new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 20

DynamiCtrl: Rethinking the Basic Structure and the Role of Text for High-quality Human Image Animation

With diffusion transformer (DiT) excelling in video generation, its use in specific tasks has drawn increasing attention. However, adapting DiT for pose-guided human image animation faces two core challenges: (a) existing U-Net-based pose control methods may be suboptimal for the DiT backbone; and (b) removing text guidance, as in previous approaches, often leads to semantic loss and model degradation. To address these issues, we propose DynamiCtrl, a novel framework for human animation in video DiT architecture. Specifically, we use a shared VAE encoder for human images and driving poses, unifying them into a common latent space, maintaining pose fidelity, and eliminating the need for an expert pose encoder during video denoising. To integrate pose control into the DiT backbone effectively, we propose a novel Pose-adaptive Layer Norm model. It injects normalized pose features into the denoising process via conditioning on visual tokens, enabling seamless and scalable pose control across DiT blocks. Furthermore, to overcome the shortcomings of text removal, we introduce the "Joint-text" paradigm, which preserves the role of text embeddings to provide global semantic context. Through full-attention blocks, image and pose features are aligned with text features, enhancing semantic consistency, leveraging pretrained knowledge, and enabling multi-level control. Experiments verify the superiority of DynamiCtrl on benchmark and self-collected data (e.g., achieving the best LPIPS of 0.166), demonstrating strong character control and high-quality synthesis. The project page is available at https://gulucaptain.github.io/DynamiCtrl/.

  • 8 authors
·
Mar 27

Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional Image Synthesis

Conditional generative models typically demand large annotated training sets to achieve high-quality synthesis. As a result, there has been significant interest in designing models that perform plug-and-play generation, i.e., to use a predefined or pretrained model, which is not explicitly trained on the generative task, to guide the generative process (e.g., using language). However, such guidance is typically useful only towards synthesizing high-level semantics rather than editing fine-grained details as in image-to-image translation tasks. To this end, and capitalizing on the powerful fine-grained generative control offered by the recent diffusion-based generative models, we introduce Steered Diffusion, a generalized framework for photorealistic zero-shot conditional image generation using a diffusion model trained for unconditional generation. The key idea is to steer the image generation of the diffusion model at inference time via designing a loss using a pre-trained inverse model that characterizes the conditional task. This loss modulates the sampling trajectory of the diffusion process. Our framework allows for easy incorporation of multiple conditions during inference. We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution. Our results demonstrate clear qualitative and quantitative improvements over state-of-the-art diffusion-based plug-and-play models while adding negligible additional computational cost.

  • 7 authors
·
Sep 29, 2023

WavThruVec: Latent speech representation as intermediate features for neural speech synthesis

Recent advances in neural text-to-speech research have been dominated by two-stage pipelines utilizing low-level intermediate speech representation such as mel-spectrograms. However, such predetermined features are fundamentally limited, because they do not allow to exploit the full potential of a data-driven approach through learning hidden representations. For this reason, several end-to-end methods have been proposed. However, such models are harder to train and require a large number of high-quality recordings with transcriptions. Here, we propose WavThruVec - a two-stage architecture that resolves the bottleneck by using high-dimensional Wav2Vec 2.0 embeddings as intermediate speech representation. Since these hidden activations provide high-level linguistic features, they are more robust to noise. That allows us to utilize annotated speech datasets of a lower quality to train the first-stage module. At the same time, the second-stage component can be trained on large-scale untranscribed audio corpora, as Wav2Vec 2.0 embeddings are already time-aligned. This results in an increased generalization capability to out-of-vocabulary words, as well as to a better generalization to unseen speakers. We show that the proposed model not only matches the quality of state-of-the-art neural models, but also presents useful properties enabling tasks like voice conversion or zero-shot synthesis.

  • 4 authors
·
Mar 31, 2022

DreamCreature: Crafting Photorealistic Virtual Creatures from Imagination

Recent text-to-image (T2I) generative models allow for high-quality synthesis following either text instructions or visual examples. Despite their capabilities, these models face limitations in creating new, detailed creatures within specific categories (e.g., virtual dog or bird species), which are valuable in digital asset creation and biodiversity analysis. To bridge this gap, we introduce a novel task, Virtual Creatures Generation: Given a set of unlabeled images of the target concepts (e.g., 200 bird species), we aim to train a T2I model capable of creating new, hybrid concepts within diverse backgrounds and contexts. We propose a new method called DreamCreature, which identifies and extracts the underlying sub-concepts (e.g., body parts of a specific species) in an unsupervised manner. The T2I thus adapts to generate novel concepts (e.g., new bird species) with faithful structures and photorealistic appearance by seamlessly and flexibly composing learned sub-concepts. To enhance sub-concept fidelity and disentanglement, we extend the textual inversion technique by incorporating an additional projector and tailored attention loss regularization. Extensive experiments on two fine-grained image benchmarks demonstrate the superiority of DreamCreature over prior methods in both qualitative and quantitative evaluation. Ultimately, the learned sub-concepts facilitate diverse creative applications, including innovative consumer product designs and nuanced property modifications.

  • 4 authors
·
Nov 26, 2023

AI-GenBench: A New Ongoing Benchmark for AI-Generated Image Detection

The rapid advancement of generative AI has revolutionized image creation, enabling high-quality synthesis from text prompts while raising critical challenges for media authenticity. We present Ai-GenBench, a novel benchmark designed to address the urgent need for robust detection of AI-generated images in real-world scenarios. Unlike existing solutions that evaluate models on static datasets, Ai-GenBench introduces a temporal evaluation framework where detection methods are incrementally trained on synthetic images, historically ordered by their generative models, to test their ability to generalize to new generative models, such as the transition from GANs to diffusion models. Our benchmark focuses on high-quality, diverse visual content and overcomes key limitations of current approaches, including arbitrary dataset splits, unfair comparisons, and excessive computational demands. Ai-GenBench provides a comprehensive dataset, a standardized evaluation protocol, and accessible tools for both researchers and non-experts (e.g., journalists, fact-checkers), ensuring reproducibility while maintaining practical training requirements. By establishing clear evaluation rules and controlled augmentation strategies, Ai-GenBench enables meaningful comparison of detection methods and scalable solutions. Code and data are publicly available to ensure reproducibility and to support the development of robust forensic detectors to keep pace with the rise of new synthetic generators.

  • 8 authors
·
Apr 29

Prompt-to-Prompt Image Editing with Cross Attention Control

Recent large-scale text-driven synthesis models have attracted much attention thanks to their remarkable capabilities of generating highly diverse images that follow given text prompts. Such text-based synthesis methods are particularly appealing to humans who are used to verbally describe their intent. Therefore, it is only natural to extend the text-driven image synthesis to text-driven image editing. Editing is challenging for these generative models, since an innate property of an editing technique is to preserve most of the original image, while in the text-based models, even a small modification of the text prompt often leads to a completely different outcome. State-of-the-art methods mitigate this by requiring the users to provide a spatial mask to localize the edit, hence, ignoring the original structure and content within the masked region. In this paper, we pursue an intuitive prompt-to-prompt editing framework, where the edits are controlled by text only. To this end, we analyze a text-conditioned model in depth and observe that the cross-attention layers are the key to controlling the relation between the spatial layout of the image to each word in the prompt. With this observation, we present several applications which monitor the image synthesis by editing the textual prompt only. This includes localized editing by replacing a word, global editing by adding a specification, and even delicately controlling the extent to which a word is reflected in the image. We present our results over diverse images and prompts, demonstrating high-quality synthesis and fidelity to the edited prompts.

  • 6 authors
·
Aug 2, 2022

Cocktail: Mixing Multi-Modality Controls for Text-Conditional Image Generation

Text-conditional diffusion models are able to generate high-fidelity images with diverse contents. However, linguistic representations frequently exhibit ambiguous descriptions of the envisioned objective imagery, requiring the incorporation of additional control signals to bolster the efficacy of text-guided diffusion models. In this work, we propose Cocktail, a pipeline to mix various modalities into one embedding, amalgamated with a generalized ControlNet (gControlNet), a controllable normalisation (ControlNorm), and a spatial guidance sampling method, to actualize multi-modal and spatially-refined control for text-conditional diffusion models. Specifically, we introduce a hyper-network gControlNet, dedicated to the alignment and infusion of the control signals from disparate modalities into the pre-trained diffusion model. gControlNet is capable of accepting flexible modality signals, encompassing the simultaneous reception of any combination of modality signals, or the supplementary fusion of multiple modality signals. The control signals are then fused and injected into the backbone model according to our proposed ControlNorm. Furthermore, our advanced spatial guidance sampling methodology proficiently incorporates the control signal into the designated region, thereby circumventing the manifestation of undesired objects within the generated image. We demonstrate the results of our method in controlling various modalities, proving high-quality synthesis and fidelity to multiple external signals.

  • 7 authors
·
Jun 1, 2023

WaveNeRF: Wavelet-based Generalizable Neural Radiance Fields

Neural Radiance Field (NeRF) has shown impressive performance in novel view synthesis via implicit scene representation. However, it usually suffers from poor scalability as requiring densely sampled images for each new scene. Several studies have attempted to mitigate this problem by integrating Multi-View Stereo (MVS) technique into NeRF while they still entail a cumbersome fine-tuning process for new scenes. Notably, the rendering quality will drop severely without this fine-tuning process and the errors mainly appear around the high-frequency features. In the light of this observation, we design WaveNeRF, which integrates wavelet frequency decomposition into MVS and NeRF to achieve generalizable yet high-quality synthesis without any per-scene optimization. To preserve high-frequency information when generating 3D feature volumes, WaveNeRF builds Multi-View Stereo in the Wavelet domain by integrating the discrete wavelet transform into the classical cascade MVS, which disentangles high-frequency information explicitly. With that, disentangled frequency features can be injected into classic NeRF via a novel hybrid neural renderer to yield faithful high-frequency details, and an intuitive frequency-guided sampling strategy can be designed to suppress artifacts around high-frequency regions. Extensive experiments over three widely studied benchmarks show that WaveNeRF achieves superior generalizable radiance field modeling when only given three images as input.

  • 8 authors
·
Aug 9, 2023

RAVE: A variational autoencoder for fast and high-quality neural audio synthesis

Deep generative models applied to audio have improved by a large margin the state-of-the-art in many speech and music related tasks. However, as raw waveform modelling remains an inherently difficult task, audio generative models are either computationally intensive, rely on low sampling rates, are complicated to control or restrict the nature of possible signals. Among those models, Variational AutoEncoders (VAE) give control over the generation by exposing latent variables, although they usually suffer from low synthesis quality. In this paper, we introduce a Realtime Audio Variational autoEncoder (RAVE) allowing both fast and high-quality audio waveform synthesis. We introduce a novel two-stage training procedure, namely representation learning and adversarial fine-tuning. We show that using a post-training analysis of the latent space allows a direct control between the reconstruction fidelity and the representation compactness. By leveraging a multi-band decomposition of the raw waveform, we show that our model is the first able to generate 48kHz audio signals, while simultaneously running 20 times faster than real-time on a standard laptop CPU. We evaluate synthesis quality using both quantitative and qualitative subjective experiments and show the superiority of our approach compared to existing models. Finally, we present applications of our model for timbre transfer and signal compression. All of our source code and audio examples are publicly available.

  • 2 authors
·
Nov 9, 2021

UDiffText: A Unified Framework for High-quality Text Synthesis in Arbitrary Images via Character-aware Diffusion Models

Text-to-Image (T2I) generation methods based on diffusion model have garnered significant attention in the last few years. Although these image synthesis methods produce visually appealing results, they frequently exhibit spelling errors when rendering text within the generated images. Such errors manifest as missing, incorrect or extraneous characters, thereby severely constraining the performance of text image generation based on diffusion models. To address the aforementioned issue, this paper proposes a novel approach for text image generation, utilizing a pre-trained diffusion model (i.e., Stable Diffusion [27]). Our approach involves the design and training of a light-weight character-level text encoder, which replaces the original CLIP encoder and provides more robust text embeddings as conditional guidance. Then, we fine-tune the diffusion model using a large-scale dataset, incorporating local attention control under the supervision of character-level segmentation maps. Finally, by employing an inference stage refinement process, we achieve a notably high sequence accuracy when synthesizing text in arbitrarily given images. Both qualitative and quantitative results demonstrate the superiority of our method to the state of the art. Furthermore, we showcase several potential applications of the proposed UDiffText, including text-centric image synthesis, scene text editing, etc. Code and model will be available at https://github.com/ZYM-PKU/UDiffText .

  • 2 authors
·
Dec 8, 2023

High-Resolution Image Synthesis with Latent Diffusion Models

By decomposing the image formation process into a sequential application of denoising autoencoders, diffusion models (DMs) achieve state-of-the-art synthesis results on image data and beyond. Additionally, their formulation allows for a guiding mechanism to control the image generation process without retraining. However, since these models typically operate directly in pixel space, optimization of powerful DMs often consumes hundreds of GPU days and inference is expensive due to sequential evaluations. To enable DM training on limited computational resources while retaining their quality and flexibility, we apply them in the latent space of powerful pretrained autoencoders. In contrast to previous work, training diffusion models on such a representation allows for the first time to reach a near-optimal point between complexity reduction and detail preservation, greatly boosting visual fidelity. By introducing cross-attention layers into the model architecture, we turn diffusion models into powerful and flexible generators for general conditioning inputs such as text or bounding boxes and high-resolution synthesis becomes possible in a convolutional manner. Our latent diffusion models (LDMs) achieve a new state of the art for image inpainting and highly competitive performance on various tasks, including unconditional image generation, semantic scene synthesis, and super-resolution, while significantly reducing computational requirements compared to pixel-based DMs. Code is available at https://github.com/CompVis/latent-diffusion .

  • 5 authors
·
Dec 20, 2021 3

Align your Latents: High-Resolution Video Synthesis with Latent Diffusion Models

Latent Diffusion Models (LDMs) enable high-quality image synthesis while avoiding excessive compute demands by training a diffusion model in a compressed lower-dimensional latent space. Here, we apply the LDM paradigm to high-resolution video generation, a particularly resource-intensive task. We first pre-train an LDM on images only; then, we turn the image generator into a video generator by introducing a temporal dimension to the latent space diffusion model and fine-tuning on encoded image sequences, i.e., videos. Similarly, we temporally align diffusion model upsamplers, turning them into temporally consistent video super resolution models. We focus on two relevant real-world applications: Simulation of in-the-wild driving data and creative content creation with text-to-video modeling. In particular, we validate our Video LDM on real driving videos of resolution 512 x 1024, achieving state-of-the-art performance. Furthermore, our approach can easily leverage off-the-shelf pre-trained image LDMs, as we only need to train a temporal alignment model in that case. Doing so, we turn the publicly available, state-of-the-art text-to-image LDM Stable Diffusion into an efficient and expressive text-to-video model with resolution up to 1280 x 2048. We show that the temporal layers trained in this way generalize to different fine-tuned text-to-image LDMs. Utilizing this property, we show the first results for personalized text-to-video generation, opening exciting directions for future content creation. Project page: https://research.nvidia.com/labs/toronto-ai/VideoLDM/

  • 7 authors
·
Apr 18, 2023

DCM: Dual-Expert Consistency Model for Efficient and High-Quality Video Generation

Diffusion Models have achieved remarkable results in video synthesis but require iterative denoising steps, leading to substantial computational overhead. Consistency Models have made significant progress in accelerating diffusion models. However, directly applying them to video diffusion models often results in severe degradation of temporal consistency and appearance details. In this paper, by analyzing the training dynamics of Consistency Models, we identify a key conflicting learning dynamics during the distillation process: there is a significant discrepancy in the optimization gradients and loss contributions across different timesteps. This discrepancy prevents the distilled student model from achieving an optimal state, leading to compromised temporal consistency and degraded appearance details. To address this issue, we propose a parameter-efficient Dual-Expert Consistency Model~(DCM), where a semantic expert focuses on learning semantic layout and motion, while a detail expert specializes in fine detail refinement. Furthermore, we introduce Temporal Coherence Loss to improve motion consistency for the semantic expert and apply GAN and Feature Matching Loss to enhance the synthesis quality of the detail expert.Our approach achieves state-of-the-art visual quality with significantly reduced sampling steps, demonstrating the effectiveness of expert specialization in video diffusion model distillation. Our code and models are available at https://github.com/Vchitect/DCM{https://github.com/Vchitect/DCM}.

  • 7 authors
·
Jun 3 2

Efficient View Synthesis with Neural Radiance Distribution Field

Recent work on Neural Radiance Fields (NeRF) has demonstrated significant advances in high-quality view synthesis. A major limitation of NeRF is its low rendering efficiency due to the need for multiple network forwardings to render a single pixel. Existing methods to improve NeRF either reduce the number of required samples or optimize the implementation to accelerate the network forwarding. Despite these efforts, the problem of multiple sampling persists due to the intrinsic representation of radiance fields. In contrast, Neural Light Fields (NeLF) reduce the computation cost of NeRF by querying only one single network forwarding per pixel. To achieve a close visual quality to NeRF, existing NeLF methods require significantly larger network capacities which limits their rendering efficiency in practice. In this work, we propose a new representation called Neural Radiance Distribution Field (NeRDF) that targets efficient view synthesis in real-time. Specifically, we use a small network similar to NeRF while preserving the rendering speed with a single network forwarding per pixel as in NeLF. The key is to model the radiance distribution along each ray with frequency basis and predict frequency weights using the network. Pixel values are then computed via volume rendering on radiance distributions. Experiments show that our proposed method offers a better trade-off among speed, quality, and network size than existing methods: we achieve a ~254x speed-up over NeRF with similar network size, with only a marginal performance decline. Our project page is at yushuang-wu.github.io/NeRDF.

  • 6 authors
·
Aug 21, 2023

A Strategic Coordination Framework of Small LLMs Matches Large LLMs in Data Synthesis

While data synthesis and distillation are promising strategies to enhance small language models, current approaches heavily rely on Large Language Models (LLMs), which suffer from high computational costs, environmental inefficiency, and potential biases inherited from monolithic architectures. In contrast, smaller LLMs are more accessible and sustainable, but their individual capabilities often fall short in generating high-quality, diverse, and reliable data. Inspired by collaborative human processes (e.g., peer review), we propose a multiple small LLMs involved framework, GRA, that aggregates specialized roles across small LLMs to iterative refinement and quality control typically achieved by a single large LLM. In this collaborative framework, multiple small LLMs assume distinct roles-Generator, Reviewer, and Adjudicator-to simulate a peer-review-inspired data synthesis pipeline. The Generator proposes initial data samples, the Reviewer critiques their quality and diversity, and the Adjudicator resolves conflicts to finalize the output. By decomposing the synthesis process into specialized sub-tasks, collaborative small LLMs can achieve data-level parity with large LLM-based distillation. Through experiments across multiple benchmarks, we demonstrate that GRA-produced data matches or exceeds the quality of single large LLM outputs, e.g., Qwen-2.5-72B-Instruct. Our results challenge the necessity of monolithic large models for high-quality data synthesis, advocating instead for strategic coordination of smaller agents. Our datasets, models, and code are publicly available at https://github.com/GX-XinGao/GRA.

