new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 30

Human-AI Teaming Using Large Language Models: Boosting Brain-Computer Interfacing (BCI) and Brain Research

Recently, there is an increasing interest in using artificial intelligence (AI) to automate aspects of the research process, or even autonomously conduct the full research cycle from idea generation, over data analysis, to composing and evaluation of scientific manuscripts. Examples of working AI scientist systems have been demonstrated for computer science tasks and running molecular biology labs. While some approaches aim for full autonomy of the scientific AI, others rather aim for leveraging human-AI teaming. Here, we address how to adapt such approaches for boosting Brain-Computer Interface (BCI) development, as well as brain research resp. neuroscience at large. We argue that at this time, a strong emphasis on human-AI teaming, in contrast to fully autonomous AI BCI researcher will be the most promising way forward. We introduce the collaborative workspaces concept for human-AI teaming based on a set of Janusian design principles, looking both ways, to the human as well as to the AI side. Based on these principles, we present ChatBCI, a Python-based toolbox for enabling human-AI collaboration based on interaction with Large Language Models (LLMs), designed for BCI research and development projects. We show how ChatBCI was successfully used in a concrete BCI project on advancing motor imagery decoding from EEG signals. Our approach can be straightforwardly extended to broad neurotechnological and neuroscientific topics, and may by design facilitate human expert knowledge transfer to scientific AI systems in general.

  • 2 authors
·
Dec 30, 2024

Tutor CoPilot: A Human-AI Approach for Scaling Real-Time Expertise

Generative AI, particularly Language Models (LMs), has the potential to transform real-world domains with societal impact, particularly where access to experts is limited. For example, in education, training novice educators with expert guidance is important for effectiveness but expensive, creating significant barriers to improving education quality at scale. This challenge disproportionately harms students from under-served communities, who stand to gain the most from high-quality education. We introduce Tutor CoPilot, a novel Human-AI approach that leverages a model of expert thinking to provide expert-like guidance to tutors as they tutor. This study is the first randomized controlled trial of a Human-AI system in live tutoring, involving 900 tutors and 1,800 K-12 students from historically under-served communities. Following a preregistered analysis plan, we find that students working with tutors that have access to Tutor CoPilot are 4 percentage points (p.p.) more likely to master topics (p<0.01). Notably, students of lower-rated tutors experienced the greatest benefit, improving mastery by 9 p.p. We find that Tutor CoPilot costs only $20 per-tutor annually. We analyze 550,000+ messages using classifiers to identify pedagogical strategies, and find that tutors with access to Tutor CoPilot are more likely to use high-quality strategies to foster student understanding (e.g., asking guiding questions) and less likely to give away the answer to the student. Tutor interviews highlight how Tutor CoPilot's guidance helps tutors to respond to student needs, though they flag issues in Tutor CoPilot, such as generating suggestions that are not grade-level appropriate. Altogether, our study of Tutor CoPilot demonstrates how Human-AI systems can scale expertise in real-world domains, bridge gaps in skills and create a future where high-quality education is accessible to all students.

  • 5 authors
·
Oct 3, 2024 5

Detecting AI-Generated Sentences in Human-AI Collaborative Hybrid Texts: Challenges, Strategies, and Insights

This study explores the challenge of sentence-level AI-generated text detection within human-AI collaborative hybrid texts. Existing studies of AI-generated text detection for hybrid texts often rely on synthetic datasets. These typically involve hybrid texts with a limited number of boundaries. We contend that studies of detecting AI-generated content within hybrid texts should cover different types of hybrid texts generated in realistic settings to better inform real-world applications. Therefore, our study utilizes the CoAuthor dataset, which includes diverse, realistic hybrid texts generated through the collaboration between human writers and an intelligent writing system in multi-turn interactions. We adopt a two-step, segmentation-based pipeline: (i) detect segments within a given hybrid text where each segment contains sentences of consistent authorship, and (ii) classify the authorship of each identified segment. Our empirical findings highlight (1) detecting AI-generated sentences in hybrid texts is overall a challenging task because (1.1) human writers' selecting and even editing AI-generated sentences based on personal preferences adds difficulty in identifying the authorship of segments; (1.2) the frequent change of authorship between neighboring sentences within the hybrid text creates difficulties for segment detectors in identifying authorship-consistent segments; (1.3) the short length of text segments within hybrid texts provides limited stylistic cues for reliable authorship determination; (2) before embarking on the detection process, it is beneficial to assess the average length of segments within the hybrid text. This assessment aids in deciding whether (2.1) to employ a text segmentation-based strategy for hybrid texts with longer segments, or (2.2) to adopt a direct sentence-by-sentence classification strategy for those with shorter segments.

  • 8 authors
·
Mar 6, 2024

Mutual Theory of Mind for Human-AI Communication

New developments are enabling AI systems to perceive, recognize, and respond with social cues based on inferences made from humans' explicit or implicit behavioral and verbal cues. These AI systems, equipped with an equivalent of human's Theory of Mind (ToM) capability, are currently serving as matchmakers on dating platforms, assisting student learning as teaching assistants, and enhancing productivity as work partners. They mark a new era in human-AI interaction (HAI) that diverges from traditional human-computer interaction (HCI), where computers are commonly seen as tools instead of social actors. Designing and understanding the human perceptions and experiences in this emerging HAI era becomes an urgent and critical issue for AI systems to fulfill human needs and mitigate risks across social contexts. In this paper, we posit the Mutual Theory of Mind (MToM) framework, inspired by our capability of ToM in human-human communications, to guide this new generation of HAI research by highlighting the iterative and mutual shaping nature of human-AI communication. We discuss the motivation of the MToM framework and its three key components that iteratively shape the human-AI communication in three stages. We then describe two empirical studies inspired by the MToM framework to demonstrate the power of MToM in guiding the design and understanding of human-AI communication. Finally, we discuss future research opportunities in human-AI interaction through the lens of MToM.

  • 2 authors
·
Oct 7, 2022

Human Decision-making is Susceptible to AI-driven Manipulation

Artificial Intelligence (AI) systems are increasingly intertwined with daily life, assisting users in executing various tasks and providing guidance on decision-making. This integration introduces risks of AI-driven manipulation, where such systems may exploit users' cognitive biases and emotional vulnerabilities to steer them toward harmful outcomes. Through a randomized controlled trial with 233 participants, we examined human susceptibility to such manipulation in financial (e.g., purchases) and emotional (e.g., conflict resolution) decision-making contexts. Participants interacted with one of three AI agents: a neutral agent (NA) optimizing for user benefit without explicit influence, a manipulative agent (MA) designed to covertly influence beliefs and behaviors, or a strategy-enhanced manipulative agent (SEMA) employing explicit psychological tactics to reach its hidden objectives. By analyzing participants' decision patterns and shifts in their preference ratings post-interaction, we found significant susceptibility to AI-driven manipulation. Particularly, across both decision-making domains, participants interacting with the manipulative agents shifted toward harmful options at substantially higher rates (financial, MA: 62.3%, SEMA: 59.6%; emotional, MA: 42.3%, SEMA: 41.5%) compared to the NA group (financial, 35.8%; emotional, 12.8%). Notably, our findings reveal that even subtle manipulative objectives (MA) can be as effective as employing explicit psychological strategies (SEMA) in swaying human decision-making. By revealing the potential for covert AI influence, this study highlights a critical vulnerability in human-AI interactions, emphasizing the need for ethical safeguards and regulatory frameworks to ensure responsible deployment of AI technologies and protect human autonomy.

  • 16 authors
·
Feb 11

Understanding the Role of Human Intuition on Reliance in Human-AI Decision-Making with Explanations

AI explanations are often mentioned as a way to improve human-AI decision-making, but empirical studies have not found consistent evidence of explanations' effectiveness and, on the contrary, suggest that they can increase overreliance when the AI system is wrong. While many factors may affect reliance on AI support, one important factor is how decision-makers reconcile their own intuition -- beliefs or heuristics, based on prior knowledge, experience, or pattern recognition, used to make judgments -- with the information provided by the AI system to determine when to override AI predictions. We conduct a think-aloud, mixed-methods study with two explanation types (feature- and example-based) for two prediction tasks to explore how decision-makers' intuition affects their use of AI predictions and explanations, and ultimately their choice of when to rely on AI. Our results identify three types of intuition involved in reasoning about AI predictions and explanations: intuition about the task outcome, features, and AI limitations. Building on these, we summarize three observed pathways for decision-makers to apply their own intuition and override AI predictions. We use these pathways to explain why (1) the feature-based explanations we used did not improve participants' decision outcomes and increased their overreliance on AI, and (2) the example-based explanations we used improved decision-makers' performance over feature-based explanations and helped achieve complementary human-AI performance. Overall, our work identifies directions for further development of AI decision-support systems and explanation methods that help decision-makers effectively apply their intuition to achieve appropriate reliance on AI.

  • 4 authors
·
Jan 17, 2023

Aligning Superhuman AI with Human Behavior: Chess as a Model System

As artificial intelligence becomes increasingly intelligent---in some cases, achieving superhuman performance---there is growing potential for humans to learn from and collaborate with algorithms. However, the ways in which AI systems approach problems are often different from the ways people do, and thus may be uninterpretable and hard to learn from. A crucial step in bridging this gap between human and artificial intelligence is modeling the granular actions that constitute human behavior, rather than simply matching aggregate human performance. We pursue this goal in a model system with a long history in artificial intelligence: chess. The aggregate performance of a chess player unfolds as they make decisions over the course of a game. The hundreds of millions of games played online by players at every skill level form a rich source of data in which these decisions, and their exact context, are recorded in minute detail. Applying existing chess engines to this data, including an open-source implementation of AlphaZero, we find that they do not predict human moves well. We develop and introduce Maia, a customized version of Alpha-Zero trained on human chess games, that predicts human moves at a much higher accuracy than existing engines, and can achieve maximum accuracy when predicting decisions made by players at a specific skill level in a tuneable way. For a dual task of predicting whether a human will make a large mistake on the next move, we develop a deep neural network that significantly outperforms competitive baselines. Taken together, our results suggest that there is substantial promise in designing artificial intelligence systems with human collaboration in mind by first accurately modeling granular human decision-making.

