Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDialogue Planning via Brownian Bridge Stochastic Process for Goal-directed Proactive Dialogue
Goal-directed dialogue systems aim to proactively reach a pre-determined target through multi-turn conversations. The key to achieving this task lies in planning dialogue paths that smoothly and coherently direct conversations towards the target. However, this is a challenging and under-explored task. In this work, we propose a coherent dialogue planning approach that uses a stochastic process to model the temporal dynamics of dialogue paths. We define a latent space that captures the coherence of goal-directed behavior using a Brownian bridge process, which allows us to incorporate user feedback flexibly in dialogue planning. Based on the derived latent trajectories, we generate dialogue paths explicitly using pre-trained language models. We finally employ these paths as natural language prompts to guide dialogue generation. Our experiments show that our approach generates more coherent utterances and achieves the goal with a higher success rate.
Follow Me: Conversation Planning for Target-driven Recommendation Dialogue Systems
Recommendation dialogue systems aim to build social bonds with users and provide high-quality recommendations. This paper pushes forward towards a promising paradigm called target-driven recommendation dialogue systems, which is highly desired yet under-explored. We focus on how to naturally lead users to accept the designated targets gradually through conversations. To this end, we propose a Target-driven Conversation Planning (TCP) framework to plan a sequence of dialogue actions and topics, driving the system to transit between different conversation stages proactively. We then apply our TCP with planned content to guide dialogue generation. Experimental results show that our conversation planning significantly improves the performance of target-driven recommendation dialogue systems.
Prompt-Based Monte-Carlo Tree Search for Goal-Oriented Dialogue Policy Planning
Planning for goal-oriented dialogue often requires simulating future dialogue interactions and estimating task progress. Many approaches thus consider training neural networks to perform look-ahead search algorithms such as A* search and Monte Carlo Tree Search (MCTS). However, this training often requires abundant annotated data, which creates challenges when faced with noisy annotations or low-resource settings. We introduce GDP-Zero, an approach using Open-Loop MCTS to perform goal-oriented dialogue policy planning without any model training. GDP-Zero prompts a large language model to act as a policy prior, value function, user simulator, and system model during the tree search. We evaluate GDP-Zero on the goal-oriented task PersuasionForGood, and find that its responses are preferred over ChatGPT up to 59.32% of the time, and are rated more persuasive than ChatGPT during interactive evaluations.
Towards a Progression-Aware Autonomous Dialogue Agent
Recent advances in large-scale language modeling and generation have enabled the creation of dialogue agents that exhibit human-like responses in a wide range of conversational scenarios spanning a diverse set of tasks, from general chit-chat to focused goal-oriented discourse. While these agents excel at generating high-quality responses that are relevant to prior context, they suffer from a lack of awareness of the overall direction in which the conversation is headed, and the likelihood of task success inherent therein. Thus, we propose a framework in which dialogue agents can evaluate the progression of a conversation toward or away from desired outcomes, and use this signal to inform planning for subsequent responses. Our framework is composed of three key elements: (1) the notion of a "global" dialogue state (GDS) space, (2) a task-specific progression function (PF) computed in terms of a conversation's trajectory through this space, and (3) a planning mechanism based on dialogue rollouts by which an agent may use progression signals to select its next response.
Zero-Shot Goal-Directed Dialogue via RL on Imagined Conversations
Large language models (LLMs) have emerged as powerful and general solutions to many natural language tasks. However, many of the most important applications of language generation are interactive, where an agent has to talk to a person to reach a desired outcome. For example, a teacher might try to understand their student's current comprehension level to tailor their instruction accordingly, and a travel agent might ask questions of their customer to understand their preferences in order to recommend activities they might enjoy. LLMs trained with supervised fine-tuning or "single-step" RL, as with standard RLHF, might struggle which tasks that require such goal-directed behavior, since they are not trained to optimize for overall conversational outcomes after multiple turns of interaction. In this work, we explore a new method for adapting LLMs with RL for such goal-directed dialogue. Our key insight is that, though LLMs might not effectively solve goal-directed dialogue tasks out of the box, they can provide useful data for solving such tasks by simulating suboptimal but human-like behaviors. Given a textual description of a goal-directed dialogue task, we leverage LLMs to sample diverse synthetic rollouts of hypothetical in-domain human-human interactions. Our algorithm then utilizes this dataset with offline reinforcement learning to train an interactive conversational agent that can optimize goal-directed objectives over multiple turns. In effect, the LLM produces examples of possible interactions, and RL then processes these examples to learn to perform more optimal interactions. Empirically, we show that our proposed approach achieves state-of-the-art performance in various goal-directed dialogue tasks that include teaching and preference elicitation.
Dialogue Term Extraction using Transfer Learning and Topological Data Analysis
Goal oriented dialogue systems were originally designed as a natural language interface to a fixed data-set of entities that users might inquire about, further described by domain, slots, and values. As we move towards adaptable dialogue systems where knowledge about domains, slots, and values may change, there is an increasing need to automatically extract these terms from raw dialogues or related non-dialogue data on a large scale. In this paper, we take an important step in this direction by exploring different features that can enable systems to discover realizations of domains, slots, and values in dialogues in a purely data-driven fashion. The features that we examine stem from word embeddings, language modelling features, as well as topological features of the word embedding space. To examine the utility of each feature set, we train a seed model based on the widely used MultiWOZ data-set. Then, we apply this model to a different corpus, the Schema-Guided Dialogue data-set. Our method outperforms the previously proposed approach that relies solely on word embeddings. We also demonstrate that each of the features is responsible for discovering different kinds of content. We believe our results warrant further research towards ontology induction, and continued harnessing of topological data analysis for dialogue and natural language processing research.
Prompting and Evaluating Large Language Models for Proactive Dialogues: Clarification, Target-guided, and Non-collaboration
Conversational systems based on Large Language Models (LLMs), such as ChatGPT, show exceptional proficiency in context understanding and response generation. However, despite their impressive capabilities, they still possess limitations, such as providing randomly-guessed answers to ambiguous queries or failing to refuse users' requests, both of which are considered aspects of a conversational agent's proactivity. This raises the question of whether LLM-based conversational systems are equipped to handle proactive dialogue problems. In this work, we conduct a comprehensive analysis of LLM-based conversational systems, specifically focusing on three aspects of proactive dialogue systems: clarification, target-guided, and non-collaborative dialogues. To trigger the proactivity of LLMs, we propose the Proactive Chain-of-Thought prompting scheme, which augments LLMs with the goal planning capability over descriptive reasoning chains. Empirical findings are discussed to promote future studies on LLM-based proactive dialogue systems.
OnGoal: Tracking and Visualizing Conversational Goals in Multi-Turn Dialogue with Large Language Models
As multi-turn dialogues with large language models (LLMs) grow longer and more complex, how can users better evaluate and review progress on their conversational goals? We present OnGoal, an LLM chat interface that helps users better manage goal progress. OnGoal provides real-time feedback on goal alignment through LLM-assisted evaluation, explanations for evaluation results with examples, and overviews of goal progression over time, enabling users to navigate complex dialogues more effectively. Through a study with 20 participants on a writing task, we evaluate OnGoal against a baseline chat interface without goal tracking. Using OnGoal, participants spent less time and effort to achieve their goals while exploring new prompting strategies to overcome miscommunication, suggesting tracking and visualizing goals can enhance engagement and resilience in LLM dialogues. Our findings inspired design implications for future LLM chat interfaces that improve goal communication, reduce cognitive load, enhance interactivity, and enable feedback to improve LLM performance.
Imagination is All You Need! Curved Contrastive Learning for Abstract Sequence Modeling Utilized on Long Short-Term Dialogue Planning
Inspired by the curvature of space-time (Einstein, 1921), we introduce Curved Contrastive Learning (CCL), a novel representation learning technique for learning the relative turn distance between utterance pairs in multi-turn dialogues. The resulting bi-encoder models can guide transformers as a response ranking model towards a goal in a zero-shot fashion by projecting the goal utterance and the corresponding reply candidates into a latent space. Here the cosine similarity indicates the distance/reachability of a candidate utterance toward the corresponding goal. Furthermore, we explore how these forward-entailing language representations can be utilized for assessing the likelihood of sequences by the entailment strength i.e. through the cosine similarity of its individual members (encoded separately) as an emergent property in the curved space. These non-local properties allow us to imagine the likelihood of future patterns in dialogues, specifically by ordering/identifying future goal utterances that are multiple turns away, given a dialogue context. As part of our analysis, we investigate characteristics that make conversations (un)plannable and find strong evidence of planning capability over multiple turns (in 61.56% over 3 turns) in conversations from the DailyDialog (Li et al., 2017) dataset. Finally, we show how we achieve higher efficiency in sequence modeling tasks compared to previous work thanks to our relativistic approach, where only the last utterance needs to be encoded and computed during inference.
Synthetic Dialogue Dataset Generation using LLM Agents
Linear programming (LP) problems are pervasive in real-life applications. However, despite their apparent simplicity, an untrained user may find it difficult to determine the linear model of their specific problem. We envisage the creation of a goal-oriented conversational agent that will engage in conversation with the user to elicit all information required so that a subsequent agent can generate the linear model. In this paper, we present an approach for the generation of sample dialogues that can be used to develop and train such a conversational agent. Using prompt engineering, we develop two agents that "talk" to each other, one acting as the conversational agent, and the other acting as the user. Using a set of text descriptions of linear problems from NL4Opt available to the user only, the agent and the user engage in conversation until the agent has retrieved all key information from the original problem description. We also propose an extrinsic evaluation of the dialogues by assessing how well the summaries generated by the dialogues match the original problem descriptions. We conduct human and automatic evaluations, including an evaluation approach that uses GPT-4 to mimic the human evaluation metrics. The evaluation results show an overall good quality of the dialogues, though research is still needed to improve the quality of the GPT-4 evaluation metrics. The resulting dialogues, including the human annotations of a subset, are available to the research community. The conversational agent used for the generation of the dialogues can be used as a baseline.
Is Your Goal-Oriented Dialog Model Performing Really Well? Empirical Analysis of System-wise Evaluation
There is a growing interest in developing goal-oriented dialog systems which serve users in accomplishing complex tasks through multi-turn conversations. Although many methods are devised to evaluate and improve the performance of individual dialog components, there is a lack of comprehensive empirical study on how different components contribute to the overall performance of a dialog system. In this paper, we perform a system-wise evaluation and present an empirical analysis on different types of dialog systems which are composed of different modules in different settings. Our results show that (1) a pipeline dialog system trained using fine-grained supervision signals at different component levels often obtains better performance than the systems that use joint or end-to-end models trained on coarse-grained labels, (2) component-wise, single-turn evaluation results are not always consistent with the overall performance of a dialog system, and (3) despite the discrepancy between simulators and human users, simulated evaluation is still a valid alternative to the costly human evaluation especially in the early stage of development.
Learning End-to-End Goal-Oriented Dialog
Traditional dialog systems used in goal-oriented applications require a lot of domain-specific handcrafting, which hinders scaling up to new domains. End-to-end dialog systems, in which all components are trained from the dialogs themselves, escape this limitation. But the encouraging success recently obtained in chit-chat dialog may not carry over to goal-oriented settings. This paper proposes a testbed to break down the strengths and shortcomings of end-to-end dialog systems in goal-oriented applications. Set in the context of restaurant reservation, our tasks require manipulating sentences and symbols, so as to properly conduct conversations, issue API calls and use the outputs of such calls. We show that an end-to-end dialog system based on Memory Networks can reach promising, yet imperfect, performance and learn to perform non-trivial operations. We confirm those results by comparing our system to a hand-crafted slot-filling baseline on data from the second Dialog State Tracking Challenge (Henderson et al., 2014a). We show similar result patterns on data extracted from an online concierge service.
Target-Guided Dialogue Response Generation Using Commonsense and Data Augmentation
Target-guided response generation enables dialogue systems to smoothly transition a conversation from a dialogue context toward a target sentence. Such control is useful for designing dialogue systems that direct a conversation toward specific goals, such as creating non-obtrusive recommendations or introducing new topics in the conversation. In this paper, we introduce a new technique for target-guided response generation, which first finds a bridging path of commonsense knowledge concepts between the source and the target, and then uses the identified bridging path to generate transition responses. Additionally, we propose techniques to re-purpose existing dialogue datasets for target-guided generation. Experiments reveal that the proposed techniques outperform various baselines on this task. Finally, we observe that the existing automated metrics for this task correlate poorly with human judgement ratings. We propose a novel evaluation metric that we demonstrate is more reliable for target-guided response evaluation. Our work generally enables dialogue system designers to exercise more control over the conversations that their systems produce.
Goal Alignment in LLM-Based User Simulators for Conversational AI
User simulators are essential to conversational AI, enabling scalable agent development and evaluation through simulated interactions. While current Large Language Models (LLMs) have advanced user simulation capabilities, we reveal that they struggle to consistently demonstrate goal-oriented behavior across multi-turn conversations--a critical limitation that compromises their reliability in downstream applications. We introduce User Goal State Tracking (UGST), a novel framework that tracks user goal progression throughout conversations. Leveraging UGST, we present a three-stage methodology for developing user simulators that can autonomously track goal progression and reason to generate goal-aligned responses. Moreover, we establish comprehensive evaluation metrics for measuring goal alignment in user simulators, and demonstrate that our approach yields substantial improvements across two benchmarks (MultiWOZ 2.4 and {\tau}-Bench). Our contributions address a critical gap in conversational AI and establish UGST as an essential framework for developing goal-aligned user simulators.
Plan-Grounded Large Language Models for Dual Goal Conversational Settings
Training Large Language Models (LLMs) to follow user instructions has been shown to supply the LLM with ample capacity to converse fluently while being aligned with humans. Yet, it is not completely clear how an LLM can lead a plan-grounded conversation in mixed-initiative settings where instructions flow in both directions of the conversation, i.e. both the LLM and the user provide instructions to one another. In this paper, we tackle a dual goal mixed-initiative conversational setting where the LLM not only grounds the conversation on an arbitrary plan but also seeks to satisfy both a procedural plan and user instructions. The LLM is then responsible for guiding the user through the plan and, at the same time, adapting to new circumstances, answering questions, and activating safety guardrails when needed. We propose a novel LLM that grounds the dialogue on a procedural plan, can take the dialogue initiative, and enforces guardrails on the system's behavior, while also improving the LLM's responses to unexpected user behavior. Experiments in controlled settings and with real users show that the best-performing model, which we call PlanLLM, achieves a 2.1x improvement over a strong baseline. Moreover, experiments also show good generalization to unseen domains.
Interacting with Non-Cooperative User: A New Paradigm for Proactive Dialogue Policy
Proactive dialogue system is able to lead the conversation to a goal topic and has advantaged potential in bargain, persuasion and negotiation. Current corpus-based learning manner limits its practical application in real-world scenarios. To this end, we contribute to advance the study of the proactive dialogue policy to a more natural and challenging setting, i.e., interacting dynamically with users. Further, we call attention to the non-cooperative user behavior -- the user talks about off-path topics when he/she is not satisfied with the previous topics introduced by the agent. We argue that the targets of reaching the goal topic quickly and maintaining a high user satisfaction are not always converge, because the topics close to the goal and the topics user preferred may not be the same. Towards this issue, we propose a new solution named I-Pro that can learn Proactive policy in the Interactive setting. Specifically, we learn the trade-off via a learned goal weight, which consists of four factors (dialogue turn, goal completion difficulty, user satisfaction estimation, and cooperative degree). The experimental results demonstrate I-Pro significantly outperforms baselines in terms of effectiveness and interpretability.
Learning to Plan and Realize Separately for Open-Ended Dialogue Systems
Achieving true human-like ability to conduct a conversation remains an elusive goal for open-ended dialogue systems. We posit this is because extant approaches towards natural language generation (NLG) are typically construed as end-to-end architectures that do not adequately model human generation processes. To investigate, we decouple generation into two separate phases: planning and realization. In the planning phase, we train two planners to generate plans for response utterances. The realization phase uses response plans to produce an appropriate response. Through rigorous evaluations, both automated and human, we demonstrate that decoupling the process into planning and realization performs better than an end-to-end approach.
DiagGPT: An LLM-based Chatbot with Automatic Topic Management for Task-Oriented Dialogue
Large Language Models (LLMs), such as ChatGPT, are becoming increasingly sophisticated, demonstrating capabilities that closely resemble those of humans. These AI models are playing an essential role in assisting humans with a wide array of tasks in daily life. A significant application of AI is its use as a chat agent, responding to human inquiries across various domains. Current LLMs have shown proficiency in answering general questions. However, basic question-answering dialogue often falls short in complex diagnostic scenarios, such as legal or medical consultations. These scenarios typically necessitate Task-Oriented Dialogue (TOD), wherein an AI chat agent needs to proactively pose questions and guide users towards specific task completion. Previous fine-tuning models have underperformed in TOD, and current LLMs do not inherently possess this capability. In this paper, we introduce DiagGPT (Dialogue in Diagnosis GPT), an innovative method that extends LLMs to TOD scenarios. Our experiments reveal that DiagGPT exhibits outstanding performance in conducting TOD with users, demonstrating its potential for practical applications.
Goal Inference from Open-Ended Dialog
We present an online method for embodied agents to learn and accomplish diverse user goals. While offline methods like RLHF can represent various goals but require large datasets, our approach achieves similar flexibility with online efficiency. We extract natural language goal representations from conversations with Large Language Models (LLMs). We prompt an LLM to role play as a human with different goals and use the corresponding likelihoods to run Bayesian inference over potential goals. As a result, our method can represent uncertainty over complex goals based on unrestricted dialog. We evaluate our method in grocery shopping and home robot assistance domains using a text-based interface and AI2Thor simulation respectively. Results show our method outperforms ablation baselines that lack either explicit goal representation or probabilistic inference.
Planning Like Human: A Dual-process Framework for Dialogue Planning
In proactive dialogue, the challenge lies not just in generating responses but in steering conversations toward predetermined goals, a task where Large Language Models (LLMs) typically struggle due to their reactive nature. Traditional approaches to enhance dialogue planning in LLMs, ranging from elaborate prompt engineering to the integration of policy networks, either face efficiency issues or deliver suboptimal performance. Inspired by the dualprocess theory in psychology, which identifies two distinct modes of thinking - intuitive (fast) and analytical (slow), we propose the Dual-Process Dialogue Planning (DPDP) framework. DPDP embodies this theory through two complementary planning systems: an instinctive policy model for familiar contexts and a deliberative Monte Carlo Tree Search (MCTS) mechanism for complex, novel scenarios. This dual strategy is further coupled with a novel two-stage training regimen: offline Reinforcement Learning for robust initial policy model formation followed by MCTS-enhanced on-the-fly learning, which ensures a dynamic balance between efficiency and strategic depth. Our empirical evaluations across diverse dialogue tasks affirm DPDP's superiority in achieving both high-quality dialogues and operational efficiency, outpacing existing methods.
