Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeNeural Approaches to Multilingual Information Retrieval
Providing access to information across languages has been a goal of Information Retrieval (IR) for decades. While progress has been made on Cross Language IR (CLIR) where queries are expressed in one language and documents in another, the multilingual (MLIR) task to create a single ranked list of documents across many languages is considerably more challenging. This paper investigates whether advances in neural document translation and pretrained multilingual neural language models enable improvements in the state of the art over earlier MLIR techniques. The results show that although combining neural document translation with neural ranking yields the best Mean Average Precision (MAP), 98% of that MAP score can be achieved with an 84% reduction in indexing time by using a pretrained XLM-R multilingual language model to index documents in their native language, and that 2% difference in effectiveness is not statistically significant. Key to achieving these results for MLIR is to fine-tune XLM-R using mixed-language batches from neural translations of MS MARCO passages.
Joint Learning of Deep Retrieval Model and Product Quantization based Embedding Index
Embedding index that enables fast approximate nearest neighbor(ANN) search, serves as an indispensable component for state-of-the-art deep retrieval systems. Traditional approaches, often separating the two steps of embedding learning and index building, incur additional indexing time and decayed retrieval accuracy. In this paper, we propose a novel method called Poeem, which stands for product quantization based embedding index jointly trained with deep retrieval model, to unify the two separate steps within an end-to-end training, by utilizing a few techniques including the gradient straight-through estimator, warm start strategy, optimal space decomposition and Givens rotation. Extensive experimental results show that the proposed method not only improves retrieval accuracy significantly but also reduces the indexing time to almost none. We have open sourced our approach for the sake of comparison and reproducibility.
Efficient Document Re-Ranking for Transformers by Precomputing Term Representations
Deep pretrained transformer networks are effective at various ranking tasks, such as question answering and ad-hoc document ranking. However, their computational expenses deem them cost-prohibitive in practice. Our proposed approach, called PreTTR (Precomputing Transformer Term Representations), considerably reduces the query-time latency of deep transformer networks (up to a 42x speedup on web document ranking) making these networks more practical to use in a real-time ranking scenario. Specifically, we precompute part of the document term representations at indexing time (without a query), and merge them with the query representation at query time to compute the final ranking score. Due to the large size of the token representations, we also propose an effective approach to reduce the storage requirement by training a compression layer to match attention scores. Our compression technique reduces the storage required up to 95% and it can be applied without a substantial degradation in ranking performance.
NodeRAG: Structuring Graph-based RAG with Heterogeneous Nodes
Retrieval-augmented generation (RAG) empowers large language models to access external and private corpus, enabling factually consistent responses in specific domains. By exploiting the inherent structure of the corpus, graph-based RAG methods further enrich this process by building a knowledge graph index and leveraging the structural nature of graphs. However, current graph-based RAG approaches seldom prioritize the design of graph structures. Inadequately designed graph not only impede the seamless integration of diverse graph algorithms but also result in workflow inconsistencies and degraded performance. To further unleash the potential of graph for RAG, we propose NodeRAG, a graph-centric framework introducing heterogeneous graph structures that enable the seamless and holistic integration of graph-based methodologies into the RAG workflow. By aligning closely with the capabilities of LLMs, this framework ensures a fully cohesive and efficient end-to-end process. Through extensive experiments, we demonstrate that NodeRAG exhibits performance advantages over previous methods, including GraphRAG and LightRAG, not only in indexing time, query time, and storage efficiency but also in delivering superior question-answering performance on multi-hop benchmarks and open-ended head-to-head evaluations with minimal retrieval tokens. Our GitHub repository could be seen at https://github.com/Terry-Xu-666/NodeRAG.
Exploring $\ell_0$ Sparsification for Inference-free Sparse Retrievers
With increasing demands for efficiency, information retrieval has developed a branch of sparse retrieval, further advancing towards inference-free retrieval where the documents are encoded during indexing time and there is no model-inference for queries. Existing sparse retrieval models rely on FLOPS regularization for sparsification, while this mechanism was originally designed for Siamese encoders, it is considered to be suboptimal in inference-free scenarios which is asymmetric. Previous attempts to adapt FLOPS for inference-free scenarios have been limited to rule-based methods, leaving the potential of sparsification approaches for inference-free retrieval models largely unexplored. In this paper, we explore ell_0 inspired sparsification manner for inference-free retrievers. Through comprehensive out-of-domain evaluation on the BEIR benchmark, our method achieves state-of-the-art performance among inference-free sparse retrieval models and is comparable to leading Siamese sparse retrieval models. Furthermore, we provide insights into the trade-off between retrieval effectiveness and computational efficiency, demonstrating practical value for real-world applications.
A Study on Token Pruning for ColBERT
The ColBERT model has recently been proposed as an effective BERT based ranker. By adopting a late interaction mechanism, a major advantage of ColBERT is that document representations can be precomputed in advance. However, the big downside of the model is the index size, which scales linearly with the number of tokens in the collection. In this paper, we study various designs for ColBERT models in order to attack this problem. While compression techniques have been explored to reduce the index size, in this paper we study token pruning techniques for ColBERT. We compare simple heuristics, as well as a single layer of attention mechanism to select the tokens to keep at indexing time. Our experiments show that ColBERT indexes can be pruned up to 30\% on the MS MARCO passage collection without a significant drop in performance. Finally, we experiment on MS MARCO documents, which reveal several challenges for such mechanism.
Clearer Frames, Anytime: Resolving Velocity Ambiguity in Video Frame Interpolation
Existing video frame interpolation (VFI) methods blindly predict where each object is at a specific timestep t ("time indexing"), which struggles to predict precise object movements. Given two images of a baseball, there are infinitely many possible trajectories: accelerating or decelerating, straight or curved. This often results in blurry frames as the method averages out these possibilities. Instead of forcing the network to learn this complicated time-to-location mapping implicitly together with predicting the frames, we provide the network with an explicit hint on how far the object has traveled between start and end frames, a novel approach termed "distance indexing". This method offers a clearer learning goal for models, reducing the uncertainty tied to object speeds. We further observed that, even with this extra guidance, objects can still be blurry especially when they are equally far from both input frames (i.e., halfway in-between), due to the directional ambiguity in long-range motion. To solve this, we propose an iterative reference-based estimation strategy that breaks down a long-range prediction into several short-range steps. When integrating our plug-and-play strategies into state-of-the-art learning-based models, they exhibit markedly sharper outputs and superior perceptual quality in arbitrary time interpolations, using a uniform distance indexing map in the same format as time indexing. Additionally, distance indexing can be specified pixel-wise, which enables temporal manipulation of each object independently, offering a novel tool for video editing tasks like re-timing.
Infini-gram mini: Exact n-gram Search at the Internet Scale with FM-Index
Language models are trained mainly on massive text data from the Internet, and it becomes increasingly important to understand this data source. Exact-match search engines enable searching in large text corpora -- counting string appearances and retrieving the enclosing documents -- yet the high storage overhead hinders their application on Internet-scale data. We present Infini-gram mini, an efficient and scalable system that can make petabyte-level text corpora searchable. Based on the FM-index data structure (Ferragina and Manzini, 2000), which simultaneously indexes and compresses text, our system creates indexes with size only 44% of the corpus. Infini-gram mini greatly improves upon the best existing implementation of FM-index in terms of indexing speed (18times) and memory use during both indexing (3.2times reduction) and querying (down to a negligible amount). We index 46TB of Internet text in 50 days with a single 128-core CPU node (or 19 hours if using 75 such nodes). We show one important use case of Infini-gram mini in a large-scale analysis of benchmark contamination. We find several core LM evaluation benchmarks to be heavily contaminated in Internet crawls (up to 40% in SQuAD), which could lead to overestimating the capabilities of language models if trained on such data. We host a benchmark contamination bulletin to share the contamination rate of many core and community-contributed benchmarks. We also release a web interface and an API endpoint to serve general search queries on Infini-gram mini indexes.
It's High Time: A Survey of Temporal Information Retrieval and Question Answering
Time plays a critical role in how information is generated, retrieved, and interpreted. In this survey, we provide a comprehensive overview of Temporal Information Retrieval and Temporal Question Answering, two research areas aimed at handling and understanding time-sensitive information. As the amount of time-stamped content from sources like news articles, web archives, and knowledge bases increases, systems must address challenges such as detecting temporal intent, normalizing time expressions, ordering events, and reasoning over evolving or ambiguous facts. These challenges are critical across many dynamic and time-sensitive domains, from news and encyclopedias to science, history, and social media. We review both traditional approaches and modern neural methods, including those that use transformer models and Large Language Models (LLMs). We also review recent advances in temporal language modeling, multi-hop reasoning, and retrieval-augmented generation (RAG), alongside benchmark datasets and evaluation strategies that test temporal robustness, recency awareness, and generalization.
Hierarchical Indexing for Retrieval-Augmented Opinion Summarization
We propose a method for unsupervised abstractive opinion summarization, that combines the attributability and scalability of extractive approaches with the coherence and fluency of Large Language Models (LLMs). Our method, HIRO, learns an index structure that maps sentences to a path through a semantically organized discrete hierarchy. At inference time, we populate the index and use it to identify and retrieve clusters of sentences containing popular opinions from input reviews. Then, we use a pretrained LLM to generate a readable summary that is grounded in these extracted evidential clusters. The modularity of our approach allows us to evaluate its efficacy at each stage. We show that HIRO learns an encoding space that is more semantically structured than prior work, and generates summaries that are more representative of the opinions in the input reviews. Human evaluation confirms that HIRO generates more coherent, detailed and accurate summaries that are significantly preferred by annotators compared to prior work.
Real-Time Construction Algorithm of Co-Occurrence Network Based on Inverted Index
Co-occurrence networks are an important method in the field of natural language processing and text mining for discovering semantic relationships within texts. However, the traditional traversal algorithm for constructing co-occurrence networks has high time complexity and space complexity when dealing with large-scale text data. In this paper, we propose an optimized algorithm based on inverted indexing and breadth-first search to improve the efficiency of co-occurrence network construction and reduce memory consumption. Firstly, the traditional traversal algorithm is analyzed, and its performance issues in constructing co-occurrence networks are identified. Then, the detailed implementation process of the optimized algorithm is presented. Subsequently, the CSL large-scale Chinese scientific literature dataset is used for experimental validation, comparing the performance of the traditional traversal algorithm and the optimized algorithm in terms of running time and memory usage. Finally, using non-parametric test methods, the optimized algorithm is proven to have significantly better performance than the traditional traversal algorithm. The research in this paper provides an effective method for the rapid construction of co-occurrence networks, contributing to the further development of the Information Organization fields.
Going over Fine Web with a Fine-Tooth Comb: Technical Report of Indexing Fine Web for Problematic Content Search and Retrieval
Large language models (LLMs) rely heavily on web-scale datasets like Common Crawl, which provides over 80\% of training data for some modern models. However, the indiscriminate nature of web crawling raises challenges in data quality, safety, and ethics. Despite the critical importance of training data quality, prior research on harmful content has been limited to small samples due to computational constraints. This project presents a framework for indexing and analyzing LLM training datasets using an ElasticSearch-based pipeline. We apply it to SwissAI's FineWeb-2 corpus (1.5TB, four languages), achieving fast query performance--most searches in milliseconds, all under 2 seconds. Our work demonstrates real-time dataset analysis, offering practical tools for safer, more accountable AI systems.
Zero-Indexing Internet Search Augmented Generation for Large Language Models
Retrieval augmented generation has emerged as an effective method to enhance large language model performance. This approach typically relies on an internal retrieval module that uses various indexing mechanisms to manage a static pre-processed corpus. However, such a paradigm often falls short when it is necessary to integrate the most up-to-date information that has not been updated into the corpus during generative inference time. In this paper, we explore an alternative approach that leverages standard search engine APIs to dynamically integrate the latest online information (without maintaining any index for any fixed corpus), thereby improving the quality of generated content. We design a collaborative LLM-based paradigm, where we include: (i) a parser-LLM that determines if the Internet augmented generation is demanded and extracts the search keywords if so with a single inference; (ii) a mixed ranking strategy that re-ranks the retrieved HTML files to eliminate bias introduced from the search engine API; and (iii) an extractor-LLM that can accurately and efficiently extract relevant information from the fresh content in each HTML file. We conduct extensive empirical studies to evaluate the performance of this Internet search augmented generation paradigm. The experimental results demonstrate that our method generates content with significantly improved quality. Our system has been successfully deployed in a production environment to serve 01.AI's generative inference requests.
MetaEmbed: Scaling Multimodal Retrieval at Test-Time with Flexible Late Interaction
Universal multimodal embedding models have achieved great success in capturing semantic relevance between queries and candidates. However, current methods either condense queries and candidates into a single vector, potentially limiting the expressiveness for fine-grained information, or produce too many vectors that are prohibitively expensive for multi-vector retrieval. In this work, we introduce MetaEmbed, a new framework for multimodal retrieval that rethinks how multimodal embeddings are constructed and interacted with at scale. During training, a fixed number of learnable Meta Tokens are appended to the input sequence. At test-time, their last-layer contextualized representations serve as compact yet expressive multi-vector embeddings. Through the proposed Matryoshka Multi-Vector Retrieval training, MetaEmbed learns to organize information by granularity across multiple vectors. As a result, we enable test-time scaling in multimodal retrieval, where users can balance retrieval quality against efficiency demands by selecting the number of tokens used for indexing and retrieval interactions. Extensive evaluations on the Massive Multimodal Embedding Benchmark (MMEB) and the Visual Document Retrieval Benchmark (ViDoRe) confirm that MetaEmbed achieves state-of-the-art retrieval performance while scaling robustly to models with 32B parameters.
FreshDiskANN: A Fast and Accurate Graph-Based ANN Index for Streaming Similarity Search
Approximate nearest neighbor search (ANNS) is a fundamental building block in information retrieval with graph-based indices being the current state-of-the-art and widely used in the industry. Recent advances in graph-based indices have made it possible to index and search billion-point datasets with high recall and millisecond-level latency on a single commodity machine with an SSD. However, existing graph algorithms for ANNS support only static indices that cannot reflect real-time changes to the corpus required by many key real-world scenarios (e.g. index of sentences in documents, email, or a news index). To overcome this drawback, the current industry practice for manifesting updates into such indices is to periodically re-build these indices, which can be prohibitively expensive. In this paper, we present the first graph-based ANNS index that reflects corpus updates into the index in real-time without compromising on search performance. Using update rules for this index, we design FreshDiskANN, a system that can index over a billion points on a workstation with an SSD and limited memory, and support thousands of concurrent real-time inserts, deletes and searches per second each, while retaining >95% 5-recall@5. This represents a 5-10x reduction in the cost of maintaining freshness in indices when compared to existing methods.
Event-driven Real-time Retrieval in Web Search
Information retrieval in real-time search presents unique challenges distinct from those encountered in classical web search. These challenges are particularly pronounced due to the rapid change of user search intent, which is influenced by the occurrence and evolution of breaking news events, such as earthquakes, elections, and wars. Previous dense retrieval methods, which primarily focused on static semantic representation, lack the capacity to capture immediate search intent, leading to inferior performance in retrieving the most recent event-related documents in time-sensitive scenarios. To address this issue, this paper expands the query with event information that represents real-time search intent. The Event information is then integrated with the query through a cross-attention mechanism, resulting in a time-context query representation. We further enhance the model's capacity for event representation through multi-task training. Since publicly available datasets such as MS-MARCO do not contain any event information on the query side and have few time-sensitive queries, we design an automatic data collection and annotation pipeline to address this issue, which includes ModelZoo-based Coarse Annotation and LLM-driven Fine Annotation processes. In addition, we share the training tricks such as two-stage training and hard negative sampling. Finally, we conduct a set of offline experiments on a million-scale production dataset to evaluate our approach and deploy an A/B testing in a real online system to verify the performance. Extensive experimental results demonstrate that our proposed approach significantly outperforms existing state-of-the-art baseline methods.
What time is it? Temporal Analysis of Novels
Recognizing the flow of time in a story is a crucial aspect of understanding it. Prior work related to time has primarily focused on identifying temporal expressions or relative sequencing of events, but here we propose computationally annotating each line of a book with wall clock times, even in the absence of explicit time-descriptive phrases. To do so, we construct a data set of hourly time phrases from 52,183 fictional books. We then construct a time-of-day classification model that achieves an average error of 2.27 hours. Furthermore, we show that by analyzing a book in whole using dynamic programming of breakpoints, we can roughly partition a book into segments that each correspond to a particular time-of-day. This approach improves upon baselines by over two hours. Finally, we apply our model to a corpus of literature categorized by different periods in history, to show interesting trends of hourly activity throughout the past. Among several observations we find that the fraction of events taking place past 10 P.M jumps past 1880 - coincident with the advent of the electric light bulb and city lights.
TURA: Tool-Augmented Unified Retrieval Agent for AI Search
The advent of Large Language Models (LLMs) is transforming search engines into conversational AI search products, primarily using Retrieval-Augmented Generation (RAG) on web corpora. However, this paradigm has significant industrial limitations. Traditional RAG approaches struggle with real-time needs and structured queries that require accessing dynamically generated content like ticket availability or inventory. Limited to indexing static pages, search engines cannot perform the interactive queries needed for such time-sensitive data. Academic research has focused on optimizing RAG for static content, overlooking complex intents and the need for dynamic sources like databases and real-time APIs. To bridge this gap, we introduce TURA (Tool-Augmented Unified Retrieval Agent for AI Search), a novel three-stage framework that combines RAG with agentic tool-use to access both static content and dynamic, real-time information. TURA has three key components: an Intent-Aware Retrieval module to decompose queries and retrieve information sources encapsulated as Model Context Protocol (MCP) Servers, a DAG-based Task Planner that models task dependencies as a Directed Acyclic Graph (DAG) for optimal parallel execution, and a lightweight Distilled Agent Executor for efficient tool calling. TURA is the first architecture to systematically bridge the gap between static RAG and dynamic information sources for a world-class AI search product. Serving tens of millions of users, it leverages an agentic framework to deliver robust, real-time answers while meeting the low-latency demands of a large-scale industrial system.
Query Drift Compensation: Enabling Compatibility in Continual Learning of Retrieval Embedding Models
Text embedding models enable semantic search, powering several NLP applications like Retrieval Augmented Generation by efficient information retrieval (IR). However, text embedding models are commonly studied in scenarios where the training data is static, thus limiting its applications to dynamic scenarios where new training data emerges over time. IR methods generally encode a huge corpus of documents to low-dimensional embeddings and store them in a database index. During retrieval, a semantic search over the corpus is performed and the document whose embedding is most similar to the query embedding is returned. When updating an embedding model with new training data, using the already indexed corpus is suboptimal due to the non-compatibility issue, since the model which was used to obtain the embeddings of the corpus has changed. While re-indexing of old corpus documents using the updated model enables compatibility, it requires much higher computation and time. Thus, it is critical to study how the already indexed corpus can still be effectively used without the need of re-indexing. In this work, we establish a continual learning benchmark with large-scale datasets and continually train dense retrieval embedding models on query-document pairs from new datasets in each task and observe forgetting on old tasks due to significant drift of embeddings. We employ embedding distillation on both query and document embeddings to maintain stability and propose a novel query drift compensation method during retrieval to project new model query embeddings to the old embedding space. This enables compatibility with previously indexed corpus embeddings extracted using the old model and thus reduces the forgetting. We show that the proposed method significantly improves performance without any re-indexing. Code is available at https://github.com/dipamgoswami/QDC.
Empowering Agentic Video Analytics Systems with Video Language Models
AI-driven video analytics has become increasingly pivotal across diverse domains. However, existing systems are often constrained to specific, predefined tasks, limiting their adaptability in open-ended analytical scenarios. The recent emergence of Video-Language Models (VLMs) as transformative technologies offers significant potential for enabling open-ended video understanding, reasoning, and analytics. Nevertheless, their limited context windows present challenges when processing ultra-long video content, which is prevalent in real-world applications. To address this, we introduce AVAS, a VLM-powered system designed for open-ended, advanced video analytics. AVAS incorporates two key innovations: (1) the near real-time construction of Event Knowledge Graphs (EKGs) for efficient indexing of long or continuous video streams, and (2) an agentic retrieval-generation mechanism that leverages EKGs to handle complex and diverse queries. Comprehensive evaluations on public benchmarks, LVBench and VideoMME-Long, demonstrate that AVAS achieves state-of-the-art performance, attaining 62.3% and 64.1% accuracy, respectively, significantly surpassing existing VLM and video Retrieval-Augmented Generation (RAG) systems. Furthermore, to evaluate video analytics in ultra-long and open-world video scenarios, we introduce a new benchmark, AVAS-100. This benchmark comprises 8 videos, each exceeding 10 hours in duration, along with 120 manually annotated, diverse, and complex question-answer pairs. On AVAS-100, AVAS achieves top-tier performance with an accuracy of 75.8%.
Fast, Expressive SE$(n)$ Equivariant Networks through Weight-Sharing in Position-Orientation Space
Based on the theory of homogeneous spaces we derive geometrically optimal edge attributes to be used within the flexible message-passing framework. We formalize the notion of weight sharing in convolutional networks as the sharing of message functions over point-pairs that should be treated equally. We define equivalence classes of point-pairs that are identical up to a transformation in the group and derive attributes that uniquely identify these classes. Weight sharing is then obtained by conditioning message functions on these attributes. As an application of the theory, we develop an efficient equivariant group convolutional network for processing 3D point clouds. The theory of homogeneous spaces tells us how to do group convolutions with feature maps over the homogeneous space of positions R^3, position and orientations R^3 {times} S^2, and the group SE(3) itself. Among these, R^3 {times} S^2 is an optimal choice due to the ability to represent directional information, which R^3 methods cannot, and it significantly enhances computational efficiency compared to indexing features on the full SE(3) group. We support this claim with state-of-the-art results -- in accuracy and speed -- on five different benchmarks in 2D and 3D, including interatomic potential energy prediction, trajectory forecasting in N-body systems, and generating molecules via equivariant diffusion models.
EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos
Surgical workflow recognition has numerous potential medical applications, such as the automatic indexing of surgical video databases and the optimization of real-time operating room scheduling, among others. As a result, phase recognition has been studied in the context of several kinds of surgeries, such as cataract, neurological, and laparoscopic surgeries. In the literature, two types of features are typically used to perform this task: visual features and tool usage signals. However, the visual features used are mostly handcrafted. Furthermore, the tool usage signals are usually collected via a manual annotation process or by using additional equipment. In this paper, we propose a novel method for phase recognition that uses a convolutional neural network (CNN) to automatically learn features from cholecystectomy videos and that relies uniquely on visual information. In previous studies, it has been shown that the tool signals can provide valuable information in performing the phase recognition task. Thus, we present a novel CNN architecture, called EndoNet, that is designed to carry out the phase recognition and tool presence detection tasks in a multi-task manner. To the best of our knowledge, this is the first work proposing to use a CNN for multiple recognition tasks on laparoscopic videos. Extensive experimental comparisons to other methods show that EndoNet yields state-of-the-art results for both tasks.
