Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeInstruct-SkillMix: A Powerful Pipeline for LLM Instruction Tuning
We introduce Instruct-SkillMix, an automated approach for creating diverse, high quality SFT data. The Instruct-SkillMix pipeline involves two stages, each leveraging an existing powerful LLM: (1) Skill extraction: uses the LLM to extract core "skills" for instruction-following, either from existing datasets, or by directly prompting the model; (2) Data generation: uses the powerful LLM to generate (instruction, response) data that exhibit a randomly chosen pair of these skills. Here, the use of random skill combinations promotes diversity and difficulty. Vanilla SFT (i.e., no PPO, DPO, or RL methods) on data generated from Instruct-SkillMix leads to strong gains on instruction following benchmarks such as AlpacaEval 2.0, MT-Bench, and WildBench. With just 4K examples, LLaMA-3-8B-Base achieves 42.76% length-controlled win rate on AlpacaEval 2.0. To our knowledge, this achieves state-of-the-art performance among all models that have only undergone SFT (no RL methods) and competes with proprietary models such as Claude 3 Opus and LLaMA-3.1-405B-Instruct. Ablation studies also suggest plausible reasons for why creating open instruction-tuning datasets via naive crowd-sourcing has proved difficult. Introducing low quality answers ("shirkers") in 20% of Instruct-SkillMix examples causes performance to plummet, sometimes catastrophically. The Instruct-SkillMix pipeline is flexible and is adaptable to other settings.
AutoRule: Reasoning Chain-of-thought Extracted Rule-based Rewards Improve Preference Learning
Rule-based rewards offer a promising strategy for improving reinforcement learning from human feedback (RLHF), but current approaches often rely on manual rule engineering. We present AutoRule, a fully automated method for extracting rules from preference feedback and formulating them into rule-based rewards. AutoRule extraction operates in three stages: it leverages a reasoning model to interpret user preferences, identifies candidate rules from the reasoning chain of these interpretations, and synthesizes them into a unified rule set. Leveraging the finalized rule set, we employ language-model verifiers to compute the fraction of rules satisfied by each output, using this metric as an auxiliary reward alongside the learned reward model during policy optimization. Training a Llama-3-8B model with AutoRule results in a 28.6\% relative improvement in length-controlled win rate on AlpacaEval2.0, and a 6.1\% relative gain in second-turn performance on a held-out MT-Bench subset, compared to a GRPO baseline trained with the same learned reward model but without the rule-based auxiliary reward. Our analysis confirms that the extracted rules exhibit good agreement with dataset preference. We find that AutoRule demonstrates reduced reward hacking compared to a learned reward model when run over two episodes. Finally, our case study suggests that the extracted rules capture unique qualities valued in different datasets. The extracted rules are provided in the appendix, and the code is open-sourced at https://github.com/cxcscmu/AutoRule.
Game-Theoretic Regularized Self-Play Alignment of Large Language Models
Self-play alignment algorithms have been developed as effective methods for fine-tuning large language models (LLMs), formulating preference optimization as a two-player game. However, the regularization with respect to the reference policy, which is crucial for mitigating over-optimization, has been insufficiently investigated in self-play alignment. In this paper, we show that our regularization method can improve the unregularized self-play significantly. To study the impact of different regularizations in self-play alignment, we propose Regularized Self-Play Policy Optimization (RSPO). This generalized framework regularizes the self-play by simply adding a chosen regularization term into the loss while maintaining provable last-iterate convergence to the Nash Equilibrium of the corresponding regularized game. Surprisingly, empirical evaluations using the Mistral-7B-Instruct base model reveal that forward KL divergence regularization reduces response length in RSPO, whereas reverse KL divergence markedly improves raw win rates. RSPO with a linear combination of forward and reverse KL divergence regularization substantially increases the length-controlled win rate in AlpacaEval-2, elevating the unregularized self-play alignment method (SPPO) from 28.53% to 35.44%. Finally, we show that RSPO also improves the response diversity.
The Mamba in the Llama: Distilling and Accelerating Hybrid Models
Linear RNN architectures, like Mamba, can be competitive with Transformer models in language modeling while having advantageous deployment characteristics. Given the focus on training large-scale Transformer models, we consider the challenge of converting these pretrained models for deployment. We demonstrate that it is feasible to distill large Transformers into linear RNNs by reusing the linear projection weights from attention layers with academic GPU resources. The resulting hybrid model, which incorporates a quarter of the attention layers, achieves performance comparable to the original Transformer in chat benchmarks and outperforms open-source hybrid Mamba models trained from scratch with trillions of tokens in both chat benchmarks and general benchmarks. Moreover, we introduce a hardware-aware speculative decoding algorithm that accelerates the inference speed of Mamba and hybrid models. Overall we show how, with limited computation resources, we can remove many of the original attention layers and generate from the resulting model more efficiently. Our top-performing model, distilled from Llama3-8B-Instruct, achieves a 29.61 length-controlled win rate on AlpacaEval 2 against GPT-4 and 7.35 on MT-Bench, surpassing the best instruction-tuned linear RNN model.
Weighted-Reward Preference Optimization for Implicit Model Fusion
While fusing heterogeneous open-source LLMs with varying architectures and sizes can potentially integrate the strengths of different models, existing fusion methods face significant challenges, such as vocabulary alignment and merging distribution matrices. These procedures are not only complex but also prone to introducing noise and errors. In this paper, we propose an implicit fusion method, Weighted-Reward Preference Optimization (WRPO), which leverages preference optimization between the source LLMs and the target LLM to transfer their capabilities effectively. WRPO eliminates the need for vocabulary alignment and matrix fusion and can be efficiently scaled to accommodate various LLMs. To address distributional deviations between the source and target LLMs, WRPO introduces a progressive adaptation strategy that gradually shifts reliance on preferred examples from the target LLM to the source LLMs. Extensive experiments on the MT-Bench, AlpacaEval-2, and Arena-Hard benchmarks demonstrate that WRPO consistently outperforms existing knowledge fusion methods and various fine-tuning baselines. When applied to LLaMA3-8B-Instruct as the target model, WRPO achieves a length-controlled win rate of 55.9% against GPT-4-Preview-1106 on AlpacaEval-2 and a win rate of 46.2% against GPT-4-0314 on Arena-Hard. Our code is available at https://github.com/SLIT-AI/WRPO.
This Is Your Doge, If It Please You: Exploring Deception and Robustness in Mixture of LLMs
Mixture of large language model (LLMs) Agents (MoA) architectures achieve state-of-the-art performance on prominent benchmarks like AlpacaEval 2.0 by leveraging the collaboration of multiple LLMs at inference time. Despite these successes, an evaluation of the safety and reliability of MoA is missing. We present the first comprehensive study of MoA's robustness against deceptive LLM agents that deliberately provide misleading responses. We examine factors like the propagation of deceptive information, model size, and information availability, and uncover critical vulnerabilities. On AlpacaEval 2.0, the popular LLaMA 3.1-70B model achieves a length-controlled Win Rate (LC WR) of 49.2% when coupled with 3-layer MoA (6 LLM agents). However, we demonstrate that introducing only a single carefully-instructed deceptive agent into the MoA can reduce performance to 37.9%, effectively nullifying all MoA gains. On QuALITY, a multiple-choice comprehension task, the impact is also severe, with accuracy plummeting by a staggering 48.5%. Inspired in part by the historical Doge of Venice voting process, designed to minimize influence and deception, we propose a range of unsupervised defense mechanisms that recover most of the lost performance.
Iterative Nash Policy Optimization: Aligning LLMs with General Preferences via No-Regret Learning
Reinforcement Learning with Human Feedback (RLHF) has achieved great success in aligning large language models (LLMs) with human preferences. Prevalent RLHF approaches are reward-based, following the Bradley-Terry (BT) model assumption, which may not fully capture the complexity of human preferences. In this paper, we explore RLHF under a general preference framework and approach it from a game-theoretic perspective. Specifically, we formulate the problem as a two-player game and propose a novel algorithm, iterative Nash policy optimization (INPO). The key idea is to let the policy play against itself via no-regret learning, thereby approximating the Nash policy. Unlike previous methods, INPO bypasses the need for estimating the expected win rate for individual responses, which typically incurs high computational or annotation costs. Instead, we introduce a new loss objective that is directly minimized over a preference dataset. We provide theoretical analysis for our approach and demonstrate its effectiveness through experiments on various representative benchmarks. With an LLaMA-3-8B-based SFT model, INPO achieves a 41.5% length-controlled win rate on AlpacaEval 2.0 and a 38.3% win rate on Arena-Hard, showing substantial improvement over the state-of-the-art iterative algorithm [Dong et al., 2024] under the BT model assumption. Additionally, our ablation study highlights the benefits of incorporating KL regularization for response length control.
Weak-to-Strong Preference Optimization: Stealing Reward from Weak Aligned Model
Aligning language models (LMs) with human preferences has become a key area of research, enabling these models to meet diverse user needs better. Inspired by weak-to-strong generalization, where a strong LM fine-tuned on labels generated by a weaker model can consistently outperform its weak supervisor, we extend this idea to model alignment. In this work, we observe that the alignment behavior in weaker models can be effectively transferred to stronger models and even exhibit an amplification effect. Based on this insight, we propose a method called Weak-to-Strong Preference Optimization (WSPO), which achieves strong model alignment by learning the distribution differences before and after the alignment of the weak model. Experiments demonstrate that WSPO delivers outstanding performance, improving the win rate of Qwen2-7B-Instruct on Arena-Hard from 39.70 to 49.60, achieving a remarkable 47.04 length-controlled win rate on AlpacaEval 2, and scoring 7.33 on MT-bench. Our results suggest that using the weak model to elicit a strong model with a high alignment ability is feasible.
Bootstrapping Language Models with DPO Implicit Rewards
Human alignment in large language models (LLMs) is an active area of research. A recent groundbreaking work, direct preference optimization (DPO), has greatly simplified the process from past work in reinforcement learning from human feedback (RLHF) by bypassing the reward learning stage in RLHF. DPO, after training, provides an implicit reward model. In this work, we make a novel observation that this implicit reward model can by itself be used in a bootstrapping fashion to further align the LLM. Our approach is to use the rewards from a current LLM model to construct a preference dataset, which is then used in subsequent DPO rounds. We incorporate refinements that debias the length of the responses and improve the quality of the preference dataset to further improve our approach. Our approach, named self-alignment with DPO ImpliCit rEwards (DICE), shows great improvements in alignment and achieves superior performance than Gemini Pro on AlpacaEval 2, reaching 27.55% length-controlled win rate against GPT-4 Turbo, but with only 8B parameters and no external feedback. Our code is available at https://github.com/sail-sg/dice.
SimPO: Simple Preference Optimization with a Reference-Free Reward
Direct Preference Optimization (DPO) is a widely used offline preference optimization algorithm that reparameterizes reward functions in reinforcement learning from human feedback (RLHF) to enhance simplicity and training stability. In this work, we propose SimPO, a simpler yet more effective approach. The effectiveness of SimPO is attributed to a key design: using the average log probability of a sequence as the implicit reward. This reward formulation better aligns with model generation and eliminates the need for a reference model, making it more compute and memory efficient. Additionally, we introduce a target reward margin to the Bradley-Terry objective to encourage a larger margin between the winning and losing responses, further enhancing the algorithm's performance. We compare SimPO to DPO and its latest variants across various state-of-the-art training setups, including both base and instruction-tuned models like Mistral and Llama3. We evaluated on extensive instruction-following benchmarks, including AlpacaEval 2, MT-Bench, and the recent challenging Arena-Hard benchmark. Our results demonstrate that SimPO consistently and significantly outperforms existing approaches without substantially increasing response length. Specifically, SimPO outperforms DPO by up to 6.4 points on AlpacaEval 2 and by up to 7.5 points on Arena-Hard. Our top-performing model, built on Llama3-8B-Instruct, achieves a remarkable 44.7 length-controlled win rate on AlpacaEval 2 -- surpassing Claude 3 Opus on the leaderboard, and a 33.8 win rate on Arena-Hard -- making it the strongest 8B open-source model.
Multi-Preference Optimization: Generalizing DPO via Set-Level Contrasts
Direct Preference Optimization (DPO) has become a popular approach for aligning language models using pairwise preferences. However, in practical post-training pipelines, on-policy generation typically yields multiple candidate responses per prompt, which are scored by a reward model to guide learning. In this setting, we propose Multi-Preference Optimization (MPO), a generalization of DPO that optimizes over entire sets of responses by extending the Bradley-Terry model to groupwise comparisons between chosen and rejected sets. To further enhance learning, MPO employs deviation-based weighting, which emphasizes outlier responses that deviate most from the mean reward, effectively inducing a self-paced curriculum. We theoretically prove that MPO reduces alignment bias at a rate of Oleft(1{n}right) with respect to the number of responses per query. Empirically, MPO achieves state-of-the-art performance on the UltraFeedback benchmark and yields up to sim 17.5% improvement over the state-of-the-art baseline in length-controlled win rate on AlpacaEval2, establishing a new baseline for preference-based alignment
Aligning Large Language Models with Implicit Preferences from User-Generated Content
Learning from preference feedback is essential for aligning large language models (LLMs) with human values and improving the quality of generated responses. However, existing preference learning methods rely heavily on curated data from humans or advanced LLMs, which is costly and difficult to scale. In this work, we present PUGC, a novel framework that leverages implicit human Preferences in unlabeled User-Generated Content (UGC) to generate preference data. Although UGC is not explicitly created to guide LLMs in generating human-preferred responses, it often reflects valuable insights and implicit preferences from its creators that has the potential to address readers' questions. PUGC transforms UGC into user queries and generates responses from the policy model. The UGC is then leveraged as a reference text for response scoring, aligning the model with these implicit preferences. This approach improves the quality of preference data while enabling scalable, domain-specific alignment. Experimental results on Alpaca Eval 2 show that models trained with DPO and PUGC achieve a 9.37% performance improvement over traditional methods, setting a 35.93% state-of-the-art length-controlled win rate using Mistral-7B-Instruct. Further studies highlight gains in reward quality, domain-specific alignment effectiveness, robustness against UGC quality, and theory of mind capabilities. Our code and dataset are available at https://zhaoxuan.info/PUGC.github.io/
Mutual-Taught for Co-adapting Policy and Reward Models
During the preference optimization of large language models (LLMs), distribution shifts may arise between newly generated model samples and the data used to train the reward model (RM). This shift reduces the efficacy of the RM, which in turn negatively impacts the performance of the policy model (PM). To address this challenge, we propose Mutual-Taught, a self-training method that iteratively improves both the PM and RM without requiring additional human annotation. Our approach mirrors the expectation-maximization (EM) algorithm. In the E-step, the PM is updated using feedback from the current RM, guiding the PM toward a better approximation of the latent optimal preference distribution. In the M-step, we update the RM by constructing training data from the outputs of the PM before and after the E-step update. This process ensures that the RM adapts to the evolving policy distribution. Experimental results demonstrate that this iterative approach leads to consistent improvements in both models. Specifically, our 8B policy model, LLaMA-3-8B-Instruct-MT, achieves a length-controlled win rate of 54.1\% on AlpacaEval-2, while our 8B reward model, FsfairX-LLaMA3-RM-MT, performs on par with GPT-4o-2024-08-06 on RewardBench.