RECAP: REwriting Conversations for Intent Understanding in Agentic Planning
Understanding user intent is essential for effective planning in conversational assistants, particularly those powered by large language models (LLMs) coordinating multiple agents. However, real-world dialogues are often ambiguous, underspecified, or dynamic, making intent detection a persistent challenge. Traditional classification-based approaches struggle to generalize in open-ended settings, leading to brittle interpretations and poor downstream planning. We propose RECAP (REwriting Conversations for Agent Planning), a new benchmark designed to evaluate and advance intent rewriting, reframing user-agent dialogues into concise representations of user goals. RECAP captures diverse challenges such as ambiguity, intent drift, vagueness, and mixed-goal conversations. Alongside the dataset, we introduce an LLM-based evaluator that assesses planning utility given the rewritten intent. Using RECAP, we develop a prompt-based rewriting approach that outperforms baselines. We further demonstrate that fine-tuning two DPO-based rewriters yields additional utility gains. Our results highlight intent rewriting as a critical and tractable component for improving agent planning in open-domain dialogue systems.
Better Slow than Sorry: Introducing Positive Friction for Reliable Dialogue Systems
While theories of discourse and cognitive science have long recognized the value of unhurried pacing, recent dialogue research tends to minimize friction in conversational systems. Yet, frictionless dialogue risks fostering uncritical reliance on AI outputs, which can obscure implicit assumptions and lead to unintended consequences. To meet this challenge, we propose integrating positive friction into conversational AI, which promotes user reflection on goals, critical thinking on system response, and subsequent re-conditioning of AI systems. We hypothesize systems can improve goal alignment, modeling of user mental states, and task success by deliberately slowing down conversations in strategic moments to ask questions, reveal assumptions, or pause. We present an ontology of positive friction and collect expert human annotations on multi-domain and embodied goal-oriented corpora. Experiments on these corpora, along with simulated interactions using state-of-the-art systems, suggest incorporating friction not only fosters accountable decision-making, but also enhances machine understanding of user beliefs and goals, and increases task success rates.
JumpStarter: Human-AI Planning with Task-Structured Context Curation
Human-AI planning for complex goals remains challenging with current large language models (LLMs), which rely on linear chat histories and simplistic memory mechanisms. Despite advances in long-context prompting, users still manually manage information, leading to a high cognitive burden. Hence, we propose JumpStarter, a system that enables LLMs to collaborate with humans on complex goals by dynamically decomposing tasks to help users manage context. We specifically introduce task-structured context curation, a novel framework that breaks down a user's goal into a hierarchy of actionable subtasks, and scopes context to localized decision points, enabling finer-grained personalization and reuse. The framework is realized through three core mechanisms: context elicitation, selection, and reuse. We demonstrate that task-structured context curation significantly improves plan quality by 16% over ablations. Our user study shows that JumpStarter helped users generate plans with 79% higher quality compared to ChatGPT.
SalesBot: Transitioning from Chit-Chat to Task-Oriented Dialogues
Dialogue systems are usually categorized into two types, open-domain and task-oriented. The first one focuses on chatting with users and making them engage in the conversations, where selecting a proper topic to fit the dialogue context is essential for a successful dialogue. The other one focuses on a specific task instead of casual talks, e.g., finding a movie on Friday night, or playing a song. These two directions have been studied separately due to their different purposes. However, how smoothly transitioning from social chatting to task-oriented dialogues is important for triggering business opportunities, and there is no public data focusing on such scenarios. Hence, this paper focuses on investigating the conversations starting from open-domain social chatting and then gradually transitioning to task-oriented purposes, and releases a large-scale dataset with detailed annotations for encouraging this research direction. To achieve this goal, this paper proposes a framework to automatically generate many dialogues without human involvement, in which any powerful open-domain dialogue generation model can be easily leveraged. The human evaluation shows that our generated dialogue data has a natural flow at a reasonable quality, showing that our released data has a great potential of guiding future research directions and commercial activities. Furthermore, the released models allow researchers to automatically generate unlimited dialogues in the target scenarios, which can greatly benefit semi-supervised and unsupervised approaches.
Decision-Oriented Dialogue for Human-AI Collaboration
We describe a class of tasks called decision-oriented dialogues, in which AI assistants such as large language models (LMs) must collaborate with one or more humans via natural language to help them make complex decisions. We formalize three domains in which users face everyday decisions: (1) choosing an assignment of reviewers to conference papers, (2) planning a multi-step itinerary in a city, and (3) negotiating travel plans for a group of friends. In each of these settings, AI assistants and users have disparate abilities that they must combine to arrive at the best decision: assistants can access and process large amounts of information, while users have preferences and constraints external to the system. For each task, we build a dialogue environment where agents receive a reward based on the quality of the final decision they reach. We evaluate LMs in self-play and in collaboration with humans and find that they fall short compared to human assistants, achieving much lower rewards despite engaging in longer dialogues. We highlight a number of challenges models face in decision-oriented dialogues, ranging from goal-directed behavior to reasoning and optimization, and release our environments as a testbed for future work.
Deal, or no deal (or who knows)? Forecasting Uncertainty in Conversations using Large Language Models
Effective interlocutors account for the uncertain goals, beliefs, and emotions of others. But even the best human conversationalist cannot perfectly anticipate the trajectory of a dialogue. How well can language models represent inherent uncertainty in conversations? We propose FortUne Dial, an expansion of the long-standing "conversation forecasting" task: instead of just accuracy, evaluation is conducted with uncertainty-aware metrics, effectively enabling abstention on individual instances. We study two ways in which language models potentially represent outcome uncertainty (internally, using scores and directly, using tokens) and propose fine-tuning strategies to improve calibration of both representations. Experiments on eight difficult negotiation corpora demonstrate that our proposed fine-tuning strategies (a traditional supervision strategy and an off-policy reinforcement learning strategy) can calibrate smaller open-source models to compete with pre-trained models 10x their size.
Discourse Coherence, Reference Grounding and Goal Oriented Dialogue
Prior approaches to realizing mixed-initiative human--computer referential communication have adopted information-state or collaborative problem-solving approaches. In this paper, we argue for a new approach, inspired by coherence-based models of discourse such as SDRT asher-lascarides:2003a, in which utterances attach to an evolving discourse structure and the associated knowledge graph of speaker commitments serves as an interface to real-world reasoning and conversational strategy. As first steps towards implementing the approach, we describe a simple dialogue system in a referential communication domain that accumulates constraints across discourse, interprets them using a learned probabilistic model, and plans clarification using reinforcement learning.
Plug-and-Play Policy Planner for Large Language Model Powered Dialogue Agents
Proactive dialogues serve as a practical yet challenging dialogue problem in the era of large language models (LLMs), where the dialogue policy planning is the key to improving the proactivity of LLMs. Most existing studies enable the dialogue policy planning of LLMs using various prompting schemes or iteratively enhance this capability in handling the given case with verbal AI feedback. However, these approaches are either bounded by the policy planning capability of the frozen LLMs or hard to be transferred to new cases. In this work, we introduce a new dialogue policy planning paradigm to strategize LLMs for proactive dialogue problems with a tunable language model plug-in as a plug-and-play dialogue policy planner, named PPDPP. Specifically, we develop a novel training framework to facilitate supervised fine-tuning over available human-annotated data as well as reinforcement learning from goal-oriented AI feedback with dynamic interaction data collected by the LLM-based self-play simulation. In this manner, the LLM-powered dialogue agent can not only be generalized to different cases after the training, but also be applicable to different applications by just substituting the learned plug-in. In addition, we propose to evaluate the policy planning capability of dialogue systems under the interactive setting. Experimental results demonstrate that PPDPP consistently and substantially outperforms existing approaches on three different proactive dialogue applications, including negotiation, emotional support, and tutoring dialogues.
Variational Hierarchical Dialog Autoencoder for Dialog State Tracking Data Augmentation
Recent works have shown that generative data augmentation, where synthetic samples generated from deep generative models complement the training dataset, benefit NLP tasks. In this work, we extend this approach to the task of dialog state tracking for goal-oriented dialogs. Due to the inherent hierarchical structure of goal-oriented dialogs over utterances and related annotations, the deep generative model must be capable of capturing the coherence among different hierarchies and types of dialog features. We propose the Variational Hierarchical Dialog Autoencoder (VHDA) for modeling the complete aspects of goal-oriented dialogs, including linguistic features and underlying structured annotations, namely speaker information, dialog acts, and goals. The proposed architecture is designed to model each aspect of goal-oriented dialogs using inter-connected latent variables and learns to generate coherent goal-oriented dialogs from the latent spaces. To overcome training issues that arise from training complex variational models, we propose appropriate training strategies. Experiments on various dialog datasets show that our model improves the downstream dialog trackers' robustness via generative data augmentation. We also discover additional benefits of our unified approach to modeling goal-oriented dialogs: dialog response generation and user simulation, where our model outperforms previous strong baselines.
Agents Thinking Fast and Slow: A Talker-Reasoner Architecture
Large language models have enabled agents of all kinds to interact with users through natural conversation. Consequently, agents now have two jobs: conversing and planning/reasoning. Their conversational responses must be informed by all available information, and their actions must help to achieve goals. This dichotomy between conversing with the user and doing multi-step reasoning and planning can be seen as analogous to the human systems of "thinking fast and slow" as introduced by Kahneman. Our approach is comprised of a "Talker" agent (System 1) that is fast and intuitive, and tasked with synthesizing the conversational response; and a "Reasoner" agent (System 2) that is slower, more deliberative, and more logical, and is tasked with multi-step reasoning and planning, calling tools, performing actions in the world, and thereby producing the new agent state. We describe the new Talker-Reasoner architecture and discuss its advantages, including modularity and decreased latency. We ground the discussion in the context of a sleep coaching agent, in order to demonstrate real-world relevance.
Description-Driven Task-Oriented Dialog Modeling
Task-oriented dialogue (TOD) systems are required to identify key information from conversations for the completion of given tasks. Such information is conventionally specified in terms of intents and slots contained in task-specific ontology or schemata. Since these schemata are designed by system developers, the naming convention for slots and intents is not uniform across tasks, and may not convey their semantics effectively. This can lead to models memorizing arbitrary patterns in data, resulting in suboptimal performance and generalization. In this paper, we propose that schemata should be modified by replacing names or notations entirely with natural language descriptions. We show that a language description-driven system exhibits better understanding of task specifications, higher performance on state tracking, improved data efficiency, and effective zero-shot transfer to unseen tasks. Following this paradigm, we present a simple yet effective Description-Driven Dialog State Tracking (D3ST) model, which relies purely on schema descriptions and an "index-picking" mechanism. We demonstrate the superiority in quality, data efficiency and robustness of our approach as measured on the MultiWOZ (Budzianowski et al.,2018), SGD (Rastogi et al., 2020), and the recent SGD-X (Lee et al., 2021) benchmarks.
WHEN TO ACT, WHEN TO WAIT: Modeling Structural Trajectories for Intent Triggerability in Task-Oriented Dialogue
Task-oriented dialogue systems often face difficulties when user utterances seem semantically complete but lack necessary structural information for appropriate system action. This arises because users frequently do not fully understand their own needs, while systems require precise intent definitions. Current LLM-based agents cannot effectively distinguish between linguistically complete and contextually triggerable expressions, lacking frameworks for collaborative intent formation. We present STORM, a framework modeling asymmetric information dynamics through conversations between UserLLM (full internal access) and AgentLLM (observable behavior only). STORM produces annotated corpora capturing expression trajectories and latent cognitive transitions, enabling systematic analysis of collaborative understanding development. Our contributions include: (1) formalizing asymmetric information processing in dialogue systems; (2) modeling intent formation tracking collaborative understanding evolution; and (3) evaluation metrics measuring internal cognitive improvements alongside task performance. Experiments across four language models reveal that moderate uncertainty (40-60%) can outperform complete transparency in certain scenarios, with model-specific patterns suggesting reconsideration of optimal information completeness in human-AI collaboration. These findings contribute to understanding asymmetric reasoning dynamics and inform uncertainty-calibrated dialogue system design.
A Survey on Proactive Dialogue Systems: Problems, Methods, and Prospects
Proactive dialogue systems, related to a wide range of real-world conversational applications, equip the conversational agent with the capability of leading the conversation direction towards achieving pre-defined targets or fulfilling certain goals from the system side. It is empowered by advanced techniques to progress to more complicated tasks that require strategical and motivational interactions. In this survey, we provide a comprehensive overview of the prominent problems and advanced designs for conversational agent's proactivity in different types of dialogues. Furthermore, we discuss challenges that meet the real-world application needs but require a greater research focus in the future. We hope that this first survey of proactive dialogue systems can provide the community with a quick access and an overall picture to this practical problem, and stimulate more progresses on conversational AI to the next level.
Improving Interpersonal Communication by Simulating Audiences with Language Models
How do we communicate with others to achieve our goals? We use our prior experience or advice from others, or construct a candidate utterance by predicting how it will be received. However, our experiences are limited and biased, and reasoning about potential outcomes can be difficult and cognitively challenging. In this paper, we explore how we can leverage Large Language Model (LLM) simulations to help us communicate better. We propose the Explore-Generate-Simulate (EGS) framework, which takes as input any scenario where an individual is communicating to an audience with a goal they want to achieve. EGS (1) explores the solution space by producing a diverse set of advice relevant to the scenario, (2) generates communication candidates conditioned on subsets of the advice, and (3) simulates the reactions from various audiences to determine both the best candidate and advice to use. We evaluate the framework on eight scenarios spanning the ten fundamental processes of interpersonal communication. For each scenario, we collect a dataset of human evaluations across candidates and baselines, and showcase that our framework's chosen candidate is preferred over popular generation mechanisms including Chain-of-Thought. We also find that audience simulations achieve reasonably high agreement with human raters across 5 of the 8 scenarios. Finally, we demonstrate the generality of our framework by applying it to real-world scenarios described by users on web forums. Through evaluations and demonstrations, we show that EGS enhances the effectiveness and outcomes of goal-oriented communication across a variety of situations, thus opening up new possibilities for the application of large language models in revolutionizing communication and decision-making processes.
Task-Oriented Dialogue with In-Context Learning
We describe a system for building task-oriented dialogue systems combining the in-context learning abilities of large language models (LLMs) with the deterministic execution of business logic. LLMs are used to translate between the surface form of the conversation and a domain-specific language (DSL) which is used to progress the business logic. We compare our approach to the intent-based NLU approach predominantly used in industry today. Our experiments show that developing chatbots with our system requires significantly less effort than established approaches, that these chatbots can successfully navigate complex dialogues which are extremely challenging for NLU-based systems, and that our system has desirable properties for scaling task-oriented dialogue systems to a large number of tasks. We make our implementation available for use and further study.
The Imperative of Conversation Analysis in the Era of LLMs: A Survey of Tasks, Techniques, and Trends
In the era of large language models (LLMs), a vast amount of conversation logs will be accumulated thanks to the rapid development trend of language UI. Conversation Analysis (CA) strives to uncover and analyze critical information from conversation data, streamlining manual processes and supporting business insights and decision-making. The need for CA to extract actionable insights and drive empowerment is becoming increasingly prominent and attracting widespread attention. However, the lack of a clear scope for CA leads to a dispersion of various techniques, making it difficult to form a systematic technical synergy to empower business applications. In this paper, we perform a thorough review and systematize CA task to summarize the existing related work. Specifically, we formally define CA task to confront the fragmented and chaotic landscape in this field, and derive four key steps of CA from conversation scene reconstruction, to in-depth attribution analysis, and then to performing targeted training, finally generating conversations based on the targeted training for achieving the specific goals. In addition, we showcase the relevant benchmarks, discuss potential challenges and point out future directions in both industry and academia. In view of current advancements, it is evident that the majority of efforts are still concentrated on the analysis of shallow conversation elements, which presents a considerable gap between the research and business, and with the assist of LLMs, recent work has shown a trend towards research on causality and strategic tasks which are sophisticated and high-level. The analyzed experiences and insights will inevitably have broader application value in business operations that target conversation logs.
Distilling Script Knowledge from Large Language Models for Constrained Language Planning
In everyday life, humans often plan their actions by following step-by-step instructions in the form of goal-oriented scripts. Previous work has exploited language models (LMs) to plan for abstract goals of stereotypical activities (e.g., "make a cake"), but leaves more specific goals with multi-facet constraints understudied (e.g., "make a cake for diabetics"). In this paper, we define the task of constrained language planning for the first time. We propose an overgenerate-then-filter approach to improve large language models (LLMs) on this task, and use it to distill a novel constrained language planning dataset, CoScript, which consists of 55,000 scripts. Empirical results demonstrate that our method significantly improves the constrained language planning ability of LLMs, especially on constraint faithfulness. Furthermore, CoScript is demonstrated to be quite effective in endowing smaller LMs with constrained language planning ability.
LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language Models
Large language models (LLMs) provide excellent text-generation capabilities, but standard prompting and generation methods generally do not lead to intentional or goal-directed agents and might necessitate considerable prompt tuning. This becomes particularly apparent in multi-turn conversations: even the best current LLMs rarely ask clarifying questions, engage in explicit information gathering, or take actions now that lead to better decisions after multiple turns. Reinforcement learning has the potential to leverage the powerful modeling capabilities of LLMs, as well as their internal representation of textual interactions, to create capable goal-directed language agents. This can enable intentional and temporally extended interactions, such as with humans, through coordinated persuasion and carefully crafted questions, or in goal-directed play through text games to bring about desired final outcomes. However, enabling this requires the community to develop stable and reliable reinforcement learning algorithms that can effectively train LLMs. Developing such algorithms requires tasks that can gauge progress on algorithm design, provide accessible and reproducible evaluations for multi-turn interactions, and cover a range of task properties and challenges in improving reinforcement learning algorithms. Our paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for LLMs, together with an open-source research framework containing a basic toolkit for getting started on multi-turn RL with offline value-based and policy-based RL methods. Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
A Network-based End-to-End Trainable Task-oriented Dialogue System
Teaching machines to accomplish tasks by conversing naturally with humans is challenging. Currently, developing task-oriented dialogue systems requires creating multiple components and typically this involves either a large amount of handcrafting, or acquiring costly labelled datasets to solve a statistical learning problem for each component. In this work we introduce a neural network-based text-in, text-out end-to-end trainable goal-oriented dialogue system along with a new way of collecting dialogue data based on a novel pipe-lined Wizard-of-Oz framework. This approach allows us to develop dialogue systems easily and without making too many assumptions about the task at hand. The results show that the model can converse with human subjects naturally whilst helping them to accomplish tasks in a restaurant search domain.
Conversational Tree Search: A New Hybrid Dialog Task
Conversational interfaces provide a flexible and easy way for users to seek information that may otherwise be difficult or inconvenient to obtain. However, existing interfaces generally fall into one of two categories: FAQs, where users must have a concrete question in order to retrieve a general answer, or dialogs, where users must follow a predefined path but may receive a personalized answer. In this paper, we introduce Conversational Tree Search (CTS) as a new task that bridges the gap between FAQ-style information retrieval and task-oriented dialog, allowing domain-experts to define dialog trees which can then be converted to an efficient dialog policy that learns only to ask the questions necessary to navigate a user to their goal. We collect a dataset for the travel reimbursement domain and demonstrate a baseline as well as a novel deep Reinforcement Learning architecture for this task. Our results show that the new architecture combines the positive aspects of both the FAQ and dialog system used in the baseline and achieves higher goal completion while skipping unnecessary questions.