Semantic Retrieval at Walmart
In product search, the retrieval of candidate products before re-ranking is more critical and challenging than other search like web search, especially for tail queries, which have a complex and specific search intent. In this paper, we present a hybrid system for e-commerce search deployed at Walmart that combines traditional inverted index and embedding-based neural retrieval to better answer user tail queries. Our system significantly improved the relevance of the search engine, measured by both offline and online evaluations. The improvements were achieved through a combination of different approaches. We present a new technique to train the neural model at scale. and describe how the system was deployed in production with little impact on response time. We highlight multiple learnings and practical tricks that were used in the deployment of this system.
Efficient and Reproducible Biomedical Question Answering using Retrieval Augmented Generation
Biomedical question-answering (QA) systems require effective retrieval and generation components to ensure accuracy, efficiency, and scalability. This study systematically examines a Retrieval-Augmented Generation (RAG) system for biomedical QA, evaluating retrieval strategies and response time trade-offs. We first assess state-of-the-art retrieval methods, including BM25, BioBERT, MedCPT, and a hybrid approach, alongside common data stores such as Elasticsearch, MongoDB, and FAISS, on a ~10% subset of PubMed (2.4M documents) to measure indexing efficiency, retrieval latency, and retriever performance in the end-to-end RAG system. Based on these insights, we deploy the final RAG system on the full 24M PubMed corpus, comparing different retrievers' impact on overall performance. Evaluations of the retrieval depth show that retrieving 50 documents with BM25 before reranking with MedCPT optimally balances accuracy (0.90), recall (0.90), and response time (1.91s). BM25 retrieval time remains stable (82ms), while MedCPT incurs the main computational cost. These results highlight previously not well-known trade-offs in retrieval depth, efficiency, and scalability for biomedical QA. With open-source code, the system is fully reproducible and extensible.
DSI++: Updating Transformer Memory with New Documents
Differentiable Search Indices (DSIs) encode a corpus of documents in model parameters and use the same model to answer user queries directly. Despite the strong performance of DSI models, deploying them in situations where the corpus changes over time is computationally expensive because reindexing the corpus requires re-training the model. In this work, we introduce DSI++, a continual learning challenge for DSI to incrementally index new documents while being able to answer queries related to both previously and newly indexed documents. Across different model scales and document identifier representations, we show that continual indexing of new documents leads to considerable forgetting of previously indexed documents. We also hypothesize and verify that the model experiences forgetting events during training, leading to unstable learning. To mitigate these issues, we investigate two approaches. The first focuses on modifying the training dynamics. Flatter minima implicitly alleviate forgetting, so we optimize for flatter loss basins and show that the model stably memorizes more documents (+12%). Next, we introduce a generative memory to sample pseudo-queries for documents and supplement them during continual indexing to prevent forgetting for the retrieval task. Extensive experiments on novel continual indexing benchmarks based on Natural Questions (NQ) and MS MARCO demonstrate that our proposed solution mitigates forgetting significantly. Concretely, it improves the average Hits@10 by +21.1% over competitive baselines for NQ and requires 6 times fewer model updates compared to re-training the DSI model for incrementally indexing five corpora in a sequence.
Regulatory Compliance through Doc2Doc Information Retrieval: A case study in EU/UK legislation where text similarity has limitations
Major scandals in corporate history have urged the need for regulatory compliance, where organizations need to ensure that their controls (processes) comply with relevant laws, regulations, and policies. However, keeping track of the constantly changing legislation is difficult, thus organizations are increasingly adopting Regulatory Technology (RegTech) to facilitate the process. To this end, we introduce regulatory information retrieval (REG-IR), an application of document-to-document information retrieval (DOC2DOC IR), where the query is an entire document making the task more challenging than traditional IR where the queries are short. Furthermore, we compile and release two datasets based on the relationships between EU directives and UK legislation. We experiment on these datasets using a typical two-step pipeline approach comprising a pre-fetcher and a neural re-ranker. Experimenting with various pre-fetchers from BM25 to k nearest neighbors over representations from several BERT models, we show that fine-tuning a BERT model on an in-domain classification task produces the best representations for IR. We also show that neural re-rankers under-perform due to contradicting supervision, i.e., similar query-document pairs with opposite labels. Thus, they are biased towards the pre-fetcher's score. Interestingly, applying a date filter further improves the performance, showcasing the importance of the time dimension.
Vidi: Large Multimodal Models for Video Understanding and Editing
Humans naturally share information with those they are connected to, and video has become one of the dominant mediums for communication and expression on the Internet. To support the creation of high-quality large-scale video content, a modern pipeline requires a comprehensive understanding of both the raw input materials (e.g., the unedited footage captured by cameras) and the editing components (e.g., visual effects). In video editing scenarios, models must process multiple modalities (e.g., vision, audio, text) with strong background knowledge and handle flexible input lengths (e.g., hour-long raw videos), which poses significant challenges for traditional models. In this report, we introduce Vidi, a family of Large Multimodal Models (LMMs) for a wide range of video understand editing scenarios. The first release focuses on temporal retrieval, i.e., identifying the time ranges within the input videos corresponding to a given text query, which plays a critical role in intelligent editing. The model is capable of processing hour-long videos with strong temporal understanding capability, e.g., retrieve time ranges for certain queries. To support a comprehensive evaluation in real-world scenarios, we also present the VUE-TR benchmark, which introduces five key advancements. 1) Video duration: significantly longer than existing temporal retrival datasets, 2) Audio support: includes audio-based queries, 3) Query format: diverse query lengths/formats, 4) Annotation quality: ground-truth time ranges are manually annotated. 5) Evaluation metric: a refined IoU metric to support evaluation over multiple time ranges. Remarkably, Vidi significantly outperforms leading proprietary models, e.g., GPT-4o and Gemini, on the temporal retrieval task, indicating its superiority in video editing scenarios.
Towards Effective Time-Aware Language Representation: Exploring Enhanced Temporal Understanding in Language Models
In the evolving field of Natural Language Processing, understanding the temporal context of text is increasingly crucial. This study investigates methods to incorporate temporal information during pre-training, aiming to achieve effective time-aware language representation for improved performance on time-related tasks. In contrast to common pre-trained models like BERT, which rely on synchronic document collections such as BookCorpus and Wikipedia, our research introduces BiTimeBERT 2.0, a novel language model pre-trained on a temporal news article collection. BiTimeBERT 2.0 utilizes this temporal news collection, focusing on three innovative pre-training objectives: Time-Aware Masked Language Modeling (TAMLM), Document Dating (DD), and Time-Sensitive Entity Replacement (TSER). Each objective targets a unique aspect of temporal information. TAMLM is designed to enhance the understanding of temporal contexts and relations, DD integrates document timestamps as chronological markers, and TSER focuses on the temporal dynamics of "Person" entities, recognizing their inherent temporal significance. The experimental results consistently demonstrate that BiTimeBERT 2.0 outperforms models like BERT and other existing pre-trained models, achieving substantial gains across a variety of downstream NLP tasks and applications where time plays a pivotal role.
The Curse of Dense Low-Dimensional Information Retrieval for Large Index Sizes
Information Retrieval using dense low-dimensional representations recently became popular and showed out-performance to traditional sparse-representations like BM25. However, no previous work investigated how dense representations perform with large index sizes. We show theoretically and empirically that the performance for dense representations decreases quicker than sparse representations for increasing index sizes. In extreme cases, this can even lead to a tipping point where at a certain index size sparse representations outperform dense representations. We show that this behavior is tightly connected to the number of dimensions of the representations: The lower the dimension, the higher the chance for false positives, i.e. returning irrelevant documents.
Fast Passage Re-ranking with Contextualized Exact Term Matching and Efficient Passage Expansion
BERT-based information retrieval models are expensive, in both time (query latency) and computational resources (energy, hardware cost), making many of these models impractical especially under resource constraints. The reliance on a query encoder that only performs tokenization and on the pre-processing of passage representations at indexing, has allowed the recently proposed TILDE method to overcome the high query latency issue typical of BERT-based models. This however is at the expense of a lower effectiveness compared to other BERT-based re-rankers and dense retrievers. In addition, the original TILDE method is characterised by indexes with a very high memory footprint, as it expands each passage into the size of the BERT vocabulary. In this paper, we propose TILDEv2, a new model that stems from the original TILDE but that addresses its limitations. TILDEv2 relies on contextualized exact term matching with expanded passages. This requires to only store in the index the score of tokens that appear in the expanded passages (rather than all the vocabulary), thus producing indexes that are 99% smaller than those of TILDE. This matching mechanism also improves ranking effectiveness by 24%, without adding to the query latency. This makes TILDEv2 the state-of-the-art passage re-ranking method for CPU-only environments, capable of maintaining query latency below 100ms on commodity hardware.
Neural Passage Quality Estimation for Static Pruning
Neural networks -- especially those that use large, pre-trained language models -- have improved search engines in various ways. Most prominently, they can estimate the relevance of a passage or document to a user's query. In this work, we depart from this direction by exploring whether neural networks can effectively predict which of a document's passages are unlikely to be relevant to any query submitted to the search engine. We refer to this query-agnostic estimation of passage relevance as a passage's quality. We find that our novel methods for estimating passage quality allow passage corpora to be pruned considerably while maintaining statistically equivalent effectiveness; our best methods can consistently prune >25% of passages in a corpora, across various retrieval pipelines. Such substantial pruning reduces the operating costs of neural search engines in terms of computing resources, power usage, and carbon footprint -- both when processing queries (thanks to a smaller index size) and when indexing (lightweight models can prune low-quality passages prior to the costly dense or learned sparse encoding step). This work sets the stage for developing more advanced neural "learning-what-to-index" methods.
Learning Term Discrimination
Document indexing is a key component for efficient information retrieval (IR). After preprocessing steps such as stemming and stop-word removal, document indexes usually store term-frequencies (tf). Along with tf (that only reflects the importance of a term in a document), traditional IR models use term discrimination values (TDVs) such as inverse document frequency (idf) to favor discriminative terms during retrieval. In this work, we propose to learn TDVs for document indexing with shallow neural networks that approximate traditional IR ranking functions such as TF-IDF and BM25. Our proposal outperforms, both in terms of nDCG and recall, traditional approaches, even with few positively labelled query-document pairs as learning data. Our learned TDVs, when used to filter out terms of the vocabulary that have zero discrimination value, allow to both significantly lower the memory footprint of the inverted index and speed up the retrieval process (BM25 is up to 3~times faster), without degrading retrieval quality.
SynerGen: Contextualized Generative Recommender for Unified Search and Recommendation
The dominant retrieve-then-rank pipeline in large-scale recommender systems suffers from mis-calibration and engineering overhead due to its architectural split and differing optimization objectives. While recent generative sequence models have shown promise in unifying retrieval and ranking by auto-regressively generating ranked items, existing solutions typically address either personalized search or query-free recommendation, often exhibiting performance trade-offs when attempting to unify both. We introduce SynerGen, a novel generative recommender model that bridges this critical gap by providing a single generative backbone for both personalized search and recommendation, while simultaneously excelling at retrieval and ranking tasks. Trained on behavioral sequences, our decoder-only Transformer leverages joint optimization with InfoNCE for retrieval and a hybrid pointwise-pairwise loss for ranking, allowing semantic signals from search to improve recommendation and vice versa. We also propose a novel time-aware rotary positional embedding to effectively incorporate time information into the attention mechanism. SynerGen achieves significant improvements on widely adopted recommendation and search benchmarks compared to strong generative recommender and joint search and recommendation baselines. This work demonstrates the viability of a single generative foundation model for industrial-scale unified information access.
Doc2Query--: When Less is More
Doc2Query -- the process of expanding the content of a document before indexing using a sequence-to-sequence model -- has emerged as a prominent technique for improving the first-stage retrieval effectiveness of search engines. However, sequence-to-sequence models are known to be prone to "hallucinating" content that is not present in the source text. We argue that Doc2Query is indeed prone to hallucination, which ultimately harms retrieval effectiveness and inflates the index size. In this work, we explore techniques for filtering out these harmful queries prior to indexing. We find that using a relevance model to remove poor-quality queries can improve the retrieval effectiveness of Doc2Query by up to 16%, while simultaneously reducing mean query execution time by 23% and cutting the index size by 33%. We release the code, data, and a live demonstration to facilitate reproduction and further exploration at https://github.com/terrierteam/pyterrier_doc2query.
A Dataset of German Legal Documents for Named Entity Recognition
We describe a dataset developed for Named Entity Recognition in German federal court decisions. It consists of approx. 67,000 sentences with over 2 million tokens. The resource contains 54,000 manually annotated entities, mapped to 19 fine-grained semantic classes: person, judge, lawyer, country, city, street, landscape, organization, company, institution, court, brand, law, ordinance, European legal norm, regulation, contract, court decision, and legal literature. The legal documents were, furthermore, automatically annotated with more than 35,000 TimeML-based time expressions. The dataset, which is available under a CC-BY 4.0 license in the CoNNL-2002 format, was developed for training an NER service for German legal documents in the EU project Lynx.
RAG Meets Temporal Graphs: Time-Sensitive Modeling and Retrieval for Evolving Knowledge
Knowledge is inherently time-sensitive and continuously evolves over time. Although current Retrieval-Augmented Generation (RAG) systems enrich LLMs with external knowledge, they largely ignore this temporal nature. This raises two challenges for RAG. First, current RAG methods lack effective time-aware representations. Same facts of different time are difficult to distinguish with vector embeddings or conventional knowledge graphs. Second, most RAG evaluations assume a static corpus, leaving a blind spot regarding update costs and retrieval stability as knowledge evolves. To make RAG time-aware, we propose Temporal GraphRAG (TG-RAG), which models external corpora as a bi-level temporal graph consisting of a temporal knowledge graph with timestamped relations and a hierarchical time graph. Multi-granularity temporal summaries are generated for each time node to capture both key events and broader trends at that time. The design supports incremental updates by extracting new temporal facts from the incoming corpus and merging them into the existing graph. The temporal graph explicitly represents identical facts at different times as distinct edges to avoid ambiguity, and the time hierarchy graph allows only generating reports for new leaf time nodes and their ancestors, ensuring effective and efficient updates. During inference, TG-RAG dynamically retrieves a subgraph within the temporal and semantic scope of the query, enabling precise evidence gathering. Moreover, we introduce ECT-QA, a time-sensitive question-answering dataset featuring both specific and abstract queries, along with a comprehensive evaluation protocol designed to assess incremental update capabilities of RAG systems. Extensive experiments show that TG-RAG significantly outperforms existing baselines, demonstrating the effectiveness of our method in handling temporal knowledge and incremental updates.
Named Entity Recognition and Classification on Historical Documents: A Survey
After decades of massive digitisation, an unprecedented amount of historical documents is available in digital format, along with their machine-readable texts. While this represents a major step forward with respect to preservation and accessibility, it also opens up new opportunities in terms of content mining and the next fundamental challenge is to develop appropriate technologies to efficiently search, retrieve and explore information from this 'big data of the past'. Among semantic indexing opportunities, the recognition and classification of named entities are in great demand among humanities scholars. Yet, named entity recognition (NER) systems are heavily challenged with diverse, historical and noisy inputs. In this survey, we present the array of challenges posed by historical documents to NER, inventory existing resources, describe the main approaches deployed so far, and identify key priorities for future developments.
Semi-Parametric Retrieval via Binary Token Index
The landscape of information retrieval has broadened from search services to a critical component in various advanced applications, where indexing efficiency, cost-effectiveness, and freshness are increasingly important yet remain less explored. To address these demands, we introduce Semi-parametric Vocabulary Disentangled Retrieval (SVDR). SVDR is a novel semi-parametric retrieval framework that supports two types of indexes: an embedding-based index for high effectiveness, akin to existing neural retrieval methods; and a binary token index that allows for quick and cost-effective setup, resembling traditional term-based retrieval. In our evaluation on three open-domain question answering benchmarks with the entire Wikipedia as the retrieval corpus, SVDR consistently demonstrates superiority. It achieves a 3% higher top-1 retrieval accuracy compared to the dense retriever DPR when using an embedding-based index and an 9% higher top-1 accuracy compared to BM25 when using a binary token index. Specifically, the adoption of a binary token index reduces index preparation time from 30 GPU hours to just 2 CPU hours and storage size from 31 GB to 2 GB, achieving a 90% reduction compared to an embedding-based index.
PaperRegister: Boosting Flexible-grained Paper Search via Hierarchical Register Indexing
Paper search is an important activity for researchers, typically involving using a query with description of a topic to find relevant papers. As research deepens, paper search requirements may become more flexible, sometimes involving specific details such as module configuration rather than being limited to coarse-grained topics. However, previous paper search systems are unable to meet these flexible-grained requirements, as these systems mainly collect paper abstracts to construct index of corpus, which lack detailed information to support retrieval by finer-grained queries. In this work, we propose PaperRegister, consisted of offline hierarchical indexing and online adaptive retrieval, transforming traditional abstract-based index into hierarchical index tree for paper search, thereby supporting queries at flexible granularity. Experiments on paper search tasks across a range of granularity demonstrate that PaperRegister achieves the state-of-the-art performance, and particularly excels in fine-grained scenarios, highlighting the good potential as an effective solution for flexible-grained paper search in real-world applications. Code for this work is in https://github.com/Li-Z-Q/PaperRegister.
Wacky Weights in Learned Sparse Representations and the Revenge of Score-at-a-Time Query Evaluation
Recent advances in retrieval models based on learned sparse representations generated by transformers have led us to, once again, consider score-at-a-time query evaluation techniques for the top-k retrieval problem. Previous studies comparing document-at-a-time and score-at-a-time approaches have consistently found that the former approach yields lower mean query latency, although the latter approach has more predictable query latency. In our experiments with four different retrieval models that exploit representational learning with bags of words, we find that transformers generate "wacky weights" that appear to greatly reduce the opportunities for skipping and early exiting optimizations that lie at the core of standard document-at-a-time techniques. As a result, score-at-a-time approaches appear to be more competitive in terms of query evaluation latency than in previous studies. We find that, if an effectiveness loss of up to three percent can be tolerated, a score-at-a-time approach can yield substantial gains in mean query latency while at the same time dramatically reducing tail latency.
Test-Time Training on Nearest Neighbors for Large Language Models
Many recent efforts augment language models with retrieval, by adding retrieved data to the input context. For this approach to succeed, the retrieved data must be added at both training and test time. Moreover, as input length grows linearly with the size of retrieved data, cost in computation and memory grows quadratically for modern Transformers. To avoid these complications, we simply fine-tune the model on retrieved data at test time, using its standard training setup. We build a large-scale distributed index based on text embeddings of the Pile dataset. For each test input, our system retrieves its neighbors and fine-tunes the model on their text. Surprisingly, retrieving and training on as few as 20 neighbors, each for only one gradient iteration, drastically improves performance across more than 20 language modeling tasks in the Pile. For example, test-time training with nearest neighbors significantly narrows the performance gap between a small GPT-2 and a GPT-Neo model more than 10 times larger. Sufficient index quality and size, however, are necessary. Our work establishes a first baseline of test-time training for language modeling.
DynamicRetriever: A Pre-training Model-based IR System with Neither Sparse nor Dense Index
Web search provides a promising way for people to obtain information and has been extensively studied. With the surgence of deep learning and large-scale pre-training techniques, various neural information retrieval models are proposed and they have demonstrated the power for improving search (especially, the ranking) quality. All these existing search methods follow a common paradigm, i.e. index-retrieve-rerank, where they first build an index of all documents based on document terms (i.e., sparse inverted index) or representation vectors (i.e., dense vector index), then retrieve and rerank retrieved documents based on similarity between the query and documents via ranking models. In this paper, we explore a new paradigm of information retrieval with neither sparse nor dense index but only a model. Specifically, we propose a pre-training model-based IR system called DynamicRetriever. As for this system, the training stage embeds the token-level and document-level information (especially, document identifiers) of the corpus into the model parameters, then the inference stage directly generates document identifiers for a given query. Compared with existing search methods, the model-based IR system has two advantages: i) it parameterizes the traditional static index with a pre-training model, which converts the document semantic mapping into a dynamic and updatable process; ii) with separate document identifiers, it captures both the term-level and document-level information for each document. Extensive experiments conducted on the public search benchmark MS MARCO verify the effectiveness and potential of our proposed new paradigm for information retrieval.
Unfolding the Headline: Iterative Self-Questioning for News Retrieval and Timeline Summarization
In the fast-changing realm of information, the capacity to construct coherent timelines from extensive event-related content has become increasingly significant and challenging. The complexity arises in aggregating related documents to build a meaningful event graph around a central topic. This paper proposes CHRONOS - Causal Headline Retrieval for Open-domain News Timeline SummarizatiOn via Iterative Self-Questioning, which offers a fresh perspective on the integration of Large Language Models (LLMs) to tackle the task of Timeline Summarization (TLS). By iteratively reflecting on how events are linked and posing new questions regarding a specific news topic to gather information online or from an offline knowledge base, LLMs produce and refresh chronological summaries based on documents retrieved in each round. Furthermore, we curate Open-TLS, a novel dataset of timelines on recent news topics authored by professional journalists to evaluate open-domain TLS where information overload makes it impossible to find comprehensive relevant documents from the web. Our experiments indicate that CHRONOS is not only adept at open-domain timeline summarization, but it also rivals the performance of existing state-of-the-art systems designed for closed-domain applications, where a related news corpus is provided for summarization.
RepBERT: Contextualized Text Embeddings for First-Stage Retrieval
Although exact term match between queries and documents is the dominant method to perform first-stage retrieval, we propose a different approach, called RepBERT, to represent documents and queries with fixed-length contextualized embeddings. The inner products of query and document embeddings are regarded as relevance scores. On MS MARCO Passage Ranking task, RepBERT achieves state-of-the-art results among all initial retrieval techniques. And its efficiency is comparable to bag-of-words methods.
