new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 28

Sakuga-42M Dataset: Scaling Up Cartoon Research

Hand-drawn cartoon animation employs sketches and flat-color segments to create the illusion of motion. While recent advancements like CLIP, SVD, and Sora show impressive results in understanding and generating natural video by scaling large models with extensive datasets, they are not as effective for cartoons. Through our empirical experiments, we argue that this ineffectiveness stems from a notable bias in hand-drawn cartoons that diverges from the distribution of natural videos. Can we harness the success of the scaling paradigm to benefit cartoon research? Unfortunately, until now, there has not been a sizable cartoon dataset available for exploration. In this research, we propose the Sakuga-42M Dataset, the first large-scale cartoon animation dataset. Sakuga-42M comprises 42 million keyframes covering various artistic styles, regions, and years, with comprehensive semantic annotations including video-text description pairs, anime tags, content taxonomies, etc. We pioneer the benefits of such a large-scale cartoon dataset on comprehension and generation tasks by finetuning contemporary foundation models like Video CLIP, Video Mamba, and SVD, achieving outstanding performance on cartoon-related tasks. Our motivation is to introduce large-scaling to cartoon research and foster generalization and robustness in future cartoon applications. Dataset, Code, and Pretrained Models will be publicly available.

  • 3 authors
·
May 12, 2024

FW-Merging: Scaling Model Merging with Frank-Wolfe Optimization

Model merging has emerged as a promising approach for multi-task learning (MTL), offering a data-efficient alternative to conventional fine-tuning. However, with the rapid development of the open-source AI ecosystem and the increasing availability of fine-tuned foundation models, existing model merging methods face two key limitations: (i) They are primarily designed for in-house fine-tuned models, making them less adaptable to diverse model sources with partially unknown model and task information, (ii) They struggle to scale effectively when merging numerous model checkpoints. To address these challenges, we formulate model merging as a constrained optimization problem and introduce a novel approach: Frank-Wolfe Merging (FW-Merging). Inspired by Frank-Wolfe optimization, our approach iteratively selects the most relevant model in the pool to minimize a linear approximation of the objective function and then executes a local merging similar to the Frank-Wolfe update. The objective function is designed to capture the desired behavior of the target-merged model, while the fine-tuned candidate models define the constraint set. More importantly, FW-Merging serves as an orthogonal technique for existing merging methods, seamlessly integrating with them to further enhance accuracy performance. Our experiments show that FW-Merging scales across diverse model sources, remaining stable with 16 irrelevant models and improving by 15.3% with 16 relevant models on 20 CV tasks, while maintaining constant memory overhead, unlike the linear overhead of data-informed merging methods. Compared with the state-of-the-art approaches, FW-Merging surpasses the data-free merging method by 32.8% and outperforms the data-informed Adamerging by 8.39% when merging 20 ViT models. Our code is open-sourced at github.com/hmarkc/FW-Merging.

  • 5 authors
·
Mar 16

Fine-tuning of Geospatial Foundation Models for Aboveground Biomass Estimation

Global vegetation structure mapping is critical for understanding the global carbon cycle and maximizing the efficacy of nature-based carbon sequestration initiatives. Moreover, vegetation structure mapping can help reduce the impacts of climate change by, for example, guiding actions to improve water security, increase biodiversity and reduce flood risk. Global satellite measurements provide an important set of observations for monitoring and managing deforestation and degradation of existing forests, natural forest regeneration, reforestation, biodiversity restoration, and the implementation of sustainable agricultural practices. In this paper, we explore the effectiveness of fine-tuning of a geospatial foundation model to estimate above-ground biomass (AGB) using space-borne data collected across different eco-regions in Brazil. The fine-tuned model architecture consisted of a Swin-B transformer as the encoder (i.e., backbone) and a single convolutional layer for the decoder head. All results were compared to a U-Net which was trained as the baseline model Experimental results of this sparse-label prediction task demonstrate that the fine-tuned geospatial foundation model with a frozen encoder has comparable performance to a U-Net trained from scratch. This is despite the fine-tuned model having 13 times less parameters requiring optimization, which saves both time and compute resources. Further, we explore the transfer-learning capabilities of the geospatial foundation models by fine-tuning on satellite imagery with sparse labels from different eco-regions in Brazil.

  • 16 authors
·
Jun 28, 2024

Table Foundation Models: on knowledge pre-training for tabular learning

Table foundation models bring high hopes to data science: pre-trained on tabular data to embark knowledge or priors, they should facilitate downstream tasks on tables. One specific challenge is that of data semantics: numerical entries take their meaning from context, e.g., column name. Pre-trained neural networks that jointly model column names and table entries have recently boosted prediction accuracy. While these models outline the promises of world knowledge to interpret table values, they lack the convenience of popular foundation models in text or vision. Indeed, they must be fine-tuned to bring benefits, come with sizeable computation costs, and cannot easily be reused or combined with other architectures. Here we introduce TARTE, a foundation model that transforms tables to knowledge-enhanced vector representations using the string to capture semantics. Pre-trained on large relational data, TARTE yields representations that facilitate subsequent learning with little additional cost. These representations can be fine-tuned or combined with other learners, giving models that push the state-of-the-art prediction performance and improve the prediction/computation performance trade-off. Specialized to a task or a domain, TARTE gives domain-specific representations that facilitate further learning. Our study demonstrates an effective approach to knowledge pre-training for tabular learning.

  • 5 authors
·
May 20

Telecom Foundation Models: Applications, Challenges, and Future Trends

Telecom networks are becoming increasingly complex, with diversified deployment scenarios, multi-standards, and multi-vendor support. The intricate nature of the telecom network ecosystem presents challenges to effectively manage, operate, and optimize networks. To address these hurdles, Artificial Intelligence (AI) has been widely adopted to solve different tasks in telecom networks. However, these conventional AI models are often designed for specific tasks, rely on extensive and costly-to-collect labeled data that require specialized telecom expertise for development and maintenance. The AI models usually fail to generalize and support diverse deployment scenarios and applications. In contrast, Foundation Models (FMs) show effective generalization capabilities in various domains in language, vision, and decision-making tasks. FMs can be trained on multiple data modalities generated from the telecom ecosystem and leverage specialized domain knowledge. Moreover, FMs can be fine-tuned to solve numerous specialized tasks with minimal task-specific labeled data and, in some instances, are able to leverage context to solve previously unseen problems. At the dawn of 6G, this paper investigates the potential opportunities of using FMs to shape the future of telecom technologies and standards. In particular, the paper outlines a conceptual process for developing Telecom FMs (TFMs) and discusses emerging opportunities for orchestrating specialized TFMs for network configuration, operation, and maintenance. Finally, the paper discusses the limitations and challenges of developing and deploying TFMs.

  • 4 authors
·
Aug 2, 2024

Bootstrapping World Models from Dynamics Models in Multimodal Foundation Models

To what extent do vision-and-language foundation models possess a realistic world model (observation times action rightarrow observation) and a dynamics model (observation times observation rightarrow action), when actions are expressed through language? While open-source foundation models struggle with both, we find that fine-tuning them to acquire a dynamics model through supervision is significantly easier than acquiring a world model. In turn, dynamics models can be used to bootstrap world models through two main strategies: 1) weakly supervised learning from synthetic data and 2) inference time verification. Firstly, the dynamics model can annotate actions for unlabelled pairs of video frame observations to expand the training data. We further propose a new objective, where image tokens in observation pairs are weighted by their importance, as predicted by a recognition model. Secondly, the dynamics models can assign rewards to multiple samples of the world model to score them, effectively guiding search at inference time. We evaluate the world models resulting from both strategies through the task of action-centric image editing on Aurora-Bench. Our best model achieves a performance competitive with state-of-the-art image editing models, improving on them by a margin of 15% on real-world subsets according to GPT4o-as-judge, and achieving the best average human evaluation across all subsets of Aurora-Bench.

  • 5 authors
·
Jun 6 2

Foundation Models for Discovery and Exploration in Chemical Space

Accurate prediction of atomistic, thermodynamic, and kinetic properties from molecular structures underpins materials innovation. Existing computational and experimental approaches lack the scalability required to efficiently navigate chemical space. Scientific foundation models trained on large unlabeled datasets offer a path toward exploring chemical space across diverse application domains. Here we develop MIST, a family of molecular foundation models with up to an order of magnitude more parameters and data than prior works. Trained using a novel tokenization scheme that comprehensively captures nuclear, electronic, and geometric information, MIST learns from a diverse range of molecules. MIST models have been fine-tuned to predict more than 400 structure -- property relationships and match or exceed state-of-the-art performance across benchmarks spanning physiology, electrochemistry, and quantum chemistry. We demonstrate the ability of these models to solve real-world problems across chemical space, including multiobjective electrolyte solvent screening, olfactory perception mapping, isotope half-life prediction, stereochemical reasoning for chiral organometallic compounds, and binary and multi-component mixture property prediction. Probing MIST models using mechanistic interpretability methods reveals identifiable patterns and trends not explicitly present in the training data, suggesting that the models learn generalizable scientific concepts. We formulate hyperparameter-penalized Bayesian neural scaling laws and use them to reduce the computational cost of model development by an order of magnitude. The methods and findings presented here represent a significant step toward accelerating materials discovery, design, and optimization using foundation models and provide valuable guidance for training compute-optimal scientific foundation models.

  • 22 authors
·
Oct 20

Advancing Human Action Recognition with Foundation Models trained on Unlabeled Public Videos

The increasing variety and quantity of tagged multimedia content on a variety of online platforms offer a unique opportunity to advance the field of human action recognition. In this study, we utilize 283,582 unique, unlabeled TikTok video clips, categorized into 386 hashtags, to train a domain-specific foundation model for action recognition. We employ VideoMAE V2, an advanced model integrating Masked Autoencoders (MAE) with Vision Transformers (ViT), pre-trained on this diverse collection of unstructured videos. Our model, fine-tuned on established action recognition benchmarks such as UCF101 and HMDB51, achieves state-of-the-art results: 99.05% on UCF101, 86.08% on HMDB51, 85.51% on Kinetics-400, and 74.27% on Something-Something V2 using the ViT-giant backbone. These results highlight the potential of using unstructured and unlabeled videos as a valuable source of diverse and dynamic content for training foundation models. Our investigation confirms that while initial increases in pre-training data volume significantly enhance model performance, the gains diminish as the dataset size continues to expand. Our findings emphasize two critical axioms in self-supervised learning for computer vision: (1) additional pre-training data can yield diminishing benefits for some datasets and (2) quality is more important than quantity in self-supervised learning, especially when building foundation models.

  • 10 authors
·
Feb 13, 2024

Towards Foundation Models for Learning on Tabular Data

Learning on tabular data underpins numerous real-world applications. Despite considerable efforts in developing effective learning models for tabular data, current transferable tabular models remain in their infancy, limited by either the lack of support for direct instruction following in new tasks or the neglect of acquiring foundational knowledge and capabilities from diverse tabular datasets. In this paper, we propose Tabular Foundation Models (TabFMs) to overcome these limitations. TabFMs harness the potential of generative tabular learning, employing a pre-trained large language model (LLM) as the base model and fine-tuning it using purpose-designed objectives on an extensive range of tabular datasets. This approach endows TabFMs with a profound understanding and universal capabilities essential for learning on tabular data. Our evaluations underscore TabFM's effectiveness: not only does it significantly excel in instruction-following tasks like zero-shot and in-context inference, but it also showcases performance that approaches, and in instances, even transcends, the renowned yet mysterious closed-source LLMs like GPT-4. Furthermore, when fine-tuning with scarce data, our model achieves remarkable efficiency and maintains competitive performance with abundant training data. Finally, while our results are promising, we also delve into TabFM's limitations and potential opportunities, aiming to stimulate and expedite future research on developing more potent TabFMs.

  • 5 authors
·
Oct 11, 2023

Can Generalist Foundation Models Outcompete Special-Purpose Tuning? Case Study in Medicine

Generalist foundation models such as GPT-4 have displayed surprising capabilities in a wide variety of domains and tasks. Yet, there is a prevalent assumption that they cannot match specialist capabilities of fine-tuned models. For example, most explorations to date on medical competency benchmarks have leveraged domain-specific training, as exemplified by efforts on BioGPT and Med-PaLM. We build on a prior study of GPT-4's capabilities on medical challenge benchmarks in the absence of special training. Rather than using simple prompting to highlight the model's out-of-the-box capabilities, we perform a systematic exploration of prompt engineering. We find that prompting innovation can unlock deeper specialist capabilities and show that GPT-4 easily tops prior leading results for medical benchmarks. The prompting methods we explore are general purpose, and make no specific use of domain expertise, removing the need for expert-curated content. Our experimental design carefully controls for overfitting during the prompt engineering process. We introduce Medprompt, based on a composition of several prompting strategies. With Medprompt, GPT-4 achieves state-of-the-art results on all nine of the benchmark datasets in the MultiMedQA suite. The method outperforms leading specialist models such as Med-PaLM 2 by a significant margin with an order of magnitude fewer calls to the model. Steering GPT-4 with Medprompt achieves a 27% reduction in error rate on the MedQA dataset over the best methods to date achieved with specialist models and surpasses a score of 90% for the first time. Beyond medical problems, we show the power of Medprompt to generalize to other domains and provide evidence for the broad applicability of the approach via studies of the strategy on exams in electrical engineering, machine learning, philosophy, accounting, law, nursing, and clinical psychology.