Emotionally Intelligent Task-oriented Dialogue Systems: Architecture, Representation, and Optimisation
Task-oriented dialogue (ToD) systems are designed to help users achieve specific goals through natural language interaction. While recent advances in large language models (LLMs) have significantly improved linguistic fluency and contextual understanding, building effective and emotionally intelligent ToD systems remains a complex challenge. Effective ToD systems must optimise for task success, emotional understanding and responsiveness, and precise information conveyance, all within inherently noisy and ambiguous conversational environments. In this work, we investigate architectural, representational, optimisational as well as emotional considerations of ToD systems. We set up systems covering these design considerations with a challenging evaluation environment composed of a natural-language user simulator coupled with an imperfect natural language understanding module. We propose LUSTER, an LLM-based Unified System for Task-oriented dialogue with End-to-end Reinforcement learning with both short-term (user sentiment) and long-term (task success) rewards. Our findings demonstrate that combining LLM capability with structured reward modelling leads to more resilient and emotionally responsive ToD systems, offering a practical path forward for next-generation conversational agents.
Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset
A significant barrier to progress in data-driven approaches to building dialog systems is the lack of high quality, goal-oriented conversational data. To help satisfy this elementary requirement, we introduce the initial release of the Taskmaster-1 dataset which includes 13,215 task-based dialogs comprising six domains. Two procedures were used to create this collection, each with unique advantages. The first involves a two-person, spoken "Wizard of Oz" (WOz) approach in which trained agents and crowdsourced workers interact to complete the task while the second is "self-dialog" in which crowdsourced workers write the entire dialog themselves. We do not restrict the workers to detailed scripts or to a small knowledge base and hence we observe that our dataset contains more realistic and diverse conversations in comparison to existing datasets. We offer several baseline models including state of the art neural seq2seq architectures with benchmark performance as well as qualitative human evaluations. Dialogs are labeled with API calls and arguments, a simple and cost effective approach which avoids the requirement of complex annotation schema. The layer of abstraction between the dialog model and the service provider API allows for a given model to interact with multiple services that provide similar functionally. Finally, the dataset will evoke interest in written vs. spoken language, discourse patterns, error handling and other linguistic phenomena related to dialog system research, development and design.
Towards Zero-Shot, Controllable Dialog Planning with LLMs
Recently, Large Language Models (LLMs) have emerged as an alternative to training task-specific dialog agents, due to their broad reasoning capabilities and performance in zero-shot learning scenarios. However, many LLM-based dialog systems fall short in planning towards an overarching dialog goal and therefore cannot steer the conversation appropriately. Furthermore, these models struggle with hallucination, making them unsuitable for information access in sensitive domains, such as legal or medical domains, where correctness of information given to users is critical. The recently introduced task Conversational Tree Search (CTS) proposes the use of dialog graphs to avoid hallucination in sensitive domains, however, state-of-the-art agents are Reinforcement Learning (RL) based and require long training times, despite excelling at dialog strategy. This paper introduces a novel zero-shot method for controllable CTS agents, where LLMs guide the dialog planning through domain graphs by searching and pruning relevant graph nodes based on user interaction preferences. We show that these agents significantly outperform state-of-the-art CTS agents (p<0.0001; Barnard Exact test) in simulation. This generalizes to all available CTS domains. Finally, we perform user evaluation to test the agent's performance in the wild, showing that our policy significantly (p<0.05; Barnard Exact) improves task-success compared to the state-of-the-art RL-based CTS agent.
Learning Symmetric Collaborative Dialogue Agents with Dynamic Knowledge Graph Embeddings
We study a symmetric collaborative dialogue setting in which two agents, each with private knowledge, must strategically communicate to achieve a common goal. The open-ended dialogue state in this setting poses new challenges for existing dialogue systems. We collected a dataset of 11K human-human dialogues, which exhibits interesting lexical, semantic, and strategic elements. To model both structured knowledge and unstructured language, we propose a neural model with dynamic knowledge graph embeddings that evolve as the dialogue progresses. Automatic and human evaluations show that our model is both more effective at achieving the goal and more human-like than baseline neural and rule-based models.
MultiDoc2Dial: Modeling Dialogues Grounded in Multiple Documents
We propose MultiDoc2Dial, a new task and dataset on modeling goal-oriented dialogues grounded in multiple documents. Most previous works treat document-grounded dialogue modeling as a machine reading comprehension task based on a single given document or passage. In this work, we aim to address more realistic scenarios where a goal-oriented information-seeking conversation involves multiple topics, and hence is grounded on different documents. To facilitate such a task, we introduce a new dataset that contains dialogues grounded in multiple documents from four different domains. We also explore modeling the dialogue-based and document-based context in the dataset. We present strong baseline approaches and various experimental results, aiming to support further research efforts on such a task.
Toward PDDL Planning Copilot
Large Language Models (LLMs) are increasingly being used as autonomous agents capable of performing complicated tasks. However, they lack the ability to perform reliable long-horizon planning on their own. This paper bridges this gap by introducing the Planning Copilot, a chatbot that integrates multiple planning tools and allows users to invoke them through instructions in natural language. The Planning Copilot leverages the Model Context Protocol (MCP), a recently developed standard for connecting LLMs with external tools and systems. This approach allows using any LLM that supports MCP without domain-specific fine-tuning. Our Planning Copilot supports common planning tasks such as checking the syntax of planning problems, selecting an appropriate planner, calling it, validating the plan it generates, and simulating their execution. We empirically evaluate the ability of our Planning Copilot to perform these tasks using three open-source LLMs. The results show that the Planning Copilot highly outperforms using the same LLMs without the planning tools. We also conducted a limited qualitative comparison of our tool against Chat GPT-5, a very recent commercial LLM. Our results shows that our Planning Copilot significantly outperforms GPT-5 despite relying on a much smaller LLM. This suggests dedicated planning tools may be an effective way to enable LLMs to perform planning tasks.
Dynamic Knowledge Routing Network For Target-Guided Open-Domain Conversation
Target-guided open-domain conversation aims to proactively and naturally guide a dialogue agent or human to achieve specific goals, topics or keywords during open-ended conversations. Existing methods mainly rely on single-turn datadriven learning and simple target-guided strategy without considering semantic or factual knowledge relations among candidate topics/keywords. This results in poor transition smoothness and low success rate. In this work, we adopt a structured approach that controls the intended content of system responses by introducing coarse-grained keywords, attains smooth conversation transition through turn-level supervised learning and knowledge relations between candidate keywords, and drives an conversation towards an specified target with discourse-level guiding strategy. Specially, we propose a novel dynamic knowledge routing network (DKRN) which considers semantic knowledge relations among candidate keywords for accurate next topic prediction of next discourse. With the help of more accurate keyword prediction, our keyword-augmented response retrieval module can achieve better retrieval performance and more meaningful conversations. Besides, we also propose a novel dual discourse-level target-guided strategy to guide conversations to reach their goals smoothly with higher success rate. Furthermore, to push the research boundary of target-guided open-domain conversation to match real-world scenarios better, we introduce a new large-scale Chinese target-guided open-domain conversation dataset (more than 900K conversations) crawled from Sina Weibo. Quantitative and human evaluations show our method can produce meaningful and effective target-guided conversations, significantly improving over other state-of-the-art methods by more than 20% in success rate and more than 0.6 in average smoothness score.
Looking beyond the next token
The structure of causal language model training assumes that each token can be accurately predicted from the previous context. This contrasts with humans' natural writing and reasoning process, where goals are typically known before the exact argument or phrasings. While this mismatch has been well studied in the literature, the working assumption has been that architectural changes are needed to address this mismatch. We argue that rearranging and processing the training data sequences can allow models to more accurately imitate the true data-generating process, and does not require any other changes to the architecture or training infrastructure. We demonstrate that this technique, Trelawney, and the inference algorithms derived from it allow us to improve performance on several key benchmarks that span planning, algorithmic reasoning, and story generation tasks. Finally, our method naturally enables the generation of long-term goals at no additional cost. We investigate how using the model's goal-generation capability can further improve planning and reasoning. Additionally, we believe Trelawney could potentially open doors to new capabilities beyond the current language modeling paradigm.
CAMEL: Communicative Agents for "Mind" Exploration of Large Scale Language Model Society
The rapid advancement of conversational and chat-based language models has led to remarkable progress in complex task-solving. However, their success heavily relies on human input to guide the conversation, which can be challenging and time-consuming. This paper explores the potential of building scalable techniques to facilitate autonomous cooperation among communicative agents and provide insight into their "cognitive" processes. To address the challenges of achieving autonomous cooperation, we propose a novel communicative agent framework named role-playing. Our approach involves using inception prompting to guide chat agents toward task completion while maintaining consistency with human intentions. We showcase how role-playing can be used to generate conversational data for studying the behaviors and capabilities of chat agents, providing a valuable resource for investigating conversational language models. Our contributions include introducing a novel communicative agent framework, offering a scalable approach for studying the cooperative behaviors and capabilities of multi-agent systems, and open-sourcing our library to support research on communicative agents and beyond. The GitHub repository of this project is made publicly available on: https://github.com/lightaime/camel.
PRINCIPLES: Synthetic Strategy Memory for Proactive Dialogue Agents
Dialogue agents based on large language models (LLMs) have shown promising performance in proactive dialogue, which requires effective strategy planning. However, existing approaches to strategy planning for proactive dialogue face several limitations: limited strategy coverage, preference bias in planning, and reliance on costly additional training. To address these, we propose PRINCIPLES: a synthetic strategy memory for proactive dialogue agents. PRINCIPLES is derived through offline self-play simulations and serves as reusable knowledge that guides strategy planning during inference, eliminating the need for additional training and data annotation. We evaluate PRINCIPLES in both emotional support and persuasion domains, demonstrating consistent improvements over strong baselines. Furthermore, PRINCIPLES maintains its robustness across extended and more diverse evaluation settings. See our project page at https://huggingface.co/spaces/kimnamssya/Principles.
Conversation Routines: A Prompt Engineering Framework for Task-Oriented Dialog Systems
This study introduces Conversation Routines (CR), a structured prompt engineering framework for developing task-oriented dialog systems using Large Language Models (LLMs). While LLMs demonstrate remarkable natural language understanding capabilities, engineering them to reliably execute complex business workflows remains challenging. The proposed CR framework enables the development of Conversation Agentic Systems (CAS) through natural language specifications, embedding task-oriented logic within LLM prompts. This approach provides a systematic methodology for designing and implementing complex conversational workflows while maintaining behavioral consistency. We demonstrate the framework's effectiveness through two proof-of-concept implementations: a Train Ticket Booking System and an Interactive Troubleshooting Copilot. These case studies validate CR's capability to encode sophisticated behavioral patterns and decision logic while preserving natural conversational flexibility. Results show that CR enables domain experts to design conversational workflows in natural language while leveraging custom functions (tools) developed by software engineers, creating an efficient division of responsibilities where developers focus on core API implementation and domain experts handle conversation design. While the framework shows promise in accessibility and adaptability, we identify key challenges including computational overhead, non-deterministic behavior, and domain-specific logic optimization. Future research directions include CR evaluation methods based on prompt engineering frameworks driven by goal-oriented grading criteria, improving scalability for complex multi-agent interactions, and enhancing system robustness to address the identified limitations across diverse business applications.
Policy-Driven Neural Response Generation for Knowledge-Grounded Dialogue Systems
Open-domain dialogue systems aim to generate relevant, informative and engaging responses. Seq2seq neural response generation approaches do not have explicit mechanisms to control the content or style of the generated response, and frequently result in uninformative utterances. In this paper, we propose using a dialogue policy to plan the content and style of target responses in the form of an action plan, which includes knowledge sentences related to the dialogue context, targeted dialogue acts, topic information, etc. The attributes within the action plan are obtained by automatically annotating the publicly released Topical-Chat dataset. We condition neural response generators on the action plan which is then realized as target utterances at the turn and sentence levels. We also investigate different dialogue policy models to predict an action plan given the dialogue context. Through automated and human evaluation, we measure the appropriateness of the generated responses and check if the generation models indeed learn to realize the given action plans. We demonstrate that a basic dialogue policy that operates at the sentence level generates better responses in comparison to turn level generation as well as baseline models with no action plan. Additionally the basic dialogue policy has the added effect of controllability.
Improving Generalization in Intent Detection: GRPO with Reward-Based Curriculum Sampling
Intent detection, a critical component in task-oriented dialogue (TOD) systems, faces significant challenges in adapting to the rapid influx of integrable tools with complex interrelationships. Existing approaches, such as zero-shot reformulations and LLM-based dynamic recognition, struggle with performance degradation when encountering unseen intents, leading to erroneous task routing. To enhance the model's generalization performance on unseen tasks, we employ Reinforcement Learning (RL) combined with a Reward-based Curriculum Sampling (RCS) during Group Relative Policy Optimization (GRPO) training in intent detection tasks. Experiments demonstrate that RL-trained models substantially outperform supervised fine-tuning (SFT) baselines in generalization. Besides, the introduction of the RCS, significantly bolsters the effectiveness of RL in intent detection by focusing the model on challenging cases during training. Moreover, incorporating Chain-of-Thought (COT) processes in RL notably improves generalization in complex intent detection tasks, underscoring the importance of thought in challenging scenarios. This work advances the generalization of intent detection tasks, offering practical insights for deploying adaptable dialogue systems.
Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations
Recent progress on large language models (LLMs) has enabled dialogue agents to generate highly naturalistic and plausible text. However, current LLM language generation focuses on responding accurately to questions and requests with a single effective response. In reality, many real dialogues are interactive, meaning an agent's utterances will influence their conversational partner, elicit information, or change their opinion. Accounting for how an agent can effectively steer a conversation is a crucial ability in many dialogue tasks, from healthcare to preference elicitation. Existing methods for fine-tuning dialogue agents to accomplish such tasks would rely on curating some amount of expert data. However, doing so often requires understanding the underlying cognitive processes of the conversational partner, which is a skill neither humans nor LLMs trained on human data can reliably do. Our key insight is that while LLMs may not be adept at identifying effective strategies for steering conversations a priori, or in the middle of an ongoing conversation, they can do so post-hoc, or in hindsight, after seeing how their conversational partner responds. We use this fact to rewrite and augment existing suboptimal data, and train via offline reinforcement learning (RL) an agent that outperforms both prompting and learning from unaltered human demonstrations. We apply our approach to two domains that require understanding human mental state, intelligent interaction, and persuasion: mental health support, and soliciting charitable donations. Our results in a user study with real humans show that our approach greatly outperforms existing state-of-the-art dialogue agents.
ConsistentChat: Building Skeleton-Guided Consistent Dialogues for Large Language Models from Scratch
Current instruction data synthesis methods primarily focus on single-turn instructions and often neglect cross-turn coherence, resulting in context drift and reduced task completion rates in extended conversations. To address this limitation, we propose Skeleton-Guided Multi-Turn Dialogue Generation, a framework that constrains multi-turn instruction synthesis by explicitly modeling human conversational intent. It operates in two stages: (1) Intent Modeling, which captures the global structure of human dialogues by assigning each conversation to one of nine well-defined intent trajectories, ensuring a coherent and goal-oriented information flow; and (2) Skeleton Generation, which constructs a structurally grounded sequence of user queries aligned with the modeled intent, thereby serving as a scaffold that constrains and guides the downstream instruction synthesis process. Based on this process, we construct ConsistentChat, a multi-turn instruction dataset with approximately 15,000 multi-turn conversations and 224,392 utterances. Experiments on the Light, Topdial, and MT-Eval benchmarks show that models fine-tuned on ConsistentChat achieve a 20-30% improvement in chat consistency and up to a 15% increase in task success rate, significantly outperforming models trained on existing single-turn and multi-turn instruction datasets.
HyKnow: End-to-End Task-Oriented Dialog Modeling with Hybrid Knowledge Management
Task-oriented dialog (TOD) systems typically manage structured knowledge (e.g. ontologies and databases) to guide the goal-oriented conversations. However, they fall short of handling dialog turns grounded on unstructured knowledge (e.g. reviews and documents). In this paper, we formulate a task of modeling TOD grounded on both structured and unstructured knowledge. To address this task, we propose a TOD system with hybrid knowledge management, HyKnow. It extends the belief state to manage both structured and unstructured knowledge, and is the first end-to-end model that jointly optimizes dialog modeling grounded on these two kinds of knowledge. We conduct experiments on the modified version of MultiWOZ 2.1 dataset, where dialogs are grounded on hybrid knowledge. Experimental results show that HyKnow has strong end-to-end performance compared to existing TOD systems. It also outperforms the pipeline knowledge management schemes, with higher unstructured knowledge retrieval accuracy.
Subgoal Discovery for Hierarchical Dialogue Policy Learning
Developing agents to engage in complex goal-oriented dialogues is challenging partly because the main learning signals are very sparse in long conversations. In this paper, we propose a divide-and-conquer approach that discovers and exploits the hidden structure of the task to enable efficient policy learning. First, given successful example dialogues, we propose the Subgoal Discovery Network (SDN) to divide a complex goal-oriented task into a set of simpler subgoals in an unsupervised fashion. We then use these subgoals to learn a multi-level policy by hierarchical reinforcement learning. We demonstrate our method by building a dialogue agent for the composite task of travel planning. Experiments with simulated and real users show that our approach performs competitively against a state-of-the-art method that requires human-defined subgoals. Moreover, we show that the learned subgoals are often human comprehensible.
Strength Lies in Differences! Towards Effective Non-collaborative Dialogues via Tailored Strategy Planning
We investigate non-collaborative dialogue agents, which are expected to engage in strategic conversations with diverse users, for securing a mutual agreement that leans favorably towards the system's objectives. This poses two main challenges for existing dialogue agents: 1) The inability to integrate user-specific characteristics into the strategic planning, and 2) The difficulty of training strategic planners that can be generalized to diverse users. To address these challenges, we propose Trip to enhance the capability in tailored strategic planning, incorporating a user-aware strategic planning module and a population-based training paradigm. Through experiments on benchmark non-collaborative dialogue tasks, we demonstrate the effectiveness of Trip in catering to diverse users.