Evolving LLMs' Self-Refinement Capability via Iterative Preference Optimization
While large language models (LLMs) have demonstrated remarkable general performance, enabling smaller models to achieve capabilities comparable to their larger counterparts remains a critical challenge. For humans, iterative refinement of problem analysis and responses is a common strategy to enhance answer quality. However, we observe that existing LLMs exhibit limited ability to refine their outputs for quality improvement. In this paper, we first investigate mechanisms to unlock and progressively enhance self-refinement ability in smaller models within an iterative preference optimization framework, aiming to bridge the performance gap with larger models. To this end, we propose EVOLVE, a novel post-training and inference framework that iteratively integrates preference training with self-refinement-driven data collection. During training, EVOLVE strengthens the model's direct question-answering ability while simultaneously unlocking its self-refinement potential. At inference, the framework leverages this capability to generate progressively refined responses, which are filtered to construct datasets for subsequent rounds of preference training. Experiments demonstrate EVOLVE's exceptional performance: when applied to Llama-3.1-8B base model and under the self-refinement setting, it surpasses state-of-the-art models including Llama-3.1-405B-Instruct and GPT-4o, achieving a 62.3% length-controlled win rate and 63.3% raw win rate on AlpacaEval 2, along with a 50.3% win rate on Arena-Hard. Furthermore, EVOLVE consistently enhances performance on mathematical reasoning tasks like GSM8K and MATH.
WildBench: Benchmarking LLMs with Challenging Tasks from Real Users in the Wild
We introduce WildBench, an automated evaluation framework designed to benchmark large language models (LLMs) using challenging, real-world user queries. WildBench consists of 1,024 tasks carefully selected from over one million human-chatbot conversation logs. For automated evaluation with WildBench, we have developed two metrics, WB-Reward and WB-Score, which are computable using advanced LLMs such as GPT-4-turbo. WildBench evaluation uses task-specific checklists to evaluate model outputs systematically and provides structured explanations that justify the scores and comparisons, resulting in more reliable and interpretable automatic judgments. WB-Reward employs fine-grained pairwise comparisons between model responses, generating five potential outcomes: much better, slightly better, slightly worse, much worse, or a tie. Unlike previous evaluations that employed a single baseline model, we selected three baseline models at varying performance levels to ensure a comprehensive pairwise evaluation. Additionally, we propose a simple method to mitigate length bias, by converting outcomes of ``slightly better/worse'' to ``tie'' if the winner response exceeds the loser one by more than K characters. WB-Score evaluates the quality of model outputs individually, making it a fast and cost-efficient evaluation metric. WildBench results demonstrate a strong correlation with the human-voted Elo ratings from Chatbot Arena on hard tasks. Specifically, WB-Reward achieves a Pearson correlation of 0.98 with top-ranking models. Additionally, WB-Score reaches 0.95, surpassing both ArenaHard's 0.91 and AlpacaEval2.0's 0.89 for length-controlled win rates, as well as the 0.87 for regular win rates.
RRM: Robust Reward Model Training Mitigates Reward Hacking
Reward models (RMs) play a pivotal role in aligning large language models (LLMs) with human preferences. However, traditional RM training, which relies on response pairs tied to specific prompts, struggles to disentangle prompt-driven preferences from prompt-independent artifacts, such as response length and format. In this work, we expose a fundamental limitation of current RM training methods, where RMs fail to effectively distinguish between contextual signals and irrelevant artifacts when determining preferences. To address this, we introduce a causal framework that learns preferences independent of these artifacts and propose a novel data augmentation technique designed to eliminate them. Extensive experiments show that our approach successfully filters out undesirable artifacts, yielding a more robust reward model (RRM). Our RRM improves the performance of a pairwise reward model trained on Gemma-2-9b-it, on RewardBench, increasing accuracy from 80.61% to 84.15%. Additionally, we train two DPO policies using both the RM and RRM, demonstrating that the RRM significantly enhances DPO-aligned policies, improving MT-Bench scores from 7.27 to 8.31 and length-controlled win-rates in AlpacaEval-2 from 33.46% to 52.49%.
Just Say What You Want: Only-prompting Self-rewarding Online Preference Optimization
We address the challenge of online Reinforcement Learning from Human Feedback (RLHF) with a focus on self-rewarding alignment methods. In online RLHF, obtaining feedback requires interaction with the environment, which can be costly when using additional reward models or the GPT-4 API. Current self-rewarding approaches rely heavily on the discriminator's judgment capabilities, which are effective for large-scale models but challenging to transfer to smaller ones. To address these limitations, we propose a novel, only-prompting self-rewarding online algorithm that generates preference datasets without relying on judgment capabilities. Additionally, we employ fine-grained arithmetic control over the optimality gap between positive and negative examples, generating more hard negatives in the later stages of training to help the model better capture subtle human preferences. Finally, we conduct extensive experiments on two base models, Mistral-7B and Mistral-Instruct-7B, which significantly bootstrap the performance of the reference model, achieving 34.5% in the Length-controlled Win Rates of AlpacaEval 2.0.
Weak-to-Strong Search: Align Large Language Models via Searching over Small Language Models
Large language models are usually fine-tuned to align with human preferences. However, fine-tuning a large language model can be challenging. In this work, we introduce weak-to-strong search, framing the alignment of a large language model as a test-time greedy search to maximize the log-likelihood difference between small tuned and untuned models while sampling from the frozen large model. This method serves both as (i) a compute-efficient model up-scaling strategy that avoids directly tuning the large model and as (ii) an instance of weak-to-strong generalization that enhances a strong model with weak test-time guidance. Empirically, we demonstrate the flexibility of weak-to-strong search across different tasks. In controlled-sentiment generation and summarization, we use tuned and untuned gpt2s to effectively improve the alignment of large models without additional training. Crucially, in a more difficult instruction-following benchmark, AlpacaEval 2.0, we show that reusing off-the-shelf small model pairs (e.g., zephyr-7b-beta and its untuned version) can significantly improve the length-controlled win rates of both white-box and black-box large models against gpt-4-turbo (e.g., 34.4 rightarrow 37.9 for Llama-3-70B-Instruct and 16.0 rightarrow 20.1 for gpt-3.5-turbo-instruct), despite the small models' low win rates approx 10.0.
Self-Play Preference Optimization for Language Model Alignment
Traditional reinforcement learning from human feedback (RLHF) approaches relying on parametric models like the Bradley-Terry model fall short in capturing the intransitivity and irrationality in human preferences. Recent advancements suggest that directly working with preference probabilities can yield a more accurate reflection of human preferences, enabling more flexible and accurate language model alignment. In this paper, we propose a self-play-based method for language model alignment, which treats the problem as a constant-sum two-player game aimed at identifying the Nash equilibrium policy. Our approach, dubbed Self-Play Preference Optimization (SPPO), approximates the Nash equilibrium through iterative policy updates and enjoys theoretical convergence guarantee. Our method can effectively increase the log-likelihood of the chosen response and decrease that of the rejected response, which cannot be trivially achieved by symmetric pairwise loss such as Direct Preference Optimization (DPO) and Identity Preference Optimization (IPO). In our experiments, using only 60k prompts (without responses) from the UltraFeedback dataset and without any prompt augmentation, by leveraging a pre-trained preference model PairRM with only 0.4B parameters, SPPO can obtain a model from fine-tuning Mistral-7B-Instruct-v0.2 that achieves the state-of-the-art length-controlled win-rate of 28.53% against GPT-4-Turbo on AlpacaEval 2.0. It also outperforms the (iterative) DPO and IPO on MT-Bench and the Open LLM Leaderboard. Notably, the strong performance of SPPO is achieved without additional external supervision (e.g., responses, preferences, etc.) from GPT-4 or other stronger language models.
CDR: Customizable Density Ratios of Strong-over-weak LLMs for Preference Annotation
Preference tuning of large language models (LLMs) relies on high-quality human preference data, which is often expensive and time-consuming to gather. While existing methods can use trained reward models or proprietary model as judges for preference annotation, they have notable drawbacks: training reward models remain dependent on initial human data, and using proprietary model imposes license restrictions that inhibits commercial usage. In this paper, we introduce customized density ratio (CDR), a training-free and highly effective method that leverages off-the-shelf LLMs for preference data annotation. Our approach uses the log-density ratio between a better-aligned LLM and a less aligned LLM as a reward signal. We explores 221 different LLMs pairs and empirically demonstrate that increasing the performance gap between paired LLMs correlates with better reward generalization. Furthermore, we show that tailoring the density ratio reward function with specific criteria and preference exemplars enhances performance across domains and within target areas. In our experiment using density ratio from a pair of Mistral-7B models, CDR achieves a RewardBench score of 82.6, outperforming the best trained reward functions from same model class and demonstrating competitive performance against SoTA models in Safety (91.0) and Reasoning (88.0) domains. We use CDR to annotate an on-policy preference dataset with which we preference tune Llama-3-8B-Instruct with SimPO. Using reward signals from two relatively weak models, our approach pushes Llama-3-8B to achieve a 37.4% (+15.1%) win rate on ArenaHard and a 40.7% (+17.8%) win rate on Length-Controlled AlpacaEval 2.0, along with a score of 8.0 on MT-Bench.
L1: Controlling How Long A Reasoning Model Thinks With Reinforcement Learning
Reasoning language models have shown an uncanny ability to improve performance at test-time by ``thinking longer''-that is, by generating longer chain-of-thought sequences and hence using more compute. However, the length of their chain-of-thought reasoning is not controllable, making it impossible to allocate test-time compute to achieve a desired level of performance. We introduce Length Controlled Policy Optimization (LCPO), a simple reinforcement learning method that optimizes for accuracy and adherence to user-specified length constraints. We use LCPO to train L1, a reasoning language model that produces outputs satisfying a length constraint given in its prompt. L1's length control allows for smoothly trading off computational cost and accuracy on a wide range of tasks, and outperforms the state-of-the-art S1 method for length control. Furthermore, we uncover an unexpected short chain-of-thought capability in models trained with LCPO. For instance, our 1.5B L1 model surpasses GPT-4o at equal reasoning lengths. Overall, LCPO enables precise control over reasoning length, allowing for fine-grained allocation of test-time compute and accuracy. We release code and models at https://www.cmu-l3.github.io/l1
Length-Controlled AlpacaEval: A Simple Way to Debias Automatic Evaluators
LLM-based auto-annotators have become a key component of the LLM development process due to their cost-effectiveness and scalability compared to human-based evaluation. However, these auto-annotators can introduce complex biases that are hard to remove. Even simple, known confounders such as preference for longer outputs remain in existing automated evaluation metrics. We propose a simple regression analysis approach for controlling biases in auto-evaluations. As a real case study, we focus on reducing the length bias of AlpacaEval, a fast and affordable benchmark for chat LLMs that uses LLMs to estimate response quality. Despite being highly correlated with human preferences, AlpacaEval is known to favor models that generate longer outputs. We introduce a length-controlled AlpacaEval that aims to answer the counterfactual question: "What would the preference be if the model's and baseline's output had the same length?". To achieve this, we first fit a generalized linear model to predict the biased output of interest (auto-annotator preferences) based on the mediators we want to control for (length difference) and other relevant features. We then obtain length-controlled preferences by predicting preferences while conditioning the GLM with a zero difference in lengths. Length-controlling not only improves the robustness of the metric to manipulations in model verbosity, we also find that it increases the Spearman correlation with LMSYS' Chatbot Arena from 0.94 to 0.98. We release the code and leaderboard at https://tatsu-lab.github.io/alpaca_eval/ .
Prompt-Based Length Controlled Generation with Reinforcement Learning
Large language models (LLMs) like ChatGPT and GPT-4 have attracted great attention given their surprising performance on a wide range of NLP tasks. Length controlled generation of LLMs emerges as an important topic, which enables users to fully leverage the capability of LLMs in more real-world scenarios like generating a proper answer or essay of a desired length. In addition, the autoregressive generation in LLMs is extremely time-consuming, while the ability of controlling this generated length can reduce the inference cost by limiting the length. Therefore, we propose a prompt-based length control method to achieve high-accuracy length controlled generation. In particular, we adopt reinforcement learning with the reward signal given by either trainable or rule-based reward models, which further enhances the length-control ability of LLMs by rewarding outputs that follows pre-defined control instruction. To enable rule-based inference, we also introduce standard prompt extractor to collect the standard control information from users' input. Experiments show that our method significantly improves the accuracy of prompt-based length control for summarization task on popular datasets like CNNDM and NYT. Both the standard prompt extractor and the RL-tuned model have show strong generalization ability to unseen control prompt templates.
ODIN: Disentangled Reward Mitigates Hacking in RLHF
In this work, we study the issue of reward hacking on the response length, a challenge emerging in Reinforcement Learning from Human Feedback (RLHF) on LLMs. A well-formatted, verbose but less helpful response from the LLMs can often deceive LLMs or even human evaluators to achieve high scores. The same issue also holds for some reward models in RL. To address the challenges in both training and evaluation, we establish a more reliable evaluation protocol for comparing different training configurations, which inspects the trade-off between LLM evaluation score and response length obtained by varying training hyperparameters. Based on this evaluation, we conduct large-scale studies, where the results shed insights into the efficacy of hyperparameters and tricks used in RL on mitigating length bias. We further propose to improve the reward model by jointly training two linear heads on shared feature representations to predict the rewards, one trained to correlate with length, and the other trained to decorrelate with length and therefore focus more on the actual content. We then discard the length head in RL to prevent reward hacking on length. Experiments demonstrate that our approach almost eliminates the reward correlation with length, and improves the obtained policy by a significant margin.
Stable Reinforcement Learning for Efficient Reasoning
The success of Deepseek-R1 has drawn the LLM community's attention to reinforcement learning (RL) methods like GRPO. However, such rule-based 0/1 outcome reward methods lack the capability to regulate the intermediate reasoning processes during chain-of-thought (CoT) generation, leading to severe overthinking phenomena. In response, recent studies have designed reward functions to reinforce models' behaviors in producing shorter yet correct completions. Nevertheless, we observe that these length-penalty reward functions exacerbate RL training instability: as the completion length decreases, model accuracy abruptly collapses, often occurring early in training. To address this issue, we propose a simple yet effective solution GRPO-lambda, an efficient and stabilized variant of GRPO, which dynamically adjusts the reward strategy by monitoring the correctness ratio among completions within each query-sampled group. A low correctness ratio indicates the need to avoid length penalty that compromises CoT quality, triggering a switch to length-agnostic 0/1 rewards that prioritize reasoning capability. A high ratio maintains length penalties to boost efficiency. Experimental results show that our approach avoids training instability caused by length penalty while maintaining the optimal accuracy-efficiency trade-off. On the GSM8K, GPQA, MATH-500, AMC 2023, and AIME 2024 benchmarks, it improves average accuracy by 1.48% while reducing CoT sequence length by 47.3%.
