi-modal Foundation Models and Video Diffusion for 4D Dynamic Physical Scene Simulation
Realistic simulation of dynamic scenes requires accurately capturing diverse material properties and modeling complex object interactions grounded in physical principles. However, existing methods are constrained to basic material types with limited predictable parameters, making them insufficient to represent the complexity of real-world materials. We introduce a novel approach that leverages multi-modal foundation models and video diffusion to achieve enhanced 4D dynamic scene simulation. Our method utilizes multi-modal models to identify material types and initialize material parameters through image queries, while simultaneously inferring 3D Gaussian splats for detailed scene representation. We further refine these material parameters using video diffusion with a differentiable Material Point Method (MPM) and optical flow guidance rather than render loss or Score Distillation Sampling (SDS) loss. This integrated framework enables accurate prediction and realistic simulation of dynamic interactions in real-world scenarios, advancing both accuracy and flexibility in physics-based simulations.
Estimating Conditional Mutual Information for Dynamic Feature Selection
Dynamic feature selection, where we sequentially query features to make accurate predictions with a minimal budget, is a promising paradigm to reduce feature acquisition costs and provide transparency into a model's predictions. The problem is challenging, however, as it requires both predicting with arbitrary feature sets and learning a policy to identify valuable selections. Here, we take an information-theoretic perspective and prioritize features based on their mutual information with the response variable. The main challenge is implementing this policy, and we design a new approach that estimates the mutual information in a discriminative rather than generative fashion. Building on our approach, we then introduce several further improvements: allowing variable feature budgets across samples, enabling non-uniform feature costs, incorporating prior information, and exploring modern architectures to handle partial inputs. Our experiments show that our method provides consistent gains over recent methods across a variety of datasets.
Priority Sampling of Large Language Models for Compilers
Large language models show great potential in generating and optimizing code. Widely used sampling methods such as Nucleus Sampling increase the diversity of generation but often produce repeated samples for low temperatures and incoherent samples for high temperatures. Furthermore, the temperature coefficient has to be tuned for each task, limiting its usability. We present Priority Sampling, a simple and deterministic sampling technique that produces unique samples ordered by the model's confidence. Each new sample expands the unexpanded token with the highest probability in the augmented search tree. Additionally, Priority Sampling supports generation based on regular expression that provides a controllable and structured exploration process. Priority Sampling outperforms Nucleus Sampling for any number of samples, boosting the performance of the original model from 2.87% to 5% improvement over -Oz. Moreover, it outperforms the autotuner used for the generation of labels for the training of the original model in just 30 samples.
Sampling Through the Lens of Sequential Decision Making
Sampling is ubiquitous in machine learning methodologies. Due to the growth of large datasets and model complexity, we want to learn and adapt the sampling process while training a representation. Towards achieving this grand goal, a variety of sampling techniques have been proposed. However, most of them either use a fixed sampling scheme or adjust the sampling scheme based on simple heuristics. They cannot choose the best sample for model training in different stages. Inspired by "Think, Fast and Slow" (System 1 and System 2) in cognitive science, we propose a reward-guided sampling strategy called Adaptive Sample with Reward (ASR) to tackle this challenge. To the best of our knowledge, this is the first work utilizing reinforcement learning (RL) to address the sampling problem in representation learning. Our approach optimally adjusts the sampling process to achieve optimal performance. We explore geographical relationships among samples by distance-based sampling to maximize overall cumulative reward. We apply ASR to the long-standing sampling problems in similarity-based loss functions. Empirical results in information retrieval and clustering demonstrate ASR's superb performance across different datasets. We also discuss an engrossing phenomenon which we name as "ASR gravity well" in experiments.
True Zero-Shot Inference of Dynamical Systems Preserving Long-Term Statistics
Complex, temporally evolving phenomena, from climate to brain activity, are governed by dynamical systems (DS). DS reconstruction (DSR) seeks to infer generative surrogate models of these from observed data, reproducing their long-term behavior. Existing DSR approaches require purpose-training for any new system observed, lacking the zero-shot and in-context inference capabilities known from LLMs. Here we introduce DynaMix, a novel multivariate ALRNN-based mixture-of-experts architecture pre-trained for DSR, the first DSR model able to generalize zero-shot to out-of-domain DS. Just from a provided context signal, without any re-training, DynaMix faithfully forecasts the long-term evolution of novel DS where existing time series (TS) foundation models, like Chronos, fail -- at a fraction of the number of parameters and orders of magnitude faster inference times. DynaMix outperforms TS foundation models in terms of long-term statistics, and often also short-term forecasts, even on real-world time series, like traffic or weather data, typically used for training and evaluating TS models, but not at all part of DynaMix' training corpus. We illustrate some of the failure modes of TS models for DSR problems, and conclude that models built on DS principles may bear a huge potential also for advancing the TS prediction field.
OCD: Learning to Overfit with Conditional Diffusion Models
We present a dynamic model in which the weights are conditioned on an input sample x and are learned to match those that would be obtained by finetuning a base model on x and its label y. This mapping between an input sample and network weights is approximated by a denoising diffusion model. The diffusion model we employ focuses on modifying a single layer of the base model and is conditioned on the input, activations, and output of this layer. Since the diffusion model is stochastic in nature, multiple initializations generate different networks, forming an ensemble, which leads to further improvements. Our experiments demonstrate the wide applicability of the method for image classification, 3D reconstruction, tabular data, speech separation, and natural language processing. Our code is available at https://github.com/ShaharLutatiPersonal/OCD
Learning the Dynamics of Sparsely Observed Interacting Systems
We address the problem of learning the dynamics of an unknown non-parametric system linking a target and a feature time series. The feature time series is measured on a sparse and irregular grid, while we have access to only a few points of the target time series. Once learned, we can use these dynamics to predict values of the target from the previous values of the feature time series. We frame this task as learning the solution map of a controlled differential equation (CDE). By leveraging the rich theory of signatures, we are able to cast this non-linear problem as a high-dimensional linear regression. We provide an oracle bound on the prediction error which exhibits explicit dependencies on the individual-specific sampling schemes. Our theoretical results are illustrated by simulations which show that our method outperforms existing algorithms for recovering the full time series while being computationally cheap. We conclude by demonstrating its potential on real-world epidemiological data.
Self-Guided Generation of Minority Samples Using Diffusion Models
We present a novel approach for generating minority samples that live on low-density regions of a data manifold. Our framework is built upon diffusion models, leveraging the principle of guided sampling that incorporates an arbitrary energy-based guidance during inference time. The key defining feature of our sampler lies in its self-contained nature, \ie, implementable solely with a pretrained model. This distinguishes our sampler from existing techniques that require expensive additional components (like external classifiers) for minority generation. Specifically, we first estimate the likelihood of features within an intermediate latent sample by evaluating a reconstruction loss w.r.t. its posterior mean. The generation then proceeds with the minimization of the estimated likelihood, thereby encouraging the emergence of minority features in the latent samples of subsequent timesteps. To further improve the performance of our sampler, we provide several time-scheduling techniques that properly manage the influence of guidance over inference steps. Experiments on benchmark real datasets demonstrate that our approach can greatly improve the capability of creating realistic low-likelihood minority instances over the existing techniques without the reliance on costly additional elements. Code is available at https://github.com/soobin-um/sg-minority.
The Curious Case of Neural Text Degeneration
Despite considerable advancements with deep neural language models, the enigma of neural text degeneration persists when these models are tested as text generators. The counter-intuitive empirical observation is that even though the use of likelihood as training objective leads to high quality models for a broad range of language understanding tasks, using likelihood as a decoding objective leads to text that is bland and strangely repetitive. In this paper, we reveal surprising distributional differences between human text and machine text. In addition, we find that decoding strategies alone can dramatically effect the quality of machine text, even when generated from exactly the same neural language model. Our findings motivate Nucleus Sampling, a simple but effective method to draw the best out of neural generation. By sampling text from the dynamic nucleus of the probability distribution, which allows for diversity while effectively truncating the less reliable tail of the distribution, the resulting text better demonstrates the quality of human text, yielding enhanced diversity without sacrificing fluency and coherence.
Leveraging Training Data in Few-Shot Prompting for Numerical Reasoning
Chain-of-thought (CoT) prompting with large language models has proven effective in numerous natural language processing tasks, but designing prompts that generalize well to diverse problem types can be challenging, especially in the context of math word problem (MWP) solving. Additionally, it is common to have a large amount of training data that have a better diversity coverage but CoT annotations are not available, which limits the use of supervised learning techniques. To address these issues, we investigate two approaches to leverage the training data in a few-shot prompting scenario: dynamic program prompting and program distillation. Our approach is largely inspired by Gao et al., (2022), where they proposed to replace the CoT with the programs as the intermediate reasoning step. Such a prompting strategy allows us to accurately verify the answer correctness through program execution in MWP solving. Our dynamic program prompting involves annotating the training data by sampling correct programs from a large language model, while program distillation involves adapting a smaller model to the program-annotated training data. Our experiments on three standard MWP datasets demonstrate the effectiveness of these approaches, yielding significant improvements over previous baselines for prompting and fine-tuning. Our results suggest that leveraging a large amount of training data can improve the generalization ability of prompts and boost the performance of fine-tuned small models in MWP solving.
SC4D: Sparse-Controlled Video-to-4D Generation and Motion Transfer
Recent advances in 2D/3D generative models enable the generation of dynamic 3D objects from a single-view video. Existing approaches utilize score distillation sampling to form the dynamic scene as dynamic NeRF or dense 3D Gaussians. However, these methods struggle to strike a balance among reference view alignment, spatio-temporal consistency, and motion fidelity under single-view conditions due to the implicit nature of NeRF or the intricate dense Gaussian motion prediction. To address these issues, this paper proposes an efficient, sparse-controlled video-to-4D framework named SC4D, that decouples motion and appearance to achieve superior video-to-4D generation. Moreover, we introduce Adaptive Gaussian (AG) initialization and Gaussian Alignment (GA) loss to mitigate shape degeneration issue, ensuring the fidelity of the learned motion and shape. Comprehensive experimental results demonstrate that our method surpasses existing methods in both quality and efficiency. In addition, facilitated by the disentangled modeling of motion and appearance of SC4D, we devise a novel application that seamlessly transfers the learned motion onto a diverse array of 4D entities according to textual descriptions.
Quantum-Inspired Machine Learning for Molecular Docking
Molecular docking is an important tool for structure-based drug design, accelerating the efficiency of drug development. Complex and dynamic binding processes between proteins and small molecules require searching and sampling over a wide spatial range. Traditional docking by searching for possible binding sites and conformations is computationally complex and results poorly under blind docking. Quantum-inspired algorithms combining quantum properties and annealing show great advantages in solving combinatorial optimization problems. Inspired by this, we achieve an improved in blind docking by using quantum-inspired combined with gradients learned by deep learning in the encoded molecular space. Numerical simulation shows that our method outperforms traditional docking algorithms and deep learning-based algorithms over 10\%. Compared to the current state-of-the-art deep learning-based docking algorithm DiffDock, the success rate of Top-1 (RMSD<2) achieves an improvement from 33\% to 35\% in our same setup. In particular, a 6\% improvement is realized in the high-precision region(RMSD<1) on molecules data unseen in DiffDock, which demonstrates the well-generalized of our method.
Let it Calm: Exploratory Annealed Decoding for Verifiable Reinforcement Learning
Reinforcement learning with verifiable rewards (RLVR) is a powerful paradigm for enhancing the reasoning capabilities of large language models (LLMs), yet its success hinges on effective exploration. An ideal exploration strategy must navigate two fundamental challenges: it must preserve sample quality while also ensuring training stability. While standard fixed-temperature sampling is simple, it struggles to balance these competing demands, as high temperatures degrade sample quality and low temperatures limit discovery. In this work, we propose a simpler and more effective strategy, Exploratory Annealed Decoding (EAD), grounded in the insight that exploration is most impactful on early tokens which define a sequence's semantic direction. EAD implements an intuitive **explore-at-the-beginning, exploit-at-the-end** strategy by annealing the sampling temperature from high to low during generation. This dynamic schedule encourages meaningful, high-level diversity at the start, then gradually lowers the temperature to preserve sample quality and keep the sampling distribution close to the target policy, which is essential for stable training. We demonstrate that EAD is a lightweight, plug-and-play method that significantly improves sample efficiency, consistently outperforming fixed-temperature sampling across various RLVR algorithms and model sizes. Our work suggests that aligning exploration with the natural dynamics of sequential generation offers a robust path to improving LLM reasoning.
Video2Roleplay: A Multimodal Dataset and Framework for Video-Guided Role-playing Agents
Role-playing agents (RPAs) have attracted growing interest for their ability to simulate immersive and interactive characters. However, existing approaches primarily focus on static role profiles, overlooking the dynamic perceptual abilities inherent to humans. To bridge this gap, we introduce the concept of dynamic role profiles by incorporating video modality into RPAs. To support this, we construct Role-playing-Video60k, a large-scale, high-quality dataset comprising 60k videos and 700k corresponding dialogues. Based on this dataset, we develop a comprehensive RPA framework that combines adaptive temporal sampling with both dynamic and static role profile representations. Specifically, the dynamic profile is created by adaptively sampling video frames and feeding them to the LLM in temporal order, while the static profile consists of (1) character dialogues from training videos during fine-tuning, and (2) a summary context from the input video during inference. This joint integration enables RPAs to generate greater responses. Furthermore, we propose a robust evaluation method covering eight metrics. Experimental results demonstrate the effectiveness of our framework, highlighting the importance of dynamic role profiles in developing RPAs.
CM-TTS: Enhancing Real Time Text-to-Speech Synthesis Efficiency through Weighted Samplers and Consistency Models
Neural Text-to-Speech (TTS) systems find broad applications in voice assistants, e-learning, and audiobook creation. The pursuit of modern models, like Diffusion Models (DMs), holds promise for achieving high-fidelity, real-time speech synthesis. Yet, the efficiency of multi-step sampling in Diffusion Models presents challenges. Efforts have been made to integrate GANs with DMs, speeding up inference by approximating denoising distributions, but this introduces issues with model convergence due to adversarial training. To overcome this, we introduce CM-TTS, a novel architecture grounded in consistency models (CMs). Drawing inspiration from continuous-time diffusion models, CM-TTS achieves top-quality speech synthesis in fewer steps without adversarial training or pre-trained model dependencies. We further design weighted samplers to incorporate different sampling positions into model training with dynamic probabilities, ensuring unbiased learning throughout the entire training process. We present a real-time mel-spectrogram generation consistency model, validated through comprehensive evaluations. Experimental results underscore CM-TTS's superiority over existing single-step speech synthesis systems, representing a significant advancement in the field.
Vid2Avatar: 3D Avatar Reconstruction from Videos in the Wild via Self-supervised Scene Decomposition
We present Vid2Avatar, a method to learn human avatars from monocular in-the-wild videos. Reconstructing humans that move naturally from monocular in-the-wild videos is difficult. Solving it requires accurately separating humans from arbitrary backgrounds. Moreover, it requires reconstructing detailed 3D surface from short video sequences, making it even more challenging. Despite these challenges, our method does not require any groundtruth supervision or priors extracted from large datasets of clothed human scans, nor do we rely on any external segmentation modules. Instead, it solves the tasks of scene decomposition and surface reconstruction directly in 3D by modeling both the human and the background in the scene jointly, parameterized via two separate neural fields. Specifically, we define a temporally consistent human representation in canonical space and formulate a global optimization over the background model, the canonical human shape and texture, and per-frame human pose parameters. A coarse-to-fine sampling strategy for volume rendering and novel objectives are introduced for a clean separation of dynamic human and static background, yielding detailed and robust 3D human geometry reconstructions. We evaluate our methods on publicly available datasets and show improvements over prior art.
BECLR: Batch Enhanced Contrastive Few-Shot Learning
Learning quickly from very few labeled samples is a fundamental attribute that separates machines and humans in the era of deep representation learning. Unsupervised few-shot learning (U-FSL) aspires to bridge this gap by discarding the reliance on annotations at training time. Intrigued by the success of contrastive learning approaches in the realm of U-FSL, we structurally approach their shortcomings in both pretraining and downstream inference stages. We propose a novel Dynamic Clustered mEmory (DyCE) module to promote a highly separable latent representation space for enhancing positive sampling at the pretraining phase and infusing implicit class-level insights into unsupervised contrastive learning. We then tackle the, somehow overlooked yet critical, issue of sample bias at the few-shot inference stage. We propose an iterative Optimal Transport-based distribution Alignment (OpTA) strategy and demonstrate that it efficiently addresses the problem, especially in low-shot scenarios where FSL approaches suffer the most from sample bias. We later on discuss that DyCE and OpTA are two intertwined pieces of a novel end-to-end approach (we coin as BECLR), constructively magnifying each other's impact. We then present a suite of extensive quantitative and qualitative experimentation to corroborate that BECLR sets a new state-of-the-art across ALL existing U-FSL benchmarks (to the best of our knowledge), and significantly outperforms the best of the current baselines (codebase available at: https://github.com/stypoumic/BECLR).
Optimizing Dense Retrieval Model Training with Hard Negatives
Ranking has always been one of the top concerns in information retrieval researches. For decades, the lexical matching signal has dominated the ad-hoc retrieval process, but solely using this signal in retrieval may cause the vocabulary mismatch problem. In recent years, with the development of representation learning techniques, many researchers turn to Dense Retrieval (DR) models for better ranking performance. Although several existing DR models have already obtained promising results, their performance improvement heavily relies on the sampling of training examples. Many effective sampling strategies are not efficient enough for practical usage, and for most of them, there still lacks theoretical analysis in how and why performance improvement happens. To shed light on these research questions, we theoretically investigate different training strategies for DR models and try to explain why hard negative sampling performs better than random sampling. Through the analysis, we also find that there are many potential risks in static hard negative sampling, which is employed by many existing training methods. Therefore, we propose two training strategies named a Stable Training Algorithm for dense Retrieval (STAR) and a query-side training Algorithm for Directly Optimizing Ranking pErformance (ADORE), respectively. STAR improves the stability of DR training process by introducing random negatives. ADORE replaces the widely-adopted static hard negative sampling method with a dynamic one to directly optimize the ranking performance. Experimental results on two publicly available retrieval benchmark datasets show that either strategy gains significant improvements over existing competitive baselines and a combination of them leads to the best performance.
Agentic Entropy-Balanced Policy Optimization
Recently, Agentic Reinforcement Learning (Agentic RL) has made significant progress in incentivizing the multi-turn, long-horizon tool-use capabilities of web agents. While mainstream agentic RL algorithms autonomously explore high-uncertainty tool-call steps under the guidance of entropy, excessive reliance on entropy signals can impose further constraints, leading to the training collapse. In this paper, we delve into the challenges caused by entropy and propose the Agentic Entropy-Balanced Policy Optimization (AEPO), an agentic RL algorithm designed to balance entropy in both the rollout and policy update phases. AEPO comprises two core components: (1) a dynamic entropy-balanced rollout mechanism that adaptively allocate global and branch sampling budget through entropy pre-monitoring, while imposing a branch penalty on consecutive high-entropy tool-call steps to prevent over-branching issues; and (2) Entropy-Balanced Policy Optimization that inserts a stop-gradient operation into the high-entropy clipping term to preserve and properly rescale gradients on high-entropy tokens, while incorporating entropy-aware advantage estimation to prioritize learning on high-uncertainty tokens. Results across 14 challenging datasets show that AEPO consistently outperforms 7 mainstream RL algorithms. With just 1K RL samples, Qwen3-14B with AEPO achieves impressive results: 47.6% on GAIA, 11.2% on Humanity's Last Exam, and 43.0% on WebWalker for Pass@1; 65.0% on GAIA, 26.0% on Humanity's Last Exam, and 70.0% on WebWalker for Pass@5. Further analysis reveals that AEPO improves rollout sampling diversity while maintaining stable policy entropy, facilitating scalable web agent training.