Towards Scalable Multi-domain Conversational Agents: The Schema-Guided Dialogue Dataset
Virtual assistants such as Google Assistant, Alexa and Siri provide a conversational interface to a large number of services and APIs spanning multiple domains. Such systems need to support an ever-increasing number of services with possibly overlapping functionality. Furthermore, some of these services have little to no training data available. Existing public datasets for task-oriented dialogue do not sufficiently capture these challenges since they cover few domains and assume a single static ontology per domain. In this work, we introduce the the Schema-Guided Dialogue (SGD) dataset, containing over 16k multi-domain conversations spanning 16 domains. Our dataset exceeds the existing task-oriented dialogue corpora in scale, while also highlighting the challenges associated with building large-scale virtual assistants. It provides a challenging testbed for a number of tasks including language understanding, slot filling, dialogue state tracking and response generation. Along the same lines, we present a schema-guided paradigm for task-oriented dialogue, in which predictions are made over a dynamic set of intents and slots, provided as input, using their natural language descriptions. This allows a single dialogue system to easily support a large number of services and facilitates simple integration of new services without requiring additional training data. Building upon the proposed paradigm, we release a model for dialogue state tracking capable of zero-shot generalization to new APIs, while remaining competitive in the regular setting.
SWI: Speaking with Intent in Large Language Models
Intent, typically clearly formulated and planned, functions as a cognitive framework for reasoning and problem-solving. This paper introduces the concept of Speaking with Intent (SWI) in large language models (LLMs), where the explicitly generated intent encapsulates the model's underlying intention and provides high-level planning to guide subsequent analysis and communication. By emulating deliberate and purposeful thoughts in the human mind, SWI is hypothesized to enhance the reasoning capabilities and generation quality of LLMs. Extensive experiments on mathematical reasoning benchmarks consistently demonstrate the superiority of Speaking with Intent over Baseline (i.e., generation without explicit intent). Moreover, SWI outperforms answer-trigger prompting methods Chain-of-Thought and Plan-and-Solve and maintains competitive performance with the strong method ARR (Analyzing, Retrieving, and Reasoning). Additionally, the effectiveness and generalizability of SWI are solidified on reasoning-intensive question answering (QA) and text summarization benchmarks, where SWI brings consistent improvement to the Baseline generation. In text summarization, SWI-generated summaries exhibit greater accuracy, conciseness, and factual correctness, with fewer hallucinations. Furthermore, human evaluations verify the coherence, effectiveness, and interpretability of the intent produced by SWI. This proof-of-concept study creates a novel avenue for enhancing LLMs' reasoning abilities with cognitive notions.
Substance over Style: Evaluating Proactive Conversational Coaching Agents
While NLP research has made strides in conversational tasks, many approaches focus on single-turn responses with well-defined objectives or evaluation criteria. In contrast, coaching presents unique challenges with initially undefined goals that evolve through multi-turn interactions, subjective evaluation criteria, mixed-initiative dialogue. In this work, we describe and implement five multi-turn coaching agents that exhibit distinct conversational styles, and evaluate them through a user study, collecting first-person feedback on 155 conversations. We find that users highly value core functionality, and that stylistic components in absence of core components are viewed negatively. By comparing user feedback with third-person evaluations from health experts and an LM, we reveal significant misalignment across evaluation approaches. Our findings provide insights into design and evaluation of conversational coaching agents and contribute toward improving human-centered NLP applications.
A Mixture-of-Expert Approach to RL-based Dialogue Management
Despite recent advancements in language models (LMs), their application to dialogue management (DM) problems and ability to carry on rich conversations remain a challenge. We use reinforcement learning (RL) to develop a dialogue agent that avoids being short-sighted (outputting generic utterances) and maximizes overall user satisfaction. Most existing RL approaches to DM train the agent at the word-level, and thus, have to deal with a combinatorially complex action space even for a medium-size vocabulary. As a result, they struggle to produce a successful and engaging dialogue even if they are warm-started with a pre-trained LM. To address this issue, we develop a RL-based DM using a novel mixture of expert language model (MoE-LM) that consists of (i) a LM capable of learning diverse semantics for conversation histories, (ii) a number of {\em specialized} LMs (or experts) capable of generating utterances corresponding to a particular attribute or personality, and (iii) a RL-based DM that performs dialogue planning with the utterances generated by the experts. Our MoE approach provides greater flexibility to generate sensible utterances with different intents and allows RL to focus on conversational-level DM. We compare it with SOTA baselines on open-domain dialogues and demonstrate its effectiveness both in terms of the diversity and sensibility of the generated utterances and the overall DM performance.
Using a KG-Copy Network for Non-Goal Oriented Dialogues
Non-goal oriented, generative dialogue systems lack the ability to generate answers with grounded facts. A knowledge graph can be considered an abstraction of the real world consisting of well-grounded facts. This paper addresses the problem of generating well grounded responses by integrating knowledge graphs into the dialogue systems response generation process, in an end-to-end manner. A dataset for nongoal oriented dialogues is proposed in this paper in the domain of soccer, conversing on different clubs and national teams along with a knowledge graph for each of these teams. A novel neural network architecture is also proposed as a baseline on this dataset, which can integrate knowledge graphs into the response generation process, producing well articulated, knowledge grounded responses. Empirical evidence suggests that the proposed model performs better than other state-of-the-art models for knowledge graph integrated dialogue systems.
SAGE: Steering and Refining Dialog Generation with State-Action Augmentation
Recent advances in large language models have demonstrated impressive capabilities in task-oriented applications, yet building emotionally intelligent chatbots that can engage in natural, strategic conversations remains a challenge. We present a novel approach called SAGE that uses latent variables to control long-horizon behavior in dialogue generation. At the core of our method is the State-Action Chain (SAC), which augments standard language model fine-tuning by introducing latent variables that encapsulate emotional states and conversational strategies between dialogue turns. During inference, these variables are generated before each response, enabling coarse-grained control over dialogue progression while maintaining natural interaction patterns. We also introduce a self-improvement pipeline that leverages dialogue tree search, LLM-based reward modeling, and targeted fine-tuning to optimize conversational trajectories. Our experimental results show that models trained with this approach demonstrate improved performance in emotional intelligence metrics while maintaining strong capabilities on LLM benchmarks. The discrete nature of our latent variables facilitates search-based strategies and provides a foundation for future applications of reinforcement learning to dialogue systems, where learning can occur at the state level rather than the token level.
Inferring the Goals of Communicating Agents from Actions and Instructions
When humans cooperate, they frequently coordinate their activity through both verbal communication and non-verbal actions, using this information to infer a shared goal and plan. How can we model this inferential ability? In this paper, we introduce a model of a cooperative team where one agent, the principal, may communicate natural language instructions about their shared plan to another agent, the assistant, using GPT-3 as a likelihood function for instruction utterances. We then show how a third person observer can infer the team's goal via multi-modal Bayesian inverse planning from actions and instructions, computing the posterior distribution over goals under the assumption that agents will act and communicate rationally to achieve them. We evaluate this approach by comparing it with human goal inferences in a multi-agent gridworld, finding that our model's inferences closely correlate with human judgments (R = 0.96). When compared to inference from actions alone, we also find that instructions lead to more rapid and less uncertain goal inference, highlighting the importance of verbal communication for cooperative agents.
Towards Deep Conversational Recommendations
There has been growing interest in using neural networks and deep learning techniques to create dialogue systems. Conversational recommendation is an interesting setting for the scientific exploration of dialogue with natural language as the associated discourse involves goal-driven dialogue that often transforms naturally into more free-form chat. This paper provides two contributions. First, until now there has been no publicly available large-scale dataset consisting of real-world dialogues centered around recommendations. To address this issue and to facilitate our exploration here, we have collected ReDial, a dataset consisting of over 10,000 conversations centered around the theme of providing movie recommendations. We make this data available to the community for further research. Second, we use this dataset to explore multiple facets of conversational recommendations. In particular we explore new neural architectures, mechanisms, and methods suitable for composing conversational recommendation systems. Our dataset allows us to systematically probe model sub-components addressing different parts of the overall problem domain ranging from: sentiment analysis and cold-start recommendation generation to detailed aspects of how natural language is used in this setting in the real world. We combine such sub-components into a full-blown dialogue system and examine its behavior.
Controllable Mixed-Initiative Dialogue Generation through Prompting
Mixed-initiative dialogue tasks involve repeated exchanges of information and conversational control. Conversational agents gain control by generating responses that follow particular dialogue intents or strategies, prescribed by a policy planner. The standard approach has been fine-tuning pre-trained language models to perform generation conditioned on these intents. However, these supervised generation models are limited by the cost and quality of data annotation. We instead prompt large language models as a drop-in replacement to fine-tuning on conditional generation. We formalize prompt construction for controllable mixed-initiative dialogue. Our findings show improvements over fine-tuning and ground truth responses according to human evaluation and automatic metrics for two tasks: PersuasionForGood and Emotional Support Conversations.
Leveraging Large Language Models to Power Chatbots for Collecting User Self-Reported Data
Large language models (LLMs) provide a new way to build chatbots by accepting natural language prompts. Yet, it is unclear how to design prompts to power chatbots to carry on naturalistic conversations while pursuing a given goal, such as collecting self-report data from users. We explore what design factors of prompts can help steer chatbots to talk naturally and collect data reliably. To this aim, we formulated four prompt designs with different structures and personas. Through an online study (N = 48) where participants conversed with chatbots driven by different designs of prompts, we assessed how prompt designs and conversation topics affected the conversation flows and users' perceptions of chatbots. Our chatbots covered 79% of the desired information slots during conversations, and the designs of prompts and topics significantly influenced the conversation flows and the data collection performance. We discuss the opportunities and challenges of building chatbots with LLMs.
Mind the Gap! Static and Interactive Evaluations of Large Audio Models
As AI chatbots become ubiquitous, voice interaction presents a compelling way to enable rapid, high-bandwidth communication for both semantic and social signals. This has driven research into Large Audio Models (LAMs) to power voice-native experiences. However, aligning LAM development with user goals requires a clear understanding of user needs and preferences to establish reliable progress metrics. This study addresses these challenges by introducing an interactive approach to evaluate LAMs and collecting 7,500 LAM interactions from 484 participants. Through topic modeling of user queries, we identify primary use cases for audio interfaces. We then analyze user preference rankings and qualitative feedback to determine which models best align with user needs. Finally, we evaluate how static benchmarks predict interactive performance - our analysis reveals no individual benchmark strongly correlates with interactive results (tau leq 0.33 for all benchmarks). While combining multiple coarse-grained features yields modest predictive power (R^2=0.30), only two out of twenty datasets on spoken question answering and age prediction show significantly positive correlations. This suggests a clear need to develop LAM evaluations that better correlate with user preferences.
Semantics and Spatiality of Emergent Communication
When artificial agents are jointly trained to perform collaborative tasks using a communication channel, they develop opaque goal-oriented communication protocols. Good task performance is often considered sufficient evidence that meaningful communication is taking place, but existing empirical results show that communication strategies induced by common objectives can be counterintuitive whilst solving the task nearly perfectly. In this work, we identify a goal-agnostic prerequisite to meaningful communication, which we term semantic consistency, based on the idea that messages should have similar meanings across instances. We provide a formal definition for this idea, and use it to compare the two most common objectives in the field of emergent communication: discrimination and reconstruction. We prove, under mild assumptions, that semantically inconsistent communication protocols can be optimal solutions to the discrimination task, but not to reconstruction. We further show that the reconstruction objective encourages a stricter property, spatial meaningfulness, which also accounts for the distance between messages. Experiments with emergent communication games validate our theoretical results. These findings demonstrate an inherent advantage of distance-based communication goals, and contextualize previous empirical discoveries.
Keyword-Guided Neural Conversational Model
We study the problem of imposing conversational goals/keywords on open-domain conversational agents, where the agent is required to lead the conversation to a target keyword smoothly and fast. Solving this problem enables the application of conversational agents in many real-world scenarios, e.g., recommendation and psychotherapy. The dominant paradigm for tackling this problem is to 1) train a next-turn keyword classifier, and 2) train a keyword-augmented response retrieval model. However, existing approaches in this paradigm have two limitations: 1) the training and evaluation datasets for next-turn keyword classification are directly extracted from conversations without human annotations, thus, they are noisy and have low correlation with human judgements, and 2) during keyword transition, the agents solely rely on the similarities between word embeddings to move closer to the target keyword, which may not reflect how humans converse. In this paper, we assume that human conversations are grounded on commonsense and propose a keyword-guided neural conversational model that can leverage external commonsense knowledge graphs (CKG) for both keyword transition and response retrieval. Automatic evaluations suggest that commonsense improves the performance of both next-turn keyword prediction and keyword-augmented response retrieval. In addition, both self-play and human evaluations show that our model produces responses with smoother keyword transition and reaches the target keyword faster than competitive baselines.
Towards Collaborative Plan Acquisition through Theory of Mind Modeling in Situated Dialogue
Collaborative tasks often begin with partial task knowledge and incomplete initial plans from each partner. To complete these tasks, agents need to engage in situated communication with their partners and coordinate their partial plans towards a complete plan to achieve a joint task goal. While such collaboration seems effortless in a human-human team, it is highly challenging for human-AI collaboration. To address this limitation, this paper takes a step towards collaborative plan acquisition, where humans and agents strive to learn and communicate with each other to acquire a complete plan for joint tasks. Specifically, we formulate a novel problem for agents to predict the missing task knowledge for themselves and for their partners based on rich perceptual and dialogue history. We extend a situated dialogue benchmark for symmetric collaborative tasks in a 3D blocks world and investigate computational strategies for plan acquisition. Our empirical results suggest that predicting the partner's missing knowledge is a more viable approach than predicting one's own. We show that explicit modeling of the partner's dialogue moves and mental states produces improved and more stable results than without. These results provide insight for future AI agents that can predict what knowledge their partner is missing and, therefore, can proactively communicate such information to help their partner acquire such missing knowledge toward a common understanding of joint tasks.
Can Graph Learning Improve Planning in LLM-based Agents?
Task planning in language agents is emerging as an important research topic alongside the development of large language models (LLMs). It aims to break down complex user requests in natural language into solvable sub-tasks, thereby fulfilling the original requests. In this context, the sub-tasks can be naturally viewed as a graph, where the nodes represent the sub-tasks, and the edges denote the dependencies among them. Consequently, task planning is a decision-making problem that involves selecting a connected path or subgraph within the corresponding graph and invoking it. In this paper, we explore graph learning-based methods for task planning, a direction that is orthogonal to the prevalent focus on prompt design. Our interest in graph learning stems from a theoretical discovery: the biases of attention and auto-regressive loss impede LLMs' ability to effectively navigate decision-making on graphs, which is adeptly addressed by graph neural networks (GNNs). This theoretical insight led us to integrate GNNs with LLMs to enhance overall performance. Extensive experiments demonstrate that GNN-based methods surpass existing solutions even without training, and minimal training can further enhance their performance. The performance gain increases with a larger task graph size.
Building the Intent Landscape of Real-World Conversational Corpora with Extractive Question-Answering Transformers
For companies with customer service, mapping intents inside their conversational data is crucial in building applications based on natural language understanding (NLU). Nevertheless, there is no established automated technique to gather the intents from noisy online chats or voice transcripts. Simple clustering approaches are not suited to intent-sparse dialogues. To solve this intent-landscape task, we propose an unsupervised pipeline that extracts the intents and the taxonomy of intents from real-world dialogues. Our pipeline mines intent-span candidates with an extractive Question-Answering Electra model and leverages sentence embeddings to apply a low-level density clustering followed by a top-level hierarchical clustering. Our results demonstrate the generalization ability of an ELECTRA large model fine-tuned on the SQuAD2 dataset to understand dialogues. With the right prompting question, this model achieves a rate of linguistic validation on intent spans beyond 85%. We furthermore reconstructed the intent schemes of five domains from the MultiDoGo dataset with an average recall of 94.3%.
DialoKG: Knowledge-Structure Aware Task-Oriented Dialogue Generation
Task-oriented dialogue generation is challenging since the underlying knowledge is often dynamic and effectively incorporating knowledge into the learning process is hard. It is particularly challenging to generate both human-like and informative responses in this setting. Recent research primarily focused on various knowledge distillation methods where the underlying relationship between the facts in a knowledge base is not effectively captured. In this paper, we go one step further and demonstrate how the structural information of a knowledge graph can improve the system's inference capabilities. Specifically, we propose DialoKG, a novel task-oriented dialogue system that effectively incorporates knowledge into a language model. Our proposed system views relational knowledge as a knowledge graph and introduces (1) a structure-aware knowledge embedding technique, and (2) a knowledge graph-weighted attention masking strategy to facilitate the system selecting relevant information during the dialogue generation. An empirical evaluation demonstrates the effectiveness of DialoKG over state-of-the-art methods on several standard benchmark datasets.
Know More about Each Other: Evolving Dialogue Strategy via Compound Assessment
In this paper, a novel Generation-Evaluation framework is developed for multi-turn conversations with the objective of letting both participants know more about each other. For the sake of rational knowledge utilization and coherent conversation flow, a dialogue strategy which controls knowledge selection is instantiated and continuously adapted via reinforcement learning. Under the deployed strategy, knowledge grounded conversations are conducted with two dialogue agents. The generated dialogues are comprehensively evaluated on aspects like informativeness and coherence, which are aligned with our objective and human instinct. These assessments are integrated as a compound reward to guide the evolution of dialogue strategy via policy gradient. Comprehensive experiments have been carried out on the publicly available dataset, demonstrating that the proposed method outperforms the other state-of-the-art approaches significantly.
A Simple Language Model for Task-Oriented Dialogue
Task-oriented dialogue is often decomposed into three tasks: understanding user input, deciding actions, and generating a response. While such decomposition might suggest a dedicated model for each sub-task, we find a simple, unified approach leads to state-of-the-art performance on the MultiWOZ dataset. SimpleTOD is a simple approach to task-oriented dialogue that uses a single, causal language model trained on all sub-tasks recast as a single sequence prediction problem. This allows SimpleTOD to fully leverage transfer learning from pre-trained, open domain, causal language models such as GPT-2. SimpleTOD improves over the prior state-of-the-art in joint goal accuracy for dialogue state tracking, and our analysis reveals robustness to noisy annotations in this setting. SimpleTOD also improves the main metrics used to evaluate action decisions and response generation in an end-to-end setting: inform rate by 8.1 points, success rate by 9.7 points, and combined score by 7.2 points.
Thinking Forward and Backward: Effective Backward Planning with Large Language Models
Large language models (LLMs) have exhibited remarkable reasoning and planning capabilities. Most prior work in this area has used LLMs to reason through steps from an initial to a goal state or criterion, thereby effectively reasoning in a forward direction. Nonetheless, many planning problems exhibit an inherent asymmetry such that planning backward from the goal is significantly easier -- for example, if there are bottlenecks close to the goal. We take inspiration from this observation and demonstrate that this bias holds for LLM planning as well: planning performance in one direction correlates with the planning complexity of the problem in that direction. However, our experiments also reveal systematic biases which lead to poor planning in the backward direction. With this knowledge, we propose a backward planning algorithm for LLMs that first flips the problem and then plans forward in the flipped problem. This helps avoid the backward bias, generate more diverse candidate plans, and exploit asymmetries between the forward and backward directions in planning problems -- we find that combining planning in both directions with self-verification improves the overall planning success rates by 4-24% in three planning domains.