A Long Way to Go: Investigating Length Correlations in RLHF
Great successes have been reported using Reinforcement Learning from Human Feedback (RLHF) to align large language models. Open-source preference datasets and reward models have enabled wider experimentation beyond generic chat settings, particularly to make systems more "helpful" for tasks like web question answering, summarization, and multi-turn dialogue. When optimizing for helpfulness, RLHF has been consistently observed to drive models to produce longer outputs. This paper demonstrates that optimizing for response length is a significant factor behind RLHF's reported improvements in these settings. First, we study the relationship between reward and length for reward models trained on three open-source preference datasets for helpfulness. Here, length correlates strongly with reward, and improvements in reward score are driven in large part by shifting the distribution over output lengths. We then explore interventions during both RL and reward model learning to see if we can achieve the same downstream improvements as RLHF without increasing length. While our interventions mitigate length increases, they aren't uniformly effective across settings. Furthermore, we find that even running RLHF with a reward based solely on length can reproduce most of the downstream improvements over the initial policy model, showing that reward models in these settings have a long way to go.
Tracing LLM Reasoning Processes with Strategic Games: A Framework for Planning, Revision, and Resource-Constrained Decision Making
Large language models (LLMs) are increasingly used for tasks that require complex reasoning. Most benchmarks focus on final outcomes but overlook the intermediate reasoning steps - such as planning, revision, and decision making under resource constraints. We argue that measuring these internal processes is essential for understanding model behavior and improving reliability. We propose using strategic games as a natural evaluation environment: closed, rule-based systems with clear states, limited resources, and automatic feedback. We introduce a framework that evaluates LLMs along three core dimensions: planning, revision, and resource-constrained decision making. To operationalize this, we define metrics beyond win rate, including overcorrection risk rate, correction success rate, improvement slope, and over-budget ratio. In 4320 adversarial rounds across 12 leading models, ChatGPT-o3-mini achieves the top composite score, with a win rate of 74.7 percent, a correction success rate of 78.6 percent, and an improvement slope of 0.041. By contrast, Qwen-Plus, despite an overcorrection risk rate of 81.6 percent, wins only 25.6 percent of its matches - primarily due to excessive resource use. We also observe a negative correlation between overcorrection risk rate and correction success rate (Pearson r = -0.51, p = 0.093), suggesting that more frequent edits do not always improve outcomes. Our findings highlight the value of assessing not only what LLMs decide but how they arrive at those decisions
Zero-Shot Strategies for Length-Controllable Summarization
Large language models (LLMs) struggle with precise length control, particularly in zero-shot settings. We conduct a comprehensive study evaluating LLMs' length control capabilities across multiple measures and propose practical methods to improve controllability. Our experiments with LLaMA 3 reveal stark differences in length adherence across measures and highlight inherent biases of the model. To address these challenges, we introduce a set of methods: length approximation, target adjustment, sample filtering, and automated revisions. By combining these methods, we demonstrate substantial improvements in length compliance while maintaining or enhancing summary quality, providing highly effective zero-shot strategies for precise length control without the need for model fine-tuning or architectural changes. With our work, we not only advance our understanding of LLM behavior in controlled text generation but also pave the way for more reliable and adaptable summarization systems in real-world applications.
Thinking Fast and Right: Balancing Accuracy and Reasoning Length with Adaptive Rewards
Large language models (LLMs) have demonstrated strong reasoning abilities in mathematical tasks, often enhanced through reinforcement learning (RL). However, RL-trained models frequently produce unnecessarily long reasoning traces -- even for simple queries -- leading to increased inference costs and latency. While recent approaches attempt to control verbosity by adding length penalties to the reward function, these methods rely on fixed penalty terms that are hard to tune and cannot adapt as the model's reasoning capability evolves, limiting their effectiveness. In this work, we propose an adaptive reward-shaping method that enables LLMs to "think fast and right" -- producing concise outputs without sacrificing correctness. Our method dynamically adjusts the reward trade-off between accuracy and response length based on model performance: when accuracy is high, the length penalty increases to encourage faster length reduction; when accuracy drops, the penalty is relaxed to preserve correctness. This adaptive reward accelerates early-stage length reduction while avoiding over-compression in later stages. Experiments across multiple datasets show that our approach consistently and dramatically reduces reasoning length while largely maintaining accuracy, offering a new direction for cost-efficient adaptive reasoning in large-scale language models.
Loose lips sink ships: Mitigating Length Bias in Reinforcement Learning from Human Feedback
Reinforcement learning from human feedback serves as a crucial bridge, aligning large language models with human and societal values. This alignment requires a vast corpus of human feedback to learn a reward model, which is subsequently used to finetune language models. However, we have identified that the reward model often finds shortcuts to bypass its intended objectives, misleadingly assuming that humans prefer longer responses. The emergence of length bias often induces the model to favor longer outputs, yet it doesn't equate to an increase in helpful information within these outputs. In this paper, we propose an innovative solution, applying the Product-of-Experts (PoE) technique to separate reward modeling from the influence of sequence length. In our framework, the main expert concentrates on understanding human intents, while the biased expert targets the identification and capture of length bias. To further enhance the learning of bias, we introduce perturbations into the bias-focused expert, disrupting the flow of semantic information. Experimental results validate the effectiveness of our approach, indicating that language model performance is improved, irrespective of sequence length.
Bingo: Boosting Efficient Reasoning of LLMs via Dynamic and Significance-based Reinforcement Learning
Large language models have demonstrated impressive reasoning capabilities, yet they often suffer from inefficiencies due to unnecessarily verbose or redundant outputs. While many works have explored reinforcement learning (RL) to enhance reasoning abilities, most primarily focus on improving accuracy, with limited attention to reasoning efficiency. Some existing approaches introduce direct length-based rewards to encourage brevity, but this often leads to noticeable drops in accuracy. In this paper, we propose Bingo, an RL framework that advances length-based reward design to boost efficient reasoning. Bingo incorporates two key mechanisms: a significance-aware length reward, which gradually guides the model to reduce only insignificant tokens, and a dynamic length reward, which initially encourages elaborate reasoning for hard questions but decays over time to improve overall efficiency. Experiments across multiple reasoning benchmarks show that Bingo improves both accuracy and efficiency. It outperforms the vanilla reward and several other length-based reward baselines in RL, achieving a favorable trade-off between accuracy and efficiency. These results underscore the potential of training LLMs explicitly for efficient reasoning.
DRPO: Efficient Reasoning via Decoupled Reward Policy Optimization
Recent large reasoning models (LRMs) driven by reinforcement learning algorithms (e.g., GRPO) have achieved remarkable performance on challenging reasoning tasks. However, these models suffer from overthinking, generating unnecessarily long and redundant reasoning even for simple questions, which substantially increases computational cost and response latency. While existing methods incorporate length rewards to GRPO to promote concise reasoning, they incur significant performance degradation. We identify the root cause: when rewards for correct but long rollouts are penalized, GRPO's group-relative advantage function can assign them negative advantages, actively discouraging valid reasoning. To overcome this, we propose Decoupled Reward Policy Optimization (DRPO), a novel framework that decouples the length-based learning signal of correct rollouts from incorrect ones. DRPO ensures that reward signals for correct rollouts are normalized solely within the positive group, shielding them from interference by negative samples. The DRPO's objective is grounded in integrating an optimized positive data distribution, which maximizes length-based rewards under a KL regularization, into a discriminative objective. We derive a closed-form solution for this distribution, enabling efficient computation of the objective and its gradients using only on-policy data and importance weighting. Of independent interest, this formulation is general and can incorporate other preference rewards of positive data beyond length. Experiments on mathematical reasoning tasks demonstrate DRPO's significant superiority over six efficient reasoning baselines. Notably, with a 1.5B model, our method achieves 77\% length reduction with only 1.1\% performance loss on simple questions like GSM8k dataset, while the follow-up baseline sacrifices 4.3\% for 68\% length reduction.
Disentangling Length from Quality in Direct Preference Optimization
Reinforcement Learning from Human Feedback (RLHF) has been a crucial component in the recent success of Large Language Models. However, RLHF is know to exploit biases in human preferences, such as verbosity. A well-formatted and eloquent answer is often more highly rated by users, even when it is less helpful and objective. A number of approaches have been developed to control those biases in the classical RLHF literature, but the problem remains relatively under-explored for Direct Alignment Algorithms such as Direct Preference Optimization (DPO). Unlike classical RLHF, DPO does not train a separate reward model or use reinforcement learning directly, so previous approaches developed to control verbosity cannot be directly applied to this setting. Our work makes several contributions. For the first time, we study the length problem in the DPO setting, showing significant exploitation in DPO and linking it to out-of-distribution bootstrapping. We then develop a principled but simple regularization strategy that prevents length exploitation, while still maintaining improvements in model quality. We demonstrate these effects across datasets on summarization and dialogue, where we achieve up to 20\% improvement in win rates when controlling for length, despite the GPT4 judge's well-known verbosity bias.
ΔL Normalization: Rethink Loss Aggregation in RLVR
We propose Delta L Normalization, a simple yet effective loss aggregation method tailored to the characteristic of dynamic generation lengths in Reinforcement Learning with Verifiable Rewards (RLVR). Recently, RLVR has demonstrated strong potential in improving the reasoning capabilities of large language models (LLMs), but a major challenge lies in the large variability of response lengths during training, which leads to high gradient variance and unstable optimization. Although previous methods such as GRPO, DAPO, and Dr. GRPO introduce different loss normalization terms to address this issue, they either produce biased estimates or still suffer from high gradient variance. By analyzing the effect of varying lengths on policy loss both theoretically and empirically, we reformulate the problem as finding a minimum-variance unbiased estimator. Our proposed Delta L Normalization not only provides an unbiased estimate of the true policy loss but also minimizes gradient variance in theory. Extensive experiments show that it consistently achieves superior results across different model sizes, maximum lengths, and tasks. Our code will be made public at https://github.com/zerolllin/Delta-L-Normalization.
PEAR: Phase Entropy Aware Reward for Efficient Reasoning
Large Reasoning Models (LRMs) have achieved impressive performance on complex reasoning tasks by generating detailed chain-of-thought (CoT) explanations. However, these responses are often excessively long, containing redundant reasoning steps that inflate inference cost and reduce usability. Controlling the length of generated reasoning without sacrificing accuracy remains an open challenge. Through a systematic empirical analysis, we reveal a consistent positive correlation between model entropy and response length at different reasoning stages across diverse LRMs: the thinking phase exhibits higher entropy, reflecting exploratory behavior of longer responses, while the final answer phase shows lower entropy, indicating a more deterministic solution. This observation suggests that entropy at different reasoning stages can serve as a control knob for balancing conciseness and performance. Based on this insight, this paper introduces Phase Entropy Aware Reward (PEAR), a reward mechanism that incorporating phase-dependent entropy into the reward design. Instead of treating all tokens uniformly, PEAR penalize excessive entropy during the thinking phase and allowing moderate exploration at the final answer phase, which encourages models to generate concise reasoning traces that retain sufficient flexibility to solve the task correctly. This enables adaptive control of response length without relying on explicit length targets or rigid truncation rules. Extensive experiments across four benchmarks demonstrate that PEAR consistently reduces response length while sustaining competitive accuracy across model scales. In addition, PEAR demonstrates strong out-of-distribution (OOD) robustness beyond the training distribution. Our code is available at: https://github.com/iNLP-Lab/PEAR.
Train Long, Think Short: Curriculum Learning for Efficient Reasoning
Recent work on enhancing the reasoning abilities of large language models (LLMs) has introduced explicit length control as a means of constraining computational cost while preserving accuracy. However, existing approaches rely on fixed-length training budgets, which do not take advantage of the natural progression from exploration to compression during learning. In this work, we propose a curriculum learning strategy for length-controlled reasoning using Group Relative Policy Optimization (GRPO). Our method starts with generous token budgets and gradually tightens them over training, encouraging models to first discover effective solution strategies and then distill them into more concise reasoning traces. We augment GRPO with a reward function that balances three signals: task correctness (via verifier feedback), length efficiency, and formatting adherence (via structural tags). Experiments on GSM8K, MATH500, SVAMP, College Math, and GSM+ demonstrate that curriculum-based training consistently outperforms fixed-budget baselines at the same final budget, achieving higher accuracy and significantly improved token efficiency. We further ablate the impact of reward weighting and decay schedule design, showing that progressive constraint serves as a powerful inductive bias for training efficient reasoning models. Our code and checkpoints are released at: https://github.com/hammoudhasan/curriculum_grpo.
Ruler: A Model-Agnostic Method to Control Generated Length for Large Language Models
The instruction-following ability of large language models enables humans to interact with AI agents in a natural way. However, when required to generate responses of a specific length, large language models often struggle to meet users' needs due to their inherent difficulty in accurately perceiving numerical constraints. To explore the ability of large language models to control the length of generated responses, we propose the Target Length Generation Task (TLG) and design two metrics, Precise Match (PM) and Flexible Match (FM) to evaluate the model's performance in adhering to specified response lengths. Furthermore, we introduce a novel, model-agnostic approach called Ruler, which employs Meta Length Tokens (MLTs) to enhance the instruction-following ability of large language models under length-constrained instructions. Specifically, Ruler equips LLMs with the ability to generate responses of a specified length based on length constraints within the instructions. Moreover, Ruler can automatically generate appropriate MLT when length constraints are not explicitly provided, demonstrating excellent versatility and generalization. Comprehensive experiments show the effectiveness of Ruler across different LLMs on Target Length Generation Task, e.g., at All Level 27.97 average gain on PM, 29.57 average gain on FM. In addition, we conduct extensive ablation experiments to further substantiate the efficacy and generalization of Ruler. Our code and data is available at https://github.com/Geaming2002/Ruler.
Following Length Constraints in Instructions
Aligned instruction following models can better fulfill user requests than their unaligned counterparts. However, it has been shown that there is a length bias in evaluation of such models, and that training algorithms tend to exploit this bias by learning longer responses. In this work we show how to train models that can be controlled at inference time with instructions containing desired length constraints. Such models are superior in length instructed evaluations, outperforming standard instruction following models such as GPT4, Llama 3 and Mixtral.
Regret Minimization and Convergence to Equilibria in General-sum Markov Games
An abundance of recent impossibility results establish that regret minimization in Markov games with adversarial opponents is both statistically and computationally intractable. Nevertheless, none of these results preclude the possibility of regret minimization under the assumption that all parties adopt the same learning procedure. In this work, we present the first (to our knowledge) algorithm for learning in general-sum Markov games that provides sublinear regret guarantees when executed by all agents. The bounds we obtain are for swap regret, and thus, along the way, imply convergence to a correlated equilibrium. Our algorithm is decentralized, computationally efficient, and does not require any communication between agents. Our key observation is that online learning via policy optimization in Markov games essentially reduces to a form of weighted regret minimization, with unknown weights determined by the path length of the agents' policy sequence. Consequently, controlling the path length leads to weighted regret objectives for which sufficiently adaptive algorithms provide sublinear regret guarantees.
LSPO: Length-aware Dynamic Sampling for Policy Optimization in LLM Reasoning
Since the release of Deepseek-R1, reinforcement learning with verifiable rewards (RLVR) has become a central approach for training large language models (LLMs) on reasoning tasks. Recent work has largely focused on modifying loss functions to make RLVR more efficient and effective. In this paper, motivated by studies of overthinking in LLMs, we propose Length-aware Sampling for Policy Optimization (LSPO), a novel meta-RLVR algorithm that dynamically selects training data at each step based on the average response length. We evaluate LSPO across multiple base models and datasets, demonstrating that it consistently improves learning effectiveness. In addition, we conduct a detailed ablation study to examine alternative ways of incorporating length signals into dynamic sampling, offering further insights and highlighting promising directions for future research.