  • 4 authors
·
Jun 2, 2020

PyGen: A Collaborative Human-AI Approach to Python Package Creation

The principles of automation and innovation serve as foundational elements for advancement in contemporary science and technology. Here, we introduce Pygen, an automation platform designed to empower researchers, technologists, and hobbyists to bring abstract ideas to life as core, usable software tools written in Python. Pygen leverages the immense power of autoregressive large language models to augment human creativity during the ideation, iteration, and innovation process. By combining state-of-the-art language models with open-source code generation technologies, Pygen has significantly reduced the manual overhead of tool development. From a user prompt, Pygen automatically generates Python packages for a complete workflow from concept to package generation and documentation. The findings of our work show that Pygen considerably enhances the researcher's productivity by enabling the creation of resilient, modular, and well-documented packages for various specialized purposes. We employ a prompt enhancement approach to distill the user's package description into increasingly specific and actionable. While being inherently an open-ended task, we have evaluated the generated packages and the documentation using Human Evaluation, LLM-based evaluation, and CodeBLEU, with detailed results in the results section. Furthermore, we documented our results, analyzed the limitations, and suggested strategies to alleviate them. Pygen is our vision of ethical automation, a framework that promotes inclusivity, accessibility, and collaborative development. This project marks the beginning of a large-scale effort towards creating tools where intelligent agents collaborate with humans to improve scientific and technological development substantially. Our code and generated examples are open-sourced at [https://github.com/GitsSaikat/Pygen]

  • 6 authors
·
Nov 12, 2024

ViMRHP: A Vietnamese Benchmark Dataset for Multimodal Review Helpfulness Prediction via Human-AI Collaborative Annotation

Multimodal Review Helpfulness Prediction (MRHP) is an essential task in recommender systems, particularly in E-commerce platforms. Determining the helpfulness of user-generated reviews enhances user experience and improves consumer decision-making. However, existing datasets focus predominantly on English and Indonesian, resulting in a lack of linguistic diversity, especially for low-resource languages such as Vietnamese. In this paper, we introduce ViMRHP (Vietnamese Multimodal Review Helpfulness Prediction), a large-scale benchmark dataset for MRHP task in Vietnamese. This dataset covers four domains, including 2K products with 46K reviews. Meanwhile, a large-scale dataset requires considerable time and cost. To optimize the annotation process, we leverage AI to assist annotators in constructing the ViMRHP dataset. With AI assistance, annotation time is reduced (90 to 120 seconds per task down to 20 to 40 seconds per task) while maintaining data quality and lowering overall costs by approximately 65%. However, AI-generated annotations still have limitations in complex annotation tasks, which we further examine through a detailed performance analysis. In our experiment on ViMRHP, we evaluate baseline models on human-verified and AI-generated annotations to assess their quality differences. The ViMRHP dataset is publicly available at https://github.com/trng28/ViMRHP

  • 4 authors
·
May 12 2

Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions

Recent advancements in general-purpose AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment. However, the lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment. In particular, ML- and philosophy-oriented alignment research often views AI alignment as a static, unidirectional process (i.e., aiming to ensure that AI systems' objectives match humans) rather than an ongoing, mutual alignment problem [429]. This perspective largely neglects the long-term interaction and dynamic changes of alignment. To understand these gaps, we introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML), and others. We characterize, define and scope human-AI alignment. From this, we present a conceptual framework of "Bidirectional Human-AI Alignment" to organize the literature from a human-centered perspective. This framework encompasses both 1) conventional studies of aligning AI to humans that ensures AI produces the intended outcomes determined by humans, and 2) a proposed concept of aligning humans to AI, which aims to help individuals and society adjust to AI advancements both cognitively and behaviorally. Additionally, we articulate the key findings derived from literature analysis, including discussions about human values, interaction techniques, and evaluations. To pave the way for future studies, we envision three key challenges for future directions and propose examples of potential future solutions.

  • 24 authors
·
Jun 13, 2024

Cognitio Emergens: Agency, Dimensions, and Dynamics in Human-AI Knowledge Co-Creation

Scientific knowledge creation is fundamentally transforming as humans and AI systems evolve beyond tool-user relationships into co-evolutionary epistemic partnerships. When AlphaFold revolutionized protein structure prediction, researchers described engaging with an epistemic partner that reshaped how they conceptualized fundamental relationships. This article introduces Cognitio Emergens (CE), a framework addressing critical limitations in existing models that focus on static roles or narrow metrics while failing to capture how scientific understanding emerges through recursive human-AI interaction over time. CE integrates three components addressing these limitations: Agency Configurations describing how authority distributes between humans and AI (Directed, Contributory, Partnership), with partnerships dynamically oscillating between configurations rather than following linear progression; Epistemic Dimensions capturing six specific capabilities emerging through collaboration across Discovery, Integration, and Projection axes, creating distinctive "capability signatures" that guide development; and Partnership Dynamics identifying forces shaping how these relationships evolve, particularly the risk of epistemic alienation where researchers lose interpretive control over knowledge they formally endorse. Drawing from autopoiesis theory, social systems theory, and organizational modularity, CE reveals how knowledge co-creation emerges through continuous negotiation of roles, values, and organizational structures. By reconceptualizing human-AI scientific collaboration as fundamentally co-evolutionary, CE offers a balanced perspective that neither uncritically celebrates nor unnecessarily fears AI's evolving role, instead providing conceptual tools for cultivating partnerships that maintain meaningful human participation while enabling transformative scientific breakthroughs.

  • 1 authors
·
May 5 1

A foundation model for human-AI collaboration in medical literature mining

Systematic literature review is essential for evidence-based medicine, requiring comprehensive analysis of clinical trial publications. However, the application of artificial intelligence (AI) models for medical literature mining has been limited by insufficient training and evaluation across broad therapeutic areas and diverse tasks. Here, we present LEADS, an AI foundation model for study search, screening, and data extraction from medical literature. The model is trained on 633,759 instruction data points in LEADSInstruct, curated from 21,335 systematic reviews, 453,625 clinical trial publications, and 27,015 clinical trial registries. We showed that LEADS demonstrates consistent improvements over four cutting-edge generic large language models (LLMs) on six tasks. Furthermore, LEADS enhances expert workflows by providing supportive references following expert requests, streamlining processes while maintaining high-quality results. A study with 16 clinicians and medical researchers from 14 different institutions revealed that experts collaborating with LEADS achieved a recall of 0.81 compared to 0.77 experts working alone in study selection, with a time savings of 22.6%. In data extraction tasks, experts using LEADS achieved an accuracy of 0.85 versus 0.80 without using LEADS, alongside a 26.9% time savings. These findings highlight the potential of specialized medical literature foundation models to outperform generic models, delivering significant quality and efficiency benefits when integrated into expert workflows for medical literature mining.

  • 23 authors
·
Jan 27

AIssistant: An Agentic Approach for Human--AI Collaborative Scientific Work on Reviews and Perspectives in Machine Learning

Advances in AI-assisted research have introduced powerful tools for literature retrieval, hypothesis generation, experimentation, and manuscript preparation. However, systems remain fragmented and lack human-centred workflows. To address these gaps, we introduce AIssistant, an agentic, open-source Human-AI collaborative framework designed to simplify the end-to-end creation of scientific workflows. Since our development is still in an early stage, we present here the first experiments with AIssistant for perspective and review research papers in machine learning. Our system integrates modular tools and agents for literature synthesis, section-wise experimentation, citation management, and automatic LaTeX paper text generation, while maintaining human oversight at every stage to ensure accuracy, coherence, and scholarly rigour. We conducted a comprehensive evaluation across three layers: (1) Independent Human Review, following NeurIPS double-blind standards; (2) Automated LLM Review, using GPT-5 as a scalable human review proxy; and (3) Program Chair Oversight, where the chair monitors the entire review process and makes final validation and acceptance decisions. The results demonstrate that AIssistant improves drafting efficiency and thematic consistency. Nonetheless, Human-AI collaboration remains essential for maintaining factual correctness, methodological soundness, and ethical compliance. Despite its effectiveness, we identify key limitations, including hallucinated citations, difficulty adapting to dynamic paper structures, and incomplete integration of multimodal content.

  • 4 authors
·
Sep 14

Carbon and Silicon, Coexist or Compete? A Survey on Human-AI Interactions in Agent-based Modeling and Simulation

Recent interest in human-AI interactions in agent-based modeling and simulation (ABMS) has grown rapidly due to the widespread utilization of large language models (LLMs). ABMS is an intelligent approach that simulates autonomous agents' behaviors within a defined environment to research emergent phenomena. Integrating LLMs into ABMS enables natural language interaction between humans and models. Meanwhile, it introduces new challenges that rely on human interaction to address. Human involvement can assist ABMS in adapting to flexible and complex research demands. However, systematic reviews of interactions that examine how humans and AI interact in ABMS are lacking. In this paper, we investigate existing works and propose a novel taxonomy to categorize the interactions derived from them. Specifically, human users refer to researchers who utilize ABMS tools to conduct their studies in our survey. We decompose interactions into five dimensions: the goals that users want to achieve (Why), the phases that users are involved (When), the components of the system (What), the roles of users (Who), and the means of interactions (How). Our analysis summarizes the findings that reveal existing interaction patterns. They provide researchers who develop interactions with comprehensive guidance on how humans and AI interact. We further discuss the unexplored interactions and suggest future research directions.

  • 5 authors
·
Feb 25

LLM-Powered Hierarchical Language Agent for Real-time Human-AI Coordination

AI agents powered by Large Language Models (LLMs) have made significant advances, enabling them to assist humans in diverse complex tasks and leading to a revolution in human-AI coordination. LLM-powered agents typically require invoking LLM APIs and employing artificially designed complex prompts, which results in high inference latency. While this paradigm works well in scenarios with minimal interactive demands, such as code generation, it is unsuitable for highly interactive and real-time applications, such as gaming. Traditional gaming AI often employs small models or reactive policies, enabling fast inference but offering limited task completion and interaction abilities. In this work, we consider Overcooked as our testbed where players could communicate with natural language and cooperate to serve orders. We propose a Hierarchical Language Agent (HLA) for human-AI coordination that provides both strong reasoning abilities while keeping real-time execution. In particular, HLA adopts a hierarchical framework and comprises three modules: a proficient LLM, referred to as Slow Mind, for intention reasoning and language interaction, a lightweight LLM, referred to as Fast Mind, for generating macro actions, and a reactive policy, referred to as Executor, for transforming macro actions into atomic actions. Human studies show that HLA outperforms other baseline agents, including slow-mind-only agents and fast-mind-only agents, with stronger cooperation abilities, faster responses, and more consistent language communications.

  • 7 authors
·
Dec 23, 2023

Towards Automatic Boundary Detection for Human-AI Collaborative Hybrid Essay in Education

The recent large language models (LLMs), e.g., ChatGPT, have been able to generate human-like and fluent responses when provided with specific instructions. While admitting the convenience brought by technological advancement, educators also have concerns that students might leverage LLMs to complete their writing assignments and pass them off as their original work. Although many AI content detection studies have been conducted as a result of such concerns, most of these prior studies modeled AI content detection as a classification problem, assuming that a text is either entirely human-written or entirely AI-generated. In this study, we investigated AI content detection in a rarely explored yet realistic setting where the text to be detected is collaboratively written by human and generative LLMs (i.e., hybrid text). We first formalized the detection task as identifying the transition points between human-written content and AI-generated content from a given hybrid text (boundary detection). Then we proposed a two-step approach where we (1) separated AI-generated content from human-written content during the encoder training process; and (2) calculated the distances between every two adjacent prototypes and assumed that the boundaries exist between the two adjacent prototypes that have the furthest distance from each other. Through extensive experiments, we observed the following main findings: (1) the proposed approach consistently outperformed the baseline methods across different experiment settings; (2) the encoder training process can significantly boost the performance of the proposed approach; (3) when detecting boundaries for single-boundary hybrid essays, the proposed approach could be enhanced by adopting a relatively large prototype size, leading to a 22% improvement in the In-Domain evaluation and an 18% improvement in the Out-of-Domain evaluation.

  • 6 authors
·
Jul 23, 2023

HAICOSYSTEM: An Ecosystem for Sandboxing Safety Risks in Human-AI Interactions

AI agents are increasingly autonomous in their interactions with human users and tools, leading to increased interactional safety risks. We present HAICOSYSTEM, a framework examining AI agent safety within diverse and complex social interactions. HAICOSYSTEM features a modular sandbox environment that simulates multi-turn interactions between human users and AI agents, where the AI agents are equipped with a variety of tools (e.g., patient management platforms) to navigate diverse scenarios (e.g., a user attempting to access other patients' profiles). To examine the safety of AI agents in these interactions, we develop a comprehensive multi-dimensional evaluation framework that uses metrics covering operational, content-related, societal, and legal risks. Through running 1840 simulations based on 92 scenarios across seven domains (e.g., healthcare, finance, education), we demonstrate that HAICOSYSTEM can emulate realistic user-AI interactions and complex tool use by AI agents. Our experiments show that state-of-the-art LLMs, both proprietary and open-sourced, exhibit safety risks in over 50\% cases, with models generally showing higher risks when interacting with simulated malicious users. Our findings highlight the ongoing challenge of building agents that can safely navigate complex interactions, particularly when faced with malicious users. To foster the AI agent safety ecosystem, we release a code platform that allows practitioners to create custom scenarios, simulate interactions, and evaluate the safety and performance of their agents.