LASP: Surveying the State-of-the-Art in Large Language Model-Assisted AI Planning
Effective planning is essential for the success of any task, from organizing a vacation to routing autonomous vehicles and developing corporate strategies. It involves setting goals, formulating plans, and allocating resources to achieve them. LLMs are particularly well-suited for automated planning due to their strong capabilities in commonsense reasoning. They can deduce a sequence of actions needed to achieve a goal from a given state and identify an effective course of action. However, it is frequently observed that plans generated through direct prompting often fail upon execution. Our survey aims to highlight the existing challenges in planning with language models, focusing on key areas such as embodied environments, optimal scheduling, competitive and cooperative games, task decomposition, reasoning, and planning. Through this study, we explore how LLMs transform AI planning and provide unique insights into the future of LM-assisted planning.
Prompt reinforcing for long-term planning of large language models
Large language models (LLMs) have achieved remarkable success in a wide range of natural language processing tasks and can be adapted through prompting. However, they remain suboptimal in multi-turn interactions, often relying on incorrect early assumptions and failing to track user goals over time, which makes such tasks particularly challenging. Prior works in dialogue systems have shown that long-term planning is essential for handling interactive tasks. In this work, we propose a prompt optimisation framework inspired by reinforcement learning, which enables such planning to take place by only modifying the task instruction prompt of the LLM-based agent. By generating turn-by-turn feedback and leveraging experience replay for prompt rewriting, our proposed method shows significant improvement in multi-turn tasks such as text-to-SQL and task-oriented dialogue. Moreover, it generalises across different LLM-based agents and can leverage diverse LLMs as meta-prompting agents. This warrants future research in reinforcement learning-inspired parameter-free optimisation methods.
Large Language Models as Zero-shot Dialogue State Tracker through Function Calling
Large language models (LLMs) are increasingly prevalent in conversational systems due to their advanced understanding and generative capabilities in general contexts. However, their effectiveness in task-oriented dialogues (TOD), which requires not only response generation but also effective dialogue state tracking (DST) within specific tasks and domains, remains less satisfying. In this work, we propose a novel approach FnCTOD for solving DST with LLMs through function calling. This method improves zero-shot DST, allowing adaptation to diverse domains without extensive data collection or model tuning. Our experimental results demonstrate that our approach achieves exceptional performance with both modestly sized open-source and also proprietary LLMs: with in-context prompting it enables various 7B or 13B parameter models to surpass the previous state-of-the-art (SOTA) achieved by ChatGPT, and improves ChatGPT's performance beating the SOTA by 5.6% Avg. JGA. Individual model results for GPT-3.5 and GPT-4 are boosted by 4.8% and 14%, respectively. We also show that by fine-tuning on a small collection of diverse task-oriented dialogues, we can equip modestly sized models, specifically a 13B parameter LLaMA2-Chat model, with function-calling capabilities and DST performance comparable to ChatGPT while maintaining their chat capabilities. We plan to open-source experimental code and model.
Many Hands Make Light Work: Task-Oriented Dialogue System with Module-Based Mixture-of-Experts
Task-oriented dialogue systems are broadly used in virtual assistants and other automated services, providing interfaces between users and machines to facilitate specific tasks. Nowadays, task-oriented dialogue systems have greatly benefited from pre-trained language models (PLMs). However, their task-solving performance is constrained by the inherent capacities of PLMs, and scaling these models is expensive and complex as the model size becomes larger. To address these challenges, we propose Soft Mixture-of-Expert Task-Oriented Dialogue system (SMETOD) which leverages an ensemble of Mixture-of-Experts (MoEs) to excel at subproblems and generate specialized outputs for task-oriented dialogues. SMETOD also scales up a task-oriented dialogue system with simplicity and flexibility while maintaining inference efficiency. We extensively evaluate our model on three benchmark functionalities: intent prediction, dialogue state tracking, and dialogue response generation. Experimental results demonstrate that SMETOD achieves state-of-the-art performance on most evaluated metrics. Moreover, comparisons against existing strong baselines show that SMETOD has a great advantage in the cost of inference and correctness in problem-solving.
TD-EVAL: Revisiting Task-Oriented Dialogue Evaluation by Combining Turn-Level Precision with Dialogue-Level Comparisons
Task-oriented dialogue (TOD) systems are experiencing a revolution driven by Large Language Models (LLMs), yet the evaluation methodologies for these systems remain insufficient for their growing sophistication. While traditional automatic metrics effectively assessed earlier modular systems, they focus solely on the dialogue level and cannot detect critical intermediate errors that can arise during user-agent interactions. In this paper, we introduce TD-EVAL (Turn and Dialogue-level Evaluation), a two-step evaluation framework that unifies fine-grained turn-level analysis with holistic dialogue-level comparisons. At turn level, we evaluate each response along three TOD-specific dimensions: conversation cohesion, backend knowledge consistency, and policy compliance. Meanwhile, we design TOD Agent Arena that uses pairwise comparisons to provide a measure of dialogue-level quality. Through experiments on MultiWOZ 2.4 and {\tau}-Bench, we demonstrate that TD-EVAL effectively identifies the conversational errors that conventional metrics miss. Furthermore, TD-EVAL exhibits better alignment with human judgments than traditional and LLM-based metrics. These findings demonstrate that TD-EVAL introduces a new paradigm for TOD system evaluation, efficiently assessing both turn and system levels with a plug-and-play framework for future research.
PLATO: Pre-trained Dialogue Generation Model with Discrete Latent Variable
Pre-training models have been proved effective for a wide range of natural language processing tasks. Inspired by this, we propose a novel dialogue generation pre-training framework to support various kinds of conversations, including chit-chat, knowledge grounded dialogues, and conversational question answering. In this framework, we adopt flexible attention mechanisms to fully leverage the bi-directional context and the uni-directional characteristic of language generation. We also introduce discrete latent variables to tackle the inherent one-to-many mapping problem in response generation. Two reciprocal tasks of response generation and latent act recognition are designed and carried out simultaneously within a shared network. Comprehensive experiments on three publicly available datasets verify the effectiveness and superiority of the proposed framework.
Ask-before-Plan: Proactive Language Agents for Real-World Planning
The evolution of large language models (LLMs) has enhanced the planning capabilities of language agents in diverse real-world scenarios. Despite these advancements, the potential of LLM-powered agents to comprehend ambiguous user instructions for reasoning and decision-making is still under exploration. In this work, we introduce a new task, Proactive Agent Planning, which requires language agents to predict clarification needs based on user-agent conversation and agent-environment interaction, invoke external tools to collect valid information, and generate a plan to fulfill the user's demands. To study this practical problem, we establish a new benchmark dataset, Ask-before-Plan. To tackle the deficiency of LLMs in proactive planning, we propose a novel multi-agent framework, Clarification-Execution-Planning (CEP), which consists of three agents specialized in clarification, execution, and planning. We introduce the trajectory tuning scheme for the clarification agent and static execution agent, as well as the memory recollection mechanism for the dynamic execution agent. Extensive evaluations and comprehensive analyses conducted on the Ask-before-Plan dataset validate the effectiveness of our proposed framework.
Grounding Dialogue Systems via Knowledge Graph Aware Decoding with Pre-trained Transformers
Generating knowledge grounded responses in both goal and non-goal oriented dialogue systems is an important research challenge. Knowledge Graphs (KG) can be viewed as an abstraction of the real world, which can potentially facilitate a dialogue system to produce knowledge grounded responses. However, integrating KGs into the dialogue generation process in an end-to-end manner is a non-trivial task. This paper proposes a novel architecture for integrating KGs into the response generation process by training a BERT model that learns to answer using the elements of the KG (entities and relations) in a multi-task, end-to-end setting. The k-hop subgraph of the KG is incorporated into the model during training and inference using Graph Laplacian. Empirical evaluation suggests that the model achieves better knowledge groundedness (measured via Entity F1 score) compared to other state-of-the-art models for both goal and non-goal oriented dialogues.
Planning Anything with Rigor: General-Purpose Zero-Shot Planning with LLM-based Formalized Programming
While large language models (LLMs) have recently demonstrated strong potential in solving planning problems, there is a trade-off between flexibility and complexity. LLMs, as zero-shot planners themselves, are still not capable of directly generating valid plans for complex planning problems such as multi-constraint or long-horizon tasks. On the other hand, many frameworks aiming to solve complex planning problems often rely on task-specific preparatory efforts, such as task-specific in-context examples and pre-defined critics/verifiers, which limits their cross-task generalization capability. In this paper, we tackle these challenges by observing that the core of many planning problems lies in optimization problems: searching for the optimal solution (best plan) with goals subject to constraints (preconditions and effects of decisions). With LLMs' commonsense, reasoning, and programming capabilities, this opens up the possibilities of a universal LLM-based approach to planning problems. Inspired by this observation, we propose LLMFP, a general-purpose framework that leverages LLMs to capture key information from planning problems and formally formulate and solve them as optimization problems from scratch, with no task-specific examples needed. We apply LLMFP to 9 planning problems, ranging from multi-constraint decision making to multi-step planning problems, and demonstrate that LLMFP achieves on average 83.7% and 86.8% optimal rate across 9 tasks for GPT-4o and Claude 3.5 Sonnet, significantly outperforming the best baseline (direct planning with OpenAI o1-preview) with 37.6% and 40.7% improvements. We also validate components of LLMFP with ablation experiments and analyzed the underlying success and failure reasons.
Regularizing Dialogue Generation by Imitating Implicit Scenarios
Human dialogues are scenario-based and appropriate responses generally relate to the latent context knowledge entailed by the specific scenario. To enable responses that are more meaningful and context-specific, we propose to improve generative dialogue systems from the scenario perspective, where both dialogue history and future conversation are taken into account to implicitly reconstruct the scenario knowledge. More importantly, the conversation scenarios are further internalized using imitation learning framework, where the conventional dialogue model that has no access to future conversations is effectively regularized by transferring the scenario knowledge contained in hierarchical supervising signals from the scenario-based dialogue model, so that the future conversation is not required in actual inference. Extensive evaluations show that our approach significantly outperforms state-of-the-art baselines on diversity and relevance, and expresses scenario-specific knowledge.
On the Way to LLM Personalization: Learning to Remember User Conversations
Large Language Models (LLMs) have quickly become an invaluable assistant for a variety of tasks. However, their effectiveness is constrained by their ability to tailor responses to human preferences and behaviors via personalization. Prior work in LLM personalization has largely focused on style transfer or incorporating small factoids about the user, as knowledge injection remains an open challenge. In this paper, we explore injecting knowledge of prior conversations into LLMs to enable future work on less redundant, personalized conversations. We identify two real-world constraints: (1) conversations are sequential in time and must be treated as such during training, and (2) per-user personalization is only viable in parameter-efficient settings. To this aim, we propose PLUM, a pipeline performing data augmentation for up-sampling conversations as question-answer pairs, that are then used to finetune a low-rank adaptation adapter with a weighted cross entropy loss. Even in this first exploration of the problem, we perform competitively with baselines such as RAG, attaining an accuracy of 81.5% across 100 conversations.
Adapting Document-Grounded Dialog Systems to Spoken Conversations using Data Augmentation and a Noisy Channel Model
This paper summarizes our submission to Task 2 of the second track of the 10th Dialog System Technology Challenge (DSTC10) "Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations". Similar to the previous year's iteration, the task consists of three subtasks: detecting whether a turn is knowledge seeking, selecting the relevant knowledge document and finally generating a grounded response. This year, the focus lies on adapting the system to noisy ASR transcripts. We explore different approaches to make the models more robust to this type of input and to adapt the generated responses to the style of spoken conversations. For the latter, we get the best results with a noisy channel model that additionally reduces the number of short and generic responses. Our best system achieved the 1st rank in the automatic and the 3rd rank in the human evaluation of the challenge.
Think Before You Speak: Cultivating Communication Skills of Large Language Models via Inner Monologue
The emergence of large language models (LLMs) further improves the capabilities of open-domain dialogue systems and can generate fluent, coherent, and diverse responses. However, LLMs still lack a crucial ability: communication skills. This limitation renders them more like information seeking tools rather than anthropomorphic chatbots. Communication skills, such as topic transition, proactively asking questions, concept guidance, empathy, and summarising often should be taken into consideration, to make LLMs more anthropomorphic and proactive during the conversation, thereby increasing the interest of users and attracting them to chat for longer. However, enabling these communication skills in black-box LLMs remains a key challenge because they do not have the same utterance formation mode as real people: think before speaking. Inspired by linguistics and cognitive science, we empower LLMs with communication skills through inner monologues. To evaluate various communication skills, we construct a benchmark named Cskills, which can also more comprehensively evaluate the dialogue generation ability of the model. Experimental results show that the proposed CSIM strategy improves the backbone models and outperforms the baselines.
Improving Generalization in Task-oriented Dialogues with Workflows and Action Plans
Task-oriented dialogue is difficult in part because it involves understanding user intent, collecting information from the user, executing API calls, and generating helpful and fluent responses. However, for complex tasks one must also correctly do all of these things over multiple steps, and in a specific order. While large pre-trained language models can be fine-tuned end-to-end to create multi-step task-oriented dialogue agents that generate fluent text, our experiments confirm that this approach alone cannot reliably perform new multi-step tasks that are unseen during training. To address these limitations, we augment the dialogue contexts given to text2text transformers with known valid workflow names and action plans. Action plans consist of sequences of actions required to accomplish a task, and are encoded as simple sequences of keywords (e.g. verify-identity, pull-up-account, reset-password, etc.). We perform extensive experiments on the Action-Based Conversations Dataset (ABCD) with T5-small, base and large models, and show that such models: a) are able to more readily generalize to unseen workflows by following the provided plan, and b) are able to generalize to executing unseen actions if they are provided in the plan. In contrast, models are unable to fully accomplish new multi-step tasks when they are not provided action plan information, even when given new valid workflow names.
Machines Getting with the Program: Understanding Intent Arguments of Non-Canonical Directives
Modern dialog managers face the challenge of having to fulfill human-level conversational skills as part of common user expectations, including but not limited to discourse with no clear objective. Along with these requirements, agents are expected to extrapolate intent from the user's dialogue even when subjected to non-canonical forms of speech. This depends on the agent's comprehension of paraphrased forms of such utterances. Especially in low-resource languages, the lack of data is a bottleneck that prevents advancements of the comprehension performance for these types of agents. In this regard, here we demonstrate the necessity of extracting the intent argument of non-canonical directives in a natural language format, which may yield more accurate parsing, and suggest guidelines for building a parallel corpus for this purpose. Following the guidelines, we construct a Korean corpus of 50K instances of question/command-intent pairs, including the labels for classification of the utterance type. We also propose a method for mitigating class imbalance, demonstrating the potential applications of the corpus generation method and its multilingual extensibility.
Training Language Models for Social Deduction with Multi-Agent Reinforcement Learning
Communicating in natural language is a powerful tool in multi-agent settings, as it enables independent agents to share information in partially observable settings and allows zero-shot coordination with humans. However, most prior works are limited as they either rely on training with large amounts of human demonstrations or lack the ability to generate natural and useful communication strategies. In this work, we train language models to have productive discussions about their environment in natural language without any human demonstrations. We decompose the communication problem into listening and speaking. Our key idea is to leverage the agent's goal to predict useful information about the world as a dense reward signal that guides communication. Specifically, we improve a model's listening skills by training them to predict information about the environment based on discussions, and we simultaneously improve a model's speaking skills with multi-agent reinforcement learning by rewarding messages based on their influence on other agents. To investigate the role and necessity of communication in complex social settings, we study an embodied social deduction game based on Among Us, where the key question to answer is the identity of an adversarial imposter. We analyze emergent behaviors due to our technique, such as accusing suspects and providing evidence, and find that it enables strong discussions, doubling the win rates compared to standard RL. We release our code and models at https://socialdeductionllm.github.io/
Hello, It's GPT-2 -- How Can I Help You? Towards the Use of Pretrained Language Models for Task-Oriented Dialogue Systems
Data scarcity is a long-standing and crucial challenge that hinders quick development of task-oriented dialogue systems across multiple domains: task-oriented dialogue models are expected to learn grammar, syntax, dialogue reasoning, decision making, and language generation from absurdly small amounts of task-specific data. In this paper, we demonstrate that recent progress in language modeling pre-training and transfer learning shows promise to overcome this problem. We propose a task-oriented dialogue model that operates solely on text input: it effectively bypasses explicit policy and language generation modules. Building on top of the TransferTransfo framework (Wolf et al., 2019) and generative model pre-training (Radford et al., 2019), we validate the approach on complex multi-domain task-oriented dialogues from the MultiWOZ dataset. Our automatic and human evaluations show that the proposed model is on par with a strong task-specific neural baseline. In the long run, our approach holds promise to mitigate the data scarcity problem, and to support the construction of more engaging and more eloquent task-oriented conversational agents.
Towards Dialogues for Joint Human-AI Reasoning and Value Alignment
We argue that enabling human-AI dialogue, purposed to support joint reasoning (i.e., 'inquiry'), is important for ensuring that AI decision making is aligned with human values and preferences. In particular, we point to logic-based models of argumentation and dialogue, and suggest that the traditional focus on persuasion dialogues be replaced by a focus on inquiry dialogues, and the distinct challenges that joint inquiry raises. Given recent dramatic advances in the performance of large language models (LLMs), and the anticipated increase in their use for decision making, we provide a roadmap for research into inquiry dialogues for supporting joint human-LLM reasoning tasks that are ethically salient, and that thereby require that decisions are value aligned.
Translating Natural Language to Planning Goals with Large-Language Models
Recent large language models (LLMs) have demonstrated remarkable performance on a variety of natural language processing (NLP) tasks, leading to intense excitement about their applicability across various domains. Unfortunately, recent work has also shown that LLMs are unable to perform accurate reasoning nor solve planning problems, which may limit their usefulness for robotics-related tasks. In this work, our central question is whether LLMs are able to translate goals specified in natural language to a structured planning language. If so, LLM can act as a natural interface between the planner and human users; the translated goal can be handed to domain-independent AI planners that are very effective at planning. Our empirical results on GPT 3.5 variants show that LLMs are much better suited towards translation rather than planning. We find that LLMs are able to leverage commonsense knowledge and reasoning to furnish missing details from under-specified goals (as is often the case in natural language). However, our experiments also reveal that LLMs can fail to generate goals in tasks that involve numerical or physical (e.g., spatial) reasoning, and that LLMs are sensitive to the prompts used. As such, these models are promising for translation to structured planning languages, but care should be taken in their use.
TCP: a Benchmark for Temporal Constraint-Based Planning
Temporal reasoning and planning are essential capabilities for large language models (LLMs), yet most existing benchmarks evaluate them in isolation and under limited forms of complexity. To address this gap, we introduce the Temporal Constraint-based Planning (TCP) benchmark, that jointly assesses both capabilities. Each instance in TCP features a naturalistic dialogue around a collaborative project, where diverse and interdependent temporal constraints are explicitly or implicitly expressed, and models must infer an optimal schedule that satisfies all constraints. To construct TCP, we first generate abstract problem prototypes that are paired with realistic scenarios from various domains and enriched into dialogues using an LLM. A human quality check is performed on a sampled subset to confirm the reliability of our benchmark. We evaluate state-of-the-art LLMs and find that even the strongest models struggle with TCP, highlighting its difficulty and revealing limitations in LLMs' temporal constraint-based planning abilities. We analyze underlying failure cases, open source our benchmark, and hope our findings can inspire future research.