A Minimaximalist Approach to Reinforcement Learning from Human Feedback
We present Self-Play Preference Optimization (SPO), an algorithm for reinforcement learning from human feedback. Our approach is minimalist in that it does not require training a reward model nor unstable adversarial training and is therefore rather simple to implement. Our approach is maximalist in that it provably handles non-Markovian, intransitive, and stochastic preferences while being robust to the compounding errors that plague offline approaches to sequential prediction. To achieve the preceding qualities, we build upon the concept of a Minimax Winner (MW), a notion of preference aggregation from the social choice theory literature that frames learning from preferences as a zero-sum game between two policies. By leveraging the symmetry of this game, we prove that rather than using the traditional technique of dueling two policies to compute the MW, we can simply have a single agent play against itself while maintaining strong convergence guarantees. Practically, this corresponds to sampling multiple trajectories from a policy, asking a rater or preference model to compare them, and then using the proportion of wins as the reward for a particular trajectory. We demonstrate that on a suite of continuous control tasks, we are able to learn significantly more efficiently than reward-model based approaches while maintaining robustness to the intransitive and stochastic preferences that frequently occur in practice when aggregating human judgments.
Efficient Reasoning via Reward Model
Reinforcement learning with verifiable rewards (RLVR) has been shown to enhance the reasoning capabilities of large language models (LLMs), enabling the development of large reasoning models (LRMs). However, LRMs such as DeepSeek-R1 and OpenAI o1 often generate verbose responses containing redundant or irrelevant reasoning step-a phenomenon known as overthinking-which substantially increases computational costs. Prior efforts to mitigate this issue commonly incorporate length penalties into the reward function, but we find they frequently suffer from two critical issues: length collapse and training collapse, resulting in sub-optimal performance. To address them, we propose a pipeline for training a Conciseness Reward Model (CRM) that scores the conciseness of reasoning path. Additionally, we introduce a novel reward formulation named Conciseness Reward Function (CRF) with explicit dependency between the outcome reward and conciseness score, thereby fostering both more effective and more efficient reasoning. From a theoretical standpoint, we demonstrate the superiority of the new reward from the perspective of variance reduction and improved convergence properties. Besides, on the practical side, extensive experiments on five mathematical benchmark datasets demonstrate the method's effectiveness and token efficiency, which achieves an 8.1% accuracy improvement and a 19.9% reduction in response token length on Qwen2.5-7B. Furthermore, the method generalizes well to other LLMs including Llama and Mistral. The implementation code and datasets are publicly available for reproduction: https://anonymous.4open.science/r/CRM.
AI Agents for the Dhumbal Card Game: A Comparative Study
This study evaluates Artificial Intelligence (AI) agents for Dhumbal, a culturally significant multiplayer card game with imperfect information, through a systematic comparison of rule-based, search-based, and learning-based strategies. We formalize Dhumbal's mechanics and implement diverse agents, including heuristic approaches (Aggressive, Conservative, Balanced, Opportunistic), search-based methods such as Monte Carlo Tree Search (MCTS) and Information Set Monte Carlo Tree Search (ISMCTS), and reinforcement learning approaches including Deep Q-Network (DQN) and Proximal Policy Optimization (PPO), and a random baseline. Evaluation involves within-category tournaments followed by a cross-category championship. Performance is measured via win rate, economic outcome, Jhyap success, cards discarded per round, risk assessment, and decision efficiency. Statistical significance is assessed using Welch's t-test with Bonferroni correction, effect sizes via Cohen's d, and 95% confidence intervals (CI). Across 1024 simulated rounds, the rule-based Aggressive agent achieves the highest win rate (88.3%, 95% CI: [86.3, 90.3]), outperforming ISMCTS (9.0%) and PPO (1.5%) through effective exploitation of Jhyap declarations. The study contributes a reproducible AI framework, insights into heuristic efficacy under partial information, and open-source code, thereby advancing AI research and supporting digital preservation of cultural games.
Learn to Reason Efficiently with Adaptive Length-based Reward Shaping
Large Reasoning Models (LRMs) have shown remarkable capabilities in solving complex problems through reinforcement learning (RL), particularly by generating long reasoning traces. However, these extended outputs often exhibit substantial redundancy, which limits the efficiency of LRMs. In this paper, we investigate RL-based approaches to promote reasoning efficiency. Specifically, we first present a unified framework that formulates various efficient reasoning methods through the lens of length-based reward shaping. Building on this perspective, we propose a novel Length-bAsed StEp Reward shaping method (LASER), which employs a step function as the reward, controlled by a target length. LASER surpasses previous methods, achieving a superior Pareto-optimal balance between performance and efficiency. Next, we further extend LASER based on two key intuitions: (1) The reasoning behavior of the model evolves during training, necessitating reward specifications that are also adaptive and dynamic; (2) Rather than uniformly encouraging shorter or longer chains of thought (CoT), we posit that length-based reward shaping should be difficulty-aware i.e., it should penalize lengthy CoTs more for easy queries. This approach is expected to facilitate a combination of fast and slow thinking, leading to a better overall tradeoff. The resulting method is termed LASER-D (Dynamic and Difficulty-aware). Experiments on DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, and DeepSeek-R1-Distill-Qwen-32B show that our approach significantly enhances both reasoning performance and response length efficiency. For instance, LASER-D and its variant achieve a +6.1 improvement on AIME2024 while reducing token usage by 63%. Further analysis reveals our RL-based compression produces more concise reasoning patterns with less redundant "self-reflections". Resources are at https://github.com/hkust-nlp/Laser.
Position control of an acoustic cavitation bubble by reinforcement learning
A control technique is developed via Reinforcement Learning that allows arbitrary controlling of the position of an acoustic cavitation bubble in a dual-frequency standing acoustic wave field. The agent must choose the optimal pressure amplitude values to manipulate the bubble position in the range of x/lambda_0in[0.05, 0.25]. To train the agent an actor-critic off-policy algorithm (Deep Deterministic Policy Gradient) was used that supports continuous action space, which allows setting the pressure amplitude values continuously within 0 and 1, bar. A shaped reward function is formulated that minimizes the distance between the bubble and the target position and implicitly encourages the agent to perform the position control within the shortest amount of time. In some cases, the optimal control can be 7 times faster than the solution expected from the linear theory.
Controlled Decoding from Language Models
We propose controlled decoding (CD), a novel off-policy reinforcement learning method to control the autoregressive generation from language models towards high reward outcomes. CD solves an off-policy reinforcement learning problem through a value function for the reward, which we call a prefix scorer. The prefix scorer is used at inference time to steer the generation towards higher reward outcomes. We show that the prefix scorer may be trained on (possibly) off-policy data to predict the expected reward when decoding is continued from a partially decoded response. We empirically demonstrate that CD is effective as a control mechanism on Reddit conversations corpus. We also show that the modularity of the design of CD makes it possible to control for multiple rewards, effectively solving a multi-objective reinforcement learning problem with no additional complexity. Finally, we show that CD can be applied in a novel blockwise fashion at inference-time, again without the need for any training-time changes, essentially bridging the gap between the popular best-of-K strategy and token-level reinforcement learning. This makes CD a promising approach for alignment of language models.
Cheating Automatic LLM Benchmarks: Null Models Achieve High Win Rates
Automatic LLM benchmarks, such as AlpacaEval 2.0, Arena-Hard-Auto, and MT-Bench, have become popular for evaluating language models due to their cost-effectiveness and scalability compared to human evaluation. Achieving high win rates on these benchmarks can significantly boost the promotional impact of newly released language models. This promotional benefit may motivate tricks, such as manipulating model output length or style to game win rates, even though several mechanisms have been developed to control length and disentangle style to reduce gameability. Nonetheless, we show that even a "null model" that always outputs a constant response (irrelevant to input instructions) can cheat automatic benchmarks and achieve top-ranked win rates: an 86.5% LC win rate on AlpacaEval 2.0; an 83.0 score on Arena-Hard-Auto; and a 9.55 score on MT-Bench. Moreover, the crafted cheating outputs are transferable because we assume that the instructions of these benchmarks (e.g., 805 samples of AlpacaEval 2.0) are private and cannot be accessed. While our experiments are primarily proof-of-concept, an adversary could use LLMs to generate more imperceptible cheating responses, unethically benefiting from high win rates and promotional impact. Our findings call for the development of anti-cheating mechanisms for reliable automatic benchmarks. The code is available at https://github.com/sail-sg/Cheating-LLM-Benchmarks.
Staying in the Sweet Spot: Responsive Reasoning Evolution via Capability-Adaptive Hint Scaffolding
Reinforcement learning with verifiable rewards (RLVR) has achieved remarkable success in enhancing the reasoning capabilities of large language models (LLMs). However, existing RLVR methods often suffer from exploration inefficiency due to mismatches between the training data's difficulty and the model's capability. LLMs fail to discover viable reasoning paths when problems are overly difficult, while learning little new capability when problems are too simple. In this work, we formalize the impact of problem difficulty by quantifying the relationship between loss descent speed and rollout accuracy. Building on this analysis, we propose SEELE, a novel supervision-aided RLVR framework that dynamically adjusts problem difficulty to stay within the high-efficiency region. SEELE augments each training sample by appending a hint (part of a full solution) after the original problem. Unlike previous hint-based approaches, SEELE deliberately and adaptively adjusts the hint length for each problem to achieve an optimal difficulty. To determine the optimal hint length, SEELE employs a multi-round rollout sampling strategy. In each round, it fits an item response theory model to the accuracy-hint pairs collected in preceding rounds to predict the required hint length for the next round. This instance-level, real-time difficulty adjustment aligns problem difficulty with the evolving model capability, thereby improving exploration efficiency. Experimental results show that SEELE outperforms Group Relative Policy Optimization (GRPO) and Supervised Fine-tuning (SFT) by +11.8 and +10.5 points, respectively, and surpasses the best previous supervision-aided approach by +3.6 points on average across six math reasoning benchmarks.
LAPO: Internalizing Reasoning Efficiency via Length-Adaptive Policy Optimization
Large reasoning models have achieved remarkable performance through extended chain-of-thought sequences, yet this computational freedom leads to excessive token generation even for simple problems. We present Length-Adaptive Policy Optimization (LAPO), a novel framework that transforms reasoning length control from an external constraint into an intrinsic model capability. Unlike existing approaches that impose rigid limits or rely on post-hoc interventions, LAPO enables models to internalize an understanding of appropriate reasoning depth through a two-stage reinforcement learning process. In the first stage, models learn natural reasoning patterns by discovering the statistical distribution of successful solution lengths. The second stage leverages these patterns as meta-cognitive guidance, embedding them directly within the model's reasoning context to ensure inference-time flexibility. Experiments on mathematical reasoning benchmarks demonstrate that LAPO reduces token usage by up to 40.9\% while improving accuracy by 2.3\%. Our analysis reveals that models trained with LAPO develop emergent abilities to allocate computational resources based on problem complexity, achieving efficient reasoning without sacrificing quality.
Conditional Advantage Estimation for Reinforcement Learning in Large Reasoning Models
Reinforcement Learning with Verifiable Rewards (RLVR) for large language models (LLMs) has achieved remarkable progress in enhancing LLMs' reasoning capabilities on tasks with clear correctness criteria, such as mathematical reasoning tasks. Several training metrics, such as entropy or response length, have been observed to correlate with different reasoning behaviors in reinforcement learning. Prior approaches incorporate such priors through reward or advantage shaping, which often relies on hand-crafted penalties and preferences (e.g., higher-is-better or lower-is-better). However, without careful hyperparameter tuning, these directional priors can be overly biased and may lead to failure. To this end, we introduce Conditional advANtage estimatiON (CANON), amplifying the impact of the target metric without presuming its direction. Specifically, CANON regroups the sampled responses into two groups based on the higher or lower value of a target metric, measures which metric trend contributes to better performance through inter-group comparison, and identifies the better response within the same group. In summary, CANON based on entropy consistently outperforms prior methods across three LLMs on both math reasoning and high-complexity logic tasks. When applied to response length, CANON further improves token efficiency, yielding a more favorable Pareto frontier in the performance-cost trade-off.
PokerGPT: An End-to-End Lightweight Solver for Multi-Player Texas Hold'em via Large Language Model
Poker, also known as Texas Hold'em, has always been a typical research target within imperfect information games (IIGs). IIGs have long served as a measure of artificial intelligence (AI) development. Representative prior works, such as DeepStack and Libratus heavily rely on counterfactual regret minimization (CFR) to tackle heads-up no-limit Poker. However, it is challenging for subsequent researchers to learn CFR from previous models and apply it to other real-world applications due to the expensive computational cost of CFR iterations. Additionally, CFR is difficult to apply to multi-player games due to the exponential growth of the game tree size. In this work, we introduce PokerGPT, an end-to-end solver for playing Texas Hold'em with arbitrary number of players and gaining high win rates, established on a lightweight large language model (LLM). PokerGPT only requires simple textual information of Poker games for generating decision-making advice, thus guaranteeing the convenient interaction between AI and humans. We mainly transform a set of textual records acquired from real games into prompts, and use them to fine-tune a lightweight pre-trained LLM using reinforcement learning human feedback technique. To improve fine-tuning performance, we conduct prompt engineering on raw data, including filtering useful information, selecting behaviors of players with high win rates, and further processing them into textual instruction using multiple prompt engineering techniques. Through the experiments, we demonstrate that PokerGPT outperforms previous approaches in terms of win rate, model size, training time, and response speed, indicating the great potential of LLMs in solving IIGs.
Treasure Hunt: Real-time Targeting of the Long Tail using Training-Time Markers
One of the most profound challenges of modern machine learning is performing well on the long-tail of rare and underrepresented features. Large general-purpose models are trained for many tasks, but work best on high-frequency use cases. After training, it is hard to adapt a model to perform well on specific use cases underrepresented in the training corpus. Relying on prompt engineering or few-shot examples to maximize the output quality on a particular test case can be frustrating, as models can be highly sensitive to small changes, react in unpredicted ways or rely on a fixed system prompt for maintaining performance. In this work, we ask: "Can we optimize our training protocols to both improve controllability and performance on underrepresented use cases at inference time?" We revisit the divide between training and inference techniques to improve long-tail performance while providing users with a set of control levers the model is trained to be responsive to. We create a detailed taxonomy of data characteristics and task provenance to explicitly control generation attributes and implicitly condition generations at inference time. We fine-tune a base model to infer these markers automatically, which makes them optional at inference time. This principled and flexible approach yields pronounced improvements in performance, especially on examples from the long tail of the training distribution. While we observe an average lift of 5.7% win rates in open-ended generation quality with our markers, we see over 9.1% gains in underrepresented domains. We also observe relative lifts of up to 14.1% on underrepresented tasks like CodeRepair and absolute improvements of 35.3% on length instruction following evaluations.