Faster Learned Sparse Retrieval with Block-Max Pruning
Learned sparse retrieval systems aim to combine the effectiveness of contextualized language models with the scalability of conventional data structures such as inverted indexes. Nevertheless, the indexes generated by these systems exhibit significant deviations from the ones that use traditional retrieval models, leading to a discrepancy in the performance of existing query optimizations that were specifically developed for traditional structures. These disparities arise from structural variations in query and document statistics, including sub-word tokenization, leading to longer queries, smaller vocabularies, and different score distributions within posting lists. This paper introduces Block-Max Pruning (BMP), an innovative dynamic pruning strategy tailored for indexes arising in learned sparse retrieval environments. BMP employs a block filtering mechanism to divide the document space into small, consecutive document ranges, which are then aggregated and sorted on the fly, and fully processed only as necessary, guided by a defined safe early termination criterion or based on approximate retrieval requirements. Through rigorous experimentation, we show that BMP substantially outperforms existing dynamic pruning strategies, offering unparalleled efficiency in safe retrieval contexts and improved tradeoffs between precision and efficiency in approximate retrieval tasks.
A Dataset for Answering Time-Sensitive Questions
Time is an important dimension in our physical world. Lots of facts can evolve with respect to time. For example, the U.S. President might change every four years. Therefore, it is important to consider the time dimension and empower the existing QA models to reason over time. However, the existing QA datasets contain rather few time-sensitive questions, hence not suitable for diagnosing or benchmarking the model's temporal reasoning capability. In order to promote research in this direction, we propose to construct a time-sensitive QA dataset. The dataset is constructed by 1) mining time-evolving facts from WikiData and aligning them to their corresponding Wikipedia page, 2) employing crowd workers to verify and calibrate these noisy facts, 3) generating question-answer pairs based on the annotated time-sensitive facts. Our dataset poses challenges in the aspect of both temporal understanding and temporal reasoning. We evaluate different SoTA long-document QA systems like BigBird and FiD on our dataset. The best-performing model FiD can only achieve 46\% accuracy, still far behind the human performance of 87\%. We demonstrate that these models are still lacking the ability to perform consistent temporal reasoning. Therefore, we believe that our dataset could serve as a benchmark to develop NLP models more sensitive to temporal shifts. The dataset and code are released in~https://github.com/wenhuchen/Time-Sensitive-QA.
Formulation Comparison for Timeline Construction using LLMs
Constructing a timeline requires identifying the chronological order of events in an article. In prior timeline construction datasets, temporal orders are typically annotated by either event-to-time anchoring or event-to-event pairwise ordering, both of which suffer from missing temporal information. To mitigate the issue, we develop a new evaluation dataset, TimeSET, consisting of single-document timelines with document-level order annotation. TimeSET features saliency-based event selection and partial ordering, which enable a practical annotation workload. Aiming to build better automatic timeline construction systems, we propose a novel evaluation framework to compare multiple task formulations with TimeSET by prompting open LLMs, i.e., Llama 2 and Flan-T5. Considering that identifying temporal orders of events is a core subtask in timeline construction, we further benchmark open LLMs on existing event temporal ordering datasets to gain a robust understanding of their capabilities. Our experiments show that (1) NLI formulation with Flan-T5 demonstrates a strong performance among others, while (2) timeline construction and event temporal ordering are still challenging tasks for few-shot LLMs. Our code and data are available at https://github.com/kimihiroh/timeset.
Pre-training Tasks for Embedding-based Large-scale Retrieval
We consider the large-scale query-document retrieval problem: given a query (e.g., a question), return the set of relevant documents (e.g., paragraphs containing the answer) from a large document corpus. This problem is often solved in two steps. The retrieval phase first reduces the solution space, returning a subset of candidate documents. The scoring phase then re-ranks the documents. Critically, the retrieval algorithm not only desires high recall but also requires to be highly efficient, returning candidates in time sublinear to the number of documents. Unlike the scoring phase witnessing significant advances recently due to the BERT-style pre-training tasks on cross-attention models, the retrieval phase remains less well studied. Most previous works rely on classic Information Retrieval (IR) methods such as BM-25 (token matching + TF-IDF weights). These models only accept sparse handcrafted features and can not be optimized for different downstream tasks of interest. In this paper, we conduct a comprehensive study on the embedding-based retrieval models. We show that the key ingredient of learning a strong embedding-based Transformer model is the set of pre-training tasks. With adequately designed paragraph-level pre-training tasks, the Transformer models can remarkably improve over the widely-used BM-25 as well as embedding models without Transformers. The paragraph-level pre-training tasks we studied are Inverse Cloze Task (ICT), Body First Selection (BFS), Wiki Link Prediction (WLP), and the combination of all three.
Document Expansion by Query Prediction
One technique to improve the retrieval effectiveness of a search engine is to expand documents with terms that are related or representative of the documents' content.From the perspective of a question answering system, this might comprise questions the document can potentially answer. Following this observation, we propose a simple method that predicts which queries will be issued for a given document and then expands it with those predictions with a vanilla sequence-to-sequence model, trained using datasets consisting of pairs of query and relevant documents. By combining our method with a highly-effective re-ranking component, we achieve the state of the art in two retrieval tasks. In a latency-critical regime, retrieval results alone (without re-ranking) approach the effectiveness of more computationally expensive neural re-rankers but are much faster.
ECtHR-PCR: A Dataset for Precedent Understanding and Prior Case Retrieval in the European Court of Human Rights
In common law jurisdictions, legal practitioners rely on precedents to construct arguments, in line with the doctrine of stare decisis. As the number of cases grow over the years, prior case retrieval (PCR) has garnered significant attention. Besides lacking real-world scale, existing PCR datasets do not simulate a realistic setting, because their queries use complete case documents while only masking references to prior cases. The query is thereby exposed to legal reasoning not yet available when constructing an argument for an undecided case as well as spurious patterns left behind by citation masks, potentially short-circuiting a comprehensive understanding of case facts and legal principles. To address these limitations, we introduce a PCR dataset based on judgements from the European Court of Human Rights (ECtHR), which explicitly separate facts from arguments and exhibit precedential practices, aiding us to develop this PCR dataset to foster systems' comprehensive understanding. We benchmark different lexical and dense retrieval approaches with various negative sampling strategies, adapting them to deal with long text sequences using hierarchical variants. We found that difficulty-based negative sampling strategies were not effective for the PCR task, highlighting the need for investigation into domain-specific difficulty criteria. Furthermore, we observe performance of the dense models degrade with time and calls for further research into temporal adaptation of retrieval models. Additionally, we assess the influence of different views , Halsbury's and Goodhart's, in practice in ECtHR jurisdiction using PCR task.
Siamese BERT-based Model for Web Search Relevance Ranking Evaluated on a New Czech Dataset
Web search engines focus on serving highly relevant results within hundreds of milliseconds. Pre-trained language transformer models such as BERT are therefore hard to use in this scenario due to their high computational demands. We present our real-time approach to the document ranking problem leveraging a BERT-based siamese architecture. The model is already deployed in a commercial search engine and it improves production performance by more than 3%. For further research and evaluation, we release DaReCzech, a unique data set of 1.6 million Czech user query-document pairs with manually assigned relevance levels. We also release Small-E-Czech, an Electra-small language model pre-trained on a large Czech corpus. We believe this data will support endeavours both of search relevance and multilingual-focused research communities.
SPANN: Highly-efficient Billion-scale Approximate Nearest Neighbor Search
The in-memory algorithms for approximate nearest neighbor search (ANNS) have achieved great success for fast high-recall search, but are extremely expensive when handling very large scale database. Thus, there is an increasing request for the hybrid ANNS solutions with small memory and inexpensive solid-state drive (SSD). In this paper, we present a simple but efficient memory-disk hybrid indexing and search system, named SPANN, that follows the inverted index methodology. It stores the centroid points of the posting lists in the memory and the large posting lists in the disk. We guarantee both disk-access efficiency (low latency) and high recall by effectively reducing the disk-access number and retrieving high-quality posting lists. In the index-building stage, we adopt a hierarchical balanced clustering algorithm to balance the length of posting lists and augment the posting list by adding the points in the closure of the corresponding clusters. In the search stage, we use a query-aware scheme to dynamically prune the access of unnecessary posting lists. Experiment results demonstrate that SPANN is 2times faster than the state-of-the-art ANNS solution DiskANN to reach the same recall quality 90% with same memory cost in three billion-scale datasets. It can reach 90% recall@1 and recall@10 in just around one millisecond with only 32GB memory cost. Code is available at: {\footnotesizeblue{https://github.com/microsoft/SPTAG}}.
A Few Brief Notes on DeepImpact, COIL, and a Conceptual Framework for Information Retrieval Techniques
Recent developments in representational learning for information retrieval can be organized in a conceptual framework that establishes two pairs of contrasts: sparse vs. dense representations and unsupervised vs. learned representations. Sparse learned representations can further be decomposed into expansion and term weighting components. This framework allows us to understand the relationship between recently proposed techniques such as DPR, ANCE, DeepCT, DeepImpact, and COIL, and furthermore, gaps revealed by our analysis point to "low hanging fruit" in terms of techniques that have yet to be explored. We present a novel technique dubbed "uniCOIL", a simple extension of COIL that achieves to our knowledge the current state-of-the-art in sparse retrieval on the popular MS MARCO passage ranking dataset. Our implementation using the Anserini IR toolkit is built on the Lucene search library and thus fully compatible with standard inverted indexes.
ColBERT's [MASK]-based Query Augmentation: Effects of Quadrupling the Query Input Length
A unique aspect of ColBERT is its use of [MASK] tokens in queries to score documents (query augmentation). Prior work shows [MASK] tokens weighting non-[MASK] query terms, emphasizing certain tokens over others , rather than introducing whole new terms as initially proposed. We begin by demonstrating that a term weighting behavior previously reported for [MASK] tokens in ColBERTv1 holds for ColBERTv2. We then examine the effect of changing the number of [MASK] tokens from zero to up to four times past the query input length used in training, both for first stage retrieval, and for scoring candidates, observing an initial decrease in performance with few [MASK]s, a large increase when enough [MASK]s are added to pad queries to an average length of 32, then a plateau in performance afterwards. Additionally, we compare baseline performance to performance when the query length is extended to 128 tokens, and find that differences are small (e.g., within 1% on various metrics) and generally statistically insignificant, indicating performance does not collapse if ColBERT is presented with more [MASK] tokens than expected.
Semantic Models for the First-stage Retrieval: A Comprehensive Review
Multi-stage ranking pipelines have been a practical solution in modern search systems, where the first-stage retrieval is to return a subset of candidate documents, and latter stages attempt to re-rank those candidates. Unlike re-ranking stages going through quick technique shifts during past decades, the first-stage retrieval has long been dominated by classical term-based models. Unfortunately, these models suffer from the vocabulary mismatch problem, which may block re-ranking stages from relevant documents at the very beginning. Therefore, it has been a long-term desire to build semantic models for the first-stage retrieval that can achieve high recall efficiently. Recently, we have witnessed an explosive growth of research interests on the first-stage semantic retrieval models. We believe it is the right time to survey current status, learn from existing methods, and gain some insights for future development. In this paper, we describe the current landscape of the first-stage retrieval models under a unified framework to clarify the connection between classical term-based retrieval methods, early semantic retrieval methods and neural semantic retrieval methods. Moreover, we identify some open challenges and envision some future directions, with the hope of inspiring more researches on these important yet less investigated topics.
PODTILE: Facilitating Podcast Episode Browsing with Auto-generated Chapters
Listeners of long-form talk-audio content, such as podcast episodes, often find it challenging to understand the overall structure and locate relevant sections. A practical solution is to divide episodes into chapters--semantically coherent segments labeled with titles and timestamps. Since most episodes on our platform at Spotify currently lack creator-provided chapters, automating the creation of chapters is essential. Scaling the chapterization of podcast episodes presents unique challenges. First, episodes tend to be less structured than written texts, featuring spontaneous discussions with nuanced transitions. Second, the transcripts are usually lengthy, averaging about 16,000 tokens, which necessitates efficient processing that can preserve context. To address these challenges, we introduce PODTILE, a fine-tuned encoder-decoder transformer to segment conversational data. The model simultaneously generates chapter transitions and titles for the input transcript. To preserve context, each input text is augmented with global context, including the episode's title, description, and previous chapter titles. In our intrinsic evaluation, PODTILE achieved an 11% improvement in ROUGE score over the strongest baseline. Additionally, we provide insights into the practical benefits of auto-generated chapters for listeners navigating episode content. Our findings indicate that auto-generated chapters serve as a useful tool for engaging with less popular podcasts. Finally, we present empirical evidence that using chapter titles can enhance effectiveness of sparse retrieval in search tasks.
Efficient Neural Ranking using Forward Indexes
Neural document ranking approaches, specifically transformer models, have achieved impressive gains in ranking performance. However, query processing using such over-parameterized models is both resource and time intensive. In this paper, we propose the Fast-Forward index -- a simple vector forward index that facilitates ranking documents using interpolation of lexical and semantic scores -- as a replacement for contextual re-rankers and dense indexes based on nearest neighbor search. Fast-Forward indexes rely on efficient sparse models for retrieval and merely look up pre-computed dense transformer-based vector representations of documents and passages in constant time for fast CPU-based semantic similarity computation during query processing. We propose index pruning and theoretically grounded early stopping techniques to improve the query processing throughput. We conduct extensive large-scale experiments on TREC-DL datasets and show improvements over hybrid indexes in performance and query processing efficiency using only CPUs. Fast-Forward indexes can provide superior ranking performance using interpolation due to the complementary benefits of lexical and semantic similarities.
STARD: A Chinese Statute Retrieval Dataset with Real Queries Issued by Non-professionals
Statute retrieval aims to find relevant statutory articles for specific queries. This process is the basis of a wide range of legal applications such as legal advice, automated judicial decisions, legal document drafting, etc. Existing statute retrieval benchmarks focus on formal and professional queries from sources like bar exams and legal case documents, thereby neglecting non-professional queries from the general public, which often lack precise legal terminology and references. To address this gap, we introduce the STAtute Retrieval Dataset (STARD), a Chinese dataset comprising 1,543 query cases collected from real-world legal consultations and 55,348 candidate statutory articles. Unlike existing statute retrieval datasets, which primarily focus on professional legal queries, STARD captures the complexity and diversity of real queries from the general public. Through a comprehensive evaluation of various retrieval baselines, we reveal that existing retrieval approaches all fall short of these real queries issued by non-professional users. The best method only achieves a Recall@100 of 0.907, suggesting the necessity for further exploration and additional research in this area. All the codes and datasets are available at: https://github.com/oneal2000/STARD/tree/main
SLIM: Sparsified Late Interaction for Multi-Vector Retrieval with Inverted Indexes
This paper introduces Sparsified Late Interaction for Multi-vector (SLIM) retrieval with inverted indexes. Multi-vector retrieval methods have demonstrated their effectiveness on various retrieval datasets, and among them, ColBERT is the most established method based on the late interaction of contextualized token embeddings of pre-trained language models. However, efficient ColBERT implementations require complex engineering and cannot take advantage of off-the-shelf search libraries, impeding their practical use. To address this issue, SLIM first maps each contextualized token vector to a sparse, high-dimensional lexical space before performing late interaction between these sparse token embeddings. We then introduce an efficient two-stage retrieval architecture that includes inverted index retrieval followed by a score refinement module to approximate the sparsified late interaction, which is fully compatible with off-the-shelf lexical search libraries such as Lucene. SLIM achieves competitive accuracy on MS MARCO Passages and BEIR compared to ColBERT while being much smaller and faster on CPUs. To our knowledge, we are the first to explore using sparse token representations for multi-vector retrieval. Source code and data are integrated into the Pyserini IR toolkit.
Reducing the Footprint of Multi-Vector Retrieval with Minimal Performance Impact via Token Pooling
Over the last few years, multi-vector retrieval methods, spearheaded by ColBERT, have become an increasingly popular approach to Neural IR. By storing representations at the token level rather than at the document level, these methods have demonstrated very strong retrieval performance, especially in out-of-domain settings. However, the storage and memory requirements necessary to store the large number of associated vectors remain an important drawback, hindering practical adoption. In this paper, we introduce a simple clustering-based token pooling approach to aggressively reduce the number of vectors that need to be stored. This method can reduce the space & memory footprint of ColBERT indexes by 50% with virtually no retrieval performance degradation. This method also allows for further reductions, reducing the vector count by 66%-to-75% , with degradation remaining below 5% on a vast majority of datasets. Importantly, this approach requires no architectural change nor query-time processing, and can be used as a simple drop-in during indexation with any ColBERT-like model.
Structural Text Segmentation of Legal Documents
The growing complexity of legal cases has lead to an increasing interest in legal information retrieval systems that can effectively satisfy user-specific information needs. However, such downstream systems typically require documents to be properly formatted and segmented, which is often done with relatively simple pre-processing steps, disregarding topical coherence of segments. Systems generally rely on representations of individual sentences or paragraphs, which may lack crucial context, or document-level representations, which are too long for meaningful search results. To address this issue, we propose a segmentation system that can predict topical coherence of sequential text segments spanning several paragraphs, effectively segmenting a document and providing a more balanced representation for downstream applications. We build our model on top of popular transformer networks and formulate structural text segmentation as topical change detection, by performing a series of independent classifications that allow for efficient fine-tuning on task-specific data. We crawl a novel dataset consisting of roughly 74,000 online Terms-of-Service documents, including hierarchical topic annotations, which we use for training. Results show that our proposed system significantly outperforms baselines, and adapts well to structural peculiarities of legal documents. We release both data and trained models to the research community for future work.https://github.com/dennlinger/TopicalChange
Semantic-Enhanced Differentiable Search Index Inspired by Learning Strategies
Recently, a new paradigm called Differentiable Search Index (DSI) has been proposed for document retrieval, wherein a sequence-to-sequence model is learned to directly map queries to relevant document identifiers. The key idea behind DSI is to fully parameterize traditional ``index-retrieve'' pipelines within a single neural model, by encoding all documents in the corpus into the model parameters. In essence, DSI needs to resolve two major questions: (1) how to assign an identifier to each document, and (2) how to learn the associations between a document and its identifier. In this work, we propose a Semantic-Enhanced DSI model (SE-DSI) motivated by Learning Strategies in the area of Cognitive Psychology. Our approach advances original DSI in two ways: (1) For the document identifier, we take inspiration from Elaboration Strategies in human learning. Specifically, we assign each document an Elaborative Description based on the query generation technique, which is more meaningful than a string of integers in the original DSI; and (2) For the associations between a document and its identifier, we take inspiration from Rehearsal Strategies in human learning. Specifically, we select fine-grained semantic features from a document as Rehearsal Contents to improve document memorization. Both the offline and online experiments show improved retrieval performance over prevailing baselines.
MAIR: A Massive Benchmark for Evaluating Instructed Retrieval
Recent information retrieval (IR) models are pre-trained and instruction-tuned on massive datasets and tasks, enabling them to perform well on a wide range of tasks and potentially generalize to unseen tasks with instructions. However, existing IR benchmarks focus on a limited scope of tasks, making them insufficient for evaluating the latest IR models. In this paper, we propose MAIR (Massive Instructed Retrieval Benchmark), a heterogeneous IR benchmark that includes 126 distinct IR tasks across 6 domains, collected from existing datasets. We benchmark state-of-the-art instruction-tuned text embedding models and re-ranking models. Our experiments reveal that instruction-tuned models generally achieve superior performance compared to non-instruction-tuned models on MAIR. Additionally, our results suggest that current instruction-tuned text embedding models and re-ranking models still lack effectiveness in specific long-tail tasks. MAIR is publicly available at https://github.com/sunnweiwei/Mair.
RetrievalAttention: Accelerating Long-Context LLM Inference via Vector Retrieval
Transformer-based large Language Models (LLMs) become increasingly important in various domains. However, the quadratic time complexity of attention operation poses a significant challenge for scaling to longer contexts due to the extremely high inference latency and GPU memory consumption for caching key-value (KV) vectors. This paper proposes RetrievalAttention, a training-free approach to accelerate attention computation. To leverage the dynamic sparse property of attention, RetrievalAttention builds approximate nearest neighbor search (ANNS) indexes upon KV vectors in CPU memory and retrieves the most relevant ones via vector search during generation. Due to the out-of-distribution (OOD) between query vectors and key vectors, off-the-shelf ANNS indexes still need to scan O(N) (usually 30% of all keys) data for accurate retrieval, which fails to exploit the high sparsity. RetrievalAttention first identifies the OOD challenge of ANNS-based attention, and addresses it via an attention-aware vector search algorithm that can adapt to queries and only access 1--3% of data, thus achieving a sub-linear time complexity. RetrievalAttention greatly reduces the inference cost of long-context LLM with much lower GPU memory requirements while maintaining the model accuracy. Especially, RetrievalAttention only needs 16GB GPU memory for serving 128K tokens in LLMs with 8B parameters, which is capable of generating one token in 0.188 seconds on a single NVIDIA RTX4090 (24GB).
Scalable handwritten text recognition system for lexicographic sources of under-resourced languages and alphabets
The paper discusses an approach to decipher large collections of handwritten index cards of historical dictionaries. Our study provides a working solution that reads the cards, and links their lemmas to a searchable list of dictionary entries, for a large historical dictionary entitled the Dictionary of the 17th- and 18th-century Polish, which comprizes 2.8 million index cards. We apply a tailored handwritten text recognition (HTR) solution that involves (1) an optimized detection model; (2) a recognition model to decipher the handwritten content, designed as a spatial transformer network (STN) followed by convolutional neural network (RCNN) with a connectionist temporal classification layer (CTC), trained using a synthetic set of 500,000 generated Polish words of different length; (3) a post-processing step using constrained Word Beam Search (WBC): the predictions were matched against a list of dictionary entries known in advance. Our model achieved the accuracy of 0.881 on the word level, which outperforms the base RCNN model. Within this study we produced a set of 20,000 manually annotated index cards that can be used for future benchmarks and transfer learning HTR applications.
Decomposing Complex Queries for Tip-of-the-tongue Retrieval
When re-finding items, users who forget or are uncertain about identifying details often rely on creative strategies for expressing their information needs -- complex queries that describe content elements (e.g., book characters or events), information beyond the document text (e.g., descriptions of book covers), or personal context (e.g., when they read a book). This retrieval setting, called tip of the tongue (TOT), is especially challenging for models heavily reliant on lexical and semantic overlap between query and document text. In this work, we introduce a simple yet effective framework for handling such complex queries by decomposing the query into individual clues, routing those as sub-queries to specialized retrievers, and ensembling the results. This approach allows us to take advantage of off-the-shelf retrievers (e.g., CLIP for retrieving images of book covers) or incorporate retriever-specific logic (e.g., date constraints). We show that our framework incorportating query decompositions into retrievers can improve gold book recall up to 7% relative again for Recall@5 on a new collection of 14,441 real-world query-book pairs from an online community for resolving TOT inquiries.