  • 18 authors
·
Nov 27, 2023

Foundation Models for Natural Language Processing -- Pre-trained Language Models Integrating Media

This open access book provides a comprehensive overview of the state of the art in research and applications of Foundation Models and is intended for readers familiar with basic Natural Language Processing (NLP) concepts. Over the recent years, a revolutionary new paradigm has been developed for training models for NLP. These models are first pre-trained on large collections of text documents to acquire general syntactic knowledge and semantic information. Then, they are fine-tuned for specific tasks, which they can often solve with superhuman accuracy. When the models are large enough, they can be instructed by prompts to solve new tasks without any fine-tuning. Moreover, they can be applied to a wide range of different media and problem domains, ranging from image and video processing to robot control learning. Because they provide a blueprint for solving many tasks in artificial intelligence, they have been called Foundation Models. After a brief introduction to basic NLP models the main pre-trained language models BERT, GPT and sequence-to-sequence transformer are described, as well as the concepts of self-attention and context-sensitive embedding. Then, different approaches to improving these models are discussed, such as expanding the pre-training criteria, increasing the length of input texts, or including extra knowledge. An overview of the best-performing models for about twenty application areas is then presented, e.g., question answering, translation, story generation, dialog systems, generating images from text, etc. For each application area, the strengths and weaknesses of current models are discussed, and an outlook on further developments is given. In addition, links are provided to freely available program code. A concluding chapter summarizes the economic opportunities, mitigation of risks, and potential developments of AI.

  • 2 authors
·
Feb 16, 2023

CodeLSI: Leveraging Foundation Models for Automated Code Generation with Low-Rank Optimization and Domain-Specific Instruction Tuning

Context: Automated code generation using Foundation Models (FMs) offers promising solutions for enhancing software development efficiency. However, challenges remain in ensuring domain specificity, cost-effectiveness, and security - especially when relying on third-party APIs. This paper introduces CodeLSI, a framework that combines low-rank optimization and domain-specific instruction tuning to address these challenges. Objectives: The aim of this study is to develop and evaluate CodeLSI, a novel approach for generating high-quality code tailored to specific domains, using FMs fine-tuned on company infrastructure without dependence on external APIs. Methods: CodeLSI applies low-rank adaptation techniques to reduce the computational cost of model pre-training and fine-tuning. Domain-specific instruction tuning is employed to align code generation with organizational needs. We implemented and tested the framework on real-world JavaScript coding tasks using datasets drawn from internal software projects. Results: Experimental evaluations show that CodeLSI produces high-quality, context aware code. It outperforms baseline models in terms of relevance, accuracy, and domain fit. The use of low-rank optimization significantly reduced resource requirements, enabling scalable training on company-owned infrastructure. Conclusion: CodeLSI demonstrates that combining low-rank optimization with domain specific tuning can enhance the practicality and performance of FMs for automated code generation. This approach provides a secure, cost-efficient alternative to commercial API based solutions and supports faster, more targeted innovation in software development.

  • 7 authors
·
Sep 17

Simplifying Traffic Anomaly Detection with Video Foundation Models

Recent methods for ego-centric Traffic Anomaly Detection (TAD) often rely on complex multi-stage or multi-representation fusion architectures, yet it remains unclear whether such complexity is necessary. Recent findings in visual perception suggest that foundation models, enabled by advanced pre-training, allow simple yet flexible architectures to outperform specialized designs. Therefore, in this work, we investigate an architecturally simple encoder-only approach using plain Video Vision Transformers (Video ViTs) and study how pre-training enables strong TAD performance. We find that: (i) strong pre-training enables simple encoder-only models to match or even surpass the performance of specialized state-of-the-art TAD methods, while also being significantly more efficient; (ii) although weakly- and fully-supervised pre-training are advantageous on standard benchmarks, we find them less effective for TAD. Instead, self-supervised Masked Video Modeling (MVM) provides the strongest signal; and (iii) Domain-Adaptive Pre-Training (DAPT) on unlabeled driving videos further improves downstream performance, without requiring anomalous examples. Our findings highlight the importance of pre-training and show that effective, efficient, and scalable TAD models can be built with minimal architectural complexity. We release our code, domain-adapted encoders, and fine-tuned models to support future work: https://github.com/tue-mps/simple-tad.

  • 4 authors
·
Jul 12

Foundation Models for Generalist Geospatial Artificial Intelligence

Significant progress in the development of highly adaptable and reusable Artificial Intelligence (AI) models is expected to have a significant impact on Earth science and remote sensing. Foundation models are pre-trained on large unlabeled datasets through self-supervision, and then fine-tuned for various downstream tasks with small labeled datasets. This paper introduces a first-of-a-kind framework for the efficient pre-training and fine-tuning of foundational models on extensive geospatial data. We have utilized this framework to create Prithvi, a transformer-based geospatial foundational model pre-trained on more than 1TB of multispectral satellite imagery from the Harmonized Landsat-Sentinel 2 (HLS) dataset. Our study demonstrates the efficacy of our framework in successfully fine-tuning Prithvi to a range of Earth observation tasks that have not been tackled by previous work on foundation models involving multi-temporal cloud gap imputation, flood mapping, wildfire scar segmentation, and multi-temporal crop segmentation. Our experiments show that the pre-trained model accelerates the fine-tuning process compared to leveraging randomly initialized weights. In addition, pre-trained Prithvi compares well against the state-of-the-art, e.g., outperforming a conditional GAN model in multi-temporal cloud imputation by up to 5pp (or 5.7%) in the structural similarity index. Finally, due to the limited availability of labeled data in the field of Earth observation, we gradually reduce the quantity of available labeled data for refining the model to evaluate data efficiency and demonstrate that data can be decreased significantly without affecting the model's accuracy. The pre-trained 100 million parameter model and corresponding fine-tuning workflows have been released publicly as open source contributions to the global Earth sciences community through Hugging Face.

  • 33 authors
·
Oct 28, 2023

Can bidirectional encoder become the ultimate winner for downstream applications of foundation models?

Over the past few decades, Artificial Intelligence(AI) has progressed from the initial machine learning stage to the deep learning stage, and now to the stage of foundational models. Foundational models have the characteristics of pre-training, transfer learning, and self-supervised learning, and pre-trained models can be fine-tuned and applied to various downstream tasks. Under the framework of foundational models, models such as Bidirectional Encoder Representations from Transformers(BERT) and Generative Pre-trained Transformer(GPT) have greatly advanced the development of natural language processing(NLP), especially the emergence of many models based on BERT. BERT broke through the limitation of only using one-way methods for language modeling in pre-training by using a masked language model. It can capture bidirectional context information to predict the masked words in the sequence, this can improve the feature extraction ability of the model. This makes the model very useful for downstream tasks, especially for specialized applications. The model using the bidirectional encoder can better understand the domain knowledge and be better applied to these downstream tasks. So we hope to help understand how this technology has evolved and improved model performance in various natural language processing tasks under the background of foundational models and reveal its importance in capturing context information and improving the model's performance on downstream tasks. This article analyzes one-way and bidirectional models based on GPT and BERT and compares their differences based on the purpose of the model. It also briefly analyzes BERT and the improvements of some models based on BERT. The model's performance on the Stanford Question Answering Dataset(SQuAD) and General Language Understanding Evaluation(GLUE) was compared.

  • 5 authors
·
Nov 26, 2024

Decoding Visual Experience and Mapping Semantics through Whole-Brain Analysis Using fMRI Foundation Models

Neural decoding, the process of understanding how brain activity corresponds to different stimuli, has been a primary objective in cognitive sciences. Over the past three decades, advancements in functional Magnetic Resonance Imaging and machine learning have greatly improved our ability to map visual stimuli to brain activity, especially in the visual cortex. Concurrently, research has expanded into decoding more complex processes like language and memory across the whole brain, utilizing techniques to handle greater variability and improve signal accuracy. We argue that "seeing" involves more than just mapping visual stimuli onto the visual cortex; it engages the entire brain, as various emotions and cognitive states can emerge from observing different scenes. In this paper, we develop algorithms to enhance our understanding of visual processes by incorporating whole-brain activation maps while individuals are exposed to visual stimuli. We utilize large-scale fMRI encoders and Image generative models pre-trained on large public datasets, which are then fine-tuned through Image-fMRI contrastive learning. Our models hence can decode visual experience across the entire cerebral cortex, surpassing the traditional confines of the visual cortex. We first compare our method with state-of-the-art approaches to decoding visual processing and show improved predictive semantic accuracy by 43%. A network ablation analysis suggests that beyond the visual cortex, the default mode network contributes most to decoding stimuli, in line with the proposed role of this network in sense-making and semantic processing. Additionally, we implemented zero-shot imagination decoding on an extra validation dataset, achieving a p-value of 0.0206 for mapping the reconstructed images and ground-truth text stimuli, which substantiates the model's capability to capture semantic meanings across various scenarios.

  • 9 authors
·
Nov 11, 2024

LR0.FM: Low-Res Benchmark and Improving Robustness for Zero-Shot Classification in Foundation Models

Visual-language foundation Models (FMs) exhibit remarkable zero-shot generalization across diverse tasks, largely attributed to extensive pre-training on largescale datasets. However, their robustness on low-resolution/pixelated (LR) images, a common challenge in real-world scenarios, remains underexplored. We introduce LR0.FM, a comprehensive benchmark evaluating the impact of low resolution on the zero-shot classification performance of 10 FM(s) across 66 backbones and 15 datasets. We propose a novel metric, Weighted Aggregated Robustness, to address the limitations of existing metrics and better evaluate model performance across resolutions and datasets. Our key findings show that: (i) model size positively correlates with robustness to resolution degradation, (ii) pre-training dataset quality is more important than its size, and (iii) fine-tuned and higher resolution models are less robust against LR. Our analysis further reveals that the model makes semantically reasonable predictions at LR, and the lack of fine-grained details in input adversely impacts the model's initial layers more than the deeper layers. We use these insights and introduce a simple strategy, LR-TK0, to enhance the robustness of models without compromising their pre-trained weights. We demonstrate the effectiveness of LR-TK0 for robustness against low-resolution across several datasets and its generalization capability across backbones and other approaches. Code is available at https://github.com/shyammarjit/LR0.FM

  • 4 authors
·
Feb 6

Fine-tuning Segment Anything for Real-Time Tumor Tracking in Cine-MRI

In this work, we address the TrackRAD2025 challenge of real-time tumor tracking in cine-MRI sequences of the thoracic and abdominal regions under strong data scarcity constraints. Two complementary strategies were explored: (i) unsupervised registration with the IMPACT similarity metric and (ii) foundation model-based segmentation leveraging SAM 2.1 and its recent variants through prompt-based interaction. Due to the one-second runtime constraint, the SAM-based method was ultimately selected. The final configuration used SAM2.1 b+ with mask-based prompts from the first annotated slice, fine-tuned solely on the small labeled subset from TrackRAD2025. Training was configured to minimize overfitting, using 1024x1024 patches (batch size 1), standard augmentations, and a balanced Dice + IoU loss. A low uniform learning rate (0.0001) was applied to all modules (prompt encoder, decoder, Hiera backbone) to preserve generalization while adapting to annotator-specific styles. Training lasted 300 epochs (~12h on RTX A6000, 48GB). The same inference strategy was consistently applied across all anatomical sites and MRI field strengths. Test-time augmentation was considered but ultimately discarded due to negligible performance gains. The final model was selected based on the highest Dice Similarity Coefficient achieved on the validation set after fine-tuning. On the hidden test set, the model reached a Dice score of 0.8794, ranking 6th overall in the TrackRAD2025 challenge. These results highlight the strong potential of foundation models for accurate and real-time tumor tracking in MRI-guided radiotherapy.

  • 4 authors
·
Oct 29

One Initialization to Rule them All: Fine-tuning via Explained Variance Adaptation

Foundation models (FMs) are pre-trained on large-scale datasets and then fine-tuned on a downstream task for a specific application. The most successful and most commonly used fine-tuning method is to update the pre-trained weights via a low-rank adaptation (LoRA). LoRA introduces new weight matrices that are usually initialized at random with a uniform rank distribution across model weights. Recent works focus on weight-driven initialization or learning of adaptive ranks during training. Both approaches have only been investigated in isolation, resulting in slow convergence or a uniform rank distribution, in turn leading to sub-optimal performance. We propose to enhance LoRA by initializing the new weights in a data-driven manner by computing singular value decomposition on minibatches of activation vectors. Then, we initialize the LoRA matrices with the obtained right-singular vectors and re-distribute ranks among all weight matrices to explain the maximal amount of variance and continue the standard LoRA fine-tuning procedure. This results in our new method Explained Variance Adaptation (EVA). We apply EVA to a variety of fine-tuning tasks ranging from language generation and understanding to image classification and reinforcement learning. EVA exhibits faster convergence than competitors and attains the highest average score across a multitude of tasks per domain.

  • 6 authors
·
Oct 9, 2024 2

Consistency-guided Prompt Learning for Vision-Language Models

We propose Consistency-guided Prompt learning (CoPrompt), a new fine-tuning method for vision-language models. Our approach improves the generalization of large foundation models when fine-tuned on downstream tasks in a few-shot setting. The basic idea of CoPrompt is to enforce a consistency constraint in the prediction of the trainable and pre-trained models to prevent overfitting on the downstream task. Additionally, we introduce the following two components into our consistency constraint to further boost the performance: enforcing consistency on two perturbed inputs and combining two dominant paradigms of tuning, prompting and adapter. Enforcing consistency on perturbed input serves to further regularize the consistency constraint, thereby improving generalization. Moreover, the integration of adapters and prompts not only enhances performance on downstream tasks but also offers increased tuning flexibility in both input and output spaces. This facilitates more effective adaptation to downstream tasks in a few-shot learning setting. Experiments show that CoPrompt outperforms existing methods on a range of evaluation suites, including base-to-novel generalization, domain generalization, and cross-dataset evaluation. On generalization, CoPrompt improves the state-of-the-art on zero-shot tasks and the overall harmonic mean over 11 datasets. Detailed ablation studies show the effectiveness of each of the components in CoPrompt. We make our code available at https://github.com/ShuvenduRoy/CoPrompt.