Truncating Trajectories in Monte Carlo Reinforcement Learning
In Reinforcement Learning (RL), an agent acts in an unknown environment to maximize the expected cumulative discounted sum of an external reward signal, i.e., the expected return. In practice, in many tasks of interest, such as policy optimization, the agent usually spends its interaction budget by collecting episodes of fixed length within a simulator (i.e., Monte Carlo simulation). However, given the discounted nature of the RL objective, this data collection strategy might not be the best option. Indeed, the rewards taken in early simulation steps weigh exponentially more than future rewards. Taking a cue from this intuition, in this paper, we design an a-priori budget allocation strategy that leads to the collection of trajectories of different lengths, i.e., truncated. The proposed approach provably minimizes the width of the confidence intervals around the empirical estimates of the expected return of a policy. After discussing the theoretical properties of our method, we make use of our trajectory truncation mechanism to extend Policy Optimization via Importance Sampling (POIS, Metelli et al., 2018) algorithm. Finally, we conduct a numerical comparison between our algorithm and POIS: the results are consistent with our theory and show that an appropriate truncation of the trajectories can succeed in improving performance.
HAPO: Training Language Models to Reason Concisely via History-Aware Policy Optimization
While scaling the length of responses at test-time has been shown to markedly improve the reasoning abilities and performance of large language models (LLMs), it often results in verbose outputs and increases inference cost. Prior approaches for efficient test-time scaling, typically using universal budget constraints or query-level length optimization, do not leverage historical information from previous encounters with the same problem during training. We hypothesize that this limits their ability to progressively make solutions more concise over time. To address this, we present History-Aware Policy Optimization (HAPO), which keeps track of a history state (e.g., the minimum length over previously generated correct responses) for each problem. HAPO employs a novel length reward function based on this history state to incentivize the discovery of correct solutions that are more concise than those previously found. Crucially, this reward structure avoids overly penalizing shorter incorrect responses with the goal of facilitating exploration towards more efficient solutions. By combining this length reward with a correctness reward, HAPO jointly optimizes for correctness and efficiency. We use HAPO to train DeepSeek-R1-Distill-Qwen-1.5B, DeepScaleR-1.5B-Preview, and Qwen-2.5-1.5B-Instruct, and evaluate HAPO on several math benchmarks that span various difficulty levels. Experiment results demonstrate that HAPO effectively induces LLMs' concise reasoning abilities, producing length reductions of 33-59% with accuracy drops of only 2-5%.
The Debate on RLVR Reasoning Capability Boundary: Shrinkage, Expansion, or Both? A Two-Stage Dynamic View
The ongoing debate on whether reinforcement learning with verifiable rewards (RLVR) expands or shrinks the reasoning capabilities of large language models (LLMs) remains unresolved. Some studies contend that RLVR mainly improves sampling efficiency but at the expense of diversity and exploratory capacity, resulting in capability boundary shrinkage. In contrast, others demonstrate that prolonged training can lead to the emergence of novel reasoning strategies, suggesting capability boundary expansion. To reconcile these contradictory findings, we theoretically and empirically show that both perspectives are partially valid-each aligning with a separate phase in an inherent two-stage probability mass dynamic: (1) Exploitation stage: initially, the model primarily samples explored high-reward and low-reward tokens, while rarely selecting the potentially optimal token. Positive advantage estimates increase the probability of high-reward tokens and decrease those of low-reward tokens, yet the optimal token's probability remains largely unchanged during this stage. (2) Exploration stage: as training advances, the growth rate of previously acquired high-reward tokens slows as their probabilities approach saturation. When a potentially optimal token-now receiving positive advantage estimates-is occasionally sampled, its probability increases, while those of the originally high-reward tokens decrease. This dynamic suggests that over-exploitation during the exploitation stage may lead to capability boundary shrinkage, whereas prolonged training into the exploration stage can promote an expansion of the reasoning capability boundary. Building upon our insights, we revisit the potential of only using relative negative gradients for prolonging training, providing a theoretical and empirical foundation for the development of more advanced reasoning capabilities.
Drawing Conclusions from Draws: Rethinking Preference Semantics in Arena-Style LLM Evaluation
In arena-style evaluation of large language models (LLMs), two LLMs respond to a user query, and the user chooses the winning response or deems the "battle" a draw, resulting in an adjustment to the ratings of both models. The prevailing approach for modeling these rating dynamics is to view battles as two-player game matches, as in chess, and apply the Elo rating system and its derivatives. In this paper, we critically examine this paradigm. Specifically, we question whether a draw genuinely means that the two models are equal and hence whether their ratings should be equalized. Instead, we conjecture that draws are more indicative of query difficulty: if the query is too easy, then both models are more likely to succeed equally. On three real-world arena datasets, we show that ignoring rating updates for draws yields a 1-3% relative increase in battle outcome prediction accuracy (which includes draws) for all four rating systems studied. Further analyses suggest that draws occur more for queries rated as very easy and those as highly objective, with risk ratios of 1.37 and 1.35, respectively. We recommend future rating systems to reconsider existing draw semantics and to account for query properties in rating updates.
Rethinking Evaluation Metric for Probability Estimation Models Using Esports Data
Probability estimation models play an important role in various fields, such as weather forecasting, recommendation systems, and sports analysis. Among several models estimating probabilities, it is difficult to evaluate which model gives reliable probabilities since the ground-truth probabilities are not available. The win probability estimation model for esports, which calculates the win probability under a certain game state, is also one of the fields being actively studied in probability estimation. However, most of the previous works evaluated their models using accuracy, a metric that only can measure the performance of discrimination. In this work, we firstly investigate the Brier score and the Expected Calibration Error (ECE) as a replacement of accuracy used as a performance evaluation metric for win probability estimation models in esports field. Based on the analysis, we propose a novel metric called Balance score which is a simple yet effective metric in terms of six good properties that probability estimation metric should have. Under the general condition, we also found that the Balance score can be an effective approximation of the true expected calibration error which has been imperfectly approximated by ECE using the binning technique. Extensive evaluations using simulation studies and real game snapshot data demonstrate the promising potential to adopt the proposed metric not only for the win probability estimation model for esports but also for evaluating general probability estimation models.
Precise Length Control in Large Language Models
Large Language Models (LLMs) are increasingly used in production systems, powering applications such as chatbots, summarization, and question answering. Despite their success, controlling the length of their response remains a significant challenge, particularly for tasks requiring structured outputs or specific levels of detail. In this work, we propose a method to adapt pre-trained decoder-only LLMs for precise control of response length. Our approach incorporates a secondary length-difference positional encoding (LDPE) into the input embeddings, which counts down to a user-set response termination length. Fine-tuning with LDPE allows the model to learn to terminate responses coherently at the desired length, achieving mean token errors of less than 3 tokens. We also introduce Max New Tokens++, an extension that enables flexible upper-bound length control, rather than an exact target. Experimental results on tasks such as question answering and document summarization demonstrate that our method enables precise length control without compromising response quality.
X-Teaming Evolutionary M2S: Automated Discovery of Multi-turn to Single-turn Jailbreak Templates
Multi-turn-to-single-turn (M2S) compresses iterative red-teaming into one structured prompt, but prior work relied on a handful of manually written templates. We present X-Teaming Evolutionary M2S, an automated framework that discovers and optimizes M2S templates through language-model-guided evolution. The system pairs smart sampling from 12 sources with an LLM-as-judge inspired by StrongREJECT and records fully auditable logs. Maintaining selection pressure by setting the success threshold to theta = 0.70, we obtain five evolutionary generations, two new template families, and 44.8% overall success (103/230) on GPT-4.1. A balanced cross-model panel of 2,500 trials (judge fixed) shows that structural gains transfer but vary by target; two models score zero at the same threshold. We also find a positive coupling between prompt length and score, motivating length-aware judging. Our results demonstrate that structure-level search is a reproducible route to stronger single-turn probes and underscore the importance of threshold calibration and cross-model evaluation. Code, configurations, and artifacts are available at https://github.com/hyunjun1121/M2S-x-teaming.
When More is Less: Understanding Chain-of-Thought Length in LLMs
Large Language Models (LLMs) employ Chain-of-Thought (CoT) reasoning to deconstruct complex problems. While longer CoTs are often presumed superior, this paper challenges that notion, arguing that longer is not always better. Drawing on combined evidence from real-world observations, controlled experiments, and theoretical analysis, we demonstrate that task accuracy typically follows an inverted U-shaped curve with CoT length, where performance initially improves but eventually decreases as the number of CoT steps increases. With controlled experiments, we further uncover the scaling behaviors of the optimal CoT length: it increases with task difficulty but decreases with model capability, exposing an inherent simplicity bias where more capable models favor shorter, more efficient CoT reasoning. This bias is also evident in Reinforcement Learning (RL) training, where models gravitate towards shorter CoTs as their accuracy improves. To have a deep understanding of these dynamics, we establish a simple theoretical model that formally proves these phenomena, including the optimal length's scaling laws and the emergence of simplicity bias during RL. Guided by this framework, we demonstrate significant practical benefits from training with optimally-lengthed CoTs and employing length-aware filtering at inference. These findings offer both a principled understanding of the "overthinking" phenomenon and multiple practical guidelines for CoT calibration, enabling LLMs to achieve optimal reasoning performance with adaptive CoTs tailored to task complexity and model capability.
Between Underthinking and Overthinking: An Empirical Study of Reasoning Length and correctness in LLMs
Large language models (LLMs) are increasingly optimized for long reasoning, under the assumption that more reasoning leads to better performance. However, emerging evidence suggests that longer responses can sometimes degrade accuracy rather than improve it. In this paper, we conduct a systematic empirical study of the relationship between reasoning length and answer correctness. We find that LLMs tend to overthink simple problems, generating unnecessarily long outputs, and underthink harder ones, failing to extend their reasoning when it is most needed. This indicates that models might misjudge problem difficulty and fail to calibrate their response length appropriately. Furthermore, we investigate the effects of length reduction with a preference optimization algorithm when simply preferring the shorter responses regardless of answer correctness. Experiments show that the generation length can be significantly reduced while maintaining acceptable accuracy. Our findings highlight generation length as a meaningful signal for reasoning behavior and motivate further exploration into LLMs' self-awareness in reasoning length adaptation.
Quantile Advantage Estimation for Entropy-Safe Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) strengthens LLM reasoning, but training often oscillates between {entropy collapse} and {entropy explosion}. We trace both hazards to the mean baseline used in value-free RL (e.g., GRPO and DAPO), which improperly penalizes negative-advantage samples under reward outliers. We propose {Quantile Advantage Estimation} (QAE), replacing the mean with a group-wise K-quantile baseline. QAE induces a response-level, two-regime gate: on hard queries (p <= 1 - K) it reinforces rare successes, while on easy queries (p > 1 - K) it targets remaining failures. Under first-order softmax updates, we prove {two-sided entropy safety}, giving lower and upper bounds on one-step entropy change that curb explosion and prevent collapse. Empirically, this minimal modification stabilizes entropy, sparsifies credit assignment (with tuned K, roughly 80% of responses receive zero advantage), and yields sustained pass@1 gains on Qwen3-8B/14B-Base across AIME 2024/2025 and AMC 2023. These results identify {baseline design} -- rather than token-level heuristics -- as the primary mechanism for scaling RLVR.
Adaptive Rollout Length for Model-Based RL Using Model-Free Deep RL
Model-based reinforcement learning promises to learn an optimal policy from fewer interactions with the environment compared to model-free reinforcement learning by learning an intermediate model of the environment in order to predict future interactions. When predicting a sequence of interactions, the rollout length, which limits the prediction horizon, is a critical hyperparameter as accuracy of the predictions diminishes in the regions that are further away from real experience. As a result, with a longer rollout length, an overall worse policy is learned in the long run. Thus, the hyperparameter provides a trade-off between quality and efficiency. In this work, we frame the problem of tuning the rollout length as a meta-level sequential decision-making problem that optimizes the final policy learned by model-based reinforcement learning given a fixed budget of environment interactions by adapting the hyperparameter dynamically based on feedback from the learning process, such as accuracy of the model and the remaining budget of interactions. We use model-free deep reinforcement learning to solve the meta-level decision problem and demonstrate that our approach outperforms common heuristic baselines on two well-known reinforcement learning environments.
Self-Control of LLM Behaviors by Compressing Suffix Gradient into Prefix Controller
We propose Self-Control, a novel method utilizing suffix gradients to control the behavior of large language models (LLMs) without explicit human annotations. Given a guideline expressed in suffix string and the model's self-assessment of adherence, Self-Control computes the gradient of this self-judgment concerning the model's hidden states, directly influencing the auto-regressive generation process towards desired behaviors. To enhance efficiency, we introduce Self-Control_{prefix}, a compact module that encapsulates the learned representations from suffix gradients into a Prefix Controller, facilitating inference-time control for various LLM behaviors. Our experiments demonstrate Self-Control's efficacy across multiple domains, including emotional modulation, ensuring harmlessness, and enhancing complex reasoning. Especially, Self-Control_{prefix} enables a plug-and-play control and jointly controls multiple attributes, improving model outputs without altering model parameters or increasing inference-time costs.
Overcoming Slow Decision Frequencies in Continuous Control: Model-Based Sequence Reinforcement Learning for Model-Free Control
Reinforcement learning (RL) is rapidly reaching and surpassing human-level control capabilities. However, state-of-the-art RL algorithms often require timesteps and reaction times significantly faster than human capabilities, which is impractical in real-world settings and typically necessitates specialized hardware. Such speeds are difficult to achieve in the real world and often requires specialized hardware. We introduce Sequence Reinforcement Learning (SRL), an RL algorithm designed to produce a sequence of actions for a given input state, enabling effective control at lower decision frequencies. SRL addresses the challenges of learning action sequences by employing both a model and an actor-critic architecture operating at different temporal scales. We propose a "temporal recall" mechanism, where the critic uses the model to estimate intermediate states between primitive actions, providing a learning signal for each individual action within the sequence. Once training is complete, the actor can generate action sequences independently of the model, achieving model-free control at a slower frequency. We evaluate SRL on a suite of continuous control tasks, demonstrating that it achieves performance comparable to state-of-the-art algorithms while significantly reducing actor sample complexity. To better assess performance across varying decision frequencies, we introduce the Frequency-Averaged Score (FAS) metric. Our results show that SRL significantly outperforms traditional RL algorithms in terms of FAS, making it particularly suitable for applications requiring variable decision frequencies. Additionally, we compare SRL with model-based online planning, showing that SRL achieves superior FAS while leveraging the same model during training that online planners use for planning.
CoT-Valve: Length-Compressible Chain-of-Thought Tuning
Chain-of-Thought significantly enhances a model's reasoning capability, but it also comes with a considerable increase in inference costs due to long chains. With the observation that the reasoning path can be easily compressed under easy tasks but struggle on hard tasks, we explore the feasibility of elastically controlling the length of reasoning paths with only one model, thereby reducing the inference overhead of reasoning models dynamically based on task difficulty. We introduce a new tuning and inference strategy named CoT-Valve, designed to allow models to generate reasoning chains of varying lengths. To achieve this, we propose to identify a direction in the parameter space that, when manipulated, can effectively control the length of generated CoT. Moreover, we show that this property is valuable for compressing the reasoning chain. We construct datasets with chains from long to short for the same questions and explore two enhanced strategies for CoT-Valve: (1) a precise length-compressible CoT tuning method, and (2) a progressive chain length compression approach. Our experiments show that CoT-Valve successfully enables controllability and compressibility of the chain and shows better performance than the prompt-based control. We applied this method to QwQ-32B-Preview, reducing reasoning chains on GSM8K from 741 to 225 tokens with a minor performance drop (95.07% to 94.92%) and on AIME from 6827 to 4629 tokens, with only one additional incorrect answer.