Using Advanced LLMs to Enhance Smaller LLMs: An Interpretable Knowledge Distillation Approach
Advanced Large language models (LLMs) like GPT-4 or LlaMa 3 provide superior performance in complex human-like interactions. But they are costly, or too large for edge devices such as smartphones and harder to self-host, leading to security and privacy concerns. This paper introduces a novel interpretable knowledge distillation approach to enhance the performance of smaller, more economical LLMs that firms can self-host. We study this problem in the context of building a customer service agent aimed at achieving high customer satisfaction through goal-oriented dialogues. Unlike traditional knowledge distillation, where the "student" model learns directly from the "teacher" model's responses via fine-tuning, our interpretable "strategy" teaching approach involves the teacher providing strategies to improve the student's performance in various scenarios. This method alternates between a "scenario generation" step and a "strategies for improvement" step, creating a customized library of scenarios and optimized strategies for automated prompting. The method requires only black-box access to both student and teacher models; hence it can be used without manipulating model parameters. In our customer service application, the method improves performance, and the learned strategies are transferable to other LLMs and scenarios beyond the training set. The method's interpretabilty helps safeguard against potential harms through human audit.
TPE: Towards Better Compositional Reasoning over Conceptual Tools with Multi-persona Collaboration
Large language models (LLMs) have demonstrated exceptional performance in planning the use of various functional tools, such as calculators and retrievers, particularly in question-answering tasks. In this paper, we expand the definition of these tools, centering on conceptual tools within the context of dialogue systems. A conceptual tool specifies a cognitive concept that aids systematic or investigative thought. These conceptual tools play important roles in practice, such as multiple psychological or tutoring strategies being dynamically applied in a single turn to compose helpful responses. To further enhance the reasoning and planning capability of LLMs with these conceptual tools, we introduce a multi-persona collaboration framework: Think-Plan-Execute (TPE). This framework decouples the response generation process into three distinct roles: Thinker, Planner, and Executor. Specifically, the Thinker analyzes the internal status exhibited in the dialogue context, such as user emotions and preferences, to formulate a global guideline. The Planner then generates executable plans to call different conceptual tools (e.g., sources or strategies), while the Executor compiles all intermediate results into a coherent response. This structured approach not only enhances the explainability and controllability of responses but also reduces token redundancy. We demonstrate the effectiveness of TPE across various dialogue response generation tasks, including multi-source (FoCus) and multi-strategy interactions (CIMA and PsyQA). This reveals its potential to handle real-world dialogue interactions that require more complicated tool learning beyond just functional tools. The full code and data will be released for reproduction.
Task-Oriented Dialog Systems that Consider Multiple Appropriate Responses under the Same Context
Conversations have an intrinsic one-to-many property, which means that multiple responses can be appropriate for the same dialog context. In task-oriented dialogs, this property leads to different valid dialog policies towards task completion. However, none of the existing task-oriented dialog generation approaches takes this property into account. We propose a Multi-Action Data Augmentation (MADA) framework to utilize the one-to-many property to generate diverse appropriate dialog responses. Specifically, we first use dialog states to summarize the dialog history, and then discover all possible mappings from every dialog state to its different valid system actions. During dialog system training, we enable the current dialog state to map to all valid system actions discovered in the previous process to create additional state-action pairs. By incorporating these additional pairs, the dialog policy learns a balanced action distribution, which further guides the dialog model to generate diverse responses. Experimental results show that the proposed framework consistently improves dialog policy diversity, and results in improved response diversity and appropriateness. Our model obtains state-of-the-art results on MultiWOZ.
Proactive Conversational Agents with Inner Thoughts
One of the long-standing aspirations in conversational AI is to allow them to autonomously take initiatives in conversations, i.e., being proactive. This is especially challenging for multi-party conversations. Prior NLP research focused mainly on predicting the next speaker from contexts like preceding conversations. In this paper, we demonstrate the limitations of such methods and rethink what it means for AI to be proactive in multi-party, human-AI conversations. We propose that just like humans, rather than merely reacting to turn-taking cues, a proactive AI formulates its own inner thoughts during a conversation, and seeks the right moment to contribute. Through a formative study with 24 participants and inspiration from linguistics and cognitive psychology, we introduce the Inner Thoughts framework. Our framework equips AI with a continuous, covert train of thoughts in parallel to the overt communication process, which enables it to proactively engage by modeling its intrinsic motivation to express these thoughts. We instantiated this framework into two real-time systems: an AI playground web app and a chatbot. Through a technical evaluation and user studies with human participants, our framework significantly surpasses existing baselines on aspects like anthropomorphism, coherence, intelligence, and turn-taking appropriateness.
Few-Shot Bot: Prompt-Based Learning for Dialogue Systems
Learning to converse using only a few examples is a great challenge in conversational AI. The current best conversational models, which are either good chit-chatters (e.g., BlenderBot) or goal-oriented systems (e.g., MinTL), are language models (LMs) fine-tuned on large conversational datasets. Training these models is expensive, both in terms of computational resources and time, and it is hard to keep them up to date with new conversational skills. A simple yet unexplored solution is prompt-based few-shot learning (Brown et al. 2020) which does not require gradient-based fine-tuning but instead uses a few examples in the LM context as the only source of learning. In this paper, we explore prompt-based few-shot learning in dialogue tasks. We benchmark LMs of different sizes in nine response generation tasks, which include four knowledge-grounded tasks, a task-oriented generations task, three open-chat tasks, and controlled stylistic generation, and five conversational parsing tasks, which include dialogue state tracking, graph path generation, persona information extraction, document retrieval, and internet query generation. The current largest released LM (GPT-J-6B) using prompt-based few-shot learning, and thus requiring no training, achieves competitive performance to fully trained state-of-the-art models. Moreover, we propose a novel prompt-based few-shot classifier, that also does not require any fine-tuning, to select the most appropriate prompt given a dialogue history. Finally, by combining the power of prompt-based few-shot learning and a Skill Selector, we create an end-to-end chatbot named the Few-Shot Bot (FSB), which automatically selects the most appropriate conversational skill, queries different knowledge bases or the internet, and uses the retrieved knowledge to generate a human-like response, all using only few dialogue examples per skill.
LLM+P: Empowering Large Language Models with Optimal Planning Proficiency
Large language models (LLMs) have demonstrated remarkable zero-shot generalization abilities: state-of-the-art chatbots can provide plausible answers to many common questions that arise in daily life. However, so far, LLMs cannot reliably solve long-horizon planning problems. By contrast, classical planners, once a problem is given in a formatted way, can use efficient search algorithms to quickly identify correct, or even optimal, plans. In an effort to get the best of both worlds, this paper introduces LLM+P, the first framework that incorporates the strengths of classical planners into LLMs. LLM+P takes in a natural language description of a planning problem, then returns a correct (or optimal) plan for solving that problem in natural language. LLM+P does so by first converting the language description into a file written in the planning domain definition language (PDDL), then leveraging classical planners to quickly find a solution, and then translating the found solution back into natural language. Along with LLM+P, we define a diverse set of different benchmark problems taken from common planning scenarios. Via a comprehensive set of experiments on these benchmark problems, we find that LLM+P is able to provide optimal solutions for most problems, while LLMs fail to provide even feasible plans for most problems.\footnote{The code and results are publicly available at https://github.com/Cranial-XIX/llm-pddl.git.
Grounding Gaps in Language Model Generations
Effective conversation requires common ground: a shared understanding between the participants. Common ground, however, does not emerge spontaneously in conversation. Speakers and listeners work together to both identify and construct a shared basis while avoiding misunderstanding. To accomplish grounding, humans rely on a range of dialogue acts, like clarification (What do you mean?) and acknowledgment (I understand.). However, it is unclear whether large language models (LLMs) generate text that reflects human grounding. To this end, we curate a set of grounding acts and propose corresponding metrics that quantify attempted grounding. We study whether LLM generations contain grounding acts, simulating turn-taking from several dialogue datasets and comparing results to humans. We find that -- compared to humans -- LLMs generate language with less conversational grounding, instead generating text that appears to simply presume common ground. To understand the roots of the identified grounding gap, we examine the role of instruction tuning and preference optimization, finding that training on contemporary preference data leads to a reduction in generated grounding acts. Altogether, we highlight the need for more research investigating conversational grounding in human-AI interaction.
A Conversation is Worth A Thousand Recommendations: A Survey of Holistic Conversational Recommender Systems
Conversational recommender systems (CRS) generate recommendations through an interactive process. However, not all CRS approaches use human conversations as their source of interaction data; the majority of prior CRS work simulates interactions by exchanging entity-level information. As a result, claims of prior CRS work do not generalise to real-world settings where conversations take unexpected turns, or where conversational and intent understanding is not perfect. To tackle this challenge, the research community has started to examine holistic CRS, which are trained using conversational data collected from real-world scenarios. Despite their emergence, such holistic approaches are under-explored. We present a comprehensive survey of holistic CRS methods by summarizing the literature in a structured manner. Our survey recognises holistic CRS approaches as having three components: 1) a backbone language model, the optional use of 2) external knowledge, and/or 3) external guidance. We also give a detailed analysis of CRS datasets and evaluation methods in real application scenarios. We offer our insight as to the current challenges of holistic CRS and possible future trends.
BlendX: Complex Multi-Intent Detection with Blended Patterns
Task-oriented dialogue (TOD) systems are commonly designed with the presumption that each utterance represents a single intent. However, this assumption may not accurately reflect real-world situations, where users frequently express multiple intents within a single utterance. While there is an emerging interest in multi-intent detection (MID), existing in-domain datasets such as MixATIS and MixSNIPS have limitations in their formulation. To address these issues, we present BlendX, a suite of refined datasets featuring more diverse patterns than their predecessors, elevating both its complexity and diversity. For dataset construction, we utilize both rule-based heuristics as well as a generative tool -- OpenAI's ChatGPT -- which is augmented with a similarity-driven strategy for utterance selection. To ensure the quality of the proposed datasets, we also introduce three novel metrics that assess the statistical properties of an utterance related to word count, conjunction use, and pronoun usage. Extensive experiments on BlendX reveal that state-of-the-art MID models struggle with the challenges posed by the new datasets, highlighting the need to reexamine the current state of the MID field. The dataset is available at https://github.com/HYU-NLP/BlendX.
Turning Flowchart into Dialog: Augmenting Flowchart-grounded Troubleshooting Dialogs via Synthetic Data Generation
Flowchart-grounded troubleshooting dialogue (FTD) systems, which follow the instructions of a flowchart to diagnose users' problems in specific domains (e.g., vehicle, laptop), have been gaining research interest in recent years. However, collecting sufficient dialogues that are naturally grounded on flowcharts is costly, thus FTD systems are impeded by scarce training data. To mitigate the data sparsity issue, we propose a plan-based synthetic data generation (PlanSDG) approach that generates diverse synthetic dialog data at scale by transforming concise flowchart into dialogues. Specifically, its generative model employs a variational-base framework with a hierarchical planning strategy that includes global and local latent planning variables. Experiments on the FloDial dataset show that synthetic dialogue produced by PlanSDG improves the performance of downstream tasks, including flowchart path retrieval and response generation, in particular on the Out-of-Flowchart settings. In addition, further analysis demonstrate the quality of synthetic data generated by PlanSDG in paths that are covered by current sample dialogues and paths that are not covered.
RESPER: Computationally Modelling Resisting Strategies in Persuasive Conversations
Modelling persuasion strategies as predictors of task outcome has several real-world applications and has received considerable attention from the computational linguistics community. However, previous research has failed to account for the resisting strategies employed by an individual to foil such persuasion attempts. Grounded in prior literature in cognitive and social psychology, we propose a generalised framework for identifying resisting strategies in persuasive conversations. We instantiate our framework on two distinct datasets comprising persuasion and negotiation conversations. We also leverage a hierarchical sequence-labelling neural architecture to infer the aforementioned resisting strategies automatically. Our experiments reveal the asymmetry of power roles in non-collaborative goal-directed conversations and the benefits accrued from incorporating resisting strategies on the final conversation outcome. We also investigate the role of different resisting strategies on the conversation outcome and glean insights that corroborate with past findings. We also make the code and the dataset of this work publicly available at https://github.com/americast/resper.
DialoGraph: Incorporating Interpretable Strategy-Graph Networks into Negotiation Dialogues
To successfully negotiate a deal, it is not enough to communicate fluently: pragmatic planning of persuasive negotiation strategies is essential. While modern dialogue agents excel at generating fluent sentences, they still lack pragmatic grounding and cannot reason strategically. We present DialoGraph, a negotiation system that incorporates pragmatic strategies in a negotiation dialogue using graph neural networks. DialoGraph explicitly incorporates dependencies between sequences of strategies to enable improved and interpretable prediction of next optimal strategies, given the dialogue context. Our graph-based method outperforms prior state-of-the-art negotiation models both in the accuracy of strategy/dialogue act prediction and in the quality of downstream dialogue response generation. We qualitatively show further benefits of learned strategy-graphs in providing explicit associations between effective negotiation strategies over the course of the dialogue, leading to interpretable and strategic dialogues.
T1: A Tool-Oriented Conversational Dataset for Multi-Turn Agentic Planning
Large Language Models (LLMs) have demonstrated impressive capabilities as intelligent agents capable of solving complex problems. However, effective planning in scenarios involving dependencies between API or tool calls-particularly in multi-turn conversations-remains a significant challenge. To address this, we introduce T1, a tool-augmented, multi-domain, multi-turn conversational dataset specifically designed to capture and manage inter-tool dependencies across diverse domains. T1 enables rigorous evaluation of agents' ability to coordinate tool use across nine distinct domains (4 single domain and 5 multi-domain) with the help of an integrated caching mechanism for both short- and long-term memory, while supporting dynamic replanning-such as deciding whether to recompute or reuse cached results. Beyond facilitating research on tool use and planning, T1 also serves as a benchmark for evaluating the performance of open-source language models. We present results powered by T1-Agent, highlighting their ability to plan and reason in complex, tool-dependent scenarios.
Interactive Natural Language Processing
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.
Task Conditioned BERT for Joint Intent Detection and Slot-filling
Dialogue systems need to deal with the unpredictability of user intents to track dialogue state and the heterogeneity of slots to understand user preferences. In this paper we investigate the hypothesis that solving these challenges as one unified model will allow the transfer of parameter support data across the different tasks. The proposed principled model is based on a Transformer encoder, trained on multiple tasks, and leveraged by a rich input that conditions the model on the target inferences. Conditioning the Transformer encoder on multiple target inferences over the same corpus, i.e., intent and multiple slot types, allows learning richer language interactions than a single-task model would be able to. In fact, experimental results demonstrate that conditioning the model on an increasing number of dialogue inference tasks leads to improved results: on the MultiWOZ dataset, the joint intent and slot detection can be improved by 3.2\% by conditioning on intent, 10.8\% by conditioning on slot and 14.4\% by conditioning on both intent and slots. Moreover, on real conversations with Farfetch costumers, the proposed conditioned BERT can achieve high joint-goal and intent detection performance throughout a dialogue.
AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios
Large language models (LLMs) are increasingly leveraged to empower autonomous agents to simulate human beings in various fields of behavioral research. However, evaluating their capacity to navigate complex social interactions remains a challenge. Previous studies face limitations due to insufficient scenario diversity, complexity, and a single-perspective focus. To this end, we introduce AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios. Drawing on Dramaturgical Theory, AgentSense employs a bottom-up approach to create 1,225 diverse social scenarios constructed from extensive scripts. We evaluate LLM-driven agents through multi-turn interactions, emphasizing both goal completion and implicit reasoning. We analyze goals using ERG theory and conduct comprehensive experiments. Our findings highlight that LLMs struggle with goals in complex social scenarios, especially high-level growth needs, and even GPT-4o requires improvement in private information reasoning. Code and data are available at https://github.com/ljcleo/agent_sense.
Dialogue Action Tokens: Steering Language Models in Goal-Directed Dialogue with a Multi-Turn Planner
We present an approach called Dialogue Action Tokens (DAT) that adapts language model agents to plan goal-directed dialogues. The core idea is to treat each utterance as an action, thereby converting dialogues into games where existing approaches such as reinforcement learning can be applied. Specifically, we freeze a pretrained language model and train a small planner model that predicts a continuous action vector, used for controlled generation in each round. This design avoids the problem of language degradation under reward optimization. When evaluated on the Sotopia platform for social simulations, the DAT-steered LLaMA model surpasses GPT-4's performance. We also apply DAT to steer an attacker language model in a novel multi-turn red-teaming setting, revealing a potential new attack surface.
Plan-on-Graph: Self-Correcting Adaptive Planning of Large Language Model on Knowledge Graphs
Large Language Models (LLMs) have shown remarkable reasoning capabilities on complex tasks, but they still suffer from out-of-date knowledge, hallucinations, and opaque decision-making. In contrast, Knowledge Graphs (KGs) can provide explicit and editable knowledge for LLMs to alleviate these issues. Existing paradigm of KG-augmented LLM manually predefines the breadth of exploration space and requires flawless navigation in KGs. However, this paradigm cannot adaptively explore reasoning paths in KGs based on the question semantics and self-correct erroneous reasoning paths, resulting in a bottleneck in efficiency and effect. To address these limitations, we propose a novel self-correcting adaptive planning paradigm for KG-augmented LLM named Plan-on-Graph (PoG), which first decomposes the question into several sub-objectives and then repeats the process of adaptively exploring reasoning paths, updating memory, and reflecting on the need to self-correct erroneous reasoning paths until arriving at the answer. Specifically, three important mechanisms of Guidance, Memory, and Reflection are designed to work together, to guarantee the adaptive breadth of self-correcting planning for graph reasoning. Finally, extensive experiments on three real-world datasets demonstrate the effectiveness and efficiency of PoG.
Personalizing Dialogue Agents: I have a dog, do you have pets too?
Chit-chat models are known to have several problems: they lack specificity, do not display a consistent personality and are often not very captivating. In this work we present the task of making chit-chat more engaging by conditioning on profile information. We collect data and train models to (i) condition on their given profile information; and (ii) information about the person they are talking to, resulting in improved dialogues, as measured by next utterance prediction. Since (ii) is initially unknown our model is trained to engage its partner with personal topics, and we show the resulting dialogue can be used to predict profile information about the interlocutors.