Generative Image Dynamics
We present an approach to modeling an image-space prior on scene dynamics. Our prior is learned from a collection of motion trajectories extracted from real video sequences containing natural, oscillating motion such as trees, flowers, candles, and clothes blowing in the wind. Given a single image, our trained model uses a frequency-coordinated diffusion sampling process to predict a per-pixel long-term motion representation in the Fourier domain, which we call a neural stochastic motion texture. This representation can be converted into dense motion trajectories that span an entire video. Along with an image-based rendering module, these trajectories can be used for a number of downstream applications, such as turning still images into seamlessly looping dynamic videos, or allowing users to realistically interact with objects in real pictures.
Free from Bellman Completeness: Trajectory Stitching via Model-based Return-conditioned Supervised Learning
Off-policy dynamic programming (DP) techniques such as Q-learning have proven to be important in sequential decision-making problems. In the presence of function approximation, however, these techniques often diverge due to the absence of Bellman completeness in the function classes considered, a crucial condition for the success of DP-based methods. In this paper, we show how off-policy learning techniques based on return-conditioned supervised learning (RCSL) are able to circumvent these challenges of Bellman completeness, converging under significantly more relaxed assumptions inherited from supervised learning. We prove there exists a natural environment in which if one uses two-layer multilayer perceptron as the function approximator, the layer width needs to grow linearly with the state space size to satisfy Bellman completeness while a constant layer width is enough for RCSL. These findings take a step towards explaining the superior empirical performance of RCSL methods compared to DP-based methods in environments with near-optimal datasets. Furthermore, in order to learn from sub-optimal datasets, we propose a simple framework called MBRCSL, granting RCSL methods the ability of dynamic programming to stitch together segments from distinct trajectories. MBRCSL leverages learned dynamics models and forward sampling to accomplish trajectory stitching while avoiding the need for Bellman completeness that plagues all dynamic programming algorithms. We propose both theoretical analysis and experimental evaluation to back these claims, outperforming state-of-the-art model-free and model-based offline RL algorithms across several simulated robotics problems.
Learning to Upsample by Learning to Sample
We present DySample, an ultra-lightweight and effective dynamic upsampler. While impressive performance gains have been witnessed from recent kernel-based dynamic upsamplers such as CARAFE, FADE, and SAPA, they introduce much workload, mostly due to the time-consuming dynamic convolution and the additional sub-network used to generate dynamic kernels. Further, the need for high-res feature guidance of FADE and SAPA somehow limits their application scenarios. To address these concerns, we bypass dynamic convolution and formulate upsampling from the perspective of point sampling, which is more resource-efficient and can be easily implemented with the standard built-in function in PyTorch. We first showcase a naive design, and then demonstrate how to strengthen its upsampling behavior step by step towards our new upsampler, DySample. Compared with former kernel-based dynamic upsamplers, DySample requires no customized CUDA package and has much fewer parameters, FLOPs, GPU memory, and latency. Besides the light-weight characteristics, DySample outperforms other upsamplers across five dense prediction tasks, including semantic segmentation, object detection, instance segmentation, panoptic segmentation, and monocular depth estimation. Code is available at https://github.com/tiny-smart/dysample.
RT-DETRv2: Improved Baseline with Bag-of-Freebies for Real-Time Detection Transformer
In this report, we present RT-DETRv2, an improved Real-Time DEtection TRansformer (RT-DETR). RT-DETRv2 builds upon the previous state-of-the-art real-time detector, RT-DETR, and opens up a set of bag-of-freebies for flexibility and practicality, as well as optimizing the training strategy to achieve enhanced performance. To improve the flexibility, we suggest setting a distinct number of sampling points for features at different scales in the deformable attention to achieve selective multi-scale feature extraction by the decoder. To enhance practicality, we propose an optional discrete sampling operator to replace the grid_sample operator that is specific to RT-DETR compared to YOLOs. This removes the deployment constraints typically associated with DETRs. For the training strategy, we propose dynamic data augmentation and scale-adaptive hyperparameters customization to improve performance without loss of speed. Source code and pre-trained models will be available at https://github.com/lyuwenyu/RT-DETR.
CodeACT: Code Adaptive Compute-efficient Tuning Framework for Code LLMs
Large language models (LLMs) have shown great potential in code-related tasks, yet open-source models lag behind their closed-source counterparts. To bridge this performance gap, existing methods generate vast amounts of synthetic data for fine-tuning, leading to inefficiencies in training. Motivated by the need for more effective and efficient training, we propose the Code Adaptive Compute-efficient Tuning (CodeACT) framework. CodeACT introduces the Complexity and Diversity Aware Sampling (CDAS) method to select high-quality training data based on complexity and diversity, and the Dynamic Pack padding strategy to reduce computational resource usage by minimizing padding tokens during training. Experimental results demonstrate that CodeACT-DeepSeek-Coder-6.7B, fine-tuned on only 40% of the EVOL-Instruct data, achieves an 8.6% performance increase on HumanEval, reduces training time by 78%, and decreases peak GPU memory usage by 27%. These findings underscore CodeACT's ability to enhance the performance and efficiency of open-source models. By optimizing both the data selection and training processes, CodeACT offers a comprehensive approach to improving the capabilities of open-source LLMs while significantly reducing computational requirements, addressing the dual challenges of data quality and training efficiency, and paving the way for more resource-efficient and performant models.
ProARD: progressive adversarial robustness distillation: provide wide range of robust students
Adversarial Robustness Distillation (ARD) has emerged as an effective method to enhance the robustness of lightweight deep neural networks against adversarial attacks. Current ARD approaches have leveraged a large robust teacher network to train one robust lightweight student. However, due to the diverse range of edge devices and resource constraints, current approaches require training a new student network from scratch to meet specific constraints, leading to substantial computational costs and increased CO2 emissions. This paper proposes Progressive Adversarial Robustness Distillation (ProARD), enabling the efficient one-time training of a dynamic network that supports a diverse range of accurate and robust student networks without requiring retraining. We first make a dynamic deep neural network based on dynamic layers by encompassing variations in width, depth, and expansion in each design stage to support a wide range of architectures. Then, we consider the student network with the largest size as the dynamic teacher network. ProARD trains this dynamic network using a weight-sharing mechanism to jointly optimize the dynamic teacher network and its internal student networks. However, due to the high computational cost of calculating exact gradients for all the students within the dynamic network, a sampling mechanism is required to select a subset of students. We show that random student sampling in each iteration fails to produce accurate and robust students.
Divide and Conquer Dynamic Programming: An Almost Linear Time Change Point Detection Methodology in High Dimensions
We develop a novel, general and computationally efficient framework, called Divide and Conquer Dynamic Programming (DCDP), for localizing change points in time series data with high-dimensional features. DCDP deploys a class of greedy algorithms that are applicable to a broad variety of high-dimensional statistical models and can enjoy almost linear computational complexity. We investigate the performance of DCDP in three commonly studied change point settings in high dimensions: the mean model, the Gaussian graphical model, and the linear regression model. In all three cases, we derive non-asymptotic bounds for the accuracy of the DCDP change point estimators. We demonstrate that the DCDP procedures consistently estimate the change points with sharp, and in some cases, optimal rates while incurring significantly smaller computational costs than the best available algorithms. Our findings are supported by extensive numerical experiments on both synthetic and real data.
PathFinder: Guided Search over Multi-Step Reasoning Paths
With recent advancements in large language models, methods like chain-of-thought prompting to elicit reasoning chains have been shown to improve results on reasoning tasks. However, tasks that require multiple steps of reasoning still pose significant challenges to state-of-the-art models. Drawing inspiration from the beam search algorithm, we propose PathFinder, a tree-search-based reasoning path generation approach. It enhances diverse branching and multi-hop reasoning through the integration of dynamic decoding, enabled by varying sampling methods and parameters. Using constrained reasoning, PathFinder integrates novel quality constraints, pruning, and exploration methods to enhance the efficiency and the quality of generation. Moreover, it includes scoring and ranking features to improve candidate selection. Our approach outperforms competitive baselines on three complex arithmetic and commonsense reasoning tasks by 6% on average. Our model generalizes well to longer, unseen reasoning chains, reflecting similar complexities to beam search with large branching factors.
σ-GPTs: A New Approach to Autoregressive Models
Autoregressive models, such as the GPT family, use a fixed order, usually left-to-right, to generate sequences. However, this is not a necessity. In this paper, we challenge this assumption and show that by simply adding a positional encoding for the output, this order can be modulated on-the-fly per-sample which offers key advantageous properties. It allows for the sampling of and conditioning on arbitrary subsets of tokens, and it also allows sampling in one shot multiple tokens dynamically according to a rejection strategy, leading to a sub-linear number of model evaluations. We evaluate our method across various domains, including language modeling, path-solving, and aircraft vertical rate prediction, decreasing the number of steps required for generation by an order of magnitude.
Emo-Avatar: Efficient Monocular Video Style Avatar through Texture Rendering
Artistic video portrait generation is a significant and sought-after task in the fields of computer graphics and vision. While various methods have been developed that integrate NeRFs or StyleGANs with instructional editing models for creating and editing drivable portraits, these approaches face several challenges. They often rely heavily on large datasets, require extensive customization processes, and frequently result in reduced image quality. To address the above problems, we propose the Efficient Monotonic Video Style Avatar (Emo-Avatar) through deferred neural rendering that enhances StyleGAN's capacity for producing dynamic, drivable portrait videos. We proposed a two-stage deferred neural rendering pipeline. In the first stage, we utilize few-shot PTI initialization to initialize the StyleGAN generator through several extreme poses sampled from the video to capture the consistent representation of aligned faces from the target portrait. In the second stage, we propose a Laplacian pyramid for high-frequency texture sampling from UV maps deformed by dynamic flow of expression for motion-aware texture prior integration to provide torso features to enhance StyleGAN's ability to generate complete and upper body for portrait video rendering. Emo-Avatar reduces style customization time from hours to merely 5 minutes compared with existing methods. In addition, Emo-Avatar requires only a single reference image for editing and employs region-aware contrastive learning with semantic invariant CLIP guidance, ensuring consistent high-resolution output and identity preservation. Through both quantitative and qualitative assessments, Emo-Avatar demonstrates superior performance over existing methods in terms of training efficiency, rendering quality and editability in self- and cross-reenactment.
SkillMimic-V2: Learning Robust and Generalizable Interaction Skills from Sparse and Noisy Demonstrations
We address a fundamental challenge in Reinforcement Learning from Interaction Demonstration (RLID): demonstration noise and coverage limitations. While existing data collection approaches provide valuable interaction demonstrations, they often yield sparse, disconnected, and noisy trajectories that fail to capture the full spectrum of possible skill variations and transitions. Our key insight is that despite noisy and sparse demonstrations, there exist infinite physically feasible trajectories that naturally bridge between demonstrated skills or emerge from their neighboring states, forming a continuous space of possible skill variations and transitions. Building upon this insight, we present two data augmentation techniques: a Stitched Trajectory Graph (STG) that discovers potential transitions between demonstration skills, and a State Transition Field (STF) that establishes unique connections for arbitrary states within the demonstration neighborhood. To enable effective RLID with augmented data, we develop an Adaptive Trajectory Sampling (ATS) strategy for dynamic curriculum generation and a historical encoding mechanism for memory-dependent skill learning. Our approach enables robust skill acquisition that significantly generalizes beyond the reference demonstrations. Extensive experiments across diverse interaction tasks demonstrate substantial improvements over state-of-the-art methods in terms of convergence stability, generalization capability, and recovery robustness.
4Diffusion: Multi-view Video Diffusion Model for 4D Generation
Current 4D generation methods have achieved noteworthy efficacy with the aid of advanced diffusion generative models. However, these methods lack multi-view spatial-temporal modeling and encounter challenges in integrating diverse prior knowledge from multiple diffusion models, resulting in inconsistent temporal appearance and flickers. In this paper, we propose a novel 4D generation pipeline, namely 4Diffusion aimed at generating spatial-temporally consistent 4D content from a monocular video. We first design a unified diffusion model tailored for multi-view video generation by incorporating a learnable motion module into a frozen 3D-aware diffusion model to capture multi-view spatial-temporal correlations. After training on a curated dataset, our diffusion model acquires reasonable temporal consistency and inherently preserves the generalizability and spatial consistency of the 3D-aware diffusion model. Subsequently, we propose 4D-aware Score Distillation Sampling loss, which is based on our multi-view video diffusion model, to optimize 4D representation parameterized by dynamic NeRF. This aims to eliminate discrepancies arising from multiple diffusion models, allowing for generating spatial-temporally consistent 4D content. Moreover, we devise an anchor loss to enhance the appearance details and facilitate the learning of dynamic NeRF. Extensive qualitative and quantitative experiments demonstrate that our method achieves superior performance compared to previous methods.
Birth and Death of a Rose
We study the problem of generating temporal object intrinsics -- temporally evolving sequences of object geometry, reflectance, and texture, such as a blooming rose -- from pre-trained 2D foundation models. Unlike conventional 3D modeling and animation techniques that require extensive manual effort and expertise, we introduce a method that generates such assets with signals distilled from pre-trained 2D diffusion models. To ensure the temporal consistency of object intrinsics, we propose Neural Templates for temporal-state-guided distillation, derived automatically from image features from self-supervised learning. Our method can generate high-quality temporal object intrinsics for several natural phenomena and enable the sampling and controllable rendering of these dynamic objects from any viewpoint, under any environmental lighting conditions, at any time of their lifespan. Project website: https://chen-geng.com/rose4d
Tool-R1: Sample-Efficient Reinforcement Learning for Agentic Tool Use
Large language models (LLMs) have demonstrated strong capabilities in language understanding and reasoning, yet they remain limited when tackling real-world tasks that require up-to-date knowledge, precise operations, or specialized tool use. To address this, we propose Tool-R1, a reinforcement learning framework that enables LLMs to perform general, compositional, and multi-step tool use by generating executable Python code. Tool-R1 supports integration of user-defined tools and standard libraries, with variable sharing across steps to construct coherent workflows. An outcome-based reward function, combining LLM-based answer judgment and code execution success, guides policy optimization. To improve training efficiency, we maintain a dynamic sample queue to cache and reuse high-quality trajectories, reducing the overhead of costly online sampling. Experiments on the GAIA benchmark show that Tool-R1 substantially improves both accuracy and robustness, achieving about 10\% gain over strong baselines, with larger improvements on complex multi-step tasks. These results highlight the potential of Tool-R1 for enabling reliable and efficient tool-augmented reasoning in real-world applications. Our code will be available at https://github.com/YBYBZhang/Tool-R1.
DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret
Dynamic treatment regimes (DTRs) are personalized, adaptive, multi-stage treatment plans that adapt treatment decisions both to an individual's initial features and to intermediate outcomes and features at each subsequent stage, which are affected by decisions in prior stages. Examples include personalized first- and second-line treatments of chronic conditions like diabetes, cancer, and depression, which adapt to patient response to first-line treatment, disease progression, and individual characteristics. While existing literature mostly focuses on estimating the optimal DTR from offline data such as from sequentially randomized trials, we study the problem of developing the optimal DTR in an online manner, where the interaction with each individual affect both our cumulative reward and our data collection for future learning. We term this the DTR bandit problem. We propose a novel algorithm that, by carefully balancing exploration and exploitation, is guaranteed to achieve rate-optimal regret when the transition and reward models are linear. We demonstrate our algorithm and its benefits both in synthetic experiments and in a case study of adaptive treatment of major depressive disorder using real-world data.
ShapeGen4D: Towards High Quality 4D Shape Generation from Videos
Video-conditioned 4D shape generation aims to recover time-varying 3D geometry and view-consistent appearance directly from an input video. In this work, we introduce a native video-to-4D shape generation framework that synthesizes a single dynamic 3D representation end-to-end from the video. Our framework introduces three key components based on large-scale pre-trained 3D models: (i) a temporal attention that conditions generation on all frames while producing a time-indexed dynamic representation; (ii) a time-aware point sampling and 4D latent anchoring that promote temporally consistent geometry and texture; and (iii) noise sharing across frames to enhance temporal stability. Our method accurately captures non-rigid motion, volume changes, and even topological transitions without per-frame optimization. Across diverse in-the-wild videos, our method improves robustness and perceptual fidelity and reduces failure modes compared with the baselines.
Scaling Generalist Data-Analytic Agents
Data-analytic agents are emerging as a key catalyst for automated scientific discovery and for the vision of Innovating AI. Current approaches, however, rely heavily on prompt engineering over proprietary models, while open-source models struggle to face diverse-format, large-scale data files and long-horizon, multi-step reasoning that real-world analytics demands. This paper introduces DataMind, a scalable data synthesis and agent training recipe designed to build generalist data-analytic agents. DataMind tackles three key challenges in building open-source data-analytic agents, including insufficient data resources, improper training strategy, and unstable code-based multi-turn rollout. Concretely, DataMind applies 1) a fine-grained task taxonomy and a recursive easy-to-hard task composition mechanism to increase the diversity and difficulty of synthesized queries; 2) a knowledge-augmented trajectory sampling strategy followed by model-based and rule-based filtering; 3) a dynamically adjustable training objective combining both SFT and RL losses; 4) a memory-frugal and stable code-based multi-turn rollout framework. Built on DataMind, we curate DataMind-12K, a high-quality trajectory set spanning diverse domains, task categories, and data file formats for data-analytic tasks. Trained on DataMind-12K, our DataMind-14B achieves state-of-the-art with an average score of 71.16% on multiple data analysis benchmarks, outperforming the strongest proprietary baselines DeepSeek-V3.1 and GPT-5. Our DataMind-7B also performs best among all open-source models with a score of 68.10%. We also incorporate some empirical insights gained from our exploratory trials into the analysis experiments, aiming to provide actionable insights about agentic training for the community. We will release DataMind-12K and DataMind-7B,14B for the community's future research.
NeuralSVG: An Implicit Representation for Text-to-Vector Generation
Vector graphics are essential in design, providing artists with a versatile medium for creating resolution-independent and highly editable visual content. Recent advancements in vision-language and diffusion models have fueled interest in text-to-vector graphics generation. However, existing approaches often suffer from over-parameterized outputs or treat the layered structure - a core feature of vector graphics - as a secondary goal, diminishing their practical use. Recognizing the importance of layered SVG representations, we propose NeuralSVG, an implicit neural representation for generating vector graphics from text prompts. Inspired by Neural Radiance Fields (NeRFs), NeuralSVG encodes the entire scene into the weights of a small MLP network, optimized using Score Distillation Sampling (SDS). To encourage a layered structure in the generated SVG, we introduce a dropout-based regularization technique that strengthens the standalone meaning of each shape. We additionally demonstrate that utilizing a neural representation provides an added benefit of inference-time control, enabling users to dynamically adapt the generated SVG based on user-provided inputs, all with a single learned representation. Through extensive qualitative and quantitative evaluations, we demonstrate that NeuralSVG outperforms existing methods in generating structured and flexible SVG.
MTVG : Multi-text Video Generation with Text-to-Video Models
Recently, video generation has attracted massive attention and yielded noticeable outcomes. Concerning the characteristics of video, multi-text conditioning incorporating sequential events is necessary for next-step video generation. In this work, we propose a novel multi-text video generation~(MTVG) by directly utilizing a pre-trained diffusion-based text-to-video~(T2V) generation model without additional fine-tuning. To generate consecutive video segments, visual consistency generated by distinct prompts is necessary with diverse variations, such as motion and content-related transitions. Our proposed MTVG includes Dynamic Noise and Last Frame Aware Inversion which reinitialize the noise latent to preserve visual coherence between videos of different prompts and prevent repetitive motion or contents. Furthermore, we present Structure Guiding Sampling to maintain the global appearance across the frames in a single video clip, where we leverage iterative latent updates across the preceding frame. Additionally, our Prompt Generator allows for arbitrary format of text conditions consisting of diverse events. As a result, our extensive experiments, including diverse transitions of descriptions, demonstrate that our proposed methods show superior generated outputs in terms of semantically coherent and temporally seamless video.Video examples are available in our project page: https://kuai-lab.github.io/mtvg-page.