LongWriter-Zero: Mastering Ultra-Long Text Generation via Reinforcement Learning
Ultra-long generation by large language models (LLMs) is a widely demanded scenario, yet it remains a significant challenge due to their maximum generation length limit and overall quality degradation as sequence length increases. Previous approaches, exemplified by LongWriter, typically rely on ''teaching'', which involves supervised fine-tuning (SFT) on synthetic long-form outputs. However, this strategy heavily depends on synthetic SFT data, which is difficult and costly to construct, often lacks coherence and consistency, and tends to be overly artificial and structurally monotonous. In this work, we propose an incentivization-based approach that, starting entirely from scratch and without relying on any annotated or synthetic data, leverages reinforcement learning (RL) to foster the emergence of ultra-long, high-quality text generation capabilities in LLMs. We perform RL training starting from a base model, similar to R1-Zero, guiding it to engage in reasoning that facilitates planning and refinement during the writing process. To support this, we employ specialized reward models that steer the LLM towards improved length control, writing quality, and structural formatting. Experimental evaluations show that our LongWriter-Zero model, trained from Qwen2.5-32B, consistently outperforms traditional SFT methods on long-form writing tasks, achieving state-of-the-art results across all metrics on WritingBench and Arena-Write, and even surpassing 100B+ models such as DeepSeek R1 and Qwen3-235B. We open-source our data and model checkpoints under https://huggingface.co/THU-KEG/LongWriter-Zero-32B
AlphaSnake: Policy Iteration on a Nondeterministic NP-hard Markov Decision Process
Reinforcement learning has recently been used to approach well-known NP-hard combinatorial problems in graph theory. Among these problems, Hamiltonian cycle problems are exceptionally difficult to analyze, even when restricted to individual instances of structurally complex graphs. In this paper, we use Monte Carlo Tree Search (MCTS), the search algorithm behind many state-of-the-art reinforcement learning algorithms such as AlphaZero, to create autonomous agents that learn to play the game of Snake, a game centered on properties of Hamiltonian cycles on grid graphs. The game of Snake can be formulated as a single-player discounted Markov Decision Process (MDP) where the agent must behave optimally in a stochastic environment. Determining the optimal policy for Snake, defined as the policy that maximizes the probability of winning - or win rate - with higher priority and minimizes the expected number of time steps to win with lower priority, is conjectured to be NP-hard. Performance-wise, compared to prior work in the Snake game, our algorithm is the first to achieve a win rate over 0.5 (a uniform random policy achieves a win rate < 2.57 times 10^{-15}), demonstrating the versatility of AlphaZero in approaching NP-hard environments.
Surrogate Signals from Format and Length: Reinforcement Learning for Solving Mathematical Problems without Ground Truth Answers
Large Language Models have achieved remarkable success in natural language processing tasks, with Reinforcement Learning playing a key role in adapting them to specific applications. However, obtaining ground truth answers for training LLMs in mathematical problem-solving is often challenging, costly, and sometimes unfeasible. This research delves into the utilization of format and length as surrogate signals to train LLMs for mathematical problem-solving, bypassing the need for traditional ground truth answers.Our study shows that a reward function centered on format correctness alone can yield performance improvements comparable to the standard GRPO algorithm in early phases. Recognizing the limitations of format-only rewards in the later phases, we incorporate length-based rewards. The resulting GRPO approach, leveraging format-length surrogate signals, not only matches but surpasses the performance of the standard GRPO algorithm relying on ground truth answers in certain scenarios, achieving 40.0\% accuracy on AIME2024 with a 7B base model. Through systematic exploration and experimentation, this research not only offers a practical solution for training LLMs to solve mathematical problems and reducing the dependence on extensive ground truth data collection, but also reveals the essence of why our label-free approach succeeds: base model is like an excellent student who has already mastered mathematical and logical reasoning skills, but performs poorly on the test paper, it simply needs to develop good answering habits to achieve outstanding results in exams , in other words, to unlock the capabilities it already possesses.
Towards Faithful and Controllable Personalization via Critique-Post-Edit Reinforcement Learning
Faithfully personalizing large language models (LLMs) to align with individual user preferences is a critical but challenging task. While supervised fine-tuning (SFT) quickly reaches a performance plateau, standard reinforcement learning from human feedback (RLHF) also struggles with the nuances of personalization. Scalar-based reward models are prone to reward hacking which leads to verbose and superficially personalized responses. To address these limitations, we propose Critique-Post-Edit, a robust reinforcement learning framework that enables more faithful and controllable personalization. Our framework integrates two key components: (1) a Personalized Generative Reward Model (GRM) that provides multi-dimensional scores and textual critiques to resist reward hacking, and (2) a Critique-Post-Edit mechanism where the policy model revises its own outputs based on these critiques for more targeted and efficient learning. Under a rigorous length-controlled evaluation, our method substantially outperforms standard PPO on personalization benchmarks. Personalized Qwen2.5-7B achieves an average 11\% win-rate improvement, and personalized Qwen2.5-14B model surpasses the performance of GPT-4.1. These results demonstrate a practical path to faithful, efficient, and controllable personalization.
Conformal Risk Control
We extend conformal prediction to control the expected value of any monotone loss function. The algorithm generalizes split conformal prediction together with its coverage guarantee. Like conformal prediction, the conformal risk control procedure is tight up to an O(1/n) factor. We also introduce extensions of the idea to distribution shift, quantile risk control, multiple and adversarial risk control, and expectations of U-statistics. Worked examples from computer vision and natural language processing demonstrate the usage of our algorithm to bound the false negative rate, graph distance, and token-level F1-score.
DLER: Doing Length pEnalty Right - Incentivizing More Intelligence per Token via Reinforcement Learning
Reasoning language models such as OpenAI-o1, DeepSeek-R1, and Qwen achieve strong performance via extended chains of thought but often generate unnecessarily long outputs. Maximizing intelligence per token--accuracy relative to response length--remains an open problem. We revisit reinforcement learning (RL) with the simplest length penalty--truncation--and show that accuracy degradation arises not from the lack of sophisticated penalties but from inadequate RL optimization. We identify three key challenges: (i) large bias in advantage estimation, (ii) entropy collapse, and (iii) sparse reward signal. We address them with Doing Length pEnalty Right (DLER), a training recipe combining batch-wise reward normalization, higher clipping, dynamic sampling, and a simple truncation length penalty. DLER achieves state-of-the-art accuracy--efficiency trade-offs, cutting output length by over 70 percent while surpassing all previous baseline accuracy. It also improves test-time scaling: compared to DeepSeek-R1-7B, DLER-7B generates multiple concise responses in parallel with 28 percent higher accuracy and lower latency. We further introduce Difficulty-Aware DLER, which adaptively tightens truncation on easier questions for additional efficiency gains. We also propose an update-selective merging method that preserves baseline accuracy while retaining the concise reasoning ability of the DLER model, which is useful for scenarios where RL training data is scarce.
Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement
Recent research enhances language model reasoning by scaling test-time compute via longer chain-of-thought traces. This often improves accuracy but also introduces redundancy and high computational cost, especially for small language models distilled with supervised fine-tuning (SFT). In this work, we propose new algorithms to improve token-efficient reasoning with small-scale models by effectively trading off accuracy and computation. We first show that the post-SFT model fails to determine the optimal stopping point of the reasoning process, resulting in verbose and repetitive outputs. Verbosity also significantly varies across wrong vs correct responses. To address these issues, we propose two solutions: (1) Temperature scaling (TS) to control the stopping point for the thinking phase and thereby trace length, and (2) TLDR: a length-regularized reinforcement learning method based on GRPO that facilitates multi-level trace length control (e.g. short, medium, long reasoning). Experiments on four reasoning benchmarks, MATH500, AMC, AIME24 and OlympiadBench, demonstrate that TS is highly effective compared to s1's budget forcing approach and TLDR significantly improves token efficiency by about 50% with minimal to no accuracy loss over the SFT baseline. Moreover, TLDR also facilitates flexible control over the response length, offering a practical and effective solution for token-efficient reasoning in small models. Ultimately, our work reveals the importance of stopping time control, highlights shortcomings of pure SFT, and provides effective algorithmic recipes.
FAST: Improving Controllability for Text Generation with Feedback Aware Self-Training
Controllable text generation systems often leverage control codes to direct various properties of the output like style and length. Inspired by recent work on causal inference for NLP, this paper reveals a previously overlooked flaw in these control code-based conditional text generation algorithms. Spurious correlations in the training data can lead models to incorrectly rely on parts of the input other than the control code for attribute selection, significantly undermining downstream generation quality and controllability. We demonstrate the severity of this issue with a series of case studies and then propose two simple techniques to reduce these correlations in training sets. The first technique is based on resampling the data according to an example's propensity towards each linguistic attribute (IPS). The second produces multiple counterfactual versions of each example and then uses an additional feedback mechanism to remove noisy examples (feedback aware self-training, FAST). We evaluate on 3 tasks -- news headline, meta review, and search ads generation -- and demonstrate that FAST can significantly improve the controllability and language quality of generated outputs when compared to state-of-the-art controllable text generation approaches.
Adaptive Deep Reasoning: Triggering Deep Thinking When Needed
Large language models (LLMs) have shown impressive capabilities in handling complex tasks through long-chain reasoning. However, the extensive reasoning steps involved can significantly increase computational costs, posing challenges for real-world deployment. Recent efforts have focused on optimizing reasoning efficiency by shortening the Chain-of-Thought (CoT) reasoning processes through various approaches, such as length-aware prompt engineering, supervised fine-tuning on CoT data with variable lengths, and reinforcement learning with length penalties. Although these methods effectively reduce reasoning length, they still necessitate an initial reasoning phase. More recent approaches have attempted to integrate long-chain and short-chain reasoning abilities into a single model, yet they still rely on manual control to toggle between short and long CoT. In this work, we propose a novel approach that autonomously switches between short and long reasoning chains based on problem complexity. Our method begins with supervised fine-tuning of the base model to equip both long-chain and short-chain reasoning abilities. We then employ reinforcement learning to further balance short and long CoT generation while maintaining accuracy through two key strategies: first, integrating reinforcement learning with a long-short adaptive group-wise reward strategy to assess prompt complexity and provide corresponding rewards; second, implementing a logit-based reasoning mode switching loss to optimize the model's initial token choice, thereby guiding the selection of the reasoning type. Evaluations on mathematical datasets demonstrate that our model can dynamically switch between long-chain and short-chain reasoning modes without substantially sacrificing performance. This advancement enhances the practicality of reasoning in large language models for real-world applications.
Playing games with Large language models: Randomness and strategy
Playing games has a long history of describing intricate interactions in simplified forms. In this paper we explore if large language models (LLMs) can play games, investigating their capabilities for randomisation and strategic adaptation through both simultaneous and sequential game interactions. We focus on GPT-4o-Mini-2024-08-17 and test two games between LLMs: Rock Paper Scissors (RPS) and games of strategy (Prisoners Dilemma PD). LLMs are often described as stochastic parrots, and while they may indeed be parrots, our results suggest that they are not very stochastic in the sense that their outputs - when prompted to be random - are often very biased. Our research reveals that LLMs appear to develop loss aversion strategies in repeated games, with RPS converging to stalemate conditions while PD shows systematic shifts between cooperative and competitive outcomes based on prompt design. We detail programmatic tools for independent agent interactions and the Agentic AI challenges faced in implementation. We show that LLMs can indeed play games, just not very well. These results have implications for the use of LLMs in multi-agent LLM systems and showcase limitations in current approaches to model output for strategic decision-making.
Beyond the Exploration-Exploitation Trade-off: A Hidden State Approach for LLM Reasoning in RLVR
A prevailing view in Reinforcement Learning for Verifiable Rewards (RLVR) interprets recent progress through the lens of an exploration-exploitation trade-off, a perspective largely shaped by token-level metrics. We re-examine this perspective, proposing that this perceived trade-off may not be a fundamental constraint but rather an artifact of the measurement level. To investigate this, we shift the analysis to the semantically rich hidden-state space, adopting Effective Rank (ER) to quantify exploration and proposing its novel first- and second-order derivatives, named Effective Rank Velocity (ERV) and Effective Rank Acceleration (ERA), to capture exploitation dynamics. Our analysis reveals that at the hidden-state level, exploration and exploitation could be decoupled (Sec. 4). This finding reveals an opportunity to enhance both capacities simultaneously. This insight motivates our method, Velocity-Exploiting Rank-Learning (VERL), the first to operationalize the principle of synergistic exploration-exploitation enhancement by directly shaping the RL advantage function. The key innovation is leveraging the theoretically stable ERA as a predictive meta-controller to create a synergistic, dual-channel incentive structure. Instead of forcing a trade-off, VERL prospectively amplifies rewards for exploration to preempt overconfidence and reinforces exploitative gains to consolidate reasoning. Experiments across diverse LLMs and reasoning benchmarks show consistent gains, including up to 21.4% absolute accuracy improvement on the challenging Gaokao 2024 dataset.
ShorterBetter: Guiding Reasoning Models to Find Optimal Inference Length for Efficient Reasoning
Reasoning models such as OpenAI o3 and DeepSeek-R1 have demonstrated strong performance on reasoning-intensive tasks through extended Chain-of-Thought (CoT) prompting. While longer reasoning traces can facilitate a more thorough exploration of solution paths for complex problems, researchers have observed that these models often "overthink", leading to inefficient inference. In this paper, we introduce ShorterBetter, a simple yet effective reinforcement learning methed that enables reasoning language models to discover their own optimal CoT lengths without human intervention. By sampling multiple outputs per problem and defining the Sample Optimal Length (SOL) as the shortest correct response among all the outputs, our method dynamically guides the model toward optimal inference lengths. Applied to the DeepSeek-Distill-Qwen-1.5B model, ShorterBetter achieves up to an 80% reduction in output length on both in-domain and out-of-domain reasoning tasks while maintaining accuracy. Our analysis shows that overly long reasoning traces often reflect loss of reasoning direction, and thus suggests that the extended CoT produced by reasoning models is highly compressible.
Robust Losses for Learning Value Functions
Most value function learning algorithms in reinforcement learning are based on the mean squared (projected) Bellman error. However, squared errors are known to be sensitive to outliers, both skewing the solution of the objective and resulting in high-magnitude and high-variance gradients. To control these high-magnitude updates, typical strategies in RL involve clipping gradients, clipping rewards, rescaling rewards, or clipping errors. While these strategies appear to be related to robust losses -- like the Huber loss -- they are built on semi-gradient update rules which do not minimize a known loss. In this work, we build on recent insights reformulating squared Bellman errors as a saddlepoint optimization problem and propose a saddlepoint reformulation for a Huber Bellman error and Absolute Bellman error. We start from a formalization of robust losses, then derive sound gradient-based approaches to minimize these losses in both the online off-policy prediction and control settings. We characterize the solutions of the robust losses, providing insight into the problem settings where the robust losses define notably better solutions than the mean squared Bellman error. Finally, we show that the resulting gradient-based algorithms are more stable, for both prediction and control, with less sensitivity to meta-parameters.