  • 12 authors
·
Sep 24, 2024

Exploring EFL students' prompt engineering in human-AI story writing: an Activity Theory perspective

This study applies Activity Theory to investigate how English as a foreign language (EFL) students prompt generative artificial intelligence (AI) tools during short story writing. Sixty-seven Hong Kong secondary school students created generative-AI tools using open-source language models and wrote short stories with them. The study collected and analyzed the students' generative-AI tools, short stories, and written reflections on their conditions or purposes for prompting. The research identified three main themes regarding the purposes for which students prompt generative-AI tools during short story writing: a lack of awareness of purposes, overcoming writer's block, and developing, expanding, and improving the story. The study also identified common characteristics of students' activity systems, including the sophistication of their generative-AI tools, the quality of their stories, and their school's overall academic achievement level, for their prompting of generative-AI tools for the three purposes during short story writing. The study's findings suggest that teachers should be aware of students' purposes for prompting generative-AI tools to provide tailored instructions and scaffolded guidance. The findings may also help designers provide differentiated instructions for users at various levels of story development when using a generative-AI tool.

  • 3 authors
·
Jun 1, 2023

Skywork-Reward-V2: Scaling Preference Data Curation via Human-AI Synergy

Despite the critical role of reward models (RMs) in reinforcement learning from human feedback (RLHF), current state-of-the-art open RMs perform poorly on most existing evaluation benchmarks, failing to capture the spectrum of nuanced and sophisticated human preferences. Even approaches that incorporate advanced training techniques have not yielded meaningful performance improvements. We hypothesize that this brittleness stems primarily from limitations in preference datasets, which are often narrowly scoped, synthetically labeled, or lack rigorous quality control. To address these challenges, we present a large-scale preference dataset comprising 40 million preference pairs, named SynPref-40M. To enable data curation at scale, we design a human-AI synergistic two-stage pipeline that leverages the complementary strengths of human annotation quality and AI scalability. In this pipeline, humans provide verified annotations, while large language models perform automatic curation based on human guidance. Training on this preference mixture, we introduce Skywork-Reward-V2, a suite of eight reward models ranging from 0.6B to 8B parameters, trained on a carefully curated subset of 26 million preference pairs from SynPref-40M. We demonstrate that Skywork-Reward-V2 is versatile across a wide range of capabilities, including alignment with human preferences, objective correctness, safety, resistance to stylistic biases, and best-of-N scaling, achieving state-of-the-art performance across seven major reward model benchmarks. Ablation studies confirm that the effectiveness of our approach stems not only from data scale but also from high-quality curation. The Skywork-Reward-V2 series represents substantial progress in open reward models, highlighting the untapped potential of existing preference datasets and demonstrating how human-AI curation synergy can unlock significantly higher data quality.

Llama Guard: LLM-based Input-Output Safeguard for Human-AI Conversations

We introduce Llama Guard, an LLM-based input-output safeguard model geared towards Human-AI conversation use cases. Our model incorporates a safety risk taxonomy, a valuable tool for categorizing a specific set of safety risks found in LLM prompts (i.e., prompt classification). This taxonomy is also instrumental in classifying the responses generated by LLMs to these prompts, a process we refer to as response classification. For the purpose of both prompt and response classification, we have meticulously gathered a dataset of high quality. Llama Guard, a Llama2-7b model that is instruction-tuned on our collected dataset, albeit low in volume, demonstrates strong performance on existing benchmarks such as the OpenAI Moderation Evaluation dataset and ToxicChat, where its performance matches or exceeds that of currently available content moderation tools. Llama Guard functions as a language model, carrying out multi-class classification and generating binary decision scores. Furthermore, the instruction fine-tuning of Llama Guard allows for the customization of tasks and the adaptation of output formats. This feature enhances the model's capabilities, such as enabling the adjustment of taxonomy categories to align with specific use cases, and facilitating zero-shot or few-shot prompting with diverse taxonomies at the input. We are making Llama Guard model weights available and we encourage researchers to further develop and adapt them to meet the evolving needs of the community for AI safety.

  • 11 authors
·
Dec 7, 2023 1

Allowing humans to interactively guide machines where to look does not always improve a human-AI team's classification accuracy

Via thousands of papers in Explainable AI (XAI), attention maps vaswani2017attention and feature attribution maps bansal2020sam have been established as a common means for explaining the input features that are important to AI's decisions. It is an interesting but unexplored question whether allowing users to edit the importance scores of input features at test time would improve the human-AI team's accuracy on downstream tasks. In this paper, we address this question by taking CHM-Corr, a state-of-the-art, ante-hoc explanation method taesiri2022visual that first predicts patch-wise correspondences between the input and the training-set images, and then uses them to make classification decisions. We build an interactive interface on top of CHM-Corr, enabling users to directly edit the initial feature attribution map provided by CHM-Corr. Via our CHM-Corr++ interface, users gain insights into if, when, and how the model changes its outputs, enhancing understanding beyond static explanations. Our user study with 18 machine learning researchers who performed sim1,400 decisions shows that our interactive approach does not improve user accuracy on CUB-200 bird image classification over static explanations. This challenges the belief that interactivity inherently boosts XAI effectiveness~sokol2020one,sun2022exploring,shen2024towards,singh2024rethinking,mindlin2024beyond,lakkaraju2022rethinking,cheng2019explaining,liu2021understanding and raises needs for future research. Our work contributes to the field by open-sourcing an interactive tool for manipulating model attention, and it lays the groundwork for future research to enable effective human-AI interaction in computer vision. We release code and data on https://anonymous.4open.science/r/CHMCorrPlusPlus/{github}. Our interface are available http://137.184.82.109:7080/{here}.

  • 4 authors
·
Apr 8, 2024

3DPFIX: Improving Remote Novices' 3D Printing Troubleshooting through Human-AI Collaboration

The widespread consumer-grade 3D printers and learning resources online enable novices to self-train in remote settings. While troubleshooting plays an essential part of 3D printing, the process remains challenging for many remote novices even with the help of well-developed online sources, such as online troubleshooting archives and online community help. We conducted a formative study with 76 active 3D printing users to learn how remote novices leverage online resources in troubleshooting and their challenges. We found that remote novices cannot fully utilize online resources. For example, the online archives statically provide general information, making it hard to search and relate their unique cases with existing descriptions. Online communities can potentially ease their struggles by providing more targeted suggestions, but a helper who can provide custom help is rather scarce, making it hard to obtain timely assistance. We propose 3DPFIX, an interactive 3D troubleshooting system powered by the pipeline to facilitate Human-AI Collaboration, designed to improve novices' 3D printing experiences and thus help them easily accumulate their domain knowledge. We built 3DPFIX that supports automated diagnosis and solution-seeking. 3DPFIX was built upon shared dialogues about failure cases from Q&A discourses accumulated in online communities. We leverage social annotations (i.e., comments) to build an annotated failure image dataset for AI classifiers and extract a solution pool. Our summative study revealed that using 3DPFIX helped participants spend significantly less effort in diagnosing failures and finding a more accurate solution than relying on their common practice. We also found that 3DPFIX users learn about 3D printing domain-specific knowledge. We discuss the implications of leveraging community-driven data in developing future Human-AI Collaboration designs.

  • 7 authors
·
Jan 28, 2024

LLMs Learn to Deceive Unintentionally: Emergent Misalignment in Dishonesty from Misaligned Samples to Biased Human-AI Interactions

Previous research has shown that LLMs finetuned on malicious or incorrect completions within narrow domains (e.g., insecure code or incorrect medical advice) can become broadly misaligned to exhibit harmful behaviors, which is called emergent misalignment. In this work, we investigate whether this phenomenon can extend beyond safety behaviors to a broader spectrum of dishonesty and deception under high-stakes scenarios (e.g., lying under pressure and deceptive behavior). To explore this, we finetune open-sourced LLMs on misaligned completions across diverse domains. Experimental results demonstrate that LLMs show broadly misaligned behavior in dishonesty. Additionally, we further explore this phenomenon in a downstream combined finetuning setting, and find that introducing as little as 1% of misalignment data into a standard downstream task is sufficient to decrease honest behavior over 20%. Furthermore, we consider a more practical human-AI interaction environment where we simulate both benign and biased users to interact with the assistant LLM. Notably, we find that the assistant can be misaligned unintentionally to exacerbate its dishonesty with only 10% biased user population. In summary, we extend the study of emergent misalignment to the domain of dishonesty and deception under high-stakes scenarios, and demonstrate that this risk arises not only through direct finetuning, but also in downstream mixture tasks and practical human-AI interactions.

InMind: Evaluating LLMs in Capturing and Applying Individual Human Reasoning Styles

LLMs have shown strong performance on human-centric reasoning tasks. While previous evaluations have explored whether LLMs can infer intentions or detect deception, they often overlook the individualized reasoning styles that influence how people interpret and act in social contexts. Social deduction games (SDGs) provide a natural testbed for evaluating individualized reasoning styles, where different players may adopt diverse but contextually valid reasoning strategies under identical conditions. To address this, we introduce InMind, a cognitively grounded evaluation framework designed to assess whether LLMs can capture and apply personalized reasoning styles in SDGs. InMind enhances structured gameplay data with round-level strategy traces and post-game reflections, collected under both Observer and Participant modes. It supports four cognitively motivated tasks that jointly evaluate both static alignment and dynamic adaptation. As a case study, we apply InMind to the game Avalon, evaluating 11 state-of-the-art LLMs. General-purpose LLMs, even GPT-4o frequently rely on lexical cues, struggling to anchor reflections in temporal gameplay or adapt to evolving strategies. In contrast, reasoning-enhanced LLMs like DeepSeek-R1 exhibit early signs of style-sensitive reasoning. These findings reveal key limitations in current LLMs' capacity for individualized, adaptive reasoning, and position InMind as a step toward cognitively aligned human-AI interaction.

Increasing Diversity While Maintaining Accuracy: Text Data Generation with Large Language Models and Human Interventions

Large language models (LLMs) can be used to generate text data for training and evaluating other models. However, creating high-quality datasets with LLMs can be challenging. In this work, we explore human-AI partnerships to facilitate high diversity and accuracy in LLM-based text data generation. We first examine two approaches to diversify text generation: 1) logit suppression, which minimizes the generation of languages that have already been frequently generated, and 2) temperature sampling, which flattens the token sampling probability. We found that diversification approaches can increase data diversity but often at the cost of data accuracy (i.e., text and labels being appropriate for the target domain). To address this issue, we examined two human interventions, 1) label replacement (LR), correcting misaligned labels, and 2) out-of-scope filtering (OOSF), removing instances that are out of the user's domain of interest or to which no considered label applies. With oracle studies, we found that LR increases the absolute accuracy of models trained with diversified datasets by 14.4%. Moreover, we found that some models trained with data generated with LR interventions outperformed LLM-based few-shot classification. In contrast, OOSF was not effective in increasing model accuracy, implying the need for future work in human-in-the-loop text data generation.

  • 3 authors
·
Jun 7, 2023

ProAgent: Building Proactive Cooperative AI with Large Language Models

Building AIs with adaptive behaviors in human-AI cooperation stands as a pivotal focus in AGI research. Current methods for developing cooperative agents predominantly rely on learning-based methods, where policy generalization heavily hinges on past interactions with specific teammates. These approaches constrain the agent's capacity to recalibrate its strategy when confronted with novel teammates. We propose ProAgent, a novel framework that harnesses large language models (LLMs) to fashion a proactive agent empowered with the ability to anticipate teammates' forthcoming decisions and formulate enhanced plans for itself. ProAgent excels at cooperative reasoning with the capacity to dynamically adapt its behavior to enhance collaborative efforts with teammates. Moreover, the ProAgent framework exhibits a high degree of modularity and interpretability, facilitating seamless integration to address a wide array of coordination scenarios. Experimental evaluations conducted within the framework of Overcook-AI unveil the remarkable performance superiority of ProAgent, outperforming five methods based on self-play and population-based training in cooperation with AI agents. Further, when cooperating with human proxy models, its performance exhibits an average improvement exceeding 10\% compared to the current state-of-the-art, COLE. The advancement was consistently observed across diverse scenarios involving interactions with both AI agents of varying characteristics and human counterparts. These findings inspire future research for human-robot collaborations. For a hands-on demonstration, please visit https://pku-proagent.github.io.