Jointly Optimizing Query Encoder and Product Quantization to Improve Retrieval Performance
Recently, Information Retrieval community has witnessed fast-paced advances in Dense Retrieval (DR), which performs first-stage retrieval with embedding-based search. Despite the impressive ranking performance, previous studies usually adopt brute-force search to acquire candidates, which is prohibitive in practical Web search scenarios due to its tremendous memory usage and time cost. To overcome these problems, vector compression methods have been adopted in many practical embedding-based retrieval applications. One of the most popular methods is Product Quantization (PQ). However, although existing vector compression methods including PQ can help improve the efficiency of DR, they incur severely decayed retrieval performance due to the separation between encoding and compression. To tackle this problem, we present JPQ, which stands for Joint optimization of query encoding and Product Quantization. It trains the query encoder and PQ index jointly in an end-to-end manner based on three optimization strategies, namely ranking-oriented loss, PQ centroid optimization, and end-to-end negative sampling. We evaluate JPQ on two publicly available retrieval benchmarks. Experimental results show that JPQ significantly outperforms popular vector compression methods. Compared with previous DR models that use brute-force search, JPQ almost matches the best retrieval performance with 30x compression on index size. The compressed index further brings 10x speedup on CPU and 2x speedup on GPU in query latency.
Scientific Paper Retrieval with LLM-Guided Semantic-Based Ranking
Scientific paper retrieval is essential for supporting literature discovery and research. While dense retrieval methods demonstrate effectiveness in general-purpose tasks, they often fail to capture fine-grained scientific concepts that are essential for accurate understanding of scientific queries. Recent studies also use large language models (LLMs) for query understanding; however, these methods often lack grounding in corpus-specific knowledge and may generate unreliable or unfaithful content. To overcome these limitations, we propose SemRank, an effective and efficient paper retrieval framework that combines LLM-guided query understanding with a concept-based semantic index. Each paper is indexed using multi-granular scientific concepts, including general research topics and detailed key phrases. At query time, an LLM identifies core concepts derived from the corpus to explicitly capture the query's information need. These identified concepts enable precise semantic matching, significantly enhancing retrieval accuracy. Experiments show that SemRank consistently improves the performance of various base retrievers, surpasses strong existing LLM-based baselines, and remains highly efficient.
LitSearch: A Retrieval Benchmark for Scientific Literature Search
Literature search questions, such as "where can I find research on the evaluation of consistency in generated summaries?" pose significant challenges for modern search engines and retrieval systems. These questions often require a deep understanding of research concepts and the ability to reason over entire articles. In this work, we introduce LitSearch, a retrieval benchmark comprising 597 realistic literature search queries about recent ML and NLP papers. LitSearch is constructed using a combination of (1) questions generated by GPT-4 based on paragraphs containing inline citations from research papers and (2) questions about recently published papers, manually written by their authors. All LitSearch questions were manually examined or edited by experts to ensure high quality. We extensively benchmark state-of-the-art retrieval models and also evaluate two LLM-based reranking pipelines. We find a significant performance gap between BM25 and state-of-the-art dense retrievers, with a 24.8% difference in absolute recall@5. The LLM-based reranking strategies further improve the best-performing dense retriever by 4.4%. Additionally, commercial search engines and research tools like Google Search perform poorly on LitSearch, lagging behind the best dense retriever by 32 points. Taken together, these results show that LitSearch is an informative new testbed for retrieval systems while catering to a real-world use case.
TartuNLP at SemEval-2025 Task 5: Subject Tagging as Two-Stage Information Retrieval
We present our submission to the Task 5 of SemEval-2025 that aims to aid librarians in assigning subject tags to the library records by producing a list of likely relevant tags for a given document. We frame the task as an information retrieval problem, where the document content is used to retrieve subject tags from a large subject taxonomy. We leverage two types of encoder models to build a two-stage information retrieval system -- a bi-encoder for coarse-grained candidate extraction at the first stage, and a cross-encoder for fine-grained re-ranking at the second stage. This approach proved effective, demonstrating significant improvements in recall compared to single-stage methods and showing competitive results according to qualitative evaluation.
Lost in Time: Clock and Calendar Understanding Challenges in Multimodal LLMs
Understanding time from visual representations is a fundamental cognitive skill, yet it remains a challenge for multimodal large language models (MLLMs). In this work, we investigate the capabilities of MLLMs in interpreting time and date through analogue clocks and yearly calendars. To facilitate this, we curated a structured dataset comprising two subsets: 1) ClockQA, which comprises various types of clock styles-standard, black-dial, no-second-hand, Roman numeral, and arrow-hand clocks-paired with time related questions; and 2) CalendarQA, which consists of yearly calendar images with questions ranging from commonly known dates (e.g., Christmas, New Year's Day) to computationally derived ones (e.g., the 100th or 153rd day of the year). We aim to analyse how MLLMs can perform visual recognition, numerical reasoning, and temporal inference when presented with time-related visual data. Our evaluations show that despite recent advancements, reliably understanding time remains a significant challenge for MLLMs.
Matching Table Metadata with Business Glossaries Using Large Language Models
Enterprises often own large collections of structured data in the form of large databases or an enterprise data lake. Such data collections come with limited metadata and strict access policies that could limit access to the data contents and, therefore, limit the application of classic retrieval and analysis solutions. As a result, there is a need for solutions that can effectively utilize the available metadata. In this paper, we study the problem of matching table metadata to a business glossary containing data labels and descriptions. The resulting matching enables the use of an available or curated business glossary for retrieval and analysis without or before requesting access to the data contents. One solution to this problem is to use manually-defined rules or similarity measures on column names and glossary descriptions (or their vector embeddings) to find the closest match. However, such approaches need to be tuned through manual labeling and cannot handle many business glossaries that contain a combination of simple as well as complex and long descriptions. In this work, we leverage the power of large language models (LLMs) to design generic matching methods that do not require manual tuning and can identify complex relations between column names and glossaries. We propose methods that utilize LLMs in two ways: a) by generating additional context for column names that can aid with matching b) by using LLMs to directly infer if there is a relation between column names and glossary descriptions. Our preliminary experimental results show the effectiveness of our proposed methods.
Bridging the Gap Between Indexing and Retrieval for Differentiable Search Index with Query Generation
The Differentiable Search Index (DSI) is an emerging paradigm for information retrieval. Unlike traditional retrieval architectures where index and retrieval are two different and separate components, DSI uses a single transformer model to perform both indexing and retrieval. In this paper, we identify and tackle an important issue of current DSI models: the data distribution mismatch that occurs between the DSI indexing and retrieval processes. Specifically, we argue that, at indexing, current DSI methods learn to build connections between the text of long documents and the identifier of the documents, but then retrieval of document identifiers is based on queries that are commonly much shorter than the indexed documents. This problem is further exacerbated when using DSI for cross-lingual retrieval, where document text and query text are in different languages. To address this fundamental problem of current DSI models, we propose a simple yet effective indexing framework for DSI, called DSI-QG. When indexing, DSI-QG represents documents with a number of potentially relevant queries generated by a query generation model and re-ranked and filtered by a cross-encoder ranker. The presence of these queries at indexing allows the DSI models to connect a document identifier to a set of queries, hence mitigating data distribution mismatches present between the indexing and the retrieval phases. Empirical results on popular mono-lingual and cross-lingual passage retrieval datasets show that DSI-QG significantly outperforms the original DSI model.
End-to-End Retrieval in Continuous Space
Most text-based information retrieval (IR) systems index objects by words or phrases. These discrete systems have been augmented by models that use embeddings to measure similarity in continuous space. But continuous-space models are typically used just to re-rank the top candidates. We consider the problem of end-to-end continuous retrieval, where standard approximate nearest neighbor (ANN) search replaces the usual discrete inverted index, and rely entirely on distances between learned embeddings. By training simple models specifically for retrieval, with an appropriate model architecture, we improve on a discrete baseline by 8% and 26% (MAP) on two similar-question retrieval tasks. We also discuss the problem of evaluation for retrieval systems, and show how to modify existing pairwise similarity datasets for this purpose.
A Neural Corpus Indexer for Document Retrieval
Current state-of-the-art document retrieval solutions mainly follow an index-retrieve paradigm, where the index is hard to be directly optimized for the final retrieval target. In this paper, we aim to show that an end-to-end deep neural network unifying training and indexing stages can significantly improve the recall performance of traditional methods. To this end, we propose Neural Corpus Indexer (NCI), a sequence-to-sequence network that generates relevant document identifiers directly for a designated query. To optimize the recall performance of NCI, we invent a prefix-aware weight-adaptive decoder architecture, and leverage tailored techniques including query generation, semantic document identifiers, and consistency-based regularization. Empirical studies demonstrated the superiority of NCI on two commonly used academic benchmarks, achieving +21.4% and +16.8% relative enhancement for Recall@1 on NQ320k dataset and R-Precision on TriviaQA dataset, respectively, compared to the best baseline method.
Dense Text Retrieval based on Pretrained Language Models: A Survey
Text retrieval is a long-standing research topic on information seeking, where a system is required to return relevant information resources to user's queries in natural language. From classic retrieval methods to learning-based ranking functions, the underlying retrieval models have been continually evolved with the ever-lasting technical innovation. To design effective retrieval models, a key point lies in how to learn the text representation and model the relevance matching. The recent success of pretrained language models (PLMs) sheds light on developing more capable text retrieval approaches by leveraging the excellent modeling capacity of PLMs. With powerful PLMs, we can effectively learn the representations of queries and texts in the latent representation space, and further construct the semantic matching function between the dense vectors for relevance modeling. Such a retrieval approach is referred to as dense retrieval, since it employs dense vectors (a.k.a., embeddings) to represent the texts. Considering the rapid progress on dense retrieval, in this survey, we systematically review the recent advances on PLM-based dense retrieval. Different from previous surveys on dense retrieval, we take a new perspective to organize the related work by four major aspects, including architecture, training, indexing and integration, and summarize the mainstream techniques for each aspect. We thoroughly survey the literature, and include 300+ related reference papers on dense retrieval. To support our survey, we create a website for providing useful resources, and release a code repertory and toolkit for implementing dense retrieval models. This survey aims to provide a comprehensive, practical reference focused on the major progress for dense text retrieval.
How to Index Item IDs for Recommendation Foundation Models
Recommendation foundation model utilizes large language models (LLM) for recommendation by converting recommendation tasks into natural language tasks. It enables generative recommendation which directly generates the item(s) to recommend rather than calculating a ranking score for each and every candidate item in traditional recommendation models, simplifying the recommendation pipeline from multi-stage filtering to single-stage filtering. To avoid generating excessively long text and hallucinated recommendation when deciding which item(s) to recommend, creating LLM-compatible item IDs to uniquely identify each item is essential for recommendation foundation models. In this study, we systematically examine the item indexing problem for recommendation foundation models, using P5 as an example of backbone model. To emphasize the importance of item indexing, we first discuss the issues of several trivial item indexing methods, such as independent indexing, title indexing, and random indexing. We then propose four simple yet effective solutions, including sequential indexing, collaborative indexing, semantic (content-based) indexing, and hybrid indexing. Our study highlights the significant influence of item indexing methods on the performance of LLM-based recommendation, and our results on real-world datasets validate the effectiveness of our proposed solutions. The research also demonstrates how recent advances on language modeling and traditional IR principles such as indexing can help each other for better learning and inference.
Moving Beyond Downstream Task Accuracy for Information Retrieval Benchmarking
Neural information retrieval (IR) systems have progressed rapidly in recent years, in large part due to the release of publicly available benchmarking tasks. Unfortunately, some dimensions of this progress are illusory: the majority of the popular IR benchmarks today focus exclusively on downstream task accuracy and thus conceal the costs incurred by systems that trade away efficiency for quality. Latency, hardware cost, and other efficiency considerations are paramount to the deployment of IR systems in user-facing settings. We propose that IR benchmarks structure their evaluation methodology to include not only metrics of accuracy, but also efficiency considerations such as a query latency and the corresponding cost budget for a reproducible hardware setting. For the popular IR benchmarks MS MARCO and XOR-TyDi, we show how the best choice of IR system varies according to how these efficiency considerations are chosen and weighed. We hope that future benchmarks will adopt these guidelines toward more holistic IR evaluation.
Large Language Models for Information Retrieval: A Survey
As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field.
TiM4Rec: An Efficient Sequential Recommendation Model Based on Time-Aware Structured State Space Duality Model
The Sequential Recommendation modeling paradigm is shifting from Transformer to Mamba architecture, which comprises two generations: Mamba1, based on the State Space Model (SSM), and Mamba2, based on State Space Duality (SSD). Although SSD offers superior computational efficiency compared to SSM, it suffers performance degradation in sequential recommendation tasks, especially in low-dimensional scenarios that are critical for these tasks. Considering that time-aware enhancement methods are commonly employed to mitigate performance loss, our analysis reveals that the performance decline of SSD can similarly be fundamentally compensated by leveraging mechanisms in time-aware methods. Thus, we propose integrating time-awareness into the SSD framework to address these performance issues. However, integrating current time-aware methods, modeled after TiSASRec, into SSD faces the following challenges: 1) the complexity of integrating these transformer-based mechanisms with the SSD architecture, and 2) the computational inefficiency caused by the need for dimensionality expansion of time-difference modeling. To overcome these challenges, we introduce a novel Time-aware Structured Masked Matrix that efficiently incorporates time-aware capabilities into SSD. Building on this, we propose Time-Aware Mamba for Recommendation (TiM4Rec), which mitigates performance degradation in low-dimensional SSD contexts while preserving computational efficiency. This marks the inaugural application of a time-aware enhancement method specifically tailored for the Mamba architecture within the domain of sequential recommendation. Extensive experiments conducted on three real-world datasets demonstrate the superiority of our approach. The code for our model is accessible at https://github.com/AlwaysFHao/TiM4Rec.
T2Ranking: A large-scale Chinese Benchmark for Passage Ranking
Passage ranking involves two stages: passage retrieval and passage re-ranking, which are important and challenging topics for both academics and industries in the area of Information Retrieval (IR). However, the commonly-used datasets for passage ranking usually focus on the English language. For non-English scenarios, such as Chinese, the existing datasets are limited in terms of data scale, fine-grained relevance annotation and false negative issues. To address this problem, we introduce T2Ranking, a large-scale Chinese benchmark for passage ranking. T2Ranking comprises more than 300K queries and over 2M unique passages from real-world search engines. Expert annotators are recruited to provide 4-level graded relevance scores (fine-grained) for query-passage pairs instead of binary relevance judgments (coarse-grained). To ease the false negative issues, more passages with higher diversities are considered when performing relevance annotations, especially in the test set, to ensure a more accurate evaluation. Apart from the textual query and passage data, other auxiliary resources are also provided, such as query types and XML files of documents which passages are generated from, to facilitate further studies. To evaluate the dataset, commonly used ranking models are implemented and tested on T2Ranking as baselines. The experimental results show that T2Ranking is challenging and there is still scope for improvement. The full data and all codes are available at https://github.com/THUIR/T2Ranking/
Video Editing for Video Retrieval
Though pre-training vision-language models have demonstrated significant benefits in boosting video-text retrieval performance from large-scale web videos, fine-tuning still plays a critical role with manually annotated clips with start and end times, which requires considerable human effort. To address this issue, we explore an alternative cheaper source of annotations, single timestamps, for video-text retrieval. We initialise clips from timestamps in a heuristic way to warm up a retrieval model. Then a video clip editing method is proposed to refine the initial rough boundaries to improve retrieval performance. A student-teacher network is introduced for video clip editing. The teacher model is employed to edit the clips in the training set whereas the student model trains on the edited clips. The teacher weights are updated from the student's after the student's performance increases. Our method is model agnostic and applicable to any retrieval models. We conduct experiments based on three state-of-the-art retrieval models, COOT, VideoCLIP and CLIP4Clip. Experiments conducted on three video retrieval datasets, YouCook2, DiDeMo and ActivityNet-Captions show that our edited clips consistently improve retrieval performance over initial clips across all the three retrieval models.
SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval
In neural Information Retrieval (IR), ongoing research is directed towards improving the first retriever in ranking pipelines. Learning dense embeddings to conduct retrieval using efficient approximate nearest neighbors methods has proven to work well. Meanwhile, there has been a growing interest in learning sparse representations for documents and queries, that could inherit from the desirable properties of bag-of-words models such as the exact matching of terms and the efficiency of inverted indexes. Introduced recently, the SPLADE model provides highly sparse representations and competitive results with respect to state-of-the-art dense and sparse approaches. In this paper, we build on SPLADE and propose several significant improvements in terms of effectiveness and/or efficiency. More specifically, we modify the pooling mechanism, benchmark a model solely based on document expansion, and introduce models trained with distillation. We also report results on the BEIR benchmark. Overall, SPLADE is considerably improved with more than 9\% gains on NDCG@10 on TREC DL 2019, leading to state-of-the-art results on the BEIR benchmark.
Unified Multi-Modal Interleaved Document Representation for Information Retrieval
Information Retrieval (IR) methods aim to identify relevant documents in response to a given query, which have gained remarkable attention due to their successful application in various natural language tasks. However, existing approaches typically consider only the textual information within the documents, which overlooks the fact that documents can contain multiple modalities, including texts, images, and tables. Further, they often segment each long document into multiple discrete passages for embedding, preventing them from capturing the overall document context and interactions between paragraphs. We argue that these two limitations lead to suboptimal document representations for retrieval. In this work, to address them, we aim to produce more comprehensive and nuanced document representations by holistically embedding documents interleaved with different modalities. Specifically, we achieve this by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation. Moreover, to mitigate the information loss from segmenting documents into passages, instead of representing and retrieving passages individually, we further merge the representations of segmented passages into one single document representation, while we additionally introduce a reranking strategy to decouple and identify the relevant passage within the document if necessary. Then, through extensive experiments on diverse information retrieval scenarios considering both the textual and multimodal queries, we show that our approach substantially outperforms relevant baselines, thanks to the consideration of the multimodal information interleaved within the documents in a unified way.
Attention Sorting Combats Recency Bias In Long Context Language Models
Current language models often fail to incorporate long contexts efficiently during generation. We show that a major contributor to this issue are attention priors that are likely learned during pre-training: relevant information located earlier in context is attended to less on average. Yet even when models fail to use the information from a relevant document in their response, they still pay preferential attention to that document compared to an irrelevant document at the same position. We leverage this fact to introduce ``attention sorting'': perform one step of decoding, sort documents by the attention they receive (highest attention going last), repeat the process, generate the answer with the newly sorted context. We find that attention sorting improves performance of long context models. Our findings highlight some challenges in using off-the-shelf language models for retrieval augmented generation.
Improved Algorithms for Kernel Matrix-Vector Multiplication Under Sparsity Assumptions
Motivated by the problem of fast processing of attention matrices, we study fast algorithms for computing matrix-vector products for asymmetric Gaussian Kernel matrices Kin R^{ntimes n}. K's columns are indexed by a set of n keys k_1,k_2ldots, k_nin R^d, rows by a set of n queries q_1,q_2,ldots,q_nin R^d , and its i,j entry is K_{ij} = e^{-|q_i-k_j|_2^2/2sigma^2} for some bandwidth parameter sigma>0. Given a vector xin R^n and error parameter epsilon>0, our task is to output a yin R^n such that |Kx-y|_2leq epsilon |x|_2 in time subquadratic in n and linear in d. Our algorithms rely on the following modelling assumption about the matrices K: the sum of the entries of K scales linearly in n, as opposed to worst case quadratic growth. We validate this assumption experimentally, for Gaussian kernel matrices encountered in various settings such as fast attention computation in LLMs. We obtain the first subquadratic-time algorithm that works under this assumption, for unrestricted vectors.
PRISM: Fine-Grained Paper-to-Paper Retrieval with Multi-Aspect-Aware Query Optimization
Scientific paper retrieval, particularly framed as document-to-document retrieval, aims to identify relevant papers in response to a long-form query paper, rather than a short query string. Previous approaches to this task have focused on abstracts, embedding them into dense vectors as surrogates for full documents and calculating similarity across them, although abstracts provide only sparse and high-level summaries. To address this, we propose PRISM, a novel document-to-document retrieval method that introduces multiple, fine-grained representations for both the query and candidate papers. In particular, each query paper is decomposed into multiple aspect-specific views and individually embedded, which are then matched against candidate papers similarity segmented to consider their multifaceted dimensions. Moreover, we present SciFullBench, a novel benchmark in which the complete and segmented context of full papers for both queries and candidates is available. Then, experimental results show that PRISM improves performance by an average of 4.3% over existing retrieval baselines.
DeeperImpact: Optimizing Sparse Learned Index Structures
A lot of recent work has focused on sparse learned indexes that use deep neural architectures to significantly improve retrieval quality while keeping the efficiency benefits of the inverted index. While such sparse learned structures achieve effectiveness far beyond those of traditional inverted index-based rankers, there is still a gap in effectiveness to the best dense retrievers, or even to sparse methods that leverage more expensive optimizations such as query expansion and query term weighting. We focus on narrowing this gap by revisiting and optimizing DeepImpact, a sparse retrieval approach that uses DocT5Query for document expansion followed by a BERT language model to learn impact scores for document terms. We first reinvestigate the expansion process and find that the recently proposed Doc2Query query filtration does not enhance retrieval quality when used with DeepImpact. Instead, substituting T5 with a fine-tuned Llama 2 model for query prediction results in a considerable improvement. Subsequently, we study training strategies that have proven effective for other models, in particular the use of hard negatives, distillation, and pre-trained CoCondenser model initialization. Our results significantly narrow the effectiveness gap with the most effective versions of SPLADE.
TimeRAF: Retrieval-Augmented Foundation model for Zero-shot Time Series Forecasting
Time series forecasting plays a crucial role in data mining, driving rapid advancements across numerous industries. With the emergence of large models, time series foundation models (TSFMs) have exhibited remarkable generalization capabilities, such as zero-shot learning, through large-scale pre-training. Meanwhile, Retrieval-Augmented Generation (RAG) methods have been widely employed to enhance the performance of foundation models on unseen data, allowing models to access to external knowledge. In this paper, we introduce TimeRAF, a Retrieval-Augmented Forecasting model that enhance zero-shot time series forecasting through retrieval-augmented techniques. We develop customized time series knowledge bases that are tailored to the specific forecasting tasks. TimeRAF employs an end-to-end learnable retriever to extract valuable information from the knowledge base. Additionally, we propose Channel Prompting for knowledge integration, which effectively extracts relevant information from the retrieved knowledge along the channel dimension. Extensive experiments demonstrate the effectiveness of our model, showing significant improvement across various domains and datasets.