UGround: Towards Unified Visual Grounding with Unrolled Transformers
We present UGround, a Unified visual Grounding paradigm that dynamically selects intermediate layers across Unrolled transformers as ``mask as prompt'', diverging from the prevailing pipeline that leverages the fixed last hidden layer as ``<SEG> as prompt''. UGround addresses two primary challenges posed by the prevailing paradigm: (1) its reliance on the fixed last hidden layer, which sequentially amplifies cumulative errors arising from layer-by-layer propagation without intermediate correction, and (2) its use of <SEG> as a prompt, which implicitly projects textual embeddings into visual space without explicit spatial cues (\eg, coordinates). Central to UGround is Policy-Prompted Masking, which comprises two key components: Stochastic Skip Connection (SSC) and Mask as Prompt (MasP). SSC is a reinforcement learning policy that, via stochastic sampling, allows each <SEG> token to slide across unrolled transformer layers, enabling dynamic layer selection at which it connects to the vision model (\eg, SAM) in a skip-connection fashion. Given the selected hidden layer, MasP uses the similarity map derived from the <SEG> token and image tokens as a soft logit mask to prompt SAM for mask generation, offering explicit spatial cues through its activation regions. To validate the effectiveness of UGround, we, for the first time, have unified visual grounding within a single framework from an attribute perspective, spanning from traditional refer expression segmentation to newly proposed reasoning segmentation, single-target to multi-target, positive query to false premise (empty target). All codes and models are publicly available at https://github.com/rui-qian/UGround{https://github.com/rui-qian/UGround}.
The Devil behind the mask: An emergent safety vulnerability of Diffusion LLMs
Diffusion-based large language models (dLLMs) have recently emerged as a powerful alternative to autoregressive LLMs, offering faster inference and greater interactivity via parallel decoding and bidirectional modeling. However, despite strong performance in code generation and text infilling, we identify a fundamental safety concern: existing alignment mechanisms fail to safeguard dLLMs against context-aware, masked-input adversarial prompts, exposing novel vulnerabilities. To this end, we present DIJA, the first systematic study and jailbreak attack framework that exploits unique safety weaknesses of dLLMs. Specifically, our proposed DIJA constructs adversarial interleaved mask-text prompts that exploit the text generation mechanisms of dLLMs, i.e., bidirectional modeling and parallel decoding. Bidirectional modeling drives the model to produce contextually consistent outputs for masked spans, even when harmful, while parallel decoding limits model dynamic filtering and rejection sampling of unsafe content. This causes standard alignment mechanisms to fail, enabling harmful completions in alignment-tuned dLLMs, even when harmful behaviors or unsafe instructions are directly exposed in the prompt. Through comprehensive experiments, we demonstrate that DIJA significantly outperforms existing jailbreak methods, exposing a previously overlooked threat surface in dLLM architectures. Notably, our method achieves up to 100% keyword-based ASR on Dream-Instruct, surpassing the strongest prior baseline, ReNeLLM, by up to 78.5% in evaluator-based ASR on JailbreakBench and by 37.7 points in StrongREJECT score, while requiring no rewriting or hiding of harmful content in the jailbreak prompt. Our findings underscore the urgent need for rethinking safety alignment in this emerging class of language models. Code is available at https://github.com/ZichenWen1/DIJA.
I4VGen: Image as Stepping Stone for Text-to-Video Generation
Text-to-video generation has lagged behind text-to-image synthesis in quality and diversity due to the complexity of spatio-temporal modeling and limited video-text datasets. This paper presents I4VGen, a training-free and plug-and-play video diffusion inference framework, which enhances text-to-video generation by leveraging robust image techniques. Specifically, following text-to-image-to-video, I4VGen decomposes the text-to-video generation into two stages: anchor image synthesis and anchor image-guided video synthesis. Correspondingly, a well-designed generation-selection pipeline is employed to achieve visually-realistic and semantically-faithful anchor image, and an innovative Noise-Invariant Video Score Distillation Sampling is incorporated to animate the image to a dynamic video, followed by a video regeneration process to refine the video. This inference strategy effectively mitigates the prevalent issue of non-zero terminal signal-to-noise ratio. Extensive evaluations show that I4VGen not only produces videos with higher visual realism and textual fidelity but also integrates seamlessly into existing image-to-video diffusion models, thereby improving overall video quality.
EconProver: Towards More Economical Test-Time Scaling for Automated Theorem Proving
Large Language Models (LLMs) have recently advanced the field of Automated Theorem Proving (ATP), attaining substantial performance gains through widely adopted test-time scaling strategies, notably reflective Chain-of-Thought (CoT) reasoning and increased sampling passes. However, they both introduce significant computational overhead for inference. Moreover, existing cost analyses typically regulate only the number of sampling passes, while neglecting the substantial disparities in sampling costs introduced by different scaling strategies. In this paper, we systematically compare the efficiency of different test-time scaling strategies for ATP models and demonstrate the inefficiency of the current state-of-the-art (SOTA) open-source approaches. We then investigate approaches to significantly reduce token usage and sample passes while maintaining the original performance. Specifically, we propose two complementary methods that can be integrated into a unified EconRL pipeline for amplified benefits: (1) a dynamic Chain-of-Thought (CoT) switching mechanism designed to mitigate unnecessary token consumption, and (2) Diverse parallel-scaled reinforcement learning (RL) with trainable prefixes to enhance pass rates under constrained sampling passes. Experiments on miniF2F and ProofNet demonstrate that our EconProver achieves comparable performance to baseline methods with only 12% of the computational cost. This work provides actionable insights for deploying lightweight ATP models without sacrificing performance.
Enhancing Motion Dynamics of Image-to-Video Models via Adaptive Low-Pass Guidance
Recent text-to-video (T2V) models have demonstrated strong capabilities in producing high-quality, dynamic videos. To improve the visual controllability, recent works have considered fine-tuning pre-trained T2V models to support image-to-video (I2V) generation. However, such adaptation frequently suppresses motion dynamics of generated outputs, resulting in more static videos compared to their T2V counterparts. In this work, we analyze this phenomenon and identify that it stems from the premature exposure to high-frequency details in the input image, which biases the sampling process toward a shortcut trajectory that overfits to the static appearance of the reference image. To address this, we propose adaptive low-pass guidance (ALG), a simple fix to the I2V model sampling procedure to generate more dynamic videos without compromising per-frame image quality. Specifically, ALG adaptively modulates the frequency content of the conditioning image by applying low-pass filtering at the early stage of denoising. Extensive experiments demonstrate that ALG significantly improves the temporal dynamics of generated videos, while preserving image fidelity and text alignment. Especially, under VBench-I2V test suite, ALG achieves an average improvement of 36% in dynamic degree without a significant drop in video quality or image fidelity.
4DGen: Grounded 4D Content Generation with Spatial-temporal Consistency
Aided by text-to-image and text-to-video diffusion models, existing 4D content creation pipelines utilize score distillation sampling to optimize the entire dynamic 3D scene. However, as these pipelines generate 4D content from text or image inputs, they incur significant time and effort in prompt engineering through trial and error. This work introduces 4DGen, a novel, holistic framework for grounded 4D content creation that decomposes the 4D generation task into multiple stages. We identify static 3D assets and monocular video sequences as key components in constructing the 4D content. Our pipeline facilitates conditional 4D generation, enabling users to specify geometry (3D assets) and motion (monocular videos), thus offering superior control over content creation. Furthermore, we construct our 4D representation using dynamic 3D Gaussians, which permits efficient, high-resolution supervision through rendering during training, thereby facilitating high-quality 4D generation. Additionally, we employ spatial-temporal pseudo labels on anchor frames, along with seamless consistency priors implemented through 3D-aware score distillation sampling and smoothness regularizations. Compared to existing baselines, our approach yields competitive results in faithfully reconstructing input signals and realistically inferring renderings from novel viewpoints and timesteps. Most importantly, our method supports grounded generation, offering users enhanced control, a feature difficult to achieve with previous methods. Project page: https://vita-group.github.io/4DGen/
SA-Occ: Satellite-Assisted 3D Occupancy Prediction in Real World
Existing vision-based 3D occupancy prediction methods are inherently limited in accuracy due to their exclusive reliance on street-view imagery, neglecting the potential benefits of incorporating satellite views. We propose SA-Occ, the first Satellite-Assisted 3D occupancy prediction model, which leverages GPS & IMU to integrate historical yet readily available satellite imagery into real-time applications, effectively mitigating limitations of ego-vehicle perceptions, involving occlusions and degraded performance in distant regions. To address the core challenges of cross-view perception, we propose: 1) Dynamic-Decoupling Fusion, which resolves inconsistencies in dynamic regions caused by the temporal asynchrony between satellite and street views; 2) 3D-Proj Guidance, a module that enhances 3D feature extraction from inherently 2D satellite imagery; and 3) Uniform Sampling Alignment, which aligns the sampling density between street and satellite views. Evaluated on Occ3D-nuScenes, SA-Occ achieves state-of-the-art performance, especially among single-frame methods, with a 39.05% mIoU (a 6.97% improvement), while incurring only 6.93 ms of additional latency per frame. Our code and newly curated dataset are available at https://github.com/chenchen235/SA-Occ.
EchoMimicV2: Towards Striking, Simplified, and Semi-Body Human Animation
Recent work on human animation usually involves audio, pose, or movement maps conditions, thereby achieves vivid animation quality. However, these methods often face practical challenges due to extra control conditions, cumbersome condition injection modules, or limitation to head region driving. Hence, we ask if it is possible to achieve striking half-body human animation while simplifying unnecessary conditions. To this end, we propose a half-body human animation method, dubbed EchoMimicV2, that leverages a novel Audio-Pose Dynamic Harmonization strategy, including Pose Sampling and Audio Diffusion, to enhance half-body details, facial and gestural expressiveness, and meanwhile reduce conditions redundancy. To compensate for the scarcity of half-body data, we utilize Head Partial Attention to seamlessly accommodate headshot data into our training framework, which can be omitted during inference, providing a free lunch for animation. Furthermore, we design the Phase-specific Denoising Loss to guide motion, detail, and low-level quality for animation in specific phases, respectively. Besides, we also present a novel benchmark for evaluating the effectiveness of half-body human animation. Extensive experiments and analyses demonstrate that EchoMimicV2 surpasses existing methods in both quantitative and qualitative evaluations.
GraspSplats: Efficient Manipulation with 3D Feature Splatting
The ability for robots to perform efficient and zero-shot grasping of object parts is crucial for practical applications and is becoming prevalent with recent advances in Vision-Language Models (VLMs). To bridge the 2D-to-3D gap for representations to support such a capability, existing methods rely on neural fields (NeRFs) via differentiable rendering or point-based projection methods. However, we demonstrate that NeRFs are inappropriate for scene changes due to their implicitness and point-based methods are inaccurate for part localization without rendering-based optimization. To amend these issues, we propose GraspSplats. Using depth supervision and a novel reference feature computation method, GraspSplats generates high-quality scene representations in under 60 seconds. We further validate the advantages of Gaussian-based representation by showing that the explicit and optimized geometry in GraspSplats is sufficient to natively support (1) real-time grasp sampling and (2) dynamic and articulated object manipulation with point trackers. With extensive experiments on a Franka robot, we demonstrate that GraspSplats significantly outperforms existing methods under diverse task settings. In particular, GraspSplats outperforms NeRF-based methods like F3RM and LERF-TOGO, and 2D detection methods.
Diff3DETR:Agent-based Diffusion Model for Semi-supervised 3D Object Detection
3D object detection is essential for understanding 3D scenes. Contemporary techniques often require extensive annotated training data, yet obtaining point-wise annotations for point clouds is time-consuming and laborious. Recent developments in semi-supervised methods seek to mitigate this problem by employing a teacher-student framework to generate pseudo-labels for unlabeled point clouds. However, these pseudo-labels frequently suffer from insufficient diversity and inferior quality. To overcome these hurdles, we introduce an Agent-based Diffusion Model for Semi-supervised 3D Object Detection (Diff3DETR). Specifically, an agent-based object query generator is designed to produce object queries that effectively adapt to dynamic scenes while striking a balance between sampling locations and content embedding. Additionally, a box-aware denoising module utilizes the DDIM denoising process and the long-range attention in the transformer decoder to refine bounding boxes incrementally. Extensive experiments on ScanNet and SUN RGB-D datasets demonstrate that Diff3DETR outperforms state-of-the-art semi-supervised 3D object detection methods.
RPEFlow: Multimodal Fusion of RGB-PointCloud-Event for Joint Optical Flow and Scene Flow Estimation
Recently, the RGB images and point clouds fusion methods have been proposed to jointly estimate 2D optical flow and 3D scene flow. However, as both conventional RGB cameras and LiDAR sensors adopt a frame-based data acquisition mechanism, their performance is limited by the fixed low sampling rates, especially in highly-dynamic scenes. By contrast, the event camera can asynchronously capture the intensity changes with a very high temporal resolution, providing complementary dynamic information of the observed scenes. In this paper, we incorporate RGB images, Point clouds and Events for joint optical flow and scene flow estimation with our proposed multi-stage multimodal fusion model, RPEFlow. First, we present an attention fusion module with a cross-attention mechanism to implicitly explore the internal cross-modal correlation for 2D and 3D branches, respectively. Second, we introduce a mutual information regularization term to explicitly model the complementary information of three modalities for effective multimodal feature learning. We also contribute a new synthetic dataset to advocate further research. Experiments on both synthetic and real datasets show that our model outperforms the existing state-of-the-art by a wide margin. Code and dataset is available at https://npucvr.github.io/RPEFlow.
MedSegDiff: Medical Image Segmentation with Diffusion Probabilistic Model
Diffusion probabilistic model (DPM) recently becomes one of the hottest topic in computer vision. Its image generation application such as Imagen, Latent Diffusion Models and Stable Diffusion have shown impressive generation capabilities, which aroused extensive discussion in the community. Many recent studies also found it is useful in many other vision tasks, like image deblurring, super-resolution and anomaly detection. Inspired by the success of DPM, we propose the first DPM based model toward general medical image segmentation tasks, which we named MedSegDiff. In order to enhance the step-wise regional attention in DPM for the medical image segmentation, we propose dynamic conditional encoding, which establishes the state-adaptive conditions for each sampling step. We further propose Feature Frequency Parser (FF-Parser), to eliminate the negative effect of high-frequency noise component in this process. We verify MedSegDiff on three medical segmentation tasks with different image modalities, which are optic cup segmentation over fundus images, brain tumor segmentation over MRI images and thyroid nodule segmentation over ultrasound images. The experimental results show that MedSegDiff outperforms state-of-the-art (SOTA) methods with considerable performance gap, indicating the generalization and effectiveness of the proposed model. Our code is released at https://github.com/WuJunde/MedSegDiff.
SparseBEV: High-Performance Sparse 3D Object Detection from Multi-Camera Videos
Camera-based 3D object detection in BEV (Bird's Eye View) space has drawn great attention over the past few years. Dense detectors typically follow a two-stage pipeline by first constructing a dense BEV feature and then performing object detection in BEV space, which suffers from complex view transformations and high computation cost. On the other side, sparse detectors follow a query-based paradigm without explicit dense BEV feature construction, but achieve worse performance than the dense counterparts. In this paper, we find that the key to mitigate this performance gap is the adaptability of the detector in both BEV and image space. To achieve this goal, we propose SparseBEV, a fully sparse 3D object detector that outperforms the dense counterparts. SparseBEV contains three key designs, which are (1) scale-adaptive self attention to aggregate features with adaptive receptive field in BEV space, (2) adaptive spatio-temporal sampling to generate sampling locations under the guidance of queries, and (3) adaptive mixing to decode the sampled features with dynamic weights from the queries. On the test split of nuScenes, SparseBEV achieves the state-of-the-art performance of 67.5 NDS. On the val split, SparseBEV achieves 55.8 NDS while maintaining a real-time inference speed of 23.5 FPS. Code is available at https://github.com/MCG-NJU/SparseBEV.
DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models
Diffusion probabilistic models (DPMs) have achieved impressive success in high-resolution image synthesis, especially in recent large-scale text-to-image generation applications. An essential technique for improving the sample quality of DPMs is guided sampling, which usually needs a large guidance scale to obtain the best sample quality. The commonly-used fast sampler for guided sampling is DDIM, a first-order diffusion ODE solver that generally needs 100 to 250 steps for high-quality samples. Although recent works propose dedicated high-order solvers and achieve a further speedup for sampling without guidance, their effectiveness for guided sampling has not been well-tested before. In this work, we demonstrate that previous high-order fast samplers suffer from instability issues, and they even become slower than DDIM when the guidance scale grows large. To further speed up guided sampling, we propose DPM-Solver++, a high-order solver for the guided sampling of DPMs. DPM-Solver++ solves the diffusion ODE with the data prediction model and adopts thresholding methods to keep the solution matches training data distribution. We further propose a multistep variant of DPM-Solver++ to address the instability issue by reducing the effective step size. Experiments show that DPM-Solver++ can generate high-quality samples within only 15 to 20 steps for guided sampling by pixel-space and latent-space DPMs.
Chain of Log-Concave Markov Chains
We introduce a theoretical framework for sampling from unnormalized densities based on a smoothing scheme that uses an isotropic Gaussian kernel with a single fixed noise scale. We prove one can decompose sampling from a density (minimal assumptions made on the density) into a sequence of sampling from log-concave conditional densities via accumulation of noisy measurements with equal noise levels. Our construction is unique in that it keeps track of a history of samples, making it non-Markovian as a whole, but it is lightweight algorithmically as the history only shows up in the form of a running empirical mean of samples. Our sampling algorithm generalizes walk-jump sampling (Saremi & Hyv\"arinen, 2019). The "walk" phase becomes a (non-Markovian) chain of (log-concave) Markov chains. The "jump" from the accumulated measurements is obtained by empirical Bayes. We study our sampling algorithm quantitatively using the 2-Wasserstein metric and compare it with various Langevin MCMC algorithms. We also report a remarkable capacity of our algorithm to "tunnel" between modes of a distribution.
Experience Replay with Random Reshuffling
Experience replay is a key component in reinforcement learning for stabilizing learning and improving sample efficiency. Its typical implementation samples transitions with replacement from a replay buffer. In contrast, in supervised learning with a fixed dataset, it is a common practice to shuffle the dataset every epoch and consume data sequentially, which is called random reshuffling (RR). RR enjoys theoretically better convergence properties and has been shown to outperform with-replacement sampling empirically. To leverage the benefits of RR in reinforcement learning, we propose sampling methods that extend RR to experience replay, both in uniform and prioritized settings. We evaluate our sampling methods on Atari benchmarks, demonstrating their effectiveness in deep reinforcement learning.
Gibbsian polar slice sampling
Polar slice sampling (Roberts & Rosenthal, 2002) is a Markov chain approach for approximate sampling of distributions that is difficult, if not impossible, to implement efficiently, but behaves provably well with respect to the dimension. By updating the directional and radial components of chain iterates separately, we obtain a family of samplers that mimic polar slice sampling, and yet can be implemented efficiently. Numerical experiments in a variety of settings indicate that our proposed algorithm outperforms the two most closely related approaches, elliptical slice sampling (Murray et al., 2010) and hit-and-run uniform slice sampling (MacKay, 2003). We prove the well-definedness and convergence of our methods under suitable assumptions on the target distribution.