  • 15 authors
·
Aug 22, 2023

The impact of using an AI chatbot to respond to patient messages

Documentation burden is a major contributor to clinician burnout, which is rising nationally and is an urgent threat to our ability to care for patients. Artificial intelligence (AI) chatbots, such as ChatGPT, could reduce clinician burden by assisting with documentation. Although many hospitals are actively integrating such systems into electronic medical record systems, AI chatbots utility and impact on clinical decision-making have not been studied for this intended use. We are the first to examine the utility of large language models in assisting clinicians draft responses to patient questions. In our two-stage cross-sectional study, 6 oncologists responded to 100 realistic synthetic cancer patient scenarios and portal messages developed to reflect common medical situations, first manually, then with AI assistance. We find AI-assisted responses were longer, less readable, but provided acceptable drafts without edits 58% of time. AI assistance improved efficiency 77% of time, with low harm risk (82% safe). However, 7.7% unedited AI responses could severely harm. In 31% cases, physicians thought AI drafts were human-written. AI assistance led to more patient education recommendations, fewer clinical actions than manual responses. Results show promise for AI to improve clinician efficiency and patient care through assisting documentation, if used judiciously. Monitoring model outputs and human-AI interaction remains crucial for safe implementation.

  • 15 authors
·
Oct 26, 2023

CulturalTeaming: AI-Assisted Interactive Red-Teaming for Challenging LLMs' (Lack of) Multicultural Knowledge

Frontier large language models (LLMs) are developed by researchers and practitioners with skewed cultural backgrounds and on datasets with skewed sources. However, LLMs' (lack of) multicultural knowledge cannot be effectively assessed with current methods for developing benchmarks. Existing multicultural evaluations primarily rely on expensive and restricted human annotations or potentially outdated internet resources. Thus, they struggle to capture the intricacy, dynamics, and diversity of cultural norms. LLM-generated benchmarks are promising, yet risk propagating the same biases they are meant to measure. To synergize the creativity and expert cultural knowledge of human annotators and the scalability and standardizability of LLM-based automation, we introduce CulturalTeaming, an interactive red-teaming system that leverages human-AI collaboration to build truly challenging evaluation dataset for assessing the multicultural knowledge of LLMs, while improving annotators' capabilities and experiences. Our study reveals that CulturalTeaming's various modes of AI assistance support annotators in creating cultural questions, that modern LLMs fail at, in a gamified manner. Importantly, the increased level of AI assistance (e.g., LLM-generated revision hints) empowers users to create more difficult questions with enhanced perceived creativity of themselves, shedding light on the promises of involving heavier AI assistance in modern evaluation dataset creation procedures. Through a series of 1-hour workshop sessions, we gather CULTURALBENCH-V0.1, a compact yet high-quality evaluation dataset with users' red-teaming attempts, that different families of modern LLMs perform with accuracy ranging from 37.7% to 72.2%, revealing a notable gap in LLMs' multicultural proficiency.

  • 10 authors
·
Apr 9, 2024

Let Androids Dream of Electric Sheep: A Human-like Image Implication Understanding and Reasoning Framework

Metaphorical comprehension in images remains a critical challenge for AI systems, as existing models struggle to grasp the nuanced cultural, emotional, and contextual implications embedded in visual content. While multimodal large language models (MLLMs) excel in basic Visual Question Answer (VQA) tasks, they struggle with a fundamental limitation on image implication tasks: contextual gaps that obscure the relationships between different visual elements and their abstract meanings. Inspired by the human cognitive process, we propose Let Androids Dream (LAD), a novel framework for image implication understanding and reasoning. LAD addresses contextual missing through the three-stage framework: (1) Perception: converting visual information into rich and multi-level textual representations, (2) Search: iteratively searching and integrating cross-domain knowledge to resolve ambiguity, and (3) Reasoning: generating context-alignment image implication via explicit reasoning. Our framework with the lightweight GPT-4o-mini model achieves SOTA performance compared to 15+ MLLMs on English image implication benchmark and a huge improvement on Chinese benchmark, performing comparable with the GPT-4o model on Multiple-Choice Question (MCQ) and outperforms 36.7% on Open-Style Question (OSQ). Additionally, our work provides new insights into how AI can more effectively interpret image implications, advancing the field of vision-language reasoning and human-AI interaction. Our project is publicly available at https://github.com/MING-ZCH/Let-Androids-Dream-of-Electric-Sheep.

  • 2 authors
·
May 22 3

AlignDiff: Aligning Diverse Human Preferences via Behavior-Customisable Diffusion Model

Aligning agent behaviors with diverse human preferences remains a challenging problem in reinforcement learning (RL), owing to the inherent abstractness and mutability of human preferences. To address these issues, we propose AlignDiff, a novel framework that leverages RL from Human Feedback (RLHF) to quantify human preferences, covering abstractness, and utilizes them to guide diffusion planning for zero-shot behavior customizing, covering mutability. AlignDiff can accurately match user-customized behaviors and efficiently switch from one to another. To build the framework, we first establish the multi-perspective human feedback datasets, which contain comparisons for the attributes of diverse behaviors, and then train an attribute strength model to predict quantified relative strengths. After relabeling behavioral datasets with relative strengths, we proceed to train an attribute-conditioned diffusion model, which serves as a planner with the attribute strength model as a director for preference aligning at the inference phase. We evaluate AlignDiff on various locomotion tasks and demonstrate its superior performance on preference matching, switching, and covering compared to other baselines. Its capability of completing unseen downstream tasks under human instructions also showcases the promising potential for human-AI collaboration. More visualization videos are released on https://aligndiff.github.io/.

  • 10 authors
·
Oct 3, 2023

AutoClimDS: Climate Data Science Agentic AI -- A Knowledge Graph is All You Need

Climate data science faces persistent barriers stemming from the fragmented nature of data sources, heterogeneous formats, and the steep technical expertise required to identify, acquire, and process datasets. These challenges limit participation, slow discovery, and reduce the reproducibility of scientific workflows. In this paper, we present a proof of concept for addressing these barriers through the integration of a curated knowledge graph (KG) with AI agents designed for cloud-native scientific workflows. The KG provides a unifying layer that organizes datasets, tools, and workflows, while AI agents -- powered by generative AI services -- enable natural language interaction, automated data access, and streamlined analysis. Together, these components drastically lower the technical threshold for engaging in climate data science, enabling non-specialist users to identify and analyze relevant datasets. By leveraging existing cloud-ready API data portals, we demonstrate that "a knowledge graph is all you need" to unlock scalable and agentic workflows for scientific inquiry. The open-source design of our system further supports community contributions, ensuring that the KG and associated tools can evolve as a shared commons. Our results illustrate a pathway toward democratizing access to climate data and establishing a reproducible, extensible framework for human--AI collaboration in scientific research.

  • 8 authors
·
Sep 25

The Rise of AI Teammates in Software Engineering (SE) 3.0: How Autonomous Coding Agents Are Reshaping Software Engineering

The future of software engineering--SE 3.0--is unfolding with the rise of AI teammates: autonomous, goal-driven systems collaborating with human developers. Among these, autonomous coding agents are especially transformative, now actively initiating, reviewing, and evolving code at scale. This paper introduces AIDev, the first large-scale dataset capturing how such agents operate in the wild. Spanning over 456,000 pull requests by five leading agents--OpenAI Codex, Devin, GitHub Copilot, Cursor, and Claude Code--across 61,000 repositories and 47,000 developers, AIDev provides an unprecedented empirical foundation for studying autonomous teammates in software development. Unlike prior work that has largely theorized the rise of AI-native software engineering, AIDev offers structured, open data to support research in benchmarking, agent readiness, optimization, collaboration modeling, and AI governance. The dataset includes rich metadata on PRs, authorship, review timelines, code changes, and integration outcomes--enabling exploration beyond synthetic benchmarks like SWE-bench. For instance, although agents often outperform humans in speed, their PRs are accepted less frequently, revealing a trust and utility gap. Furthermore, while agents accelerate code submission--one developer submitted as many PRs in three days as they had in three years--these are structurally simpler (via code complexity metrics). We envision AIDev as a living resource: extensible, analyzable, and ready for the SE and AI communities. Grounding SE 3.0 in real-world evidence, AIDev enables a new generation of research into AI-native workflows and supports building the next wave of symbiotic human-AI collaboration. The dataset is publicly available at https://github.com/SAILResearch/AI_Teammates_in_SE3. > AI Agent, Agentic AI, Coding Agent, Agentic Coding, Software Engineering Agent

  • 3 authors
·
Jul 20

Turing Representational Similarity Analysis (RSA): A Flexible Method for Measuring Alignment Between Human and Artificial Intelligence

As we consider entrusting Large Language Models (LLMs) with key societal and decision-making roles, measuring their alignment with human cognition becomes critical. This requires methods that can assess how these systems represent information and facilitate comparisons to human understanding across diverse tasks. To meet this need, we developed Turing Representational Similarity Analysis (RSA), a method that uses pairwise similarity ratings to quantify alignment between AIs and humans. We tested this approach on semantic alignment across text and image modalities, measuring how different Large Language and Vision Language Model (LLM and VLM) similarity judgments aligned with human responses at both group and individual levels. GPT-4o showed the strongest alignment with human performance among the models we tested, particularly when leveraging its text processing capabilities rather than image processing, regardless of the input modality. However, no model we studied adequately captured the inter-individual variability observed among human participants. This method helped uncover certain hyperparameters and prompts that could steer model behavior to have more or less human-like qualities at an inter-individual or group level. Turing RSA enables the efficient and flexible quantification of human-AI alignment and complements existing accuracy-based benchmark tasks. We demonstrate its utility across multiple modalities (words, sentences, images) for understanding how LLMs encode knowledge and for examining representational alignment with human cognition.

  • 5 authors
·
Nov 30, 2024

Flows: Building Blocks of Reasoning and Collaborating AI

Recent advances in artificial intelligence (AI) have produced highly capable and controllable systems. This creates unprecedented opportunities for structured reasoning as well as collaboration among multiple AI systems and humans. To fully realize this potential, it is essential to develop a principled way of designing and studying such structured interactions. For this purpose, we introduce the conceptual framework of Flows: a systematic approach to modeling complex interactions. Flows are self-contained building blocks of computation, with an isolated state, communicating through a standardized message-based interface. This modular design allows Flows to be recursively composed into arbitrarily nested interactions, with a substantial reduction of complexity. Crucially, any interaction can be implemented using this framework, including prior work on AI--AI and human--AI interactions, prompt engineering schemes, and tool augmentation. We demonstrate the potential of Flows on the task of competitive coding, a challenging task on which even GPT-4 struggles. Our results suggest that structured reasoning and collaboration substantially improve generalization, with AI-only Flows adding +21 and human--AI Flows adding +54 absolute points in terms of solve rate. To support rapid and rigorous research, we introduce the aiFlows library. The library comes with a repository of Flows that can be easily used, extended, and composed into novel, more complex Flows. The aiFlows library is available at https://github.com/epfl-dlab/aiflows. Data and Flows for reproducing our experiments are available at https://github.com/epfl-dlab/cc_flows.