Task-aware Retrieval with Instructions
We study the problem of retrieval with instructions, where users of a retrieval system explicitly describe their intent along with their queries. We aim to develop a general-purpose task-aware retrieval system using multi-task instruction tuning, which can follow human-written instructions to find the best documents for a given query. We introduce the first large-scale collection of approximately 40 retrieval datasets with instructions, BERRI, and present TART, a multi-task retrieval system trained on BERRI with instructions. TART shows strong capabilities to adapt to a new retrieval task via instructions and advances the state of the art on two zero-shot retrieval benchmarks, BEIR and LOTTE, outperforming models up to three times larger. We further introduce a new evaluation setup, X^2-Retrieval to better reflect real-world scenarios, where diverse domains and tasks are pooled and a system needs to find documents aligning users' intents. In this setup, TART significantly outperforms competitive baselines, further demonstrating the effectiveness of guiding retrieval with instructions.
ESPN: Memory-Efficient Multi-Vector Information Retrieval
Recent advances in large language models have demonstrated remarkable effectiveness in information retrieval (IR) tasks. While many neural IR systems encode queries and documents into single-vector representations, multi-vector models elevate the retrieval quality by producing multi-vector representations and facilitating similarity searches at the granularity of individual tokens. However, these models significantly amplify memory and storage requirements for retrieval indices by an order of magnitude. This escalation in index size renders the scalability of multi-vector IR models progressively challenging due to their substantial memory demands. We introduce Embedding from Storage Pipelined Network (ESPN) where we offload the entire re-ranking embedding tables to SSDs and reduce the memory requirements by 5-16x. We design a software prefetcher with hit rates exceeding 90%, improving SSD based retrieval up to 6.4x, and demonstrate that we can maintain near memory levels of query latency even for large query batch sizes.
Sparse, Dense, and Attentional Representations for Text Retrieval
Dual encoders perform retrieval by encoding documents and queries into dense lowdimensional vectors, scoring each document by its inner product with the query. We investigate the capacity of this architecture relative to sparse bag-of-words models and attentional neural networks. Using both theoretical and empirical analysis, we establish connections between the encoding dimension, the margin between gold and lower-ranked documents, and the document length, suggesting limitations in the capacity of fixed-length encodings to support precise retrieval of long documents. Building on these insights, we propose a simple neural model that combines the efficiency of dual encoders with some of the expressiveness of more costly attentional architectures, and explore sparse-dense hybrids to capitalize on the precision of sparse retrieval. These models outperform strong alternatives in large-scale retrieval.
A Unified Framework for Learned Sparse Retrieval
Learned sparse retrieval (LSR) is a family of first-stage retrieval methods that are trained to generate sparse lexical representations of queries and documents for use with an inverted index. Many LSR methods have been recently introduced, with Splade models achieving state-of-the-art performance on MSMarco. Despite similarities in their model architectures, many LSR methods show substantial differences in effectiveness and efficiency. Differences in the experimental setups and configurations used make it difficult to compare the methods and derive insights. In this work, we analyze existing LSR methods and identify key components to establish an LSR framework that unifies all LSR methods under the same perspective. We then reproduce all prominent methods using a common codebase and re-train them in the same environment, which allows us to quantify how components of the framework affect effectiveness and efficiency. We find that (1) including document term weighting is most important for a method's effectiveness, (2) including query weighting has a small positive impact, and (3) document expansion and query expansion have a cancellation effect. As a result, we show how removing query expansion from a state-of-the-art model can reduce latency significantly while maintaining effectiveness on MSMarco and TripClick benchmarks. Our code is publicly available at https://github.com/thongnt99/learned-sparse-retrieval
Autoregressive Search Engines: Generating Substrings as Document Identifiers
Knowledge-intensive language tasks require NLP systems to both provide the correct answer and retrieve supporting evidence for it in a given corpus. Autoregressive language models are emerging as the de-facto standard for generating answers, with newer and more powerful systems emerging at an astonishing pace. In this paper we argue that all this (and future) progress can be directly applied to the retrieval problem with minimal intervention to the models' architecture. Previous work has explored ways to partition the search space into hierarchical structures and retrieve documents by autoregressively generating their unique identifier. In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers. This setup allows us to use an autoregressive model to generate and score distinctive ngrams, that are then mapped to full passages through an efficient data structure. Empirically, we show this not only outperforms prior autoregressive approaches but also leads to an average improvement of at least 10 points over more established retrieval solutions for passage-level retrieval on the KILT benchmark, establishing new state-of-the-art downstream performance on some datasets, while using a considerably lighter memory footprint than competing systems. Code and pre-trained models at https://github.com/facebookresearch/SEAL.
RetroInfer: A Vector-Storage Approach for Scalable Long-Context LLM Inference
The growing context lengths of large language models (LLMs) pose significant challenges for efficient inference, primarily due to GPU memory and bandwidth constraints. We present RetroInfer, a novel system that reconceptualizes the key-value (KV) cache as a vector storage system which exploits the inherent attention sparsity to accelerate long-context LLM inference. At its core is the wave index, an Attention-aWare VEctor index that enables efficient and accurate retrieval of critical tokens through techniques such as tripartite attention approximation, accuracy-bounded attention estimation, and segmented clustering. Complementing this is the wave buffer, which coordinates KV cache placement and overlaps computation and data transfer across GPU and CPU to sustain high throughput. Unlike prior sparsity-based methods that struggle with token selection and hardware coordination, RetroInfer delivers robust performance without compromising model accuracy. Experiments on long-context benchmarks show up to 4.5X speedup over full attention within GPU memory limits and up to 10.5X over sparse attention baselines when KV cache is extended to CPU memory, all while preserving full-attention-level accuracy.
Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix Factorization
Efficient k-nearest neighbor search is a fundamental task, foundational for many problems in NLP. When the similarity is measured by dot-product between dual-encoder vectors or ell_2-distance, there already exist many scalable and efficient search methods. But not so when similarity is measured by more accurate and expensive black-box neural similarity models, such as cross-encoders, which jointly encode the query and candidate neighbor. The cross-encoders' high computational cost typically limits their use to reranking candidates retrieved by a cheaper model, such as dual encoder or TF-IDF. However, the accuracy of such a two-stage approach is upper-bounded by the recall of the initial candidate set, and potentially requires additional training to align the auxiliary retrieval model with the cross-encoder model. In this paper, we present an approach that avoids the use of a dual-encoder for retrieval, relying solely on the cross-encoder. Retrieval is made efficient with CUR decomposition, a matrix decomposition approach that approximates all pairwise cross-encoder distances from a small subset of rows and columns of the distance matrix. Indexing items using our approach is computationally cheaper than training an auxiliary dual-encoder model through distillation. Empirically, for k > 10, our approach provides test-time recall-vs-computational cost trade-offs superior to the current widely-used methods that re-rank items retrieved using a dual-encoder or TF-IDF.
Attentive Deep Neural Networks for Legal Document Retrieval
Legal text retrieval serves as a key component in a wide range of legal text processing tasks such as legal question answering, legal case entailment, and statute law retrieval. The performance of legal text retrieval depends, to a large extent, on the representation of text, both query and legal documents. Based on good representations, a legal text retrieval model can effectively match the query to its relevant documents. Because legal documents often contain long articles and only some parts are relevant to queries, it is quite a challenge for existing models to represent such documents. In this paper, we study the use of attentive neural network-based text representation for statute law document retrieval. We propose a general approach using deep neural networks with attention mechanisms. Based on it, we develop two hierarchical architectures with sparse attention to represent long sentences and articles, and we name them Attentive CNN and Paraformer. The methods are evaluated on datasets of different sizes and characteristics in English, Japanese, and Vietnamese. Experimental results show that: i) Attentive neural methods substantially outperform non-neural methods in terms of retrieval performance across datasets and languages; ii) Pretrained transformer-based models achieve better accuracy on small datasets at the cost of high computational complexity while lighter weight Attentive CNN achieves better accuracy on large datasets; and iii) Our proposed Paraformer outperforms state-of-the-art methods on COLIEE dataset, achieving the highest recall and F2 scores in the top-N retrieval task.
Rethinking Chunk Size For Long-Document Retrieval: A Multi-Dataset Analysis
Chunking is a crucial preprocessing step in retrieval-augmented generation (RAG) systems, significantly impacting retrieval effectiveness across diverse datasets. In this study, we systematically evaluate fixed-size chunking strategies and their influence on retrieval performance using multiple embedding models. Our experiments, conducted on both short-form and long-form datasets, reveal that chunk size plays a critical role in retrieval effectiveness -- smaller chunks (64-128 tokens) are optimal for datasets with concise, fact-based answers, whereas larger chunks (512-1024 tokens) improve retrieval in datasets requiring broader contextual understanding. We also analyze the impact of chunking on different embedding models, finding that they exhibit distinct chunking sensitivities. While models like Stella benefit from larger chunks, leveraging global context for long-range retrieval, Snowflake performs better with smaller chunks, excelling at fine-grained, entity-based matching. Our results underscore the trade-offs between chunk size, embedding models, and dataset characteristics, emphasizing the need for improved chunk quality measures, and more comprehensive datasets to advance chunk-based retrieval in long-document Information Retrieval (IR).
An Automatic Approach for Generating Rich, Linked Geo-Metadata from Historical Map Images
Historical maps contain detailed geographic information difficult to find elsewhere covering long-periods of time (e.g., 125 years for the historical topographic maps in the US). However, these maps typically exist as scanned images without searchable metadata. Existing approaches making historical maps searchable rely on tedious manual work (including crowd-sourcing) to generate the metadata (e.g., geolocations and keywords). Optical character recognition (OCR) software could alleviate the required manual work, but the recognition results are individual words instead of location phrases (e.g., "Black" and "Mountain" vs. "Black Mountain"). This paper presents an end-to-end approach to address the real-world problem of finding and indexing historical map images. This approach automatically processes historical map images to extract their text content and generates a set of metadata that is linked to large external geospatial knowledge bases. The linked metadata in the RDF (Resource Description Framework) format support complex queries for finding and indexing historical maps, such as retrieving all historical maps covering mountain peaks higher than 1,000 meters in California. We have implemented the approach in a system called mapKurator. We have evaluated mapKurator using historical maps from several sources with various map styles, scales, and coverage. Our results show significant improvement over the state-of-the-art methods. The code has been made publicly available as modules of the Kartta Labs project at https://github.com/kartta-labs/Project.
Comparative analysis of various web crawler algorithms
This presentation focuses on the importance of web crawling and page ranking algorithms in dealing with the massive amount of data present on the World Wide Web. As the web continues to grow exponentially, efficient search and retrieval methods become crucial. Web crawling is a process that converts unstructured data into structured data, enabling effective information retrieval. Additionally, page ranking algorithms play a significant role in assessing the quality and popularity of web pages. The presentation explores the background of these algorithms and evaluates five different crawling algorithms: Shark Search, Priority-Based Queue, Naive Bayes, Breadth-First, and Depth-First. The goal is to identify the most effective algorithm for crawling web pages. By understanding these algorithms, we can enhance our ability to navigate the web and extract valuable information efficiently.
Recognizing Extended Spatiotemporal Expressions by Actively Trained Average Perceptron Ensembles
Precise geocoding and time normalization for text requires that location and time phrases be identified. Many state-of-the-art geoparsers and temporal parsers suffer from low recall. Categories commonly missed by parsers are: nouns used in a non- spatiotemporal sense, adjectival and adverbial phrases, prepositional phrases, and numerical phrases. We collected and annotated data set by querying commercial web searches API with such spatiotemporal expressions as were missed by state-of-the- art parsers. Due to the high cost of sentence annotation, active learning was used to label training data, and a new strategy was designed to better select training examples to reduce labeling cost. For the learning algorithm, we applied an average perceptron trained Featurized Hidden Markov Model (FHMM). Five FHMM instances were used to create an ensemble, with the output phrase selected by voting. Our ensemble model was tested on a range of sequential labeling tasks, and has shown competitive performance. Our contributions include (1) an new dataset annotated with named entities and expanded spatiotemporal expressions; (2) a comparison of inference algorithms for ensemble models showing the superior accuracy of Belief Propagation over Viterbi Decoding; (3) a new example re-weighting method for active ensemble learning that 'memorizes' the latest examples trained; (4) a spatiotemporal parser that jointly recognizes expanded spatiotemporal expressions as well as named entities.
Local Self-Attention over Long Text for Efficient Document Retrieval
Neural networks, particularly Transformer-based architectures, have achieved significant performance improvements on several retrieval benchmarks. When the items being retrieved are documents, the time and memory cost of employing Transformers over a full sequence of document terms can be prohibitive. A popular strategy involves considering only the first n terms of the document. This can, however, result in a biased system that under retrieves longer documents. In this work, we propose a local self-attention which considers a moving window over the document terms and for each term attends only to other terms in the same window. This local attention incurs a fraction of the compute and memory cost of attention over the whole document. The windowed approach also leads to more compact packing of padded documents in minibatches resulting in additional savings. We also employ a learned saturation function and a two-staged pooling strategy to identify relevant regions of the document. The Transformer-Kernel pooling model with these changes can efficiently elicit relevance information from documents with thousands of tokens. We benchmark our proposed modifications on the document ranking task from the TREC 2019 Deep Learning track and observe significant improvements in retrieval quality as well as increased retrieval of longer documents at moderate increase in compute and memory costs.
Approximate Nearest Neighbor Search with Window Filters
We define and investigate the problem of c-approximate window search: approximate nearest neighbor search where each point in the dataset has a numeric label, and the goal is to find nearest neighbors to queries within arbitrary label ranges. Many semantic search problems, such as image and document search with timestamp filters, or product search with cost filters, are natural examples of this problem. We propose and theoretically analyze a modular tree-based framework for transforming an index that solves the traditional c-approximate nearest neighbor problem into a data structure that solves window search. On standard nearest neighbor benchmark datasets equipped with random label values, adversarially constructed embeddings, and image search embeddings with real timestamps, we obtain up to a 75times speedup over existing solutions at the same level of recall.
U-CREAT: Unsupervised Case Retrieval using Events extrAcTion
The task of Prior Case Retrieval (PCR) in the legal domain is about automatically citing relevant (based on facts and precedence) prior legal cases in a given query case. To further promote research in PCR, in this paper, we propose a new large benchmark (in English) for the PCR task: IL-PCR (Indian Legal Prior Case Retrieval) corpus. Given the complex nature of case relevance and the long size of legal documents, BM25 remains a strong baseline for ranking the cited prior documents. In this work, we explore the role of events in legal case retrieval and propose an unsupervised retrieval method-based pipeline U-CREAT (Unsupervised Case Retrieval using Events Extraction). We find that the proposed unsupervised retrieval method significantly increases performance compared to BM25 and makes retrieval faster by a considerable margin, making it applicable to real-time case retrieval systems. Our proposed system is generic, we show that it generalizes across two different legal systems (Indian and Canadian), and it shows state-of-the-art performance on the benchmarks for both the legal systems (IL-PCR and COLIEE corpora).
INSTRUCTIR: A Benchmark for Instruction Following of Information Retrieval Models
Despite the critical need to align search targets with users' intention, retrievers often only prioritize query information without delving into the users' intended search context. Enhancing the capability of retrievers to understand intentions and preferences of users, akin to language model instructions, has the potential to yield more aligned search targets. Prior studies restrict the application of instructions in information retrieval to a task description format, neglecting the broader context of diverse and evolving search scenarios. Furthermore, the prevailing benchmarks utilized for evaluation lack explicit tailoring to assess instruction-following ability, thereby hindering progress in this field. In response to these limitations, we propose a novel benchmark,INSTRUCTIR, specifically designed to evaluate instruction-following ability in information retrieval tasks. Our approach focuses on user-aligned instructions tailored to each query instance, reflecting the diverse characteristics inherent in real-world search scenarios. Through experimental analysis, we observe that retrievers fine-tuned to follow task-style instructions, such as INSTRUCTOR, can underperform compared to their non-instruction-tuned counterparts. This underscores potential overfitting issues inherent in constructing retrievers trained on existing instruction-aware retrieval datasets.
DAPR: A Benchmark on Document-Aware Passage Retrieval
Recent neural retrieval mainly focuses on ranking short texts and is challenged with long documents. Existing work mainly evaluates either ranking passages or whole documents. However, there are many cases where the users want to find a relevant passage within a long document from a huge corpus, e.g. legal cases, research papers, etc. In this scenario, the passage often provides little document context and thus challenges the current approaches to finding the correct document and returning accurate results. To fill this gap, we propose and name this task Document-Aware Passage Retrieval (DAPR) and build a benchmark including multiple datasets from various domains, covering both DAPR and whole-document retrieval. In experiments, we extend the state-of-the-art neural passage retrievers with document-level context via different approaches including prepending document summary, pooling over passage representations, and hybrid retrieval with BM25. The hybrid-retrieval systems, the overall best, can only improve on the DAPR tasks marginally while significantly improving on the document-retrieval tasks. This motivates further research in developing better retrieval systems for the new task. The code and the data are available at https://github.com/kwang2049/dapr
Supervised Topical Key Phrase Extraction of News Stories using Crowdsourcing, Light Filtering and Co-reference Normalization
Fast and effective automated indexing is critical for search and personalized services. Key phrases that consist of one or more words and represent the main concepts of the document are often used for the purpose of indexing. In this paper, we investigate the use of additional semantic features and pre-processing steps to improve automatic key phrase extraction. These features include the use of signal words and freebase categories. Some of these features lead to significant improvements in the accuracy of the results. We also experimented with 2 forms of document pre-processing that we call light filtering and co-reference normalization. Light filtering removes sentences from the document, which are judged peripheral to its main content. Co-reference normalization unifies several written forms of the same named entity into a unique form. We also needed a "Gold Standard" - a set of labeled documents for training and evaluation. While the subjective nature of key phrase selection precludes a true "Gold Standard", we used Amazon's Mechanical Turk service to obtain a useful approximation. Our data indicates that the biggest improvements in performance were due to shallow semantic features, news categories, and rhetorical signals (nDCG 78.47% vs. 68.93%). The inclusion of deeper semantic features such as Freebase sub-categories was not beneficial by itself, but in combination with pre-processing, did cause slight improvements in the nDCG scores.
pathfinder: A Semantic Framework for Literature Review and Knowledge Discovery in Astronomy
The exponential growth of astronomical literature poses significant challenges for researchers navigating and synthesizing general insights or even domain-specific knowledge. We present Pathfinder, a machine learning framework designed to enable literature review and knowledge discovery in astronomy, focusing on semantic searching with natural language instead of syntactic searches with keywords. Utilizing state-of-the-art large language models (LLMs) and a corpus of 350,000 peer-reviewed papers from the Astrophysics Data System (ADS), Pathfinder offers an innovative approach to scientific inquiry and literature exploration. Our framework couples advanced retrieval techniques with LLM-based synthesis to search astronomical literature by semantic context as a complement to currently existing methods that use keywords or citation graphs. It addresses complexities of jargon, named entities, and temporal aspects through time-based and citation-based weighting schemes. We demonstrate the tool's versatility through case studies, showcasing its application in various research scenarios. The system's performance is evaluated using custom benchmarks, including single-paper and multi-paper tasks. Beyond literature review, Pathfinder offers unique capabilities for reformatting answers in ways that are accessible to various audiences (e.g. in a different language or as simplified text), visualizing research landscapes, and tracking the impact of observatories and methodologies. This tool represents a significant advancement in applying AI to astronomical research, aiding researchers at all career stages in navigating modern astronomy literature.
Foundations of Vector Retrieval
Vectors are universal mathematical objects that can represent text, images, speech, or a mix of these data modalities. That happens regardless of whether data is represented by hand-crafted features or learnt embeddings. Collect a large enough quantity of such vectors and the question of retrieval becomes urgently relevant: Finding vectors that are more similar to a query vector. This monograph is concerned with the question above and covers fundamental concepts along with advanced data structures and algorithms for vector retrieval. In doing so, it recaps this fascinating topic and lowers barriers of entry into this rich area of research.
LEANN: A Low-Storage Vector Index
Embedding-based search is widely used in applications such as recommendation and retrieval-augmented generation (RAG). Recently, there is a growing demand to support these capabilities over personal data stored locally on devices. However, maintaining the necessary data structure associated with the embedding-based search is often infeasible due to its high storage overhead. For example, indexing 100 GB of raw data requires 150 to 700 GB of storage, making local deployment impractical. Reducing this overhead while maintaining search quality and latency becomes a critical challenge. In this paper, we present LEANN, a storage-efficient approximate nearest neighbor (ANN) search index optimized for resource-constrained personal devices. LEANN combines a compact graph-based structure with an efficient on-the-fly recomputation strategy to enable fast and accurate retrieval with minimal storage overhead. Our evaluation shows that LEANN reduces index size to under 5% of the original raw data, achieving up to 50 times smaller storage than standard indexes, while maintaining 90% top-3 recall in under 2 seconds on real-world question answering benchmarks.
KTRL+F: Knowledge-Augmented In-Document Search
We introduce a new problem KTRL+F, a knowledge-augmented in-document search task that necessitates real-time identification of all semantic targets within a document with the awareness of external sources through a single natural query. This task addresses following unique challenges for in-document search: 1) utilizing knowledge outside the document for extended use of additional information about targets to bridge the semantic gap between the query and the targets, and 2) balancing between real-time applicability with the performance. We analyze various baselines in KTRL+F and find there are limitations of existing models, such as hallucinations, low latency, or difficulties in leveraging external knowledge. Therefore we propose a Knowledge-Augmented Phrase Retrieval model that shows a promising balance between speed and performance by simply augmenting external knowledge embedding in phrase embedding. Additionally, we conduct a user study to verify whether solving KTRL+F can enhance search experience of users. It demonstrates that even with our simple model users can reduce the time for searching with less queries and reduced extra visits to other sources for collecting evidence. We encourage the research community to work on KTRL+F to enhance more efficient in-document information access.
Retrieving Texts based on Abstract Descriptions
In this work, we aim to connect two research areas: instruction models and retrieval-based models. While instruction-tuned Large Language Models (LLMs) excel at extracting information from text, they are not suitable for semantic retrieval. Similarity search over embedding vectors allows to index and query vectors, but the similarity reflected in the embedding is sub-optimal for many use cases. We identify the task of retrieving sentences based on abstract descriptions of their content. We demonstrate the inadequacy of current text embeddings and propose an alternative model that significantly improves when used in standard nearest neighbor search. The model is trained using positive and negative pairs sourced through prompting an a large language model (LLM). While it is easy to source the training material from an LLM, the retrieval task cannot be performed by the LLM directly. This demonstrates that data from LLMs can be used not only for distilling more efficient specialized models than the original LLM, but also for creating new capabilities not immediately possible using the original model.