  • 2 authors
·
Jun 1, 2023

Improving Long-Text Alignment for Text-to-Image Diffusion Models

The rapid advancement of text-to-image (T2I) diffusion models has enabled them to generate unprecedented results from given texts. However, as text inputs become longer, existing encoding methods like CLIP face limitations, and aligning the generated images with long texts becomes challenging. To tackle these issues, we propose LongAlign, which includes a segment-level encoding method for processing long texts and a decomposed preference optimization method for effective alignment training. For segment-level encoding, long texts are divided into multiple segments and processed separately. This method overcomes the maximum input length limits of pretrained encoding models. For preference optimization, we provide decomposed CLIP-based preference models to fine-tune diffusion models. Specifically, to utilize CLIP-based preference models for T2I alignment, we delve into their scoring mechanisms and find that the preference scores can be decomposed into two components: a text-relevant part that measures T2I alignment and a text-irrelevant part that assesses other visual aspects of human preference. Additionally, we find that the text-irrelevant part contributes to a common overfitting problem during fine-tuning. To address this, we propose a reweighting strategy that assigns different weights to these two components, thereby reducing overfitting and enhancing alignment. After fine-tuning 512 times 512 Stable Diffusion (SD) v1.5 for about 20 hours using our method, the fine-tuned SD outperforms stronger foundation models in T2I alignment, such as PixArt-alpha and Kandinsky v2.2. The code is available at https://github.com/luping-liu/LongAlign.

  • 6 authors
·
Oct 15, 2024 2

Estimating Time Series Foundation Model Transferability via In-Context Learning

Time series foundation models (TSFMs) offer strong zero-shot forecasting via large-scale pre-training, yet fine-tuning remains critical for boosting performance in domains with limited public data. With the growing number of TSFMs, efficiently identifying the best model for downstream fine-tuning becomes increasingly challenging. In this work, we introduce TimeTic, a transferability estimation framework that recasts model selection as an in-context-learning problem: given observations on known (source) datasets, it predicts how a TSFM will perform after fine-tuning on a downstream (target) dataset. TimeTic flexibly organizes the observed model-data relationships as contextual information, allowing it to adapt seamlessly to various test-time scenarios. Leveraging the natural tabular structure formed by dataset meta-features, model characteristics, and fine-tuned performance, we employ tabular foundation models to serve as in-context learners. We further introduce a novel model characterization based on entropy evolution across model layers, capturing embedding-space distinctions and enabling TimeTic to generalize across arbitrary model sets. We establish a comprehensive benchmark for transferability estimation including 10 datasets, 10 foundation models, and 3 forecasting tasks. On this benchmark, TimeTic's estimation demonstrates strong alignment with actual fine-tuned performance for previously unseen datasets, achieving a mean rank correlation of approximately 0.6 and a 30% improvement compared to using zero-shot performance as the transferability score.

  • 6 authors
·
Sep 28 2

SymbolicAI: A framework for logic-based approaches combining generative models and solvers

We introduce SymbolicAI, a versatile and modular framework employing a logic-based approach to concept learning and flow management in generative processes. SymbolicAI enables the seamless integration of generative models with a diverse range of solvers by treating large language models (LLMs) as semantic parsers that execute tasks based on both natural and formal language instructions, thus bridging the gap between symbolic reasoning and generative AI. We leverage probabilistic programming principles to tackle complex tasks, and utilize differentiable and classical programming paradigms with their respective strengths. The framework introduces a set of polymorphic, compositional, and self-referential operations for data stream manipulation, aligning LLM outputs with user objectives. As a result, we can transition between the capabilities of various foundation models endowed with zero- and few-shot learning capabilities and specialized, fine-tuned models or solvers proficient in addressing specific problems. In turn, the framework facilitates the creation and evaluation of explainable computational graphs. We conclude by introducing a quality measure and its empirical score for evaluating these computational graphs, and propose a benchmark that compares various state-of-the-art LLMs across a set of complex workflows. We refer to the empirical score as the "Vector Embedding for Relational Trajectory Evaluation through Cross-similarity", or VERTEX score for short. The framework codebase and benchmark are linked below.

  • 5 authors
·
Feb 1, 2024 5

Extract Free Dense Misalignment from CLIP

Recent vision-language foundation models still frequently produce outputs misaligned with their inputs, evidenced by object hallucination in captioning and prompt misalignment in the text-to-image generation model. Recent studies have explored methods for identifying misaligned elements, aiming not only to enhance interpretability but also to improve model performance. However, current approaches primarily rely on large foundation models in a zero-shot manner or fine-tuned models with human annotations, which limits scalability due to significant computational costs. This work proposes a novel approach, dubbed CLIP4DM, for detecting dense misalignments from pre-trained CLIP, specifically focusing on pinpointing misaligned words between image and text. We carefully revamp the gradient-based attribution computation method, enabling negative gradient of individual text tokens to indicate misalignment. We also propose F-CLIPScore, which aggregates misaligned attributions with a global alignment score. We evaluate our method on various dense misalignment detection benchmarks, covering various image and text domains and misalignment types. Our method demonstrates state-of-the-art performance among zero-shot models and competitive performance with fine-tuned models while maintaining superior efficiency. Our qualitative examples show that our method has a unique strength to detect entity-level objects, intangible objects, and attributes that can not be easily detected for existing works. We conduct ablation studies and analyses to highlight the strengths and limitations of our approach. Our code is publicly available at https://github.com/naver-ai/CLIP4DM.

  • 4 authors
·
Dec 24, 2024

HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution

Genomic (DNA) sequences encode an enormous amount of information for gene regulation and protein synthesis. Similar to natural language models, researchers have proposed foundation models in genomics to learn generalizable features from unlabeled genome data that can then be fine-tuned for downstream tasks such as identifying regulatory elements. Due to the quadratic scaling of attention, previous Transformer-based genomic models have used 512 to 4k tokens as context (<0.001% of the human genome), significantly limiting the modeling of long-range interactions in DNA. In addition, these methods rely on tokenizers to aggregate meaningful DNA units, losing single nucleotide resolution where subtle genetic variations can completely alter protein function via single nucleotide polymorphisms (SNPs). Recently, Hyena, a large language model based on implicit convolutions was shown to match attention in quality while allowing longer context lengths and lower time complexity. Leveraging Hyenas new long-range capabilities, we present HyenaDNA, a genomic foundation model pretrained on the human reference genome with context lengths of up to 1 million tokens at the single nucleotide-level, an up to 500x increase over previous dense attention-based models. HyenaDNA scales sub-quadratically in sequence length (training up to 160x faster than Transformer), uses single nucleotide tokens, and has full global context at each layer. We explore what longer context enables - including the first use of in-context learning in genomics for simple adaptation to novel tasks without updating pretrained model weights. On fine-tuned benchmarks from the Nucleotide Transformer, HyenaDNA reaches state-of-the-art (SotA) on 12 of 17 datasets using a model with orders of magnitude less parameters and pretraining data. On the GenomicBenchmarks, HyenaDNA surpasses SotA on all 8 datasets on average by +9 accuracy points.

  • 13 authors
·
Jun 27, 2023 2

Model Breadcrumbs: Scaling Multi-Task Model Merging with Sparse Masks

The rapid development of AI systems has been greatly influenced by the emergence of foundation models. A common approach for targeted problems involves fine-tuning these pre-trained foundation models for specific target tasks, resulting in a rapid spread of models fine-tuned across a diverse array of tasks. This work focuses on the problem of merging multiple fine-tunings of the same foundation model derived from a spectrum of auxiliary tasks. We introduce a new simple method, Model Breadcrumbs, which consists of a sparsely defined set of weights that carve out a trajectory within the weight space of a pre-trained model, enhancing task performance when traversed. These breadcrumbs are constructed by subtracting the weights from a pre-trained model before and after fine-tuning, followed by a sparsification process that eliminates weight outliers and negligible perturbations. Our experiments demonstrate the effectiveness of Model Breadcrumbs to simultaneously improve performance across multiple tasks. This contribution aligns with the evolving paradigm of updatable machine learning, reminiscent of the collaborative principles underlying open-source software development, fostering a community-driven effort to reliably update machine learning models. Our method is shown to be more efficient and unlike previous proposals does not require hyperparameter tuning for each new task added. Through extensive experimentation involving various models, tasks, and modalities we establish that integrating Model Breadcrumbs offers a simple, efficient, and highly effective approach for constructing multi-task models and facilitating updates to foundation models.

  • 2 authors
·
Dec 11, 2023

TeCH: Text-guided Reconstruction of Lifelike Clothed Humans

Despite recent research advancements in reconstructing clothed humans from a single image, accurately restoring the "unseen regions" with high-level details remains an unsolved challenge that lacks attention. Existing methods often generate overly smooth back-side surfaces with a blurry texture. But how to effectively capture all visual attributes of an individual from a single image, which are sufficient to reconstruct unseen areas (e.g., the back view)? Motivated by the power of foundation models, TeCH reconstructs the 3D human by leveraging 1) descriptive text prompts (e.g., garments, colors, hairstyles) which are automatically generated via a garment parsing model and Visual Question Answering (VQA), 2) a personalized fine-tuned Text-to-Image diffusion model (T2I) which learns the "indescribable" appearance. To represent high-resolution 3D clothed humans at an affordable cost, we propose a hybrid 3D representation based on DMTet, which consists of an explicit body shape grid and an implicit distance field. Guided by the descriptive prompts + personalized T2I diffusion model, the geometry and texture of the 3D humans are optimized through multi-view Score Distillation Sampling (SDS) and reconstruction losses based on the original observation. TeCH produces high-fidelity 3D clothed humans with consistent & delicate texture, and detailed full-body geometry. Quantitative and qualitative experiments demonstrate that TeCH outperforms the state-of-the-art methods in terms of reconstruction accuracy and rendering quality. The code will be publicly available for research purposes at https://huangyangyi.github.io/tech

  • 7 authors
·
Aug 16, 2023 3

Exploring Conditional Multi-Modal Prompts for Zero-shot HOI Detection

Zero-shot Human-Object Interaction (HOI) detection has emerged as a frontier topic due to its capability to detect HOIs beyond a predefined set of categories. This task entails not only identifying the interactiveness of human-object pairs and localizing them but also recognizing both seen and unseen interaction categories. In this paper, we introduce a novel framework for zero-shot HOI detection using Conditional Multi-Modal Prompts, namely CMMP. This approach enhances the generalization of large foundation models, such as CLIP, when fine-tuned for HOI detection. Unlike traditional prompt-learning methods, we propose learning decoupled vision and language prompts for interactiveness-aware visual feature extraction and generalizable interaction classification, respectively. Specifically, we integrate prior knowledge of different granularity into conditional vision prompts, including an input-conditioned instance prior and a global spatial pattern prior. The former encourages the image encoder to treat instances belonging to seen or potentially unseen HOI concepts equally while the latter provides representative plausible spatial configuration of the human and object under interaction. Besides, we employ language-aware prompt learning with a consistency constraint to preserve the knowledge of the large foundation model to enable better generalization in the text branch. Extensive experiments demonstrate the efficacy of our detector with conditional multi-modal prompts, outperforming previous state-of-the-art on unseen classes of various zero-shot settings. The code and models are available at https://github.com/ltttpku/CMMP.

  • 4 authors
·
Aug 5, 2024

A Unified Pairwise Framework for RLHF: Bridging Generative Reward Modeling and Policy Optimization

Reinforcement Learning from Human Feedback (RLHF) has emerged as a important paradigm for aligning large language models (LLMs) with human preferences during post-training. This framework typically involves two stages: first, training a reward model on human preference data, followed by optimizing the language model using reinforcement learning algorithms. However, current RLHF approaches may constrained by two limitations. First, existing RLHF frameworks often rely on Bradley-Terry models to assign scalar rewards based on pairwise comparisons of individual responses. However, this approach imposes significant challenges on reward model (RM), as the inherent variability in prompt-response pairs across different contexts demands robust calibration capabilities from the RM. Second, reward models are typically initialized from generative foundation models, such as pre-trained or supervised fine-tuned models, despite the fact that reward models perform discriminative tasks, creating a mismatch. This paper introduces Pairwise-RL, a RLHF framework that addresses these challenges through a combination of generative reward modeling and a pairwise proximal policy optimization (PPO) algorithm. Pairwise-RL unifies reward model training and its application during reinforcement learning within a consistent pairwise paradigm, leveraging generative modeling techniques to enhance reward model performance and score calibration. Experimental evaluations demonstrate that Pairwise-RL outperforms traditional RLHF frameworks across both internal evaluation datasets and standard public benchmarks, underscoring its effectiveness in improving alignment and model behavior.