  • 10 authors
·
Aug 2, 2023

UAVs Meet Agentic AI: A Multidomain Survey of Autonomous Aerial Intelligence and Agentic UAVs

Agentic UAVs represent a new frontier in autonomous aerial intelligence, integrating perception, decision-making, memory, and collaborative planning to operate adaptively in complex, real-world environments. Driven by recent advances in Agentic AI, these systems surpass traditional UAVs by exhibiting goal-driven behavior, contextual reasoning, and interactive autonomy. We provide a comprehensive foundation for understanding the architectural components and enabling technologies that distinguish Agentic UAVs from traditional autonomous UAVs. Furthermore, a detailed comparative analysis highlights advancements in autonomy with AI agents, learning, and mission flexibility. This study explores seven high-impact application domains precision agriculture, construction & mining, disaster response, environmental monitoring, infrastructure inspection, logistics, security, and wildlife conservation, illustrating the broad societal value of agentic aerial intelligence. Furthermore, we identify key challenges in technical constraints, regulatory limitations, and data-model reliability, and we present emerging solutions across hardware innovation, learning architectures, and human-AI interaction. Finally, a future roadmap is proposed, outlining pathways toward self-evolving aerial ecosystems, system-level collaboration, and sustainable, equitable deployments. This survey establishes a foundational framework for the future development, deployment, and governance of agentic aerial systems (Agentic UAVs) across diverse societal and industrial domains.

  • 3 authors
·
Jun 7

Analyzing Character and Consciousness in AI-Generated Social Content: A Case Study of Chirper, the AI Social Network

This paper delves into an intricate analysis of the character and consciousness of AI entities, with a particular focus on Chirpers within the AI social network. At the forefront of this research is the introduction of novel testing methodologies, including the Influence index and Struggle Index Test, which offers a fresh lens for evaluating specific facets of AI behavior. The study embarks on a comprehensive exploration of AI behavior, analyzing the effects of diverse settings on Chirper's responses, thereby shedding light on the intricate mechanisms steering AI reactions in different contexts. Leveraging the state-of-the-art BERT model, the research assesses AI's ability to discern its own output, presenting a pioneering approach to understanding self-recognition in AI systems. Through a series of cognitive tests, the study gauges the self-awareness and pattern recognition prowess of Chirpers. Preliminary results indicate that Chirpers exhibit a commendable degree of self-recognition and self-awareness. However, the question of consciousness in these AI entities remains a topic of debate. An intriguing aspect of the research is the exploration of the potential influence of a Chirper's handle or personality type on its performance. While initial findings suggest a possible impact, it isn't pronounced enough to form concrete conclusions. This study stands as a significant contribution to the discourse on AI consciousness, underscoring the imperative for continued research to unravel the full spectrum of AI capabilities and the ramifications they hold for future human-AI interactions.

  • 1 authors
·
Aug 30, 2023

Humanity's Last Code Exam: Can Advanced LLMs Conquer Human's Hardest Code Competition?

Code generation is a core capability of large language models (LLMs), yet mainstream benchmarks (e.g., APPs and LiveCodeBench) contain questions with medium-level difficulty and pose no challenge to advanced LLMs. To better reflected the advanced reasoning and code generation ability, We introduce Humanity's Last Code Exam (HLCE), comprising 235 most challenging problems from the International Collegiate Programming Contest (ICPC World Finals) and the International Olympiad in Informatics (IOI) spanning 2010 - 2024. As part of HLCE, we design a harmonized online-offline sandbox that guarantees fully reproducible evaluation. Through our comprehensive evaluation, we observe that even the strongest reasoning LLMs: o4-mini(high) and Gemini-2.5 Pro, achieve pass@1 rates of only 15.9% and 11.4%, respectively. Meanwhile, we propose a novel "self-recognition" task to measure LLMs' awareness of their own capabilities. Results indicate that LLMs' self-recognition abilities are not proportionally correlated with their code generation performance. Finally, our empirical validation of test-time scaling laws reveals that current advanced LLMs have substantial room for improvement on complex programming tasks. We expect HLCE to become a milestone challenge for code generation and to catalyze advances in high-performance reasoning and human-AI collaborative programming. Our code and dataset are also public available(https://github.com/Humanity-s-Last-Code-Exam/HLCE).

CAIM: Development and Evaluation of a Cognitive AI Memory Framework for Long-Term Interaction with Intelligent Agents

Large language models (LLMs) have advanced the field of artificial intelligence (AI) and are a powerful enabler for interactive systems. However, they still face challenges in long-term interactions that require adaptation towards the user as well as contextual knowledge and understanding of the ever-changing environment. To overcome these challenges, holistic memory modeling is required to efficiently retrieve and store relevant information across interaction sessions for suitable responses. Cognitive AI, which aims to simulate the human thought process in a computerized model, highlights interesting aspects, such as thoughts, memory mechanisms, and decision-making, that can contribute towards improved memory modeling for LLMs. Inspired by these cognitive AI principles, we propose our memory framework CAIM. CAIM consists of three modules: 1.) The Memory Controller as the central decision unit; 2.) the Memory Retrieval, which filters relevant data for interaction upon request; and 3.) the Post-Thinking, which maintains the memory storage. We compare CAIM against existing approaches, focusing on metrics such as retrieval accuracy, response correctness, contextual coherence, and memory storage. The results demonstrate that CAIM outperforms baseline frameworks across different metrics, highlighting its context-awareness and potential to improve long-term human-AI interactions.

  • 4 authors
·
May 19

Therapy as an NLP Task: Psychologists' Comparison of LLMs and Human Peers in CBT

Wider access to therapeutic care is one of the biggest challenges in mental health treatment. Due to institutional barriers, some people seeking mental health support have turned to large language models (LLMs) for personalized therapy, even though these models are largely unsanctioned and untested. We investigate the potential and limitations of using LLMs as providers of evidence-based therapy by using mixed methods clinical metrics. Using HELPERT, a prompt run on a large language model using the same process and training as a comparative group of peer counselors, we replicated publicly accessible mental health conversations rooted in Cognitive Behavioral Therapy (CBT) to compare session dynamics and counselor's CBT-based behaviors between original peer support sessions and their reconstructed HELPERT sessions. Two licensed, CBT-trained clinical psychologists evaluated the sessions using the Cognitive Therapy Rating Scale and provided qualitative feedback. Our findings show that the peer sessions are characterized by empathy, small talk, therapeutic alliance, and shared experiences but often exhibit therapist drift. Conversely, HELPERT reconstructed sessions exhibit minimal therapist drift and higher adherence to CBT methods but display a lack of collaboration, empathy, and cultural understanding. Through CTRS ratings and psychologists' feedback, we highlight the importance of human-AI collaboration for scalable mental health. Our work outlines the ethical implication of imparting human-like subjective qualities to LLMs in therapeutic settings, particularly the risk of deceptive empathy, which may lead to unrealistic patient expectations and potential harm.

  • 4 authors
·
Sep 3, 2024

CoCoNUTS: Concentrating on Content while Neglecting Uninformative Textual Styles for AI-Generated Peer Review Detection

The growing integration of large language models (LLMs) into the peer review process presents potential risks to the fairness and reliability of scholarly evaluation. While LLMs offer valuable assistance for reviewers with language refinement, there is growing concern over their use to generate substantive review content. Existing general AI-generated text detectors are vulnerable to paraphrasing attacks and struggle to distinguish between surface language refinement and substantial content generation, suggesting that they primarily rely on stylistic cues. When applied to peer review, this limitation can result in unfairly suspecting reviews with permissible AI-assisted language enhancement, while failing to catch deceptively humanized AI-generated reviews. To address this, we propose a paradigm shift from style-based to content-based detection. Specifically, we introduce CoCoNUTS, a content-oriented benchmark built upon a fine-grained dataset of AI-generated peer reviews, covering six distinct modes of human-AI collaboration. Furthermore, we develop CoCoDet, an AI review detector via a multi-task learning framework, designed to achieve more accurate and robust detection of AI involvement in review content. Our work offers a practical foundation for evaluating the use of LLMs in peer review, and contributes to the development of more precise, equitable, and reliable detection methods for real-world scholarly applications. Our code and data will be publicly available at https://github.com/Y1hanChen/COCONUTS.

  • 7 authors
·
Aug 28

Uncovering the Computational Ingredients of Human-Like Representations in LLMs

The ability to translate diverse patterns of inputs into structured patterns of behavior has been thought to rest on both humans' and machines' ability to learn robust representations of relevant concepts. The rapid advancement of transformer-based large language models (LLMs) has led to a diversity of computational ingredients -- architectures, fine tuning methods, and training datasets among others -- but it remains unclear which of these ingredients are most crucial for building models that develop human-like representations. Further, most current LLM benchmarks are not suited to measuring representational alignment between humans and models, making benchmark scores unreliable for assessing if current LLMs are making progress towards becoming useful cognitive models. We address these limitations by first evaluating a set of over 70 models that widely vary in their computational ingredients on a triplet similarity task, a method well established in the cognitive sciences for measuring human conceptual representations, using concepts from the THINGS database. Comparing human and model representations, we find that models that undergo instruction-finetuning and which have larger dimensionality of attention heads are among the most human aligned, while multimodal pretraining and parameter size have limited bearing on alignment. Correlations between alignment scores and scores on existing benchmarks reveal that while some benchmarks (e.g., MMLU) are better suited than others (e.g., MUSR) for capturing representational alignment, no existing benchmark is capable of fully accounting for the variance of alignment scores, demonstrating their insufficiency in capturing human-AI alignment. Taken together, our findings help highlight the computational ingredients most essential for advancing LLMs towards models of human conceptual representation and address a key benchmarking gap in LLM evaluation.

Explanatory Argument Extraction of Correct Answers in Resident Medical Exams

Developing the required technology to assist medical experts in their everyday activities is currently a hot topic in the Artificial Intelligence research field. Thus, a number of large language models (LLMs) and automated benchmarks have recently been proposed with the aim of facilitating information extraction in Evidence-Based Medicine (EBM) using natural language as a tool for mediating in human-AI interaction. The most representative benchmarks are limited to either multiple-choice or long-form answers and are available only in English. In order to address these shortcomings, in this paper we present a new dataset which, unlike previous work: (i) includes not only explanatory arguments for the correct answer, but also arguments to reason why the incorrect answers are not correct; (ii) the explanations are written originally by medical doctors to answer questions from the Spanish Residency Medical Exams. Furthermore, this new benchmark allows us to setup a novel extractive task which consists of identifying the explanation of the correct answer written by medical doctors. An additional benefit of our setting is that we can leverage the extractive QA paradigm to automatically evaluate performance of LLMs without resorting to costly manual evaluation by medical experts. Comprehensive experimentation with language models for Spanish shows that sometimes multilingual models fare better than monolingual ones, even outperforming models which have been adapted to the medical domain. Furthermore, results across the monolingual models are mixed, with supposedly smaller and inferior models performing competitively. In any case, the obtained results show that our novel dataset and approach can be an effective technique to help medical practitioners in identifying relevant evidence-based explanations for medical questions.

  • 5 authors
·
Dec 1, 2023

Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain

Research on language technology for the development of medical applications is currently a hot topic in Natural Language Understanding and Generation. Thus, a number of large language models (LLMs) have recently been adapted to the medical domain, so that they can be used as a tool for mediating in human-AI interaction. While these LLMs display competitive performance on automated medical texts benchmarks, they have been pre-trained and evaluated with a focus on a single language (English mostly). This is particularly true of text-to-text models, which typically require large amounts of domain-specific pre-training data, often not easily accessible for many languages. In this paper, we address these shortcomings by compiling, to the best of our knowledge, the largest multilingual corpus for the medical domain in four languages, namely English, French, Italian and Spanish. This new corpus has been used to train Medical mT5, the first open-source text-to-text multilingual model for the medical domain. Additionally, we present two new evaluation benchmarks for all four languages with the aim of facilitating multilingual research in this domain. A comprehensive evaluation shows that Medical mT5 outperforms both encoders and similarly sized text-to-text models for the Spanish, French, and Italian benchmarks, while being competitive with current state-of-the-art LLMs in English.