Guided Query Refinement: Multimodal Hybrid Retrieval with Test-Time Optimization
Multimodal encoders have pushed the boundaries of visual document retrieval, matching textual query tokens directly to image patches and achieving state-of-the-art performance on public benchmarks. Recent models relying on this paradigm have massively scaled the sizes of their query and document representations, presenting obstacles to deployment and scalability in real-world pipelines. Furthermore, purely vision-centric approaches may be constrained by the inherent modality gap still exhibited by modern vision-language models. In this work, we connect these challenges to the paradigm of hybrid retrieval, investigating whether a lightweight dense text retriever can enhance a stronger vision-centric model. Existing hybrid methods, which rely on coarse-grained fusion of ranks or scores, fail to exploit the rich interactions within each model's representation space. To address this, we introduce Guided Query Refinement (GQR), a novel test-time optimization method that refines a primary retriever's query embedding using guidance from a complementary retriever's scores. Through extensive experiments on visual document retrieval benchmarks, we demonstrate that GQR allows vision-centric models to match the performance of models with significantly larger representations, while being up to 14x faster and requiring 54x less memory. Our findings show that GQR effectively pushes the Pareto frontier for performance and efficiency in multimodal retrieval. We release our code at https://github.com/IBM/test-time-hybrid-retrieval
Benchmarking Clinical Decision Support Search
Finding relevant literature underpins the practice of evidence-based medicine. From 2014 to 2016, TREC conducted a clinical decision support track, wherein participants were tasked with finding articles relevant to clinical questions posed by physicians. In total, 87 teams have participated over the past three years, generating 395 runs. During this period, each team has trialled a variety of methods. While there was significant overlap in the methods employed by different teams, the results were varied. Due to the diversity of the platforms used, the results arising from the different techniques are not directly comparable, reducing the ability to build on previous work. By using a stable platform, we have been able to compare different document and query processing techniques, allowing us to experiment with different search parameters. We have used our system to reproduce leading teams runs, and compare the results obtained. By benchmarking our indexing and search techniques, we can statistically test a variety of hypotheses, paving the way for further research.
How Does Generative Retrieval Scale to Millions of Passages?
Popularized by the Differentiable Search Index, the emerging paradigm of generative retrieval re-frames the classic information retrieval problem into a sequence-to-sequence modeling task, forgoing external indices and encoding an entire document corpus within a single Transformer. Although many different approaches have been proposed to improve the effectiveness of generative retrieval, they have only been evaluated on document corpora on the order of 100k in size. We conduct the first empirical study of generative retrieval techniques across various corpus scales, ultimately scaling up to the entire MS MARCO passage ranking task with a corpus of 8.8M passages and evaluating model sizes up to 11B parameters. We uncover several findings about scaling generative retrieval to millions of passages; notably, the central importance of using synthetic queries as document representations during indexing, the ineffectiveness of existing proposed architecture modifications when accounting for compute cost, and the limits of naively scaling model parameters with respect to retrieval performance. While we find that generative retrieval is competitive with state-of-the-art dual encoders on small corpora, scaling to millions of passages remains an important and unsolved challenge. We believe these findings will be valuable for the community to clarify the current state of generative retrieval, highlight the unique challenges, and inspire new research directions.
Pre-training Methods in Information Retrieval
The core of information retrieval (IR) is to identify relevant information from large-scale resources and return it as a ranked list to respond to the user's information need. In recent years, the resurgence of deep learning has greatly advanced this field and leads to a hot topic named NeuIR (i.e., neural information retrieval), especially the paradigm of pre-training methods (PTMs). Owing to sophisticated pre-training objectives and huge model size, pre-trained models can learn universal language representations from massive textual data, which are beneficial to the ranking task of IR. Recently, a large number of works, which are dedicated to the application of PTMs in IR, have been introduced to promote the retrieval performance. Considering the rapid progress of this direction, this survey aims to provide a systematic review of pre-training methods in IR. To be specific, we present an overview of PTMs applied in different components of an IR system, including the retrieval component, the re-ranking component, and other components. In addition, we also introduce PTMs specifically designed for IR, and summarize available datasets as well as benchmark leaderboards. Moreover, we discuss some open challenges and highlight several promising directions, with the hope of inspiring and facilitating more works on these topics for future research.
Document Haystack: A Long Context Multimodal Image/Document Understanding Vision LLM Benchmark
The proliferation of multimodal Large Language Models has significantly advanced the ability to analyze and understand complex data inputs from different modalities. However, the processing of long documents remains under-explored, largely due to a lack of suitable benchmarks. To address this, we introduce Document Haystack, a comprehensive benchmark designed to evaluate the performance of Vision Language Models (VLMs) on long, visually complex documents. Document Haystack features documents ranging from 5 to 200 pages and strategically inserts pure text or multimodal text+image "needles" at various depths within the documents to challenge VLMs' retrieval capabilities. Comprising 400 document variants and a total of 8,250 questions, it is supported by an objective, automated evaluation framework. We detail the construction and characteristics of the Document Haystack dataset, present results from prominent VLMs and discuss potential research avenues in this area.
Online Writer Retrieval with Chinese Handwritten Phrases: A Synergistic Temporal-Frequency Representation Learning Approach
Currently, the prevalence of online handwriting has spurred a critical need for effective retrieval systems to accurately search relevant handwriting instances from specific writers, known as online writer retrieval. Despite the growing demand, this field suffers from a scarcity of well-established methodologies and public large-scale datasets. This paper tackles these challenges with a focus on Chinese handwritten phrases. First, we propose DOLPHIN, a novel retrieval model designed to enhance handwriting representations through synergistic temporal-frequency analysis. For frequency feature learning, we propose the HFGA block, which performs gated cross-attention between the vanilla temporal handwriting sequence and its high-frequency sub-bands to amplify salient writing details. For temporal feature learning, we propose the CAIR block, tailored to promote channel interaction and reduce channel redundancy. Second, to address data deficit, we introduce OLIWER, a large-scale online writer retrieval dataset encompassing over 670,000 Chinese handwritten phrases from 1,731 individuals. Through extensive evaluations, we demonstrate the superior performance of DOLPHIN over existing methods. In addition, we explore cross-domain writer retrieval and reveal the pivotal role of increasing feature alignment in bridging the distributional gap between different handwriting data. Our findings emphasize the significance of point sampling frequency and pressure features in improving handwriting representation quality and retrieval performance. Code and dataset are available at https://github.com/SCUT-DLVCLab/DOLPHIN.
ACORD: An Expert-Annotated Retrieval Dataset for Legal Contract Drafting
Information retrieval, specifically contract clause retrieval, is foundational to contract drafting because lawyers rarely draft contracts from scratch; instead, they locate and revise the most relevant precedent. We introduce the Atticus Clause Retrieval Dataset (ACORD), the first retrieval benchmark for contract drafting fully annotated by experts. ACORD focuses on complex contract clauses such as Limitation of Liability, Indemnification, Change of Control, and Most Favored Nation. It includes 114 queries and over 126,000 query-clause pairs, each ranked on a scale from 1 to 5 stars. The task is to find the most relevant precedent clauses to a query. The bi-encoder retriever paired with pointwise LLMs re-rankers shows promising results. However, substantial improvements are still needed to effectively manage the complex legal work typically undertaken by lawyers. As the first retrieval benchmark for contract drafting annotated by experts, ACORD can serve as a valuable IR benchmark for the NLP community.
The UCR Time Series Archive
The UCR Time Series Archive - introduced in 2002, has become an important resource in the time series data mining community, with at least one thousand published papers making use of at least one data set from the archive. The original incarnation of the archive had sixteen data sets but since that time, it has gone through periodic expansions. The last expansion took place in the summer of 2015 when the archive grew from 45 to 85 data sets. This paper introduces and will focus on the new data expansion from 85 to 128 data sets. Beyond expanding this valuable resource, this paper offers pragmatic advice to anyone who may wish to evaluate a new algorithm on the archive. Finally, this paper makes a novel and yet actionable claim: of the hundreds of papers that show an improvement over the standard baseline (1-nearest neighbor classification), a large fraction may be mis-attributing the reasons for their improvement. Moreover, they may have been able to achieve the same improvement with a much simpler modification, requiring just a single line of code.
BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval
Existing retrieval benchmarks primarily consist of information-seeking queries (e.g., aggregated questions from search engines) where keyword or semantic-based retrieval is usually sufficient. However, many complex real-world queries require in-depth reasoning to identify relevant documents that go beyond surface form matching. For example, finding documentation for a coding question requires understanding the logic and syntax of the functions involved. To better benchmark retrieval on such challenging queries, we introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents. BRIGHT is constructed from the 1,398 real-world queries collected from diverse domains (such as economics, psychology, robotics, software engineering, earth sciences, etc.), sourced from naturally occurring or carefully curated human data. Extensive evaluation reveals that even state-of-the-art retrieval models perform poorly on BRIGHT. The leading model on the MTEB leaderboard [38 ], which achieves a score of 59.0 nDCG@10,2 produces a score of nDCG@10 of 18.0 on BRIGHT. We further demonstrate that augmenting queries with Chain-of-Thought reasoning generated by large language models (LLMs) improves performance by up to 12.2 points. Moreover, BRIGHT is robust against data leakage during pretraining of the benchmarked models as we validate by showing similar performance even when documents from the benchmark are included in the training data. We believe that BRIGHT paves the way for future research on retrieval systems in more realistic and challenging settings. Our code and data are available at https://brightbenchmark.github.io.
LaMP: When Large Language Models Meet Personalization
This paper highlights the importance of personalization in large language models and introduces the LaMP benchmark -- a novel benchmark for training and evaluating language models for producing personalized outputs. LaMP offers a comprehensive evaluation framework with diverse language tasks and multiple entries for each user profile. It consists of seven personalized tasks, spanning three text classification and four text generation tasks. We additionally propose two retrieval augmentation approaches that retrieve personal items from each user profile for personalizing language model outputs. To this aim, we study various retrieval models, including term matching, semantic matching, and time-aware methods. Extensive experiments on LaMP for zero-shot and fine-tuned language models demonstrate the efficacy of the proposed retrieval augmentation approach and highlight the impact of personalization in various natural language tasks.
Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval
Ad-hoc search calls for the selection of appropriate answers from a massive-scale corpus. Nowadays, the embedding-based retrieval (EBR) becomes a promising solution, where deep learning based document representation and ANN search techniques are allied to handle this task. However, a major challenge is that the ANN index can be too large to fit into memory, given the considerable size of answer corpus. In this work, we tackle this problem with Bi-Granular Document Representation, where the lightweight sparse embeddings are indexed and standby in memory for coarse-grained candidate search, and the heavyweight dense embeddings are hosted in disk for fine-grained post verification. For the best of retrieval accuracy, a Progressive Optimization framework is designed. The sparse embeddings are learned ahead for high-quality search of candidates. Conditioned on the candidate distribution induced by the sparse embeddings, the dense embeddings are continuously learned to optimize the discrimination of ground-truth from the shortlisted candidates. Besides, two techniques: the contrastive quantization and the locality-centric sampling are introduced for the learning of sparse and dense embeddings, which substantially contribute to their performances. Thanks to the above features, our method effectively handles massive-scale EBR with strong advantages in accuracy: with up to +4.3% recall gain on million-scale corpus, and up to +17.5% recall gain on billion-scale corpus. Besides, Our method is applied to a major sponsored search platform with substantial gains on revenue (+1.95%), Recall (+1.01%) and CTR (+0.49%). Our code is available at https://github.com/microsoft/BiDR.
Retrieval-Enhanced Machine Learning: Synthesis and Opportunities
In the field of language modeling, models augmented with retrieval components have emerged as a promising solution to address several challenges faced in the natural language processing (NLP) field, including knowledge grounding, interpretability, and scalability. Despite the primary focus on NLP, we posit that the paradigm of retrieval-enhancement can be extended to a broader spectrum of machine learning (ML) such as computer vision, time series prediction, and computational biology. Therefore, this work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature. Also, we found that while a number of studies employ retrieval components to augment their models, there is a lack of integration with foundational Information Retrieval (IR) research. We bridge this gap between the seminal IR research and contemporary REML studies by investigating each component that comprises the REML framework. Ultimately, the goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
The Apache Point Observatory Galactic Evolution Experiment (APOGEE)
The Apache Point Observatory Galactic Evolution Experiment (APOGEE), one of the programs in the Sloan Digital Sky Survey III (SDSS-III), has now completed its systematic, homogeneous spectroscopic survey sampling all major populations of the Milky Way. After a three year observing campaign on the Sloan 2.5-m Telescope, APOGEE has collected a half million high resolution (R~22,500), high S/N (>100), infrared (1.51-1.70 microns) spectra for 146,000 stars, with time series information via repeat visits to most of these stars. This paper describes the motivations for the survey and its overall design---hardware, field placement, target selection, operations---and gives an overview of these aspects as well as the data reduction, analysis and products. An index is also given to the complement of technical papers that describe various critical survey components in detail. Finally, we discuss the achieved survey performance and illustrate the variety of potential uses of the data products by way of a number of science demonstrations, which span from time series analysis of stellar spectral variations and radial velocity variations from stellar companions, to spatial maps of kinematics, metallicity and abundance patterns across the Galaxy and as a function of age, to new views of the interstellar medium, the chemistry of star clusters, and the discovery of rare stellar species. As part of SDSS-III Data Release 12, all of the APOGEE data products are now publicly available.
Data-Efficient Massive Tool Retrieval: A Reinforcement Learning Approach for Query-Tool Alignment with Language Models
Recent advancements in large language models (LLMs) integrated with external tools and APIs have successfully addressed complex tasks by using in-context learning or fine-tuning. Despite this progress, the vast scale of tool retrieval remains challenging due to stringent input length constraints. In response, we propose a pre-retrieval strategy from an extensive repository, effectively framing the problem as the massive tool retrieval (MTR) task. We introduce the MTRB (massive tool retrieval benchmark) to evaluate real-world tool-augmented LLM scenarios with a large number of tools. This benchmark is designed for low-resource scenarios and includes a diverse collection of tools with descriptions refined for consistency and clarity. It consists of three subsets, each containing 90 test samples and 10 training samples. To handle the low-resource MTR task, we raise a new query-tool alignment (QTA) framework leverages LLMs to enhance query-tool alignment by rewriting user queries through ranking functions and the direct preference optimization (DPO) method. This approach consistently outperforms existing state-of-the-art models in top-5 and top-10 retrieval tasks across the MTRB benchmark, with improvements up to 93.28% based on the metric Sufficiency@k, which measures the adequacy of tool retrieval within the first k results. Furthermore, ablation studies validate the efficacy of our framework, highlighting its capacity to optimize performance even with limited annotated samples. Specifically, our framework achieves up to 78.53% performance improvement in Sufficiency@k with just a single annotated sample. Additionally, QTA exhibits strong cross-dataset generalizability, emphasizing its potential for real-world applications.
WARP: An Efficient Engine for Multi-Vector Retrieval
We study the efficiency of multi-vector retrieval methods like ColBERT and its recent variant XTR. We introduce WARP, a retrieval engine that drastically improves the efficiency of XTR-based ColBERT retrievers through three key innovations: (1) WARP_SELECT for dynamic similarity imputation, (2) implicit decompression to bypass costly vector reconstruction, and (3) a two-stage reduction process for efficient scoring. Combined with optimized C++ kernels and specialized inference runtimes, WARP reduces end-to-end latency by 41x compared to XTR's reference implementation and thereby achieves a 3x speedup over PLAID from the the official ColBERT implementation. We study the efficiency of multi-vector retrieval methods like ColBERT and its recent variant XTR. We introduce WARP, a retrieval engine that drastically improves the efficiency of XTR-based ColBERT retrievers through three key innovations: (1) WARP_SELECT for dynamic similarity imputation, (2) implicit decompression during retrieval, and (3) a two-stage reduction process for efficient scoring. Thanks also to highly-optimized C++ kernels and to the adoption of specialized inference runtimes, WARP can reduce end-to-end query latency relative to XTR's reference implementation by 41x. And it thereby achieves a 3x speedup over the official ColBERTv2 PLAID engine, while preserving retrieval quality.
Patience is all you need! An agentic system for performing scientific literature review
Large language models (LLMs) have grown in their usage to provide support for question answering across numerous disciplines. The models on their own have already shown promise for answering basic questions, however fail quickly where expert domain knowledge is required or the question is nuanced. Scientific research often involves searching for relevant literature, distilling pertinent information from that literature and analysing how the findings support or contradict one another. The information is often encapsulated in the full text body of research articles, rather than just in the abstracts. Statements within these articles frequently require the wider article context to be fully understood. We have built an LLM-based system that performs such search and distillation of information encapsulated in scientific literature, and we evaluate our keyword based search and information distillation system against a set of biology related questions from previously released literature benchmarks. We demonstrate sparse retrieval methods exhibit results close to state of the art without the need for dense retrieval, with its associated infrastructure and complexity overhead. We also show how to increase the coverage of relevant documents for literature review generation.
Context-Aware Sentence/Passage Term Importance Estimation For First Stage Retrieval
Term frequency is a common method for identifying the importance of a term in a query or document. But it is a weak signal, especially when the frequency distribution is flat, such as in long queries or short documents where the text is of sentence/passage-length. This paper proposes a Deep Contextualized Term Weighting framework that learns to map BERT's contextualized text representations to context-aware term weights for sentences and passages. When applied to passages, DeepCT-Index produces term weights that can be stored in an ordinary inverted index for passage retrieval. When applied to query text, DeepCT-Query generates a weighted bag-of-words query. Both types of term weight can be used directly by typical first-stage retrieval algorithms. This is novel because most deep neural network based ranking models have higher computational costs, and thus are restricted to later-stage rankers. Experiments on four datasets demonstrate that DeepCT's deep contextualized text understanding greatly improves the accuracy of first-stage retrieval algorithms.
Are We on the Right Way for Assessing Document Retrieval-Augmented Generation?
Retrieval-Augmented Generation (RAG) systems using Multimodal Large Language Models (MLLMs) show great promise for complex document understanding, yet their development is critically hampered by inadequate evaluation. Current benchmarks often focus on specific part of document RAG system and use synthetic data with incomplete ground truth and evidence labels, therefore failing to reflect real-world bottlenecks and challenges. To overcome these limitations, we introduce Double-Bench: a new large-scale, multilingual, and multimodal evaluation system that is able to produce fine-grained assessment to each component within document RAG systems. It comprises 3,276 documents (72,880 pages) and 5,168 single- and multi-hop queries across 6 languages and 4 document types with streamlined dynamic update support for potential data contamination issues. Queries are grounded in exhaustively scanned evidence pages and verified by human experts to ensure maximum quality and completeness. Our comprehensive experiments across 9 state-of-the-art embedding models, 4 MLLMs and 4 end-to-end document RAG frameworks demonstrate the gap between text and visual embedding models is narrowing, highlighting the need in building stronger document retrieval models. Our findings also reveal the over-confidence dilemma within current document RAG frameworks that tend to provide answer even without evidence support. We hope our fully open-source Double-Bench provide a rigorous foundation for future research in advanced document RAG systems. We plan to retrieve timely corpus and release new benchmarks on an annual basis.
BIRCO: A Benchmark of Information Retrieval Tasks with Complex Objectives
We present the Benchmark of Information Retrieval (IR) tasks with Complex Objectives (BIRCO). BIRCO evaluates the ability of IR systems to retrieve documents given multi-faceted user objectives. The benchmark's complexity and compact size make it suitable for evaluating large language model (LLM)-based information retrieval systems. We present a modular framework for investigating factors that may influence LLM performance on retrieval tasks, and identify a simple baseline model which matches or outperforms existing approaches and more complex alternatives. No approach achieves satisfactory performance on all benchmark tasks, suggesting that stronger models and new retrieval protocols are necessary to address complex user needs.
FinCPRG: A Bidirectional Generation Pipeline for Hierarchical Queries and Rich Relevance in Financial Chinese Passage Retrieval
In recent years, large language models (LLMs) have demonstrated significant potential in constructing passage retrieval datasets. However, existing methods still face limitations in expressing cross-doc query needs and controlling annotation quality. To address these issues, this paper proposes a bidirectional generation pipeline, which aims to generate 3-level hierarchical queries for both intra-doc and cross-doc scenarios and mine additional relevance labels on top of direct mapping annotation. The pipeline introduces two query generation methods: bottom-up from single-doc text and top-down from multi-doc titles. The bottom-up method uses LLMs to disassemble and generate structured queries at both sentence-level and passage-level simultaneously from intra-doc passages. The top-down approach incorporates three key financial elements--industry, topic, and time--to divide report titles into clusters and prompts LLMs to generate topic-level queries from each cluster. For relevance annotation, our pipeline not only relies on direct mapping annotation from the generation relationship but also implements an indirect positives mining method to enrich the relevant query-passage pairs. Using this pipeline, we constructed a Financial Passage Retrieval Generated dataset (FinCPRG) from almost 1.3k Chinese financial research reports, which includes hierarchical queries and rich relevance labels. Through evaluations of mined relevance labels, benchmarking and training experiments, we assessed the quality of FinCPRG and validated its effectiveness as a passage retrieval dataset for both training and benchmarking.
Leveraging Large Language Models to Democratize Access to Costly Financial Datasets for Academic Research
Unequal access to costly datasets essential for empirical research has long hindered researchers from disadvantaged institutions, limiting their ability to contribute to their fields and advance their careers. Recent breakthroughs in Large Language Models (LLMs) have the potential to democratize data access by automating data collection from unstructured sources. We develop and evaluate a novel methodology using GPT-4o-mini within a Retrieval-Augmented Generation (RAG) framework to collect data from corporate disclosures. Our approach achieves human-level accuracy in collecting CEO pay ratios from approximately 10,000 proxy statements and Critical Audit Matters (CAMs) from more than 12,000 10-K filings, with LLM processing times of 9 and 40 minutes respectively, each at a cost under $10. This stands in stark contrast to the hundreds of hours needed for manual collection or the thousands of dollars required for commercial database subscriptions. To foster a more inclusive research community by empowering researchers with limited resources to explore new avenues of inquiry, we share our methodology and the resulting datasets.