Learning to Maximize Mutual Information for Dynamic Feature Selection
Feature selection helps reduce data acquisition costs in ML, but the standard approach is to train models with static feature subsets. Here, we consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information. DFS is often addressed with reinforcement learning, but we explore a simpler approach of greedily selecting features based on their conditional mutual information. This method is theoretically appealing but requires oracle access to the data distribution, so we develop a learning approach based on amortized optimization. The proposed method is shown to recover the greedy policy when trained to optimality, and it outperforms numerous existing feature selection methods in our experiments, thus validating it as a simple but powerful approach for this problem.
Mitigating Diffusion Model Hallucinations with Dynamic Guidance
Diffusion models, despite their impressive demos, often produce hallucinatory samples with structural inconsistencies that lie outside of the support of the true data distribution. Such hallucinations can be attributed to excessive smoothing between modes of the data distribution. However, semantic interpolations are often desirable and can lead to generation diversity, thus we believe a more nuanced solution is required. In this work, we introduce Dynamic Guidance, which tackles this issue. Dynamic Guidance mitigates hallucinations by selectively sharpening the score function only along the pre-determined directions known to cause artifacts, while preserving valid semantic variations. To our knowledge, this is the first approach that addresses hallucinations at generation time rather than through post-hoc filtering. Dynamic Guidance substantially reduces hallucinations on both controlled and natural image datasets, significantly outperforming baselines.
Action Matching: Learning Stochastic Dynamics from Samples
Learning the continuous dynamics of a system from snapshots of its temporal marginals is a problem which appears throughout natural sciences and machine learning, including in quantum systems, single-cell biological data, and generative modeling. In these settings, we assume access to cross-sectional samples that are uncorrelated over time, rather than full trajectories of samples. In order to better understand the systems under observation, we would like to learn a model of the underlying process that allows us to propagate samples in time and thereby simulate entire individual trajectories. In this work, we propose Action Matching, a method for learning a rich family of dynamics using only independent samples from its time evolution. We derive a tractable training objective, which does not rely on explicit assumptions about the underlying dynamics and does not require back-propagation through differential equations or optimal transport solvers. Inspired by connections with optimal transport, we derive extensions of Action Matching to learn stochastic differential equations and dynamics involving creation and destruction of probability mass. Finally, we showcase applications of Action Matching by achieving competitive performance in a diverse set of experiments from biology, physics, and generative modeling.
Restart Sampling for Improving Generative Processes
Generative processes that involve solving differential equations, such as diffusion models, frequently necessitate balancing speed and quality. ODE-based samplers are fast but plateau in performance while SDE-based samplers deliver higher sample quality at the cost of increased sampling time. We attribute this difference to sampling errors: ODE-samplers involve smaller discretization errors while stochasticity in SDE contracts accumulated errors. Based on these findings, we propose a novel sampling algorithm called Restart in order to better balance discretization errors and contraction. The sampling method alternates between adding substantial noise in additional forward steps and strictly following a backward ODE. Empirically, Restart sampler surpasses previous SDE and ODE samplers in both speed and accuracy. Restart not only outperforms the previous best SDE results, but also accelerates the sampling speed by 10-fold / 2-fold on CIFAR-10 / ImageNet 64 times 64. In addition, it attains significantly better sample quality than ODE samplers within comparable sampling times. Moreover, Restart better balances text-image alignment/visual quality versus diversity than previous samplers in the large-scale text-to-image Stable Diffusion model pre-trained on LAION 512 times 512. Code is available at https://github.com/Newbeeer/diffusion_restart_sampling
One Step Diffusion via Shortcut Models
Diffusion models and flow-matching models have enabled generating diverse and realistic images by learning to transfer noise to data. However, sampling from these models involves iterative denoising over many neural network passes, making generation slow and expensive. Previous approaches for speeding up sampling require complex training regimes, such as multiple training phases, multiple networks, or fragile scheduling. We introduce shortcut models, a family of generative models that use a single network and training phase to produce high-quality samples in a single or multiple sampling steps. Shortcut models condition the network not only on the current noise level but also on the desired step size, allowing the model to skip ahead in the generation process. Across a wide range of sampling step budgets, shortcut models consistently produce higher quality samples than previous approaches, such as consistency models and reflow. Compared to distillation, shortcut models reduce complexity to a single network and training phase and additionally allow varying step budgets at inference time.
DualFast: Dual-Speedup Framework for Fast Sampling of Diffusion Models
Diffusion probabilistic models (DPMs) have achieved impressive success in visual generation. While, they suffer from slow inference speed due to iterative sampling. Employing fewer sampling steps is an intuitive solution, but this will also introduces discretization error. Existing fast samplers make inspiring efforts to reduce discretization error through the adoption of high-order solvers, potentially reaching a plateau in terms of optimization. This raises the question: can the sampling process be accelerated further? In this paper, we re-examine the nature of sampling errors, discerning that they comprise two distinct elements: the widely recognized discretization error and the less explored approximation error. Our research elucidates the dynamics between these errors and the step by implementing a dual-error disentanglement strategy. Building on these foundations, we introduce an unified and training-free acceleration framework, DualFast, designed to enhance the speed of DPM sampling by concurrently accounting for both error types, thereby minimizing the total sampling error. DualFast is seamlessly compatible with existing samplers and significantly boost their sampling quality and speed, particularly in extremely few sampling steps. We substantiate the effectiveness of our framework through comprehensive experiments, spanning both unconditional and conditional sampling domains, across both pixel-space and latent-space DPMs.
Alleviating Exposure Bias in Diffusion Models through Sampling with Shifted Time Steps
Diffusion Probabilistic Models (DPM) have shown remarkable efficacy in the synthesis of high-quality images. However, their inference process characteristically requires numerous, potentially hundreds, of iterative steps, which could exaggerate the problem of exposure bias due to the training and inference discrepancy. Previous work has attempted to mitigate this issue by perturbing inputs during training, which consequently mandates the retraining of the DPM. In this work, we conduct a systematic study of exposure bias in DPM and, intriguingly, we find that the exposure bias could be alleviated with a novel sampling method that we propose, without retraining the model. We empirically and theoretically show that, during inference, for each backward time step t and corresponding state x_t, there might exist another time step t_s which exhibits superior coupling with x_t. Based on this finding, we introduce a sampling method named Time-Shift Sampler. Our framework can be seamlessly integrated to existing sampling algorithms, such as DDPM, DDIM and other high-order solvers, inducing merely minimal additional computations. Experimental results show our method brings significant and consistent improvements in FID scores on different datasets and sampling methods. For example, integrating Time-Shift Sampler to F-PNDM yields a FID=3.88, achieving 44.49\% improvements as compared to F-PNDM, on CIFAR-10 with 10 sampling steps, which is more performant than the vanilla DDIM with 100 sampling steps. Our code is available at https://github.com/Mingxiao-Li/TS-DPM.
MDNS: Masked Diffusion Neural Sampler via Stochastic Optimal Control
We study the problem of learning a neural sampler to generate samples from discrete state spaces where the target probability mass function piproptoe^{-U} is known up to a normalizing constant, which is an important task in fields such as statistical physics, machine learning, combinatorial optimization, etc. To better address this challenging task when the state space has a large cardinality and the distribution is multi-modal, we propose Masked Diffusion Neural Sampler (MDNS), a novel framework for training discrete neural samplers by aligning two path measures through a family of learning objectives, theoretically grounded in the stochastic optimal control of the continuous-time Markov chains. We validate the efficiency and scalability of MDNS through extensive experiments on various distributions with distinct statistical properties, where MDNS learns to accurately sample from the target distributions despite the extremely high problem dimensions and outperforms other learning-based baselines by a large margin. A comprehensive study of ablations and extensions is also provided to demonstrate the efficacy and potential of the proposed framework.
Fire Together Wire Together: A Dynamic Pruning Approach with Self-Supervised Mask Prediction
Dynamic model pruning is a recent direction that allows for the inference of a different sub-network for each input sample during deployment. However, current dynamic methods rely on learning a continuous channel gating through regularization by inducing sparsity loss. This formulation introduces complexity in balancing different losses (e.g task loss, regularization loss). In addition, regularization based methods lack transparent tradeoff hyperparameter selection to realize a computational budget. Our contribution is two-fold: 1) decoupled task and pruning losses. 2) Simple hyperparameter selection that enables FLOPs reduction estimation before training. Inspired by the Hebbian theory in Neuroscience: "neurons that fire together wire together", we propose to predict a mask to process k filters in a layer based on the activation of its previous layer. We pose the problem as a self-supervised binary classification problem. Each mask predictor module is trained to predict if the log-likelihood for each filter in the current layer belongs to the top-k activated filters. The value k is dynamically estimated for each input based on a novel criterion using the mass of heatmaps. We show experiments on several neural architectures, such as VGG, ResNet and MobileNet on CIFAR and ImageNet datasets. On CIFAR, we reach similar accuracy to SOTA methods with 15% and 24% higher FLOPs reduction. Similarly in ImageNet, we achieve lower drop in accuracy with up to 13% improvement in FLOPs reduction.
Multi-marginal Schrödinger Bridges with Iterative Reference Refinement
Practitioners frequently aim to infer an unobserved population trajectory using sample snapshots at multiple time points. For instance, in single-cell sequencing, scientists would like to learn how gene expression evolves over time. But sequencing any cell destroys that cell. So we cannot access any cell's full trajectory, but we can access snapshot samples from many cells. Stochastic differential equations are commonly used to analyze systems with full individual-trajectory access; since here we have only sample snapshots, these methods are inapplicable. The deep learning community has recently explored using Schr\"odinger bridges (SBs) and their extensions to estimate these dynamics. However, these methods either (1) interpolate between just two time points or (2) require a single fixed reference dynamic within the SB, which is often just set to be Brownian motion. But learning piecewise from adjacent time points can fail to capture long-term dependencies. And practitioners are typically able to specify a model class for the reference dynamic but not the exact values of the parameters within it. So we propose a new method that (1) learns the unobserved trajectories from sample snapshots across multiple time points and (2) requires specification only of a class of reference dynamics, not a single fixed one. In particular, we suggest an iterative projection method inspired by Schr\"odinger bridges; we alternate between learning a piecewise SB on the unobserved trajectories and using the learned SB to refine our best guess for the dynamics within the reference class. We demonstrate the advantages of our method via a well-known simulated parametric model from ecology, simulated and real data from systems biology, and real motion-capture data.
Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts
While score-based generative models are the model of choice across diverse domains, there are limited tools available for controlling inference-time behavior in a principled manner, e.g. for composing multiple pretrained models. Existing classifier-free guidance methods use a simple heuristic to mix conditional and unconditional scores to approximately sample from conditional distributions. However, such methods do not approximate the intermediate distributions, necessitating additional 'corrector' steps. In this work, we provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models. We derive a weighted simulation scheme which we call Feynman-Kac Correctors (FKCs) based on the celebrated Feynman-Kac formula by carefully accounting for terms in the appropriate partial differential equations (PDEs). To simulate these PDEs, we propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality. We empirically demonstrate the utility of our methods by proposing amortized sampling via inference-time temperature annealing, improving multi-objective molecule generation using pretrained models, and improving classifier-free guidance for text-to-image generation. Our code is available at https://github.com/martaskrt/fkc-diffusion.
Generative Modeling with Phase Stochastic Bridges
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs. DMs work by constructing a Stochastic Differential Equation (SDE) in the input space (ie, position space), and using a neural network to reverse it. In this work, we introduce a novel generative modeling framework grounded in phase space dynamics, where a phase space is defined as {an augmented space encompassing both position and velocity.} Leveraging insights from Stochastic Optimal Control, we construct a path measure in the phase space that enables efficient sampling. {In contrast to DMs, our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.} This early prediction sets the stage for efficient data generation by leveraging additional velocity information along the trajectory. On standard image generation benchmarks, our model yields favorable performance over baselines in the regime of small Number of Function Evaluations (NFEs). Furthermore, our approach rivals the performance of diffusion models equipped with efficient sampling techniques, underscoring its potential as a new tool generative modeling.
DACBench: A Benchmark Library for Dynamic Algorithm Configuration
Dynamic Algorithm Configuration (DAC) aims to dynamically control a target algorithm's hyperparameters in order to improve its performance. Several theoretical and empirical results have demonstrated the benefits of dynamically controlling hyperparameters in domains like evolutionary computation, AI Planning or deep learning. Replicating these results, as well as studying new methods for DAC, however, is difficult since existing benchmarks are often specialized and incompatible with the same interfaces. To facilitate benchmarking and thus research on DAC, we propose DACBench, a benchmark library that seeks to collect and standardize existing DAC benchmarks from different AI domains, as well as provide a template for new ones. For the design of DACBench, we focused on important desiderata, such as (i) flexibility, (ii) reproducibility, (iii) extensibility and (iv) automatic documentation and visualization. To show the potential, broad applicability and challenges of DAC, we explore how a set of six initial benchmarks compare in several dimensions of difficulty.
Reinforced Approximate Exploratory Data Analysis
Exploratory data analytics (EDA) is a sequential decision making process where analysts choose subsequent queries that might lead to some interesting insights based on the previous queries and corresponding results. Data processing systems often execute the queries on samples to produce results with low latency. Different downsampling strategy preserves different statistics of the data and have different magnitude of latency reductions. The optimum choice of sampling strategy often depends on the particular context of the analysis flow and the hidden intent of the analyst. In this paper, we are the first to consider the impact of sampling in interactive data exploration settings as they introduce approximation errors. We propose a Deep Reinforcement Learning (DRL) based framework which can optimize the sample selection in order to keep the analysis and insight generation flow intact. Evaluations with 3 real datasets show that our technique can preserve the original insight generation flow while improving the interaction latency, compared to baseline methods.
Align Your Steps: Optimizing Sampling Schedules in Diffusion Models
Diffusion models (DMs) have established themselves as the state-of-the-art generative modeling approach in the visual domain and beyond. A crucial drawback of DMs is their slow sampling speed, relying on many sequential function evaluations through large neural networks. Sampling from DMs can be seen as solving a differential equation through a discretized set of noise levels known as the sampling schedule. While past works primarily focused on deriving efficient solvers, little attention has been given to finding optimal sampling schedules, and the entire literature relies on hand-crafted heuristics. In this work, for the first time, we propose a general and principled approach to optimizing the sampling schedules of DMs for high-quality outputs, called Align Your Steps. We leverage methods from stochastic calculus and find optimal schedules specific to different solvers, trained DMs and datasets. We evaluate our novel approach on several image, video as well as 2D toy data synthesis benchmarks, using a variety of different samplers, and observe that our optimized schedules outperform previous hand-crafted schedules in almost all experiments. Our method demonstrates the untapped potential of sampling schedule optimization, especially in the few-step synthesis regime.
Zero-Shot Dynamic Concept Personalization with Grid-Based LoRA
Recent advances in text-to-video generation have enabled high-quality synthesis from text and image prompts. While the personalization of dynamic concepts, which capture subject-specific appearance and motion from a single video, is now feasible, most existing methods require per-instance fine-tuning, limiting scalability. We introduce a fully zero-shot framework for dynamic concept personalization in text-to-video models. Our method leverages structured 2x2 video grids that spatially organize input and output pairs, enabling the training of lightweight Grid-LoRA adapters for editing and composition within these grids. At inference, a dedicated Grid Fill module completes partially observed layouts, producing temporally coherent and identity preserving outputs. Once trained, the entire system operates in a single forward pass, generalizing to previously unseen dynamic concepts without any test-time optimization. Extensive experiments demonstrate high-quality and consistent results across a wide range of subjects beyond trained concepts and editing scenarios.
Dynadiff: Single-stage Decoding of Images from Continuously Evolving fMRI
Brain-to-image decoding has been recently propelled by the progress in generative AI models and the availability of large ultra-high field functional Magnetic Resonance Imaging (fMRI). However, current approaches depend on complicated multi-stage pipelines and preprocessing steps that typically collapse the temporal dimension of brain recordings, thereby limiting time-resolved brain decoders. Here, we introduce Dynadiff (Dynamic Neural Activity Diffusion for Image Reconstruction), a new single-stage diffusion model designed for reconstructing images from dynamically evolving fMRI recordings. Our approach offers three main contributions. First, Dynadiff simplifies training as compared to existing approaches. Second, our model outperforms state-of-the-art models on time-resolved fMRI signals, especially on high-level semantic image reconstruction metrics, while remaining competitive on preprocessed fMRI data that collapse time. Third, this approach allows a precise characterization of the evolution of image representations in brain activity. Overall, this work lays the foundation for time-resolved brain-to-image decoding.
A Mutual Information Perspective on Multiple Latent Variable Generative Models for Positive View Generation
In image generation, Multiple Latent Variable Generative Models (MLVGMs) employ multiple latent variables to gradually shape the final images, from global characteristics to finer and local details (e.g., StyleGAN, NVAE), emerging as powerful tools for diverse applications. Yet their generative dynamics remain only empirically observed, without a systematic understanding of each latent variable's impact. In this work, we propose a novel framework that quantifies the contribution of each latent variable using Mutual Information (MI) as a metric. Our analysis reveals that current MLVGMs often underutilize some latent variables, and provides actionable insights for their use in downstream applications. With this foundation, we introduce a method for generating synthetic data for Self-Supervised Contrastive Representation Learning (SSCRL). By leveraging the hierarchical and disentangled variables of MLVGMs, our approach produces diverse and semantically meaningful views without the need for real image data. Additionally, we introduce a Continuous Sampling (CS) strategy, where the generator dynamically creates new samples during SSCRL training, greatly increasing data variability. Our comprehensive experiments demonstrate the effectiveness of these contributions, showing that MLVGMs' generated views compete on par with or even surpass views generated from real data. This work establishes a principled approach to understanding and exploiting MLVGMs, advancing both generative modeling and self-supervised learning. Code and pre-trained models at: https://github.com/SerezD/mi_ml_gen.
Learnable Sampler Distillation for Discrete Diffusion Models
Discrete diffusion models (DDMs) have shown powerful generation ability for discrete data modalities like text and molecules. However, their practical application is hindered by inefficient sampling, requiring a large number of sampling steps. Accelerating DDMs by using larger step sizes typically introduces significant problems in generation quality, as it amplifies the impact of both the compounding decoding error due to factorized predictions and discretization error from numerical approximations, leading to a significant decrease in sampling quality. To address these challenges, we propose learnable sampler distillation (LSD), a novel approach to train fast and high-fidelity samplers for DDMs. LSD employs a distillation approach where a student sampler with a few steps learns to align its intermediate score trajectory with that of a high-quality teacher sampler with numerous steps. This alignment is achieved by optimizing learnable sampler coefficients that adaptively adjust sampling dynamics. Additionally, we further propose LSD+, which also learns time schedules that allocate steps non-uniformly. Experiments across text generation, image generation, and synthetic tasks demonstrate that our proposed approaches outperform existing samplers for DDMs, achieving substantially higher sampling quality with significantly fewer sampling steps. Our code is available at https://github.com/feiyangfu/LSD{https://github.com/feiyangfu/LSD}.
Sample, Scrutinize and Scale: Effective Inference-Time Search by Scaling Verification
Sampling-based search, a simple paradigm for utilizing test-time compute, involves generating multiple candidate responses and selecting the best one -- typically by verifying each response for correctness. In this paper, we study the scaling trends governing sampling-based search. Among our findings is that simply scaling up a minimalist implementation that uses only random sampling and direct self-verification results in sustained performance improvements that, for example, elevate the Gemini v1.5 Pro model's reasoning capabilities past that of o1-Preview on popular benchmarks. We partially attribute the scalability of sampling-based search to a phenomenon of implicit scaling, where sampling a larger pool of responses in turn improves verification accuracy. We further identify two useful principles for improving self-verification capabilities with test-time compute: (1) comparing across responses provides helpful signals about the locations of errors and hallucinations, and (2) different model output styles are useful for different contexts -- chains of thought are useful for reasoning but harder to verify. We also find that, though accurate verification can be elicited, frontier models demonstrate remarkably weak out-of-box verification capabilities and introduce a benchmark to measure progress on these deficiencies.