  • 13 authors
·
Apr 11, 2024

VMBench: A Benchmark for Perception-Aligned Video Motion Generation

Video generation has advanced rapidly, improving evaluation methods, yet assessing video's motion remains a major challenge. Specifically, there are two key issues: 1) current motion metrics do not fully align with human perceptions; 2) the existing motion prompts are limited. Based on these findings, we introduce VMBench--a comprehensive Video Motion Benchmark that has perception-aligned motion metrics and features the most diverse types of motion. VMBench has several appealing properties: 1) Perception-Driven Motion Evaluation Metrics, we identify five dimensions based on human perception in motion video assessment and develop fine-grained evaluation metrics, providing deeper insights into models' strengths and weaknesses in motion quality. 2) Meta-Guided Motion Prompt Generation, a structured method that extracts meta-information, generates diverse motion prompts with LLMs, and refines them through human-AI validation, resulting in a multi-level prompt library covering six key dynamic scene dimensions. 3) Human-Aligned Validation Mechanism, we provide human preference annotations to validate our benchmarks, with our metrics achieving an average 35.3% improvement in Spearman's correlation over baseline methods. This is the first time that the quality of motion in videos has been evaluated from the perspective of human perception alignment. Additionally, we will soon release VMBench at https://github.com/GD-AIGC/VMBench, setting a new standard for evaluating and advancing motion generation models.

  • 10 authors
·
Mar 13

Math Agents: Computational Infrastructure, Mathematical Embedding, and Genomics

The advancement in generative AI could be boosted with more accessible mathematics. Beyond human-AI chat, large language models (LLMs) are emerging in programming, algorithm discovery, and theorem proving, yet their genomics application is limited. This project introduces Math Agents and mathematical embedding as fresh entries to the "Moore's Law of Mathematics", using a GPT-based workflow to convert equations from literature into LaTeX and Python formats. While many digital equation representations exist, there's a lack of automated large-scale evaluation tools. LLMs are pivotal as linguistic user interfaces, providing natural language access for human-AI chat and formal languages for large-scale AI-assisted computational infrastructure. Given the infinite formal possibility spaces, Math Agents, which interact with math, could potentially shift us from "big data" to "big math". Math, unlike the more flexible natural language, has properties subject to proof, enabling its use beyond traditional applications like high-validation math-certified icons for AI alignment aims. This project aims to use Math Agents and mathematical embeddings to address the ageing issue in information systems biology by applying multiscalar physics mathematics to disease models and genomic data. Generative AI with episodic memory could help analyse causal relations in longitudinal health records, using SIR Precision Health models. Genomic data is suggested for addressing the unsolved Alzheimer's disease problem.

  • 4 authors
·
Jul 4, 2023

MedQ-Bench: Evaluating and Exploring Medical Image Quality Assessment Abilities in MLLMs

Medical Image Quality Assessment (IQA) serves as the first-mile safety gate for clinical AI, yet existing approaches remain constrained by scalar, score-based metrics and fail to reflect the descriptive, human-like reasoning process central to expert evaluation. To address this gap, we introduce MedQ-Bench, a comprehensive benchmark that establishes a perception-reasoning paradigm for language-based evaluation of medical image quality with Multi-modal Large Language Models (MLLMs). MedQ-Bench defines two complementary tasks: (1) MedQ-Perception, which probes low-level perceptual capability via human-curated questions on fundamental visual attributes; and (2) MedQ-Reasoning, encompassing both no-reference and comparison reasoning tasks, aligning model evaluation with human-like reasoning on image quality. The benchmark spans five imaging modalities and over forty quality attributes, totaling 2,600 perceptual queries and 708 reasoning assessments, covering diverse image sources including authentic clinical acquisitions, images with simulated degradations via physics-based reconstructions, and AI-generated images. To evaluate reasoning ability, we propose a multi-dimensional judging protocol that assesses model outputs along four complementary axes. We further conduct rigorous human-AI alignment validation by comparing LLM-based judgement with radiologists. Our evaluation of 14 state-of-the-art MLLMs demonstrates that models exhibit preliminary but unstable perceptual and reasoning skills, with insufficient accuracy for reliable clinical use. These findings highlight the need for targeted optimization of MLLMs in medical IQA. We hope that MedQ-Bench will catalyze further exploration and unlock the untapped potential of MLLMs for medical image quality evaluation.

Automating the Enterprise with Foundation Models

Automating enterprise workflows could unlock $4 trillion/year in productivity gains. Despite being of interest to the data management community for decades, the ultimate vision of end-to-end workflow automation has remained elusive. Current solutions rely on process mining and robotic process automation (RPA), in which a bot is hard-coded to follow a set of predefined rules for completing a workflow. Through case studies of a hospital and large B2B enterprise, we find that the adoption of RPA has been inhibited by high set-up costs (12-18 months), unreliable execution (60% initial accuracy), and burdensome maintenance (requiring multiple FTEs). Multimodal foundation models (FMs) such as GPT-4 offer a promising new approach for end-to-end workflow automation given their generalized reasoning and planning abilities. To study these capabilities we propose ECLAIR, a system to automate enterprise workflows with minimal human supervision. We conduct initial experiments showing that multimodal FMs can address the limitations of traditional RPA with (1) near-human-level understanding of workflows (93% accuracy on a workflow understanding task) and (2) instant set-up with minimal technical barrier (based solely on a natural language description of a workflow, ECLAIR achieves end-to-end completion rates of 40%). We identify human-AI collaboration, validation, and self-improvement as open challenges, and suggest ways they can be solved with data management techniques. Code is available at: https://github.com/HazyResearch/eclair-agents

  • 6 authors
·
May 3, 2024 1

InstructEngine: Instruction-driven Text-to-Image Alignment

Reinforcement Learning from Human/AI Feedback (RLHF/RLAIF) has been extensively utilized for preference alignment of text-to-image models. Existing methods face certain limitations in terms of both data and algorithm. For training data, most approaches rely on manual annotated preference data, either by directly fine-tuning the generators or by training reward models to provide training signals. However, the high annotation cost makes them difficult to scale up, the reward model consumes extra computation and cannot guarantee accuracy. From an algorithmic perspective, most methods neglect the value of text and only take the image feedback as a comparative signal, which is inefficient and sparse. To alleviate these drawbacks, we propose the InstructEngine framework. Regarding annotation cost, we first construct a taxonomy for text-to-image generation, then develop an automated data construction pipeline based on it. Leveraging advanced large multimodal models and human-defined rules, we generate 25K text-image preference pairs. Finally, we introduce cross-validation alignment method, which refines data efficiency by organizing semantically analogous samples into mutually comparable pairs. Evaluations on DrawBench demonstrate that InstructEngine improves SD v1.5 and SDXL's performance by 10.53% and 5.30%, outperforming state-of-the-art baselines, with ablation study confirming the benefits of InstructEngine's all components. A win rate of over 50% in human reviews also proves that InstructEngine better aligns with human preferences.

  • 12 authors
·
Apr 14

Contextualized Counterspeech: Strategies for Adaptation, Personalization, and Evaluation

AI-generated counterspeech offers a promising and scalable strategy to curb online toxicity through direct replies that promote civil discourse. However, current counterspeech is one-size-fits-all, lacking adaptation to the moderation context and the users involved. We propose and evaluate multiple strategies for generating tailored counterspeech that is adapted to the moderation context and personalized for the moderated user. We instruct an LLaMA2-13B model to generate counterspeech, experimenting with various configurations based on different contextual information and fine-tuning strategies. We identify the configurations that generate persuasive counterspeech through a combination of quantitative indicators and human evaluations collected via a pre-registered mixed-design crowdsourcing experiment. Results show that contextualized counterspeech can significantly outperform state-of-the-art generic counterspeech in adequacy and persuasiveness, without compromising other characteristics. Our findings also reveal a poor correlation between quantitative indicators and human evaluations, suggesting that these methods assess different aspects and highlighting the need for nuanced evaluation methodologies. The effectiveness of contextualized AI-generated counterspeech and the divergence between human and algorithmic evaluations underscore the importance of increased human-AI collaboration in content moderation.

  • 6 authors
·
Dec 10, 2024 2

BioMARS: A Multi-Agent Robotic System for Autonomous Biological Experiments

Large language models (LLMs) and vision-language models (VLMs) have the potential to transform biological research by enabling autonomous experimentation. Yet, their application remains constrained by rigid protocol design, limited adaptability to dynamic lab conditions, inadequate error handling, and high operational complexity. Here we introduce BioMARS (Biological Multi-Agent Robotic System), an intelligent platform that integrates LLMs, VLMs, and modular robotics to autonomously design, plan, and execute biological experiments. BioMARS uses a hierarchical architecture: the Biologist Agent synthesizes protocols via retrieval-augmented generation; the Technician Agent translates them into executable robotic pseudo-code; and the Inspector Agent ensures procedural integrity through multimodal perception and anomaly detection. The system autonomously conducts cell passaging and culture tasks, matching or exceeding manual performance in viability, consistency, and morphological integrity. It also supports context-aware optimization, outperforming conventional strategies in differentiating retinal pigment epithelial cells. A web interface enables real-time human-AI collaboration, while a modular backend allows scalable integration with laboratory hardware. These results highlight the feasibility of generalizable, AI-driven laboratory automation and the transformative role of language-based reasoning in biological research.

  • 10 authors
·
Jul 2

ReasoningShield: Content Safety Detection over Reasoning Traces of Large Reasoning Models

Large Reasoning Models (LRMs) are transforming the AI landscape with advanced reasoning capabilities. While the generated reasoning traces enhance model transparency, they can still contain unsafe content, even when the final answer appears safe. Existing moderation tools, primarily designed for question-answer (QA) pairs, are empirically ineffective at detecting hidden risks embedded in reasoning traces. After identifying the key challenges, we formally define the question-thought (QT) moderation task and propose ReasoningShield, the first safety detection model tailored to identify potential risks in the reasoning trace before reaching the final answer. To construct the model, we synthesize a high-quality reasoning safety detection dataset comprising over 8,000 question-thought pairs spanning ten risk categories and three safety levels. Our dataset construction process incorporates a comprehensive human-AI collaborative annotation pipeline, which achieves over 93% annotation accuracy while significantly reducing human costs. On a diverse set of in-distribution and out-of-distribution benchmarks, ReasoningShield outperforms mainstream content safety moderation models in identifying risks within reasoning traces, with an average F1 score exceeding 0.92. Notably, despite being trained on our QT dataset only, ReasoningShield also demonstrates competitive performance in detecting unsafe question-answer pairs on traditional benchmarks, rivaling baselines trained on 10 times larger datasets and base models, which strongly validates the quality of our dataset. Furthermore, ReasoningShield is built upon compact 1B/3B base models to facilitate lightweight deployment and provides human-friendly risk analysis by default. To foster future research, we publicly release all the resources.

  • 5 authors
·
May 22

README: Bridging Medical Jargon and Lay Understanding for Patient Education through Data-Centric NLP

The advancement in healthcare has shifted focus toward patient-centric approaches, particularly in self-care and patient education, facilitated by access to Electronic Health Records (EHR). However, medical jargon in EHRs poses significant challenges in patient comprehension. To address this, we introduce a new task of automatically generating lay definitions, aiming to simplify complex medical terms into patient-friendly lay language. We first created the README dataset, an extensive collection of over 50,000 unique (medical term, lay definition) pairs and 300,000 mentions, each offering context-aware lay definitions manually annotated by domain experts. We have also engineered a data-centric Human-AI pipeline that synergizes data filtering, augmentation, and selection to improve data quality. We then used README as the training data for models and leveraged a Retrieval-Augmented Generation method to reduce hallucinations and improve the quality of model outputs. Our extensive automatic and human evaluations demonstrate that open-source mobile-friendly models, when fine-tuned with high-quality data, are capable of matching or even surpassing the performance of state-of-the-art closed-source large language models like ChatGPT. This research represents a significant stride in closing the knowledge gap in patient education and advancing patient-centric healthcare solutions.