  • 6 authors
·
Apr 7

Beyond One-Size-Fits-All: Personalized Harmful Content Detection with In-Context Learning

The proliferation of harmful online content--e.g., toxicity, spam, and negative sentiment--demands robust and adaptable moderation systems. However, prevailing moderation systems are centralized and task-specific, offering limited transparency and neglecting diverse user preferences--an approach ill-suited for privacy-sensitive or decentralized environments. We propose a novel framework that leverages in-context learning (ICL) with foundation models to unify the detection of toxicity, spam, and negative sentiment across binary, multi-class, and multi-label settings. Crucially, our approach enables lightweight personalization, allowing users to easily block new categories, unblock existing ones, or extend detection to semantic variations through simple prompt-based interventions--all without model retraining. Extensive experiments on public benchmarks (TextDetox, UCI SMS, SST2) and a new, annotated Mastodon dataset reveal that: (i) foundation models achieve strong cross-task generalization, often matching or surpassing task-specific fine-tuned models; (ii) effective personalization is achievable with as few as one user-provided example or definition; and (iii) augmenting prompts with label definitions or rationales significantly enhances robustness to noisy, real-world data. Our work demonstrates a definitive shift beyond one-size-fits-all moderation, establishing ICL as a practical, privacy-preserving, and highly adaptable pathway for the next generation of user-centric content safety systems. To foster reproducibility and facilitate future research, we publicly release our code on GitHub and the annotated Mastodon dataset on Hugging Face.

  • 3 authors
·
Oct 29

Foundation Inference Models for Markov Jump Processes

Markov jump processes are continuous-time stochastic processes which describe dynamical systems evolving in discrete state spaces. These processes find wide application in the natural sciences and machine learning, but their inference is known to be far from trivial. In this work we introduce a methodology for zero-shot inference of Markov jump processes (MJPs), on bounded state spaces, from noisy and sparse observations, which consists of two components. First, a broad probability distribution over families of MJPs, as well as over possible observation times and noise mechanisms, with which we simulate a synthetic dataset of hidden MJPs and their noisy observation process. Second, a neural network model that processes subsets of the simulated observations, and that is trained to output the initial condition and rate matrix of the target MJP in a supervised way. We empirically demonstrate that one and the same (pretrained) model can infer, in a zero-shot fashion, hidden MJPs evolving in state spaces of different dimensionalities. Specifically, we infer MJPs which describe (i) discrete flashing ratchet systems, which are a type of Brownian motors, and the conformational dynamics in (ii) molecular simulations, (iii) experimental ion channel data and (iv) simple protein folding models. What is more, we show that our model performs on par with state-of-the-art models which are finetuned to the target datasets.

  • 5 authors
·
Jun 10, 2024

VisualAgentBench: Towards Large Multimodal Models as Visual Foundation Agents

Large Multimodal Models (LMMs) have ushered in a new era in artificial intelligence, merging capabilities in both language and vision to form highly capable Visual Foundation Agents. These agents are postulated to excel across a myriad of tasks, potentially approaching general artificial intelligence. However, existing benchmarks fail to sufficiently challenge or showcase the full potential of LMMs in complex, real-world environments. To address this gap, we introduce VisualAgentBench (VAB), a comprehensive and pioneering benchmark specifically designed to train and evaluate LMMs as visual foundation agents across diverse scenarios, including Embodied, Graphical User Interface, and Visual Design, with tasks formulated to probe the depth of LMMs' understanding and interaction capabilities. Through rigorous testing across nine proprietary LMM APIs and eight open models, we demonstrate the considerable yet still developing agent capabilities of these models. Additionally, VAB constructs a trajectory training set constructed through hybrid methods including Program-based Solvers, LMM Agent Bootstrapping, and Human Demonstrations, promoting substantial performance improvements in LMMs through behavior cloning. Our work not only aims to benchmark existing models but also provides a solid foundation for future development into visual foundation agents. Code, train \& test data, and part of fine-tuned open LMMs are available at https://github.com/THUDM/VisualAgentBench.

  • 30 authors
·
Aug 12, 2024 3

An Electrocardiogram Foundation Model Built on over 10 Million Recordings with External Evaluation across Multiple Domains

Artificial intelligence (AI) has demonstrated significant potential in ECG analysis and cardiovascular disease assessment. Recently, foundation models have played a remarkable role in advancing medical AI. The development of an ECG foundation model holds the promise of elevating AI-ECG research to new heights. However, building such a model faces several challenges, including insufficient database sample sizes and inadequate generalization across multiple domains. Additionally, there is a notable performance gap between single-lead and multi-lead ECG analyses. We introduced an ECG Foundation Model (ECGFounder), a general-purpose model that leverages real-world ECG annotations from cardiology experts to broaden the diagnostic capabilities of ECG analysis. ECGFounder was trained on over 10 million ECGs with 150 label categories from the Harvard-Emory ECG Database, enabling comprehensive cardiovascular disease diagnosis through ECG analysis. The model is designed to be both an effective out-of-the-box solution, and a to be fine-tunable for downstream tasks, maximizing usability. Importantly, we extended its application to lower rank ECGs, and arbitrary single-lead ECGs in particular. ECGFounder is applicable to supporting various downstream tasks in mobile monitoring scenarios. Experimental results demonstrate that ECGFounder achieves expert-level performance on internal validation sets, with AUROC exceeding 0.95 for eighty diagnoses. It also shows strong classification performance and generalization across various diagnoses on external validation sets. When fine-tuned, ECGFounder outperforms baseline models in demographic analysis, clinical event detection, and cross-modality cardiac rhythm diagnosis. The trained model and data will be publicly released upon publication through the bdsp.io. Our code is available at https://github.com/bdsp-core/ECGFounder

  • 9 authors
·
Oct 5, 2024

SatVision-TOA: A Geospatial Foundation Model for Coarse-Resolution All-Sky Remote Sensing Imagery

Foundation models have the potential to transform the landscape of remote sensing (RS) data analysis by enabling large computer vision models to be pre-trained on vast amounts of remote sensing data. These models can then be fine-tuned with small amounts of labeled training and applied to a variety of applications. Most existing foundation models are designed for high spatial resolution, cloud-free satellite imagery or photos, limiting their applicability in scenarios that require frequent temporal monitoring or broad spectral profiles. As a result, foundation models trained solely on cloud-free images have limited utility for applications that involve atmospheric variables or require atmospheric corrections. We introduce SatVision-TOA, a novel foundation model pre-trained on 14-band MODIS L1B Top-Of-Atmosphere (TOA) radiance imagery, addressing the need for models pre-trained to handle moderate- and coarse-resolution all-sky remote sensing data. The SatVision-TOA model is pre-trained using a Masked-Image-Modeling (MIM) framework and the SwinV2 architecture, and learns detailed contextual representations through self-supervised learning without the need for labels. It is a 3 billion parameter model that is trained on 100 million images. To our knowledge this is the largest foundation model trained solely on satellite RS imagery. Results show that SatVision-TOA achieves superior performance over baseline methods on downstream tasks such as 3D cloud retrieval. Notably, the model achieves a mean intersection over union (mIOU) of 0.46, a substantial improvement over the baseline mIOU of 0.22. Additionally, the rate of false negative results in the fine-tuning task were reduced by over 50% compared to the baseline. Our work advances pre-trained vision modeling for multispectral RS by learning from a variety of atmospheric and aerosol conditions to improve cloud and land surface monitoring.

  • 6 authors
·
Nov 25, 2024

Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models

Logical reasoning is fundamental for humans yet presents a substantial challenge in the domain of Artificial Intelligence. Initially, researchers used Knowledge Representation and Reasoning (KR) systems that did not scale and required non trivial manual effort. Recently, the emergence of large language models (LLMs) has demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems. Consequently, there is a growing interest in using LLMs for logical reasoning via natural language. This work strives to understand the proficiency of LLMs in logical reasoning by offering a brief review of the latest progress in this area; with a focus on the logical reasoning datasets, tasks, and the methods adopted to utilize LLMs for reasoning. To offer a thorough analysis, we have compiled a benchmark titled LogiGLUE. This includes 24 varied datasets encompassing deductive, abductive, and inductive reasoning. We have standardized these datasets into Seq2Seq tasks to facilitate straightforward training and evaluation for future research. Utilizing LogiGLUE as a foundation, we have trained an instruction fine tuned language model, resulting in LogiT5. We study single task training, multi task training, and a chain of thought knowledge distillation fine tuning technique to assess the performance of model across the different logical reasoning categories. By this comprehensive process, we aim to shed light on the capabilities and potential pathways for enhancing logical reasoning proficiency in LLMs, paving the way for more advanced and nuanced developments in this critical field.

  • 8 authors
·
Oct 1, 2023

FEMBA: Efficient and Scalable EEG Analysis with a Bidirectional Mamba Foundation Model

Accurate and efficient electroencephalography (EEG) analysis is essential for detecting seizures and artifacts in long-term monitoring, with applications spanning hospital diagnostics to wearable health devices. Robust EEG analytics have the potential to greatly improve patient care. However, traditional deep learning models, especially Transformer-based architectures, are hindered by their quadratic time and memory complexity, making them less suitable for resource-constrained environments. To address these challenges, we present FEMBA (Foundational EEG Mamba + Bidirectional Architecture), a novel self-supervised framework that establishes new efficiency benchmarks for EEG analysis through bidirectional state-space modeling. Unlike Transformer-based models, which incur quadratic time and memory complexity, FEMBA scales linearly with sequence length, enabling more scalable and efficient processing of extended EEG recordings. Trained on over 21,000 hours of unlabeled EEG and fine-tuned on three downstream tasks, FEMBA achieves competitive performance in comparison with transformer models, with significantly lower computational cost. Specifically, it reaches 81.82% balanced accuracy (0.8921 AUROC) on TUAB and 0.949 AUROC on TUAR, while a tiny 7.8M-parameter variant demonstrates viability for resource-constrained devices. These results pave the way for scalable, general-purpose EEG analytics in both clinical and highlight FEMBA as a promising candidate for wearable applications.

  • 5 authors
·
Feb 10

RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment

Generative foundation models are susceptible to implicit biases that can arise from extensive unsupervised training data. Such biases can produce suboptimal samples, skewed outcomes, and unfairness, with potentially significant repercussions. Consequently, aligning these models with human ethics and preferences is an essential step toward ensuring their responsible and effective deployment in real-world applications. Prior research has primarily employed Reinforcement Learning from Human Feedback (RLHF) as a means of addressing this problem, wherein generative models are fine-tuned using RL algorithms guided by a human-feedback-informed reward model. However, the inefficiencies and instabilities associated with RL algorithms frequently present substantial obstacles to the successful alignment of generative models, necessitating the development of a more robust and streamlined approach. To this end, we introduce a new framework, Reward rAnked FineTuning (RAFT), designed to align generative models more effectively. Utilizing a reward model and a sufficient number of samples, our approach selects the high-quality samples, discarding those that exhibit undesired behavior, and subsequently assembles a streaming dataset. This dataset serves as the basis for aligning the generative model and can be employed under both offline and online settings. Notably, the sample generation process within RAFT is gradient-free, rendering it compatible with black-box generators. Through extensive experiments, we demonstrate that our proposed algorithm exhibits strong performance in the context of both large language models and diffusion models.

  • 8 authors
·
Apr 13, 2023

A Disease-Centric Vision-Language Foundation Model for Precision Oncology in Kidney Cancer

The non-invasive assessment of increasingly incidentally discovered renal masses is a critical challenge in urologic oncology, where diagnostic uncertainty frequently leads to the overtreatment of benign or indolent tumors. In this study, we developed and validated RenalCLIP using a dataset of 27,866 CT scans from 8,809 patients across nine Chinese medical centers and the public TCIA cohort, a visual-language foundation model for characterization, diagnosis and prognosis of renal mass. The model was developed via a two-stage pre-training strategy that first enhances the image and text encoders with domain-specific knowledge before aligning them through a contrastive learning objective, to create robust representations for superior generalization and diagnostic precision. RenalCLIP achieved better performance and superior generalizability across 10 core tasks spanning the full clinical workflow of kidney cancer, including anatomical assessment, diagnostic classification, and survival prediction, compared with other state-of-the-art general-purpose CT foundation models. Especially, for complicated task like recurrence-free survival prediction in the TCIA cohort, RenalCLIP achieved a C-index of 0.726, representing a substantial improvement of approximately 20% over the leading baselines. Furthermore, RenalCLIP's pre-training imparted remarkable data efficiency; in the diagnostic classification task, it only needs 20% training data to achieve the peak performance of all baseline models even after they were fully fine-tuned on 100% of the data. Additionally, it achieved superior performance in report generation, image-text retrieval and zero-shot diagnosis tasks. Our findings establish that RenalCLIP provides a robust tool with the potential to enhance diagnostic accuracy, refine prognostic stratification, and personalize the management of patients with kidney cancer.

  • 20 authors
·
Aug 22

Learning on Model Weights using Tree Experts

The number of publicly available models is rapidly increasing, yet most remain undocumented. Users looking for suitable models for their tasks must first determine what each model does. Training machine learning models to infer missing documentation directly from model weights is challenging, as these weights often contain significant variation unrelated to model functionality (denoted nuisance). Here, we identify a key property of real-world models: most public models belong to a small set of Model Trees, where all models within a tree are fine-tuned from a common ancestor (e.g., a foundation model). Importantly, we find that within each tree there is less nuisance variation between models. Concretely, while learning across Model Trees requires complex architectures, even a linear classifier trained on a single model layer often works within trees. While effective, these linear classifiers are computationally expensive, especially when dealing with larger models that have many parameters. To address this, we introduce Probing Experts (ProbeX), a theoretically motivated and lightweight method. Notably, ProbeX is the first probing method specifically designed to learn from the weights of a single hidden model layer. We demonstrate the effectiveness of ProbeX by predicting the categories in a model's training dataset based only on its weights. Excitingly, ProbeX can map the weights of Stable Diffusion into a weight-language embedding space, enabling model search via text, i.e., zero-shot model classification.