  • 8 authors
·
Apr 11 2

PixArt-$α$: Fast Training of Diffusion Transformer for Photorealistic Text-to-Image Synthesis

The most advanced text-to-image (T2I) models require significant training costs (e.g., millions of GPU hours), seriously hindering the fundamental innovation for the AIGC community while increasing CO2 emissions. This paper introduces PIXART-alpha, a Transformer-based T2I diffusion model whose image generation quality is competitive with state-of-the-art image generators (e.g., Imagen, SDXL, and even Midjourney), reaching near-commercial application standards. Additionally, it supports high-resolution image synthesis up to 1024px resolution with low training cost, as shown in Figure 1 and 2. To achieve this goal, three core designs are proposed: (1) Training strategy decomposition: We devise three distinct training steps that separately optimize pixel dependency, text-image alignment, and image aesthetic quality; (2) Efficient T2I Transformer: We incorporate cross-attention modules into Diffusion Transformer (DiT) to inject text conditions and streamline the computation-intensive class-condition branch; (3) High-informative data: We emphasize the significance of concept density in text-image pairs and leverage a large Vision-Language model to auto-label dense pseudo-captions to assist text-image alignment learning. As a result, PIXART-alpha's training speed markedly surpasses existing large-scale T2I models, e.g., PIXART-alpha only takes 10.8% of Stable Diffusion v1.5's training time (675 vs. 6,250 A100 GPU days), saving nearly \300,000 (26,000 vs. \320,000) and reducing 90% CO2 emissions. Moreover, compared with a larger SOTA model, RAPHAEL, our training cost is merely 1%. Extensive experiments demonstrate that PIXART-\alpha excels in image quality, artistry, and semantic control. We hope PIXART-\alpha$ will provide new insights to the AIGC community and startups to accelerate building their own high-quality yet low-cost generative models from scratch.

  • 11 authors
·
Sep 30, 2023 11

CoMoSpeech: One-Step Speech and Singing Voice Synthesis via Consistency Model

Denoising diffusion probabilistic models (DDPMs) have shown promising performance for speech synthesis. However, a large number of iterative steps are required to achieve high sample quality, which restricts the inference speed. Maintaining sample quality while increasing sampling speed has become a challenging task. In this paper, we propose a "Co"nsistency "Mo"del-based "Speech" synthesis method, CoMoSpeech, which achieve speech synthesis through a single diffusion sampling step while achieving high audio quality. The consistency constraint is applied to distill a consistency model from a well-designed diffusion-based teacher model, which ultimately yields superior performances in the distilled CoMoSpeech. Our experiments show that by generating audio recordings by a single sampling step, the CoMoSpeech achieves an inference speed more than 150 times faster than real-time on a single NVIDIA A100 GPU, which is comparable to FastSpeech2, making diffusion-sampling based speech synthesis truly practical. Meanwhile, objective and subjective evaluations on text-to-speech and singing voice synthesis show that the proposed teacher models yield the best audio quality, and the one-step sampling based CoMoSpeech achieves the best inference speed with better or comparable audio quality to other conventional multi-step diffusion model baselines. Audio samples are available at https://comospeech.github.io/.

  • 6 authors
·
May 11, 2023

DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from Low-Dimensional Latents

Diffusion probabilistic models have been shown to generate state-of-the-art results on several competitive image synthesis benchmarks but lack a low-dimensional, interpretable latent space, and are slow at generation. On the other hand, standard Variational Autoencoders (VAEs) typically have access to a low-dimensional latent space but exhibit poor sample quality. We present DiffuseVAE, a novel generative framework that integrates VAE within a diffusion model framework, and leverage this to design novel conditional parameterizations for diffusion models. We show that the resulting model equips diffusion models with a low-dimensional VAE inferred latent code which can be used for downstream tasks like controllable synthesis. The proposed method also improves upon the speed vs quality tradeoff exhibited in standard unconditional DDPM/DDIM models (for instance, FID of 16.47 vs 34.36 using a standard DDIM on the CelebA-HQ-128 benchmark using T=10 reverse process steps) without having explicitly trained for such an objective. Furthermore, the proposed model exhibits synthesis quality comparable to state-of-the-art models on standard image synthesis benchmarks like CIFAR-10 and CelebA-64 while outperforming most existing VAE-based methods. Lastly, we show that the proposed method exhibits inherent generalization to different types of noise in the conditioning signal. For reproducibility, our source code is publicly available at https://github.com/kpandey008/DiffuseVAE.

  • 4 authors
·
Jan 2, 2022

DelightfulTTS: The Microsoft Speech Synthesis System for Blizzard Challenge 2021

This paper describes the Microsoft end-to-end neural text to speech (TTS) system: DelightfulTTS for Blizzard Challenge 2021. The goal of this challenge is to synthesize natural and high-quality speech from text, and we approach this goal in two perspectives: The first is to directly model and generate waveform in 48 kHz sampling rate, which brings higher perception quality than previous systems with 16 kHz or 24 kHz sampling rate; The second is to model the variation information in speech through a systematic design, which improves the prosody and naturalness. Specifically, for 48 kHz modeling, we predict 16 kHz mel-spectrogram in acoustic model, and propose a vocoder called HiFiNet to directly generate 48 kHz waveform from predicted 16 kHz mel-spectrogram, which can better trade off training efficiency, modelling stability and voice quality. We model variation information systematically from both explicit (speaker ID, language ID, pitch and duration) and implicit (utterance-level and phoneme-level prosody) perspectives: 1) For speaker and language ID, we use lookup embedding in training and inference; 2) For pitch and duration, we extract the values from paired text-speech data in training and use two predictors to predict the values in inference; 3) For utterance-level and phoneme-level prosody, we use two reference encoders to extract the values in training, and use two separate predictors to predict the values in inference. Additionally, we introduce an improved Conformer block to better model the local and global dependency in acoustic model. For task SH1, DelightfulTTS achieves 4.17 mean score in MOS test and 4.35 in SMOS test, which indicates the effectiveness of our proposed system

  • 9 authors
·
Oct 24, 2021

DetailFlow: 1D Coarse-to-Fine Autoregressive Image Generation via Next-Detail Prediction

This paper presents DetailFlow, a coarse-to-fine 1D autoregressive (AR) image generation method that models images through a novel next-detail prediction strategy. By learning a resolution-aware token sequence supervised with progressively degraded images, DetailFlow enables the generation process to start from the global structure and incrementally refine details. This coarse-to-fine 1D token sequence aligns well with the autoregressive inference mechanism, providing a more natural and efficient way for the AR model to generate complex visual content. Our compact 1D AR model achieves high-quality image synthesis with significantly fewer tokens than previous approaches, i.e. VAR/VQGAN. We further propose a parallel inference mechanism with self-correction that accelerates generation speed by approximately 8x while reducing accumulation sampling error inherent in teacher-forcing supervision. On the ImageNet 256x256 benchmark, our method achieves 2.96 gFID with 128 tokens, outperforming VAR (3.3 FID) and FlexVAR (3.05 FID), which both require 680 tokens in their AR models. Moreover, due to the significantly reduced token count and parallel inference mechanism, our method runs nearly 2x faster inference speed compared to VAR and FlexVAR. Extensive experimental results demonstrate DetailFlow's superior generation quality and efficiency compared to existing state-of-the-art methods.

  • 13 authors
·
May 27 2

QVGen: Pushing the Limit of Quantized Video Generative Models

Video diffusion models (DMs) have enabled high-quality video synthesis. Yet, their substantial computational and memory demands pose serious challenges to real-world deployment, even on high-end GPUs. As a commonly adopted solution, quantization has proven notable success in reducing cost for image DMs, while its direct application to video DMs remains ineffective. In this paper, we present QVGen, a novel quantization-aware training (QAT) framework tailored for high-performance and inference-efficient video DMs under extremely low-bit quantization (e.g., 4-bit or below). We begin with a theoretical analysis demonstrating that reducing the gradient norm is essential to facilitate convergence for QAT. To this end, we introduce auxiliary modules (Phi) to mitigate large quantization errors, leading to significantly enhanced convergence. To eliminate the inference overhead of Phi, we propose a rank-decay strategy that progressively eliminates Phi. Specifically, we repeatedly employ singular value decomposition (SVD) and a proposed rank-based regularization gamma to identify and decay low-contributing components. This strategy retains performance while zeroing out inference overhead. Extensive experiments across 4 state-of-the-art (SOTA) video DMs, with parameter sizes ranging from 1.3B sim14B, show that QVGen is the first to reach full-precision comparable quality under 4-bit settings. Moreover, it significantly outperforms existing methods. For instance, our 3-bit CogVideoX-2B achieves improvements of +25.28 in Dynamic Degree and +8.43 in Scene Consistency on VBench.

  • 7 authors
·
May 16 2

LinVideo: A Post-Training Framework towards O(n) Attention in Efficient Video Generation

Video diffusion models (DMs) have enabled high-quality video synthesis. However, their computation costs scale quadratically with sequence length because self-attention has quadratic complexity. While linear attention lowers the cost, fully replacing quadratic attention requires expensive pretraining due to the limited expressiveness of linear attention and the complexity of spatiotemporal modeling in video generation. In this paper, we present LinVideo, an efficient data-free post-training framework that replaces a target number of self-attention modules with linear attention while preserving the original model's performance. First, we observe a significant disparity in the replaceability of different layers. Instead of manual or heuristic choices, we frame layer selection as a binary classification problem and propose selective transfer, which automatically and progressively converts layers to linear attention with minimal performance impact. Additionally, to overcome the ineffectiveness and inefficiency of existing objectives for this transfer process, we introduce an anytime distribution matching (ADM) objective that aligns the distributions of samples across any timestep along the sampling trajectory. This objective is efficient and recovers model performance. Extensive experiments show that our method achieves a 1.25-2.00x speedup while preserving generation quality, and our 4-step distilled model further delivers a 15.92x latency reduction with minimal visual quality drop.

  • 5 authors
·
Oct 9

Temporal In-Context Fine-Tuning for Versatile Control of Video Diffusion Models

Recent advances in text-to-video diffusion models have enabled high-quality video synthesis, but controllable generation remains challenging, particularly under limited data and compute. Existing fine-tuning methods for conditional generation often rely on external encoders or architectural modifications, which demand large datasets and are typically restricted to spatially aligned conditioning, limiting flexibility and scalability. In this work, we introduce Temporal In-Context Fine-Tuning (TIC-FT), an efficient and versatile approach for adapting pretrained video diffusion models to diverse conditional generation tasks. Our key idea is to concatenate condition and target frames along the temporal axis and insert intermediate buffer frames with progressively increasing noise levels. These buffer frames enable smooth transitions, aligning the fine-tuning process with the pretrained model's temporal dynamics. TIC-FT requires no architectural changes and achieves strong performance with as few as 10-30 training samples. We validate our method across a range of tasks, including image-to-video and video-to-video generation, using large-scale base models such as CogVideoX-5B and Wan-14B. Extensive experiments show that TIC-FT outperforms existing baselines in both condition fidelity and visual quality, while remaining highly efficient in both training and inference. For additional results, visit https://kinam0252.github.io/TIC-FT/

  • 3 authors
·
Jun 1 3

STAR: Scale-wise Text-conditioned AutoRegressive image generation

We introduce STAR, a text-to-image model that employs a scale-wise auto-regressive paradigm. Unlike VAR, which is constrained to class-conditioned synthesis for images up to 256times256, STAR enables text-driven image generation up to 1024times1024 through three key designs. First, we introduce a pre-trained text encoder to extract and adopt representations for textual constraints, enhancing details and generalizability. Second, given the inherent structural correlation across different scales, we leverage 2D Rotary Positional Encoding (RoPE) and tweak it into a normalized version, ensuring consistent interpretation of relative positions across token maps and stabilizing the training process. Third, we observe that simultaneously sampling all tokens within a single scale can disrupt inter-token relationships, leading to structural instability, particularly in high-resolution generation. To address this, we propose a novel stable sampling method that incorporates causal relationships into the sampling process, ensuring both rich details and stable structures. Compared to previous diffusion models and auto-regressive models, STAR surpasses existing benchmarks in fidelity, text-image consistency, and aesthetic quality, requiring just 2.21s for 1024times1024 images on A100. This highlights the potential of auto-regressive methods in high-quality image synthesis, offering new directions for the text-to-image generation.

  • 8 authors
·
Jun 15, 2024

Triangle Splatting+: Differentiable Rendering with Opaque Triangles

Reconstructing 3D scenes and synthesizing novel views has seen rapid progress in recent years. Neural Radiance Fields demonstrated that continuous volumetric radiance fields can achieve high-quality image synthesis, but their long training and rendering times limit practicality. 3D Gaussian Splatting (3DGS) addressed these issues by representing scenes with millions of Gaussians, enabling real-time rendering and fast optimization. However, Gaussian primitives are not natively compatible with the mesh-based pipelines used in VR headsets, and real-time graphics applications. Existing solutions attempt to convert Gaussians into meshes through post-processing or two-stage pipelines, which increases complexity and degrades visual quality. In this work, we introduce Triangle Splatting+, which directly optimizes triangles, the fundamental primitive of computer graphics, within a differentiable splatting framework. We formulate triangle parametrization to enable connectivity through shared vertices, and we design a training strategy that enforces opaque triangles. The final output is immediately usable in standard graphics engines without post-processing. Experiments on the Mip-NeRF360 and Tanks & Temples datasets show that Triangle Splatting+achieves state-of-the-art performance in mesh-based novel view synthesis. Our method surpasses prior splatting approaches in visual fidelity while remaining efficient and fast to training. Moreover, the resulting semi-connected meshes support downstream applications such as physics-based simulation or interactive walkthroughs. The project page is https://trianglesplatting2.github.io/trianglesplatting2/.

  • 9 authors
·
Sep 29 2

FaceTalk: Audio-Driven Motion Diffusion for Neural Parametric Head Models

We introduce FaceTalk, a novel generative approach designed for synthesizing high-fidelity 3D motion sequences of talking human heads from input audio signal. To capture the expressive, detailed nature of human heads, including hair, ears, and finer-scale eye movements, we propose to couple speech signal with the latent space of neural parametric head models to create high-fidelity, temporally coherent motion sequences. We propose a new latent diffusion model for this task, operating in the expression space of neural parametric head models, to synthesize audio-driven realistic head sequences. In the absence of a dataset with corresponding NPHM expressions to audio, we optimize for these correspondences to produce a dataset of temporally-optimized NPHM expressions fit to audio-video recordings of people talking. To the best of our knowledge, this is the first work to propose a generative approach for realistic and high-quality motion synthesis of volumetric human heads, representing a significant advancement in the field of audio-driven 3D animation. Notably, our approach stands out in its ability to generate plausible motion sequences that can produce high-fidelity head animation coupled with the NPHM shape space. Our experimental results substantiate the effectiveness of FaceTalk, consistently achieving superior and visually natural motion, encompassing diverse facial expressions and styles, outperforming existing methods by 75% in perceptual user study evaluation.

  • 4 authors
·
Dec 13, 2023

StyleInV: A Temporal Style Modulated Inversion Network for Unconditional Video Generation

Unconditional video generation is a challenging task that involves synthesizing high-quality videos that are both coherent and of extended duration. To address this challenge, researchers have used pretrained StyleGAN image generators for high-quality frame synthesis and focused on motion generator design. The motion generator is trained in an autoregressive manner using heavy 3D convolutional discriminators to ensure motion coherence during video generation. In this paper, we introduce a novel motion generator design that uses a learning-based inversion network for GAN. The encoder in our method captures rich and smooth priors from encoding images to latents, and given the latent of an initially generated frame as guidance, our method can generate smooth future latent by modulating the inversion encoder temporally. Our method enjoys the advantage of sparse training and naturally constrains the generation space of our motion generator with the inversion network guided by the initial frame, eliminating the need for heavy discriminators. Moreover, our method supports style transfer with simple fine-tuning when the encoder is paired with a pretrained StyleGAN generator. Extensive experiments conducted on various benchmarks demonstrate the superiority of our method in generating long and high-resolution videos with decent single-frame quality and temporal consistency.

  • 3 authors
·
Aug 31, 2023

Query-Kontext: An Unified Multimodal Model for Image Generation and Editing

Unified Multimodal Models (UMMs) have demonstrated remarkable performance in text-to-image generation (T2I) and editing (TI2I), whether instantiated as assembled unified frameworks which couple powerful vision-language model (VLM) with diffusion-based generator, or as naive Unified Multimodal Models with an early fusion of understanding and generation modalities. We contend that in current unified frameworks, the crucial capability of multimodal generative reasoning which encompasses instruction understanding, grounding, and image referring for identity preservation and faithful reconstruction, is intrinsically entangled with high-fidelity synthesis. In this work, we introduce Query-Kontext, a novel approach that bridges the VLM and diffusion model via a multimodal ``kontext'' composed of semantic cues and coarse-grained image conditions encoded from multimodal inputs. This design delegates the complex ability of multimodal generative reasoning to powerful VLM while reserving diffusion model's role for high-quality visual synthesis. To achieve this, we propose a three-stage progressive training strategy. First, we connect the VLM to a lightweight diffusion head via multimodal kontext tokens to unleash the VLM's generative reasoning ability. Second, we scale this head to a large, pre-trained diffusion model to enhance visual detail and realism. Finally, we introduce a low-level image encoder to improve image fidelity and perform instruction tuning on downstream tasks. Furthermore, we build a comprehensive data pipeline integrating real, synthetic, and open-source datasets, covering diverse multimodal reference-to-image scenarios, including image generation, instruction-driven editing, customized generation, and multi-subject composition. Experiments show that our approach matches strong unified baselines and even outperforms task-specific state-of-the-art methods in several cases.

  • 11 authors
·
Sep 30

FlowAR: Scale-wise Autoregressive Image Generation Meets Flow Matching

Autoregressive (AR) modeling has achieved remarkable success in natural language processing by enabling models to generate text with coherence and contextual understanding through next token prediction. Recently, in image generation, VAR proposes scale-wise autoregressive modeling, which extends the next token prediction to the next scale prediction, preserving the 2D structure of images. However, VAR encounters two primary challenges: (1) its complex and rigid scale design limits generalization in next scale prediction, and (2) the generator's dependence on a discrete tokenizer with the same complex scale structure restricts modularity and flexibility in updating the tokenizer. To address these limitations, we introduce FlowAR, a general next scale prediction method featuring a streamlined scale design, where each subsequent scale is simply double the previous one. This eliminates the need for VAR's intricate multi-scale residual tokenizer and enables the use of any off-the-shelf Variational AutoEncoder (VAE). Our simplified design enhances generalization in next scale prediction and facilitates the integration of Flow Matching for high-quality image synthesis. We validate the effectiveness of FlowAR on the challenging ImageNet-256 benchmark, demonstrating superior generation performance compared to previous methods. Codes will be available at https://github.com/OliverRensu/FlowAR.

  • 6 authors
·
Dec 19, 2024

Measuring the Robustness of Audio Deepfake Detectors

Deepfakes have become a universal and rapidly intensifying concern of generative AI across various media types such as images, audio, and videos. Among these, audio deepfakes have been of particular concern due to the ease of high-quality voice synthesis and distribution via platforms such as social media and robocalls. Consequently, detecting audio deepfakes plays a critical role in combating the growing misuse of AI-synthesized speech. However, real-world scenarios often introduce various audio corruptions, such as noise, modification, and compression, that may significantly impact detection performance. This work systematically evaluates the robustness of 10 audio deepfake detection models against 16 common corruptions, categorized into noise perturbation, audio modification, and compression. Using both traditional deep learning models and state-of-the-art foundation models, we make four unique observations. First, our findings show that while most models demonstrate strong robustness to noise, they are notably more vulnerable to modifications and compression, especially when neural codecs are applied. Second, speech foundation models generally outperform traditional models across most scenarios, likely due to their self-supervised learning paradigm and large-scale pre-training. Third, our results show that increasing model size improves robustness, albeit with diminishing returns. Fourth, we demonstrate how targeted data augmentation during training can enhance model resilience to unseen perturbations. A case study on political speech deepfakes highlights the effectiveness of foundation models in achieving high accuracy under real-world conditions. These findings emphasize the importance of developing more robust detection frameworks to ensure reliability in practical deployment settings.