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
We tackle the problem of sampling from intractable high-dimensional density functions, a fundamental task that often appears in machine learning and statistics. We extend recent sampling-based approaches that leverage controlled stochastic processes to model approximate samples from these target densities. The main drawback of these approaches is that the training objective requires full trajectories to compute, resulting in sluggish credit assignment issues due to use of entire trajectories and a learning signal present only at the terminal time. In this work, we present Diffusion Generative Flow Samplers (DGFS), a sampling-based framework where the learning process can be tractably broken down into short partial trajectory segments, via parameterizing an additional "flow function". Our method takes inspiration from the theory developed for generative flow networks (GFlowNets), allowing us to make use of intermediate learning signals. Through various challenging experiments, we demonstrate that DGFS achieves more accurate estimates of the normalization constant than closely-related prior methods.
Generative Modeling by Estimating Gradients of the Data Distribution
We introduce a new generative model where samples are produced via Langevin dynamics using gradients of the data distribution estimated with score matching. Because gradients can be ill-defined and hard to estimate when the data resides on low-dimensional manifolds, we perturb the data with different levels of Gaussian noise, and jointly estimate the corresponding scores, i.e., the vector fields of gradients of the perturbed data distribution for all noise levels. For sampling, we propose an annealed Langevin dynamics where we use gradients corresponding to gradually decreasing noise levels as the sampling process gets closer to the data manifold. Our framework allows flexible model architectures, requires no sampling during training or the use of adversarial methods, and provides a learning objective that can be used for principled model comparisons. Our models produce samples comparable to GANs on MNIST, CelebA and CIFAR-10 datasets, achieving a new state-of-the-art inception score of 8.87 on CIFAR-10. Additionally, we demonstrate that our models learn effective representations via image inpainting experiments.
Dirichlet-based Per-Sample Weighting by Transition Matrix for Noisy Label Learning
For learning with noisy labels, the transition matrix, which explicitly models the relation between noisy label distribution and clean label distribution, has been utilized to achieve the statistical consistency of either the classifier or the risk. Previous researches have focused more on how to estimate this transition matrix well, rather than how to utilize it. We propose good utilization of the transition matrix is crucial and suggest a new utilization method based on resampling, coined RENT. Specifically, we first demonstrate current utilizations can have potential limitations for implementation. As an extension to Reweighting, we suggest the Dirichlet distribution-based per-sample Weight Sampling (DWS) framework, and compare reweighting and resampling under DWS framework. With the analyses from DWS, we propose RENT, a REsampling method with Noise Transition matrix. Empirically, RENT consistently outperforms existing transition matrix utilization methods, which includes reweighting, on various benchmark datasets. Our code is available at https://github.com/BaeHeeSun/RENT.
Diffusion Priors for Dynamic View Synthesis from Monocular Videos
Dynamic novel view synthesis aims to capture the temporal evolution of visual content within videos. Existing methods struggle to distinguishing between motion and structure, particularly in scenarios where camera poses are either unknown or constrained compared to object motion. Furthermore, with information solely from reference images, it is extremely challenging to hallucinate unseen regions that are occluded or partially observed in the given videos. To address these issues, we first finetune a pretrained RGB-D diffusion model on the video frames using a customization technique. Subsequently, we distill the knowledge from the finetuned model to a 4D representations encompassing both dynamic and static Neural Radiance Fields (NeRF) components. The proposed pipeline achieves geometric consistency while preserving the scene identity. We perform thorough experiments to evaluate the efficacy of the proposed method qualitatively and quantitatively. Our results demonstrate the robustness and utility of our approach in challenging cases, further advancing dynamic novel view synthesis.
Multimarginal generative modeling with stochastic interpolants
Given a set of K probability densities, we consider the multimarginal generative modeling problem of learning a joint distribution that recovers these densities as marginals. The structure of this joint distribution should identify multi-way correspondences among the prescribed marginals. We formalize an approach to this task within a generalization of the stochastic interpolant framework, leading to efficient learning algorithms built upon dynamical transport of measure. Our generative models are defined by velocity and score fields that can be characterized as the minimizers of simple quadratic objectives, and they are defined on a simplex that generalizes the time variable in the usual dynamical transport framework. The resulting transport on the simplex is influenced by all marginals, and we show that multi-way correspondences can be extracted. The identification of such correspondences has applications to style transfer, algorithmic fairness, and data decorruption. In addition, the multimarginal perspective enables an efficient algorithm for reducing the dynamical transport cost in the ordinary two-marginal setting. We demonstrate these capacities with several numerical examples.
FLEX: an Adaptive Exploration Algorithm for Nonlinear Systems
Model-based reinforcement learning is a powerful tool, but collecting data to fit an accurate model of the system can be costly. Exploring an unknown environment in a sample-efficient manner is hence of great importance. However, the complexity of dynamics and the computational limitations of real systems make this task challenging. In this work, we introduce FLEX, an exploration algorithm for nonlinear dynamics based on optimal experimental design. Our policy maximizes the information of the next step and results in an adaptive exploration algorithm, compatible with generic parametric learning models and requiring minimal resources. We test our method on a number of nonlinear environments covering different settings, including time-varying dynamics. Keeping in mind that exploration is intended to serve an exploitation objective, we also test our algorithm on downstream model-based classical control tasks and compare it to other state-of-the-art model-based and model-free approaches. The performance achieved by FLEX is competitive and its computational cost is low.
Improving the Scaling Laws of Synthetic Data with Deliberate Practice
Inspired by the principle of deliberate practice in human learning, we propose Deliberate Practice for Synthetic Data Generation (DP), a novel framework that improves sample efficiency through dynamic synthetic data generation. Prior work has shown that scaling synthetic data is inherently challenging, as naively adding new data leads to diminishing returns. To address this, pruning has been identified as a key mechanism for improving scaling, enabling models to focus on the most informative synthetic samples. Rather than generating a large dataset and pruning it afterward, DP efficiently approximates the direct generation of informative samples. We theoretically show how training on challenging, informative examples improves scaling laws and empirically validate that DP achieves better scaling performance with significantly fewer training samples and iterations. On ImageNet-100, DP generates 3.4x fewer samples and requires six times fewer iterations, while on ImageNet-1k, it generates 8x fewer samples with a 30 percent reduction in iterations, all while achieving superior performance compared to prior work.
Optimizing DDPM Sampling with Shortcut Fine-Tuning
In this study, we propose Shortcut Fine-Tuning (SFT), a new approach for addressing the challenge of fast sampling of pretrained Denoising Diffusion Probabilistic Models (DDPMs). SFT advocates for the fine-tuning of DDPM samplers through the direct minimization of Integral Probability Metrics (IPM), instead of learning the backward diffusion process. This enables samplers to discover an alternative and more efficient sampling shortcut, deviating from the backward diffusion process. Inspired by a control perspective, we propose a new algorithm SFT-PG: Shortcut Fine-Tuning with Policy Gradient, and prove that under certain assumptions, gradient descent of diffusion models with respect to IPM is equivalent to performing policy gradient. To our best knowledge, this is the first attempt to utilize reinforcement learning (RL) methods to train diffusion models. Through empirical evaluation, we demonstrate that our fine-tuning method can further enhance existing fast DDPM samplers, resulting in sample quality comparable to or even surpassing that of the full-step model across various datasets.
Diff-SSL-G-Comp: Towards a Large-Scale and Diverse Dataset for Virtual Analog Modeling
Virtual Analog (VA) modeling aims to simulate the behavior of hardware circuits via algorithms to replicate their tone digitally. Dynamic Range Compressor (DRC) is an audio processing module that controls the dynamics of a track by reducing and amplifying the volumes of loud and quiet sounds, which is essential in music production. In recent years, neural-network-based VA modeling has shown great potential in producing high-fidelity models. However, due to the lack of data quantity and diversity, their generalization ability in different parameter settings and input sounds is still limited. To tackle this problem, we present Diff-SSL-G-Comp, the first large-scale and diverse dataset for modeling the SSL 500 G-Bus Compressor. Specifically, we manually collected 175 unmastered songs from the Cambridge Multitrack Library. We recorded the compressed audio in 220 parameter combinations, resulting in an extensive 2528-hour dataset with diverse genres, instruments, tempos, and keys. Moreover, to facilitate the use of our proposed dataset, we conducted benchmark experiments in various open-sourced black-box and grey-box models, as well as white-box plugins. We also conducted ablation studies in different data subsets to illustrate the effectiveness of improved data diversity and quantity. The dataset and demos are on our project page: http://www.yichenggu.com/DiffSSLGComp/.
DPM-Solver-v3: Improved Diffusion ODE Solver with Empirical Model Statistics
Diffusion probabilistic models (DPMs) have exhibited excellent performance for high-fidelity image generation while suffering from inefficient sampling. Recent works accelerate the sampling procedure by proposing fast ODE solvers that leverage the specific ODE form of DPMs. However, they highly rely on specific parameterization during inference (such as noise/data prediction), which might not be the optimal choice. In this work, we propose a novel formulation towards the optimal parameterization during sampling that minimizes the first-order discretization error of the ODE solution. Based on such formulation, we propose DPM-Solver-v3, a new fast ODE solver for DPMs by introducing several coefficients efficiently computed on the pretrained model, which we call empirical model statistics. We further incorporate multistep methods and a predictor-corrector framework, and propose some techniques for improving sample quality at small numbers of function evaluations (NFE) or large guidance scales. Experiments show that DPM-Solver-v3 achieves consistently better or comparable performance in both unconditional and conditional sampling with both pixel-space and latent-space DPMs, especially in 5sim10 NFEs. We achieve FIDs of 12.21 (5 NFE), 2.51 (10 NFE) on unconditional CIFAR10, and MSE of 0.55 (5 NFE, 7.5 guidance scale) on Stable Diffusion, bringing a speed-up of 15\%sim30\% compared to previous state-of-the-art training-free methods. Code is available at https://github.com/thu-ml/DPM-Solver-v3.
Efficient Backpropagation with Variance-Controlled Adaptive Sampling
Sampling-based algorithms, which eliminate ''unimportant'' computations during forward and/or back propagation (BP), offer potential solutions to accelerate neural network training. However, since sampling introduces approximations to training, such algorithms may not consistently maintain accuracy across various tasks. In this work, we introduce a variance-controlled adaptive sampling (VCAS) method designed to accelerate BP. VCAS computes an unbiased stochastic gradient with fine-grained layerwise importance sampling in data dimension for activation gradient calculation and leverage score sampling in token dimension for weight gradient calculation. To preserve accuracy, we control the additional variance by learning the sample ratio jointly with model parameters during training. We assessed VCAS on multiple fine-tuning and pre-training tasks in both vision and natural language domains. On all the tasks, VCAS can preserve the original training loss trajectory and validation accuracy with an up to 73.87% FLOPs reduction of BP and 49.58% FLOPs reduction of the whole training process. The implementation is available at https://github.com/thu-ml/VCAS .
Efficient Prompting via Dynamic In-Context Learning
The primary way of building AI applications is shifting from training specialist models to prompting generalist models. A common practice for prompting generalist models, often referred to as in-context learning, is to append a few examples (demonstrations) to the prompt to help the model better understand the task. While effective, in-context learning can be inefficient because it makes the input prompt much longer, consuming valuable space in the context window and leading to larger computational costs. In this paper, we propose DynaICL, a recipe for efficient prompting with black-box generalist models that dynamically allocate in-context examples according to the input complexity and the computational budget. To achieve this, we train a meta controller that predicts the number of in-context examples suitable for the generalist model to make a good prediction based on the performance-efficiency trade-off for a specific input. We then dynamically allocate the number of demonstrations for an input according to predictions from the meta controller and the given computation budget. Experimental results show that dynamic example allocation helps achieve a better performance-efficiency trade-off in two practical settings where computational resources or the required performance is constrained. Specifically, DynaICL saves up to 46% token budget compared to the common practice that allocates the same number of in-context examples to each input. We also find that a meta controller trained on a certain backbone model and tasks can successfully generalize to unseen models and tasks.
On-Policy Policy Gradient Reinforcement Learning Without On-Policy Sampling
On-policy reinforcement learning (RL) algorithms perform policy updates using i.i.d. trajectories collected by the current policy. However, after observing only a finite number of trajectories, on-policy sampling may produce data that fails to match the expected on-policy data distribution. This sampling error leads to noisy updates and data inefficient on-policy learning. Recent work in the policy evaluation setting has shown that non-i.i.d., off-policy sampling can produce data with lower sampling error than on-policy sampling can produce. Motivated by this observation, we introduce an adaptive, off-policy sampling method to improve the data efficiency of on-policy policy gradient algorithms. Our method, Proximal Robust On-Policy Sampling (PROPS), reduces sampling error by collecting data with a behavior policy that increases the probability of sampling actions that are under-sampled with respect to the current policy. Rather than discarding data from old policies -- as is commonly done in on-policy algorithms -- PROPS uses data collection to adjust the distribution of previously collected data to be approximately on-policy. We empirically evaluate PROPS on both continuous-action MuJoCo benchmark tasks as well as discrete-action tasks and demonstrate that (1) PROPS decreases sampling error throughout training and (2) improves the data efficiency of on-policy policy gradient algorithms. Our work improves the RL community's understanding of a nuance in the on-policy vs off-policy dichotomy: on-policy learning requires on-policy data, not on-policy sampling.
Fast Sampling of Diffusion Models with Exponential Integrator
The past few years have witnessed the great success of Diffusion models~(DMs) in generating high-fidelity samples in generative modeling tasks. A major limitation of the DM is its notoriously slow sampling procedure which normally requires hundreds to thousands of time discretization steps of the learned diffusion process to reach the desired accuracy. Our goal is to develop a fast sampling method for DMs with a much less number of steps while retaining high sample quality. To this end, we systematically analyze the sampling procedure in DMs and identify key factors that affect the sample quality, among which the method of discretization is most crucial. By carefully examining the learned diffusion process, we propose Diffusion Exponential Integrator Sampler~(DEIS). It is based on the Exponential Integrator designed for discretizing ordinary differential equations (ODEs) and leverages a semilinear structure of the learned diffusion process to reduce the discretization error. The proposed method can be applied to any DMs and can generate high-fidelity samples in as few as 10 steps. In our experiments, it takes about 3 minutes on one A6000 GPU to generate 50k images from CIFAR10. Moreover, by directly using pre-trained DMs, we achieve the state-of-art sampling performance when the number of score function evaluation~(NFE) is limited, e.g., 4.17 FID with 10 NFEs, 3.37 FID, and 9.74 IS with only 15 NFEs on CIFAR10. Code is available at https://github.com/qsh-zh/deis
A Unified Sampling Framework for Solver Searching of Diffusion Probabilistic Models
Recent years have witnessed the rapid progress and broad application of diffusion probabilistic models (DPMs). Sampling from DPMs can be viewed as solving an ordinary differential equation (ODE). Despite the promising performance, the generation of DPMs usually consumes much time due to the large number of function evaluations (NFE). Though recent works have accelerated the sampling to around 20 steps with high-order solvers, the sample quality with less than 10 NFE can still be improved. In this paper, we propose a unified sampling framework (USF) to study the optional strategies for solver. Under this framework, we further reveal that taking different solving strategies at different timesteps may help further decrease the truncation error, and a carefully designed solver schedule has the potential to improve the sample quality by a large margin. Therefore, we propose a new sampling framework based on the exponential integral formulation that allows free choices of solver strategy at each step and design specific decisions for the framework. Moreover, we propose S^3, a predictor-based search method that automatically optimizes the solver schedule to get a better time-quality trade-off of sampling. We demonstrate that S^3 can find outstanding solver schedules which outperform the state-of-the-art sampling methods on CIFAR-10, CelebA, ImageNet, and LSUN-Bedroom datasets. Specifically, we achieve 2.69 FID with 10 NFE and 6.86 FID with 5 NFE on CIFAR-10 dataset, outperforming the SOTA method significantly. We further apply S^3 to Stable-Diffusion model and get an acceleration ratio of 2times, showing the feasibility of sampling in very few steps without retraining the neural network.
Contrastive Energy Prediction for Exact Energy-Guided Diffusion Sampling in Offline Reinforcement Learning
Guided sampling is a vital approach for applying diffusion models in real-world tasks that embeds human-defined guidance during the sampling procedure. This paper considers a general setting where the guidance is defined by an (unnormalized) energy function. The main challenge for this setting is that the intermediate guidance during the diffusion sampling procedure, which is jointly defined by the sampling distribution and the energy function, is unknown and is hard to estimate. To address this challenge, we propose an exact formulation of the intermediate guidance as well as a novel training objective named contrastive energy prediction (CEP) to learn the exact guidance. Our method is guaranteed to converge to the exact guidance under unlimited model capacity and data samples, while previous methods can not. We demonstrate the effectiveness of our method by applying it to offline reinforcement learning (RL). Extensive experiments on D4RL benchmarks demonstrate that our method outperforms existing state-of-the-art algorithms. We also provide some examples of applying CEP for image synthesis to demonstrate the scalability of CEP on high-dimensional data.
[MASK] is All You Need
In generative models, two paradigms have gained attraction in various applications: next-set prediction-based Masked Generative Models and next-noise prediction-based Non-Autoregressive Models, e.g., Diffusion Models. In this work, we propose using discrete-state models to connect them and explore their scalability in the vision domain. First, we conduct a step-by-step analysis in a unified design space across two types of models including timestep-independence, noise schedule, temperature, guidance strength, etc in a scalable manner. Second, we re-cast typical discriminative tasks, e.g., image segmentation, as an unmasking process from [MASK]tokens on a discrete-state model. This enables us to perform various sampling processes, including flexible conditional sampling by only training once to model the joint distribution. All aforementioned explorations lead to our framework named Discrete Interpolants, which enables us to achieve state-of-the-art or competitive performance compared to previous discrete-state based methods in various benchmarks, like ImageNet256, MS COCO, and video dataset FaceForensics. In summary, by leveraging [MASK] in discrete-state models, we can bridge Masked Generative and Non-autoregressive Diffusion models, as well as generative and discriminative tasks.
RayFlow: Instance-Aware Diffusion Acceleration via Adaptive Flow Trajectories
Diffusion models have achieved remarkable success across various domains. However, their slow generation speed remains a critical challenge. Existing acceleration methods, while aiming to reduce steps, often compromise sample quality, controllability, or introduce training complexities. Therefore, we propose RayFlow, a novel diffusion framework that addresses these limitations. Unlike previous methods, RayFlow guides each sample along a unique path towards an instance-specific target distribution. This method minimizes sampling steps while preserving generation diversity and stability. Furthermore, we introduce Time Sampler, an importance sampling technique to enhance training efficiency by focusing on crucial timesteps. Extensive experiments demonstrate RayFlow's superiority in generating high-quality images with improved speed, control, and training efficiency compared to existing acceleration techniques.