  • 4 authors
·
Oct 17, 2024

Efficient and Scalable Fine-Tune of Language Models for Genome Understanding

Although DNA foundation models have advanced the understanding of genomes, they still face significant challenges in the limited scale and diversity of genomic data. This limitation starkly contrasts with the success of natural language foundation models, which thrive on substantially larger scales. Furthermore, genome understanding involves numerous downstream genome annotation tasks with inherent data heterogeneity, thereby necessitating more efficient and robust fine-tuning methods tailored for genomics. Here, we present Lingo: Language prefix fIne-tuning for GenOmes. Unlike DNA foundation models, Lingo strategically leverages natural language foundation models' contextual cues, recalibrating their linguistic knowledge to genomic sequences. Lingo further accommodates numerous, heterogeneous downstream fine-tune tasks by an adaptive rank sampling method that prunes and stochastically reintroduces pruned singular vectors within small computational budgets. Adaptive rank sampling outperformed existing fine-tuning methods on all benchmarked 14 genome understanding tasks, while requiring fewer than 2\% of trainable parameters as genomic-specific adapters. Impressively, applying these adapters on natural language foundation models matched or even exceeded the performance of DNA foundation models. Lingo presents a new paradigm of efficient and scalable genome understanding via genomic-specific adapters on language models.

  • 3 authors
·
Feb 12, 2024

Weaver: Foundation Models for Creative Writing

This work introduces Weaver, our first family of large language models (LLMs) dedicated to content creation. Weaver is pre-trained on a carefully selected corpus that focuses on improving the writing capabilities of large language models. We then fine-tune Weaver for creative and professional writing purposes and align it to the preference of professional writers using a suit of novel methods for instruction data synthesis and LLM alignment, making it able to produce more human-like texts and follow more diverse instructions for content creation. The Weaver family consists of models of Weaver Mini (1.8B), Weaver Base (6B), Weaver Pro (14B), and Weaver Ultra (34B) sizes, suitable for different applications and can be dynamically dispatched by a routing agent according to query complexity to balance response quality and computation cost. Evaluation on a carefully curated benchmark for assessing the writing capabilities of LLMs shows Weaver models of all sizes outperform generalist LLMs several times larger than them. Notably, our most-capable Weaver Ultra model surpasses GPT-4, a state-of-the-art generalist LLM, on various writing scenarios, demonstrating the advantage of training specialized LLMs for writing purposes. Moreover, Weaver natively supports retrieval-augmented generation (RAG) and function calling (tool usage). We present various use cases of these abilities for improving AI-assisted writing systems, including integration of external knowledge bases, tools, or APIs, and providing personalized writing assistance. Furthermore, we discuss and summarize a guideline and best practices for pre-training and fine-tuning domain-specific LLMs.

  • 46 authors
·
Jan 30, 2024 6

SoftTiger: A Clinical Foundation Model for Healthcare Workflows

We introduce SoftTiger, a clinical large language model (CLaM) designed as a foundation model for healthcare workflows. The narrative and unstructured nature of clinical notes is a major obstacle for healthcare intelligentization. We address a critical problem of structuring clinical notes into clinical data, according to international interoperability standards. We collect and annotate data for three subtasks, namely, international patient summary, clinical impression and medical encounter. We then supervised fine-tuned a state-of-the-art LLM using public and credentialed clinical data. The training is orchestrated in a way that the target model can first support basic clinical tasks such as abbreviation expansion and temporal information extraction, and then learn to perform more complex downstream clinical tasks. Moreover, we address several modeling challenges in the healthcare context, e.g., extra long context window. Our blind pairwise evaluation shows that SoftTiger outperforms other popular open-source models and GPT-3.5, comparable to Gemini-pro, with a mild gap from GPT-4. We believe that LLMs may become a step-stone towards healthcare digitalization and democratization. Therefore, we publicly release SoftTiger models at scales of 13 billion and 70 billion parameters, as well as datasets and code for our innovative scalable evaluation, hopefully, making a significant contribution to the healthcare industry.

  • 5 authors
·
Feb 29, 2024

ClimaX: A foundation model for weather and climate

Most state-of-the-art approaches for weather and climate modeling are based on physics-informed numerical models of the atmosphere. These approaches aim to model the non-linear dynamics and complex interactions between multiple variables, which are challenging to approximate. Additionally, many such numerical models are computationally intensive, especially when modeling the atmospheric phenomenon at a fine-grained spatial and temporal resolution. Recent data-driven approaches based on machine learning instead aim to directly solve a downstream forecasting or projection task by learning a data-driven functional mapping using deep neural networks. However, these networks are trained using curated and homogeneous climate datasets for specific spatiotemporal tasks, and thus lack the generality of numerical models. We develop and demonstrate ClimaX, a flexible and generalizable deep learning model for weather and climate science that can be trained using heterogeneous datasets spanning different variables, spatio-temporal coverage, and physical groundings. ClimaX extends the Transformer architecture with novel encoding and aggregation blocks that allow effective use of available compute while maintaining general utility. ClimaX is pre-trained with a self-supervised learning objective on climate datasets derived from CMIP6. The pre-trained ClimaX can then be fine-tuned to address a breadth of climate and weather tasks, including those that involve atmospheric variables and spatio-temporal scales unseen during pretraining. Compared to existing data-driven baselines, we show that this generality in ClimaX results in superior performance on benchmarks for weather forecasting and climate projections, even when pretrained at lower resolutions and compute budgets.

  • 5 authors
·
Jan 24, 2023

RDT-1B: a Diffusion Foundation Model for Bimanual Manipulation

Bimanual manipulation is essential in robotics, yet developing foundation models is extremely challenging due to the inherent complexity of coordinating two robot arms (leading to multi-modal action distributions) and the scarcity of training data. In this paper, we present the Robotics Diffusion Transformer (RDT), a pioneering diffusion foundation model for bimanual manipulation. RDT builds on diffusion models to effectively represent multi-modality, with innovative designs of a scalable Transformer to deal with the heterogeneity of multi-modal inputs and to capture the nonlinearity and high frequency of robotic data. To address data scarcity, we further introduce a Physically Interpretable Unified Action Space, which can unify the action representations of various robots while preserving the physical meanings of original actions, facilitating learning transferrable physical knowledge. With these designs, we managed to pre-train RDT on the largest collection of multi-robot datasets to date and scaled it up to 1.2B parameters, which is the largest diffusion-based foundation model for robotic manipulation. We finally fine-tuned RDT on a self-created multi-task bimanual dataset with over 6K+ episodes to refine its manipulation capabilities. Experiments on real robots demonstrate that RDT significantly outperforms existing methods. It exhibits zero-shot generalization to unseen objects and scenes, understands and follows language instructions, learns new skills with just 1~5 demonstrations, and effectively handles complex, dexterous tasks. We refer to https://rdt-robotics.github.io/rdt-robotics/ for the code and videos.

  • 9 authors
·
Oct 10, 2024

netFound: Foundation Model for Network Security

Developing generalizable ML-based solutions for disparate learning problems in network security is highly desired. However, despite a rich history of applying ML to network security, most existing solutions lack generalizability. This lack of progress can be attributed to an overreliance on supervised learning techniques and the associated challenges of curating well-specified labeled training data. This paper addresses a fundamental gap by introducing a novel transformer-based network foundation model, netFound. We employ self-supervised learning techniques on abundant, unlabeled network telemetry data for pre-training. This pretrained model can subsequently be fine-tuned to create generalizable learning artifacts for disparate learning tasks, even when using commonly available but challenging labeled datasets that are sparse, noisy, and skewed. To realize this goal, netFound leverages various domain-specific attributes and constraints unique to network data (packet traces) by developing multi-modal embeddings, protocol-aware tokenization, data-driven token composition, and hierarchical transformers. Our results demonstrate that netFound's domain-specific design choices ensure that it (1) effectively captures the hidden networking context in production settings, (2) outperforms four different SOTA methods on five different learning tasks, and (3) is robust to both noisy labels and learning shortcuts -- critical for developing generalizable ML models in practical settings.

  • 5 authors
·
Oct 25, 2023

FETA: Towards Specializing Foundation Models for Expert Task Applications

Foundation Models (FMs) have demonstrated unprecedented capabilities including zero-shot learning, high fidelity data synthesis, and out of domain generalization. However, as we show in this paper, FMs still have poor out-of-the-box performance on expert tasks (e.g. retrieval of car manuals technical illustrations from language queries), data for which is either unseen or belonging to a long-tail part of the data distribution of the huge datasets used for FM pre-training. This underlines the necessity to explicitly evaluate and finetune FMs on such expert tasks, arguably ones that appear the most in practical real-world applications. In this paper, we propose a first of its kind FETA benchmark built around the task of teaching FMs to understand technical documentation, via learning to match their graphical illustrations to corresponding language descriptions. Our FETA benchmark focuses on text-to-image and image-to-text retrieval in public car manuals and sales catalogue brochures. FETA is equipped with a procedure for completely automatic annotation extraction (code would be released upon acceptance), allowing easy extension of FETA to more documentation types and application domains in the future. Our automatic annotation leads to an automated performance metric shown to be consistent with metrics computed on human-curated annotations (also released). We provide multiple baselines and analysis of popular FMs on FETA leading to several interesting findings that we believe would be very valuable to the FM community, paving the way towards real-world application of FMs for practical expert tasks currently 'overlooked' by standard benchmarks focusing on common objects.

  • 13 authors
·
Sep 8, 2022

MEG-GPT: A transformer-based foundation model for magnetoencephalography data

Modelling the complex spatiotemporal patterns of large-scale brain dynamics is crucial for neuroscience, but traditional methods fail to capture the rich structure in modalities such as magnetoencephalography (MEG). Recent advances in deep learning have enabled significant progress in other domains, such as language and vision, by using foundation models at scale. Here, we introduce MEG-GPT, a transformer based foundation model that uses time-attention and next time-point prediction. To facilitate this, we also introduce a novel data-driven tokeniser for continuous MEG data, which preserves the high temporal resolution of continuous MEG signals without lossy transformations. We trained MEG-GPT on tokenised brain region time-courses extracted from a large-scale MEG dataset (N=612, eyes-closed rest, Cam-CAN data), and show that the learnt model can generate data with realistic spatio-spectral properties, including transient events and population variability. Critically, it performs well in downstream decoding tasks, improving downstream supervised prediction task, showing improved zero-shot generalisation across sessions (improving accuracy from 0.54 to 0.59) and subjects (improving accuracy from 0.41 to 0.49) compared to a baseline methods. Furthermore, we show the model can be efficiently fine-tuned on a smaller labelled dataset to boost performance in cross-subject decoding scenarios. This work establishes a powerful foundation model for electrophysiological data, paving the way for applications in computational neuroscience and neural decoding.

  • 5 authors
·
Oct 20

Mamba as a Bridge: Where Vision Foundation Models Meet Vision Language Models for Domain-Generalized Semantic Segmentation

Vision Foundation Models (VFMs) and Vision-Language Models (VLMs) have gained traction in Domain Generalized Semantic Segmentation (DGSS) due to their strong generalization capabilities. However, existing DGSS methods often rely exclusively on either VFMs or VLMs, overlooking their complementary strengths. VFMs (e.g., DINOv2) excel at capturing fine-grained features, while VLMs (e.g., CLIP) provide robust text alignment but struggle with coarse granularity. Despite their complementary strengths, effectively integrating VFMs and VLMs with attention mechanisms is challenging, as the increased patch tokens complicate long-sequence modeling. To address this, we propose MFuser, a novel Mamba-based fusion framework that efficiently combines the strengths of VFMs and VLMs while maintaining linear scalability in sequence length. MFuser consists of two key components: MVFuser, which acts as a co-adapter to jointly fine-tune the two models by capturing both sequential and spatial dynamics; and MTEnhancer, a hybrid attention-Mamba module that refines text embeddings by incorporating image priors. Our approach achieves precise feature locality and strong text alignment without incurring significant computational overhead. Extensive experiments demonstrate that MFuser significantly outperforms state-of-the-art DGSS methods, achieving 68.20 mIoU on synthetic-to-real and 71.87 mIoU on real-to-real benchmarks. The code is available at https://github.com/devinxzhang/MFuser.