  • 3 authors
·
Mar 21

FireRedTTS: A Foundation Text-To-Speech Framework for Industry-Level Generative Speech Applications

This work proposes FireRedTTS, a foundation text-to-speech framework, to meet the growing demands for personalized and diverse generative speech applications. The framework comprises three parts: data processing, foundation system, and downstream applications. First, we comprehensively present our data processing pipeline, which transforms massive raw audio into a large-scale high-quality TTS dataset with rich annotations and a wide coverage of content, speaking style, and timbre. Then, we propose a language-model-based foundation TTS system. The speech signal is compressed into discrete semantic tokens via a semantic-aware speech tokenizer, and can be generated by a language model from the prompt text and audio. Then, a two-stage waveform generator is proposed to decode them to the high-fidelity waveform. We present two applications of this system: voice cloning for dubbing and human-like speech generation for chatbots. The experimental results demonstrate the solid in-context learning capability of FireRedTTS, which can stably synthesize high-quality speech consistent with the prompt text and audio. For dubbing, FireRedTTS can clone target voices in a zero-shot way for the UGC scenario and adapt to studio-level expressive voice characters in the PUGC scenario via few-shot fine-tuning with 1-hour recording. Moreover, FireRedTTS achieves controllable human-like speech generation in a casual style with paralinguistic behaviors and emotions via instruction tuning, to better serve spoken chatbots.

  • 7 authors
·
Sep 5, 2024 1

MLCM: Multistep Consistency Distillation of Latent Diffusion Model

Distilling large latent diffusion models (LDMs) into ones that are fast to sample from is attracting growing research interest. However, the majority of existing methods face a dilemma where they either (i) depend on multiple individual distilled models for different sampling budgets, or (ii) sacrifice generation quality with limited (e.g., 2-4) and/or moderate (e.g., 5-8) sampling steps. To address these, we extend the recent multistep consistency distillation (MCD) strategy to representative LDMs, establishing the Multistep Latent Consistency Models (MLCMs) approach for low-cost high-quality image synthesis. MLCM serves as a unified model for various sampling steps due to the promise of MCD. We further augment MCD with a progressive training strategy to strengthen inter-segment consistency to boost the quality of few-step generations. We take the states from the sampling trajectories of the teacher model as training data for MLCMs to lift the requirements for high-quality training datasets and to bridge the gap between the training and inference of the distilled model. MLCM is compatible with preference learning strategies for further improvement of visual quality and aesthetic appeal. Empirically, MLCM can generate high-quality, delightful images with only 2-8 sampling steps. On the MSCOCO-2017 5K benchmark, MLCM distilled from SDXL gets a CLIP Score of 33.30, Aesthetic Score of 6.19, and Image Reward of 1.20 with only 4 steps, substantially surpassing 4-step LCM [23], 8-step SDXL-Lightning [17], and 8-step HyperSD [33]. We also demonstrate the versatility of MLCMs in applications including controllable generation, image style transfer, and Chinese-to-image generation.

  • 6 authors
·
Jun 9, 2024

Splatfacto-W: A Nerfstudio Implementation of Gaussian Splatting for Unconstrained Photo Collections

Novel view synthesis from unconstrained in-the-wild image collections remains a significant yet challenging task due to photometric variations and transient occluders that complicate accurate scene reconstruction. Previous methods have approached these issues by integrating per-image appearance features embeddings in Neural Radiance Fields (NeRFs). Although 3D Gaussian Splatting (3DGS) offers faster training and real-time rendering, adapting it for unconstrained image collections is non-trivial due to the substantially different architecture. In this paper, we introduce Splatfacto-W, an approach that integrates per-Gaussian neural color features and per-image appearance embeddings into the rasterization process, along with a spherical harmonics-based background model to represent varying photometric appearances and better depict backgrounds. Our key contributions include latent appearance modeling, efficient transient object handling, and precise background modeling. Splatfacto-W delivers high-quality, real-time novel view synthesis with improved scene consistency in in-the-wild scenarios. Our method improves the Peak Signal-to-Noise Ratio (PSNR) by an average of 5.3 dB compared to 3DGS, enhances training speed by 150 times compared to NeRF-based methods, and achieves a similar rendering speed to 3DGS. Additional video results and code integrated into Nerfstudio are available at https://kevinxu02.github.io/splatfactow/.

  • 3 authors
·
Jul 17, 2024 2

UNIC-Adapter: Unified Image-instruction Adapter with Multi-modal Transformer for Image Generation

Recently, text-to-image generation models have achieved remarkable advancements, particularly with diffusion models facilitating high-quality image synthesis from textual descriptions. However, these models often struggle with achieving precise control over pixel-level layouts, object appearances, and global styles when using text prompts alone. To mitigate this issue, previous works introduce conditional images as auxiliary inputs for image generation, enhancing control but typically necessitating specialized models tailored to different types of reference inputs. In this paper, we explore a new approach to unify controllable generation within a single framework. Specifically, we propose the unified image-instruction adapter (UNIC-Adapter) built on the Multi-Modal-Diffusion Transformer architecture, to enable flexible and controllable generation across diverse conditions without the need for multiple specialized models. Our UNIC-Adapter effectively extracts multi-modal instruction information by incorporating both conditional images and task instructions, injecting this information into the image generation process through a cross-attention mechanism enhanced by Rotary Position Embedding. Experimental results across a variety of tasks, including pixel-level spatial control, subject-driven image generation, and style-image-based image synthesis, demonstrate the effectiveness of our UNIC-Adapter in unified controllable image generation.

  • 10 authors
·
Dec 25, 2024

HyperHuman: Hyper-Realistic Human Generation with Latent Structural Diffusion

Despite significant advances in large-scale text-to-image models, achieving hyper-realistic human image generation remains a desirable yet unsolved task. Existing models like Stable Diffusion and DALL-E 2 tend to generate human images with incoherent parts or unnatural poses. To tackle these challenges, our key insight is that human image is inherently structural over multiple granularities, from the coarse-level body skeleton to fine-grained spatial geometry. Therefore, capturing such correlations between the explicit appearance and latent structure in one model is essential to generate coherent and natural human images. To this end, we propose a unified framework, HyperHuman, that generates in-the-wild human images of high realism and diverse layouts. Specifically, 1) we first build a large-scale human-centric dataset, named HumanVerse, which consists of 340M images with comprehensive annotations like human pose, depth, and surface normal. 2) Next, we propose a Latent Structural Diffusion Model that simultaneously denoises the depth and surface normal along with the synthesized RGB image. Our model enforces the joint learning of image appearance, spatial relationship, and geometry in a unified network, where each branch in the model complements to each other with both structural awareness and textural richness. 3) Finally, to further boost the visual quality, we propose a Structure-Guided Refiner to compose the predicted conditions for more detailed generation of higher resolution. Extensive experiments demonstrate that our framework yields the state-of-the-art performance, generating hyper-realistic human images under diverse scenarios. Project Page: https://snap-research.github.io/HyperHuman/

  • 9 authors
·
Oct 12, 2023 1

Nexus-O: An Omni-Perceptive And -Interactive Model for Language, Audio, And Vision

Human beings perceive the real world through a spectrum of sensory modalities, encompassing auditory, visual, and linguistic faculties. The journey towards achieving Artificial General Intelligence (AGI) necessitates the development of models that can emulate these multifaceted perceptual capabilities and comprehensively understand these diversified data. To this end, we introduce Nexus-O, an industry-level omni-perceptive and -interactive model capable of efficiently processing Audio, Image, Video, and Text data in any combination and output audio/text in an end-to-end way. We systematically investigate Nexus-O by addressing three key research questions: First, how can models be efficiently designed and trained to achieve tri-modal alignment, understanding and reasoning capabilities across multiple modalities? Second, what approaches can be implemented to evaluate tri-modal model robustness, ensuring reliable performance and applicability in real-world scenarios? Third, what strategies can be employed to curate and obtain high-quality, real-life scenario speech datasets? For the first question, we design and pre-train Nexus-O based on the vision-language model, rather than the language model. By pre-training the model over high-quality synthetic audio data, our model is capable of tri-modal perception and interaction. For the second question, we introduce a new audio testbed, Nexus-O-audio, comprising diverse Automatic Speech Recognition (ASR) samples, spanning various real-world scenarios, such as corporate meetings and live stream. For the third question, we design the speech data synthesis pipeline to obtain high-quality speech training datasets, covering various real-world scenarios. Comprehensive experimentation and an in-depth analysis of tri-modal alignment over latent space demonstrate the advantages of our model on downstream tasks.

  • 19 authors
·
Feb 26

Mogao: An Omni Foundation Model for Interleaved Multi-Modal Generation

Recent progress in unified models for image understanding and generation has been impressive, yet most approaches remain limited to single-modal generation conditioned on multiple modalities. In this paper, we present Mogao, a unified framework that advances this paradigm by enabling interleaved multi-modal generation through a causal approach. Mogao integrates a set of key technical improvements in architecture design, including a deep-fusion design, dual vision encoders, interleaved rotary position embeddings, and multi-modal classifier-free guidance, which allow it to harness the strengths of both autoregressive models for text generation and diffusion models for high-quality image synthesis. These practical improvements also make Mogao particularly effective to process interleaved sequences of text and images arbitrarily. To further unlock the potential of unified models, we introduce an efficient training strategy on a large-scale, in-house dataset specifically curated for joint text and image generation. Extensive experiments show that Mogao not only achieves state-of-the-art performance in multi-modal understanding and text-to-image generation, but also excels in producing high-quality, coherent interleaved outputs. Its emergent capabilities in zero-shot image editing and compositional generation highlight Mogao as a practical omni-modal foundation model, paving the way for future development and scaling the unified multi-modal systems.

  • 10 authors
·
May 8

BinauralFlow: A Causal and Streamable Approach for High-Quality Binaural Speech Synthesis with Flow Matching Models

Binaural rendering aims to synthesize binaural audio that mimics natural hearing based on a mono audio and the locations of the speaker and listener. Although many methods have been proposed to solve this problem, they struggle with rendering quality and streamable inference. Synthesizing high-quality binaural audio that is indistinguishable from real-world recordings requires precise modeling of binaural cues, room reverb, and ambient sounds. Additionally, real-world applications demand streaming inference. To address these challenges, we propose a flow matching based streaming binaural speech synthesis framework called BinauralFlow. We consider binaural rendering to be a generation problem rather than a regression problem and design a conditional flow matching model to render high-quality audio. Moreover, we design a causal U-Net architecture that estimates the current audio frame solely based on past information to tailor generative models for streaming inference. Finally, we introduce a continuous inference pipeline incorporating streaming STFT/ISTFT operations, a buffer bank, a midpoint solver, and an early skip schedule to improve rendering continuity and speed. Quantitative and qualitative evaluations demonstrate the superiority of our method over SOTA approaches. A perceptual study further reveals that our model is nearly indistinguishable from real-world recordings, with a 42% confusion rate.

Turbo2K: Towards Ultra-Efficient and High-Quality 2K Video Synthesis

Demand for 2K video synthesis is rising with increasing consumer expectations for ultra-clear visuals. While diffusion transformers (DiTs) have demonstrated remarkable capabilities in high-quality video generation, scaling them to 2K resolution remains computationally prohibitive due to quadratic growth in memory and processing costs. In this work, we propose Turbo2K, an efficient and practical framework for generating detail-rich 2K videos while significantly improving training and inference efficiency. First, Turbo2K operates in a highly compressed latent space, reducing computational complexity and memory footprint, making high-resolution video synthesis feasible. However, the high compression ratio of the VAE and limited model size impose constraints on generative quality. To mitigate this, we introduce a knowledge distillation strategy that enables a smaller student model to inherit the generative capacity of a larger, more powerful teacher model. Our analysis reveals that, despite differences in latent spaces and architectures, DiTs exhibit structural similarities in their internal representations, facilitating effective knowledge transfer. Second, we design a hierarchical two-stage synthesis framework that first generates multi-level feature at lower resolutions before guiding high-resolution video generation. This approach ensures structural coherence and fine-grained detail refinement while eliminating redundant encoding-decoding overhead, further enhancing computational efficiency.Turbo2K achieves state-of-the-art efficiency, generating 5-second, 24fps, 2K videos with significantly reduced computational cost. Compared to existing methods, Turbo2K is up to 20times faster for inference, making high-resolution video generation more scalable and practical for real-world applications.

  • 12 authors
·
Apr 19

HyRF: Hybrid Radiance Fields for Memory-efficient and High-quality Novel View Synthesis

Recently, 3D Gaussian Splatting (3DGS) has emerged as a powerful alternative to NeRF-based approaches, enabling real-time, high-quality novel view synthesis through explicit, optimizable 3D Gaussians. However, 3DGS suffers from significant memory overhead due to its reliance on per-Gaussian parameters to model view-dependent effects and anisotropic shapes. While recent works propose compressing 3DGS with neural fields, these methods struggle to capture high-frequency spatial variations in Gaussian properties, leading to degraded reconstruction of fine details. We present Hybrid Radiance Fields (HyRF), a novel scene representation that combines the strengths of explicit Gaussians and neural fields. HyRF decomposes the scene into (1) a compact set of explicit Gaussians storing only critical high-frequency parameters and (2) grid-based neural fields that predict remaining properties. To enhance representational capacity, we introduce a decoupled neural field architecture, separately modeling geometry (scale, opacity, rotation) and view-dependent color. Additionally, we propose a hybrid rendering scheme that composites Gaussian splatting with a neural field-predicted background, addressing limitations in distant scene representation. Experiments demonstrate that HyRF achieves state-of-the-art rendering quality while reducing model size by over 20 times compared to 3DGS and maintaining real-time performance. Our project page is available at https://wzpscott.github.io/hyrf/.

  • 2 authors
·
Sep 21 2

Factorized-Dreamer: Training A High-Quality Video Generator with Limited and Low-Quality Data

Text-to-video (T2V) generation has gained significant attention due to its wide applications to video generation, editing, enhancement and translation, \etc. However, high-quality (HQ) video synthesis is extremely challenging because of the diverse and complex motions existed in real world. Most existing works struggle to address this problem by collecting large-scale HQ videos, which are inaccessible to the community. In this work, we show that publicly available limited and low-quality (LQ) data are sufficient to train a HQ video generator without recaptioning or finetuning. We factorize the whole T2V generation process into two steps: generating an image conditioned on a highly descriptive caption, and synthesizing the video conditioned on the generated image and a concise caption of motion details. Specifically, we present Factorized-Dreamer, a factorized spatiotemporal framework with several critical designs for T2V generation, including an adapter to combine text and image embeddings, a pixel-aware cross attention module to capture pixel-level image information, a T5 text encoder to better understand motion description, and a PredictNet to supervise optical flows. We further present a noise schedule, which plays a key role in ensuring the quality and stability of video generation. Our model lowers the requirements in detailed captions and HQ videos, and can be directly trained on limited LQ datasets with noisy and brief captions such as WebVid-10M, largely alleviating the cost to collect large-scale HQ video-text pairs. Extensive experiments in a variety of T2V and image-to-video generation tasks demonstrate the effectiveness of our proposed Factorized-Dreamer. Our source codes are available at https://github.com/yangxy/Factorized-Dreamer/.

  • 6 authors
·
Aug 19, 2024 3

ScaleDreamer: Scalable Text-to-3D Synthesis with Asynchronous Score Distillation

By leveraging the text-to-image diffusion priors, score distillation can synthesize 3D contents without paired text-3D training data. Instead of spending hours of online optimization per text prompt, recent studies have been focused on learning a text-to-3D generative network for amortizing multiple text-3D relations, which can synthesize 3D contents in seconds. However, existing score distillation methods are hard to scale up to a large amount of text prompts due to the difficulties in aligning pretrained diffusion prior with the distribution of rendered images from various text prompts. Current state-of-the-arts such as Variational Score Distillation finetune the pretrained diffusion model to minimize the noise prediction error so as to align the distributions, which are however unstable to train and will impair the model's comprehension capability to numerous text prompts. Based on the observation that the diffusion models tend to have lower noise prediction errors at earlier timesteps, we propose Asynchronous Score Distillation (ASD), which minimizes the noise prediction error by shifting the diffusion timestep to earlier ones. ASD is stable to train and can scale up to 100k prompts. It reduces the noise prediction error without changing the weights of pre-trained diffusion model, thus keeping its strong comprehension capability to prompts. We conduct extensive experiments across different 2D diffusion models, including Stable Diffusion and MVDream, and text-to-3D generators, including Hyper-iNGP, 3DConv-Net and Triplane-Transformer. The results demonstrate ASD's effectiveness in stable 3D generator training, high-quality 3D content synthesis, and its superior prompt-consistency, especially under large prompt corpus.

  • 6 authors
·
Jul 2, 2024

Recollection from Pensieve: Novel View Synthesis via Learning from Uncalibrated Videos

Currently almost all state-of-the-art novel view synthesis and reconstruction models rely on calibrated cameras or additional geometric priors for training. These prerequisites significantly limit their applicability to massive uncalibrated data. To alleviate this requirement and unlock the potential for self-supervised training on large-scale uncalibrated videos, we propose a novel two-stage strategy to train a view synthesis model from only raw video frames or multi-view images, without providing camera parameters or other priors. In the first stage, we learn to reconstruct the scene implicitly in a latent space without relying on any explicit 3D representation. Specifically, we predict per-frame latent camera and scene context features, and employ a view synthesis model as a proxy for explicit rendering. This pretraining stage substantially reduces the optimization complexity and encourages the network to learn the underlying 3D consistency in a self-supervised manner. The learned latent camera and implicit scene representation have a large gap compared with the real 3D world. To reduce this gap, we introduce the second stage training by explicitly predicting 3D Gaussian primitives. We additionally apply explicit Gaussian Splatting rendering loss and depth projection loss to align the learned latent representations with physically grounded 3D geometry. In this way, Stage 1 provides a strong initialization and Stage 2 enforces 3D consistency - the two stages are complementary and mutually beneficial. Extensive experiments demonstrate the effectiveness of our approach, achieving high-quality novel view synthesis and accurate camera pose estimation, compared to methods that employ supervision with calibration, pose, or depth information. The code is available at https://github.com/Dwawayu/Pensieve.

  • 3 authors
·
May 19

Controllable Multi-domain Semantic Artwork Synthesis

We present a novel framework for multi-domain synthesis of artwork from semantic layouts. One of the main limitations of this challenging task is the lack of publicly available segmentation datasets for art synthesis. To address this problem, we propose a dataset, which we call ArtSem, that contains 40,000 images of artwork from 4 different domains with their corresponding semantic label maps. We generate the dataset by first extracting semantic maps from landscape photography and then propose a conditional Generative Adversarial Network (GAN)-based approach to generate high-quality artwork from the semantic maps without necessitating paired training data. Furthermore, we propose an artwork synthesis model that uses domain-dependent variational encoders for high-quality multi-domain synthesis. The model is improved and complemented with a simple but effective normalization method, based on normalizing both the semantic and style jointly, which we call Spatially STyle-Adaptive Normalization (SSTAN). In contrast to previous methods that only take semantic layout as input, our model is able to learn a joint representation of both style and semantic information, which leads to better generation quality for synthesizing artistic images. Results indicate that our model learns to separate the domains in the latent space, and thus, by identifying the hyperplanes that separate the different domains, we can also perform fine-grained control of the synthesized artwork. By combining our proposed dataset and approach, we are able to generate user-controllable artwork that is of higher quality than existing

  • 4 authors
·
Aug 19, 2023

Urban Radiance Field Representation with Deformable Neural Mesh Primitives

Neural Radiance Fields (NeRFs) have achieved great success in the past few years. However, most current methods still require intensive resources due to ray marching-based rendering. To construct urban-level radiance fields efficiently, we design Deformable Neural Mesh Primitive~(DNMP), and propose to parameterize the entire scene with such primitives. The DNMP is a flexible and compact neural variant of classic mesh representation, which enjoys both the efficiency of rasterization-based rendering and the powerful neural representation capability for photo-realistic image synthesis. Specifically, a DNMP consists of a set of connected deformable mesh vertices with paired vertex features to parameterize the geometry and radiance information of a local area. To constrain the degree of freedom for optimization and lower the storage budgets, we enforce the shape of each primitive to be decoded from a relatively low-dimensional latent space. The rendering colors are decoded from the vertex features (interpolated with rasterization) by a view-dependent MLP. The DNMP provides a new paradigm for urban-level scene representation with appealing properties: (1) High-quality rendering. Our method achieves leading performance for novel view synthesis in urban scenarios. (2) Low computational costs. Our representation enables fast rendering (2.07ms/1k pixels) and low peak memory usage (110MB/1k pixels). We also present a lightweight version that can run 33times faster than vanilla NeRFs, and comparable to the highly-optimized Instant-NGP (0.61 vs 0.71ms/1k pixels). Project page: https://dnmp.github.io/{https://dnmp.github.io/}.