Coefficients-Preserving Sampling for Reinforcement Learning with Flow Matching
Reinforcement Learning (RL) has recently emerged as a powerful technique for improving image and video generation in Diffusion and Flow Matching models, specifically for enhancing output quality and alignment with prompts. A critical step for applying online RL methods on Flow Matching is the introduction of stochasticity into the deterministic framework, commonly realized by Stochastic Differential Equation (SDE). Our investigation reveals a significant drawback to this approach: SDE-based sampling introduces pronounced noise artifacts in the generated images, which we found to be detrimental to the reward learning process. A rigorous theoretical analysis traces the origin of this noise to an excess of stochasticity injected during inference. To address this, we draw inspiration from Denoising Diffusion Implicit Models (DDIM) to reformulate the sampling process. Our proposed method, Coefficients-Preserving Sampling (CPS), eliminates these noise artifacts. This leads to more accurate reward modeling, ultimately enabling faster and more stable convergence for reinforcement learning-based optimizers like Flow-GRPO and Dance-GRPO. Code will be released at https://github.com/IamCreateAI/FlowCPS
User-defined Event Sampling and Uncertainty Quantification in Diffusion Models for Physical Dynamical Systems
Diffusion models are a class of probabilistic generative models that have been widely used as a prior for image processing tasks like text conditional generation and inpainting. We demonstrate that these models can be adapted to make predictions and provide uncertainty quantification for chaotic dynamical systems. In these applications, diffusion models can implicitly represent knowledge about outliers and extreme events; however, querying that knowledge through conditional sampling or measuring probabilities is surprisingly difficult. Existing methods for conditional sampling at inference time seek mainly to enforce the constraints, which is insufficient to match the statistics of the distribution or compute the probability of the chosen events. To achieve these ends, optimally one would use the conditional score function, but its computation is typically intractable. In this work, we develop a probabilistic approximation scheme for the conditional score function which provably converges to the true distribution as the noise level decreases. With this scheme we are able to sample conditionally on nonlinear userdefined events at inference time, and matches data statistics even when sampling from the tails of the distribution.
GUIDE: Guidance-based Incremental Learning with Diffusion Models
We introduce GUIDE, a novel continual learning approach that directs diffusion models to rehearse samples at risk of being forgotten. Existing generative strategies combat catastrophic forgetting by randomly sampling rehearsal examples from a generative model. Such an approach contradicts buffer-based approaches where sampling strategy plays an important role. We propose to bridge this gap by incorporating classifier guidance into the diffusion process to produce rehearsal examples specifically targeting information forgotten by a continuously trained model. This approach enables the generation of samples from preceding task distributions, which are more likely to be misclassified in the context of recently encountered classes. Our experimental results show that GUIDE significantly reduces catastrophic forgetting, outperforming conventional random sampling approaches and surpassing recent state-of-the-art methods in continual learning with generative replay.
Accelerating Convergence of Score-Based Diffusion Models, Provably
Score-based diffusion models, while achieving remarkable empirical performance, often suffer from low sampling speed, due to extensive function evaluations needed during the sampling phase. Despite a flurry of recent activities towards speeding up diffusion generative modeling in practice, theoretical underpinnings for acceleration techniques remain severely limited. In this paper, we design novel training-free algorithms to accelerate popular deterministic (i.e., DDIM) and stochastic (i.e., DDPM) samplers. Our accelerated deterministic sampler converges at a rate O(1/{T}^2) with T the number of steps, improving upon the O(1/T) rate for the DDIM sampler; and our accelerated stochastic sampler converges at a rate O(1/T), outperforming the rate O(1/T) for the DDPM sampler. The design of our algorithms leverages insights from higher-order approximation, and shares similar intuitions as popular high-order ODE solvers like the DPM-Solver-2. Our theory accommodates ell_2-accurate score estimates, and does not require log-concavity or smoothness on the target distribution.
Controllable Music Production with Diffusion Models and Guidance Gradients
We demonstrate how conditional generation from diffusion models can be used to tackle a variety of realistic tasks in the production of music in 44.1kHz stereo audio with sampling-time guidance. The scenarios we consider include continuation, inpainting and regeneration of musical audio, the creation of smooth transitions between two different music tracks, and the transfer of desired stylistic characteristics to existing audio clips. We achieve this by applying guidance at sampling time in a simple framework that supports both reconstruction and classification losses, or any combination of the two. This approach ensures that generated audio can match its surrounding context, or conform to a class distribution or latent representation specified relative to any suitable pre-trained classifier or embedding model.
Efficient estimation of multiple expectations with the same sample by adaptive importance sampling and control variates
Some classical uncertainty quantification problems require the estimation of multiple expectations. Estimating all of them accurately is crucial and can have a major impact on the analysis to perform, and standard existing Monte Carlo methods can be costly to do so. We propose here a new procedure based on importance sampling and control variates for estimating more efficiently multiple expectations with the same sample. We first show that there exists a family of optimal estimators combining both importance sampling and control variates, which however cannot be used in practice because they require the knowledge of the values of the expectations to estimate. Motivated by the form of these optimal estimators and some interesting properties, we therefore propose an adaptive algorithm. The general idea is to adaptively update the parameters of the estimators for approaching the optimal ones. We suggest then a quantitative stopping criterion that exploits the trade-off between approaching these optimal parameters and having a sufficient budget left. This left budget is then used to draw a new independent sample from the final sampling distribution, allowing to get unbiased estimators of the expectations. We show how to apply our procedure to sensitivity analysis, by estimating Sobol' indices and quantifying the impact of the input distributions. Finally, realistic test cases show the practical interest of the proposed algorithm, and its significant improvement over estimating the expectations separately.
Adjoint Matching: Fine-tuning Flow and Diffusion Generative Models with Memoryless Stochastic Optimal Control
Dynamical generative models that produce samples through an iterative process, such as Flow Matching and denoising diffusion models, have seen widespread use, but there have not been many theoretically-sound methods for improving these models with reward fine-tuning. In this work, we cast reward fine-tuning as stochastic optimal control (SOC). Critically, we prove that a very specific memoryless noise schedule must be enforced during fine-tuning, in order to account for the dependency between the noise variable and the generated samples. We also propose a new algorithm named Adjoint Matching which outperforms existing SOC algorithms, by casting SOC problems as a regression problem. We find that our approach significantly improves over existing methods for reward fine-tuning, achieving better consistency, realism, and generalization to unseen human preference reward models, while retaining sample diversity.
Leveraging Demonstrations to Improve Online Learning: Quality Matters
We investigate the extent to which offline demonstration data can improve online learning. It is natural to expect some improvement, but the question is how, and by how much? We show that the degree of improvement must depend on the quality of the demonstration data. To generate portable insights, we focus on Thompson sampling (TS) applied to a multi-armed bandit as a prototypical online learning algorithm and model. The demonstration data is generated by an expert with a given competence level, a notion we introduce. We propose an informed TS algorithm that utilizes the demonstration data in a coherent way through Bayes' rule and derive a prior-dependent Bayesian regret bound. This offers insight into how pretraining can greatly improve online performance and how the degree of improvement increases with the expert's competence level. We also develop a practical, approximate informed TS algorithm through Bayesian bootstrapping and show substantial empirical regret reduction through experiments.
Efficient Integrators for Diffusion Generative Models
Diffusion models suffer from slow sample generation at inference time. Therefore, developing a principled framework for fast deterministic/stochastic sampling for a broader class of diffusion models is a promising direction. We propose two complementary frameworks for accelerating sample generation in pre-trained models: Conjugate Integrators and Splitting Integrators. Conjugate integrators generalize DDIM, mapping the reverse diffusion dynamics to a more amenable space for sampling. In contrast, splitting-based integrators, commonly used in molecular dynamics, reduce the numerical simulation error by cleverly alternating between numerical updates involving the data and auxiliary variables. After extensively studying these methods empirically and theoretically, we present a hybrid method that leads to the best-reported performance for diffusion models in augmented spaces. Applied to Phase Space Langevin Diffusion [Pandey & Mandt, 2023] on CIFAR-10, our deterministic and stochastic samplers achieve FID scores of 2.11 and 2.36 in only 100 network function evaluations (NFE) as compared to 2.57 and 2.63 for the best-performing baselines, respectively. Our code and model checkpoints will be made publicly available at https://github.com/mandt-lab/PSLD.
Exploiting Causal Graph Priors with Posterior Sampling for Reinforcement Learning
Posterior sampling allows the exploitation of prior knowledge of the environment's transition dynamics to improve the sample efficiency of reinforcement learning. The prior is typically specified as a class of parametric distributions, a task that can be cumbersome in practice, often resulting in the choice of uninformative priors. In this work, we propose a novel posterior sampling approach in which the prior is given as a (partial) causal graph over the environment's variables. The latter is often more natural to design, such as listing known causal dependencies between biometric features in a medical treatment study. Specifically, we propose a hierarchical Bayesian procedure, called C-PSRL, simultaneously learning the full causal graph at the higher level and the parameters of the resulting factored dynamics at the lower level. For this procedure, we provide an analysis of its Bayesian regret, which explicitly connects the regret rate with the degree of prior knowledge. Our numerical evaluation conducted in illustrative domains confirms that C-PSRL strongly improves the efficiency of posterior sampling with an uninformative prior while performing close to posterior sampling with the full causal graph.
Domain Randomization via Entropy Maximization
Varying dynamics parameters in simulation is a popular Domain Randomization (DR) approach for overcoming the reality gap in Reinforcement Learning (RL). Nevertheless, DR heavily hinges on the choice of the sampling distribution of the dynamics parameters, since high variability is crucial to regularize the agent's behavior but notoriously leads to overly conservative policies when randomizing excessively. In this paper, we propose a novel approach to address sim-to-real transfer, which automatically shapes dynamics distributions during training in simulation without requiring real-world data. We introduce DOmain RAndomization via Entropy MaximizatiON (DORAEMON), a constrained optimization problem that directly maximizes the entropy of the training distribution while retaining generalization capabilities. In achieving this, DORAEMON gradually increases the diversity of sampled dynamics parameters as long as the probability of success of the current policy is sufficiently high. We empirically validate the consistent benefits of DORAEMON in obtaining highly adaptive and generalizable policies, i.e. solving the task at hand across the widest range of dynamics parameters, as opposed to representative baselines from the DR literature. Notably, we also demonstrate the Sim2Real applicability of DORAEMON through its successful zero-shot transfer in a robotic manipulation setup under unknown real-world parameters.
Transition Models: Rethinking the Generative Learning Objective
A fundamental dilemma in generative modeling persists: iterative diffusion models achieve outstanding fidelity, but at a significant computational cost, while efficient few-step alternatives are constrained by a hard quality ceiling. This conflict between generation steps and output quality arises from restrictive training objectives that focus exclusively on either infinitesimal dynamics (PF-ODEs) or direct endpoint prediction. We address this challenge by introducing an exact, continuous-time dynamics equation that analytically defines state transitions across any finite time interval. This leads to a novel generative paradigm, Transition Models (TiM), which adapt to arbitrary-step transitions, seamlessly traversing the generative trajectory from single leaps to fine-grained refinement with more steps. Despite having only 865M parameters, TiM achieves state-of-the-art performance, surpassing leading models such as SD3.5 (8B parameters) and FLUX.1 (12B parameters) across all evaluated step counts. Importantly, unlike previous few-step generators, TiM demonstrates monotonic quality improvement as the sampling budget increases. Additionally, when employing our native-resolution strategy, TiM delivers exceptional fidelity at resolutions up to 4096x4096.
Flaming-hot Initiation with Regular Execution Sampling for Large Language Models
Since the release of ChatGPT, large language models (LLMs) have demonstrated remarkable capabilities across various domains. A key challenge in developing these general capabilities is efficiently sourcing diverse, high-quality data. This becomes especially critical in reasoning-related tasks with sandbox checkers, such as math or code, where the goal is to generate correct solutions to specific problems with higher probability. In this work, we introduce Flaming-hot Initiation with Regular Execution (FIRE) sampling, a simple yet highly effective method to efficiently find good responses. Our empirical findings show that FIRE sampling enhances inference-time generation quality and also benefits training in the alignment stage. Furthermore, we explore how FIRE sampling improves performance by promoting diversity and analyze the impact of employing FIRE at different positions within a response.
Fast Inference in Denoising Diffusion Models via MMD Finetuning
Denoising Diffusion Models (DDMs) have become a popular tool for generating high-quality samples from complex data distributions. These models are able to capture sophisticated patterns and structures in the data, and can generate samples that are highly diverse and representative of the underlying distribution. However, one of the main limitations of diffusion models is the complexity of sample generation, since a large number of inference timesteps is required to faithfully capture the data distribution. In this paper, we present MMD-DDM, a novel method for fast sampling of diffusion models. Our approach is based on the idea of using the Maximum Mean Discrepancy (MMD) to finetune the learned distribution with a given budget of timesteps. This allows the finetuned model to significantly improve the speed-quality trade-off, by substantially increasing fidelity in inference regimes with few steps or, equivalently, by reducing the required number of steps to reach a target fidelity, thus paving the way for a more practical adoption of diffusion models in a wide range of applications. We evaluate our approach on unconditional image generation with extensive experiments across the CIFAR-10, CelebA, ImageNet and LSUN-Church datasets. Our findings show that the proposed method is able to produce high-quality samples in a fraction of the time required by widely-used diffusion models, and outperforms state-of-the-art techniques for accelerated sampling. Code is available at: https://github.com/diegovalsesia/MMD-DDM.
Stochastic interpolants with data-dependent couplings
Generative models inspired by dynamical transport of measure -- such as flows and diffusions -- construct a continuous-time map between two probability densities. Conventionally, one of these is the target density, only accessible through samples, while the other is taken as a simple base density that is data-agnostic. In this work, using the framework of stochastic interpolants, we formalize how to couple the base and the target densities. This enables us to incorporate information about class labels or continuous embeddings to construct dynamical transport maps that serve as conditional generative models. We show that these transport maps can be learned by solving a simple square loss regression problem analogous to the standard independent setting. We demonstrate the usefulness of constructing dependent couplings in practice through experiments in super-resolution and in-painting.
Enhancing Score-Based Sampling Methods with Ensembles
We introduce ensembles within score-based sampling methods to develop gradient-free approximate sampling techniques that leverage the collective dynamics of particle ensembles to compute approximate reverse diffusion drifts. We introduce the underlying methodology, emphasizing its relationship with generative diffusion models and the previously introduced F\"ollmer sampler. We demonstrate the efficacy of ensemble strategies through various examples, ranging from low- to medium-dimensionality sampling problems, including multi-modal and highly non-Gaussian probability distributions, and provide comparisons to traditional methods like NUTS. Our findings highlight the potential of ensemble strategies for modeling complex probability distributions in situations where gradients are unavailable. Finally, we showcase its application in the context of Bayesian inversion problems within the geophysical sciences.
Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding
Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences. However, rather than merely generating designs that are natural, we often aim to optimize downstream reward functions while preserving the naturalness of these design spaces. Existing methods for achieving this goal often require ``differentiable'' proxy models (e.g., classifier guidance or DPS) or involve computationally expensive fine-tuning of diffusion models (e.g., classifier-free guidance, RL-based fine-tuning). In our work, we propose a new method to address these challenges. Our algorithm is an iterative sampling method that integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future, into the standard inference procedure of pre-trained diffusion models. Notably, our approach avoids fine-tuning generative models and eliminates the need to construct differentiable models. This enables us to (1) directly utilize non-differentiable features/reward feedback, commonly used in many scientific domains, and (2) apply our method to recent discrete diffusion models in a principled way. Finally, we demonstrate the effectiveness of our algorithm across several domains, including image generation, molecule generation, and DNA/RNA sequence generation. The code is available at https://github.com/masa-ue/SVDD{https://github.com/masa-ue/SVDD}.
Parallel Sampling of Diffusion Models
Diffusion models are powerful generative models but suffer from slow sampling, often taking 1000 sequential denoising steps for one sample. As a result, considerable efforts have been directed toward reducing the number of denoising steps, but these methods hurt sample quality. Instead of reducing the number of denoising steps (trading quality for speed), in this paper we explore an orthogonal approach: can we run the denoising steps in parallel (trading compute for speed)? In spite of the sequential nature of the denoising steps, we show that surprisingly it is possible to parallelize sampling via Picard iterations, by guessing the solution of future denoising steps and iteratively refining until convergence. With this insight, we present ParaDiGMS, a novel method to accelerate the sampling of pretrained diffusion models by denoising multiple steps in parallel. ParaDiGMS is the first diffusion sampling method that enables trading compute for speed and is even compatible with existing fast sampling techniques such as DDIM and DPMSolver. Using ParaDiGMS, we improve sampling speed by 2-4x across a range of robotics and image generation models, giving state-of-the-art sampling speeds of 0.2s on 100-step DiffusionPolicy and 16s on 1000-step StableDiffusion-v2 with no measurable degradation of task reward, FID score, or CLIP score.
Weighted least-squares approximation with determinantal point processes and generalized volume sampling
We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.
CADS: Unleashing the Diversity of Diffusion Models through Condition-Annealed Sampling
While conditional diffusion models are known to have good coverage of the data distribution, they still face limitations in output diversity, particularly when sampled with a high classifier-free guidance scale for optimal image quality or when trained on small datasets. We attribute this problem to the role of the conditioning signal in inference and offer an improved sampling strategy for diffusion models that can increase generation diversity, especially at high guidance scales, with minimal loss of sample quality. Our sampling strategy anneals the conditioning signal by adding scheduled, monotonically decreasing Gaussian noise to the conditioning vector during inference to balance diversity and condition alignment. Our Condition-Annealed Diffusion Sampler (CADS) can be used with any pretrained model and sampling algorithm, and we show that it boosts the diversity of diffusion models in various conditional generation tasks. Further, using an existing pretrained diffusion model, CADS achieves a new state-of-the-art FID of 1.70 and 2.31 for class-conditional ImageNet generation at 256times256 and 512times512 respectively.
A Survey on Principles, Models and Methods for Learning from Irregularly Sampled Time Series
Irregularly sampled time series data arise naturally in many application domains including biology, ecology, climate science, astronomy, and health. Such data represent fundamental challenges to many classical models from machine learning and statistics due to the presence of non-uniform intervals between observations. However, there has been significant progress within the machine learning community over the last decade on developing specialized models and architectures for learning from irregularly sampled univariate and multivariate time series data. In this survey, we first describe several axes along which approaches to learning from irregularly sampled time series differ including what data representations they are based on, what modeling primitives they leverage to deal with the fundamental problem of irregular sampling, and what inference tasks they are designed to perform. We then survey the recent literature organized primarily along the axis of modeling primitives. We describe approaches based on temporal discretization, interpolation, recurrence, attention and structural invariance. We discuss similarities and differences between approaches and highlight primary strengths and weaknesses.
Improved Active Learning via Dependent Leverage Score Sampling
We show how to obtain improved active learning methods in the agnostic (adversarial noise) setting by combining marginal leverage score sampling with non-independent sampling strategies that promote spatial coverage. In particular, we propose an easily implemented method based on the pivotal sampling algorithm, which we test on problems motivated by learning-based methods for parametric PDEs and uncertainty quantification. In comparison to independent sampling, our method reduces the number of samples needed to reach a given target accuracy by up to 50%. We support our findings with two theoretical results. First, we show that any non-independent leverage score sampling method that obeys a weak one-sided ell_{infty} independence condition (which includes pivotal sampling) can actively learn d dimensional linear functions with O(dlog d) samples, matching independent sampling. This result extends recent work on matrix Chernoff bounds under ell_{infty} independence, and may be of interest for analyzing other sampling strategies beyond pivotal sampling. Second, we show that, for the important case of polynomial regression, our pivotal method obtains an improved bound of O(d) samples.
infty-Diff: Infinite Resolution Diffusion with Subsampled Mollified States
We introduce infty-Diff, a generative diffusion model which directly operates on infinite resolution data. By randomly sampling subsets of coordinates during training and learning to denoise the content at those coordinates, a continuous function is learned that allows sampling at arbitrary resolutions. In contrast to other recent infinite resolution generative models, our approach operates directly on the raw data, not requiring latent vector compression for context, using hypernetworks, nor relying on discrete components. As such, our approach achieves significantly higher sample quality, as evidenced by lower FID scores, as well as being able to effectively scale to higher resolutions than the training data while retaining detail.