  • 2 authors
·
Apr 4 2

Steering Your Generalists: Improving Robotic Foundation Models via Value Guidance

Large, general-purpose robotic policies trained on diverse demonstration datasets have been shown to be remarkably effective both for controlling a variety of robots in a range of different scenes, and for acquiring broad repertoires of manipulation skills. However, the data that such policies are trained on is generally of mixed quality -- not only are human-collected demonstrations unlikely to perform the task perfectly, but the larger the dataset is, the harder it is to curate only the highest quality examples. It also remains unclear how optimal data from one embodiment is for training on another embodiment. In this paper, we present a general and broadly applicable approach that enhances the performance of such generalist robot policies at deployment time by re-ranking their actions according to a value function learned via offline RL. This approach, which we call Value-Guided Policy Steering (V-GPS), is compatible with a wide range of different generalist policies, without needing to fine-tune or even access the weights of the policy. We show that the same value function can improve the performance of five different state-of-the-art policies with different architectures, even though they were trained on distinct datasets, attaining consistent performance improvement on multiple robotic platforms across a total of 12 tasks. Code and videos can be found at: https://nakamotoo.github.io/V-GPS

  • 4 authors
·
Oct 17, 2024 1

Bootstrapping SparseFormers from Vision Foundation Models

The recently proposed SparseFormer architecture provides an alternative approach to visual understanding by utilizing a significantly lower number of visual tokens via adjusting RoIs, greatly reducing computational costs while still achieving promising performance. However, training SparseFormers from scratch is still expensive, and scaling up the number of parameters can be challenging. In this paper, we propose to bootstrap SparseFormers from ViT-based vision foundation models in a simple and efficient way. Since the majority of SparseFormer blocks are the standard transformer ones, we can inherit weights from large-scale pre-trained vision transformers and freeze them as much as possible. Therefore, we only need to train the SparseFormer-specific lightweight focusing transformer to adjust token RoIs and fine-tune a few early pre-trained blocks to align the final token representation. In such a way, we can bootstrap SparseFormer architectures from various large-scale pre-trained models (e.g., IN-21K pre-trained AugRegs or CLIPs) using a rather smaller amount of training samples (e.g., IN-1K) and without labels or captions within just a few hours. As a result, the bootstrapped unimodal SparseFormer (from AugReg-ViT-L/16-384) can reach 84.9% accuracy on IN-1K with only 49 tokens, and the multimodal SparseFormer from CLIPs also demonstrates notable zero-shot performance with highly reduced computational cost without seeing any caption during the bootstrapping procedure. In addition, CLIP-bootstrapped SparseFormers, which align the output space with language without seeing a word, can serve as efficient vision encoders in multimodal large language models. Code will be publicly available at https://github.com/showlab/sparseformer

  • 5 authors
·
Dec 4, 2023

LoRA3D: Low-Rank Self-Calibration of 3D Geometric Foundation Models

Emerging 3D geometric foundation models, such as DUSt3R, offer a promising approach for in-the-wild 3D vision tasks. However, due to the high-dimensional nature of the problem space and scarcity of high-quality 3D data, these pre-trained models still struggle to generalize to many challenging circumstances, such as limited view overlap or low lighting. To address this, we propose LoRA3D, an efficient self-calibration pipeline to specialize the pre-trained models to target scenes using their own multi-view predictions. Taking sparse RGB images as input, we leverage robust optimization techniques to refine multi-view predictions and align them into a global coordinate frame. In particular, we incorporate prediction confidence into the geometric optimization process, automatically re-weighting the confidence to better reflect point estimation accuracy. We use the calibrated confidence to generate high-quality pseudo labels for the calibrating views and use low-rank adaptation (LoRA) to fine-tune the models on the pseudo-labeled data. Our method does not require any external priors or manual labels. It completes the self-calibration process on a single standard GPU within just 5 minutes. Each low-rank adapter requires only 18MB of storage. We evaluated our method on more than 160 scenes from the Replica, TUM and Waymo Open datasets, achieving up to 88% performance improvement on 3D reconstruction, multi-view pose estimation and novel-view rendering.

  • 7 authors
·
Dec 10, 2024

UniRGB-IR: A Unified Framework for RGB-Infrared Semantic Tasks via Adapter Tuning

Semantic analysis on visible (RGB) and infrared (IR) images has gained attention for its ability to be more accurate and robust under low-illumination and complex weather conditions. Due to the lack of pre-trained foundation models on the large-scale infrared image datasets, existing methods prefer to design task-specific frameworks and directly fine-tune them with pre-trained foundation models on their RGB-IR semantic relevance datasets, which results in poor scalability and limited generalization. In this work, we propose a general and efficient framework called UniRGB-IR to unify RGB-IR semantic tasks, in which a novel adapter is developed to efficiently introduce richer RGB-IR features into the pre-trained RGB-based foundation model. Specifically, our framework consists of a RGB-based foundation model, a Multi-modal Feature Pool (MFP) module and a Supplementary Feature Injector (SFI) module. The MFP and SFI modules cooperate with each other as an adapter to effectively complement the RGB-based features with the rich RGB-IR features. During training process, we freeze the entire foundation model to inherit prior knowledge and only optimize the proposed adapter. Furthermore, to verify the effectiveness of our framework, we utilize the vanilla vision transformer (ViT-Base) as the pre-trained foundation model to perform extensive experiments. Experimental results on various RGB-IR downstream tasks demonstrate that our method can achieve state-of-the-art performance. The source code and results are available at https://github.com/PoTsui99/UniRGB-IR.git.

  • 6 authors
·
Apr 26, 2024

SAM-UNet:Enhancing Zero-Shot Segmentation of SAM for Universal Medical Images

Segment Anything Model (SAM) has demonstrated impressive performance on a wide range of natural image segmentation tasks. However, its performance significantly deteriorates when directly applied to medical domain, due to the remarkable differences between natural images and medical images. Some researchers have attempted to train SAM on large scale medical datasets. However, poor zero-shot performance is observed from the experimental results. In this context, inspired by the superior performance of U-Net-like models in medical image segmentation, we propose SAMUNet, a new foundation model which incorporates U-Net to the original SAM, to fully leverage the powerful contextual modeling ability of convolutions. To be specific, we parallel a convolutional branch in the image encoder, which is trained independently with the vision Transformer branch frozen. Additionally, we employ multi-scale fusion in the mask decoder, to facilitate accurate segmentation of objects with different scales. We train SAM-UNet on SA-Med2D-16M, the largest 2-dimensional medical image segmentation dataset to date, yielding a universal pretrained model for medical images. Extensive experiments are conducted to evaluate the performance of the model, and state-of-the-art result is achieved, with a dice similarity coefficient score of 0.883 on SA-Med2D-16M dataset. Specifically, in zero-shot segmentation experiments, our model not only significantly outperforms previous large medical SAM models across all modalities, but also substantially mitigates the performance degradation seen on unseen modalities. It should be highlighted that SAM-UNet is an efficient and extensible foundation model, which can be further fine-tuned for other downstream tasks in medical community. The code is available at https://github.com/Hhankyangg/sam-unet.

  • 4 authors
·
Aug 19, 2024

EchoingECG: An Electrocardiogram Cross-Modal Model for Echocardiogram Tasks

Electrocardiogram (ECG) is a widely used tool for assessing cardiac function due to its low cost and accessibility. Emergent research shows that ECGs can help make predictions on key outcomes traditionally derived from more complex modalities such as echocardiograms (ECHO), enabling the use of ECGs as a more accessible method to predict broader measurements of cardiac function. ECHO, in particular, are of great importance because they require considerable hospital resources while playing a key role in clinical cardiac assessment. To aid this use case, we introduce EchoingECG, a probabilistic student-teacher model that leverages uncertainty-aware ECG embeddings and ECHO supervision to improve ECG-based cardiac function prediction. Our approach integrates Probabilistic Cross-Modal Embeddings (PCME++), a probabilistic contrastive framework, with ECHO-CLIP, a vision-language pre-trained model trained on ECHO-text pairs, to distill ECHO knowledge into ECG representations. Through experiments and external validation, we showed that EchoingECG outperforms state-of-the-art foundation ECG models in zero-shot, few-shot, and fine-tune settings for ECHO predictions based on ECG. We also highlighted that variance estimation (enabled through our method) enhanced our understanding of model performance by identifying underlying regions of uncertainty within ECGs. The code is available: https://github.com/mcintoshML/EchoingECG.

  • 3 authors
·
Sep 30

Simulated Ensemble Attack: Transferring Jailbreaks Across Fine-tuned Vision-Language Models

Fine-tuning open-source Vision-Language Models (VLMs) creates a critical yet underexplored attack surface: vulnerabilities in the base VLM could be retained in fine-tuned variants, rendering them susceptible to transferable jailbreak attacks. To demonstrate this risk, we introduce the Simulated Ensemble Attack (SEA), a novel grey-box jailbreak method in which the adversary has full access to the base VLM but no knowledge of the fine-tuned target's weights or training configuration. To improve jailbreak transferability across fine-tuned VLMs, SEA combines two key techniques: Fine-tuning Trajectory Simulation (FTS) and Targeted Prompt Guidance (TPG). FTS generates transferable adversarial images by simulating the vision encoder's parameter shifts, while TPG is a textual strategy that steers the language decoder toward adversarially optimized outputs. Experiments on the Qwen2-VL family (2B and 7B) demonstrate that SEA achieves high transfer attack success rates exceeding 86.5% and toxicity rates near 49.5% across diverse fine-tuned variants, even those specifically fine-tuned to improve safety behaviors. Notably, while direct PGD-based image jailbreaks rarely transfer across fine-tuned VLMs, SEA reliably exploits inherited vulnerabilities from the base model, significantly enhancing transferability. These findings highlight an urgent need to safeguard fine-tuned proprietary VLMs against transferable vulnerabilities inherited from open-source foundations, motivating the development of holistic defenses across the entire model lifecycle.

  • 5 authors
·
Aug 3

MFTCoder: Boosting Code LLMs with Multitask Fine-Tuning

Code LLMs have emerged as a specialized research field, with remarkable studies dedicated to enhancing model's coding capabilities through fine-tuning on pre-trained models. Previous fine-tuning approaches were typically tailored to specific downstream tasks or scenarios, which meant separate fine-tuning for each task, requiring extensive training resources and posing challenges in terms of deployment and maintenance. Furthermore, these approaches failed to leverage the inherent interconnectedness among different code-related tasks. To overcome these limitations, we present a multi-task fine-tuning framework, MFTcoder, that enables simultaneous and parallel fine-tuning on multiple tasks. By incorporating various loss functions, we effectively address common challenges in multi-task learning, such as data imbalance, varying difficulty levels, and inconsistent convergence speeds. Extensive experiments have conclusively demonstrated that our multi-task fine-tuning approach outperforms both individual fine-tuning on single tasks and fine-tuning on a mixed ensemble of tasks. Moreover, MFTcoder offers efficient training capabilities, including efficient data tokenization modes and PEFT fine-tuning, resulting in significantly improved speed compared to traditional fine-tuning methods. MFTcoder seamlessly integrates with several mainstream open-source LLMs, such as CodeLLama and Qwen. Leveraging the CodeLLama foundation, our MFTcoder fine-tuned model, CodeFuse-CodeLLama-34B, achieves an impressive pass@1 score of 74.4\% on the HumaneEval benchmark, surpassing GPT-4 performance (67\%, zero-shot). MFTCoder is open-sourced at https://github.com/codefuse-ai/MFTCOder

codefuse-ai CodeFuse AI
·
Nov 3, 2023 1

Scaling-Up the Pretraining of the Earth Observation Foundation Model PhilEO to the MajorTOM Dataset

Today, Earth Observation (EO) satellites generate massive volumes of data, with the Copernicus Sentinel-2 constellation alone producing approximately 1.6TB per day. To fully exploit this information, it is essential to pretrain EO Foundation Models (FMs) on large unlabeled datasets, enabling efficient fine-tuning for several different downstream tasks with minimal labeled data. In this work, we present the scaling-up of our recently proposed EO Foundation Model, PhilEO Geo-Aware U-Net, on the unlabeled 23TB dataset MajorTOM, which covers the vast majority of the Earth's surface, as well as on the specialized subset FastTOM 2TB that does not include oceans and ice. We develop and study various PhilEO model variants with different numbers of parameters and architectures. Finally, we fine-tune the models on the PhilEO Bench for road density estimation, building density pixel-wise regression, and land cover semantic segmentation, and we evaluate the performance. Our results demonstrate that for all n-shots for road density regression, the PhilEO 44M MajorTOM 23TB model outperforms PhilEO Globe 0.5TB 44M. We also show that for most n-shots for road density estimation and building density regression, PhilEO 200M FastTOM outperforms all the other models. The effectiveness of both dataset and model scaling is validated using the PhilEO Bench. We also study the impact of architecture scaling, transitioning from U-Net Convolutional Neural Networks (CNN) to Vision Transformers (ViT).

  • 10 authors
·
Jun 17

Towards a Generalizable Bimanual Foundation Policy via Flow-based Video Prediction

Learning a generalizable bimanual manipulation policy is extremely challenging for embodied agents due to the large action space and the need for coordinated arm movements. Existing approaches rely on Vision-Language-Action (VLA) models to acquire bimanual policies. However, transferring knowledge from single-arm datasets or pre-trained VLA models often fails to generalize effectively, primarily due to the scarcity of bimanual data and the fundamental differences between single-arm and bimanual manipulation. In this paper, we propose a novel bimanual foundation policy by fine-tuning the leading text-to-video models to predict robot trajectories and training a lightweight diffusion policy for action generation. Given the lack of embodied knowledge in text-to-video models, we introduce a two-stage paradigm that fine-tunes independent text-to-flow and flow-to-video models derived from a pre-trained text-to-video model. Specifically, optical flow serves as an intermediate variable, providing a concise representation of subtle movements between images. The text-to-flow model predicts optical flow to concretize the intent of language instructions, and the flow-to-video model leverages this flow for fine-grained video prediction. Our method mitigates the ambiguity of language in single-stage text-to-video prediction and significantly reduces the robot-data requirement by avoiding direct use of low-level actions. In experiments, we collect high-quality manipulation data for real dual-arm robot, and the results of simulation and real-world experiments demonstrate the effectiveness of our method.