  • 6 authors
·
Jul 20, 2023

JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence

The scope of neural code intelligence is rapidly expanding beyond text-based source code to encompass the rich visual outputs that programs generate. This visual dimension is critical for advanced applications like flexible content generation and precise, program-driven editing of visualizations. However, progress has been impeded by the scarcity of high-quality multimodal code data, a bottleneck stemming from challenges in synthesis and quality assessment. To address these challenges, we make contributions from both a data and modeling perspective. We first introduce a complete synthesis toolkit that leverages reciprocal synergies between data modalities to efficiently produce a large-scale, high-quality corpus spanning from standard charts to complex interactive web UIs and code-driven animations. Leveraging this toolkit, we construct JanusCode-800K, the largest multimodal code corpus to date. This powers the training of our models, JanusCoder and JanusCoderV, which establish a visual-programmatic interface for generating code from textual instructions, visual inputs, or a combination of both. Our unified model is a departure from existing approaches that build specialized models for isolated tasks. Extensive experiments on both text-centric and vision-centric coding tasks demonstrate the superior performance of the JanusCoder series, with our 7B to 14B scale models approaching or even exceeding the performance of commercial models. Furthermore, extensive analysis provides key insights into harmonizing programmatic logic with its visual expression. Our code and checkpoints will are available at https://github.com/InternLM/JanusCoder.

Triangle Splatting for Real-Time Radiance Field Rendering

The field of computer graphics was revolutionized by models such as Neural Radiance Fields and 3D Gaussian Splatting, displacing triangles as the dominant representation for photogrammetry. In this paper, we argue for a triangle comeback. We develop a differentiable renderer that directly optimizes triangles via end-to-end gradients. We achieve this by rendering each triangle as differentiable splats, combining the efficiency of triangles with the adaptive density of representations based on independent primitives. Compared to popular 2D and 3D Gaussian Splatting methods, our approach achieves higher visual fidelity, faster convergence, and increased rendering throughput. On the Mip-NeRF360 dataset, our method outperforms concurrent non-volumetric primitives in visual fidelity and achieves higher perceptual quality than the state-of-the-art Zip-NeRF on indoor scenes. Triangles are simple, compatible with standard graphics stacks and GPU hardware, and highly efficient: for the Garden scene, we achieve over 2,400 FPS at 1280x720 resolution using an off-the-shelf mesh renderer. These results highlight the efficiency and effectiveness of triangle-based representations for high-quality novel view synthesis. Triangles bring us closer to mesh-based optimization by combining classical computer graphics with modern differentiable rendering frameworks. The project page is https://trianglesplatting.github.io/

  • 10 authors
·
May 25

DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation

Large text-to-image models achieved a remarkable leap in the evolution of AI, enabling high-quality and diverse synthesis of images from a given text prompt. However, these models lack the ability to mimic the appearance of subjects in a given reference set and synthesize novel renditions of them in different contexts. In this work, we present a new approach for "personalization" of text-to-image diffusion models (specializing them to users' needs). Given as input just a few images of a subject, we fine-tune a pretrained text-to-image model (Imagen, although our method is not limited to a specific model) such that it learns to bind a unique identifier with that specific subject. Once the subject is embedded in the output domain of the model, the unique identifier can then be used to synthesize fully-novel photorealistic images of the subject contextualized in different scenes. By leveraging the semantic prior embedded in the model with a new autogenous class-specific prior preservation loss, our technique enables synthesizing the subject in diverse scenes, poses, views, and lighting conditions that do not appear in the reference images. We apply our technique to several previously-unassailable tasks, including subject recontextualization, text-guided view synthesis, appearance modification, and artistic rendering (all while preserving the subject's key features). Project page: https://dreambooth.github.io/

  • 6 authors
·
Aug 25, 2022 12

CATSplat: Context-Aware Transformer with Spatial Guidance for Generalizable 3D Gaussian Splatting from A Single-View Image

Recently, generalizable feed-forward methods based on 3D Gaussian Splatting have gained significant attention for their potential to reconstruct 3D scenes using finite resources. These approaches create a 3D radiance field, parameterized by per-pixel 3D Gaussian primitives, from just a few images in a single forward pass. However, unlike multi-view methods that benefit from cross-view correspondences, 3D scene reconstruction with a single-view image remains an underexplored area. In this work, we introduce CATSplat, a novel generalizable transformer-based framework designed to break through the inherent constraints in monocular settings. First, we propose leveraging textual guidance from a visual-language model to complement insufficient information from a single image. By incorporating scene-specific contextual details from text embeddings through cross-attention, we pave the way for context-aware 3D scene reconstruction beyond relying solely on visual cues. Moreover, we advocate utilizing spatial guidance from 3D point features toward comprehensive geometric understanding under single-view settings. With 3D priors, image features can capture rich structural insights for predicting 3D Gaussians without multi-view techniques. Extensive experiments on large-scale datasets demonstrate the state-of-the-art performance of CATSplat in single-view 3D scene reconstruction with high-quality novel view synthesis.

  • 9 authors
·
Dec 17, 2024

A Picture is Worth a Thousand Words: Principled Recaptioning Improves Image Generation

Text-to-image diffusion models achieved a remarkable leap in capabilities over the last few years, enabling high-quality and diverse synthesis of images from a textual prompt. However, even the most advanced models often struggle to precisely follow all of the directions in their prompts. The vast majority of these models are trained on datasets consisting of (image, caption) pairs where the images often come from the web, and the captions are their HTML alternate text. A notable example is the LAION dataset, used by Stable Diffusion and other models. In this work we observe that these captions are often of low quality, and argue that this significantly affects the model's capability to understand nuanced semantics in the textual prompts. We show that by relabeling the corpus with a specialized automatic captioning model and training a text-to-image model on the recaptioned dataset, the model benefits substantially across the board. First, in overall image quality: e.g. FID 14.84 vs. the baseline of 17.87, and 64.3% improvement in faithful image generation according to human evaluation. Second, in semantic alignment, e.g. semantic object accuracy 84.34 vs. 78.90, counting alignment errors 1.32 vs. 1.44 and positional alignment 62.42 vs. 57.60. We analyze various ways to relabel the corpus and provide evidence that this technique, which we call RECAP, both reduces the train-inference discrepancy and provides the model with more information per example, increasing sample efficiency and allowing the model to better understand the relations between captions and images.

  • 5 authors
·
Oct 25, 2023 1

3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes

Recent advances in radiance field reconstruction, such as 3D Gaussian Splatting (3DGS), have achieved high-quality novel view synthesis and fast rendering by representing scenes with compositions of Gaussian primitives. However, 3D Gaussians present several limitations for scene reconstruction. Accurately capturing hard edges is challenging without significantly increasing the number of Gaussians, creating a large memory footprint. Moreover, they struggle to represent flat surfaces, as they are diffused in space. Without hand-crafted regularizers, they tend to disperse irregularly around the actual surface. To circumvent these issues, we introduce a novel method, named 3D Convex Splatting (3DCS), which leverages 3D smooth convexes as primitives for modeling geometrically-meaningful radiance fields from multi-view images. Smooth convex shapes offer greater flexibility than Gaussians, allowing for a better representation of 3D scenes with hard edges and dense volumes using fewer primitives. Powered by our efficient CUDA-based rasterizer, 3DCS achieves superior performance over 3DGS on benchmarks such as Mip-NeRF360, Tanks and Temples, and Deep Blending. Specifically, our method attains an improvement of up to 0.81 in PSNR and 0.026 in LPIPS compared to 3DGS while maintaining high rendering speeds and reducing the number of required primitives. Our results highlight the potential of 3D Convex Splatting to become the new standard for high-quality scene reconstruction and novel view synthesis. Project page: convexsplatting.github.io.

  • 9 authors
·
Nov 22, 2024 5

Expressive Talking Head Video Encoding in StyleGAN2 Latent-Space

While the recent advances in research on video reenactment have yielded promising results, the approaches fall short in capturing the fine, detailed, and expressive facial features (e.g., lip-pressing, mouth puckering, mouth gaping, and wrinkles) which are crucial in generating realistic animated face videos. To this end, we propose an end-to-end expressive face video encoding approach that facilitates data-efficient high-quality video re-synthesis by optimizing low-dimensional edits of a single Identity-latent. The approach builds on StyleGAN2 image inversion and multi-stage non-linear latent-space editing to generate videos that are nearly comparable to input videos. While existing StyleGAN latent-based editing techniques focus on simply generating plausible edits of static images, we automate the latent-space editing to capture the fine expressive facial deformations in a sequence of frames using an encoding that resides in the Style-latent-space (StyleSpace) of StyleGAN2. The encoding thus obtained could be super-imposed on a single Identity-latent to facilitate re-enactment of face videos at 1024^2. The proposed framework economically captures face identity, head-pose, and complex expressive facial motions at fine levels, and thereby bypasses training, person modeling, dependence on landmarks/ keypoints, and low-resolution synthesis which tend to hamper most re-enactment approaches. The approach is designed with maximum data efficiency, where a single W+ latent and 35 parameters per frame enable high-fidelity video rendering. This pipeline can also be used for puppeteering (i.e., motion transfer).

  • 2 authors
·
Mar 28, 2022

MD-Splatting: Learning Metric Deformation from 4D Gaussians in Highly Deformable Scenes

Accurate 3D tracking in highly deformable scenes with occlusions and shadows can facilitate new applications in robotics, augmented reality, and generative AI. However, tracking under these conditions is extremely challenging due to the ambiguity that arises with large deformations, shadows, and occlusions. We introduce MD-Splatting, an approach for simultaneous 3D tracking and novel view synthesis, using video captures of a dynamic scene from various camera poses. MD-Splatting builds on recent advances in Gaussian splatting, a method that learns the properties of a large number of Gaussians for state-of-the-art and fast novel view synthesis. MD-Splatting learns a deformation function to project a set of Gaussians with non-metric, thus canonical, properties into metric space. The deformation function uses a neural-voxel encoding and a multilayer perceptron (MLP) to infer Gaussian position, rotation, and a shadow scalar. We enforce physics-inspired regularization terms based on local rigidity, conservation of momentum, and isometry, which leads to trajectories with smaller trajectory errors. MD-Splatting achieves high-quality 3D tracking on highly deformable scenes with shadows and occlusions. Compared to state-of-the-art, we improve 3D tracking by an average of 23.9 %, while simultaneously achieving high-quality novel view synthesis. With sufficient texture such as in scene 6, MD-Splatting achieves a median tracking error of 3.39 mm on a cloth of 1 x 1 meters in size. Project website: https://md-splatting.github.io/.

  • 7 authors
·
Nov 30, 2023

Progressive Radiance Distillation for Inverse Rendering with Gaussian Splatting

We propose progressive radiance distillation, an inverse rendering method that combines physically-based rendering with Gaussian-based radiance field rendering using a distillation progress map. Taking multi-view images as input, our method starts from a pre-trained radiance field guidance, and distills physically-based light and material parameters from the radiance field using an image-fitting process. The distillation progress map is initialized to a small value, which favors radiance field rendering. During early iterations when fitted light and material parameters are far from convergence, the radiance field fallback ensures the sanity of image loss gradients and avoids local minima that attracts under-fit states. As fitted parameters converge, the physical model gradually takes over and the distillation progress increases correspondingly. In presence of light paths unmodeled by the physical model, the distillation progress never finishes on affected pixels and the learned radiance field stays in the final rendering. With this designed tolerance for physical model limitations, we prevent unmodeled color components from leaking into light and material parameters, alleviating relighting artifacts. Meanwhile, the remaining radiance field compensates for the limitations of the physical model, guaranteeing high-quality novel views synthesis. Experimental results demonstrate that our method significantly outperforms state-of-the-art techniques quality-wise in both novel view synthesis and relighting. The idea of progressive radiance distillation is not limited to Gaussian splatting. We show that it also has positive effects for prominently specular scenes when adapted to a mesh-based inverse rendering method.

  • 3 authors
·
Aug 14, 2024

I2VGen-XL: High-Quality Image-to-Video Synthesis via Cascaded Diffusion Models

Video synthesis has recently made remarkable strides benefiting from the rapid development of diffusion models. However, it still encounters challenges in terms of semantic accuracy, clarity and spatio-temporal continuity. They primarily arise from the scarcity of well-aligned text-video data and the complex inherent structure of videos, making it difficult for the model to simultaneously ensure semantic and qualitative excellence. In this report, we propose a cascaded I2VGen-XL approach that enhances model performance by decoupling these two factors and ensures the alignment of the input data by utilizing static images as a form of crucial guidance. I2VGen-XL consists of two stages: i) the base stage guarantees coherent semantics and preserves content from input images by using two hierarchical encoders, and ii) the refinement stage enhances the video's details by incorporating an additional brief text and improves the resolution to 1280times720. To improve the diversity, we collect around 35 million single-shot text-video pairs and 6 billion text-image pairs to optimize the model. By this means, I2VGen-XL can simultaneously enhance the semantic accuracy, continuity of details and clarity of generated videos. Through extensive experiments, we have investigated the underlying principles of I2VGen-XL and compared it with current top methods, which can demonstrate its effectiveness on diverse data. The source code and models will be publicly available at https://i2vgen-xl.github.io.

  • 9 authors
·
Nov 7, 2023 3

NaturalL2S: End-to-End High-quality Multispeaker Lip-to-Speech Synthesis with Differential Digital Signal Processing

Recent advancements in visual speech recognition (VSR) have promoted progress in lip-to-speech synthesis, where pre-trained VSR models enhance the intelligibility of synthesized speech by providing valuable semantic information. The success achieved by cascade frameworks, which combine pseudo-VSR with pseudo-text-to-speech (TTS) or implicitly utilize the transcribed text, highlights the benefits of leveraging VSR models. However, these methods typically rely on mel-spectrograms as an intermediate representation, which may introduce a key bottleneck: the domain gap between synthetic mel-spectrograms, generated from inherently error-prone lip-to-speech mappings, and real mel-spectrograms used to train vocoders. This mismatch inevitably degrades synthesis quality. To bridge this gap, we propose Natural Lip-to-Speech (NaturalL2S), an end-to-end framework integrating acoustic inductive biases with differentiable speech generation components. Specifically, we introduce a fundamental frequency (F0) predictor to capture prosodic variations in synthesized speech. The predicted F0 then drives a Differentiable Digital Signal Processing (DDSP) synthesizer to generate a coarse signal which serves as prior information for subsequent speech synthesis. Additionally, instead of relying on a reference speaker embedding as an auxiliary input, our approach achieves satisfactory performance on speaker similarity without explicitly modelling speaker characteristics. Both objective and subjective evaluation results demonstrate that NaturalL2S can effectively enhance the quality of the synthesized speech when compared to state-of-the-art methods. Our demonstration page is accessible at https://yifan-liang.github.io/NaturalL2S/.

  • 5 authors
·
Feb 17 1

StyleTTS-ZS: Efficient High-Quality Zero-Shot Text-to-Speech Synthesis with Distilled Time-Varying Style Diffusion

The rapid development of large-scale text-to-speech (TTS) models has led to significant advancements in modeling diverse speaker prosody and voices. However, these models often face issues such as slow inference speeds, reliance on complex pre-trained neural codec representations, and difficulties in achieving naturalness and high similarity to reference speakers. To address these challenges, this work introduces StyleTTS-ZS, an efficient zero-shot TTS model that leverages distilled time-varying style diffusion to capture diverse speaker identities and prosodies. We propose a novel approach that represents human speech using input text and fixed-length time-varying discrete style codes to capture diverse prosodic variations, trained adversarially with multi-modal discriminators. A diffusion model is then built to sample this time-varying style code for efficient latent diffusion. Using classifier-free guidance, StyleTTS-ZS achieves high similarity to the reference speaker in the style diffusion process. Furthermore, to expedite sampling, the style diffusion model is distilled with perceptual loss using only 10k samples, maintaining speech quality and similarity while reducing inference speed by 90%. Our model surpasses previous state-of-the-art large-scale zero-shot TTS models in both naturalness and similarity, offering a 10-20 faster sampling speed, making it an attractive alternative for efficient large-scale zero-shot TTS systems. The audio demo, code and models are available at https://styletts-zs.github.io/.

  • 4 authors
·
Sep 16, 2024 1

Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation

Ultra-high-resolution image synthesis holds significant potential, yet remains an underexplored challenge due to the absence of standardized benchmarks and computational constraints. In this paper, we establish Aesthetic-4K, a meticulously curated dataset containing dedicated training and evaluation subsets specifically designed for comprehensive research on ultra-high-resolution image synthesis. This dataset consists of high-quality 4K images accompanied by descriptive captions generated by GPT-4o. Furthermore, we propose Diffusion-4K, an innovative framework for the direct generation of ultra-high-resolution images. Our approach incorporates the Scale Consistent Variational Auto-Encoder (SC-VAE) and Wavelet-based Latent Fine-tuning (WLF), which are designed for efficient visual token compression and the capture of intricate details in ultra-high-resolution images, thereby facilitating direct training with photorealistic 4K data. This method is applicable to various latent diffusion models and demonstrates its efficacy in synthesizing highly detailed 4K images. Additionally, we propose novel metrics, namely the GLCM Score and Compression Ratio, to assess the texture richness and fine details in local patches, in conjunction with holistic measures such as FID, Aesthetics, and CLIPScore, enabling a thorough and multifaceted evaluation of ultra-high-resolution image synthesis. Consequently, Diffusion-4K achieves impressive performance in ultra-high-resolution image synthesis, particularly when powered by state-of-the-art large-scale diffusion models (eg, Flux-12B). The source code is publicly available at https://github.com/zhang0jhon/diffusion-4k.

  • 5 authors
·
Jun 2

RetinaLogos: Fine-Grained Synthesis of High-Resolution Retinal Images Through Captions

The scarcity of high-quality, labelled retinal imaging data, which presents a significant challenge in the development of machine learning models for ophthalmology, hinders progress in the field. Existing methods for synthesising Colour Fundus Photographs (CFPs) largely rely on predefined disease labels, which restricts their ability to generate images that reflect fine-grained anatomical variations, subtle disease stages, and diverse pathological features beyond coarse class categories. To overcome these challenges, we first introduce an innovative pipeline that creates a large-scale, captioned retinal dataset comprising 1.4 million entries, called RetinaLogos-1400k. Specifically, RetinaLogos-1400k uses the visual language model(VLM) to describe retinal conditions and key structures, such as optic disc configuration, vascular distribution, nerve fibre layers, and pathological features. Building on this dataset, we employ a novel three-step training framework, RetinaLogos, which enables fine-grained semantic control over retinal images and accurately captures different stages of disease progression, subtle anatomical variations, and specific lesion types. Through extensive experiments, our method demonstrates superior performance across multiple datasets, with 62.07% of text-driven synthetic CFPs indistinguishable from real ones by ophthalmologists. Moreover, the synthetic data improves accuracy by 5%-10% in diabetic retinopathy grading and glaucoma detection. Codes are available at https://github.com/uni-medical/retina-text2cfp.