SMR: State Memory Replay for Long Sequence Modeling
Despite the promising performance of state space models (SSMs) in long sequence modeling, limitations still exist. Advanced SSMs like S5 and S6 (Mamba) in addressing non-uniform sampling, their recursive structures impede efficient SSM computation via convolution. To overcome compatibility limitations in parallel convolutional computation, this paper proposes a novel non-recursive non-uniform sample processing strategy. Theoretical analysis of SSMs through the lens of Event-Triggered Control (ETC) theory reveals the Non-Stable State (NSS) problem, where deviations from sampling point requirements lead to error transmission and accumulation, causing the divergence of the SSM's hidden state. Our analysis further reveals that adjustments of input sequences with early memories can mitigate the NSS problem, achieving Sampling Step Adaptation (SSA). Building on this insight, we introduce a simple yet effective plug-and-play mechanism, State Memory Replay (SMR), which utilizes learnable memories to adjust the current state with multi-step information for generalization at sampling points different from those in the training data. This enables SSMs to stably model varying sampling points. Experiments on long-range modeling tasks in autoregressive language modeling and Long Range Arena demonstrate the general effectiveness of the SMR mechanism for a series of SSM models.
CarBoN: Calibrated Best-of-N Sampling Improves Test-time Reasoning
Allocating more computation during inference time (test-time scaling) improves language model performance, especially for reasoning tasks. However, popular methods like Best-of-N sampling often show diminishing returns as N increases. To address this inefficiency, we introduce a general test-time calibration framework that adaptively modifies the model toward high-reward reasoning paths, with theoretical guarantees of improving the lower bound of expected reward under finite sampling, all without large language model (LLM) retraining. Within this framework, we propose CarBoN (Calibrated Best-of-N), a two-phase method that first explores the solution space and then learns a calibration of the logits via an input-specific temperature T and additive shift vector delta, guiding generation toward more reliable reasoning. Experiments on MATH-500 and AIME-2024 show that CarBoN improves efficiency, with up to 4times fewer rollouts to reach the same accuracy, while often achieving higher accuracy under fixed budgets. We also analyze the complementary roles of T and delta in balancing output diversity and correctness, and demonstrate that the framework also generalizes to step-level sampling strategies such as beam search. For more information, please refer to our project page at huggingface.co/spaces/TrustSafeAI/Test-Time-Calibration.
Automated Dynamic Algorithm Configuration
The performance of an algorithm often critically depends on its parameter configuration. While a variety of automated algorithm configuration methods have been proposed to relieve users from the tedious and error-prone task of manually tuning parameters, there is still a lot of untapped potential as the learned configuration is static, i.e., parameter settings remain fixed throughout the run. However, it has been shown that some algorithm parameters are best adjusted dynamically during execution, e.g., to adapt to the current part of the optimization landscape. Thus far, this is most commonly achieved through hand-crafted heuristics. A promising recent alternative is to automatically learn such dynamic parameter adaptation policies from data. In this article, we give the first comprehensive account of this new field of automated dynamic algorithm configuration (DAC), present a series of recent advances, and provide a solid foundation for future research in this field. Specifically, we (i) situate DAC in the broader historical context of AI research; (ii) formalize DAC as a computational problem; (iii) identify the methods used in prior-art to tackle this problem; (iv) conduct empirical case studies for using DAC in evolutionary optimization, AI planning, and machine learning.
Split Gibbs Discrete Diffusion Posterior Sampling
We study the problem of posterior sampling in discrete-state spaces using discrete diffusion models. While posterior sampling methods for continuous diffusion models have achieved remarkable progress, analogous methods for discrete diffusion models remain challenging. In this work, we introduce a principled plug-and-play discrete diffusion posterior sampling algorithm based on split Gibbs sampling, which we call SG-DPS. Our algorithm enables reward-guided generation and solving inverse problems in discrete-state spaces. We demonstrate that SG-DPS converges to the true posterior distribution on synthetic benchmarks, and enjoys state-of-the-art posterior sampling performance on a range of benchmarks for discrete data, achieving up to 2x improved performance compared to existing baselines.
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
We present a new algorithm to optimize distributions defined implicitly by parameterized stochastic diffusions. Doing so allows us to modify the outcome distribution of sampling processes by optimizing over their parameters. We introduce a general framework for first-order optimization of these processes, that performs jointly, in a single loop, optimization and sampling steps. This approach is inspired by recent advances in bilevel optimization and automatic implicit differentiation, leveraging the point of view of sampling as optimization over the space of probability distributions. We provide theoretical guarantees on the performance of our method, as well as experimental results demonstrating its effectiveness in real-world settings.
Learning to Discretize Denoising Diffusion ODEs
Diffusion Probabilistic Models (DPMs) are generative models showing competitive performance in various domains, including image synthesis and 3D point cloud generation. Sampling from pre-trained DPMs involves multiple neural function evaluations (NFEs) to transform Gaussian noise samples into images, resulting in higher computational costs compared to single-step generative models such as GANs or VAEs. Therefore, reducing the number of NFEs while preserving generation quality is crucial. To address this, we propose LD3, a lightweight framework designed to learn the optimal time discretization for sampling. LD3 can be combined with various samplers and consistently improves generation quality without having to retrain resource-intensive neural networks. We demonstrate analytically and empirically that LD3 improves sampling efficiency with much less computational overhead. We evaluate our method with extensive experiments on 7 pre-trained models, covering unconditional and conditional sampling in both pixel-space and latent-space DPMs. We achieve FIDs of 2.38 (10 NFE), and 2.27 (10 NFE) on unconditional CIFAR10 and AFHQv2 in 5-10 minutes of training. LD3 offers an efficient approach to sampling from pre-trained diffusion models. Code is available at https://github.com/vinhsuhi/LD3.
Stim: a fast stabilizer circuit simulator
This paper presents ``Stim", a fast simulator for quantum stabilizer circuits. The paper explains how Stim works and compares it to existing tools. With no foreknowledge, Stim can analyze a distance 100 surface code circuit (20 thousand qubits, 8 million gates, 1 million measurements) in 15 seconds and then begin sampling full circuit shots at a rate of 1 kHz. Stim uses a stabilizer tableau representation, similar to Aaronson and Gottesman's CHP simulator, but with three main improvements. First, Stim improves the asymptotic complexity of deterministic measurement from quadratic to linear by tracking the {\em inverse} of the circuit's stabilizer tableau. Second, Stim improves the constant factors of the algorithm by using a cache-friendly data layout and 256 bit wide SIMD instructions. Third, Stim only uses expensive stabilizer tableau simulation to create an initial reference sample. Further samples are collected in bulk by using that sample as a reference for batches of Pauli frames propagating through the circuit.
MotionDiffuser: Controllable Multi-Agent Motion Prediction using Diffusion
We present MotionDiffuser, a diffusion based representation for the joint distribution of future trajectories over multiple agents. Such representation has several key advantages: first, our model learns a highly multimodal distribution that captures diverse future outcomes. Second, the simple predictor design requires only a single L2 loss training objective, and does not depend on trajectory anchors. Third, our model is capable of learning the joint distribution for the motion of multiple agents in a permutation-invariant manner. Furthermore, we utilize a compressed trajectory representation via PCA, which improves model performance and allows for efficient computation of the exact sample log probability. Subsequently, we propose a general constrained sampling framework that enables controlled trajectory sampling based on differentiable cost functions. This strategy enables a host of applications such as enforcing rules and physical priors, or creating tailored simulation scenarios. MotionDiffuser can be combined with existing backbone architectures to achieve top motion forecasting results. We obtain state-of-the-art results for multi-agent motion prediction on the Waymo Open Motion Dataset.
Dynamical Linear Bandits
In many real-world sequential decision-making problems, an action does not immediately reflect on the feedback and spreads its effects over a long time frame. For instance, in online advertising, investing in a platform produces an instantaneous increase of awareness, but the actual reward, i.e., a conversion, might occur far in the future. Furthermore, whether a conversion takes place depends on: how fast the awareness grows, its vanishing effects, and the synergy or interference with other advertising platforms. Previous work has investigated the Multi-Armed Bandit framework with the possibility of delayed and aggregated feedback, without a particular structure on how an action propagates in the future, disregarding possible dynamical effects. In this paper, we introduce a novel setting, the Dynamical Linear Bandits (DLB), an extension of the linear bandits characterized by a hidden state. When an action is performed, the learner observes a noisy reward whose mean is a linear function of the hidden state and of the action. Then, the hidden state evolves according to linear dynamics, affected by the performed action too. We start by introducing the setting, discussing the notion of optimal policy, and deriving an expected regret lower bound. Then, we provide an optimistic regret minimization algorithm, Dynamical Linear Upper Confidence Bound (DynLin-UCB), that suffers an expected regret of order mathcal{O} Big( d sqrt{T}{(1-rho)^{3/2}} Big), where rho is a measure of the stability of the system, and d is the dimension of the action vector. Finally, we conduct a numerical validation on a synthetic environment and on real-world data to show the effectiveness of DynLin-UCB in comparison with several baselines.
Neural Continuous-Discrete State Space Models for Irregularly-Sampled Time Series
Learning accurate predictive models of real-world dynamic phenomena (e.g., climate, biological) remains a challenging task. One key issue is that the data generated by both natural and artificial processes often comprise time series that are irregularly sampled and/or contain missing observations. In this work, we propose the Neural Continuous-Discrete State Space Model (NCDSSM) for continuous-time modeling of time series through discrete-time observations. NCDSSM employs auxiliary variables to disentangle recognition from dynamics, thus requiring amortized inference only for the auxiliary variables. Leveraging techniques from continuous-discrete filtering theory, we demonstrate how to perform accurate Bayesian inference for the dynamic states. We propose three flexible parameterizations of the latent dynamics and an efficient training objective that marginalizes the dynamic states during inference. Empirical results on multiple benchmark datasets across various domains show improved imputation and forecasting performance of NCDSSM over existing models.
DYNOTEARS: Structure Learning from Time-Series Data
We revisit the structure learning problem for dynamic Bayesian networks and propose a method that simultaneously estimates contemporaneous (intra-slice) and time-lagged (inter-slice) relationships between variables in a time-series. Our approach is score-based, and revolves around minimizing a penalized loss subject to an acyclicity constraint. To solve this problem, we leverage a recent algebraic result characterizing the acyclicity constraint as a smooth equality constraint. The resulting algorithm, which we call DYNOTEARS, outperforms other methods on simulated data, especially in high-dimensions as the number of variables increases. We also apply this algorithm on real datasets from two different domains, finance and molecular biology, and analyze the resulting output. Compared to state-of-the-art methods for learning dynamic Bayesian networks, our method is both scalable and accurate on real data. The simple formulation and competitive performance of our method make it suitable for a variety of problems where one seeks to learn connections between variables across time.
Chaos as an interpretable benchmark for forecasting and data-driven modelling
The striking fractal geometry of strange attractors underscores the generative nature of chaos: like probability distributions, chaotic systems can be repeatedly measured to produce arbitrarily-detailed information about the underlying attractor. Chaotic systems thus pose a unique challenge to modern statistical learning techniques, while retaining quantifiable mathematical properties that make them controllable and interpretable as benchmarks. Here, we present a growing database currently comprising 131 known chaotic dynamical systems spanning fields such as astrophysics, climatology, and biochemistry. Each system is paired with precomputed multivariate and univariate time series. Our dataset has comparable scale to existing static time series databases; however, our systems can be re-integrated to produce additional datasets of arbitrary length and granularity. Our dataset is annotated with known mathematical properties of each system, and we perform feature analysis to broadly categorize the diverse dynamics present across the collection. Chaotic systems inherently challenge forecasting models, and across extensive benchmarks we correlate forecasting performance with the degree of chaos present. We also exploit the unique generative properties of our dataset in several proof-of-concept experiments: surrogate transfer learning to improve time series classification, importance sampling to accelerate model training, and benchmarking symbolic regression algorithms.
Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic Analysis For DDIM-Type Samplers
We develop a framework for non-asymptotic analysis of deterministic samplers used for diffusion generative modeling. Several recent works have analyzed stochastic samplers using tools like Girsanov's theorem and a chain rule variant of the interpolation argument. Unfortunately, these techniques give vacuous bounds when applied to deterministic samplers. We give a new operational interpretation for deterministic sampling by showing that one step along the probability flow ODE can be expressed as two steps: 1) a restoration step that runs gradient ascent on the conditional log-likelihood at some infinitesimally previous time, and 2) a degradation step that runs the forward process using noise pointing back towards the current iterate. This perspective allows us to extend denoising diffusion implicit models to general, non-linear forward processes. We then develop the first polynomial convergence bounds for these samplers under mild conditions on the data distribution.
Robust Budget Pacing with a Single Sample
Major Internet advertising platforms offer budget pacing tools as a standard service for advertisers to manage their ad campaigns. Given the inherent non-stationarity in an advertiser's value and also competing advertisers' values over time, a commonly used approach is to learn a target expenditure plan that specifies a target spend as a function of time, and then run a controller that tracks this plan. This raises the question: how many historical samples are required to learn a good expenditure plan? We study this question by considering an advertiser repeatedly participating in T second-price auctions, where the tuple of her value and the highest competing bid is drawn from an unknown time-varying distribution. The advertiser seeks to maximize her total utility subject to her budget constraint. Prior work has shown the sufficiency of Tlog T samples per distribution to achieve the optimal O(T)-regret. We dramatically improve this state-of-the-art and show that just one sample per distribution is enough to achieve the near-optimal tilde O(T)-regret, while still being robust to noise in the sampling distributions.
Learning Collective Variables for Protein Folding with Labeled Data Augmentation through Geodesic Interpolation
In molecular dynamics (MD) simulations, rare events, such as protein folding, are typically studied by means of enhanced sampling techniques, most of which rely on the definition of a collective variable (CV) along which the acceleration occurs. Obtaining an expressive CV is crucial, but often hindered by the lack of information about the particular event, e.g., the transition from unfolded to folded conformation. We propose a simulation-free data augmentation strategy using physics-inspired metrics to generate geodesic interpolations resembling protein folding transitions, thereby improving sampling efficiency without true transition state samples. Leveraging interpolation progress parameters, we introduce a regression-based learning scheme for CV models, which outperforms classifier-based methods when transition state data is limited and noisy
Train-Once Plan-Anywhere Kinodynamic Motion Planning via Diffusion Trees
Kinodynamic motion planning is concerned with computing collision-free trajectories while abiding by the robot's dynamic constraints. This critical problem is often tackled using sampling-based planners (SBPs) that explore the robot's high-dimensional state space by constructing a search tree via action propagations. Although SBPs can offer global guarantees on completeness and solution quality, their performance is often hindered by slow exploration due to uninformed action sampling. Learning-based approaches can yield significantly faster runtimes, yet they fail to generalize to out-of-distribution (OOD) scenarios and lack critical guarantees, e.g., safety, thus limiting their deployment on physical robots. We present Diffusion Tree (DiTree): a provably-generalizable framework leveraging diffusion policies (DPs) as informed samplers to efficiently guide state-space search within SBPs. DiTree combines DP's ability to model complex distributions of expert trajectories, conditioned on local observations, with the completeness of SBPs to yield provably-safe solutions within a few action propagation iterations for complex dynamical systems. We demonstrate DiTree's power with an implementation combining the popular RRT planner with a DP action sampler trained on a single environment. In comprehensive evaluations on OOD scenarios, % DiTree has comparable runtimes to a standalone DP (3x faster than classical SBPs), while improving the average success rate over DP and SBPs. DiTree is on average 3x faster than classical SBPs, and outperforms all other approaches by achieving roughly 30\% higher success rate. Project webpage: https://sites.google.com/view/ditree.
Evaluation of Text-to-Video Generation Models: A Dynamics Perspective
Comprehensive and constructive evaluation protocols play an important role in the development of sophisticated text-to-video (T2V) generation models. Existing evaluation protocols primarily focus on temporal consistency and content continuity, yet largely ignore the dynamics of video content. Dynamics are an essential dimension for measuring the visual vividness and the honesty of video content to text prompts. In this study, we propose an effective evaluation protocol, termed DEVIL, which centers on the dynamics dimension to evaluate T2V models. For this purpose, we establish a new benchmark comprising text prompts that fully reflect multiple dynamics grades, and define a set of dynamics scores corresponding to various temporal granularities to comprehensively evaluate the dynamics of each generated video. Based on the new benchmark and the dynamics scores, we assess T2V models with the design of three metrics: dynamics range, dynamics controllability, and dynamics-based quality. Experiments show that DEVIL achieves a Pearson correlation exceeding 90% with human ratings, demonstrating its potential to advance T2V generation models. Code is available at https://github.com/MingXiangL/DEVIL.
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
We introduce Adjoint Sampling, a highly scalable and efficient algorithm for learning diffusion processes that sample from unnormalized densities, or energy functions. It is the first on-policy approach that allows significantly more gradient updates than the number of energy evaluations and model samples, allowing us to scale to much larger problem settings than previously explored by similar methods. Our framework is theoretically grounded in stochastic optimal control and shares the same theoretical guarantees as Adjoint Matching, being able to train without the need for corrective measures that push samples towards the target distribution. We show how to incorporate key symmetries, as well as periodic boundary conditions, for modeling molecules in both cartesian and torsional coordinates. We demonstrate the effectiveness of our approach through extensive experiments on classical energy functions, and further scale up to neural network-based energy models where we perform amortized conformer generation across many molecular systems. To encourage further research in developing highly scalable sampling methods, we plan to open source these challenging benchmarks, where successful methods can directly impact progress in computational chemistry.
SinFusion: Training Diffusion Models on a Single Image or Video
Diffusion models exhibited tremendous progress in image and video generation, exceeding GANs in quality and diversity. However, they are usually trained on very large datasets and are not naturally adapted to manipulate a given input image or video. In this paper we show how this can be resolved by training a diffusion model on a single input image or video. Our image/video-specific diffusion model (SinFusion) learns the appearance and dynamics of the single image or video, while utilizing the conditioning capabilities of diffusion models. It can solve a wide array of image/video-specific manipulation tasks. In particular, our model can learn from few frames the motion and dynamics of a single input video. It can then generate diverse new video samples of the same dynamic scene, extrapolate short videos into long ones (both forward and backward in time) and perform video upsampling. Most of these tasks are not realizable by current video-specific generation methods.
Learning to Actively Learn: A Robust Approach
This work proposes a procedure for designing algorithms for specific adaptive data collection tasks like active learning and pure-exploration multi-armed bandits. Unlike the design of traditional adaptive algorithms that rely on concentration of measure and careful analysis to justify the correctness and sample complexity of the procedure, our adaptive algorithm is learned via adversarial training over equivalence classes of problems derived from information theoretic lower bounds. In particular, a single adaptive learning algorithm is learned that competes with the best adaptive algorithm learned for each equivalence class. Our procedure takes as input just the available queries, set of hypotheses, loss function, and total query budget. This is in contrast to existing meta-learning work that learns an adaptive algorithm relative to an explicit, user-defined subset or prior distribution over problems which can be challenging to define and be mismatched to the instance encountered at test time. This work is particularly focused on the regime when the total query budget is very small, such as a few dozen, which is much smaller than those budgets typically considered by theoretically derived algorithms. We perform synthetic experiments to justify the stability and effectiveness of the training procedure, and then evaluate the method on tasks derived from real data including a noisy 20 Questions game and a joke recommendation task.
DynST: Dynamic Sparse Training for Resource-Constrained Spatio-Temporal Forecasting
The ever-increasing sensor service, though opening a precious path and providing a deluge of earth system data for deep-learning-oriented earth science, sadly introduce a daunting obstacle to their industrial level deployment. Concretely, earth science systems rely heavily on the extensive deployment of sensors, however, the data collection from sensors is constrained by complex geographical and social factors, making it challenging to achieve comprehensive coverage and uniform deployment. To alleviate the obstacle, traditional approaches to sensor deployment utilize specific algorithms to design and deploy sensors. These methods dynamically adjust the activation times of sensors to optimize the detection process across each sub-region. Regrettably, formulating an activation strategy generally based on historical observations and geographic characteristics, which make the methods and resultant models were neither simple nor practical. Worse still, the complex technical design may ultimately lead to a model with weak generalizability. In this paper, we introduce for the first time the concept of spatio-temporal data dynamic sparse training and are committed to adaptively, dynamically filtering important sensor distributions. To our knowledge, this is the first proposal (termed DynST) of an industry-level deployment optimization concept at the data level. However, due to the existence of the temporal dimension, pruning of spatio-temporal data may lead to conflicts at different timestamps. To achieve this goal, we employ dynamic merge technology, along with ingenious dimensional mapping to mitigate potential impacts caused by the temporal aspect. During the training process, DynST utilize iterative pruning and sparse training, repeatedly identifying and dynamically removing sensor perception areas that contribute the least to future predictions.