Sampling Is All You Need on Modeling Long-Term User Behaviors for CTR Prediction
Rich user behavior data has been proven to be of great value for Click-Through Rate (CTR) prediction applications, especially in industrial recommender, search, or advertising systems. However, it's non-trivial for real-world systems to make full use of long-term user behaviors due to the strict requirements of online serving time. Most previous works adopt the retrieval-based strategy, where a small number of user behaviors are retrieved first for subsequent attention. However, the retrieval-based methods are sub-optimal and would cause more or less information losses, and it's difficult to balance the effectiveness and efficiency of the retrieval algorithm. In this paper, we propose SDIM (Sampling-based Deep Interest Modeling), a simple yet effective sampling-based end-to-end approach for modeling long-term user behaviors. We sample from multiple hash functions to generate hash signatures of the candidate item and each item in the user behavior sequence, and obtain the user interest by directly gathering behavior items associated with the candidate item with the same hash signature. We show theoretically and experimentally that the proposed method performs on par with standard attention-based models on modeling long-term user behaviors, while being sizable times faster. We also introduce the deployment of SDIM in our system. Specifically, we decouple the behavior sequence hashing, which is the most time-consuming part, from the CTR model by designing a separate module named BSE (behavior Sequence Encoding). BSE is latency-free for the CTR server, enabling us to model extremely long user behaviors. Both offline and online experiments are conducted to demonstrate the effectiveness of SDIM. SDIM now has been deployed online in the search system of Meituan APP.
Mamba Retriever: Utilizing Mamba for Effective and Efficient Dense Retrieval
In the information retrieval (IR) area, dense retrieval (DR) models use deep learning techniques to encode queries and passages into embedding space to compute their semantic relations. It is important for DR models to balance both efficiency and effectiveness. Pre-trained language models (PLMs), especially Transformer-based PLMs, have been proven to be effective encoders of DR models. However, the self-attention component in Transformer-based PLM results in a computational complexity that grows quadratically with sequence length, and thus exhibits a slow inference speed for long-text retrieval. Some recently proposed non-Transformer PLMs, especially the Mamba architecture PLMs, have demonstrated not only comparable effectiveness to Transformer-based PLMs on generative language tasks but also better efficiency due to linear time scaling in sequence length. This paper implements the Mamba Retriever to explore whether Mamba can serve as an effective and efficient encoder of DR model for IR tasks. We fine-tune the Mamba Retriever on the classic short-text MS MARCO passage ranking dataset and the long-text LoCoV0 dataset. Experimental results show that (1) on the MS MARCO passage ranking dataset and BEIR, the Mamba Retriever achieves comparable or better effectiveness compared to Transformer-based retrieval models, and the effectiveness grows with the size of the Mamba model; (2) on the long-text LoCoV0 dataset, the Mamba Retriever can extend to longer text length than its pre-trained length after fine-tuning on retrieval task, and it has comparable or better effectiveness compared to other long-text retrieval models; (3) the Mamba Retriever has superior inference speed for long-text retrieval. In conclusion, Mamba Retriever is both effective and efficient, making it a practical model, especially for long-text retrieval.
The Tiny Time-series Transformer: Low-latency High-throughput Classification of Astronomical Transients using Deep Model Compression
A new golden age in astronomy is upon us, dominated by data. Large astronomical surveys are broadcasting unprecedented rates of information, demanding machine learning as a critical component in modern scientific pipelines to handle the deluge of data. The upcoming Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will raise the big-data bar for time-domain astronomy, with an expected 10 million alerts per-night, and generating many petabytes of data over the lifetime of the survey. Fast and efficient classification algorithms that can operate in real-time, yet robustly and accurately, are needed for time-critical events where additional resources can be sought for follow-up analyses. In order to handle such data, state-of-the-art deep learning architectures coupled with tools that leverage modern hardware accelerators are essential. We showcase how the use of modern deep compression methods can achieve a 18times reduction in model size, whilst preserving classification performance. We also show that in addition to the deep compression techniques, careful choice of file formats can improve inference latency, and thereby throughput of alerts, on the order of 8times for local processing, and 5times in a live production setting. To test this in a live setting, we deploy this optimised version of the original time-series transformer, t2, into the community alert broking system of FINK on real Zwicky Transient Facility (ZTF) alert data, and compare throughput performance with other science modules that exist in FINK. The results shown herein emphasise the time-series transformer's suitability for real-time classification at LSST scale, and beyond, and introduce deep model compression as a fundamental tool for improving deploy-ability and scalable inference of deep learning models for transient classification.
Non-Parametric Memory Guidance for Multi-Document Summarization
Multi-document summarization (MDS) is a difficult task in Natural Language Processing, aiming to summarize information from several documents. However, the source documents are often insufficient to obtain a qualitative summary. We propose a retriever-guided model combined with non-parametric memory for summary generation. This model retrieves relevant candidates from a database and then generates the summary considering the candidates with a copy mechanism and the source documents. The retriever is implemented with Approximate Nearest Neighbor Search (ANN) to search large databases. Our method is evaluated on the MultiXScience dataset which includes scientific articles. Finally, we discuss our results and possible directions for future work.
MODE: Mixture of Document Experts for RAG
Retrieval-Augmented Generation (RAG) often relies on large vector databases and cross-encoders tuned for large-scale corpora, which can be excessive for small, domain-specific collections. We present MODE (Mixture of Document Experts), a lightweight alternative that replaces fine-grained nearest-neighbor search with cluster-and-route retrieval. Documents are embedded, grouped into semantically coherent clusters, and represented by cached centroids. At query time, we route to the top centroid(s) and retrieve context only within those clusters, eliminating external vector-database infrastructure and reranking while keeping latency low. On HotpotQA and SQuAD corpora with 100-500 chunks, MODE matches or exceeds a dense-retrieval baseline in answer quality while reducing end-to-end retrieval time. Ablations show that cluster granularity and multi-cluster routing control the recall/precision trade-off, and that tighter clusters improve downstream accuracy. MODE offers a practical recipe for small and medium corpora where simplicity, speed, and topical focus matter.
Learning Interpretable Legal Case Retrieval via Knowledge-Guided Case Reformulation
Legal case retrieval for sourcing similar cases is critical in upholding judicial fairness. Different from general web search, legal case retrieval involves processing lengthy, complex, and highly specialized legal documents. Existing methods in this domain often overlook the incorporation of legal expert knowledge, which is crucial for accurately understanding and modeling legal cases, leading to unsatisfactory retrieval performance. This paper introduces KELLER, a legal knowledge-guided case reformulation approach based on large language models (LLMs) for effective and interpretable legal case retrieval. By incorporating professional legal knowledge about crimes and law articles, we enable large language models to accurately reformulate the original legal case into concise sub-facts of crimes, which contain the essential information of the case. Extensive experiments on two legal case retrieval benchmarks demonstrate superior retrieval performance and robustness on complex legal case queries of KELLER over existing methods.
CoRECT: A Framework for Evaluating Embedding Compression Techniques at Scale
Dense retrieval systems have proven to be effective across various benchmarks, but require substantial memory to store large search indices. Recent advances in embedding compression show that index sizes can be greatly reduced with minimal loss in ranking quality. However, existing studies often overlook the role of corpus complexity -- a critical factor, as recent work shows that both corpus size and document length strongly affect dense retrieval performance. In this paper, we introduce CoRECT (Controlled Retrieval Evaluation of Compression Techniques), a framework for large-scale evaluation of embedding compression methods, supported by a newly curated dataset collection. To demonstrate its utility, we benchmark eight representative types of compression methods. Notably, we show that non-learned compression achieves substantial index size reduction, even on up to 100M passages, with statistically insignificant performance loss. However, selecting the optimal compression method remains challenging, as performance varies across models. Such variability highlights the necessity of CoRECT to enable consistent comparison and informed selection of compression methods. All code, data, and results are available on GitHub and HuggingFace.
SAILER: Structure-aware Pre-trained Language Model for Legal Case Retrieval
Legal case retrieval, which aims to find relevant cases for a query case, plays a core role in the intelligent legal system. Despite the success that pre-training has achieved in ad-hoc retrieval tasks, effective pre-training strategies for legal case retrieval remain to be explored. Compared with general documents, legal case documents are typically long text sequences with intrinsic logical structures. However, most existing language models have difficulty understanding the long-distance dependencies between different structures. Moreover, in contrast to the general retrieval, the relevance in the legal domain is sensitive to key legal elements. Even subtle differences in key legal elements can significantly affect the judgement of relevance. However, existing pre-trained language models designed for general purposes have not been equipped to handle legal elements. To address these issues, in this paper, we propose SAILER, a new Structure-Aware pre-traIned language model for LEgal case Retrieval. It is highlighted in the following three aspects: (1) SAILER fully utilizes the structural information contained in legal case documents and pays more attention to key legal elements, similar to how legal experts browse legal case documents. (2) SAILER employs an asymmetric encoder-decoder architecture to integrate several different pre-training objectives. In this way, rich semantic information across tasks is encoded into dense vectors. (3) SAILER has powerful discriminative ability, even without any legal annotation data. It can distinguish legal cases with different charges accurately. Extensive experiments over publicly available legal benchmarks demonstrate that our approach can significantly outperform previous state-of-the-art methods in legal case retrieval.
Towards Practical Visual Search Engine within Elasticsearch
In this paper, we describe our end-to-end content-based image retrieval system built upon Elasticsearch, a well-known and popular textual search engine. As far as we know, this is the first time such a system has been implemented in eCommerce, and our efforts have turned out to be highly worthwhile. We end up with a novel and exciting visual search solution that is extremely easy to be deployed, distributed, scaled and monitored in a cost-friendly manner. Moreover, our platform is intrinsically flexible in supporting multimodal searches, where visual and textual information can be jointly leveraged in retrieval. The core idea is to encode image feature vectors into a collection of string tokens in a way such that closer vectors will share more string tokens in common. By doing that, we can utilize Elasticsearch to efficiently retrieve similar images based on similarities within encoded sting tokens. As part of the development, we propose a novel vector to string encoding method, which is shown to substantially outperform the previous ones in terms of both precision and latency. First-hand experiences in implementing this Elasticsearch-based platform are extensively addressed, which should be valuable to practitioners also interested in building visual search engine on top of Elasticsearch.
From Theory to Practice: Plug and Play with Succinct Data Structures
Engineering efficient implementations of compact and succinct structures is a time-consuming and challenging task, since there is no standard library of easy-to- use, highly optimized, and composable components. One consequence is that measuring the practical impact of new theoretical proposals is a difficult task, since older base- line implementations may not rely on the same basic components, and reimplementing from scratch can be very time-consuming. In this paper we present a framework for experimentation with succinct data structures, providing a large set of configurable components, together with tests, benchmarks, and tools to analyze resource requirements. We demonstrate the functionality of the framework by recomposing succinct solutions for document retrieval.
Time-IMM: A Dataset and Benchmark for Irregular Multimodal Multivariate Time Series
Time series data in real-world applications such as healthcare, climate modeling, and finance are often irregular, multimodal, and messy, with varying sampling rates, asynchronous modalities, and pervasive missingness. However, existing benchmarks typically assume clean, regularly sampled, unimodal data, creating a significant gap between research and real-world deployment. We introduce Time-IMM, a dataset specifically designed to capture cause-driven irregularity in multimodal multivariate time series. Time-IMM represents nine distinct types of time series irregularity, categorized into trigger-based, constraint-based, and artifact-based mechanisms. Complementing the dataset, we introduce IMM-TSF, a benchmark library for forecasting on irregular multimodal time series, enabling asynchronous integration and realistic evaluation. IMM-TSF includes specialized fusion modules, including a timestamp-to-text fusion module and a multimodality fusion module, which support both recency-aware averaging and attention-based integration strategies. Empirical results demonstrate that explicitly modeling multimodality on irregular time series data leads to substantial gains in forecasting performance. Time-IMM and IMM-TSF provide a foundation for advancing time series analysis under real-world conditions. The dataset is publicly available at https://github.com/blacksnail789521/Time-IMM, and the benchmark library can be accessed at https://github.com/blacksnail789521/IMM-TSF. Project page: https://blacksnail789521.github.io/time-imm-project-page/
Binary Embedding-based Retrieval at Tencent
Large-scale embedding-based retrieval (EBR) is the cornerstone of search-related industrial applications. Given a user query, the system of EBR aims to identify relevant information from a large corpus of documents that may be tens or hundreds of billions in size. The storage and computation turn out to be expensive and inefficient with massive documents and high concurrent queries, making it difficult to further scale up. To tackle the challenge, we propose a binary embedding-based retrieval (BEBR) engine equipped with a recurrent binarization algorithm that enables customized bits per dimension. Specifically, we compress the full-precision query and document embeddings, formulated as float vectors in general, into a composition of multiple binary vectors using a lightweight transformation model with residual multilayer perception (MLP) blocks. We can therefore tailor the number of bits for different applications to trade off accuracy loss and cost savings. Importantly, we enable task-agnostic efficient training of the binarization model using a new embedding-to-embedding strategy. We also exploit the compatible training of binary embeddings so that the BEBR engine can support indexing among multiple embedding versions within a unified system. To further realize efficient search, we propose Symmetric Distance Calculation (SDC) to achieve lower response time than Hamming codes. We successfully employed the introduced BEBR to Tencent products, including Sogou, Tencent Video, QQ World, etc. The binarization algorithm can be seamlessly generalized to various tasks with multiple modalities. Extensive experiments on offline benchmarks and online A/B tests demonstrate the efficiency and effectiveness of our method, significantly saving 30%~50% index costs with almost no loss of accuracy at the system level.
Transformer Memory as a Differentiable Search Index
In this paper, we demonstrate that information retrieval can be accomplished with a single Transformer, in which all information about the corpus is encoded in the parameters of the model. To this end, we introduce the Differentiable Search Index (DSI), a new paradigm that learns a text-to-text model that maps string queries directly to relevant docids; in other words, a DSI model answers queries directly using only its parameters, dramatically simplifying the whole retrieval process. We study variations in how documents and their identifiers are represented, variations in training procedures, and the interplay between models and corpus sizes. Experiments demonstrate that given appropriate design choices, DSI significantly outperforms strong baselines such as dual encoder models. Moreover, DSI demonstrates strong generalization capabilities, outperforming a BM25 baseline in a zero-shot setup.
CHESS: Contextual Harnessing for Efficient SQL Synthesis
Utilizing large language models (LLMs) for transforming natural language questions into SQL queries (text-to-SQL) is a promising yet challenging approach, particularly when applied to real-world databases with complex and extensive schemas. In particular, effectively incorporating data catalogs and database values for SQL generation remains an obstacle, leading to suboptimal solutions. We address this problem by proposing a new pipeline that effectively retrieves relevant data and context, selects an efficient schema, and synthesizes correct and efficient SQL queries. To increase retrieval precision, our pipeline introduces a hierarchical retrieval method leveraging model-generated keywords, locality-sensitive hashing indexing, and vector databases. Additionally, we have developed an adaptive schema pruning technique that adjusts based on the complexity of the problem and the model's context size. Our approach generalizes to both frontier proprietary models like GPT-4 and open-source models such as Llama-3-70B. Through a series of ablation studies, we demonstrate the effectiveness of each component of our pipeline and its impact on the end-to-end performance. Our method achieves new state-of-the-art performance on the cross-domain challenging BIRD dataset.
Blending Learning to Rank and Dense Representations for Efficient and Effective Cascades
We investigate the exploitation of both lexical and neural relevance signals for ad-hoc passage retrieval. Our exploration involves a large-scale training dataset in which dense neural representations of MS-MARCO queries and passages are complemented and integrated with 253 hand-crafted lexical features extracted from the same corpus. Blending of the relevance signals from the two different groups of features is learned by a classical Learning-to-Rank (LTR) model based on a forest of decision trees. To evaluate our solution, we employ a pipelined architecture where a dense neural retriever serves as the first stage and performs a nearest-neighbor search over the neural representations of the documents. Our LTR model acts instead as the second stage that re-ranks the set of candidates retrieved by the first stage to enhance effectiveness. The results of reproducible experiments conducted with state-of-the-art dense retrievers on publicly available resources show that the proposed solution significantly enhances the end-to-end ranking performance while relatively minimally impacting efficiency. Specifically, we achieve a boost in nDCG@10 of up to 11% with an increase in average query latency of only 4.3%. This confirms the advantage of seamlessly combining two distinct families of signals that mutually contribute to retrieval effectiveness.
Curator: Efficient Indexing for Multi-Tenant Vector Databases
Vector databases have emerged as key enablers for bridging intelligent applications with unstructured data, providing generic search and management support for embedding vectors extracted from the raw unstructured data. As multiple data users can share the same database infrastructure, multi-tenancy support for vector databases is increasingly desirable. This hinges on an efficient filtered search operation, i.e., only querying the vectors accessible to a particular tenant. Multi-tenancy in vector databases is currently achieved by building either a single, shared index among all tenants, or a per-tenant index. The former optimizes for memory efficiency at the expense of search performance, while the latter does the opposite. Instead, this paper presents Curator, an in-memory vector index design tailored for multi-tenant queries that simultaneously achieves the two conflicting goals, low memory overhead and high performance for queries, vector insertion, and deletion. Curator indexes each tenant's vectors with a tenant-specific clustering tree and encodes these trees compactly as sub-trees of a shared clustering tree. Each tenant's clustering tree adapts dynamically to its unique vector distribution, while maintaining a low per-tenant memory footprint. Our evaluation, based on two widely used data sets, confirms that Curator delivers search performance on par with per-tenant indexing, while maintaining memory consumption at the same level as metadata filtering on a single, shared index.
From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective
Neural retrievers based on dense representations combined with Approximate Nearest Neighbors search have recently received a lot of attention, owing their success to distillation and/or better sampling of examples for training -- while still relying on the same backbone architecture. In the meantime, sparse representation learning fueled by traditional inverted indexing techniques has seen a growing interest, inheriting from desirable IR priors such as explicit lexical matching. While some architectural variants have been proposed, a lesser effort has been put in the training of such models. In this work, we build on SPLADE -- a sparse expansion-based retriever -- and show to which extent it is able to benefit from the same training improvements as dense models, by studying the effect of distillation, hard-negative mining as well as the Pre-trained Language Model initialization. We furthermore study the link between effectiveness and efficiency, on in-domain and zero-shot settings, leading to state-of-the-art results in both scenarios for sufficiently expressive models.
Mr. TyDi: A Multi-lingual Benchmark for Dense Retrieval
We present Mr. TyDi, a multi-lingual benchmark dataset for mono-lingual retrieval in eleven typologically diverse languages, designed to evaluate ranking with learned dense representations. The goal of this resource is to spur research in dense retrieval techniques in non-English languages, motivated by recent observations that existing techniques for representation learning perform poorly when applied to out-of-distribution data. As a starting point, we provide zero-shot baselines for this new dataset based on a multi-lingual adaptation of DPR that we call "mDPR". Experiments show that although the effectiveness of mDPR is much lower than BM25, dense representations nevertheless appear to provide valuable relevance signals, improving BM25 results in sparse-dense hybrids. In addition to analyses of our results, we also discuss future challenges and present a research agenda in multi-lingual dense retrieval. Mr. TyDi can be downloaded at https://github.com/castorini/mr.tydi.
INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning
Large language models (LLMs) have demonstrated impressive capabilities in various natural language processing tasks. Despite this, their application to information retrieval (IR) tasks is still challenging due to the infrequent occurrence of many IR-specific concepts in natural language. While prompt-based methods can provide task descriptions to LLMs, they often fall short in facilitating comprehensive understanding and execution of IR tasks, thereby limiting LLMs' applicability. To address this gap, in this work, we explore the potential of instruction tuning to enhance LLMs' proficiency in IR tasks. We introduce a novel instruction tuning dataset, INTERS, encompassing 21 tasks across three fundamental IR categories: query understanding, document understanding, and query-document relationship understanding. The data are derived from 43 distinct datasets with manually written templates. Our empirical results reveal that INTERS significantly boosts the performance of various publicly available LLMs, such as LLaMA, Mistral, and Phi, in search-related tasks. Furthermore, we conduct a comprehensive analysis to ascertain the effects of base model selection, instruction design, volume of instructions, and task variety on performance. We make our dataset and the models fine-tuned on it publicly accessible at https://github.com/DaoD/INTERS.
Retrieval-augmented Large Language Models for Financial Time Series Forecasting
Stock movement prediction, a fundamental task in financial time-series forecasting, requires identifying and retrieving critical influencing factors from vast amounts of time-series data. However, existing text-trained or numeric similarity-based retrieval methods fall short in handling complex financial analysis. To address this, we propose the first retrieval-augmented generation (RAG) framework for financial time-series forecasting, featuring three key innovations: a fine-tuned 1B parameter large language model (StockLLM) as the backbone, a novel candidate selection method leveraging LLM feedback, and a training objective that maximizes similarity between queries and historically significant sequences. This enables our retriever, FinSeer, to uncover meaningful patterns while minimizing noise in complex financial data. We also construct new datasets integrating financial indicators and historical stock prices to train FinSeer and ensure robust evaluation. Experimental results demonstrate that our RAG framework outperforms bare StockLLM and random retrieval, highlighting its effectiveness, while FinSeer surpasses existing retrieval methods, achieving an 8\% higher accuracy on BIGDATA22 and retrieving more impactful sequences. This work underscores the importance of tailored retrieval models in financial forecasting and provides a novel framework for future research.
The Faiss library
Vector databases manage large collections of embedding vectors. As AI applications are growing rapidly, so are the number of embeddings that need to be stored and indexed. The Faiss library is dedicated to vector similarity search, a core functionality of vector databases. Faiss is a toolkit of indexing methods and related primitives used to search, cluster, compress and transform vectors. This paper first describes the tradeoff space of vector search, then the design principles of Faiss in terms of structure, approach to optimization and interfacing. We benchmark key features of the library and discuss a few selected applications to highlight its broad applicability.
A Deep Look into Neural Ranking Models for Information Retrieval
Ranking models lie at the heart of research on information retrieval (IR). During the past decades, different techniques have been proposed for constructing ranking models, from traditional heuristic methods, probabilistic methods, to modern machine learning methods. Recently, with the advance of deep learning technology, we have witnessed a growing body of work in applying shallow or deep neural networks to the ranking problem in IR, referred to as neural ranking models in this paper. The power of neural ranking models lies in the ability to learn from the raw text inputs for the ranking problem to avoid many limitations of hand-crafted features. Neural networks have sufficient capacity to model complicated tasks, which is needed to handle the complexity of relevance estimation in ranking. Since there have been a large variety of neural ranking models proposed, we believe it is the right time to summarize the current status, learn from existing methodologies, and gain some insights for future development. In contrast to existing reviews, in this survey, we will take a deep look into the neural ranking models from different dimensions to analyze their underlying assumptions, major design principles, and learning strategies. We compare these models through benchmark tasks to obtain a comprehensive empirical understanding of the existing techniques. We will also discuss what is missing in the current literature and what are the promising and desired future directions.