MaxMin-RLHF: Towards Equitable Alignment of Large Language Models with Diverse Human Preferences
Reinforcement Learning from Human Feedback (RLHF) aligns language models to human preferences by employing a singular reward model derived from preference data. However, such an approach overlooks the rich diversity of human preferences inherent in data collected from multiple users. In this work, we first derive an impossibility result of alignment with single reward RLHF, thereby highlighting its insufficiency in representing diverse human preferences. To provide an equitable solution to the problem, we learn a mixture of preference distributions via an expectation-maximization algorithm and propose a MaxMin alignment objective for policy learning inspired by the Egalitarian principle in social choice theory to better represent diverse human preferences. We elucidate the connection of our proposed approach to distributionally robust optimization and general utility RL, thereby highlighting the generality and robustness of our proposed solution. We present comprehensive experimental results on small-scale (GPT-2) and large-scale language models (with Tulu2-7B) and show the efficacy of the proposed approach in the presence of diversity among human preferences. Our algorithm achieves an average improvement of more than 16% in win-rates over conventional RLHF algorithms and improves the win-rate (accuracy) for minority groups by over 33% without compromising the performance of majority groups, showcasing the robustness and fairness of our approach. We remark that our findings in this work are not only limited to language models but also extend to reinforcement learning in general.
Critic-Guided Decoding for Controlled Text Generation
Steering language generation towards objectives or away from undesired content has been a long-standing goal in utilizing language models (LM). Recent work has demonstrated reinforcement learning and weighted decoding as effective approaches to achieve a higher level of language control and quality with pros and cons. In this work, we propose a novel critic decoding method for controlled language generation (CriticControl) that combines the strengths of reinforcement learning and weighted decoding. Specifically, we adopt the actor-critic framework to train an LM-steering critic from non-differentiable reward models. And similar to weighted decoding, our method freezes the language model and manipulates the output token distribution using called critic, improving training efficiency and stability. Evaluation of our method on three controlled generation tasks, namely topic control, sentiment control, and detoxification, shows that our approach generates more coherent and well-controlled texts than previous methods. In addition, CriticControl demonstrates superior generalization ability in zero-shot settings. Human evaluation studies also corroborate our findings.
WPO: Enhancing RLHF with Weighted Preference Optimization
Reinforcement learning from human feedback (RLHF) is a promising solution to align large language models (LLMs) more closely with human values. Off-policy preference optimization, where the preference data is obtained from other models, is widely adopted due to its cost efficiency and scalability. However, off-policy preference optimization often suffers from a distributional gap between the policy used for data collection and the target policy, leading to suboptimal optimization. In this paper, we propose a novel strategy to mitigate this problem by simulating on-policy learning with off-policy preference data. Our Weighted Preference Optimization (WPO) method adapts off-policy data to resemble on-policy data more closely by reweighting preference pairs according to their probability under the current policy. This method not only addresses the distributional gap problem but also enhances the optimization process without incurring additional costs. We validate our method on instruction following benchmarks including Alpaca Eval 2 and MT-bench. WPO not only outperforms Direct Preference Optimization (DPO) by up to 5.6% on Alpaca Eval 2 but also establishes a remarkable length-controlled winning rate against GPT-4-turbo of 48.6% based on Llama-3-8B-Instruct, making it the strongest 8B model on the leaderboard. We will release the code and models at https://github.com/wzhouad/WPO.
Implicit Reward as the Bridge: A Unified View of SFT and DPO Connections
Post-training processes are essential phases in grounding pre-trained language models to real-world tasks, with learning from demonstrations or preference signals playing a crucial role in this adaptation. We present a unified theoretical framework bridging Supervised Fine-Tuning (SFT) and preference learning in Large Language Model (LLM) post-training. Through rigorous mathematical derivation, we demonstrate that both SFT and preference learning methods like Direct Preference Optimization (DPO) operate within the same optimal policy-reward subspace, with SFT representing a special case of implicit reward learning. Our analysis reveals a critical limitation in conventional SFT: the KL divergence term in distribution matching becomes constant with respect to the policy during optimization, failing to constrain model updates. To address this, we propose a simple yet effective learning rate reduction approach that yields significant performance improvements (up to 25\% relative gain and 6\% absolute win rate increase in instruction following tasks. Additionally, we derive alternative SFT objectives from various f-divergence functions that preserve the KL term during optimization, further enhancing post-DPO model performance. Finally, we extend the theoretical relationship between LLM logits and Q-functions from preference learning to the SFT context, providing mathematical derivations and experimental validation.
Causal Strategic Classification: A Tale of Two Shifts
When users can benefit from certain predictive outcomes, they may be prone to act to achieve those outcome, e.g., by strategically modifying their features. The goal in strategic classification is therefore to train predictive models that are robust to such behavior. However, the conventional framework assumes that changing features does not change actual outcomes, which depicts users as "gaming" the system. Here we remove this assumption, and study learning in a causal strategic setting where true outcomes do change. Focusing on accuracy as our primary objective, we show how strategic behavior and causal effects underlie two complementing forms of distribution shift. We characterize these shifts, and propose a learning algorithm that balances between these two forces and over time, and permits end-to-end training. Experiments on synthetic and semi-synthetic data demonstrate the utility of our approach.
Planner-R1: Reward Shaping Enables Efficient Agentic RL with Smaller LLMs
We investigated Agentic RL with large language models on the TravelPlanner benchmark. Our approach, Planner-R1, achieved a 56.9\% final-pass rate with only 180 training queries, a 2.7times improvement over GPT-5's 21.2% baseline and the strongest agentic result on the public leaderboard. A central finding was that smaller models (8B) were highly responsive to reward shaping: with dense process-level signals, they reached competitive performance while being 3.5times more compute-efficient and 1.5times more memory-efficient than 32B models. Larger models were more robust under sparse rewards but exhibited smaller relative gains from shaping and higher variance across runs. While curriculum learning offered no significant benefit, shaped rewards consistently amplified learning dynamics, making 8B models the most efficient setting for agentic RL. Crucially, these gains did not come at the cost of overfitting: fine-tuned models mostly maintained or exceeded baseline performance on out-of-domain tasks, including Multi-IF, NaturalPlan, and tau-Bench. These results establish reward shaping as a decisive lever for scaling agentic RL, highlight the competitive strength of smaller models, and demonstrate that efficiency can be achieved without sacrificing generalization.
Improved Policy Evaluation for Randomized Trials of Algorithmic Resource Allocation
We consider the task of evaluating policies of algorithmic resource allocation through randomized controlled trials (RCTs). Such policies are tasked with optimizing the utilization of limited intervention resources, with the goal of maximizing the benefits derived. Evaluation of such allocation policies through RCTs proves difficult, notwithstanding the scale of the trial, because the individuals' outcomes are inextricably interlinked through resource constraints controlling the policy decisions. Our key contribution is to present a new estimator leveraging our proposed novel concept, that involves retrospective reshuffling of participants across experimental arms at the end of an RCT. We identify conditions under which such reassignments are permissible and can be leveraged to construct counterfactual trials, whose outcomes can be accurately ascertained, for free. We prove theoretically that such an estimator is more accurate than common estimators based on sample means -- we show that it returns an unbiased estimate and simultaneously reduces variance. We demonstrate the value of our approach through empirical experiments on synthetic, semi-synthetic as well as real case study data and show improved estimation accuracy across the board.
Impact of a Batter in ODI Cricket Implementing Regression Models from Match Commentary
Cricket, "a Gentleman's Game", is a prominent sport rising worldwide. Due to the rising competitiveness of the sport, players and team management have become more professional with their approach. Prior studies predicted individual performance or chose the best team but did not highlight the batter's potential. On the other hand, our research aims to evaluate a player's impact while considering his control in various circumstances. This paper seeks to understand the conundrum behind this impactful performance by determining how much control a player has over the circumstances and generating the "Effective Runs",a new measure we propose. We first gathered the fundamental cricket data from open-source datasets; however, variables like pitch, weather, and control were not readily available for all matches. As a result, we compiled our corpus data by analyzing the commentary of the match summaries. This gave us an insight into the particular game's weather and pitch conditions. Furthermore, ball-by-ball inspection from the commentary led us to determine the control of the shots played by the batter. We collected data for the entire One Day International career, up to February 2022, of 3 prominent cricket players: Rohit G Sharma, David A Warner, and Kane S Williamson. Lastly, to prepare the dataset, we encoded, scaled, and split the dataset to train and test Machine Learning Algorithms. We used Multiple Linear Regression (MLR), Polynomial Regression, Support Vector Regression (SVR), Decision Tree Regression, and Random Forest Regression on each player's data individually to train them and predict the Impact the player will have on the game. Multiple Linear Regression and Random Forest give the best predictions accuracy of 90.16 percent and 87.12 percent, respectively.
Near-Minimax-Optimal Risk-Sensitive Reinforcement Learning with CVaR
In this paper, we study risk-sensitive Reinforcement Learning (RL), focusing on the objective of Conditional Value at Risk (CVaR) with risk tolerance tau. Starting with multi-arm bandits (MABs), we show the minimax CVaR regret rate is Omega(tau^{-1AK}), where A is the number of actions and K is the number of episodes, and that it is achieved by an Upper Confidence Bound algorithm with a novel Bernstein bonus. For online RL in tabular Markov Decision Processes (MDPs), we show a minimax regret lower bound of Omega(tau^{-1SAK}) (with normalized cumulative rewards), where S is the number of states, and we propose a novel bonus-driven Value Iteration procedure. We show that our algorithm achieves the optimal regret of widetilde O(tau^{-1SAK}) under a continuity assumption and in general attains a near-optimal regret of widetilde O(tau^{-1}SAK), which is minimax-optimal for constant tau. This improves on the best available bounds. By discretizing rewards appropriately, our algorithms are computationally efficient.
Tree-OPO: Off-policy Monte Carlo Tree-Guided Advantage Optimization for Multistep Reasoning
Recent advances in reasoning with large language models (LLMs) have shown the effectiveness of Monte Carlo Tree Search (MCTS) for generating high-quality intermediate trajectories, particularly in math and symbolic domains. Inspired by this, we explore how MCTS-derived trajectories, traditionally used for training value or reward models, can be repurposed to improve policy optimization in preference-based reinforcement learning (RL). Specifically, we focus on Group Relative Policy Optimization (GRPO), a recent algorithm that enables preference-consistent policy learning without value networks. We propose a staged GRPO training paradigm where completions are derived from partially revealed MCTS rollouts, introducing a novel tree-structured setting for advantage estimation. This leads to a rich class of prefix-conditioned reward signals, which we analyze theoretically and empirically. Our initial results indicate that while structured advantage estimation can stabilize updates and better reflect compositional reasoning quality, challenges such as advantage saturation and reward signal collapse remain. We propose heuristic and statistical solutions to mitigate these issues and discuss open challenges for learning under staged or tree-like reward structures.
SPC: Evolving Self-Play Critic via Adversarial Games for LLM Reasoning
Evaluating the step-by-step reliability of large language model (LLM) reasoning, such as Chain-of-Thought, remains challenging due to the difficulty and cost of obtaining high-quality step-level supervision. In this paper, we introduce Self-Play Critic (SPC), a novel approach where a critic model evolves its ability to assess reasoning steps through adversarial self-play games, eliminating the need for manual step-level annotation. SPC involves fine-tuning two copies of a base model to play two roles, namely a "sneaky generator" that deliberately produces erroneous steps designed to be difficult to detect, and a "critic" that analyzes the correctness of reasoning steps. These two models engage in an adversarial game in which the generator aims to fool the critic, while the critic model seeks to identify the generator's errors. Using reinforcement learning based on the game outcomes, the models iteratively improve; the winner of each confrontation receives a positive reward and the loser receives a negative reward, driving continuous self-evolution. Experiments on three reasoning process benchmarks (ProcessBench, PRM800K, DeltaBench) demonstrate that our SPC progressively enhances its error detection capabilities (e.g., accuracy increases from 70.8% to 77.7% on ProcessBench) and surpasses strong baselines, including distilled R1 model. Furthermore, applying SPC to guide the test-time search of diverse LLMs significantly improves their mathematical reasoning performance on MATH500 and AIME2024, outperforming state-of-the-art process reward models.
Diverse, not Short: A Length-Controlled Self-Learning Framework for Improving Response Diversity of Language Models
Diverse language model responses are crucial for creative generation, open-ended tasks, and self-improvement training. We show that common diversity metrics, and even reward models used for preference optimization, systematically bias models toward shorter outputs, limiting expressiveness. To address this, we introduce Diverse, not Short (Diverse-NS), a length-controlled self-learning framework that improves response diversity while maintaining length parity. By generating and filtering preference data that balances diversity, quality, and length, Diverse-NS enables effective training using only 3,000 preference pairs. Applied to LLaMA-3.1-8B and the Olmo-2 family, Diverse-NS substantially enhances lexical and semantic diversity. We show consistent improvement in diversity with minor reduction or gains in response quality on four creative generation tasks: Divergent Associations, Persona Generation, Alternate Uses, and Creative Writing. Surprisingly, experiments with the Olmo-2 model family (7B, and 13B) show that smaller models like Olmo-2-7B can serve as effective "diversity teachers" for larger models. By explicitly addressing length bias, our method efficiently pushes models toward more diverse and expressive outputs.
Minimax Exploiter: A Data Efficient Approach for Competitive Self-Play
Recent advances in Competitive Self-Play (CSP) have achieved, or even surpassed, human level performance in complex game environments such as Dota 2 and StarCraft II using Distributed Multi-Agent Reinforcement Learning (MARL). One core component of these methods relies on creating a pool of learning agents -- consisting of the Main Agent, past versions of this agent, and Exploiter Agents -- where Exploiter Agents learn counter-strategies to the Main Agents. A key drawback of these approaches is the large computational cost and physical time that is required to train the system, making them impractical to deploy in highly iterative real-life settings such as video game productions. In this paper, we propose the Minimax Exploiter, a game theoretic approach to exploiting Main Agents that leverages knowledge of its opponents, leading to significant increases in data efficiency. We validate our approach in a diversity of settings, including simple turn based games, the arcade learning environment, and For Honor, a modern video game. The Minimax Exploiter consistently outperforms strong baselines, demonstrating improved stability and data efficiency, leading to a robust CSP-MARL method that is both flexible and easy to deploy.
PositionID: LLMs can Control Lengths, Copy and Paste with Explicit Positional Awareness
Large Language Models (LLMs) demonstrate impressive capabilities across various domains, including role-playing, creative writing, mathematical reasoning, and coding. Despite these advancements, LLMs still encounter challenges with length control, frequently failing to adhere to specific length constraints due to their token-level operations and insufficient training on data with strict length limitations. We identify this issue as stemming from a lack of positional awareness and propose novel approaches--PositionID Prompting and PositionID Fine-Tuning--to address it. These methods enhance the model's ability to continuously monitor and manage text length during generation. Additionally, we introduce PositionID CP Prompting to enable LLMs to perform copy and paste operations accurately. Furthermore, we develop two benchmarks for evaluating length control and copy-paste abilities. Our experiments demonstrate that our methods significantly improve the model's adherence to length constraints and copy-paste accuracy without compromising response quality.