Breathing deformation model -- application to multi-resolution abdominal MRI
Dynamic MRI is a technique of acquiring a series of images continuously to follow the physiological changes over time. However, such fast imaging results in low resolution images. In this work, abdominal deformation model computed from dynamic low resolution images have been applied to high resolution image, acquired previously, to generate dynamic high resolution MRI. Dynamic low resolution images were simulated into different breathing phases (inhale and exhale). Then, the image registration between breathing time points was performed using the B-spline SyN deformable model and using cross-correlation as a similarity metric. The deformation model between different breathing phases were estimated from highly undersampled data. This deformation model was then applied to the high resolution images to obtain high resolution images of different breathing phases. The results indicated that the deformation model could be computed from relatively very low resolution images.
DynVFX: Augmenting Real Videos with Dynamic Content
We present a method for augmenting real-world videos with newly generated dynamic content. Given an input video and a simple user-provided text instruction describing the desired content, our method synthesizes dynamic objects or complex scene effects that naturally interact with the existing scene over time. The position, appearance, and motion of the new content are seamlessly integrated into the original footage while accounting for camera motion, occlusions, and interactions with other dynamic objects in the scene, resulting in a cohesive and realistic output video. We achieve this via a zero-shot, training-free framework that harnesses a pre-trained text-to-video diffusion transformer to synthesize the new content and a pre-trained Vision Language Model to envision the augmented scene in detail. Specifically, we introduce a novel inference-based method that manipulates features within the attention mechanism, enabling accurate localization and seamless integration of the new content while preserving the integrity of the original scene. Our method is fully automated, requiring only a simple user instruction. We demonstrate its effectiveness on a wide range of edits applied to real-world videos, encompassing diverse objects and scenarios involving both camera and object motion.
Dynamic-Resolution Model Learning for Object Pile Manipulation
Dynamics models learned from visual observations have shown to be effective in various robotic manipulation tasks. One of the key questions for learning such dynamics models is what scene representation to use. Prior works typically assume representation at a fixed dimension or resolution, which may be inefficient for simple tasks and ineffective for more complicated tasks. In this work, we investigate how to learn dynamic and adaptive representations at different levels of abstraction to achieve the optimal trade-off between efficiency and effectiveness. Specifically, we construct dynamic-resolution particle representations of the environment and learn a unified dynamics model using graph neural networks (GNNs) that allows continuous selection of the abstraction level. During test time, the agent can adaptively determine the optimal resolution at each model-predictive control (MPC) step. We evaluate our method in object pile manipulation, a task we commonly encounter in cooking, agriculture, manufacturing, and pharmaceutical applications. Through comprehensive evaluations both in the simulation and the real world, we show that our method achieves significantly better performance than state-of-the-art fixed-resolution baselines at the gathering, sorting, and redistribution of granular object piles made with various instances like coffee beans, almonds, corn, etc.
Yume: An Interactive World Generation Model
Yume aims to use images, text, or videos to create an interactive, realistic, and dynamic world, which allows exploration and control using peripheral devices or neural signals. In this report, we present a preview version of \method, which creates a dynamic world from an input image and allows exploration of the world using keyboard actions. To achieve this high-fidelity and interactive video world generation, we introduce a well-designed framework, which consists of four main components, including camera motion quantization, video generation architecture, advanced sampler, and model acceleration. First, we quantize camera motions for stable training and user-friendly interaction using keyboard inputs. Then, we introduce the Masked Video Diffusion Transformer~(MVDT) with a memory module for infinite video generation in an autoregressive manner. After that, training-free Anti-Artifact Mechanism (AAM) and Time Travel Sampling based on Stochastic Differential Equations (TTS-SDE) are introduced to the sampler for better visual quality and more precise control. Moreover, we investigate model acceleration by synergistic optimization of adversarial distillation and caching mechanisms. We use the high-quality world exploration dataset \sekai to train \method, and it achieves remarkable results in diverse scenes and applications. All data, codebase, and model weights are available on https://github.com/stdstu12/YUME. Yume will update monthly to achieve its original goal. Project page: https://stdstu12.github.io/YUME-Project/.
COPlanner: Plan to Roll Out Conservatively but to Explore Optimistically for Model-Based RL
Dyna-style model-based reinforcement learning contains two phases: model rollouts to generate sample for policy learning and real environment exploration using current policy for dynamics model learning. However, due to the complex real-world environment, it is inevitable to learn an imperfect dynamics model with model prediction error, which can further mislead policy learning and result in sub-optimal solutions. In this paper, we propose COPlanner, a planning-driven framework for model-based methods to address the inaccurately learned dynamics model problem with conservative model rollouts and optimistic environment exploration. COPlanner leverages an uncertainty-aware policy-guided model predictive control (UP-MPC) component to plan for multi-step uncertainty estimation. This estimated uncertainty then serves as a penalty during model rollouts and as a bonus during real environment exploration respectively, to choose actions. Consequently, COPlanner can avoid model uncertain regions through conservative model rollouts, thereby alleviating the influence of model error. Simultaneously, it explores high-reward model uncertain regions to reduce model error actively through optimistic real environment exploration. COPlanner is a plug-and-play framework that can be applied to any dyna-style model-based methods. Experimental results on a series of proprioceptive and visual continuous control tasks demonstrate that both sample efficiency and asymptotic performance of strong model-based methods are significantly improved combined with COPlanner.
CameraCtrl II: Dynamic Scene Exploration via Camera-controlled Video Diffusion Models
This paper introduces CameraCtrl II, a framework that enables large-scale dynamic scene exploration through a camera-controlled video diffusion model. Previous camera-conditioned video generative models suffer from diminished video dynamics and limited range of viewpoints when generating videos with large camera movement. We take an approach that progressively expands the generation of dynamic scenes -- first enhancing dynamic content within individual video clip, then extending this capability to create seamless explorations across broad viewpoint ranges. Specifically, we construct a dataset featuring a large degree of dynamics with camera parameter annotations for training while designing a lightweight camera injection module and training scheme to preserve dynamics of the pretrained models. Building on these improved single-clip techniques, we enable extended scene exploration by allowing users to iteratively specify camera trajectories for generating coherent video sequences. Experiments across diverse scenarios demonstrate that CameraCtrl Ii enables camera-controlled dynamic scene synthesis with substantially wider spatial exploration than previous approaches.
Dynamic Gaussian Mixture based Deep Generative Model For Robust Forecasting on Sparse Multivariate Time Series
Forecasting on sparse multivariate time series (MTS) aims to model the predictors of future values of time series given their incomplete past, which is important for many emerging applications. However, most existing methods process MTS's individually, and do not leverage the dynamic distributions underlying the MTS's, leading to sub-optimal results when the sparsity is high. To address this challenge, we propose a novel generative model, which tracks the transition of latent clusters, instead of isolated feature representations, to achieve robust modeling. It is characterized by a newly designed dynamic Gaussian mixture distribution, which captures the dynamics of clustering structures, and is used for emitting timeseries. The generative model is parameterized by neural networks. A structured inference network is also designed for enabling inductive analysis. A gating mechanism is further introduced to dynamically tune the Gaussian mixture distributions. Extensive experimental results on a variety of real-life datasets demonstrate the effectiveness of our method.
Live in the Moment: Learning Dynamics Model Adapted to Evolving Policy
Model-based reinforcement learning (RL) often achieves higher sample efficiency in practice than model-free RL by learning a dynamics model to generate samples for policy learning. Previous works learn a dynamics model that fits under the empirical state-action visitation distribution for all historical policies, i.e., the sample replay buffer. However, in this paper, we observe that fitting the dynamics model under the distribution for all historical policies does not necessarily benefit model prediction for the current policy since the policy in use is constantly evolving over time. The evolving policy during training will cause state-action visitation distribution shifts. We theoretically analyze how this distribution shift over historical policies affects the model learning and model rollouts. We then propose a novel dynamics model learning method, named Policy-adapted Dynamics Model Learning (PDML). PDML dynamically adjusts the historical policy mixture distribution to ensure the learned model can continually adapt to the state-action visitation distribution of the evolving policy. Experiments on a range of continuous control environments in MuJoCo show that PDML achieves significant improvement in sample efficiency and higher asymptotic performance combined with the state-of-the-art model-based RL methods.
Iterative Deepening Sampling for Large Language Models
The recent release of OpenAI's o1 models and other similar frameworks showcasing test-time scaling laws has demonstrated their exceptional capability to tackle complex reasoning tasks. Inspired by this, subsequent research has revealed that such test-time scaling laws hinge on the model's ability to search both within a single response (intra-response) and across multiple responses (inter-response) during training. Crucially, beyond selecting a single optimal response, the model must also develop robust self-correction capabilities within its own outputs. However, training models to achieve effective self-evaluation and self-correction remains a significant challenge, heavily dependent on the quality of self-reflection data. In this paper, we address this challenge by focusing on enhancing the quality of self-reflection data generation for complex problem-solving, which can subsequently improve the training of next-generation large language models (LLMs). Specifically, we explore how manually triggering a model's self-correction mechanisms can improve performance on challenging reasoning tasks. To this end, we propose a novel iterative deepening sampling algorithm framework designed to enhance self-correction and generate higher-quality samples. Through extensive experiments on Math500 and AIME benchmarks, we demonstrate that our method achieves a higher success rate on difficult tasks and provide detailed ablation studies to analyze its effectiveness across diverse settings.
TiDAL: Learning Training Dynamics for Active Learning
Active learning (AL) aims to select the most useful data samples from an unlabeled data pool and annotate them to expand the labeled dataset under a limited budget. Especially, uncertainty-based methods choose the most uncertain samples, which are known to be effective in improving model performance. However, AL literature often overlooks training dynamics (TD), defined as the ever-changing model behavior during optimization via stochastic gradient descent, even though other areas of literature have empirically shown that TD provides important clues for measuring the sample uncertainty. In this paper, we propose a novel AL method, Training Dynamics for Active Learning (TiDAL), which leverages the TD to quantify uncertainties of unlabeled data. Since tracking the TD of all the large-scale unlabeled data is impractical, TiDAL utilizes an additional prediction module that learns the TD of labeled data. To further justify the design of TiDAL, we provide theoretical and empirical evidence to argue the usefulness of leveraging TD for AL. Experimental results show that our TiDAL achieves better or comparable performance on both balanced and imbalanced benchmark datasets compared to state-of-the-art AL methods, which estimate data uncertainty using only static information after model training.
Intelligent Director: An Automatic Framework for Dynamic Visual Composition using ChatGPT
With the rise of short video platforms represented by TikTok, the trend of users expressing their creativity through photos and videos has increased dramatically. However, ordinary users lack the professional skills to produce high-quality videos using professional creation software. To meet the demand for intelligent and user-friendly video creation tools, we propose the Dynamic Visual Composition (DVC) task, an interesting and challenging task that aims to automatically integrate various media elements based on user requirements and create storytelling videos. We propose an Intelligent Director framework, utilizing LENS to generate descriptions for images and video frames and combining ChatGPT to generate coherent captions while recommending appropriate music names. Then, the best-matched music is obtained through music retrieval. Then, materials such as captions, images, videos, and music are integrated to seamlessly synthesize the video. Finally, we apply AnimeGANv2 for style transfer. We construct UCF101-DVC and Personal Album datasets and verified the effectiveness of our framework in solving DVC through qualitative and quantitative comparisons, along with user studies, demonstrating its substantial potential.
Diffusion Bridge Implicit Models
Denoising diffusion bridge models (DDBMs) are a powerful variant of diffusion models for interpolating between two arbitrary paired distributions given as endpoints. Despite their promising performance in tasks like image translation, DDBMs require a computationally intensive sampling process that involves the simulation of a (stochastic) differential equation through hundreds of network evaluations. In this work, we take the first step in fast sampling of DDBMs without extra training, motivated by the well-established recipes in diffusion models. We generalize DDBMs via a class of non-Markovian diffusion bridges defined on the discretized timesteps concerning sampling, which share the same marginal distributions and training objectives, give rise to generative processes ranging from stochastic to deterministic, and result in diffusion bridge implicit models (DBIMs). DBIMs are not only up to 25times faster than the vanilla sampler of DDBMs but also induce a novel, simple, and insightful form of ordinary differential equation (ODE) which inspires high-order numerical solvers. Moreover, DBIMs maintain the generation diversity in a distinguished way, by using a booting noise in the initial sampling step, which enables faithful encoding, reconstruction, and semantic interpolation in image translation tasks. Code is available at https://github.com/thu-ml/DiffusionBridge.
A Geometric Perspective on Diffusion Models
Recent years have witnessed significant progress in developing efficient training and fast sampling approaches for diffusion models. A recent remarkable advancement is the use of stochastic differential equations (SDEs) to describe data perturbation and generative modeling in a unified mathematical framework. In this paper, we reveal several intriguing geometric structures of diffusion models and contribute a simple yet powerful interpretation to their sampling dynamics. Through carefully inspecting a popular variance-exploding SDE and its marginal-preserving ordinary differential equation (ODE) for sampling, we discover that the data distribution and the noise distribution are smoothly connected with an explicit, quasi-linear sampling trajectory, and another implicit denoising trajectory, which even converges faster in terms of visual quality. We also establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm, with which we can characterize the asymptotic behavior of diffusion models and identify the score deviation. These new geometric observations enable us to improve previous sampling algorithms, re-examine latent interpolation, as well as re-explain the working principles of distillation-based fast sampling techniques.
Talking Drums: Generating drum grooves with neural networks
Presented is a method of generating a full drum kit part for a provided kick-drum sequence. A sequence to sequence neural network model used in natural language translation was adopted to encode multiple musical styles and an online survey was developed to test different techniques for sampling the output of the softmax function. The strongest results were found using a sampling technique that drew from the three most probable outputs at each subdivision of the drum pattern but the consistency of output was found to be heavily dependent on style.
Video Diffusion Models
Generating temporally coherent high fidelity video is an important milestone in generative modeling research. We make progress towards this milestone by proposing a diffusion model for video generation that shows very promising initial results. Our model is a natural extension of the standard image diffusion architecture, and it enables jointly training from image and video data, which we find to reduce the variance of minibatch gradients and speed up optimization. To generate long and higher resolution videos we introduce a new conditional sampling technique for spatial and temporal video extension that performs better than previously proposed methods. We present the first results on a large text-conditioned video generation task, as well as state-of-the-art results on established benchmarks for video prediction and unconditional video generation. Supplementary material is available at https://video-diffusion.github.io/
PicoAudio: Enabling Precise Timestamp and Frequency Controllability of Audio Events in Text-to-audio Generation
Recently, audio generation tasks have attracted considerable research interests. Precise temporal controllability is essential to integrate audio generation with real applications. In this work, we propose a temporal controlled audio generation framework, PicoAudio. PicoAudio integrates temporal information to guide audio generation through tailored model design. It leverages data crawling, segmentation, filtering, and simulation of fine-grained temporally-aligned audio-text data. Both subjective and objective evaluations demonstrate that PicoAudio dramantically surpasses current state-of-the-art generation models in terms of timestamp and occurrence frequency controllability. The generated samples are available on the demo website https://PicoAudio.github.io.
An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization
Diffusion models, a powerful and universal generative AI technology, have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology. In these applications, diffusion models provide flexible high-dimensional data modeling, and act as a sampler for generating new samples under active guidance towards task-desired properties. Despite the significant empirical success, theory of diffusion models is very limited, potentially slowing down principled methodological innovations for further harnessing and improving diffusion models. In this paper, we review emerging applications of diffusion models, understanding their sample generation under various controls. Next, we overview the existing theories of diffusion models, covering their statistical properties and sampling capabilities. We adopt a progressive routine, beginning with unconditional diffusion models and connecting to conditional counterparts. Further, we review a new avenue in high-dimensional structured optimization through conditional diffusion models, where searching for solutions is reformulated as a conditional sampling problem and solved by diffusion models. Lastly, we discuss future directions about diffusion models. The purpose of this paper is to provide a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.
SA-Solver: Stochastic Adams Solver for Fast Sampling of Diffusion Models
Diffusion Probabilistic Models (DPMs) have achieved considerable success in generation tasks. As sampling from DPMs is equivalent to solving diffusion SDE or ODE which is time-consuming, numerous fast sampling methods built upon improved differential equation solvers are proposed. The majority of such techniques consider solving the diffusion ODE due to its superior efficiency. However, stochastic sampling could offer additional advantages in generating diverse and high-quality data. In this work, we engage in a comprehensive analysis of stochastic sampling from two aspects: variance-controlled diffusion SDE and linear multi-step SDE solver. Based on our analysis, we propose SA-Solver, which is an improved efficient stochastic Adams method for solving diffusion SDE to generate data with high quality. Our experiments show that SA-Solver achieves: 1) improved or comparable performance compared with the existing state-of-the-art sampling methods for few-step sampling; 2) SOTA FID scores on substantial benchmark datasets under a suitable number of function evaluations (NFEs).
DDPM-CD: Denoising Diffusion Probabilistic Models as Feature Extractors for Change Detection
Remote sensing change detection is crucial for understanding the dynamics of our planet's surface, facilitating the monitoring of environmental changes, evaluating human impact, predicting future trends, and supporting decision-making. In this work, we introduce a novel approach for change detection that can leverage off-the-shelf, unlabeled remote sensing images in the training process by pre-training a Denoising Diffusion Probabilistic Model (DDPM) - a class of generative models used in image synthesis. DDPMs learn the training data distribution by gradually converting training images into a Gaussian distribution using a Markov chain. During inference (i.e., sampling), they can generate a diverse set of samples closer to the training distribution, starting from Gaussian noise, achieving state-of-the-art image synthesis results. However, in this work, our focus is not on image synthesis but on utilizing it as a pre-trained feature extractor for the downstream application of change detection. Specifically, we fine-tune a lightweight change classifier utilizing the feature representations produced by the pre-trained DDPM alongside change labels. Experiments conducted on the LEVIR-CD, WHU-CD, DSIFN-CD, and CDD datasets demonstrate that the proposed DDPM-CD method significantly outperforms the existing state-of-the-art change detection methods in terms of F1 score, IoU, and overall accuracy, highlighting the pivotal role of pre-trained DDPM as a feature extractor for downstream applications. We have made both the code and pre-trained models available at https://github.com/wgcban/ddpm-cd
On Accelerating Diffusion-Based Sampling Process via Improved Integration Approximation
A popular approach to sample a diffusion-based generative model is to solve an ordinary differential equation (ODE). In existing samplers, the coefficients of the ODE solvers are pre-determined by the ODE formulation, the reverse discrete timesteps, and the employed ODE methods. In this paper, we consider accelerating several popular ODE-based sampling processes (including EDM, DDIM, and DPM-Solver) by optimizing certain coefficients via improved integration approximation (IIA). We propose to minimize, for each time step, a mean squared error (MSE) function with respect to the selected coefficients. The MSE is constructed by applying the original ODE solver for a set of fine-grained timesteps, which in principle provides a more accurate integration approximation in predicting the next diffusion state. The proposed IIA technique does not require any change of a pre-trained model, and only introduces a very small computational overhead for solving a number of quadratic optimization problems. Extensive experiments show that considerably better FID scores can be achieved by using IIA-EDM, IIA-DDIM, and IIA-DPM-Solver than the original counterparts when the neural function evaluation (NFE) is small (i.e., less than 25).