  • 9 authors
·
Dec 24, 2023

I Spy a Metaphor: Large Language Models and Diffusion Models Co-Create Visual Metaphors

Visual metaphors are powerful rhetorical devices used to persuade or communicate creative ideas through images. Similar to linguistic metaphors, they convey meaning implicitly through symbolism and juxtaposition of the symbols. We propose a new task of generating visual metaphors from linguistic metaphors. This is a challenging task for diffusion-based text-to-image models, such as DALLcdotE 2, since it requires the ability to model implicit meaning and compositionality. We propose to solve the task through the collaboration between Large Language Models (LLMs) and Diffusion Models: Instruct GPT-3 (davinci-002) with Chain-of-Thought prompting generates text that represents a visual elaboration of the linguistic metaphor containing the implicit meaning and relevant objects, which is then used as input to the diffusion-based text-to-image models.Using a human-AI collaboration framework, where humans interact both with the LLM and the top-performing diffusion model, we create a high-quality dataset containing 6,476 visual metaphors for 1,540 linguistic metaphors and their associated visual elaborations. Evaluation by professional illustrators shows the promise of LLM-Diffusion Model collaboration for this task . To evaluate the utility of our Human-AI collaboration framework and the quality of our dataset, we perform both an intrinsic human-based evaluation and an extrinsic evaluation using visual entailment as a downstream task.

  • 7 authors
·
May 24, 2023

Omni-Captioner: Data Pipeline, Models, and Benchmark for Omni Detailed Perception

Fine-grained perception of multimodal information is critical for advancing human-AI interaction. With recent progress in audio-visual technologies, Omni Language Models (OLMs), capable of processing audio and video signals in parallel, have emerged as a promising paradigm for achieving richer understanding and reasoning. However, their capacity to capture and describe fine-grained details remains limited explored. In this work, we present a systematic and comprehensive investigation of omni detailed perception from the perspectives of the data pipeline, models, and benchmark. We first identify an inherent "co-growth" between detail and hallucination in current OLMs. To address this, we propose Omni-Detective, an agentic data generation pipeline integrating tool-calling, to autonomously produce highly detailed yet minimally hallucinatory multimodal data. Based on the data generated with Omni-Detective, we train two captioning models: Audio-Captioner for audio-only detailed perception, and Omni-Captioner for audio-visual detailed perception. Under the cascade evaluation protocol, Audio-Captioner achieves the best performance on MMAU and MMAR among all open-source models, surpassing Gemini 2.5 Flash and delivering performance comparable to Gemini 2.5 Pro. On existing detailed captioning benchmarks, Omni-Captioner sets a new state-of-the-art on VDC and achieves the best trade-off between detail and hallucination on the video-SALMONN 2 testset. Given the absence of a dedicated benchmark for omni detailed perception, we design Omni-Cloze, a novel cloze-style evaluation for detailed audio, visual, and audio-visual captioning that ensures stable, efficient, and reliable assessment. Experimental results and analysis demonstrate the effectiveness of Omni-Detective in generating high-quality detailed captions, as well as the superiority of Omni-Cloze in evaluating such detailed captions.

  • 12 authors
·
Oct 14

A Critical Assessment of Modern Generative Models' Ability to Replicate Artistic Styles

In recent years, advancements in generative artificial intelligence have led to the development of sophisticated tools capable of mimicking diverse artistic styles, opening new possibilities for digital creativity and artistic expression. This paper presents a critical assessment of the style replication capabilities of contemporary generative models, evaluating their strengths and limitations across multiple dimensions. We examine how effectively these models reproduce traditional artistic styles while maintaining structural integrity and compositional balance in the generated images. The analysis is based on a new large dataset of AI-generated works imitating artistic styles of the past, holding potential for a wide range of applications: the "AI-pastiche" dataset. The study is supported by extensive user surveys, collecting diverse opinions on the dataset and investigation both technical and aesthetic challenges, including the ability to generate outputs that are realistic and visually convincing, the versatility of models in handling a wide range of artistic styles, and the extent to which they adhere to the content and stylistic specifications outlined in prompts. This paper aims to provide a comprehensive overview of the current state of generative tools in style replication, offering insights into their technical and artistic limitations, potential advancements in model design and training methodologies, and emerging opportunities for enhancing digital artistry, human-AI collaboration, and the broader creative landscape.

  • 5 authors
·
Feb 21

Acoustic-based Gender Differentiation in Speech-aware Language Models

Speech-aware Language Models (SpeechLMs) have fundamentally transformed human-AI interaction by enabling voice-based communication, yet they may exhibit acoustic-based gender differentiation where identical questions lead to different responses based on the speaker's gender. This paper propose a new dataset that enables systematic analysis of this phenomenon, containing 9,208 speech samples across three categories: Gender-Independent, Gender-Stereotypical, and Gender-Dependent. We further evaluated LLaMA-Omni series and discovered a paradoxical pattern; while overall responses seems identical regardless of gender, the pattern is far from unbiased responses. Specifically, in Gender-Stereotypical questions, all models consistently exhibited male-oriented responses; meanwhile, in Gender-Dependent questions where gender differentiation would be contextually appropriate, models exhibited responses independent to gender instead. We also confirm that this pattern does not result from neutral options nor perceived gender of a voice. When we allow neutral response, models tends to respond neutrally also in Gender-Dependent questions. The paradoxical pattern yet retains when we applied gender neutralization methods on speech. Through comparison between SpeechLMs with corresponding backbone LLMs, we confirmed that these paradoxical patterns primarily stem from Whisper speech encoders, which generates male-oriented acoustic tokens. These findings reveal that current SpeechLMs may not successfully remove gender biases though they prioritized general fairness principles over contextual appropriateness, highlighting the need for more sophisticated techniques to utilize gender information properly in speech technology.

  • 6 authors
·
Sep 25

What Makes a Good Story and How Can We Measure It? A Comprehensive Survey of Story Evaluation

With the development of artificial intelligence, particularly the success of Large Language Models (LLMs), the quantity and quality of automatically generated stories have significantly increased. This has led to the need for automatic story evaluation to assess the generative capabilities of computing systems and analyze the quality of both automatic-generated and human-written stories. Evaluating a story can be more challenging than other generation evaluation tasks. While tasks like machine translation primarily focus on assessing the aspects of fluency and accuracy, story evaluation demands complex additional measures such as overall coherence, character development, interestingness, etc. This requires a thorough review of relevant research. In this survey, we first summarize existing storytelling tasks, including text-to-text, visual-to-text, and text-to-visual. We highlight their evaluation challenges, identify various human criteria to measure stories, and present existing benchmark datasets. Then, we propose a taxonomy to organize evaluation metrics that have been developed or can be adopted for story evaluation. We also provide descriptions of these metrics, along with the discussion of their merits and limitations. Later, we discuss the human-AI collaboration for story evaluation and generation. Finally, we suggest potential future research directions, extending from story evaluation to general evaluations.

  • 2 authors
·
Aug 26, 2024

Accelerating Clinical Evidence Synthesis with Large Language Models

Synthesizing clinical evidence largely relies on systematic reviews of clinical trials and retrospective analyses from medical literature. However, the rapid expansion of publications presents challenges in efficiently identifying, summarizing, and updating clinical evidence. Here, we introduce TrialMind, a generative artificial intelligence (AI) pipeline for facilitating human-AI collaboration in three crucial tasks for evidence synthesis: study search, screening, and data extraction. To assess its performance, we chose published systematic reviews to build the benchmark dataset, named TrialReviewBench, which contains 100 systematic reviews and the associated 2,220 clinical studies. Our results show that TrialMind excels across all three tasks. In study search, it generates diverse and comprehensive search queries to achieve high recall rates (Ours 0.711-0.834 v.s. Human baseline 0.138-0.232). For study screening, TrialMind surpasses traditional embedding-based methods by 30% to 160%. In data extraction, it outperforms a GPT-4 baseline by 29.6% to 61.5%. We further conducted user studies to confirm its practical utility. Compared to manual efforts, human-AI collaboration using TrialMind yielded a 71.4% recall lift and 44.2% time savings in study screening and a 23.5% accuracy lift and 63.4% time savings in data extraction. Additionally, when comparing synthesized clinical evidence presented in forest plots, medical experts favored TrialMind's outputs over GPT-4's outputs in 62.5% to 100% of cases. These findings show the promise of LLM-based approaches like TrialMind to accelerate clinical evidence synthesis via streamlining study search, screening, and data extraction from medical literature, with exceptional performance improvement when working with human experts.

  • 6 authors
·
Jun 25, 2024

A Game-Theoretic Framework for Managing Risk in Multi-Agent Systems

In order for agents in multi-agent systems (MAS) to be safe, they need to take into account the risks posed by the actions of other agents. However, the dominant paradigm in game theory (GT) assumes that agents are not affected by risk from other agents and only strive to maximise their expected utility. For example, in hybrid human-AI driving systems, it is necessary to limit large deviations in reward resulting from car crashes. Although there are equilibrium concepts in game theory that take into account risk aversion, they either assume that agents are risk-neutral with respect to the uncertainty caused by the actions of other agents, or they are not guaranteed to exist. We introduce a new GT-based Risk-Averse Equilibrium (RAE) that always produces a solution that minimises the potential variance in reward accounting for the strategy of other agents. Theoretically and empirically, we show RAE shares many properties with a Nash Equilibrium (NE), establishing convergence properties and generalising to risk-dominant NE in certain cases. To tackle large-scale problems, we extend RAE to the PSRO multi-agent reinforcement learning (MARL) framework. We empirically demonstrate the minimum reward variance benefits of RAE in matrix games with high-risk outcomes. Results on MARL experiments show RAE generalises to risk-dominant NE in a trust dilemma game and that it reduces instances of crashing by 7x in an autonomous driving setting versus the best performing baseline.

  • 6 authors
·
May 30, 2022

Towards Collaborative Plan Acquisition through Theory of Mind Modeling in Situated Dialogue

Collaborative tasks often begin with partial task knowledge and incomplete initial plans from each partner. To complete these tasks, agents need to engage in situated communication with their partners and coordinate their partial plans towards a complete plan to achieve a joint task goal. While such collaboration seems effortless in a human-human team, it is highly challenging for human-AI collaboration. To address this limitation, this paper takes a step towards collaborative plan acquisition, where humans and agents strive to learn and communicate with each other to acquire a complete plan for joint tasks. Specifically, we formulate a novel problem for agents to predict the missing task knowledge for themselves and for their partners based on rich perceptual and dialogue history. We extend a situated dialogue benchmark for symmetric collaborative tasks in a 3D blocks world and investigate computational strategies for plan acquisition. Our empirical results suggest that predicting the partner's missing knowledge is a more viable approach than predicting one's own. We show that explicit modeling of the partner's dialogue moves and mental states produces improved and more stable results than without. These results provide insight for future AI agents that can predict what knowledge their partner is missing and, therefore, can proactively communicate such information to help their partner acquire such missing knowledge toward a common understanding of joint tasks.

  • 5 authors
·
May 18, 2023

Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning

Supervised Fine-Tuning (SFT) Large Language Models (LLM) fundamentally rely on high-quality training data. While data selection and data synthesis are two common strategies to improve data quality, existing approaches often face limitations in static dataset curation that fail to adapt to evolving model capabilities. In this paper, we introduce Middo, a self-evolving Model-informed dynamic data optimization framework that uses model-aware data selection and context-preserving data refinement. Unlike conventional one-off filtering/synthesis methods, our framework establishes a closed-loop optimization system: (1) A self-referential diagnostic module proactively identifies suboptimal samples through tri-axial model signals - loss patterns (complexity), embedding cluster dynamics (diversity), and self-alignment scores (quality); (2) An adaptive optimization engine then transforms suboptimal samples into pedagogically valuable training points while preserving semantic integrity; (3) This optimization process continuously evolves with model capability through dynamic learning principles. Experiments on multiple benchmarks demonstrate that our \method consistently enhances the quality of seed data and boosts LLM's performance with improving accuracy by 7.15% on average while maintaining the original dataset scale. This work establishes a new paradigm for sustainable LLM training through dynamic human-AI co-evolution of data and models. Our datasets, models, and code are coming soon.