LAVIE: High-Quality Video Generation with Cascaded Latent Diffusion Models

This work aims to learn a high-quality text-to-video (T2V) generative model by leveraging a pre-trained text-to-image (T2I) model as a basis. It is a highly desirable yet challenging task to simultaneously a) accomplish the synthesis of visually realistic and temporally coherent videos while b) preserving the strong creative generation nature of the pre-trained T2I model. To this end, we propose LaVie, an integrated video generation framework that operates on cascaded video latent diffusion models, comprising a base T2V model, a temporal interpolation model, and a video super-resolution model. Our key insights are two-fold: 1) We reveal that the incorporation of simple temporal self-attentions, coupled with rotary positional encoding, adequately captures the temporal correlations inherent in video data. 2) Additionally, we validate that the process of joint image-video fine-tuning plays a pivotal role in producing high-quality and creative outcomes. To enhance the performance of LaVie, we contribute a comprehensive and diverse video dataset named Vimeo25M, consisting of 25 million text-video pairs that prioritize quality, diversity, and aesthetic appeal. Extensive experiments demonstrate that LaVie achieves state-of-the-art performance both quantitatively and qualitatively. Furthermore, we showcase the versatility of pre-trained LaVie models in various long video generation and personalized video synthesis applications.

  • 20 authors
·
Sep 26, 2023 3

OmniSQL: Synthesizing High-quality Text-to-SQL Data at Scale

Text-to-SQL, the task of translating natural language questions into SQL queries, plays a crucial role in enabling non-experts to interact with databases. While recent advancements in large language models (LLMs) have significantly enhanced text-to-SQL performance, existing approaches face notable limitations in real-world text-to-SQL applications. Prompting-based methods often depend on closed-source LLMs, which are expensive, raise privacy concerns, and lack customization. Fine-tuning-based methods, on the other hand, suffer from poor generalizability due to the limited coverage of publicly available training data. To overcome these challenges, we propose a novel and scalable text-to-SQL data synthesis framework for automatically synthesizing large-scale, high-quality, and diverse datasets without extensive human intervention. Using this framework, we introduce SynSQL-2.5M, the first million-scale text-to-SQL dataset, containing 2.5 million samples spanning over 16,000 synthetic databases. Each sample includes a database, SQL query, natural language question, and chain-of-thought (CoT) solution. Leveraging SynSQL-2.5M, we develop OmniSQL, a powerful open-source text-to-SQL model available in three sizes: 7B, 14B, and 32B. Extensive evaluations across nine datasets demonstrate that OmniSQL achieves state-of-the-art performance, matching or surpassing leading closed-source and open-source LLMs, including GPT-4o and DeepSeek-V3, despite its smaller size. We release all code, datasets, and models to support further research.

Turbo-GS: Accelerating 3D Gaussian Fitting for High-Quality Radiance Fields

Novel-view synthesis is an important problem in computer vision with applications in 3D reconstruction, mixed reality, and robotics. Recent methods like 3D Gaussian Splatting (3DGS) have become the preferred method for this task, providing high-quality novel views in real time. However, the training time of a 3DGS model is slow, often taking 30 minutes for a scene with 200 views. In contrast, our goal is to reduce the optimization time by training for fewer steps while maintaining high rendering quality. Specifically, we combine the guidance from both the position error and the appearance error to achieve a more effective densification. To balance the rate between adding new Gaussians and fitting old Gaussians, we develop a convergence-aware budget control mechanism. Moreover, to make the densification process more reliable, we selectively add new Gaussians from mostly visited regions. With these designs, we reduce the Gaussian optimization steps to one-third of the previous approach while achieving a comparable or even better novel view rendering quality. To further facilitate the rapid fitting of 4K resolution images, we introduce a dilation-based rendering technique. Our method, Turbo-GS, speeds up optimization for typical scenes and scales well to high-resolution (4K) scenarios on standard datasets. Through extensive experiments, we show that our method is significantly faster in optimization than other methods while retaining quality. Project page: https://ivl.cs.brown.edu/research/turbo-gs.

  • 8 authors
·
Dec 18, 2024

TripoSG: High-Fidelity 3D Shape Synthesis using Large-Scale Rectified Flow Models

Recent advancements in diffusion techniques have propelled image and video generation to unprece- dented levels of quality, significantly accelerating the deployment and application of generative AI. However, 3D shape generation technology has so far lagged behind, constrained by limitations in 3D data scale, complexity of 3D data process- ing, and insufficient exploration of advanced tech- niques in the 3D domain. Current approaches to 3D shape generation face substantial challenges in terms of output quality, generalization capa- bility, and alignment with input conditions. We present TripoSG, a new streamlined shape diffu- sion paradigm capable of generating high-fidelity 3D meshes with precise correspondence to input images. Specifically, we propose: 1) A large-scale rectified flow transformer for 3D shape generation, achieving state-of-the-art fidelity through training on extensive, high-quality data. 2) A hybrid supervised training strategy combining SDF, normal, and eikonal losses for 3D VAE, achieving high- quality 3D reconstruction performance. 3) A data processing pipeline to generate 2 million high- quality 3D samples, highlighting the crucial rules for data quality and quantity in training 3D gen- erative models. Through comprehensive experi- ments, we have validated the effectiveness of each component in our new framework. The seamless integration of these parts has enabled TripoSG to achieve state-of-the-art performance in 3D shape generation. The resulting 3D shapes exhibit en- hanced detail due to high-resolution capabilities and demonstrate exceptional fidelity to input im- ages. Moreover, TripoSG demonstrates improved versatility in generating 3D models from diverse image styles and contents, showcasing strong gen- eralization capabilities. To foster progress and innovation in the field of 3D generation, we will make our model publicly available.

  • 11 authors
·
Feb 10 4

Taming 3DGS: High-Quality Radiance Fields with Limited Resources

3D Gaussian Splatting (3DGS) has transformed novel-view synthesis with its fast, interpretable, and high-fidelity rendering. However, its resource requirements limit its usability. Especially on constrained devices, training performance degrades quickly and often cannot complete due to excessive memory consumption of the model. The method converges with an indefinite number of Gaussians -- many of them redundant -- making rendering unnecessarily slow and preventing its usage in downstream tasks that expect fixed-size inputs. To address these issues, we tackle the challenges of training and rendering 3DGS models on a budget. We use a guided, purely constructive densification process that steers densification toward Gaussians that raise the reconstruction quality. Model size continuously increases in a controlled manner towards an exact budget, using score-based densification of Gaussians with training-time priors that measure their contribution. We further address training speed obstacles: following a careful analysis of 3DGS' original pipeline, we derive faster, numerically equivalent solutions for gradient computation and attribute updates, including an alternative parallelization for efficient backpropagation. We also propose quality-preserving approximations where suitable to reduce training time even further. Taken together, these enhancements yield a robust, scalable solution with reduced training times, lower compute and memory requirements, and high quality. Our evaluation shows that in a budgeted setting, we obtain competitive quality metrics with 3DGS while achieving a 4--5x reduction in both model size and training time. With more generous budgets, our measured quality surpasses theirs. These advances open the door for novel-view synthesis in constrained environments, e.g., mobile devices.

  • 6 authors
·
Jun 21, 2024

mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data

Multimodal embedding models have gained significant attention for their ability to map data from different modalities, such as text and images, into a unified representation space. However, the limited labeled multimodal data often hinders embedding performance. Recent approaches have leveraged data synthesis to address this problem, yet the quality of synthetic data remains a critical bottleneck. In this work, we identify three criteria for high-quality synthetic multimodal data. First, broad scope ensures that the generated data covers diverse tasks and modalities, making it applicable to various downstream scenarios. Second, robust cross-modal alignment makes different modalities semantically consistent. Third, high fidelity ensures that the synthetic data maintains realistic details to enhance its reliability. Guided by these principles, we synthesize datasets that: (1) cover a wide range of tasks, modality combinations, and languages, (2) are generated via a deep thinking process within a single pass of a multimodal large language model, and (3) incorporate real-world images with accurate and relevant texts, ensuring fidelity through self-evaluation and refinement. Leveraging these high-quality synthetic and labeled datasets, we train a multimodal multilingual E5 model mmE5. Extensive experiments demonstrate that mmE5 achieves state-of-the-art performance on the MMEB Benchmark and superior multilingual performance on the XTD benchmark. Our codes, datasets and models are released in https://github.com/haon-chen/mmE5.

  • 7 authors
·
Feb 12 2

High-resolution Rainy Image Synthesis: Learning from Rendering

Currently, there are few effective methods for synthesizing a mass of high-resolution rainy images in complex illumination conditions. However, these methods are essential for synthesizing large-scale high-quality paired rainy-clean image datasets, which can train deep learning-based single image rain removal models capable of generalizing to various illumination conditions. Therefore, we propose a practical two-stage learning-from-rendering pipeline for high-resolution rainy image synthesis. The pipeline combines the benefits of the realism of rendering-based methods and the high-efficiency of learning-based methods, providing the possibility of creating large-scale high-quality paired rainy-clean image datasets. In the rendering stage, we use a rendering-based method to create a High-resolution Rainy Image (HRI) dataset, which contains realistic high-resolution paired rainy-clean images of multiple scenes and various illumination conditions. In the learning stage, to learn illumination information from background images for high-resolution rainy image generation, we propose a High-resolution Rainy Image Generation Network (HRIGNet). HRIGNet is designed to introduce a guiding diffusion model in the Latent Diffusion Model, which provides additional guidance information for high-resolution image synthesis. In our experiments, HRIGNet is able to synthesize high-resolution rainy images up to 2048x1024 resolution. Rain removal experiments on real dataset validate that our method can help improve the robustness of deep derainers to real rainy images. To make our work reproducible, source codes and the dataset have been released at https://kb824999404.github.io/HRIG/.

  • 4 authors
·
Feb 22

TexGaussian: Generating High-quality PBR Material via Octree-based 3D Gaussian Splatting

Physically Based Rendering (PBR) materials play a crucial role in modern graphics, enabling photorealistic rendering across diverse environment maps. Developing an effective and efficient algorithm that is capable of automatically generating high-quality PBR materials rather than RGB texture for 3D meshes can significantly streamline the 3D content creation. Most existing methods leverage pre-trained 2D diffusion models for multi-view image synthesis, which often leads to severe inconsistency between the generated textures and input 3D meshes. This paper presents TexGaussian, a novel method that uses octant-aligned 3D Gaussian Splatting for rapid PBR material generation. Specifically, we place each 3D Gaussian on the finest leaf node of the octree built from the input 3D mesh to render the multi-view images not only for the albedo map but also for roughness and metallic. Moreover, our model is trained in a regression manner instead of diffusion denoising, capable of generating the PBR material for a 3D mesh in a single feed-forward process. Extensive experiments on publicly available benchmarks demonstrate that our method synthesizes more visually pleasing PBR materials and runs faster than previous methods in both unconditional and text-conditional scenarios, exhibiting better consistency with the given geometry. Our code and trained models are available at https://3d-aigc.github.io/TexGaussian.

  • 9 authors
·
Nov 29, 2024

Taming the Power of Diffusion Models for High-Quality Virtual Try-On with Appearance Flow

Virtual try-on is a critical image synthesis task that aims to transfer clothes from one image to another while preserving the details of both humans and clothes. While many existing methods rely on Generative Adversarial Networks (GANs) to achieve this, flaws can still occur, particularly at high resolutions. Recently, the diffusion model has emerged as a promising alternative for generating high-quality images in various applications. However, simply using clothes as a condition for guiding the diffusion model to inpaint is insufficient to maintain the details of the clothes. To overcome this challenge, we propose an exemplar-based inpainting approach that leverages a warping module to guide the diffusion model's generation effectively. The warping module performs initial processing on the clothes, which helps to preserve the local details of the clothes. We then combine the warped clothes with clothes-agnostic person image and add noise as the input of diffusion model. Additionally, the warped clothes is used as local conditions for each denoising process to ensure that the resulting output retains as much detail as possible. Our approach, namely Diffusion-based Conditional Inpainting for Virtual Try-ON (DCI-VTON), effectively utilizes the power of the diffusion model, and the incorporation of the warping module helps to produce high-quality and realistic virtual try-on results. Experimental results on VITON-HD demonstrate the effectiveness and superiority of our method.

  • 6 authors
·
Aug 11, 2023

MedSyn: Text-guided Anatomy-aware Synthesis of High-Fidelity 3D CT Images

This paper introduces an innovative methodology for producing high-quality 3D lung CT images guided by textual information. While diffusion-based generative models are increasingly used in medical imaging, current state-of-the-art approaches are limited to low-resolution outputs and underutilize radiology reports' abundant information. The radiology reports can enhance the generation process by providing additional guidance and offering fine-grained control over the synthesis of images. Nevertheless, expanding text-guided generation to high-resolution 3D images poses significant memory and anatomical detail-preserving challenges. Addressing the memory issue, we introduce a hierarchical scheme that uses a modified UNet architecture. We start by synthesizing low-resolution images conditioned on the text, serving as a foundation for subsequent generators for complete volumetric data. To ensure the anatomical plausibility of the generated samples, we provide further guidance by generating vascular, airway, and lobular segmentation masks in conjunction with the CT images. The model demonstrates the capability to use textual input and segmentation tasks to generate synthesized images. The results of comparative assessments indicate that our approach exhibits superior performance compared to the most advanced models based on GAN and diffusion techniques, especially in accurately retaining crucial anatomical features such as fissure lines, airways, and vascular structures. This innovation introduces novel possibilities. This study focuses on two main objectives: (1) the development of a method for creating images based on textual prompts and anatomical components, and (2) the capability to generate new images conditioning on anatomical elements. The advancements in image generation can be applied to enhance numerous downstream tasks.

  • 5 authors
·
Oct 5, 2023

GeoTexDensifier: Geometry-Texture-Aware Densification for High-Quality Photorealistic 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) has recently attracted wide attentions in various areas such as 3D navigation, Virtual Reality (VR) and 3D simulation, due to its photorealistic and efficient rendering performance. High-quality reconstrution of 3DGS relies on sufficient splats and a reasonable distribution of these splats to fit real geometric surface and texture details, which turns out to be a challenging problem. We present GeoTexDensifier, a novel geometry-texture-aware densification strategy to reconstruct high-quality Gaussian splats which better comply with the geometric structure and texture richness of the scene. Specifically, our GeoTexDensifier framework carries out an auxiliary texture-aware densification method to produce a denser distribution of splats in fully textured areas, while keeping sparsity in low-texture regions to maintain the quality of Gaussian point cloud. Meanwhile, a geometry-aware splitting strategy takes depth and normal priors to guide the splitting sampling and filter out the noisy splats whose initial positions are far from the actual geometric surfaces they aim to fit, under a Validation of Depth Ratio Change checking. With the help of relative monocular depth prior, such geometry-aware validation can effectively reduce the influence of scattered Gaussians to the final rendering quality, especially in regions with weak textures or without sufficient training views. The texture-aware densification and geometry-aware splitting strategies are fully combined to obtain a set of high-quality Gaussian splats. We experiment our GeoTexDensifier framework on various datasets and compare our Novel View Synthesis results to other state-of-the-art 3DGS approaches, with detailed quantitative and qualitative evaluations to demonstrate the effectiveness of our method in producing more photorealistic 3DGS models.

  • 7 authors
·
Dec 21, 2024

GenesisTex2: Stable, Consistent and High-Quality Text-to-Texture Generation

Large-scale text-guided image diffusion models have shown astonishing results in text-to-image (T2I) generation. However, applying these models to synthesize textures for 3D geometries remains challenging due to the domain gap between 2D images and textures on a 3D surface. Early works that used a projecting-and-inpainting approach managed to preserve generation diversity but often resulted in noticeable artifacts and style inconsistencies. While recent methods have attempted to address these inconsistencies, they often introduce other issues, such as blurring, over-saturation, or over-smoothing. To overcome these challenges, we propose a novel text-to-texture synthesis framework that leverages pretrained diffusion models. We first introduce a local attention reweighing mechanism in the self-attention layers to guide the model in concentrating on spatial-correlated patches across different views, thereby enhancing local details while preserving cross-view consistency. Additionally, we propose a novel latent space merge pipeline, which further ensures consistency across different viewpoints without sacrificing too much diversity. Our method significantly outperforms existing state-of-the-art techniques regarding texture consistency and visual quality, while delivering results much faster than distillation-based methods. Importantly, our framework does not require additional training or fine-tuning, making it highly adaptable to a wide range of models available on public platforms.

  • 6 authors
·
Sep 26, 2024

Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis

Diffusion models, such as Stable Diffusion, have made significant strides in visual generation, yet their paradigm remains fundamentally different from autoregressive language models, complicating the development of unified language-vision models. Recent efforts like LlamaGen have attempted autoregressive image generation using discrete VQVAE tokens, but the large number of tokens involved renders this approach inefficient and slow. In this work, we present Meissonic, which elevates non-autoregressive masked image modeling (MIM) text-to-image to a level comparable with state-of-the-art diffusion models like SDXL. By incorporating a comprehensive suite of architectural innovations, advanced positional encoding strategies, and optimized sampling conditions, Meissonic substantially improves MIM's performance and efficiency. Additionally, we leverage high-quality training data, integrate micro-conditions informed by human preference scores, and employ feature compression layers to further enhance image fidelity and resolution. Our model not only matches but often exceeds the performance of existing models like SDXL in generating high-quality, high-resolution images. Extensive experiments validate Meissonic's capabilities, demonstrating its potential as a new standard in text-to-image synthesis. We release a model checkpoint capable of producing 1024 times 1024 resolution images.

  • 9 authors
·
Oct 10, 2024 2

PrismLayers: Open Data for High-Quality Multi-Layer Transparent Image Generative Models

Generating high-quality, multi-layer transparent images from text prompts can unlock a new level of creative control, allowing users to edit each layer as effortlessly as editing text outputs from LLMs. However, the development of multi-layer generative models lags behind that of conventional text-to-image models due to the absence of a large, high-quality corpus of multi-layer transparent data. In this paper, we address this fundamental challenge by: (i) releasing the first open, ultra-high-fidelity PrismLayers (PrismLayersPro) dataset of 200K (20K) multilayer transparent images with accurate alpha mattes, (ii) introducing a trainingfree synthesis pipeline that generates such data on demand using off-the-shelf diffusion models, and (iii) delivering a strong, open-source multi-layer generation model, ART+, which matches the aesthetics of modern text-to-image generation models. The key technical contributions include: LayerFLUX, which excels at generating high-quality single transparent layers with accurate alpha mattes, and MultiLayerFLUX, which composes multiple LayerFLUX outputs into complete images, guided by human-annotated semantic layout. To ensure higher quality, we apply a rigorous filtering stage to remove artifacts and semantic mismatches, followed by human selection. Fine-tuning the state-of-the-art ART model on our synthetic PrismLayersPro yields ART+, which outperforms the original ART in 60% of head-to-head user study comparisons and even matches the visual quality of images generated by the FLUX.1-[dev] model. We anticipate that our work will establish a solid dataset foundation for the multi-layer transparent image generation task, enabling research and applications that require precise, editable, and visually compelling layered imagery.

  • 9 authors
·
May 28 2

Enhancing Diffusion Models for High-Quality Image Generation

This report presents the comprehensive implementation, evaluation, and optimization of Denoising Diffusion Probabilistic Models (DDPMs) and Denoising Diffusion Implicit Models (DDIMs), which are state-of-the-art generative models. During inference, these models take random noise as input and iteratively generate high-quality images as output. The study focuses on enhancing their generative capabilities by incorporating advanced techniques such as Classifier-Free Guidance (CFG), Latent Diffusion Models with Variational Autoencoders (VAE), and alternative noise scheduling strategies. The motivation behind this work is the growing demand for efficient and scalable generative AI models that can produce realistic images across diverse datasets, addressing challenges in applications such as art creation, image synthesis, and data augmentation. Evaluations were conducted on datasets including CIFAR-10 and ImageNet-100, with a focus on improving inference speed, computational efficiency, and image quality metrics like Frechet Inception Distance (FID). Results demonstrate that DDIM + CFG achieves faster inference and superior image quality. Challenges with VAE and noise scheduling are also highlighted, suggesting opportunities for future optimization. This work lays the groundwork for developing scalable, efficient, and high-quality generative AI systems to benefit industries ranging from entertainment to robotics.