  • 7 authors
·
May 29

AxFormer: Accuracy-driven Approximation of Transformers for Faster, Smaller and more Accurate NLP Models

Transformers have greatly advanced the state-of-the-art in Natural Language Processing (NLP) in recent years, but present very large computation and storage requirements. We observe that the design process of Transformers (pre-train a foundation model on a large dataset in a self-supervised manner, and subsequently fine-tune it for different downstream tasks) leads to task-specific models that are highly over-parameterized, adversely impacting both accuracy and inference efficiency. We propose AxFormer, a systematic framework that applies accuracy-driven approximations to create optimized transformer models for a given downstream task. AxFormer combines two key optimizations -- accuracy-driven pruning and selective hard attention. Accuracy-driven pruning identifies and removes parts of the fine-tuned transformer that hinder performance on the given downstream task. Sparse hard-attention optimizes attention blocks in selected layers by eliminating irrelevant word aggregations, thereby helping the model focus only on the relevant parts of the input. In effect, AxFormer leads to models that are more accurate, while also being faster and smaller. Our experiments on GLUE and SQUAD tasks show that AxFormer models are up to 4.5% more accurate, while also being up to 2.5X faster and up to 3.2X smaller than conventional fine-tuned models. In addition, we demonstrate that AxFormer can be combined with previous efforts such as distillation or quantization to achieve further efficiency gains.

  • 4 authors
·
Oct 7, 2020

From One to More: Contextual Part Latents for 3D Generation

Recent advances in 3D generation have transitioned from multi-view 2D rendering approaches to 3D-native latent diffusion frameworks that exploit geometric priors in ground truth data. Despite progress, three key limitations persist: (1) Single-latent representations fail to capture complex multi-part geometries, causing detail degradation; (2) Holistic latent coding neglects part independence and interrelationships critical for compositional design; (3) Global conditioning mechanisms lack fine-grained controllability. Inspired by human 3D design workflows, we propose CoPart - a part-aware diffusion framework that decomposes 3D objects into contextual part latents for coherent multi-part generation. This paradigm offers three advantages: i) Reduces encoding complexity through part decomposition; ii) Enables explicit part relationship modeling; iii) Supports part-level conditioning. We further develop a mutual guidance strategy to fine-tune pre-trained diffusion models for joint part latent denoising, ensuring both geometric coherence and foundation model priors. To enable large-scale training, we construct Partverse - a novel 3D part dataset derived from Objaverse through automated mesh segmentation and human-verified annotations. Extensive experiments demonstrate CoPart's superior capabilities in part-level editing, articulated object generation, and scene composition with unprecedented controllability.

  • 13 authors
·
Jul 11 3

VERIFIED: A Video Corpus Moment Retrieval Benchmark for Fine-Grained Video Understanding

Existing Video Corpus Moment Retrieval (VCMR) is limited to coarse-grained understanding, which hinders precise video moment localization when given fine-grained queries. In this paper, we propose a more challenging fine-grained VCMR benchmark requiring methods to localize the best-matched moment from the corpus with other partially matched candidates. To improve the dataset construction efficiency and guarantee high-quality data annotations, we propose VERIFIED, an automatic VidEo-text annotation pipeline to generate captions with RelIable FInE-grained statics and Dynamics. Specifically, we resort to large language models (LLM) and large multimodal models (LMM) with our proposed Statics and Dynamics Enhanced Captioning modules to generate diverse fine-grained captions for each video. To filter out the inaccurate annotations caused by the LLM hallucination, we propose a Fine-Granularity Aware Noise Evaluator where we fine-tune a video foundation model with disturbed hard-negatives augmented contrastive and matching losses. With VERIFIED, we construct a more challenging fine-grained VCMR benchmark containing Charades-FIG, DiDeMo-FIG, and ActivityNet-FIG which demonstrate a high level of annotation quality. We evaluate several state-of-the-art VCMR models on the proposed dataset, revealing that there is still significant scope for fine-grained video understanding in VCMR. Code and Datasets are in https://github.com/hlchen23/VERIFIED{https://github.com/hlchen23/VERIFIED}.

  • 8 authors
·
Oct 11, 2024

Synthetic Vision: Training Vision-Language Models to Understand Physics

Physical reasoning, which involves the interpretation, understanding, and prediction of object behavior in dynamic environments, remains a significant challenge for current Vision-Language Models (VLMs). In this work, we propose two methods to enhance VLMs' physical reasoning capabilities using simulated data. First, we fine-tune a pre-trained VLM using question-answer (QA) pairs generated from simulations relevant to physical reasoning tasks. Second, we introduce Physics Context Builders (PCBs), specialized VLMs fine-tuned to create scene descriptions enriched with physical properties and processes. During physical reasoning tasks, these PCBs can be leveraged as context to assist a Large Language Model (LLM) to improve its performance. We evaluate both of our approaches using multiple benchmarks, including a new stability detection QA dataset called Falling Tower, which includes both simulated and real-world scenes, and CLEVRER. We demonstrate that a small QA fine-tuned VLM can significantly outperform larger state-of-the-art foundational models. We also show that integrating PCBs boosts the performance of foundational LLMs on physical reasoning tasks. Using the real-world scenes from the Falling Tower dataset, we also validate the robustness of both approaches in Sim2Real transfer. Our results highlight the utility that simulated data can have in the creation of learning systems capable of advanced physical reasoning.

  • 5 authors
·
Dec 11, 2024

MedMax: Mixed-Modal Instruction Tuning for Training Biomedical Assistants

Recent advancements in mixed-modal generative models have enabled flexible integration of information across image-text content. These models have opened new avenues for developing unified biomedical assistants capable of analyzing biomedical images, answering complex questions about them, and predicting the impact of medical procedures on a patient's health. However, existing resources face challenges such as limited data availability, narrow domain coverage, and restricted sources (e.g., medical papers). To address these gaps, we present MedMax, the first large-scale multimodal biomedical instruction-tuning dataset for mixed-modal foundation models. With 1.47 million instances, MedMax encompasses a diverse range of tasks, including multimodal content generation (interleaved image-text data), biomedical image captioning and generation, visual chatting, and report understanding. These tasks span diverse medical domains such as radiology and histopathology. Subsequently, we fine-tune a mixed-modal foundation model on the MedMax dataset, achieving significant performance improvements: a 26% gain over the Chameleon model and an 18.3% improvement over GPT-4o across 12 downstream biomedical visual question-answering tasks. Additionally, we introduce a unified evaluation suite for biomedical tasks, providing a robust framework to guide the development of next-generation mixed-modal biomedical AI assistants.

  • 6 authors
·
Dec 17, 2024

Generalist Foundation Models Are Not Clinical Enough for Hospital Operations

Hospitals and healthcare systems rely on operational decisions that determine patient flow, cost, and quality of care. Despite strong performance on medical knowledge and conversational benchmarks, foundation models trained on general text may lack the specialized knowledge required for these operational decisions. We introduce Lang1, a family of models (100M-7B parameters) pretrained on a specialized corpus blending 80B clinical tokens from NYU Langone Health's EHRs and 627B tokens from the internet. To rigorously evaluate Lang1 in real-world settings, we developed the REalistic Medical Evaluation (ReMedE), a benchmark derived from 668,331 EHR notes that evaluates five critical tasks: 30-day readmission prediction, 30-day mortality prediction, length of stay, comorbidity coding, and predicting insurance claims denial. In zero-shot settings, both general-purpose and specialized models underperform on four of five tasks (36.6%-71.7% AUROC), with mortality prediction being an exception. After finetuning, Lang1-1B outperforms finetuned generalist models up to 70x larger and zero-shot models up to 671x larger, improving AUROC by 3.64%-6.75% and 1.66%-23.66% respectively. We also observed cross-task scaling with joint finetuning on multiple tasks leading to improvement on other tasks. Lang1-1B effectively transfers to out-of-distribution settings, including other clinical tasks and an external health system. Our findings suggest that predictive capabilities for hospital operations require explicit supervised finetuning, and that this finetuning process is made more efficient by in-domain pretraining on EHR. Our findings support the emerging view that specialized LLMs can compete with generalist models in specialized tasks, and show that effective healthcare systems AI requires the combination of in-domain pretraining, supervised finetuning, and real-world evaluation beyond proxy benchmarks.

Yi: Open Foundation Models by 01.AI

We introduce the Yi model family, a series of language and multimodal models that demonstrate strong multi-dimensional capabilities. The Yi model family is based on 6B and 34B pretrained language models, then we extend them to chat models, 200K long context models, depth-upscaled models, and vision-language models. Our base models achieve strong performance on a wide range of benchmarks like MMLU, and our finetuned chat models deliver strong human preference rate on major evaluation platforms like AlpacaEval and Chatbot Arena. Building upon our scalable super-computing infrastructure and the classical transformer architecture, we attribute the performance of Yi models primarily to its data quality resulting from our data-engineering efforts. For pretraining, we construct 3.1 trillion tokens of English and Chinese corpora using a cascaded data deduplication and quality filtering pipeline. For finetuning, we polish a small scale (less than 10K) instruction dataset over multiple iterations such that every single instance has been verified directly by our machine learning engineers. For vision-language, we combine the chat language model with a vision transformer encoder and train the model to align visual representations to the semantic space of the language model. We further extend the context length to 200K through lightweight continual pretraining and demonstrate strong needle-in-a-haystack retrieval performance. We show that extending the depth of the pretrained checkpoint through continual pretraining further improves performance. We believe that given our current results, continuing to scale up model parameters using thoroughly optimized data will lead to even stronger frontier models.

  • 31 authors
·
Mar 7, 2024 3

CoCa: Contrastive Captioners are Image-Text Foundation Models

Exploring large-scale pretrained foundation models is of significant interest in computer vision because these models can be quickly transferred to many downstream tasks. This paper presents Contrastive Captioner (CoCa), a minimalist design to pretrain an image-text encoder-decoder foundation model jointly with contrastive loss and captioning loss, thereby subsuming model capabilities from contrastive approaches like CLIP and generative methods like SimVLM. In contrast to standard encoder-decoder transformers where all decoder layers attend to encoder outputs, CoCa omits cross-attention in the first half of decoder layers to encode unimodal text representations, and cascades the remaining decoder layers which cross-attend to the image encoder for multimodal image-text representations. We apply a contrastive loss between unimodal image and text embeddings, in addition to a captioning loss on the multimodal decoder outputs which predicts text tokens autoregressively. By sharing the same computational graph, the two training objectives are computed efficiently with minimal overhead. CoCa is pretrained end-to-end and from scratch on both web-scale alt-text data and annotated images by treating all labels simply as text, seamlessly unifying natural language supervision for representation learning. Empirically, CoCa achieves state-of-the-art performance with zero-shot transfer or minimal task-specific adaptation on a broad range of downstream tasks, spanning visual recognition (ImageNet, Kinetics-400/600/700, Moments-in-Time), crossmodal retrieval (MSCOCO, Flickr30K, MSR-VTT), multimodal understanding (VQA, SNLI-VE, NLVR2), and image captioning (MSCOCO, NoCaps). Notably on ImageNet classification, CoCa obtains 86.3% zero-shot top-1 accuracy, 90.6% with a frozen encoder and learned classification head, and new state-of-the-art 91.0% top-1 accuracy on ImageNet with a finetuned encoder.

  • 6 authors
·
May 4, 2022 1

Small Language Models Fine-tuned to Coordinate Larger Language Models improve Complex Reasoning

Large Language Models (LLMs) prompted to generate chain-of-thought (CoT) exhibit impressive reasoning capabilities. Recent attempts at prompt decomposition toward solving complex, multi-step reasoning problems depend on the ability of the LLM to simultaneously decompose and solve the problem. A significant disadvantage is that foundational LLMs are typically not available for fine-tuning, making adaptation computationally prohibitive. We believe (and demonstrate) that problem decomposition and solution generation are distinct capabilites, better addressed in separate modules, than by one monolithic LLM. We introduce DaSLaM, which uses a decomposition generator to decompose complex problems into subproblems that require fewer reasoning steps. These subproblems are answered by a solver. We use a relatively small (13B parameters) LM as the decomposition generator, which we train using policy gradient optimization to interact with a solver LM (regarded as black-box) and guide it through subproblems, thereby rendering our method solver-agnostic. Evaluation on multiple different reasoning datasets reveal that with our method, a 175 billion parameter LM (text-davinci-003) can produce competitive or even better performance, compared to its orders-of-magnitude larger successor, GPT-4. Additionally, we show that DaSLaM is not limited by the solver's capabilities as a function of scale; e.g., solver LMs with diverse sizes give significant performance improvement with our solver-agnostic decomposition technique. Exhaustive ablation studies evince the superiority of our modular finetuning technique over exorbitantly large decomposer LLMs, based on prompting alone.

  • 5 authors
·
Oct 21, 2023

SurgiSAM2: Fine-tuning a foundational model for surgical video anatomy segmentation and detection

Background: We evaluate SAM 2 for surgical scene understanding by examining its semantic segmentation capabilities for organs/tissues both in zero-shot scenarios and after fine-tuning. Methods: We utilized five public datasets to evaluate and fine-tune SAM 2 for segmenting anatomical tissues in surgical videos/images. Fine-tuning was applied to the image encoder and mask decoder. We limited training subsets from 50 to 400 samples per class to better model real-world constraints with data acquisition. The impact of dataset size on fine-tuning performance was evaluated with weighted mean Dice coefficient (WMDC), and the results were also compared against previously reported state-of-the-art (SOTA) results. Results: SurgiSAM 2, a fine-tuned SAM 2 model, demonstrated significant improvements in segmentation performance, achieving a 17.9% relative WMDC gain compared to the baseline SAM 2. Increasing prompt points from 1 to 10 and training data scale from 50/class to 400/class enhanced performance; the best WMDC of 0.92 on the validation subset was achieved with 10 prompt points and 400 samples per class. On the test subset, this model outperformed prior SOTA methods in 24/30 (80%) of the classes with a WMDC of 0.91 using 10-point prompts. Notably, SurgiSAM 2 generalized effectively to unseen organ classes, achieving SOTA on 7/9 (77.8%) of them. Conclusion: SAM 2 achieves remarkable zero-shot and fine-tuned performance for surgical scene segmentation, surpassing prior SOTA models across several organ classes of diverse datasets. This suggests immense potential for enabling automated/semi-automated annotation pipelines, thereby decreasing the burden of annotations facilitating several surgical applications.