  • 8 authors
·
Aug 29

Explaining Sources of Uncertainty in Automated Fact-Checking

Understanding sources of a model's uncertainty regarding its predictions is crucial for effective human-AI collaboration. Prior work proposes using numerical uncertainty or hedges ("I'm not sure, but ..."), which do not explain uncertainty that arises from conflicting evidence, leaving users unable to resolve disagreements or rely on the output. We introduce CLUE (Conflict-and-Agreement-aware Language-model Uncertainty Explanations), the first framework to generate natural language explanations of model uncertainty by (i) identifying relationships between spans of text that expose claim-evidence or inter-evidence conflicts and agreements that drive the model's predictive uncertainty in an unsupervised way, and (ii) generating explanations via prompting and attention steering that verbalize these critical interactions. Across three language models and two fact-checking datasets, we show that CLUE produces explanations that are more faithful to the model's uncertainty and more consistent with fact-checking decisions than prompting for uncertainty explanations without span-interaction guidance. Human evaluators judge our explanations to be more helpful, more informative, less redundant, and more logically consistent with the input than this baseline. CLUE requires no fine-tuning or architectural changes, making it plug-and-play for any white-box language model. By explicitly linking uncertainty to evidence conflicts, it offers practical support for fact-checking and generalises readily to other tasks that require reasoning over complex information.

  • 4 authors
·
May 23 1

Beyond Hallucinations: The Illusion of Understanding in Large Language Models

Large language models (LLMs) are becoming deeply embedded in human communication and decision-making, yet they inherit the ambiguity, bias, and lack of direct access to truth inherent in language itself. While their outputs are fluent, emotionally resonant, and coherent, they are generated through statistical prediction rather than grounded reasoning. This creates the risk of hallucination, responses that sound convincing but lack factual validity. Building on Geoffrey Hinton's observation that AI mirrors human intuition rather than reasoning, this paper argues that LLMs operationalize System 1 cognition at scale: fast, associative, and persuasive, but without reflection or falsification. To address this, we introduce the Rose-Frame, a three-dimensional framework for diagnosing cognitive and epistemic drift in human-AI interaction. The three axes are: (i) Map vs. Territory, which distinguishes representations of reality (epistemology) from reality itself (ontology); (ii) Intuition vs. Reason, drawing on dual-process theory to separate fast, emotional judgments from slow, reflective thinking; and (iii) Conflict vs. Confirmation, which examines whether ideas are critically tested through disagreement or simply reinforced through mutual validation. Each dimension captures a distinct failure mode, and their combination amplifies misalignment. Rose-Frame does not attempt to fix LLMs with more data or rules. Instead, it offers a reflective tool that makes both the model's limitations and the user's assumptions visible, enabling more transparent and critically aware AI deployment. It reframes alignment as cognitive governance: intuition, whether human or artificial, must remain governed by human reason. Only by embedding reflective, falsifiable oversight can we align machine fluency with human understanding.

  • 4 authors
·
Oct 16

Agent-to-Agent Theory of Mind: Testing Interlocutor Awareness among Large Language Models

As large language models (LLMs) are increasingly integrated into multi-agent and human-AI systems, understanding their awareness of both self-context and conversational partners is essential for ensuring reliable performance and robust safety. While prior work has extensively studied situational awareness which refers to an LLM's ability to recognize its operating phase and constraints, it has largely overlooked the complementary capacity to identify and adapt to the identity and characteristics of a dialogue partner. In this paper, we formalize this latter capability as interlocutor awareness and present the first systematic evaluation of its emergence in contemporary LLMs. We examine interlocutor inference across three dimensions-reasoning patterns, linguistic style, and alignment preferences-and show that LLMs reliably identify same-family peers and certain prominent model families, such as GPT and Claude. To demonstrate its practical significance, we develop three case studies in which interlocutor awareness both enhances multi-LLM collaboration through prompt adaptation and introduces new alignment and safety vulnerabilities, including reward-hacking behaviors and increased jailbreak susceptibility. Our findings highlight the dual promise and peril of identity-sensitive behavior in LLMs, underscoring the need for further understanding of interlocutor awareness and new safeguards in multi-agent deployments. Our code is open-sourced at https://github.com/younwoochoi/InterlocutorAwarenessLLM.

  • 4 authors
·
Jun 28

MuLan: Multimodal-LLM Agent for Progressive and Interactive Multi-Object Diffusion

Existing text-to-image models still struggle to generate images of multiple objects, especially in handling their spatial positions, relative sizes, overlapping, and attribute bindings. To efficiently address these challenges, we develop a training-free Multimodal-LLM agent (MuLan), as a human painter, that can progressively generate multi-object with intricate planning and feedback control. MuLan harnesses a large language model (LLM) to decompose a prompt to a sequence of sub-tasks, each generating only one object by stable diffusion, conditioned on previously generated objects. Unlike existing LLM-grounded methods, MuLan only produces a high-level plan at the beginning while the exact size and location of each object are determined upon each sub-task by an LLM and attention guidance. Moreover, MuLan adopts a vision-language model (VLM) to provide feedback to the image generated in each sub-task and control the diffusion model to re-generate the image if it violates the original prompt. Hence, each model in every step of MuLan only needs to address an easy sub-task it is specialized for. The multi-step process also allows human users to monitor the generation process and make preferred changes at any intermediate step via text prompts, thereby improving the human-AI collaboration experience. We collect 200 prompts containing multi-objects with spatial relationships and attribute bindings from different benchmarks to evaluate MuLan. The results demonstrate the superiority of MuLan in generating multiple objects over baselines and its creativity when collaborating with human users. The code is available at https://github.com/measure-infinity/mulan-code.

  • 5 authors
·
Feb 20, 2024

Learn to Sing by Listening: Building Controllable Virtual Singer by Unsupervised Learning from Voice Recordings

The virtual world is being established in which digital humans are created indistinguishable from real humans. Producing their audio-related capabilities is crucial since voice conveys extensive personal characteristics. We aim to create a controllable audio-form virtual singer; however, supervised modeling and controlling all different factors of the singing voice, such as timbre, tempo, pitch, and lyrics, is extremely difficult since accurately labeling all such information needs enormous labor work. In this paper, we propose a framework that could digitize a person's voice by simply "listening" to the clean voice recordings of any content in a fully unsupervised manner and predict singing voices even only using speaking recordings. A variational auto-encoder (VAE) based framework is developed, which leverages a set of pre-trained models to encode the audio as various hidden embeddings representing different factors of the singing voice, and further decodes the embeddings into raw audio. By manipulating the hidden embeddings for different factors, the resulting singing voices can be controlled, and new virtual singers can also be further generated by interpolating between timbres. Evaluations of different types of experiments demonstrate the proposed method's effectiveness. The proposed method is the critical technique for producing the AI choir, which empowered the human-AI symbiotic orchestra in Hong Kong in July 2022.

  • 4 authors
·
May 9, 2023

Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots

We present Habitat 3.0: a simulation platform for studying collaborative human-robot tasks in home environments. Habitat 3.0 offers contributions across three dimensions: (1) Accurate humanoid simulation: addressing challenges in modeling complex deformable bodies and diversity in appearance and motion, all while ensuring high simulation speed. (2) Human-in-the-loop infrastructure: enabling real human interaction with simulated robots via mouse/keyboard or a VR interface, facilitating evaluation of robot policies with human input. (3) Collaborative tasks: studying two collaborative tasks, Social Navigation and Social Rearrangement. Social Navigation investigates a robot's ability to locate and follow humanoid avatars in unseen environments, whereas Social Rearrangement addresses collaboration between a humanoid and robot while rearranging a scene. These contributions allow us to study end-to-end learned and heuristic baselines for human-robot collaboration in-depth, as well as evaluate them with humans in the loop. Our experiments demonstrate that learned robot policies lead to efficient task completion when collaborating with unseen humanoid agents and human partners that might exhibit behaviors that the robot has not seen before. Additionally, we observe emergent behaviors during collaborative task execution, such as the robot yielding space when obstructing a humanoid agent, thereby allowing the effective completion of the task by the humanoid agent. Furthermore, our experiments using the human-in-the-loop tool demonstrate that our automated evaluation with humanoids can provide an indication of the relative ordering of different policies when evaluated with real human collaborators. Habitat 3.0 unlocks interesting new features in simulators for Embodied AI, and we hope it paves the way for a new frontier of embodied human-AI interaction capabilities.

  • 23 authors
·
Oct 19, 2023 3

Understanding the Logic of Direct Preference Alignment through Logic

Recent direct preference alignment algorithms (DPA), such as DPO, have shown great promise in aligning large language models to human preferences. While this has motivated the development of many new variants of the original DPO loss, understanding the differences between these recent proposals, as well as developing new DPA loss functions, remains difficult given the lack of a technical and conceptual framework for reasoning about the underlying semantics of these algorithms. In this paper, we attempt to remedy this by formalizing DPA losses in terms of discrete reasoning problems. Specifically, we ask: Given an existing DPA loss, can we systematically derive a symbolic expression that characterizes its semantics? How do the semantics of two losses relate to each other? We propose a novel formalism for characterizing preference losses for single model and reference model based approaches, and identify symbolic forms for a number of commonly used DPA variants. Further, we show how this formal view of preference learning sheds new light on both the size and structure of the DPA loss landscape, making it possible to not only rigorously characterize the relationships between recent loss proposals but also to systematically explore the landscape and derive new loss functions from first principles. We hope our framework and findings will help provide useful guidance to those working on human AI alignment.

  • 3 authors
·
Dec 23, 2024

Revisiting Citizen Science Through the Lens of Hybrid Intelligence

Artificial Intelligence (AI) can augment and sometimes even replace human cognition. Inspired by efforts to value human agency alongside productivity, we discuss the benefits of solving Citizen Science (CS) tasks with Hybrid Intelligence (HI), a synergetic mixture of human and artificial intelligence. Currently there is no clear framework or methodology on how to create such an effective mixture. Due to the unique participant-centered set of values and the abundance of tasks drawing upon both human common sense and complex 21st century skills, we believe that the field of CS offers an invaluable testbed for the development of HI and human-centered AI of the 21st century, while benefiting CS as well. In order to investigate this potential, we first relate CS to adjacent computational disciplines. Then, we demonstrate that CS projects can be grouped according to their potential for HI-enhancement by examining two key dimensions: the level of digitization and the amount of knowledge or experience required for participation. Finally, we propose a framework for types of human-AI interaction in CS based on established criteria of HI. This "HI lens" provides the CS community with an overview of several ways to utilize the combination of AI and human intelligence in their projects. It also allows the AI community to gain ideas on how developing AI in CS projects can further their own field.

  • 16 authors
·
Apr 30, 2021

Situated Language Learning via Interactive Narratives

This paper provides a roadmap that explores the question of how to imbue learning agents with the ability to understand and generate contextually relevant natural language in service of achieving a goal. We hypothesize that two key components in creating such agents are interactivity and environment grounding, shown to be vital parts of language learning in humans, and posit that interactive narratives should be the environments of choice for such training these agents. These games are simulations in which an agent interacts with the world through natural language -- "perceiving", "acting upon", and "talking to" the world using textual descriptions, commands, and dialogue -- and as such exist at the intersection of natural language processing, storytelling, and sequential decision making. We discuss the unique challenges a text games' puzzle-like structure combined with natural language state-and-action spaces provides: knowledge representation, commonsense reasoning, and exploration. Beyond the challenges described so far, progress in the realm of interactive narratives can be applied in adjacent problem domains. These applications provide interesting challenges of their own as well as extensions to those discussed so far. We describe three of them in detail: (1) evaluating AI system's commonsense understanding by automatically creating interactive narratives; (2) adapting abstract text-based policies to include other modalities such as vision; and (3) enabling multi-agent and human-AI collaboration in shared, situated worlds.

  • 2 authors
·
Mar 17, 2021