  • 3 authors
·
Dec 18, 2024

X-Dreamer: Creating High-quality 3D Content by Bridging the Domain Gap Between Text-to-2D and Text-to-3D Generation

In recent times, automatic text-to-3D content creation has made significant progress, driven by the development of pretrained 2D diffusion models. Existing text-to-3D methods typically optimize the 3D representation to ensure that the rendered image aligns well with the given text, as evaluated by the pretrained 2D diffusion model. Nevertheless, a substantial domain gap exists between 2D images and 3D assets, primarily attributed to variations in camera-related attributes and the exclusive presence of foreground objects. Consequently, employing 2D diffusion models directly for optimizing 3D representations may lead to suboptimal outcomes. To address this issue, we present X-Dreamer, a novel approach for high-quality text-to-3D content creation that effectively bridges the gap between text-to-2D and text-to-3D synthesis. The key components of X-Dreamer are two innovative designs: Camera-Guided Low-Rank Adaptation (CG-LoRA) and Attention-Mask Alignment (AMA) Loss. CG-LoRA dynamically incorporates camera information into the pretrained diffusion models by employing camera-dependent generation for trainable parameters. This integration enhances the alignment between the generated 3D assets and the camera's perspective. AMA loss guides the attention map of the pretrained diffusion model using the binary mask of the 3D object, prioritizing the creation of the foreground object. This module ensures that the model focuses on generating accurate and detailed foreground objects. Extensive evaluations demonstrate the effectiveness of our proposed method compared to existing text-to-3D approaches. Our project webpage: https://xmuxiaoma666.github.io/Projects/X-Dreamer .

  • 8 authors
·
Nov 30, 2023 2

MAtCha Gaussians: Atlas of Charts for High-Quality Geometry and Photorealism From Sparse Views

We present a novel appearance model that simultaneously realizes explicit high-quality 3D surface mesh recovery and photorealistic novel view synthesis from sparse view samples. Our key idea is to model the underlying scene geometry Mesh as an Atlas of Charts which we render with 2D Gaussian surfels (MAtCha Gaussians). MAtCha distills high-frequency scene surface details from an off-the-shelf monocular depth estimator and refines it through Gaussian surfel rendering. The Gaussian surfels are attached to the charts on the fly, satisfying photorealism of neural volumetric rendering and crisp geometry of a mesh model, i.e., two seemingly contradicting goals in a single model. At the core of MAtCha lies a novel neural deformation model and a structure loss that preserve the fine surface details distilled from learned monocular depths while addressing their fundamental scale ambiguities. Results of extensive experimental validation demonstrate MAtCha's state-of-the-art quality of surface reconstruction and photorealism on-par with top contenders but with dramatic reduction in the number of input views and computational time. We believe MAtCha will serve as a foundational tool for any visual application in vision, graphics, and robotics that require explicit geometry in addition to photorealism. Our project page is the following: https://anttwo.github.io/matcha/

  • 4 authors
·
Dec 9, 2024 2

Macro-from-Micro Planning for High-Quality and Parallelized Autoregressive Long Video Generation

Current autoregressive diffusion models excel at video generation but are generally limited to short temporal durations. Our theoretical analysis indicates that the autoregressive modeling typically suffers from temporal drift caused by error accumulation and hinders parallelization in long video synthesis. To address these limitations, we propose a novel planning-then-populating framework centered on Macro-from-Micro Planning (MMPL) for long video generation. MMPL sketches a global storyline for the entire video through two hierarchical stages: Micro Planning and Macro Planning. Specifically, Micro Planning predicts a sparse set of future keyframes within each short video segment, offering motion and appearance priors to guide high-quality video segment generation. Macro Planning extends the in-segment keyframes planning across the entire video through an autoregressive chain of micro plans, ensuring long-term consistency across video segments. Subsequently, MMPL-based Content Populating generates all intermediate frames in parallel across segments, enabling efficient parallelization of autoregressive generation. The parallelization is further optimized by Adaptive Workload Scheduling for balanced GPU execution and accelerated autoregressive video generation. Extensive experiments confirm that our method outperforms existing long video generation models in quality and stability. Generated videos and comparison results are in our project page.

  • 13 authors
·
Aug 5

ProDiff: Progressive Fast Diffusion Model For High-Quality Text-to-Speech

Denoising diffusion probabilistic models (DDPMs) have recently achieved leading performances in many generative tasks. However, the inherited iterative sampling process costs hinder their applications to text-to-speech deployment. Through the preliminary study on diffusion model parameterization, we find that previous gradient-based TTS models require hundreds or thousands of iterations to guarantee high sample quality, which poses a challenge for accelerating sampling. In this work, we propose ProDiff, on progressive fast diffusion model for high-quality text-to-speech. Unlike previous work estimating the gradient for data density, ProDiff parameterizes the denoising model by directly predicting clean data to avoid distinct quality degradation in accelerating sampling. To tackle the model convergence challenge with decreased diffusion iterations, ProDiff reduces the data variance in the target site via knowledge distillation. Specifically, the denoising model uses the generated mel-spectrogram from an N-step DDIM teacher as the training target and distills the behavior into a new model with N/2 steps. As such, it allows the TTS model to make sharp predictions and further reduces the sampling time by orders of magnitude. Our evaluation demonstrates that ProDiff needs only 2 iterations to synthesize high-fidelity mel-spectrograms, while it maintains sample quality and diversity competitive with state-of-the-art models using hundreds of steps. ProDiff enables a sampling speed of 24x faster than real-time on a single NVIDIA 2080Ti GPU, making diffusion models practically applicable to text-to-speech synthesis deployment for the first time. Our extensive ablation studies demonstrate that each design in ProDiff is effective, and we further show that ProDiff can be easily extended to the multi-speaker setting. Audio samples are available at https://ProDiff.github.io/.

  • 6 authors
·
Jul 13, 2022

Optimal Linear Subspace Search: Learning to Construct Fast and High-Quality Schedulers for Diffusion Models

In recent years, diffusion models have become the most popular and powerful methods in the field of image synthesis, even rivaling human artists in artistic creativity. However, the key issue currently limiting the application of diffusion models is its extremely slow generation process. Although several methods were proposed to speed up the generation process, there still exists a trade-off between efficiency and quality. In this paper, we first provide a detailed theoretical and empirical analysis of the generation process of the diffusion models based on schedulers. We transform the designing problem of schedulers into the determination of several parameters, and further transform the accelerated generation process into an expansion process of the linear subspace. Based on these analyses, we consequently propose a novel method called Optimal Linear Subspace Search (OLSS), which accelerates the generation process by searching for the optimal approximation process of the complete generation process in the linear subspaces spanned by latent variables. OLSS is able to generate high-quality images with a very small number of steps. To demonstrate the effectiveness of our method, we conduct extensive comparative experiments on open-source diffusion models. Experimental results show that with a given number of steps, OLSS can significantly improve the quality of generated images. Using an NVIDIA A100 GPU, we make it possible to generate a high-quality image by Stable Diffusion within only one second without other optimization techniques.

  • 5 authors
·
May 23, 2023

Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing

High-quality instruction data is critical for aligning large language models (LLMs). Although some models, such as Llama-3-Instruct, have open weights, their alignment data remain private, which hinders the democratization of AI. High human labor costs and a limited, predefined scope for prompting prevent existing open-source data creation methods from scaling effectively, potentially limiting the diversity and quality of public alignment datasets. Is it possible to synthesize high-quality instruction data at scale by extracting it directly from an aligned LLM? We present a self-synthesis method for generating large-scale alignment data named Magpie. Our key observation is that aligned LLMs like Llama-3-Instruct can generate a user query when we input only the left-side templates up to the position reserved for user messages, thanks to their auto-regressive nature. We use this method to prompt Llama-3-Instruct and generate 4 million instructions along with their corresponding responses. We perform a comprehensive analysis of the extracted data and select 300K high-quality instances. To compare Magpie data with other public instruction datasets, we fine-tune Llama-3-8B-Base with each dataset and evaluate the performance of the fine-tuned models. Our results indicate that in some tasks, models fine-tuned with Magpie perform comparably to the official Llama-3-8B-Instruct, despite the latter being enhanced with 10 million data points through supervised fine-tuning (SFT) and subsequent feedback learning. We also show that using Magpie solely for SFT can surpass the performance of previous public datasets utilized for both SFT and preference optimization, such as direct preference optimization with UltraFeedback. This advantage is evident on alignment benchmarks such as AlpacaEval, ArenaHard, and WildBench.

  • 7 authors
·
Jun 12, 2024 5

Anyprefer: An Agentic Framework for Preference Data Synthesis

High-quality preference data is essential for aligning foundation models with human values through preference learning. However, manual annotation of such data is often time-consuming and costly. Recent methods often adopt a self-rewarding approach, where the target model generates and annotates its own preference data, but this can lead to inaccuracies since the reward model shares weights with the target model, thereby amplifying inherent biases. To address these issues, we propose Anyprefer, a framework designed to synthesize high-quality preference data for aligning the target model. Anyprefer frames the data synthesis process as a cooperative two-player Markov Game, where the target model and the judge model collaborate together. Here, a series of external tools are introduced to assist the judge model in accurately rewarding the target model's responses, mitigating biases in the rewarding process. In addition, a feedback mechanism is introduced to optimize prompts for both models, enhancing collaboration and improving data quality. The synthesized data is compiled into a new preference dataset, Anyprefer-V1, consisting of 58K high-quality preference pairs. Extensive experiments show that Anyprefer significantly improves model alignment performance across four main applications, covering 21 datasets, achieving average improvements of 18.55% in five natural language generation datasets, 3.66% in nine vision-language understanding datasets, 30.05% in three medical image analysis datasets, and 16.00% in four visuo-motor control tasks.

  • 16 authors
·
Apr 27

Improving Natural Language Understanding for LLMs via Large-Scale Instruction Synthesis

High-quality, large-scale instructions are crucial for aligning large language models (LLMs), however, there is a severe shortage of instruction in the field of natural language understanding (NLU). Previous works on constructing NLU instructions mainly focus on information extraction (IE), neglecting tasks such as machine reading comprehension, question answering, and text classification. Furthermore, the lack of diversity in the data has led to a decreased generalization ability of trained LLMs in other NLU tasks and a noticeable decline in the fundamental model's general capabilities. To address this issue, we propose Hum, a large-scale, high-quality synthetic instruction corpus for NLU tasks, designed to enhance the NLU capabilities of LLMs. Specifically, Hum includes IE (either close IE or open IE), machine reading comprehension, text classification, and instruction generalist tasks, thereby enriching task diversity. Additionally, we introduce a human-LLMs collaborative mechanism to synthesize instructions, which enriches instruction diversity by incorporating guidelines, preference rules, and format variants. We conduct extensive experiments on 5 NLU tasks and 28 general capability evaluation datasets for LLMs. Experimental results show that Hum enhances the NLU capabilities of six LLMs by an average of 3.1\%, with no significant decline observed in other general capabilities.

  • 7 authors
·
Feb 6

StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

Synthesizing high-quality images from text descriptions is a challenging problem in computer vision and has many practical applications. Samples generated by existing text-to-image approaches can roughly reflect the meaning of the given descriptions, but they fail to contain necessary details and vivid object parts. In this paper, we propose Stacked Generative Adversarial Networks (StackGAN) to generate 256x256 photo-realistic images conditioned on text descriptions. We decompose the hard problem into more manageable sub-problems through a sketch-refinement process. The Stage-I GAN sketches the primitive shape and colors of the object based on the given text description, yielding Stage-I low-resolution images. The Stage-II GAN takes Stage-I results and text descriptions as inputs, and generates high-resolution images with photo-realistic details. It is able to rectify defects in Stage-I results and add compelling details with the refinement process. To improve the diversity of the synthesized images and stabilize the training of the conditional-GAN, we introduce a novel Conditioning Augmentation technique that encourages smoothness in the latent conditioning manifold. Extensive experiments and comparisons with state-of-the-arts on benchmark datasets demonstrate that the proposed method achieves significant improvements on generating photo-realistic images conditioned on text descriptions.

  • 7 authors
·
Dec 9, 2016

Training Language Models on Synthetic Edit Sequences Improves Code Synthesis

Software engineers mainly write code by editing existing programs. In contrast, large language models (LLMs) autoregressively synthesize programs in a single pass. One explanation for this is the scarcity of open-sourced edit data. While high-quality instruction data for code synthesis is already scarce, high-quality edit data is even scarcer. To fill this gap, we develop a synthetic data generation algorithm called LintSeq. This algorithm refactors existing code into a sequence of code edits by using a linter to procedurally sample across the error-free insertions that can be used to sequentially write programs. It outputs edit sequences as text strings consisting of consecutive program diffs. To test LintSeq, we use it to refactor a dataset of instruction + program pairs into instruction + program-diff-sequence tuples. Then, we instruction finetune a series of smaller LLMs ranging from 2.6B to 14B parameters on both the re-factored and original versions of this dataset, comparing zero-shot performance on code synthesis benchmarks. We show that during repeated sampling, edit sequence finetuned models produce more diverse programs than baselines. This results in better inference-time scaling for benchmark coverage as a function of samples, i.e. the fraction of problems "pass@k" solved by any attempt given "k" tries. For example, on HumanEval pass@50, small LLMs finetuned on synthetic edit sequences are competitive with GPT-4 and outperform models finetuned on the baseline dataset by +20% (+/-3%) in absolute score. Finally, we also pretrain our own tiny LMs for code understanding. We show that finetuning tiny models on synthetic code edits results in state-of-the-art code synthesis for the on-device model class. Our 150M parameter edit sequence LM matches or outperforms code models with twice as many parameters, both with and without repeated sampling, including Codex and AlphaCode.

  • 3 authors
·
Oct 3, 2024 3

Large-Scale Diverse Synthesis for Mid-Training

The scarcity of high-quality, knowledge-intensive training data hinders the development of large language models (LLMs), as traditional corpora provide limited information. Previous studies have synthesized and integrated corpora-dependent question-answering (QA) data to improve model performance but face challenges in QA data scalability and knowledge diversity, particularly in cross-domain contexts. Furthermore, leveraging our designed discipline and difficulty annotation system, we probe model deficiencies in STEM disciplines and high-difficulty data. To overcome these limitations, we propose a novel diversified pipeline to synthesize BoostQA, a 100B-token large-scale QA dataset. Our synthesis framework: (1) curates seed data from heterogeneous sources; (2) utilizes DeepSeek-R1 to implement STEM-focused multi-grade synthesis to boost data diversity and high-difficulty synthesis to mitigate difficulty degradation; (3) refines answers via DeepSeek-V3 to improve output quality. We utilize BoostQA in mid-training, a mid-stage between pre-training and post-training, to optimize domain-specific knowledge acquisition and enhance data quality. Our method enables Llama-3 8B, mid-trained on a 40B-token dataset, to achieve an average improvement of 12.74% on MMLU and CMMLU and establish SOTA average performance across 12 benchmarks. BoostQA also demonstrates robust scalability, with performance consistently improving as model size, data volume, and initial FLOPs scale.

  • 7 authors
·
Aug 2

FlowVid: Taming Imperfect Optical Flows for Consistent Video-to-Video Synthesis

Diffusion models have transformed the image-to-image (I2I) synthesis and are now permeating into videos. However, the advancement of video-to-video (V2V) synthesis has been hampered by the challenge of maintaining temporal consistency across video frames. This paper proposes a consistent V2V synthesis framework by jointly leveraging spatial conditions and temporal optical flow clues within the source video. Contrary to prior methods that strictly adhere to optical flow, our approach harnesses its benefits while handling the imperfection in flow estimation. We encode the optical flow via warping from the first frame and serve it as a supplementary reference in the diffusion model. This enables our model for video synthesis by editing the first frame with any prevalent I2I models and then propagating edits to successive frames. Our V2V model, FlowVid, demonstrates remarkable properties: (1) Flexibility: FlowVid works seamlessly with existing I2I models, facilitating various modifications, including stylization, object swaps, and local edits. (2) Efficiency: Generation of a 4-second video with 30 FPS and 512x512 resolution takes only 1.5 minutes, which is 3.1x, 7.2x, and 10.5x faster than CoDeF, Rerender, and TokenFlow, respectively. (3) High-quality: In user studies, our FlowVid is preferred 45.7% of the time, outperforming CoDeF (3.5%), Rerender (10.2%), and TokenFlow (40.4%).

  • 11 authors
·
Dec 29, 2023 1

Sharp-It: A Multi-view to Multi-view Diffusion Model for 3D Synthesis and Manipulation

Advancements in text-to-image diffusion models have led to significant progress in fast 3D content creation. One common approach is to generate a set of multi-view images of an object, and then reconstruct it into a 3D model. However, this approach bypasses the use of a native 3D representation of the object and is hence prone to geometric artifacts and limited in controllability and manipulation capabilities. An alternative approach involves native 3D generative models that directly produce 3D representations. These models, however, are typically limited in their resolution, resulting in lower quality 3D objects. In this work, we bridge the quality gap between methods that directly generate 3D representations and ones that reconstruct 3D objects from multi-view images. We introduce a multi-view to multi-view diffusion model called Sharp-It, which takes a 3D consistent set of multi-view images rendered from a low-quality object and enriches its geometric details and texture. The diffusion model operates on the multi-view set in parallel, in the sense that it shares features across the generated views. A high-quality 3D model can then be reconstructed from the enriched multi-view set. By leveraging the advantages of both 2D and 3D approaches, our method offers an efficient and controllable method for high-quality 3D content creation. We demonstrate that Sharp-It enables various 3D applications, such as fast synthesis, editing, and controlled generation, while attaining high-quality assets.

  • 4 authors
·
Dec 3, 2024

UnitCoder: Scalable Iterative Code Synthesis with Unit Test Guidance

Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks, yet code generation remains a major challenge. Current approaches for obtaining high-quality code data primarily focus on (i) collecting large-scale pre-training data and (ii) synthesizing instruction data through prompt engineering with powerful models. While pre-training data faces quality consistency issues, instruction-based synthesis suffers from limited instruction diversity and inherent biases of LLMs. To address this gap, we introduce UnitCoder, a systematic pipeline leveraging model-generated unit tests to both guide and validate the code generation process. Combined with large-scale package-based retrieval from pre-training corpus, we generate a dataset of 500K+ verifiable programs containing diverse API calls. Evaluations on multiple Python benchmarks (BigCodeBench, HumanEval, MBPP) demonstrate that models fine-tuned on our synthetic data exhibit consistent performance improvements. Notably, Llama3.1-8B and InternLM2.5-7B improve from 31\% and 28\% to 40\% and 39\% success rates on BigCodeBench, respectively. Our work presents a scalable approach that leverages model-generated unit tests to guide the synthesis of high-quality code data from pre-training corpora, demonstrating the potential for producing diverse and high-quality post-training data at scale. All code and data will be released (https://github.com).

  • 8 authors
·
Feb 17

Cross-View Meets Diffusion: Aerial Image Synthesis with Geometry and Text Guidance

Aerial imagery analysis is critical for many research fields. However, obtaining frequent high-quality aerial images is not always accessible due to its high effort and cost requirements. One solution is to use the Ground-to-Aerial (G2A) technique to synthesize aerial images from easily collectible ground images. However, G2A is rarely studied, because of its challenges, including but not limited to, the drastic view changes, occlusion, and range of visibility. In this paper, we present a novel Geometric Preserving Ground-to-Aerial (G2A) image synthesis (GPG2A) model that can generate realistic aerial images from ground images. GPG2A consists of two stages. The first stage predicts the Bird's Eye View (BEV) segmentation (referred to as the BEV layout map) from the ground image. The second stage synthesizes the aerial image from the predicted BEV layout map and text descriptions of the ground image. To train our model, we present a new multi-modal cross-view dataset, namely VIGORv2 which is built upon VIGOR with newly collected aerial images, maps, and text descriptions. Our extensive experiments illustrate that GPG2A synthesizes better geometry-preserved aerial images than existing models. We also present two applications, data augmentation for cross-view geo-localization and sketch-based region search, to further verify the effectiveness of our GPG2A. The code and data will be publicly available.