  • 8 authors
·
Mar 5

Balanced Actor Initialization: Stable RLHF Training of Distillation-Based Reasoning Models

The development of alignment and reasoning capabilities in large language models has seen remarkable progress through two paradigms: instruction tuning and reinforcement learning from human feedback (RLHF) alignment paradigm, and distillation-based reasoning fine-tuning paradigm. While both approaches prove effective independently, the third paradigm of applying RLHF to distillation-trained models presents significant challenges. Our investigation reveals two critical phenomena that emerge in this paradigm: Sequence Length Collapse, where language generation dramatically reduces during early RLHF training, and the Reward Hockey Stick Curve, featuring severe reward score drops followed by gradual recovery. These instabilities fundamentally compromise the model's alignment and reasoning capabilities. To address these challenges, we propose Balanced Actor Initialization (BAI), a two-stage weighted model merging approach. BAI first merges instruction-following and distillation-based reasoning fine-tuned models, then further combines this intermediate model with the pretrained model to preserve foundational knowledge. Through comprehensive experiments across diverse benchmarks and detailed analysis of training experiments, we demonstrate that BAI resolves Sequence Length Collapse, mitigates the Reward Hockey Stick Curve, and enables continuous sequence length improvement during training. Additionally, our analysis reveals that balanced merging ratios achieve optimal trade-offs between training stability and reasoning capability preservation. Our work provides the effective solution for stable training in this third paradigm, enabling more capable reasoning models that combine distillation efficiency with RLHF alignment.

  • 15 authors
·
Aug 29

Saudi-Dialect-ALLaM: LoRA Fine-Tuning for Dialectal Arabic Generation

Large language models (LLMs) for Arabic are still dominated by Modern Standard Arabic (MSA), with limited support for Saudi dialects such as Najdi and Hijazi. This underrepresentation hinders their ability to capture authentic dialectal variation. Using a privately curated Saudi Dialect Instruction dataset (Hijazi and Najdi; 5,466 synthetic instruction-response pairs; 50/50 split), we LoRA-tune ALLaM-7B-Instruct-preview, the first foundation model developed in Saudi Arabia, for Saudi dialect generation. We investigate two variants: (i) Dialect-Token training, which prepends an explicit dialect tag to the instruction, and (ii) No-Token training, which omits the tag at formatting time. Evaluation on a held-out test set combines an external dialect classifier with text fidelity metrics (chrF++ and BERTScore) and diversity measures. The Dialect-Token model achieves the best control, raising the Saudi rate from 47.97% to 84.21% and reducing MSA leakage from 32.63% to 6.21%; fidelity also improves (chrF++ +3.53, BERTScore +0.059). Both LoRA variants outperform strong generic instruction models (Falcon-7B-Instruct, Llama-3.1-8B-Instruct, Qwen-2.5-7B-Instruct, AceGPT-v2-8B-Chat, JAIS-13B-Chat) in dialect control and fidelity, while avoiding metadata-tag echoing that these baselines frequently exhibit. We do not release the dataset or any model weights/adapters; instead, we release training/evaluation/inference code and a detailed datasheet (schema and aggregate statistics) to support independent verification.

  • 1 authors
·
Aug 19

Making Flow-Matching-Based Zero-Shot Text-to-Speech Laugh as You Like

Laughter is one of the most expressive and natural aspects of human speech, conveying emotions, social cues, and humor. However, most text-to-speech (TTS) systems lack the ability to produce realistic and appropriate laughter sounds, limiting their applications and user experience. While there have been prior works to generate natural laughter, they fell short in terms of controlling the timing and variety of the laughter to be generated. In this work, we propose ELaTE, a zero-shot TTS that can generate natural laughing speech of any speaker based on a short audio prompt with precise control of laughter timing and expression. Specifically, ELaTE works on the audio prompt to mimic the voice characteristic, the text prompt to indicate the contents of the generated speech, and the input to control the laughter expression, which can be either the start and end times of laughter, or the additional audio prompt that contains laughter to be mimicked. We develop our model based on the foundation of conditional flow-matching-based zero-shot TTS, and fine-tune it with frame-level representation from a laughter detector as additional conditioning. With a simple scheme to mix small-scale laughter-conditioned data with large-scale pre-training data, we demonstrate that a pre-trained zero-shot TTS model can be readily fine-tuned to generate natural laughter with precise controllability, without losing any quality of the pre-trained zero-shot TTS model. Through the evaluations, we show that ELaTE can generate laughing speech with significantly higher quality and controllability compared to conventional models. See https://aka.ms/elate/ for demo samples.

  • 15 authors
·
Feb 11, 2024 1

Infinity Instruct: Scaling Instruction Selection and Synthesis to Enhance Language Models

Large Language Models (LLMs) demonstrate strong performance in real-world applications, yet existing open-source instruction datasets often concentrate on narrow domains, such as mathematics or coding, limiting generalization and widening the gap with proprietary models. To bridge this gap, we introduce Infinity-Instruct, a high-quality instruction dataset designed to enhance both foundational and chat capabilities of LLMs through a two-phase pipeline. In Phase 1, we curate 7.4M high-quality foundational instructions (InfInstruct-F-7.4M) from over 100M samples using hybrid data selection techniques. In Phase 2, we synthesize 1.5M high-quality chat instructions (InfInstruct-G-1.5M) through a two-stage process involving instruction selection, evolution, and diagnostic filtering. We empirically evaluate Infinity-Instruct by fine-tuning several open-source models, including Mistral, LLaMA, Qwen, and Yi, and observe substantial performance gains across both foundational and instruction following benchmarks, consistently surpassing official instruction-tuned counterparts. Notably, InfInstruct-LLaMA3.1-70B outperforms GPT-4-0314 by 8.6\% on instruction following tasks while achieving comparable foundational performance. These results underscore the synergy between foundational and chat training and offer new insights into holistic LLM development. Our datasethttps://huggingface.co/datasets/BAAI/Infinity-Instruct and codeshttps://gitee.com/li-touch/infinity-instruct have been publicly released.

  • 8 authors
·
Jun 9 3

SeqTex: Generate Mesh Textures in Video Sequence

Training native 3D texture generative models remains a fundamental yet challenging problem, largely due to the limited availability of large-scale, high-quality 3D texture datasets. This scarcity hinders generalization to real-world scenarios. To address this, most existing methods finetune foundation image generative models to exploit their learned visual priors. However, these approaches typically generate only multi-view images and rely on post-processing to produce UV texture maps -- an essential representation in modern graphics pipelines. Such two-stage pipelines often suffer from error accumulation and spatial inconsistencies across the 3D surface. In this paper, we introduce SeqTex, a novel end-to-end framework that leverages the visual knowledge encoded in pretrained video foundation models to directly generate complete UV texture maps. Unlike previous methods that model the distribution of UV textures in isolation, SeqTex reformulates the task as a sequence generation problem, enabling the model to learn the joint distribution of multi-view renderings and UV textures. This design effectively transfers the consistent image-space priors from video foundation models into the UV domain. To further enhance performance, we propose several architectural innovations: a decoupled multi-view and UV branch design, geometry-informed attention to guide cross-domain feature alignment, and adaptive token resolution to preserve fine texture details while maintaining computational efficiency. Together, these components allow SeqTex to fully utilize pretrained video priors and synthesize high-fidelity UV texture maps without the need for post-processing. Extensive experiments show that SeqTex achieves state-of-the-art performance on both image-conditioned and text-conditioned 3D texture generation tasks, with superior 3D consistency, texture-geometry alignment, and real-world generalization.

  • 7 authors
·
Jul 6 1

Uni3C: Unifying Precisely 3D-Enhanced Camera and Human Motion Controls for Video Generation

Camera and human motion controls have been extensively studied for video generation, but existing approaches typically address them separately, suffering from limited data with high-quality annotations for both aspects. To overcome this, we present Uni3C, a unified 3D-enhanced framework for precise control of both camera and human motion in video generation. Uni3C includes two key contributions. First, we propose a plug-and-play control module trained with a frozen video generative backbone, PCDController, which utilizes unprojected point clouds from monocular depth to achieve accurate camera control. By leveraging the strong 3D priors of point clouds and the powerful capacities of video foundational models, PCDController shows impressive generalization, performing well regardless of whether the inference backbone is frozen or fine-tuned. This flexibility enables different modules of Uni3C to be trained in specific domains, i.e., either camera control or human motion control, reducing the dependency on jointly annotated data. Second, we propose a jointly aligned 3D world guidance for the inference phase that seamlessly integrates both scenic point clouds and SMPL-X characters to unify the control signals for camera and human motion, respectively. Extensive experiments confirm that PCDController enjoys strong robustness in driving camera motion for fine-tuned backbones of video generation. Uni3C substantially outperforms competitors in both camera controllability and human motion quality. Additionally, we collect tailored validation sets featuring challenging camera movements and human actions to validate the effectiveness of our method.

  • 8 authors
·
Apr 21 2

Leveraging Generic Foundation Models for Multimodal Surgical Data Analysis

We investigate how both the adaptation of a generic foundation model via transfer learning and the integration of complementary modalities from the operating room (OR) can support surgical data science. To this end, we use V-JEPA as the single-modality foundation of a multimodal model for minimally invasive surgery support. We analyze how the model's downstream performance can benefit (a) from finetuning on unlabeled surgical video data and (b) from providing additional time-resolved data streams from the OR in a multimodal setup. In an in-house dataset of liver surgery videos, we analyze the tasks of predicting hospital length of stay and postoperative complications. In videos of the public HeiCo dataset, we analyze the task of surgical phase recognition. As a baseline, we apply pretrained V-JEPA to all tasks. We then finetune it on unlabeled, held-out videos to investigate its change in performance after domain adaptation. Following the idea of modular decision support networks, we integrate additional data streams from the OR by training a separate encoder to form a shared representation space with V-JEPA's embeddings. Our experiments show that finetuning on domain-specific data increases model performance. On the in-house data, integrating additional time-resolved data likewise benefits the model. On the HeiCo data, accuracy of the pretrained video-only, single-modality baseline setup is on par with the top-performing submissions of the EndoVis2017 challenge, while finetuning on domain-specific data increases accuracy further. Our results thus demonstrate how surgical data science can leverage public, generic foundation models. Likewise, they indicate the potential of domain adaptation and of integrating suitable complementary data streams from the OR. To support further research, we release our code and model weights at https://github.com/DigitalSurgeryLab-Basel/ML-CDS-2025.

  • 5 authors
·
Sep 8

MeteoRA: Multiple-tasks Embedded LoRA for Large Language Models

The pretrain+fine-tune paradigm is foundational in deploying large language models (LLMs) across a diverse range of downstream applications. Among these, Low-Rank Adaptation (LoRA) stands out for its parameter-efficient fine-tuning (PEFT), producing numerous off-the-shelf task-specific LoRA adapters. However, this approach requires explicit task intention selection, posing challenges for automatic task sensing and switching during inference with multiple existing LoRA adapters embedded in a single LLM. In this work, we introduce MeteoRA (Multiple-Tasks embedded LoRA), a scalable multi-knowledge LoRA fusion framework designed for LLMs. MeteoRA integrates various LoRA adapters in a Mixture-of-Experts (MoE) style into the base LLM, enabling the model to automatically select the most pertinent adapter based on the task input. This advancement significantly enhances the LLM's capability to handle composite tasks that require different adapters to solve various components of the problem. Our evaluations, featuring the LlaMA2-13B and LlaMA3-8B base models equipped with off-the-shelf 28 LoRA adapters through MeteoRA, demonstrate equivalent performance with the individual adapters. Furthermore, both base models equipped with MeteoRA achieve superior performance in sequentially solving composite tasks with ten problems in only a single inference process, highlighting the ability of timely intention switching in MeteoRA embedded LLMs.

  • 3 authors
·
May 19, 2024

PuzzleAvatar: Assembling 3D Avatars from Personal Albums

Generating personalized 3D avatars is crucial for AR/VR. However, recent text-to-3D methods that generate avatars for celebrities or fictional characters, struggle with everyday people. Methods for faithful reconstruction typically require full-body images in controlled settings. What if a user could just upload their personal "OOTD" (Outfit Of The Day) photo collection and get a faithful avatar in return? The challenge is that such casual photo collections contain diverse poses, challenging viewpoints, cropped views, and occlusion (albeit with a consistent outfit, accessories and hairstyle). We address this novel "Album2Human" task by developing PuzzleAvatar, a novel model that generates a faithful 3D avatar (in a canonical pose) from a personal OOTD album, while bypassing the challenging estimation of body and camera pose. To this end, we fine-tune a foundational vision-language model (VLM) on such photos, encoding the appearance, identity, garments, hairstyles, and accessories of a person into (separate) learned tokens and instilling these cues into the VLM. In effect, we exploit the learned tokens as "puzzle pieces" from which we assemble a faithful, personalized 3D avatar. Importantly, we can customize avatars by simply inter-changing tokens. As a benchmark for this new task, we collect a new dataset, called PuzzleIOI, with 41 subjects in a total of nearly 1K OOTD configurations, in challenging partial photos with paired ground-truth 3D bodies. Evaluation shows that PuzzleAvatar not only has high reconstruction accuracy, outperforming TeCH and MVDreamBooth, but also a unique scalability to album photos, and strong robustness. Our model and data will be public.

  • 5 authors
·
May 23, 2024