Tree-Planner: Efficient Close-loop Task Planning with Large Language Models
This paper studies close-loop task planning, which refers to the process of generating a sequence of skills (a plan) to accomplish a specific goal while adapting the plan based on real-time observations. Recently, prompting Large Language Models (LLMs) to generate actions iteratively has become a prevalent paradigm due to its superior performance and user-friendliness. However, this paradigm is plagued by two inefficiencies: high token consumption and redundant error correction, both of which hinder its scalability for large-scale testing and applications. To address these issues, we propose Tree-Planner, which reframes task planning with LLMs into three distinct phases: plan sampling, action tree construction, and grounded deciding. Tree-Planner starts by using an LLM to sample a set of potential plans before execution, followed by the aggregation of them to form an action tree. Finally, the LLM performs a top-down decision-making process on the tree, taking into account real-time environmental information. Experiments show that Tree-Planner achieves state-of-the-art performance while maintaining high efficiency. By decomposing LLM queries into a single plan-sampling call and multiple grounded-deciding calls, a considerable part of the prompt are less likely to be repeatedly consumed. As a result, token consumption is reduced by 92.2% compared to the previously best-performing model. Additionally, by enabling backtracking on the action tree as needed, the correction process becomes more flexible, leading to a 40.5% decrease in error corrections. Project page: https://tree-planner.github.io/
User Satisfaction Estimation with Sequential Dialogue Act Modeling in Goal-oriented Conversational Systems
User Satisfaction Estimation (USE) is an important yet challenging task in goal-oriented conversational systems. Whether the user is satisfied with the system largely depends on the fulfillment of the user's needs, which can be implicitly reflected by users' dialogue acts. However, existing studies often neglect the sequential transitions of dialogue act or rely heavily on annotated dialogue act labels when utilizing dialogue acts to facilitate USE. In this paper, we propose a novel framework, namely USDA, to incorporate the sequential dynamics of dialogue acts for predicting user satisfaction, by jointly learning User Satisfaction Estimation and Dialogue Act Recognition tasks. In specific, we first employ a Hierarchical Transformer to encode the whole dialogue context, with two task-adaptive pre-training strategies to be a second-phase in-domain pre-training for enhancing the dialogue modeling ability. In terms of the availability of dialogue act labels, we further develop two variants of USDA to capture the dialogue act information in either supervised or unsupervised manners. Finally, USDA leverages the sequential transitions of both content and act features in the dialogue to predict the user satisfaction. Experimental results on four benchmark goal-oriented dialogue datasets across different applications show that the proposed method substantially and consistently outperforms existing methods on USE, and validate the important role of dialogue act sequences in USE.
How do Large Language Models Navigate Conflicts between Honesty and Helpfulness?
In day-to-day communication, people often approximate the truth - for example, rounding the time or omitting details - in order to be maximally helpful to the listener. How do large language models (LLMs) handle such nuanced trade-offs? To address this question, we use psychological models and experiments designed to characterize human behavior to analyze LLMs. We test a range of LLMs and explore how optimization for human preferences or inference-time reasoning affects these trade-offs. We find that reinforcement learning from human feedback improves both honesty and helpfulness, while chain-of-thought prompting skews LLMs towards helpfulness over honesty. Finally, GPT-4 Turbo demonstrates human-like response patterns including sensitivity to the conversational framing and listener's decision context. Our findings reveal the conversational values internalized by LLMs and suggest that even these abstract values can, to a degree, be steered by zero-shot prompting.
Revealing the Barriers of Language Agents in Planning
Autonomous planning has been an ongoing pursuit since the inception of artificial intelligence. Based on curated problem solvers, early planning agents could deliver precise solutions for specific tasks but lacked generalization. The emergence of large language models (LLMs) and their powerful reasoning capabilities has reignited interest in autonomous planning by automatically generating reasonable solutions for given tasks. However, prior research and our experiments show that current language agents still lack human-level planning abilities. Even the state-of-the-art reasoning model, OpenAI o1, achieves only 15.6% on one of the complex real-world planning benchmarks. This highlights a critical question: What hinders language agents from achieving human-level planning? Although existing studies have highlighted weak performance in agent planning, the deeper underlying issues and the mechanisms and limitations of the strategies proposed to address them remain insufficiently understood. In this work, we apply the feature attribution study and identify two key factors that hinder agent planning: the limited role of constraints and the diminishing influence of questions. We also find that although current strategies help mitigate these challenges, they do not fully resolve them, indicating that agents still have a long way to go before reaching human-level intelligence.
Beyond ChatBots: ExploreLLM for Structured Thoughts and Personalized Model Responses
Large language model (LLM) powered chatbots are primarily text-based today, and impose a large interactional cognitive load, especially for exploratory or sensemaking tasks such as planning a trip or learning about a new city. Because the interaction is textual, users have little scaffolding in the way of structure, informational "scent", or ability to specify high-level preferences or goals. We introduce ExploreLLM that allows users to structure thoughts, help explore different options, navigate through the choices and recommendations, and to more easily steer models to generate more personalized responses. We conduct a user study and show that users find it helpful to use ExploreLLM for exploratory or planning tasks, because it provides a useful schema-like structure to the task, and guides users in planning. The study also suggests that users can more easily personalize responses with high-level preferences with ExploreLLM. Together, ExploreLLM points to a future where users interact with LLMs beyond the form of chatbots, and instead designed to support complex user tasks with a tighter integration between natural language and graphical user interfaces.
A Survey on Dialog Management: Recent Advances and Challenges
Dialog management (DM) is a crucial component in a task-oriented dialog system. Given the dialog history, DM predicts the dialog state and decides the next action that the dialog agent should take. Recently, dialog policy learning has been widely formulated as a Reinforcement Learning (RL) problem, and more works focus on the applicability of DM. In this paper, we survey recent advances and challenges within three critical topics for DM: (1) improving model scalability to facilitate dialog system modeling in new scenarios, (2) dealing with the data scarcity problem for dialog policy learning, and (3) enhancing the training efficiency to achieve better task-completion performance . We believe that this survey can shed a light on future research in dialog management.
MuTual: A Dataset for Multi-Turn Dialogue Reasoning
Non-task oriented dialogue systems have achieved great success in recent years due to largely accessible conversation data and the development of deep learning techniques. Given a context, current systems are able to yield a relevant and fluent response, but sometimes make logical mistakes because of weak reasoning capabilities. To facilitate the conversation reasoning research, we introduce MuTual, a novel dataset for Multi-Turn dialogue Reasoning, consisting of 8,860 manually annotated dialogues based on Chinese student English listening comprehension exams. Compared to previous benchmarks for non-task oriented dialogue systems, MuTual is much more challenging since it requires a model that can handle various reasoning problems. Empirical results show that state-of-the-art methods only reach 71%, which is far behind the human performance of 94%, indicating that there is ample room for improving reasoning ability. MuTual is available at https://github.com/Nealcly/MuTual.
Self-Explanation Prompting Improves Dialogue Understanding in Large Language Models
Task-oriented dialogue (TOD) systems facilitate users in executing various activities via multi-turn dialogues, but Large Language Models (LLMs) often struggle to comprehend these intricate contexts. In this study, we propose a novel "Self-Explanation" prompting strategy to enhance the comprehension abilities of LLMs in multi-turn dialogues. This task-agnostic approach requires the model to analyze each dialogue utterance before task execution, thereby improving performance across various dialogue-centric tasks. Experimental results from six benchmark datasets confirm that our method consistently outperforms other zero-shot prompts and matches or exceeds the efficacy of few-shot prompts, demonstrating its potential as a powerful tool in enhancing LLMs' comprehension in complex dialogue tasks.
Converse: A Tree-Based Modular Task-Oriented Dialogue System
Creating a system that can have meaningful conversations with humans to help accomplish tasks is one of the ultimate goals of Artificial Intelligence (AI). It has defined the meaning of AI since the beginning. A lot has been accomplished in this area recently, with voice assistant products entering our daily lives and chat bot systems becoming commonplace in customer service. At first glance there seems to be no shortage of options for dialogue systems. However, the frequently deployed dialogue systems today seem to all struggle with a critical weakness - they are hard to build and harder to maintain. At the core of the struggle is the need to script every single turn of interactions between the bot and the human user. This makes the dialogue systems more difficult to maintain as the tasks become more complex and more tasks are added to the system. In this paper, we propose Converse, a flexible tree-based modular task-oriented dialogue system. Converse uses an and-or tree structure to represent tasks and offers powerful multi-task dialogue management. Converse supports task dependency and task switching, which are unique features compared to other open-source dialogue frameworks. At the same time, Converse aims to make the bot building process easy and simple, for both professional and non-professional software developers. The code is available at https://github.com/salesforce/Converse.
We are what we repeatedly do: Inducing and deploying habitual schemas in persona-based responses
Many practical applications of dialogue technology require the generation of responses according to a particular developer-specified persona. While a variety of personas can be elicited from recent large language models, the opaqueness and unpredictability of these models make it desirable to be able to specify personas in an explicit form. In previous work, personas have typically been represented as sets of one-off pieces of self-knowledge that are retrieved by the dialogue system for use in generation. However, in realistic human conversations, personas are often revealed through story-like narratives that involve rich habitual knowledge -- knowledge about kinds of events that an agent often participates in (e.g., work activities, hobbies, sporting activities, favorite entertainments, etc.), including typical goals, sub-events, preconditions, and postconditions of those events. We capture such habitual knowledge using an explicit schema representation, and propose an approach to dialogue generation that retrieves relevant schemas to condition a large language model to generate persona-based responses. Furthermore, we demonstrate a method for bootstrapping the creation of such schemas by first generating generic passages from a set of simple facts, and then inducing schemas from the generated passages.
LLM Can be a Dangerous Persuader: Empirical Study of Persuasion Safety in Large Language Models
Recent advancements in Large Language Models (LLMs) have enabled them to approach human-level persuasion capabilities. However, such potential also raises concerns about the safety risks of LLM-driven persuasion, particularly their potential for unethical influence through manipulation, deception, exploitation of vulnerabilities, and many other harmful tactics. In this work, we present a systematic investigation of LLM persuasion safety through two critical aspects: (1) whether LLMs appropriately reject unethical persuasion tasks and avoid unethical strategies during execution, including cases where the initial persuasion goal appears ethically neutral, and (2) how influencing factors like personality traits and external pressures affect their behavior. To this end, we introduce PersuSafety, the first comprehensive framework for the assessment of persuasion safety which consists of three stages, i.e., persuasion scene creation, persuasive conversation simulation, and persuasion safety assessment. PersuSafety covers 6 diverse unethical persuasion topics and 15 common unethical strategies. Through extensive experiments across 8 widely used LLMs, we observe significant safety concerns in most LLMs, including failing to identify harmful persuasion tasks and leveraging various unethical persuasion strategies. Our study calls for more attention to improve safety alignment in progressive and goal-driven conversations such as persuasion.
Large Language Models Meet Open-World Intent Discovery and Recognition: An Evaluation of ChatGPT
The tasks of out-of-domain (OOD) intent discovery and generalized intent discovery (GID) aim to extend a closed intent classifier to open-world intent sets, which is crucial to task-oriented dialogue (TOD) systems. Previous methods address them by fine-tuning discriminative models. Recently, although some studies have been exploring the application of large language models (LLMs) represented by ChatGPT to various downstream tasks, it is still unclear for the ability of ChatGPT to discover and incrementally extent OOD intents. In this paper, we comprehensively evaluate ChatGPT on OOD intent discovery and GID, and then outline the strengths and weaknesses of ChatGPT. Overall, ChatGPT exhibits consistent advantages under zero-shot settings, but is still at a disadvantage compared to fine-tuned models. More deeply, through a series of analytical experiments, we summarize and discuss the challenges faced by LLMs including clustering, domain-specific understanding, and cross-domain in-context learning scenarios. Finally, we provide empirical guidance for future directions to address these challenges.
ConvAI3: Generating Clarifying Questions for Open-Domain Dialogue Systems (ClariQ)
This document presents a detailed description of the challenge on clarifying questions for dialogue systems (ClariQ). The challenge is organized as part of the Conversational AI challenge series (ConvAI3) at Search Oriented Conversational AI (SCAI) EMNLP workshop in 2020. The main aim of the conversational systems is to return an appropriate answer in response to the user requests. However, some user requests might be ambiguous. In IR settings such a situation is handled mainly thought the diversification of the search result page. It is however much more challenging in dialogue settings with limited bandwidth. Therefore, in this challenge, we provide a common evaluation framework to evaluate mixed-initiative conversations. Participants are asked to rank clarifying questions in an information-seeking conversations. The challenge is organized in two stages where in Stage 1 we evaluate the submissions in an offline setting and single-turn conversations. Top participants of Stage 1 get the chance to have their model tested by human annotators.
PerSHOP -- A Persian dataset for shopping dialogue systems modeling
Nowadays, dialogue systems are used in many fields of industry and research. There are successful instances of these systems, such as Apple Siri, Google Assistant, and IBM Watson. Task-oriented dialogue system is a category of these, that are used in specific tasks. They can perform tasks such as booking plane tickets or making restaurant reservations. Shopping is one of the most popular areas on these systems. The bot replaces the human salesperson and interacts with the customers by speaking. To train the models behind the scenes of these systems, annotated data is needed. In this paper, we developed a dataset of dialogues in the Persian language through crowd-sourcing. We annotated these dialogues to train a model. This dataset contains nearly 22k utterances in 15 different domains and 1061 dialogues. This is the largest Persian dataset in this field, which is provided freely so that future researchers can use it. Also, we proposed some baseline models for natural language understanding (NLU) tasks. These models perform two tasks for NLU: intent classification and entity extraction. The F-1 score metric obtained for intent classification is around 91% and for entity extraction is around 93%, which can be a baseline for future research.
Recent Advances in Deep Learning Based Dialogue Systems: A Systematic Survey
Dialogue systems are a popular natural language processing (NLP) task as it is promising in real-life applications. It is also a complicated task since many NLP tasks deserving study are involved. As a result, a multitude of novel works on this task are carried out, and most of them are deep learning based due to the outstanding performance. In this survey, we mainly focus on the deep learning based dialogue systems. We comprehensively review state-of-the-art research outcomes in dialogue systems and analyze them from two angles: model type and system type. Specifically, from the angle of model type, we discuss the principles, characteristics, and applications of different models that are widely used in dialogue systems. This will help researchers acquaint these models and see how they are applied in state-of-the-art frameworks, which is rather helpful when designing a new dialogue system. From the angle of system type, we discuss task-oriented and open-domain dialogue systems as two streams of research, providing insight into the hot topics related. Furthermore, we comprehensively review the evaluation methods and datasets for dialogue systems to pave the way for future research. Finally, some possible research trends are identified based on the recent research outcomes. To the best of our knowledge, this survey is the most comprehensive and up-to-date one at present for deep learning based dialogue systems, extensively covering the popular techniques. We speculate that this work is a good starting point for academics who are new to the dialogue systems or those who want to quickly grasp up-to-date techniques in this area.
SayCanPay: Heuristic Planning with Large Language Models using Learnable Domain Knowledge
Large Language Models (LLMs) have demonstrated impressive planning abilities due to their vast "world knowledge". Yet, obtaining plans that are both feasible (grounded in affordances) and cost-effective (in plan length), remains a challenge, despite recent progress. This contrasts with heuristic planning methods that employ domain knowledge (formalized in action models such as PDDL) and heuristic search to generate feasible, optimal plans. Inspired by this, we propose to combine the power of LLMs and heuristic planning by leveraging the world knowledge of LLMs and the principles of heuristic search. Our approach, SayCanPay, employs LLMs to generate actions (Say) guided by learnable domain knowledge, that evaluates actions' feasibility (Can) and long-term reward/payoff (Pay), and heuristic search to select the best sequence of actions. Our contributions are (1) a novel framing of the LLM planning problem in the context of heuristic planning, (2) integrating grounding and cost-effective elements into the generated plans, and (3) using heuristic search over actions. Our extensive evaluations show that our model surpasses other LLM planning approaches.
How Can Input Reformulation Improve Tool Usage Accuracy in a Complex Dynamic Environment? A Study on τ-bench
Recent advances in reasoning and planning capabilities of large language models (LLMs) have enabled their potential as autonomous agents capable of tool use in dynamic environments. However, in multi-turn conversational environments like tau-bench, these agents often struggle with consistent reasoning, adherence to domain-specific policies, and extracting correct information over a long horizon of tool-calls and conversation. To capture and mitigate these failures, we conduct a comprehensive manual analysis of the common errors occurring in the conversation trajectories. We then experiment with reformulations of inputs to the tool-calling agent for improvement in agent decision making. Finally, we propose the Input-Reformulation Multi-Agent (IRMA) framework, which automatically reformulates user queries augmented with relevant domain rules and tool suggestions for the tool-calling agent to focus on. The results show that IRMA significantly outperforms ReAct, Function Calling, and Self-Reflection by 16.1%, 12.7%, and 19.1%, respectively, in overall pass^5 scores. These findings highlight the superior reliability and consistency of IRMA compared to other methods in dynamic environments.
ChatGPT as your Personal Data Scientist
The rise of big data has amplified the need for efficient, user-friendly automated machine learning (AutoML) tools. However, the intricacy of understanding domain-specific data and defining prediction tasks necessitates human intervention making the process time-consuming while preventing full automation. Instead, envision an intelligent agent capable of assisting users in conducting AutoML tasks through intuitive, natural conversations without requiring in-depth knowledge of the underlying machine learning (ML) processes. This agent's key challenge is to accurately comprehend the user's prediction goals and, consequently, formulate precise ML tasks, adjust data sets and model parameters accordingly, and articulate results effectively. In this paper, we take a pioneering step towards this ambitious goal by introducing a ChatGPT-based conversational data-science framework to act as a "personal data scientist". Precisely, we utilize Large Language Models (ChatGPT) to build a natural interface between the users and the ML models (Scikit-Learn), which in turn, allows us to approach this ambitious problem with a realistic solution. Our model pivots around four dialogue states: Data Visualization, Task Formulation, Prediction Engineering, and Result Summary and Recommendation. Each state marks a unique conversation phase, impacting the overall user-system interaction. Multiple LLM instances, serving as "micro-agents", ensure a cohesive conversation flow, granting us granular control over the conversation's progression. In summary, we developed an end-to-end system that not only proves the viability of the novel concept of conversational data science but also underscores the potency of LLMs in solving complex tasks. Interestingly, its development spotlighted several critical weaknesses in the current LLMs (ChatGPT) and highlighted substantial opportunities for improvement.
C3KG: A Chinese Commonsense Conversation Knowledge Graph
Existing commonsense knowledge bases often organize tuples in an isolated manner, which is deficient for commonsense conversational models to plan the next steps. To fill the gap, we curate a large-scale multi-turn human-written conversation corpus, and create the first Chinese commonsense conversation knowledge graph which incorporates both social commonsense knowledge and dialog flow information. To show the potential of our graph, we develop a graph-conversation matching approach, and benchmark two graph-grounded conversational tasks.