  • 5 authors
·
Aug 8, 2024

TalkingGaussian: Structure-Persistent 3D Talking Head Synthesis via Gaussian Splatting

Radiance fields have demonstrated impressive performance in synthesizing lifelike 3D talking heads. However, due to the difficulty in fitting steep appearance changes, the prevailing paradigm that presents facial motions by directly modifying point appearance may lead to distortions in dynamic regions. To tackle this challenge, we introduce TalkingGaussian, a deformation-based radiance fields framework for high-fidelity talking head synthesis. Leveraging the point-based Gaussian Splatting, facial motions can be represented in our method by applying smooth and continuous deformations to persistent Gaussian primitives, without requiring to learn the difficult appearance change like previous methods. Due to this simplification, precise facial motions can be synthesized while keeping a highly intact facial feature. Under such a deformation paradigm, we further identify a face-mouth motion inconsistency that would affect the learning of detailed speaking motions. To address this conflict, we decompose the model into two branches separately for the face and inside mouth areas, therefore simplifying the learning tasks to help reconstruct more accurate motion and structure of the mouth region. Extensive experiments demonstrate that our method renders high-quality lip-synchronized talking head videos, with better facial fidelity and higher efficiency compared with previous methods.

  • 7 authors
·
Apr 23, 2024

DF-GAN: A Simple and Effective Baseline for Text-to-Image Synthesis

Synthesizing high-quality realistic images from text descriptions is a challenging task. Existing text-to-image Generative Adversarial Networks generally employ a stacked architecture as the backbone yet still remain three flaws. First, the stacked architecture introduces the entanglements between generators of different image scales. Second, existing studies prefer to apply and fix extra networks in adversarial learning for text-image semantic consistency, which limits the supervision capability of these networks. Third, the cross-modal attention-based text-image fusion that widely adopted by previous works is limited on several special image scales because of the computational cost. To these ends, we propose a simpler but more effective Deep Fusion Generative Adversarial Networks (DF-GAN). To be specific, we propose: (i) a novel one-stage text-to-image backbone that directly synthesizes high-resolution images without entanglements between different generators, (ii) a novel Target-Aware Discriminator composed of Matching-Aware Gradient Penalty and One-Way Output, which enhances the text-image semantic consistency without introducing extra networks, (iii) a novel deep text-image fusion block, which deepens the fusion process to make a full fusion between text and visual features. Compared with current state-of-the-art methods, our proposed DF-GAN is simpler but more efficient to synthesize realistic and text-matching images and achieves better performance on widely used datasets.

  • 6 authors
·
Aug 13, 2020

Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch

The availability of high-quality data is one of the most important factors in improving the reasoning capability of LLMs. Existing works have demonstrated the effectiveness of creating more instruction data from seed questions or knowledge bases. Recent research indicates that continually scaling up data synthesis from strong models (e.g., GPT-4) can further elicit reasoning performance. Though promising, the open-sourced community still lacks high-quality data at scale and scalable data synthesis methods with affordable costs. To address this, we introduce ScaleQuest, a scalable and novel data synthesis method that utilizes "small-size" (e.g., 7B) open-source models to generate questions from scratch without the need for seed data with complex augmentation constraints. With the efficient ScaleQuest, we automatically constructed a mathematical reasoning dataset consisting of 1 million problem-solution pairs, which are more effective than existing open-sourced datasets. It can universally increase the performance of mainstream open-source models (i.e., Mistral, Llama3, DeepSeekMath, and Qwen2-Math) by achieving 29.2% to 46.4% gains on MATH. Notably, simply fine-tuning the Qwen2-Math-7B-Base model with our dataset can even surpass Qwen2-Math-7B-Instruct, a strong and well-aligned model on closed-source data, and proprietary models such as GPT-4-Turbo and Claude-3.5 Sonnet.

  • 6 authors
·
Oct 24, 2024 3

BlockGaussian: Efficient Large-Scale Scene Novel View Synthesis via Adaptive Block-Based Gaussian Splatting

The recent advancements in 3D Gaussian Splatting (3DGS) have demonstrated remarkable potential in novel view synthesis tasks. The divide-and-conquer paradigm has enabled large-scale scene reconstruction, but significant challenges remain in scene partitioning, optimization, and merging processes. This paper introduces BlockGaussian, a novel framework incorporating a content-aware scene partition strategy and visibility-aware block optimization to achieve efficient and high-quality large-scale scene reconstruction. Specifically, our approach considers the content-complexity variation across different regions and balances computational load during scene partitioning, enabling efficient scene reconstruction. To tackle the supervision mismatch issue during independent block optimization, we introduce auxiliary points during individual block optimization to align the ground-truth supervision, which enhances the reconstruction quality. Furthermore, we propose a pseudo-view geometry constraint that effectively mitigates rendering degradation caused by airspace floaters during block merging. Extensive experiments on large-scale scenes demonstrate that our approach achieves state-of-the-art performance in both reconstruction efficiency and rendering quality, with a 5x speedup in optimization and an average PSNR improvement of 1.21 dB on multiple benchmarks. Notably, BlockGaussian significantly reduces computational requirements, enabling large-scale scene reconstruction on a single 24GB VRAM device. The project page is available at https://github.com/SunshineWYC/BlockGaussian

  • 4 authors
·
Apr 11 2

GALIP: Generative Adversarial CLIPs for Text-to-Image Synthesis

Synthesizing high-fidelity complex images from text is challenging. Based on large pretraining, the autoregressive and diffusion models can synthesize photo-realistic images. Although these large models have shown notable progress, there remain three flaws. 1) These models require tremendous training data and parameters to achieve good performance. 2) The multi-step generation design slows the image synthesis process heavily. 3) The synthesized visual features are difficult to control and require delicately designed prompts. To enable high-quality, efficient, fast, and controllable text-to-image synthesis, we propose Generative Adversarial CLIPs, namely GALIP. GALIP leverages the powerful pretrained CLIP model both in the discriminator and generator. Specifically, we propose a CLIP-based discriminator. The complex scene understanding ability of CLIP enables the discriminator to accurately assess the image quality. Furthermore, we propose a CLIP-empowered generator that induces the visual concepts from CLIP through bridge features and prompts. The CLIP-integrated generator and discriminator boost training efficiency, and as a result, our model only requires about 3% training data and 6% learnable parameters, achieving comparable results to large pretrained autoregressive and diffusion models. Moreover, our model achieves 120 times faster synthesis speed and inherits the smooth latent space from GAN. The extensive experimental results demonstrate the excellent performance of our GALIP. Code is available at https://github.com/tobran/GALIP.

  • 4 authors
·
Jan 30, 2023

VLOGGER: Multimodal Diffusion for Embodied Avatar Synthesis

We propose VLOGGER, a method for audio-driven human video generation from a single input image of a person, which builds on the success of recent generative diffusion models. Our method consists of 1) a stochastic human-to-3d-motion diffusion model, and 2) a novel diffusion-based architecture that augments text-to-image models with both spatial and temporal controls. This supports the generation of high quality video of variable length, easily controllable through high-level representations of human faces and bodies. In contrast to previous work, our method does not require training for each person, does not rely on face detection and cropping, generates the complete image (not just the face or the lips), and considers a broad spectrum of scenarios (e.g. visible torso or diverse subject identities) that are critical to correctly synthesize humans who communicate. We also curate MENTOR, a new and diverse dataset with 3d pose and expression annotations, one order of magnitude larger than previous ones (800,000 identities) and with dynamic gestures, on which we train and ablate our main technical contributions. VLOGGER outperforms state-of-the-art methods in three public benchmarks, considering image quality, identity preservation and temporal consistency while also generating upper-body gestures. We analyze the performance of VLOGGER with respect to multiple diversity metrics, showing that our architectural choices and the use of MENTOR benefit training a fair and unbiased model at scale. Finally we show applications in video editing and personalization.

  • 6 authors
·
Mar 13, 2024 6

Img-Diff: Contrastive Data Synthesis for Multimodal Large Language Models

High-performance Multimodal Large Language Models (MLLMs) rely heavily on data quality. This study introduces a novel dataset named Img-Diff, designed to enhance fine-grained image recognition in MLLMs by leveraging insights from contrastive learning and image difference captioning. By analyzing object differences between similar images, we challenge models to identify both matching and distinct components. We utilize the Stable-Diffusion-XL model and advanced image editing techniques to create pairs of similar images that highlight object replacements. Our methodology includes a Difference Area Generator for object differences identifying, followed by a Difference Captions Generator for detailed difference descriptions. The result is a relatively small but high-quality dataset of "object replacement" samples. We use the the proposed dataset to fine-tune state-of-the-art (SOTA) MLLMs such as MGM-7B, yielding comprehensive improvements of performance scores over SOTA models that trained with larger-scale datasets, in numerous image difference and Visual Question Answering tasks. For instance, our trained models notably surpass the SOTA models GPT-4V and Gemini on the MMVP benchmark. Besides, we investigate alternative methods for generating image difference data through "object removal" and conduct thorough evaluation to confirm the dataset's diversity, quality, and robustness, presenting several insights on synthesis of such contrastive dataset. To encourage further research and advance the field of multimodal data synthesis and enhancement of MLLMs' fundamental capabilities for image understanding, we release our codes and dataset at https://github.com/modelscope/data-juicer/tree/ImgDiff.

  • 5 authors
·
Aug 8, 2024 2

ParsVoice: A Large-Scale Multi-Speaker Persian Speech Corpus for Text-to-Speech Synthesis

Existing Persian speech datasets are typically smaller than their English counterparts, which creates a key limitation for developing Persian speech technologies. We address this gap by introducing ParsVoice, the largest Persian speech corpus designed specifically for text-to-speech(TTS) applications. We created an automated pipeline that transforms raw audiobook content into TTS-ready data, incorporating components such as a BERT-based sentence completion detector, a binary search boundary optimization method for precise audio-text alignment, and audio-text quality assessment frameworks tailored to Persian. The pipeline processes 2,000 audiobooks, yielding 3,526 hours of clean speech, which was further filtered into a 1,804-hour high-quality subset suitable for TTS, featuring more than 470 speakers. To validate the dataset, we fine-tuned XTTS for Persian, achieving a naturalness Mean Opinion Score (MOS) of 3.6/5 and a Speaker Similarity Mean Opinion Score (SMOS) of 4.0/5 demonstrating ParsVoice's effectiveness for training multi-speaker TTS systems. ParsVoice is the largest high-quality Persian speech dataset, offering speaker diversity and audio quality comparable to major English corpora. The complete dataset has been made publicly available to accelerate the development of Persian speech technologies. The ParsVoice dataset is publicly available at: https://huggingface.co/datasets/MohammadJRanjbar/ParsVoice.

  • 3 authors
·
Oct 12

TextSSR: Diffusion-based Data Synthesis for Scene Text Recognition

Scene text recognition (STR) suffers from challenges of either less realistic synthetic training data or the difficulty of collecting sufficient high-quality real-world data, limiting the effectiveness of trained models. Meanwhile, despite producing holistically appealing text images, diffusion-based visual text generation methods struggle to synthesize accurate and realistic instance-level text at scale. To tackle this, we introduce TextSSR: a novel pipeline for Synthesizing Scene Text Recognition training data. TextSSR targets three key synthesizing characteristics: accuracy, realism, and scalability. It achieves accuracy through a proposed region-centric text generation with position-glyph enhancement, ensuring proper character placement. It maintains realism by guiding style and appearance generation using contextual hints from surrounding text or background. This character-aware diffusion architecture enjoys precise character-level control and semantic coherence preservation, without relying on natural language prompts. Therefore, TextSSR supports large-scale generation through combinatorial text permutations. Based on these, we present TextSSR-F, a dataset of 3.55 million quality-screened text instances. Extensive experiments show that STR models trained on TextSSR-F outperform those trained on existing synthetic datasets by clear margins on common benchmarks, and further improvements are observed when mixed with real-world training data. Code is available at https://github.com/YesianRohn/TextSSR.

  • 4 authors
·
Dec 2, 2024

Advancing Pose-Guided Image Synthesis with Progressive Conditional Diffusion Models

Recent work has showcased the significant potential of diffusion models in pose-guided person image synthesis. However, owing to the inconsistency in pose between the source and target images, synthesizing an image with a distinct pose, relying exclusively on the source image and target pose information, remains a formidable challenge. This paper presents Progressive Conditional Diffusion Models (PCDMs) that incrementally bridge the gap between person images under the target and source poses through three stages. Specifically, in the first stage, we design a simple prior conditional diffusion model that predicts the global features of the target image by mining the global alignment relationship between pose coordinates and image appearance. Then, the second stage establishes a dense correspondence between the source and target images using the global features from the previous stage, and an inpainting conditional diffusion model is proposed to further align and enhance the contextual features, generating a coarse-grained person image. In the third stage, we propose a refining conditional diffusion model to utilize the coarsely generated image from the previous stage as a condition, achieving texture restoration and enhancing fine-detail consistency. The three-stage PCDMs work progressively to generate the final high-quality and high-fidelity synthesized image. Both qualitative and quantitative results demonstrate the consistency and photorealism of our proposed PCDMs under challenging scenarios.The code and model will be available at https://github.com/muzishen/PCDMs.

  • 6 authors
·
Oct 10, 2023

FM2DS: Few-Shot Multimodal Multihop Data Synthesis with Knowledge Distillation for Question Answering

Multimodal multihop question answering is a complex task that requires reasoning over multiple sources of information, such as images and text, to answer questions. While there has been significant progress in visual question answering, the multihop setting remains unexplored due to the lack of high-quality datasets. Current methods focus on single-hop question answering or a single modality, which makes them unsuitable for real-world scenarios such as analyzing multimodal educational materials, summarizing lengthy academic articles, or interpreting scientific studies that combine charts, images, and text. To address this gap, we propose a novel methodology, introducing the first framework for creating a high-quality dataset that enables training models for multimodal multihop question answering. Our approach consists of a 5-stage pipeline that involves acquiring relevant multimodal documents from Wikipedia, synthetically generating high-level questions and answers, and validating them through rigorous criteria to ensure quality data. We evaluate our methodology by training models on our synthesized dataset and testing on two benchmarks, our results demonstrate that, with an equal sample size, models trained on our synthesized data outperform those trained on human-collected data by 1.9 in exact match (EM) on average. We believe our data synthesis method will serve as a strong foundation for training and evaluating multimodal multihop question answering models.

  • 4 authors
·
Dec 9, 2024

Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy

Synthetic Data Generation (SDG) based on Artificial Intelligence (AI) can transform the way clinical medicine is delivered by overcoming privacy barriers that currently render clinical data sharing difficult. This is the key to accelerating the development of digital tools contributing to enhanced patient safety. Such tools include robust data-driven clinical decision support systems, and example-based digital training tools that will enable healthcare professionals to improve their diagnostic performance for enhanced patient safety. This study focuses on the clinical evaluation of medical SDG, with a proof-of-concept investigation on diagnosing Inflammatory Bowel Disease (IBD) using Wireless Capsule Endoscopy (WCE) images. Its scientific contributions include a) a novel protocol for the systematic Clinical Evaluation of Medical Image Synthesis (CEMIS); b) a novel variational autoencoder-based model for the generation of high-resolution synthetic WCE images; and c) a comprehensive evaluation of the synthetic images using the CEMIS protocol by 10 international WCE specialists, in terms of image quality, diversity, and realism, as well as their utility for clinical decision-making. The results show that TIDE-II generates clinically plausible, very realistic WCE images, of improved quality compared to relevant state-of-the-art generative models. Concludingly, CEMIS can serve as a reference for future research on medical image-generation techniques, while the adaptation/extension of the architecture of TIDE-II to other imaging domains can be promising.

  • 13 authors
·
Oct 31, 2024

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism

Singing voice synthesis (SVS) systems are built to synthesize high-quality and expressive singing voice, in which the acoustic model generates the acoustic features (e.g., mel-spectrogram) given a music score. Previous singing acoustic models adopt a simple loss (e.g., L1 and L2) or generative adversarial network (GAN) to reconstruct the acoustic features, while they suffer from over-smoothing and unstable training issues respectively, which hinder the naturalness of synthesized singing. In this work, we propose DiffSinger, an acoustic model for SVS based on the diffusion probabilistic model. DiffSinger is a parameterized Markov chain that iteratively converts the noise into mel-spectrogram conditioned on the music score. By implicitly optimizing variational bound, DiffSinger can be stably trained and generate realistic outputs. To further improve the voice quality and speed up inference, we introduce a shallow diffusion mechanism to make better use of the prior knowledge learned by the simple loss. Specifically, DiffSinger starts generation at a shallow step smaller than the total number of diffusion steps, according to the intersection of the diffusion trajectories of the ground-truth mel-spectrogram and the one predicted by a simple mel-spectrogram decoder. Besides, we propose boundary prediction methods to locate the intersection and determine the shallow step adaptively. The evaluations conducted on a Chinese singing dataset demonstrate that DiffSinger outperforms state-of-the-art SVS work. Extensional experiments also prove the generalization of our methods on text-to-speech task (DiffSpeech). Audio samples: https://diffsinger.github.io. Codes: https://github.com/MoonInTheRiver/DiffSinger. The old title of this work: "Diffsinger: Diffusion acoustic model for singing voice synthesis".

  • 5 authors
·
May 6, 2021

AerialMegaDepth: Learning Aerial-Ground Reconstruction and View Synthesis

We explore the task of geometric reconstruction of images captured from a mixture of ground and aerial views. Current state-of-the-art learning-based approaches fail to handle the extreme viewpoint variation between aerial-ground image pairs. Our hypothesis is that the lack of high-quality, co-registered aerial-ground datasets for training is a key reason for this failure. Such data is difficult to assemble precisely because it is difficult to reconstruct in a scalable way. To overcome this challenge, we propose a scalable framework combining pseudo-synthetic renderings from 3D city-wide meshes (e.g., Google Earth) with real, ground-level crowd-sourced images (e.g., MegaDepth). The pseudo-synthetic data simulates a wide range of aerial viewpoints, while the real, crowd-sourced images help improve visual fidelity for ground-level images where mesh-based renderings lack sufficient detail, effectively bridging the domain gap between real images and pseudo-synthetic renderings. Using this hybrid dataset, we fine-tune several state-of-the-art algorithms and achieve significant improvements on real-world, zero-shot aerial-ground tasks. For example, we observe that baseline DUSt3R localizes fewer than 5% of aerial-ground pairs within 5 degrees of camera rotation error, while fine-tuning with our data raises accuracy to nearly 56%, addressing a major failure point in handling large viewpoint changes. Beyond camera estimation and scene reconstruction, our dataset also improves performance on downstream tasks like novel-view synthesis in challenging aerial-ground scenarios, demonstrating the practical value of our approach in real-world applications.