Hypencoder: Hypernetworks for Information Retrieval
The vast majority of retrieval models depend on vector inner products to produce a relevance score between a query and a document. This naturally limits the expressiveness of the relevance score that can be employed. We propose a new paradigm, instead of producing a vector to represent the query we produce a small neural network which acts as a learned relevance function. This small neural network takes in a representation of the document, in this paper we use a single vector, and produces a scalar relevance score. To produce the little neural network we use a hypernetwork, a network that produce the weights of other networks, as our query encoder or as we call it a Hypencoder. Experiments on in-domain search tasks show that Hypencoder is able to significantly outperform strong dense retrieval models and has higher metrics then reranking models and models an order of magnitude larger. Hypencoder is also shown to generalize well to out-of-domain search tasks. To assess the extent of Hypencoder's capabilities, we evaluate on a set of hard retrieval tasks including tip-of-the-tongue retrieval and instruction-following retrieval tasks and find that the performance gap widens substantially compared to standard retrieval tasks. Furthermore, to demonstrate the practicality of our method we implement an approximate search algorithm and show that our model is able to search 8.8M documents in under 60ms.
Ragnarök: A Reusable RAG Framework and Baselines for TREC 2024 Retrieval-Augmented Generation Track
Did you try out the new Bing Search? Or maybe you fiddled around with Google AI~Overviews? These might sound familiar because the modern-day search stack has recently evolved to include retrieval-augmented generation (RAG) systems. They allow searching and incorporating real-time data into large language models (LLMs) to provide a well-informed, attributed, concise summary in contrast to the traditional search paradigm that relies on displaying a ranked list of documents. Therefore, given these recent advancements, it is crucial to have an arena to build, test, visualize, and systematically evaluate RAG-based search systems. With this in mind, we propose the TREC 2024 RAG Track to foster innovation in evaluating RAG systems. In our work, we lay out the steps we've made towards making this track a reality -- we describe the details of our reusable framework, Ragnar\"ok, explain the curation of the new MS MARCO V2.1 collection choice, release the development topics for the track, and standardize the I/O definitions which assist the end user. Next, using Ragnar\"ok, we identify and provide key industrial baselines such as OpenAI's GPT-4o or Cohere's Command R+. Further, we introduce a web-based user interface for an interactive arena allowing benchmarking pairwise RAG systems by crowdsourcing. We open-source our Ragnar\"ok framework and baselines to achieve a unified standard for future RAG systems.
Advancing Vietnamese Information Retrieval with Learning Objective and Benchmark
With the rapid development of natural language processing, many language models have been invented for multiple tasks. One important task is information retrieval (IR), which requires models to retrieve relevant documents. Despite its importance in many real-life applications, especially in retrieval augmented generation (RAG) systems, this task lacks Vietnamese benchmarks. This situation causes difficulty in assessing and comparing many existing Vietnamese embedding language models on the task and slows down the advancement of Vietnamese natural language processing (NLP) research. In this work, we aim to provide the Vietnamese research community with a new benchmark for information retrieval, which mainly focuses on retrieval and reranking tasks. Furthermore, we also present a new objective function based on the InfoNCE loss function, which is used to train our Vietnamese embedding model. Our function aims to be better than the origin in information retrieval tasks. Finally, we analyze the effect of temperature, a hyper-parameter in both objective functions, on the performance of text embedding models.
RIGHT: Retrieval-augmented Generation for Mainstream Hashtag Recommendation
Automatic mainstream hashtag recommendation aims to accurately provide users with concise and popular topical hashtags before publication. Generally, mainstream hashtag recommendation faces challenges in the comprehensive difficulty of newly posted tweets in response to new topics, and the accurate identification of mainstream hashtags beyond semantic correctness. However, previous retrieval-based methods based on a fixed predefined mainstream hashtag list excel in producing mainstream hashtags, but fail to understand the constant flow of up-to-date information. Conversely, generation-based methods demonstrate a superior ability to comprehend newly posted tweets, but their capacity is constrained to identifying mainstream hashtags without additional features. Inspired by the recent success of the retrieval-augmented technique, in this work, we attempt to adopt this framework to combine the advantages of both approaches. Meantime, with the help of the generator component, we could rethink how to further improve the quality of the retriever component at a low cost. Therefore, we propose RetrIeval-augmented Generative Mainstream HashTag Recommender (RIGHT), which consists of three components: 1) a retriever seeks relevant hashtags from the entire tweet-hashtags set; 2) a selector enhances mainstream identification by introducing global signals; and 3) a generator incorporates input tweets and selected hashtags to directly generate the desired hashtags. The experimental results show that our method achieves significant improvements over state-of-the-art baselines. Moreover, RIGHT can be easily integrated into large language models, improving the performance of ChatGPT by more than 10%.
Scito2M: A 2 Million, 30-Year Cross-disciplinary Dataset for Temporal Scientometric Analysis
Understanding the creation, evolution, and dissemination of scientific knowledge is crucial for bridging diverse subject areas and addressing complex global challenges such as pandemics, climate change, and ethical AI. Scientometrics, the quantitative and qualitative study of scientific literature, provides valuable insights into these processes. We introduce Scito2M, a longitudinal scientometric dataset with over two million academic publications, providing comprehensive contents information and citation graphs to support cross-disciplinary analyses. Using Scito2M, we conduct a temporal study spanning over 30 years to explore key questions in scientometrics: the evolution of academic terminology, citation patterns, and interdisciplinary knowledge exchange. Our findings reveal critical insights, such as disparities in epistemic cultures, knowledge production modes, and citation practices. For example, rapidly developing, application-driven fields like LLMs exhibit significantly shorter citation age (2.48 years) compared to traditional theoretical disciplines like oral history (9.71 years).
LLM-Driven Usefulness Labeling for IR Evaluation
In the information retrieval (IR) domain, evaluation plays a crucial role in optimizing search experiences and supporting diverse user intents. In the recent LLM era, research has been conducted to automate document relevance labels, as these labels have traditionally been assigned by crowd-sourced workers - a process that is both time and consuming and costly. This study focuses on LLM-generated usefulness labels, a crucial evaluation metric that considers the user's search intents and task objectives, an aspect where relevance falls short. Our experiment utilizes task-level, query-level, and document-level features along with user search behavior signals, which are essential in defining the usefulness of a document. Our research finds that (i) pre-trained LLMs can generate moderate usefulness labels by understanding the comprehensive search task session, (ii) pre-trained LLMs perform better judgement in short search sessions when provided with search session contexts. Additionally, we investigated whether LLMs can capture the unique divergence between relevance and usefulness, along with conducting an ablation study to identify the most critical metrics for accurate usefulness label generation. In conclusion, this work explores LLM-generated usefulness labels by evaluating critical metrics and optimizing for practicality in real-world settings.
CoRT: Complementary Rankings from Transformers
Many recent approaches towards neural information retrieval mitigate their computational costs by using a multi-stage ranking pipeline. In the first stage, a number of potentially relevant candidates are retrieved using an efficient retrieval model such as BM25. Although BM25 has proven decent performance as a first-stage ranker, it tends to miss relevant passages. In this context we propose CoRT, a simple neural first-stage ranking model that leverages contextual representations from pretrained language models such as BERT to complement term-based ranking functions while causing no significant delay at query time. Using the MS MARCO dataset, we show that CoRT significantly increases the candidate recall by complementing BM25 with missing candidates. Consequently, we find subsequent re-rankers achieve superior results with less candidates. We further demonstrate that passage retrieval using CoRT can be realized with surprisingly low latencies.
M-Longdoc: A Benchmark For Multimodal Super-Long Document Understanding And A Retrieval-Aware Tuning Framework
The ability to understand and answer questions over documents can be useful in many business and practical applications. However, documents often contain lengthy and diverse multimodal contents such as texts, figures, and tables, which are very time-consuming for humans to read thoroughly. Hence, there is an urgent need to develop effective and automated methods to aid humans in this task. In this work, we introduce M-LongDoc, a benchmark of 851 samples, and an automated framework to evaluate the performance of large multimodal models. We further propose a retrieval-aware tuning approach for efficient and effective multimodal document reading. Compared to existing works, our benchmark consists of more recent and lengthy documents with hundreds of pages, while also requiring open-ended solutions and not just extractive answers. To our knowledge, our training framework is the first to directly address the retrieval setting for multimodal long documents. To enable tuning open-source models, we construct a training corpus in a fully automatic manner for the question-answering task over such documents. Experiments show that our tuning approach achieves a relative improvement of 4.6% for the correctness of model responses, compared to the baseline open-source models. Our data, code, and models are available at https://multimodal-documents.github.io.
MessIRve: A Large-Scale Spanish Information Retrieval Dataset
Information retrieval (IR) is the task of finding relevant documents in response to a user query. Although Spanish is the second most spoken native language, current IR benchmarks lack Spanish data, hindering the development of information access tools for Spanish speakers. We introduce MessIRve, a large-scale Spanish IR dataset with around 730 thousand queries from Google's autocomplete API and relevant documents sourced from Wikipedia. MessIRve's queries reflect diverse Spanish-speaking regions, unlike other datasets that are translated from English or do not consider dialectal variations. The large size of the dataset allows it to cover a wide variety of topics, unlike smaller datasets. We provide a comprehensive description of the dataset, comparisons with existing datasets, and baseline evaluations of prominent IR models. Our contributions aim to advance Spanish IR research and improve information access for Spanish speakers.
LitLLMs, LLMs for Literature Review: Are we there yet?
Literature reviews are an essential component of scientific research, but they remain time-intensive and challenging to write, especially due to the recent influx of research papers. This paper explores the zero-shot abilities of recent Large Language Models (LLMs) in assisting with the writing of literature reviews based on an abstract. We decompose the task into two components: 1. Retrieving related works given a query abstract, and 2. Writing a literature review based on the retrieved results. We analyze how effective LLMs are for both components. For retrieval, we introduce a novel two-step search strategy that first uses an LLM to extract meaningful keywords from the abstract of a paper and then retrieves potentially relevant papers by querying an external knowledge base. Additionally, we study a prompting-based re-ranking mechanism with attribution and show that re-ranking doubles the normalized recall compared to naive search methods, while providing insights into the LLM's decision-making process. In the generation phase, we propose a two-step approach that first outlines a plan for the review and then executes steps in the plan to generate the actual review. To evaluate different LLM-based literature review methods, we create test sets from arXiv papers using a protocol designed for rolling use with newly released LLMs to avoid test set contamination in zero-shot evaluations. We release this evaluation protocol to promote additional research and development in this regard. Our empirical results suggest that LLMs show promising potential for writing literature reviews when the task is decomposed into smaller components of retrieval and planning. Our project page including a demonstration system and toolkit can be accessed here: https://litllm.github.io.
Relevance Filtering for Embedding-based Retrieval
In embedding-based retrieval, Approximate Nearest Neighbor (ANN) search enables efficient retrieval of similar items from large-scale datasets. While maximizing recall of relevant items is usually the goal of retrieval systems, a low precision may lead to a poor search experience. Unlike lexical retrieval, which inherently limits the size of the retrieved set through keyword matching, dense retrieval via ANN search has no natural cutoff. Moreover, the cosine similarity scores of embedding vectors are often optimized via contrastive or ranking losses, which make them difficult to interpret. Consequently, relying on top-K or cosine-similarity cutoff is often insufficient to filter out irrelevant results effectively. This issue is prominent in product search, where the number of relevant products is often small. This paper introduces a novel relevance filtering component (called "Cosine Adapter") for embedding-based retrieval to address this challenge. Our approach maps raw cosine similarity scores to interpretable scores using a query-dependent mapping function. We then apply a global threshold on the mapped scores to filter out irrelevant results. We are able to significantly increase the precision of the retrieved set, at the expense of a small loss of recall. The effectiveness of our approach is demonstrated through experiments on both public MS MARCO dataset and internal Walmart product search data. Furthermore, online A/B testing on the Walmart site validates the practical value of our approach in real-world e-commerce settings.
DRAGIN: Dynamic Retrieval Augmented Generation based on the Information Needs of Large Language Models
Dynamic retrieval augmented generation (RAG) paradigm actively decides when and what to retrieve during the text generation process of Large Language Models (LLMs). There are two key elements of this paradigm: identifying the optimal moment to activate the retrieval module (deciding when to retrieve) and crafting the appropriate query once retrieval is triggered (determining what to retrieve). However, current dynamic RAG methods fall short in both aspects. Firstly, the strategies for deciding when to retrieve often rely on static rules. Moreover, the strategies for deciding what to retrieve typically limit themselves to the LLM's most recent sentence or the last few tokens, while the LLM's real-time information needs may span across the entire context. To overcome these limitations, we introduce a new framework, DRAGIN, i.e., Dynamic Retrieval Augmented Generation based on the real-time Information Needs of LLMs. Our framework is specifically designed to make decisions on when and what to retrieve based on the LLM's real-time information needs during the text generation process. We evaluate DRAGIN along with existing methods comprehensively over 4 knowledge-intensive generation datasets. Experimental results show that DRAGIN achieves superior performance on all tasks, demonstrating the effectiveness of our method. We have open-sourced all the code, data, and models in GitHub: https://github.com/oneal2000/DRAGIN/tree/main
Speculative Ad-hoc Querying
Analyzing large datasets requires responsive query execution, but executing SQL queries on massive datasets can be slow. This paper explores whether query execution can begin even before the user has finished typing, allowing results to appear almost instantly. We propose SpeQL, a system that leverages Large Language Models (LLMs) to predict likely queries based on the database schema, the user's past queries, and their incomplete query. Since exact query prediction is infeasible, SpeQL speculates on partial queries in two ways: 1) it predicts the query structure to compile and plan queries in advance, and 2) it precomputes smaller temporary tables that are much smaller than the original database, but are still predicted to contain all information necessary to answer the user's final query. Additionally, SpeQL continuously displays results for speculated queries and subqueries in real time, aiding exploratory analysis. A utility/user study showed that SpeQL improved task completion time, and participants reported that its speculative display of results helped them discover patterns in the data more quickly. In the study, SpeQL improves user's query latency by up to 289times and kept the overhead reasonable, at 4$ per hour.
IDEL: In-Database Entity Linking with Neural Embeddings
We present a novel architecture, In-Database Entity Linking (IDEL), in which we integrate the analytics-optimized RDBMS MonetDB with neural text mining abilities. Our system design abstracts core tasks of most neural entity linking systems for MonetDB. To the best of our knowledge, this is the first defacto implemented system integrating entity-linking in a database. We leverage the ability of MonetDB to support in-database-analytics with user defined functions (UDFs) implemented in Python. These functions call machine learning libraries for neural text mining, such as TensorFlow. The system achieves zero cost for data shipping and transformation by utilizing MonetDB's ability to embed Python processes in the database kernel and exchange data in NumPy arrays. IDEL represents text and relational data in a joint vector space with neural embeddings and can compensate errors with ambiguous entity representations. For detecting matching entities, we propose a novel similarity function based on joint neural embeddings which are learned via minimizing pairwise contrastive ranking loss. This function utilizes a high dimensional index structures for fast retrieval of matching entities. Our first implementation and experiments using the WebNLG corpus show the effectiveness and the potentials of IDEL.
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking
In neural Information Retrieval, ongoing research is directed towards improving the first retriever in ranking pipelines. Learning dense embeddings to conduct retrieval using efficient approximate nearest neighbors methods has proven to work well. Meanwhile, there has been a growing interest in learning sparse representations for documents and queries, that could inherit from the desirable properties of bag-of-words models such as the exact matching of terms and the efficiency of inverted indexes. In this work, we present a new first-stage ranker based on explicit sparsity regularization and a log-saturation effect on term weights, leading to highly sparse representations and competitive results with respect to state-of-the-art dense and sparse methods. Our approach is simple, trained end-to-end in a single stage. We also explore the trade-off between effectiveness and efficiency, by controlling the contribution of the sparsity regularization.
20min-XD: A Comparable Corpus of Swiss News Articles
We present 20min-XD (20 Minuten cross-lingual document-level), a French-German, document-level comparable corpus of news articles, sourced from the Swiss online news outlet 20 Minuten/20 minutes. Our dataset comprises around 15,000 article pairs spanning 2015 to 2024, automatically aligned based on semantic similarity. We detail the data collection process and alignment methodology. Furthermore, we provide a qualitative and quantitative analysis of the corpus. The resulting dataset exhibits a broad spectrum of cross-lingual similarity, ranging from near-translations to loosely related articles, making it valuable for various NLP applications and broad linguistically motivated studies. We publicly release the dataset in document- and sentence-aligned versions and code for the described experiments.
AutoCast++: Enhancing World Event Prediction with Zero-shot Ranking-based Context Retrieval
Machine-based prediction of real-world events is garnering attention due to its potential for informed decision-making. Whereas traditional forecasting predominantly hinges on structured data like time-series, recent breakthroughs in language models enable predictions using unstructured text. In particular, (Zou et al., 2022) unveils AutoCast, a new benchmark that employs news articles for answering forecasting queries. Nevertheless, existing methods still trail behind human performance. The cornerstone of accurate forecasting, we argue, lies in identifying a concise, yet rich subset of news snippets from a vast corpus. With this motivation, we introduce AutoCast++, a zero-shot ranking-based context retrieval system, tailored to sift through expansive news document collections for event forecasting. Our approach first re-ranks articles based on zero-shot question-passage relevance, honing in on semantically pertinent news. Following this, the chosen articles are subjected to zero-shot summarization to attain succinct context. Leveraging a pre-trained language model, we conduct both the relevance evaluation and article summarization without needing domain-specific training. Notably, recent articles can sometimes be at odds with preceding ones due to new facts or unanticipated incidents, leading to fluctuating temporal dynamics. To tackle this, our re-ranking mechanism gives preference to more recent articles, and we further regularize the multi-passage representation learning to align with human forecaster responses made on different dates. Empirical results underscore marked improvements across multiple metrics, improving the performance for multiple-choice questions (MCQ) by 48% and true/false (TF) questions by up to 8%.
LeCaRDv2: A Large-Scale Chinese Legal Case Retrieval Dataset
As an important component of intelligent legal systems, legal case retrieval plays a critical role in ensuring judicial justice and fairness. However, the development of legal case retrieval technologies in the Chinese legal system is restricted by three problems in existing datasets: limited data size, narrow definitions of legal relevance, and naive candidate pooling strategies used in data sampling. To alleviate these issues, we introduce LeCaRDv2, a large-scale Legal Case Retrieval Dataset (version 2). It consists of 800 queries and 55,192 candidates extracted from 4.3 million criminal case documents. To the best of our knowledge, LeCaRDv2 is one of the largest Chinese legal case retrieval datasets, providing extensive coverage of criminal charges. Additionally, we enrich the existing relevance criteria by considering three key aspects: characterization, penalty, procedure. This comprehensive criteria enriches the dataset and may provides a more holistic perspective. Furthermore, we propose a two-level candidate set pooling strategy that effectively identify potential candidates for each query case. It's important to note that all cases in the dataset have been annotated by multiple legal experts specializing in criminal law. Their expertise ensures the accuracy and reliability of the annotations. We evaluate several state-of-the-art retrieval models at LeCaRDv2, demonstrating that there is still significant room for improvement in legal case retrieval. The details of LeCaRDv2 can be found at the anonymous website https://github.com/anonymous1113243/LeCaRDv2.
HC4: A New Suite of Test Collections for Ad Hoc CLIR
HC4 is a new suite of test collections for ad hoc Cross-Language Information Retrieval (CLIR), with Common Crawl News documents in Chinese, Persian, and Russian, topics in English and in the document languages, and graded relevance judgments. New test collections are needed because existing CLIR test collections built using pooling of traditional CLIR runs have systematic gaps in their relevance judgments when used to evaluate neural CLIR methods. The HC4 collections contain 60 topics and about half a million documents for each of Chinese and Persian, and 54 topics and five million documents for Russian. Active learning was used to determine which documents to annotate after being seeded using interactive search and judgment. Documents were judged on a three-grade relevance scale. This paper describes the design and construction of the new test collections and provides baseline results for demonstrating their utility for evaluating systems.
DeepJoin: Joinable Table Discovery with Pre-trained Language Models
Due to the usefulness in data enrichment for data analysis tasks, joinable table discovery has become an important operation in data lake management. Existing approaches target equi-joins, the most common way of combining tables for creating a unified view, or semantic joins, which tolerate misspellings and different formats to deliver more join results. They are either exact solutions whose running time is linear in the sizes of query column and target table repository or approximate solutions lacking precision. In this paper, we propose Deepjoin, a deep learning model for accurate and efficient joinable table discovery. Our solution is an embedding-based retrieval, which employs a pre-trained language model (PLM) and is designed as one framework serving both equi- and semantic joins. We propose a set of contextualization options to transform column contents to a text sequence. The PLM reads the sequence and is fine-tuned to embed columns to vectors such that columns are expected to be joinable if they are close to each other in the vector space. Since the output of the PLM is fixed in length, the subsequent search procedure becomes independent of the column size. With a state-of-the-art approximate nearest neighbor search algorithm, the search time is logarithmic in the repository size. To train the model, we devise the techniques for preparing training data as well as data augmentation. The experiments on real datasets demonstrate that by training on a small subset of a corpus, Deepjoin generalizes to large datasets and its precision consistently outperforms other approximate solutions'. Deepjoin is even more accurate than an exact solution to semantic joins when evaluated with labels from experts. Moreover, when equipped with a GPU, Deepjoin is up to two orders of magnitude faster than existing solutions.
GriSPy: A Python package for Fixed-Radius Nearest Neighbors Search
We present a new regular grid search algorithm for quick fixed-radius nearest-neighbor lookup developed in Python. This module indexes a set of k-dimensional points in a regular grid, with optional periodic conditions, providing a fast approach for nearest neighbors queries. In this first installment we provide three types of queries: bubble, shell and the nth-nearest; as well as three different metrics of interest in astronomy: the euclidean and two distance functions in spherical coordinates of varying precision, haversine and Vincenty; and the possibility of providing a custom distance function. This package results particularly useful for large datasets where a brute-force search turns impractical.
Hybrid Semantic Search: Unveiling User Intent Beyond Keywords
This paper addresses the limitations of traditional keyword-based search in understanding user intent and introduces a novel hybrid search approach that leverages the strengths of non-semantic search engines, Large Language Models (LLMs), and embedding models. The proposed system integrates keyword matching, semantic vector embeddings, and LLM-generated structured queries to deliver highly relevant and contextually appropriate search results. By combining these complementary methods, the hybrid approach effectively captures both explicit and implicit user intent.The paper further explores techniques to optimize query execution for faster response times and demonstrates the effectiveness of this hybrid search model in producing comprehensive and accurate search outcomes.