Mixed-Session Conversation with Egocentric Memory
Recently introduced dialogue systems have demonstrated high usability. However, they still fall short of reflecting real-world conversation scenarios. Current dialogue systems exhibit an inability to replicate the dynamic, continuous, long-term interactions involving multiple partners. This shortfall arises because there have been limited efforts to account for both aspects of real-world dialogues: deeply layered interactions over the long-term dialogue and widely expanded conversation networks involving multiple participants. As the effort to incorporate these aspects combined, we introduce Mixed-Session Conversation, a dialogue system designed to construct conversations with various partners in a multi-session dialogue setup. We propose a new dataset called MiSC to implement this system. The dialogue episodes of MiSC consist of 6 consecutive sessions, with four speakers (one main speaker and three partners) appearing in each episode. Also, we propose a new dialogue model with a novel memory management mechanism, called Egocentric Memory Enhanced Mixed-Session Conversation Agent (EMMA). EMMA collects and retains memories from the main speaker's perspective during conversations with partners, enabling seamless continuity in subsequent interactions. Extensive human evaluations validate that the dialogues in MiSC demonstrate a seamless conversational flow, even when conversation partners change in each session. EMMA trained with MiSC is also evaluated to maintain high memorability without contradiction throughout the entire conversation.
Let's Negotiate! A Survey of Negotiation Dialogue Systems
Negotiation is one of the crucial abilities in human communication, and there has been a resurgent research interest in negotiation dialogue systems recently, which goal is to empower intelligent agents with such ability that can efficiently help humans resolve conflicts or reach beneficial agreements. Although there have been many explorations in negotiation dialogue systems, a systematic review of this task has to date remained notably absent. To this end, we aim to fill this gap by reviewing contemporary studies in the emerging field of negotiation dialogue systems, covering benchmarks, evaluations, and methodologies. Furthermore, we also discuss potential future directions, including multi-modal, multi-party, and cross-cultural negotiation scenarios. Our goal is to provide the community with a systematic overview of negotiation dialogue systems and to inspire future research.
Instruct Once, Chat Consistently in Multiple Rounds: An Efficient Tuning Framework for Dialogue
Tuning language models for dialogue generation has been a prevalent paradigm for building capable dialogue agents. Yet, traditional tuning narrowly views dialogue generation as resembling other language generation tasks, ignoring the role disparities between two speakers and the multi-round interactive process that dialogues ought to be. Such a manner often leads to unsatisfactory chat consistency for the built agent. In this work, we emphasize the interactive, communicative nature of dialogue and argue that it is more feasible to model the speaker roles of agent and user separately, enabling the agent to adhere to its role consistently. With this in mind, we propose an efficient Multi-round Interactive Dialogue Tuning (Midi-Tuning) framework. It models the agent and user individually with two adapters built upon large language models. The adapters make use of respective utterances round by round in alternating order and they are tuned via a round-level memory caching mechanism. Extensive experiments demonstrate that, our framework performs superior to traditional fine-tuning and harbors the tremendous potential for improving dialogue consistency.
LLM-Based Open-Domain Integrated Task and Knowledge Assistants with Programmable Policies
Programming LLM-based knowledge and task assistants that faithfully conform to developer-provided policies is challenging. These agents must retrieve and provide consistent, accurate, and relevant information to address user's queries and needs. Yet such agents generate unfounded responses ("hallucinate"). Traditional dialogue trees can only handle a limited number of conversation flows, making them inherently brittle. To this end, we present KITA - a programmable framework for creating task-oriented conversational agents that are designed to handle complex user interactions. Unlike LLMs, KITA provides reliable grounded responses, with controllable agent policies through its expressive specification, KITA Worksheet. In contrast to dialog trees, it is resilient to diverse user queries, helpful with knowledge sources, and offers ease of programming policies through its declarative paradigm. Through a real-user study involving 62 participants, we show that KITA beats the GPT-4 with function calling baseline by 26.1, 22.5, and 52.4 points on execution accuracy, dialogue act accuracy, and goal completion rate, respectively. We also release 22 real-user conversations with KITA manually corrected to ensure accuracy.
LEATHER: A Framework for Learning to Generate Human-like Text in Dialogue
Algorithms for text-generation in dialogue can be misguided. For example, in task-oriented settings, reinforcement learning that optimizes only task-success can lead to abysmal lexical diversity. We hypothesize this is due to poor theoretical understanding of the objectives in text-generation and their relation to the learning process (i.e., model training). To this end, we propose a new theoretical framework for learning to generate text in dialogue. Compared to existing theories of learning, our framework allows for analysis of the multi-faceted goals inherent to text-generation. We use our framework to develop theoretical guarantees for learners that adapt to unseen data. As an example, we apply our theory to study data-shift within a cooperative learning algorithm proposed for the GuessWhat?! visual dialogue game. From this insight, we propose a new algorithm, and empirically, we demonstrate our proposal improves both task-success and human-likeness of the generated text. Finally, we show statistics from our theory are empirically predictive of multiple qualities of the generated dialogue, suggesting our theory is useful for model-selection when human evaluations are not available.
SMILE: Single-turn to Multi-turn Inclusive Language Expansion via ChatGPT for Mental Health Support
There has been an increasing research interest in developing specialized dialogue systems that can offer mental health support. However, gathering large-scale and real-life multi-turn conversations for mental health support poses challenges due to the sensitivity of personal information, as well as the time and cost involved. To address these issues, we introduce the SMILE approach, an inclusive language expansion technique that employs ChatGPT to extend public single-turn dialogues into multi-turn ones. Our research first presents a preliminary exploratory study that validates the effectiveness of the SMILE approach. Furthermore, we conduct a comprehensive and systematic contrastive analysis of datasets generated with and without the SMILE approach, demonstrating that the SMILE method results in a large-scale, diverse, and close-to-real-life multi-turn mental health support conversation corpus, including dialog topics, lexical and semantic features. Finally, we use the collected corpus (SMILECHAT) to develop a more effective dialogue system that offers emotional support and constructive suggestions in multi-turn conversations for mental health support.
JARVIS: A Neuro-Symbolic Commonsense Reasoning Framework for Conversational Embodied Agents
Building a conversational embodied agent to execute real-life tasks has been a long-standing yet quite challenging research goal, as it requires effective human-agent communication, multi-modal understanding, long-range sequential decision making, etc. Traditional symbolic methods have scaling and generalization issues, while end-to-end deep learning models suffer from data scarcity and high task complexity, and are often hard to explain. To benefit from both worlds, we propose JARVIS, a neuro-symbolic commonsense reasoning framework for modular, generalizable, and interpretable conversational embodied agents. First, it acquires symbolic representations by prompting large language models (LLMs) for language understanding and sub-goal planning, and by constructing semantic maps from visual observations. Then the symbolic module reasons for sub-goal planning and action generation based on task- and action-level common sense. Extensive experiments on the TEACh dataset validate the efficacy and efficiency of our JARVIS framework, which achieves state-of-the-art (SOTA) results on all three dialog-based embodied tasks, including Execution from Dialog History (EDH), Trajectory from Dialog (TfD), and Two-Agent Task Completion (TATC) (e.g., our method boosts the unseen Success Rate on EDH from 6.1\% to 15.8\%). Moreover, we systematically analyze the essential factors that affect the task performance and also demonstrate the superiority of our method in few-shot settings. Our JARVIS model ranks first in the Alexa Prize SimBot Public Benchmark Challenge.
Language Models as Agent Models
Language models (LMs) are trained on collections of documents, written by individual human agents to achieve specific goals in an outside world. During training, LMs have access only to text of these documents, with no direct evidence of the internal states of the agents that produced them -- a fact often used to argue that LMs are incapable of modeling goal-directed aspects of human language production and comprehension. Can LMs trained on text learn anything at all about the relationship between language and use? I argue that LMs are models of intentional communication in a specific, narrow sense. When performing next word prediction given a textual context, an LM can infer and represent properties of an agent likely to have produced that context. These representations can in turn influence subsequent LM generation in the same way that agents' communicative intentions influence their language. I survey findings from the recent literature showing that -- even in today's non-robust and error-prone models -- LMs infer and use representations of fine-grained communicative intentions and more abstract beliefs and goals. Despite the limited nature of their training data, they can thus serve as building blocks for systems that communicate and act intentionally.
REAPER: Reasoning based Retrieval Planning for Complex RAG Systems
Complex dialog systems often use retrieved evidence to facilitate factual responses. Such RAG (Retrieval Augmented Generation) systems retrieve from massive heterogeneous data stores that are usually architected as multiple indexes or APIs instead of a single monolithic source. For a given query, relevant evidence needs to be retrieved from one or a small subset of possible retrieval sources. Complex queries can even require multi-step retrieval. For example, a conversational agent on a retail site answering customer questions about past orders will need to retrieve the appropriate customer order first and then the evidence relevant to the customer's question in the context of the ordered product. Most RAG Agents handle such Chain-of-Thought (CoT) tasks by interleaving reasoning and retrieval steps. However, each reasoning step directly adds to the latency of the system. For large models (>100B parameters) this latency cost is significant -- in the order of multiple seconds. Multi-agent systems may classify the query to a single Agent associated with a retrieval source, though this means that a (small) classification model dictates the performance of a large language model. In this work we present REAPER (REAsoning-based PlannER) - an LLM based planner to generate retrieval plans in conversational systems. We show significant gains in latency over Agent-based systems and are able to scale easily to new and unseen use cases as compared to classification-based planning. Though our method can be applied to any RAG system, we show our results in the context of Rufus -- Amazon's conversational shopping assistant.
Plansformer: Generating Symbolic Plans using Transformers
Large Language Models (LLMs) have been the subject of active research, significantly advancing the field of Natural Language Processing (NLP). From BERT to BLOOM, LLMs have surpassed state-of-the-art results in various natural language tasks such as question answering, summarization, and text generation. Many ongoing efforts focus on understanding LLMs' capabilities, including their knowledge of the world, syntax, and semantics. However, extending the textual prowess of LLMs to symbolic reasoning has been slow and predominantly focused on tackling problems related to the mathematical field. In this paper, we explore the use of LLMs for automated planning - a branch of AI concerned with the realization of action sequences (plans) to achieve a goal, typically executed by intelligent agents, autonomous robots, and unmanned vehicles. We introduce Plansformer; an LLM fine-tuned on planning problems and capable of generating plans with favorable behavior in terms of correctness and length with reduced knowledge-engineering efforts. We also demonstrate the adaptability of Plansformer in solving different planning domains with varying complexities, owing to the transfer learning abilities of LLMs. For one configuration of Plansformer, we achieve ~97% valid plans, out of which ~95% are optimal for Towers of Hanoi - a puzzle-solving domain.
S3-DST: Structured Open-Domain Dialogue Segmentation and State Tracking in the Era of LLMs
The traditional Dialogue State Tracking (DST) problem aims to track user preferences and intents in user-agent conversations. While sufficient for task-oriented dialogue systems supporting narrow domain applications, the advent of Large Language Model (LLM)-based chat systems has introduced many real-world intricacies in open-domain dialogues. These intricacies manifest in the form of increased complexity in contextual interactions, extended dialogue sessions encompassing a diverse array of topics, and more frequent contextual shifts. To handle these intricacies arising from evolving LLM-based chat systems, we propose joint dialogue segmentation and state tracking per segment in open-domain dialogue systems. Assuming a zero-shot setting appropriate to a true open-domain dialogue system, we propose S3-DST, a structured prompting technique that harnesses Pre-Analytical Recollection, a novel grounding mechanism we designed for improving long context tracking. To demonstrate the efficacy of our proposed approach in joint segmentation and state tracking, we evaluate S3-DST on a proprietary anonymized open-domain dialogue dataset, as well as publicly available DST and segmentation datasets. Across all datasets and settings, S3-DST consistently outperforms the state-of-the-art, demonstrating its potency and robustness the next generation of LLM-based chat systems.
Neuro-Symbolic Procedural Planning with Commonsense Prompting
Procedural planning aims to implement complex high-level goals by decomposition into sequential simpler low-level steps. Although procedural planning is a basic skill set for humans in daily life, it remains a challenge for large language models (LLMs) that lack a deep understanding of the cause-effect relations in procedures. Previous methods require manual exemplars to acquire procedural planning knowledge from LLMs in the zero-shot setting. However, such elicited pre-trained knowledge in LLMs induces spurious correlations between goals and steps, which impair the model generalization to unseen tasks. In contrast, this paper proposes a neuro-symbolic procedural PLANner (PLAN) that elicits procedural planning knowledge from the LLMs with commonsense-infused prompting. To mitigate spurious goal-step correlations, we use symbolic program executors on the latent procedural representations to formalize prompts from commonsense knowledge bases as a causal intervention toward the Structural Causal Model. Both automatic and human evaluations on WikiHow and RobotHow show the superiority of PLAN on procedural planning without further training or manual exemplars.
Inverse Reinforcement Learning with Natural Language Goals
Humans generally use natural language to communicate task requirements to each other. Ideally, natural language should also be usable for communicating goals to autonomous machines (e.g., robots) to minimize friction in task specification. However, understanding and mapping natural language goals to sequences of states and actions is challenging. Specifically, existing work along these lines has encountered difficulty in generalizing learned policies to new natural language goals and environments. In this paper, we propose a novel adversarial inverse reinforcement learning algorithm to learn a language-conditioned policy and reward function. To improve generalization of the learned policy and reward function, we use a variational goal generator to relabel trajectories and sample diverse goals during training. Our algorithm outperforms multiple baselines by a large margin on a vision-based natural language instruction following dataset (Room-2-Room), demonstrating a promising advance in enabling the use of natural language instructions in specifying agent goals.
Augmenting Autotelic Agents with Large Language Models
Humans learn to master open-ended repertoires of skills by imagining and practicing their own goals. This autotelic learning process, literally the pursuit of self-generated (auto) goals (telos), becomes more and more open-ended as the goals become more diverse, abstract and creative. The resulting exploration of the space of possible skills is supported by an inter-individual exploration: goal representations are culturally evolved and transmitted across individuals, in particular using language. Current artificial agents mostly rely on predefined goal representations corresponding to goal spaces that are either bounded (e.g. list of instructions), or unbounded (e.g. the space of possible visual inputs) but are rarely endowed with the ability to reshape their goal representations, to form new abstractions or to imagine creative goals. In this paper, we introduce a language model augmented autotelic agent (LMA3) that leverages a pretrained language model (LM) to support the representation, generation and learning of diverse, abstract, human-relevant goals. The LM is used as an imperfect model of human cultural transmission; an attempt to capture aspects of humans' common-sense, intuitive physics and overall interests. Specifically, it supports three key components of the autotelic architecture: 1)~a relabeler that describes the goals achieved in the agent's trajectories, 2)~a goal generator that suggests new high-level goals along with their decomposition into subgoals the agent already masters, and 3)~reward functions for each of these goals. Without relying on any hand-coded goal representations, reward functions or curriculum, we show that LMA3 agents learn to master a large diversity of skills in a task-agnostic text-based environment.
Multi-Party Chat: Conversational Agents in Group Settings with Humans and Models
Current dialogue research primarily studies pairwise (two-party) conversations, and does not address the everyday setting where more than two speakers converse together. In this work, we both collect and evaluate multi-party conversations to study this more general case. We use the LIGHT environment to construct grounded conversations, where each participant has an assigned character to role-play. We thus evaluate the ability of language models to act as one or more characters in such conversations. Models require two skills that pairwise-trained models appear to lack: (1) being able to decide when to talk; (2) producing coherent utterances grounded on multiple characters. We compare models trained on our new dataset to existing pairwise-trained dialogue models, as well as large language models with few-shot prompting. We find that our new dataset, MultiLIGHT, which we will publicly release, can help bring significant improvements in the group setting.
Goal-Oriented Multi-Task BERT-Based Dialogue State Tracker
Dialogue State Tracking (DST) is a core component of virtual assistants such as Alexa or Siri. To accomplish various tasks, these assistants need to support an increasing number of services and APIs. The Schema-Guided State Tracking track of the 8th Dialogue System Technology Challenge highlighted the DST problem for unseen services. The organizers introduced the Schema-Guided Dialogue (SGD) dataset with multi-domain conversations and released a zero-shot dialogue state tracking model. In this work, we propose a GOaL-Oriented Multi-task BERT-based dialogue state tracker (GOLOMB) inspired by architectures for reading comprehension question answering systems. The model "queries" dialogue history with descriptions of slots and services as well as possible values of slots. This allows to transfer slot values in multi-domain dialogues and have a capability to scale to unseen slot types. Our model achieves a joint goal accuracy of 53.97% on the SGD dataset, outperforming the baseline model.
Graph-enhanced Large Language Models in Asynchronous Plan Reasoning
Planning is a fundamental property of human intelligence. Reasoning about asynchronous plans is challenging since it requires sequential and parallel planning to optimize time costs. Can large language models (LLMs) succeed at this task? Here, we present the first large-scale study investigating this question. We find that a representative set of closed and open-source LLMs, including GPT-4 and LLaMA-2, behave poorly when not supplied with illustrations about the task-solving process in our benchmark AsyncHow. We propose a novel technique called Plan Like a Graph (PLaG) that combines graphs with natural language prompts and achieves state-of-the-art results. We show that although PLaG can boost model performance, LLMs still suffer from drastic degradation when task complexity increases, highlighting the limits of utilizing LLMs for simulating digital devices. We see our study as an exciting step towards using LLMs as efficient autonomous agents. Our code and data are available at https://github.com/fangru-lin/graph-llm-asynchow-plan.
RAP: Retrieval-Augmented Planning with Contextual Memory for Multimodal LLM Agents
Owing to recent advancements, Large Language Models (LLMs) can now be deployed as agents for increasingly complex decision-making applications in areas including robotics, gaming, and API integration. However, reflecting past experiences in current decision-making processes, an innate human behavior, continues to pose significant challenges. Addressing this, we propose Retrieval-Augmented Planning (RAP) framework, designed to dynamically leverage past experiences corresponding to the current situation and context, thereby enhancing agents' planning capabilities. RAP distinguishes itself by being versatile: it excels in both text-only and multimodal environments, making it suitable for a wide range of tasks. Empirical evaluations demonstrate RAP's effectiveness, where it achieves SOTA performance in textual scenarios and notably enhances multimodal LLM agents' performance for embodied tasks. These results highlight RAP's potential in advancing the functionality and applicability of LLM agents in complex, real-world applications.
Long-term Control for Dialogue Generation: Methods and Evaluation
Current approaches for controlling dialogue response generation are primarily focused on high-level attributes like style, sentiment, or topic. In this work, we focus on constrained long-term dialogue generation, which involves more fine-grained control and requires a given set of control words to appear in generated responses. This setting requires a model to not only consider the generation of these control words in the immediate context, but also produce utterances that will encourage the generation of the words at some time in the (possibly distant) future. We define the problem of constrained long-term control for dialogue generation, identify gaps in current methods for evaluation, and propose new metrics that better measure long-term control. We also propose a retrieval-augmented method that improves performance of long-term controlled generation via logit modification techniques. We show through experiments on three task-oriented dialogue datasets that our metrics better assess dialogue control relative to current alternatives and that our method outperforms state-of-the-art constrained generation baselines.