  • 5 authors
·
Apr 17 2

MUSTARD: Mastering Uniform Synthesis of Theorem and Proof Data

Recent large language models (LLMs) have witnessed significant advancement in various tasks, including mathematical reasoning and theorem proving. As these two tasks require strict and formal multi-step inference, they are appealing domains for exploring the reasoning ability of LLMs but still face important challenges. Previous studies such as Chain-of-Thought (CoT) have revealed the effectiveness of intermediate steps guidance. However, such step-wise annotation requires heavy labor, leading to insufficient training steps for current benchmarks. To fill this gap, this work introduces MUSTARD, a data generation framework that masters uniform synthesis of theorem and proof data of high quality and diversity. MUSTARD synthesizes data in three stages: (1) It samples a few mathematical concept seeds as the problem category. (2) Then, it prompts a generative language model with the sampled concepts to obtain both the problems and their step-wise formal solutions. (3) Lastly, the framework utilizes a proof assistant (e.g., Lean Prover) to filter the valid proofs. With the proposed MUSTARD, we present a theorem-and-proof benchmark MUSTARDSAUCE with 5,866 valid data points. Each data point contains an informal statement, an informal proof, and a translated formal proof that passes the prover validation. We perform extensive analysis and demonstrate that MUSTARD generates validated high-quality step-by-step data. We further apply the MUSTARDSAUCE for fine-tuning smaller language models. The fine-tuned Llama 2-7B achieves a 15.41% average relative performance gain in automated theorem proving, and 8.18% in math word problems. Codes and data are available at https://github.com/Eleanor-H/MUSTARD.

  • 9 authors
·
Feb 14, 2024

SwS: Self-aware Weakness-driven Problem Synthesis in Reinforcement Learning for LLM Reasoning

Reinforcement Learning with Verifiable Rewards (RLVR) has proven effective for training large language models (LLMs) on complex reasoning tasks, such as mathematical problem solving. A prerequisite for the scalability of RLVR is a high-quality problem set with precise and verifiable answers. However, the scarcity of well-crafted human-labeled math problems and limited-verification answers in existing distillation-oriented synthetic datasets limit their effectiveness in RL. Additionally, most problem synthesis strategies indiscriminately expand the problem set without considering the model's capabilities, leading to low efficiency in generating useful questions. To mitigate this issue, we introduce a Self-aware Weakness-driven problem Synthesis framework (SwS) that systematically identifies model deficiencies and leverages them for problem augmentation. Specifically, we define weaknesses as questions that the model consistently fails to learn through its iterative sampling during RL training. We then extract the core concepts from these failure cases and synthesize new problems to strengthen the model's weak areas in subsequent augmented training, enabling it to focus on and gradually overcome its weaknesses. Without relying on external knowledge distillation, our framework enables robust generalization byempowering the model to self-identify and address its weaknesses in RL, yielding average performance gains of 10.0% and 7.7% on 7B and 32B models across eight mainstream reasoning benchmarks.

  • 8 authors
·
Jun 10 2

Autonomous Character-Scene Interaction Synthesis from Text Instruction

Synthesizing human motions in 3D environments, particularly those with complex activities such as locomotion, hand-reaching, and human-object interaction, presents substantial demands for user-defined waypoints and stage transitions. These requirements pose challenges for current models, leading to a notable gap in automating the animation of characters from simple human inputs. This paper addresses this challenge by introducing a comprehensive framework for synthesizing multi-stage scene-aware interaction motions directly from a single text instruction and goal location. Our approach employs an auto-regressive diffusion model to synthesize the next motion segment, along with an autonomous scheduler predicting the transition for each action stage. To ensure that the synthesized motions are seamlessly integrated within the environment, we propose a scene representation that considers the local perception both at the start and the goal location. We further enhance the coherence of the generated motion by integrating frame embeddings with language input. Additionally, to support model training, we present a comprehensive motion-captured dataset comprising 16 hours of motion sequences in 120 indoor scenes covering 40 types of motions, each annotated with precise language descriptions. Experimental results demonstrate the efficacy of our method in generating high-quality, multi-stage motions closely aligned with environmental and textual conditions.

  • 7 authors
·
Oct 4, 2024 2

CLIPSonic: Text-to-Audio Synthesis with Unlabeled Videos and Pretrained Language-Vision Models

Recent work has studied text-to-audio synthesis using large amounts of paired text-audio data. However, audio recordings with high-quality text annotations can be difficult to acquire. In this work, we approach text-to-audio synthesis using unlabeled videos and pretrained language-vision models. We propose to learn the desired text-audio correspondence by leveraging the visual modality as a bridge. We train a conditional diffusion model to generate the audio track of a video, given a video frame encoded by a pretrained contrastive language-image pretraining (CLIP) model. At test time, we first explore performing a zero-shot modality transfer and condition the diffusion model with a CLIP-encoded text query. However, we observe a noticeable performance drop with respect to image queries. To close this gap, we further adopt a pretrained diffusion prior model to generate a CLIP image embedding given a CLIP text embedding. Our results show the effectiveness of the proposed method, and that the pretrained diffusion prior can reduce the modality transfer gap. While we focus on text-to-audio synthesis, the proposed model can also generate audio from image queries, and it shows competitive performance against a state-of-the-art image-to-audio synthesis model in a subjective listening test. This study offers a new direction of approaching text-to-audio synthesis that leverages the naturally-occurring audio-visual correspondence in videos and the power of pretrained language-vision models.

  • 8 authors
·
Jun 16, 2023

Synth-SONAR: Sonar Image Synthesis with Enhanced Diversity and Realism via Dual Diffusion Models and GPT Prompting

Sonar image synthesis is crucial for advancing applications in underwater exploration, marine biology, and defence. Traditional methods often rely on extensive and costly data collection using sonar sensors, jeopardizing data quality and diversity. To overcome these limitations, this study proposes a new sonar image synthesis framework, Synth-SONAR leveraging diffusion models and GPT prompting. The key novelties of Synth-SONAR are threefold: First, by integrating Generative AI-based style injection techniques along with publicly available real/simulated data, thereby producing one of the largest sonar data corpus for sonar research. Second, a dual text-conditioning sonar diffusion model hierarchy synthesizes coarse and fine-grained sonar images with enhanced quality and diversity. Third, high-level (coarse) and low-level (detailed) text-based sonar generation methods leverage advanced semantic information available in visual language models (VLMs) and GPT-prompting. During inference, the method generates diverse and realistic sonar images from textual prompts, bridging the gap between textual descriptions and sonar image generation. This marks the application of GPT-prompting in sonar imagery for the first time, to the best of our knowledge. Synth-SONAR achieves state-of-the-art results in producing high-quality synthetic sonar datasets, significantly enhancing their diversity and realism.

  • 3 authors
·
Oct 11, 2024 2

Synthesis of Batik Motifs using a Diffusion -- Generative Adversarial Network

Batik, a unique blend of art and craftsmanship, is a distinct artistic and technological creation for Indonesian society. Research on batik motifs is primarily focused on classification. However, further studies may extend to the synthesis of batik patterns. Generative Adversarial Networks (GANs) have been an important deep learning model for generating synthetic data, but often face challenges in the stability and consistency of results. This research focuses on the use of StyleGAN2-Ada and Diffusion techniques to produce realistic and high-quality synthetic batik patterns. StyleGAN2-Ada is a variation of the GAN model that separates the style and content aspects in an image, whereas diffusion techniques introduce random noise into the data. In the context of batik, StyleGAN2-Ada and Diffusion are used to produce realistic synthetic batik patterns. This study also made adjustments to the model architecture and used a well-curated batik dataset. The main goal is to assist batik designers or craftsmen in producing unique and quality batik motifs with efficient production time and costs. Based on qualitative and quantitative evaluations, the results show that the model tested is capable of producing authentic and quality batik patterns, with finer details and rich artistic variations. The dataset and code can be accessed here:https://github.com/octadion/diffusion-stylegan2-ada-pytorch

  • 3 authors
·
Jul 22, 2023

Training-Free Structured Diffusion Guidance for Compositional Text-to-Image Synthesis

Large-scale diffusion models have achieved state-of-the-art results on text-to-image synthesis (T2I) tasks. Despite their ability to generate high-quality yet creative images, we observe that attribution-binding and compositional capabilities are still considered major challenging issues, especially when involving multiple objects. In this work, we improve the compositional skills of T2I models, specifically more accurate attribute binding and better image compositions. To do this, we incorporate linguistic structures with the diffusion guidance process based on the controllable properties of manipulating cross-attention layers in diffusion-based T2I models. We observe that keys and values in cross-attention layers have strong semantic meanings associated with object layouts and content. Therefore, we can better preserve the compositional semantics in the generated image by manipulating the cross-attention representations based on linguistic insights. Built upon Stable Diffusion, a SOTA T2I model, our structured cross-attention design is efficient that requires no additional training samples. We achieve better compositional skills in qualitative and quantitative results, leading to a 5-8% advantage in head-to-head user comparison studies. Lastly, we conduct an in-depth analysis to reveal potential causes of incorrect image compositions and justify the properties of cross-attention layers in the generation process.

  • 9 authors
·
Dec 9, 2022

Multimodal Image Synthesis and Editing: The Generative AI Era

As information exists in various modalities in real world, effective interaction and fusion among multimodal information plays a key role for the creation and perception of multimodal data in computer vision and deep learning research. With superb power in modeling the interaction among multimodal information, multimodal image synthesis and editing has become a hot research topic in recent years. Instead of providing explicit guidance for network training, multimodal guidance offers intuitive and flexible means for image synthesis and editing. On the other hand, this field is also facing several challenges in alignment of multimodal features, synthesis of high-resolution images, faithful evaluation metrics, etc. In this survey, we comprehensively contextualize the advance of the recent multimodal image synthesis and editing and formulate taxonomies according to data modalities and model types. We start with an introduction to different guidance modalities in image synthesis and editing, and then describe multimodal image synthesis and editing approaches extensively according to their model types. After that, we describe benchmark datasets and evaluation metrics as well as corresponding experimental results. Finally, we provide insights about the current research challenges and possible directions for future research. A project associated with this survey is available at https://github.com/fnzhan/Generative-AI.

  • 9 authors
·
Dec 27, 2021

Agentar-DeepFinance-100K: A Large-Scale Financial Dataset via Systematic Chain-of-Thought Synthesis Optimization

Recent advancements in large language models (LLMs) have demonstrated remarkable general reasoning capabilities, holding significant potential for applications in the financial domain, a field that requires robust and reliable reasoning. It has been demonstrated that distilling high-quality chain-of-thought (CoT) rationales from advanced general reasoning models offers a promising and efficient path to the financial reasoning model. However, existing CoT synthesis methods suffer from shallow CoT sampling, leaving the question of how to construct a well-designed knowledge space for finance reasoning unexplored. In this paper, we present Agentar-DeepFinance-100K, a large-scale financial reasoning dataset characterized by its systematic CoT synthesis optimization. We first introduce a comprehensive CoT synthesis pipeline featuring Multi-perspective Knowledge Extraction (MKE) and Self-Corrective Rewriting (SCR) to generate exhaustive and deep financial reasoning trajectories. Furthermore, a systematic investigation, termed CoT Cube, is conducted to analyze critical factors that influence CoT effectiveness, such as necessity, length and synthesizer, yielding valuable insights for high-quality financial CoT construction. Experiments demonstrate that models trained on our Agentar-DeepFinance-100K achieve significant improvements on financial benchmarks. We publicly release Agentar-DeepFinance-100K , hoping to advance the research in financial reasoning models.

  • 15 authors
·
Jul 17

Advancing vision-language models in front-end development via data synthesis

Modern front-end (FE) development, especially when leveraging the unique features of frameworks like React and Vue, presents distinctive challenges. These include managing modular architectures, ensuring synchronization between data and visual outputs for declarative rendering, and adapting reusable components to various scenarios. Such complexities make it particularly difficult for state-of-the-art large vision-language models (VLMs) to generate accurate and functional code directly from design images. To address these challenges, we propose a reflective agentic workflow that synthesizes high-quality image-text data to capture the diverse characteristics of FE development. This workflow automates the extraction of self-containedA \textbf{self-contained code snippet is one that encapsulates all necessary logic, styling, and dependencies, ensuring it functions independently without requiring external imports or context.} code snippets from real-world projects, renders the corresponding visual outputs, and generates detailed descriptions that link design elements to functional code. To further expand the scope and utility of the synthesis, we introduce three data synthesis strategies: Evolution-based synthesis, which enables scalable and diverse dataset expansion; Waterfall-Model-based synthesis, which generates logically coherent code derived from system requirements; and Additive Development synthesis, which iteratively increases the complexity of human-authored components. We build a large vision-language model, Flame, trained on the synthesized datasets and demonstrate its effectiveness in generating React code via the pass@k metric. Our results suggest that a code VLM trained to interpret images before code generation may achieve better performance.

  • 5 authors
·
Mar 3

Fusion Embedding for Pose-Guided Person Image Synthesis with Diffusion Model

Pose-Guided Person Image Synthesis (PGPIS) aims to synthesize high-quality person images corresponding to target poses while preserving the appearance of the source image. Recently, PGPIS methods that use diffusion models have achieved competitive performance. Most approaches involve extracting representations of the target pose and source image and learning their relationships in the generative model's training process. This approach makes it difficult to learn the semantic relationships between the input and target images and complicates the model structure needed to enhance generation results. To address these issues, we propose Fusion embedding for PGPIS using a Diffusion Model (FPDM). Inspired by the successful application of pre-trained CLIP models in text-to-image diffusion models, our method consists of two stages. The first stage involves training the fusion embedding of the source image and target pose to align with the target image's embedding. In the second stage, the generative model uses this fusion embedding as a condition to generate the target image. We applied the proposed method to the benchmark datasets DeepFashion and RWTH-PHOENIX-Weather 2014T, and conducted both quantitative and qualitative evaluations, demonstrating state-of-the-art (SOTA) performance. An ablation study of the model structure showed that even a model using only the second stage achieved performance close to the other PGPIS SOTA models. The code is available at https://github.com/dhlee-work/FPDM.

  • 6 authors
·
Dec 10, 2024

SpatialDreamer: Self-supervised Stereo Video Synthesis from Monocular Input

Stereo video synthesis from a monocular input is a demanding task in the fields of spatial computing and virtual reality. The main challenges of this task lie on the insufficiency of high-quality paired stereo videos for training and the difficulty of maintaining the spatio-temporal consistency between frames. Existing methods primarily address these issues by directly applying novel view synthesis (NVS) techniques to video, while facing limitations such as the inability to effectively represent dynamic scenes and the requirement for large amounts of training data. In this paper, we introduce a novel self-supervised stereo video synthesis paradigm via a video diffusion model, termed SpatialDreamer, which meets the challenges head-on. Firstly, to address the stereo video data insufficiency, we propose a Depth based Video Generation module DVG, which employs a forward-backward rendering mechanism to generate paired videos with geometric and temporal priors. Leveraging data generated by DVG, we propose RefinerNet along with a self-supervised synthetic framework designed to facilitate efficient and dedicated training. More importantly, we devise a consistency control module, which consists of a metric of stereo deviation strength and a Temporal Interaction Learning module TIL for geometric and temporal consistency ensurance respectively. We evaluated the proposed method against various benchmark methods, with the results showcasing its superior performance.

  • 7 authors
·
Nov 18, 2024

Hallo2: Long-Duration and High-Resolution Audio-Driven Portrait Image Animation

Recent advances in latent diffusion-based generative models for portrait image animation, such as Hallo, have achieved impressive results in short-duration video synthesis. In this paper, we present updates to Hallo, introducing several design enhancements to extend its capabilities. First, we extend the method to produce long-duration videos. To address substantial challenges such as appearance drift and temporal artifacts, we investigate augmentation strategies within the image space of conditional motion frames. Specifically, we introduce a patch-drop technique augmented with Gaussian noise to enhance visual consistency and temporal coherence over long duration. Second, we achieve 4K resolution portrait video generation. To accomplish this, we implement vector quantization of latent codes and apply temporal alignment techniques to maintain coherence across the temporal dimension. By integrating a high-quality decoder, we realize visual synthesis at 4K resolution. Third, we incorporate adjustable semantic textual labels for portrait expressions as conditional inputs. This extends beyond traditional audio cues to improve controllability and increase the diversity of the generated content. To the best of our knowledge, Hallo2, proposed in this paper, is the first method to achieve 4K resolution and generate hour-long, audio-driven portrait image animations enhanced with textual prompts. We have conducted extensive experiments to evaluate our method on publicly available datasets, including HDTF, CelebV, and our introduced "Wild" dataset. The experimental results demonstrate that our approach achieves state-of-the-art performance in long-duration portrait video animation, successfully generating rich and controllable content at 4K resolution for duration extending up to tens of minutes. Project page https://fudan-generative-vision.github.io/hallo2

  • 9 authors
·
Oct 10, 2024

Long-Term Photometric Consistent Novel View Synthesis with Diffusion Models

Novel view synthesis from a single input image is a challenging task, where the goal is to generate a new view of a scene from a desired camera pose that may be separated by a large motion. The highly uncertain nature of this synthesis task due to unobserved elements within the scene (i.e. occlusion) and outside the field-of-view makes the use of generative models appealing to capture the variety of possible outputs. In this paper, we propose a novel generative model capable of producing a sequence of photorealistic images consistent with a specified camera trajectory, and a single starting image. Our approach is centred on an autoregressive conditional diffusion-based model capable of interpolating visible scene elements, and extrapolating unobserved regions in a view, in a geometrically consistent manner. Conditioning is limited to an image capturing a single camera view and the (relative) pose of the new camera view. To measure the consistency over a sequence of generated views, we introduce a new metric, the thresholded symmetric epipolar distance (TSED), to measure the number of consistent frame pairs in a sequence. While previous methods have been shown to produce high quality images and consistent semantics across pairs of views, we show empirically with our metric that they are often inconsistent with the desired camera poses. In contrast, we demonstrate that our method produces both photorealistic and view-consistent imagery.

  • 4 authors
·
Apr 20, 2023

RTMV: A Ray-Traced Multi-View Synthetic Dataset for Novel View Synthesis

We present a large-scale synthetic dataset for novel view synthesis consisting of ~300k images rendered from nearly 2000 complex scenes using high-quality ray tracing at high resolution (1600 x 1600 pixels). The dataset is orders of magnitude larger than existing synthetic datasets for novel view synthesis, thus providing a large unified benchmark for both training and evaluation. Using 4 distinct sources of high-quality 3D meshes, the scenes of our dataset exhibit challenging variations in camera views, lighting, shape, materials, and textures. Because our dataset is too large for existing methods to process, we propose Sparse Voxel Light Field (SVLF), an efficient voxel-based light field approach for novel view synthesis that achieves comparable performance to NeRF on synthetic data, while being an order of magnitude faster to train and two orders of magnitude faster to render. SVLF achieves this speed by relying on a sparse voxel octree, careful voxel sampling (requiring only a handful of queries per ray), and reduced network structure; as well as ground truth depth maps at training time. Our dataset is generated by NViSII, a Python-based ray tracing renderer, which is designed to be simple for non-experts to use and share, flexible and powerful through its use of scripting, and able to create high-quality and physically-based rendered images. Experiments with a subset of our dataset allow us to compare standard methods like NeRF and mip-NeRF for single-scene modeling, and pixelNeRF for category-level modeling, pointing toward the need for future improvements in this area.

  • 12 authors
·
May 14, 2022

Mixed Neural Voxels for Fast Multi-view Video Synthesis

Synthesizing high-fidelity videos from real-world multi-view input is challenging because of the complexities of real-world environments and highly dynamic motions. Previous works based on neural radiance fields have demonstrated high-quality reconstructions of dynamic scenes. However, training such models on real-world scenes is time-consuming, usually taking days or weeks. In this paper, we present a novel method named MixVoxels to better represent the dynamic scenes with fast training speed and competitive rendering qualities. The proposed MixVoxels represents the 4D dynamic scenes as a mixture of static and dynamic voxels and processes them with different networks. In this way, the computation of the required modalities for static voxels can be processed by a lightweight model, which essentially reduces the amount of computation, especially for many daily dynamic scenes dominated by the static background. To separate the two kinds of voxels, we propose a novel variation field to estimate the temporal variance of each voxel. For the dynamic voxels, we design an inner-product time query method to efficiently query multiple time steps, which is essential to recover the high-dynamic motions. As a result, with 15 minutes of training for dynamic scenes with inputs of 300-frame videos, MixVoxels achieves better PSNR than previous methods. Codes and trained models are available at https://github.com/fengres/mixvoxels

  • 5 authors
·
Nov 30, 2022