Balanced Actor Initialization: Stable RLHF Training of Distillation-Based Reasoning Models
The development of alignment and reasoning capabilities in large language models has seen remarkable progress through two paradigms: instruction tuning and reinforcement learning from human feedback (RLHF) alignment paradigm, and distillation-based reasoning fine-tuning paradigm. While both approaches prove effective independently, the third paradigm of applying RLHF to distillation-trained models presents significant challenges. Our investigation reveals two critical phenomena that emerge in this paradigm: Sequence Length Collapse, where language generation dramatically reduces during early RLHF training, and the Reward Hockey Stick Curve, featuring severe reward score drops followed by gradual recovery. These instabilities fundamentally compromise the model's alignment and reasoning capabilities. To address these challenges, we propose Balanced Actor Initialization (BAI), a two-stage weighted model merging approach. BAI first merges instruction-following and distillation-based reasoning fine-tuned models, then further combines this intermediate model with the pretrained model to preserve foundational knowledge. Through comprehensive experiments across diverse benchmarks and detailed analysis of training experiments, we demonstrate that BAI resolves Sequence Length Collapse, mitigates the Reward Hockey Stick Curve, and enables continuous sequence length improvement during training. Additionally, our analysis reveals that balanced merging ratios achieve optimal trade-offs between training stability and reasoning capability preservation. Our work provides the effective solution for stable training in this third paradigm, enabling more capable reasoning models that combine distillation efficiency with RLHF alignment.
Bayesian Calibration of Win Rate Estimation with LLM Evaluators
Recent advances in large language models (LLMs) show the potential of using LLMs as evaluators for assessing the quality of text generations from LLMs. However, applying LLM evaluators naively to compare or judge between different systems can lead to unreliable results due to the intrinsic win rate estimation bias of LLM evaluators. In order to mitigate this problem, we propose two calibration methods, Bayesian Win Rate Sampling (BWRS) and Bayesian Dawid-Skene, both of which leverage Bayesian inference to more accurately infer the true win rate of generative language models. We empirically validate our methods on six datasets covering story generation, summarization, and instruction following tasks. We show that both our methods are effective in improving the accuracy of win rate estimation using LLMs as evaluators, offering a promising direction for reliable automatic text quality evaluation.
Mowgli: Passively Learned Rate Control for Real-Time Video
Rate control algorithms are at the heart of video conferencing platforms, determining target bitrates that match dynamic network characteristics for high quality. Recent data-driven strategies have shown promise for this challenging task, but the performance degradation they introduce during training has been a nonstarter for many production services, precluding adoption. This paper aims to bolster the practicality of data-driven rate control by presenting an alternative avenue for experiential learning: leveraging purely existing telemetry logs produced by the incumbent algorithm in production. We observe that these logs contain effective decisions, although often at the wrong times or in the wrong order. To realize this approach despite the inherent uncertainty that log-based learning brings (i.e., lack of feedback for new decisions), our system, Mowgli, combines a variety of robust learning techniques (i.e., conservatively reasoning about alternate behavior to minimize risk and using a richer model formulation to account for environmental noise). Across diverse networks (emulated and real-world), Mowgli outperforms the widely deployed GCC algorithm, increasing average video bitrates by 15-39% while reducing freeze rates by 60-100%.
Rethinking Entropy Interventions in RLVR: An Entropy Change Perspective
While Reinforcement Learning with Verifiable Rewards (RLVR) can enhance LLM reasoning, its training process poses a critical risk: entropy collapse. This phenomenon is a rapid loss of policy diversity, stemming from the exploration-exploitation imbalance and leading to a lack of generalization. Recent entropy-intervention methods aim to prevent entropy collapse, yet their underlying mechanisms remain unclear. In this paper, we conduct a quantitative analysis to reveal token-level entropy changes and how existing entropy intervention methods help avoid entropy collapse. Our findings point out a fundamental limitation of existing methods: they attempt to control entropy dynamics indirectly. By only affecting related factors, such as the advantage signal and generation probability, their effectiveness is inherently limited and could potentially fail. To address this limitation, we introduce an entropy-change-aware reweighting scheme, namely Stabilizing Token-level Entropy-changE via Reweighting (STEER), that adaptively stabilizes entropy dynamics through fine-grained token-level adjustments. Our approach mitigates over-exploitation while fostering robust exploration. Extensive experiments demonstrate that STEER significantly mitigates entropy collapse, stabilizes entropy dynamics, and achieves stronger downstream performance across various mathematical reasoning benchmarks \footnote{Our code is available at https://github.com/zz-haooo/STEER.
Are ChatGPT and GPT-4 Good Poker Players? -- A Pre-Flop Analysis
Since the introduction of ChatGPT and GPT-4, these models have been tested across a large number of tasks. Their adeptness across domains is evident, but their aptitude in playing games, and specifically their aptitude in the realm of poker has remained unexplored. Poker is a game that requires decision making under uncertainty and incomplete information. In this paper, we put ChatGPT and GPT-4 through the poker test and evaluate their poker skills. Our findings reveal that while both models display an advanced understanding of poker, encompassing concepts like the valuation of starting hands, playing positions and other intricacies of game theory optimal (GTO) poker, both ChatGPT and GPT-4 are NOT game theory optimal poker players. Profitable strategies in poker are evaluated in expectations over large samples. Through a series of experiments, we first discover the characteristics of optimal prompts and model parameters for playing poker with these models. Our observations then unveil the distinct playing personas of the two models. We first conclude that GPT-4 is a more advanced poker player than ChatGPT. This exploration then sheds light on the divergent poker tactics of the two models: ChatGPT's conservativeness juxtaposed against GPT-4's aggression. In poker vernacular, when tasked to play GTO poker, ChatGPT plays like a nit, which means that it has a propensity to only engage with premium hands and folds a majority of hands. When subjected to the same directive, GPT-4 plays like a maniac, showcasing a loose and aggressive style of play. Both strategies, although relatively advanced, are not game theory optimal.
Concise Thoughts: Impact of Output Length on LLM Reasoning and Cost
Today's large language models (LLMs) can solve challenging question-answering tasks, and prompt engineering techniques, such as chain-of-thought (CoT), have gained attention for enhancing the explanation and correctness of outputs. Nevertheless, models require significant time to generate answers augmented with lengthy reasoning details. To address this issue, this paper analyzes the impact of output lengths on LLM inference pipelines and proposes novel metrics to evaluate them in terms of correct conciseness. It also examines the impact of controlling output length through a refined prompt engineering strategy, Constrained-CoT (CCoT), which encourages the model to limit output length. Experiments on pre-trained LLMs demonstrated the benefit of the proposed metrics and the effectiveness of CCoT across different models. For instance, constraining the reasoning of LLaMA2-70b to 100 words improves the accuracy from 36.01\% (CoT) to 41.07\% (CCoT) on the GSM8K dataset, while reducing the average output length by 28 words.
AvalonBench: Evaluating LLMs Playing the Game of Avalon
In this paper, we explore the potential of Large Language Models (LLMs) Agents in playing the strategic social deduction game, Resistance Avalon. Players in Avalon are challenged not only to make informed decisions based on dynamically evolving game phases, but also to engage in discussions where they must deceive, deduce, and negotiate with other players. These characteristics make Avalon a compelling test-bed to study the decision-making and language-processing capabilities of LLM Agents. To facilitate research in this line, we introduce AvalonBench - a comprehensive game environment tailored for evaluating multi-agent LLM Agents. This benchmark incorporates: (1) a game environment for Avalon, (2) rule-based bots as baseline opponents, and (3) ReAct-style LLM agents with tailored prompts for each role. Notably, our evaluations based on AvalonBench highlight a clear capability gap. For instance, models like ChatGPT playing good-role got a win rate of 22.2% against rule-based bots playing evil, while good-role bot achieves 38.2% win rate in the same setting. We envision AvalonBench could be a good test-bed for developing more advanced LLMs (with self-playing) and agent frameworks that can effectively model the layered complexities of such game environments.
Tool-Augmented Reward Modeling
Reward modeling (a.k.a., preference modeling) is instrumental for aligning large language models with human preferences, particularly within the context of reinforcement learning from human feedback (RLHF). While conventional reward models (RMs) have exhibited remarkable scalability, they oft struggle with fundamental functionality such as arithmetic computation, code execution, and factual lookup. In this paper, we propose a tool-augmented preference modeling approach, named Themis, to address these limitations by empowering RMs with access to external environments, including calculators and search engines. This approach not only fosters synergy between tool utilization and reward grading but also enhances interpretive capacity and scoring reliability. Our study delves into the integration of external tools into RMs, enabling them to interact with diverse external sources and construct task-specific tool engagement and reasoning traces in an autoregressive manner. We validate our approach across a wide range of domains, incorporating seven distinct external tools. Our experimental results demonstrate a noteworthy overall improvement of 17.7% across eight tasks in preference ranking. Furthermore, our approach outperforms Gopher 280B by 7.3% on TruthfulQA task in zero-shot evaluation. In human evaluations, RLHF trained with Themis attains an average win rate of 32% when compared to baselines across four distinct tasks. Additionally, we provide a comprehensive collection of tool-related RM datasets, incorporating data from seven distinct tool APIs, totaling 15,000 instances. We have made the code, data, and model checkpoints publicly available to facilitate and inspire further research advancements\url{https://github.com/ernie-research/Tool-Augmented-Reward-Model}.
Reward Shaping to Mitigate Reward Hacking in RLHF
Reinforcement Learning from Human Feedback (RLHF) is essential for aligning large language models (LLMs) with human values. However, RLHF is susceptible to reward hacking, where the agent exploits flaws in the reward function rather than learning the intended behavior, thus degrading alignment. While reward shaping helps stabilize RLHF and partially mitigate reward hacking, a systematic investigation into shaping techniques and their underlying principles remains lacking. To bridge this gap, we present a comprehensive study of the prevalent reward shaping methods. Our analysis suggests three key design principles: (1) RL reward is ideally bounded, (2) RL benefits from rapid initial growth followed by gradual convergence, and (3) RL reward is best formulated as a function of centered reward. Guided by these insights, we propose Preference As Reward (PAR), a novel approach that leverages the latent preferences embedded within the reward model itself as the signal for reinforcement learning. We evaluated PAR on two base models, Gemma2-2B and Llama3-8B, using two datasets, Ultrafeedback-Binarized and HH-RLHF. Experimental results demonstrate PAR's superior performance over other reward shaping methods. On the AlpacaEval 2.0 benchmark, PAR achieves a win rate at least 5 percentage points higher than competing approaches. Furthermore, PAR exhibits remarkable data efficiency, requiring only a single reference reward for optimal performance, and maintains robustness against reward hacking even after two full epochs of training. Code is available at https://github.com/PorUna-byte/PAR.
Scalable Reinforcement Post-Training Beyond Static Human Prompts: Evolving Alignment via Asymmetric Self-Play
Current reinforcement learning (RL) frameworks for large language models (LLM) post-training typically assume a fixed prompt distribution, which is sub-optimal and bottlenecks scalability. Prior works have explored prompt evolving, but are often limited to the supervised fine-tuning stage, and prompts are sampled and evolved uniformly without signals. This empirical work presents a paradigm shift: Evolving Alignment via Asymmetric Self-Play (eva), that casts post-training as an infinite game with regret-based signals for 2 players: (i) a creator, who strategically samples and creates new informative prompts and (ii) a solver, who learns to produce preferred responses. eva is the first method that allows language models to adaptively create training prompts in both offline and online RL post-training. The design is simple, easy-to-use yet remarkably effective: eva sets a new SOTA on challenging benchmarks, without any extra human prompts, e.g. it boosts the win-rate of gemma-2-9b-it on Arena-Hard by 51.6% -> 60.1% for DPO and 52.6% -> 62.4% for RLOO, surpassing claude-3-opus and catching up to gemini-1.5-pro, both of which are orders of magnitude larger. Extensive experiments show eva can create effective RL curricula and is robust across ablations. We believe adaptively evolving prompts are key to designing the next-generation RL post-training scheme.
Sample More to Think Less: Group Filtered Policy Optimization for Concise Reasoning
Large language models trained with reinforcement learning with verifiable rewards tend to trade accuracy for length--inflating response lengths to achieve gains in accuracy. While longer answers may be warranted for harder problems, many tokens are merely "filler": repetitive, verbose text that makes no real progress. We introduce GFPO (Group Filtered Policy Optimization), which curbs this length explosion by sampling larger groups per problem during training and filtering responses to train on based on two key metrics: (1) response length and (2) token efficiency: reward per token ratio. By sampling more at training time, we teach models to think less at inference time. On the Phi-4-reasoning model, GFPO cuts GRPO's length inflation by 46-71% across challenging STEM and coding benchmarks (AIME 24/25, GPQA, Omni-MATH, LiveCodeBench) while maintaining accuracy. Optimizing for reward per token further increases reductions in length inflation to 71-85%. We also propose Adaptive Difficulty GFPO, which dynamically allocates more training resources to harder problems based on real-time difficulty estimates, improving the balance between computational efficiency and accuracy especially on difficult questions. GFPO demonstrates that increased training-time compute directly translates to reduced test-time compute--a simple yet effective trade-off for efficient reasoning.
Self-Improving Robust Preference Optimization
Both online and offline RLHF methods such as PPO and DPO have been extremely successful in aligning AI with human preferences. Despite their success, the existing methods suffer from a fundamental problem that their optimal solution is highly task-dependent (i.e., not robust to out-of-distribution (OOD) tasks). Here we address this challenge by proposing Self-Improving Robust Preference Optimization SRPO, a practical and mathematically principled offline RLHF framework that is completely robust to the changes in the task. The key idea of SRPO is to cast the problem of learning from human preferences as a self-improvement process, which can be mathematically expressed in terms of a min-max objective that aims at joint optimization of self-improvement policy and the generative policy in an adversarial fashion. The solution for this optimization problem is independent of the training task and thus it is robust to its changes. We then show that this objective can be re-expressed in the form of a non-adversarial offline loss which can be optimized using standard supervised optimization techniques at scale without any need for reward model and online inference. We show the effectiveness of SRPO in terms of AI Win-Rate (WR) against human (GOLD) completions. In particular, when SRPO is evaluated on the OOD XSUM dataset, it outperforms the celebrated DPO by a clear margin of 15% after 5 self-revisions, achieving WR of 90%.
On Entropy Control in LLM-RL Algorithms
For RL algorithms, appropriate entropy control is crucial to their effectiveness. To control the policy entropy, a commonly used method is entropy regularization, which is adopted in various popular RL algorithms including PPO, SAC and A3C. Although entropy regularization proves effective in robotic and games RL conventionally, studies found that it gives weak to no gains in LLM-RL training. In this work, we study the issues of entropy bonus in LLM-RL setting. Specifically, we first argue that the conventional entropy regularization suffers from the LLM's extremely large response space and the sparsity of the optimal outputs. As a remedy, we propose AEnt, an entropy control method that utilizes a new clamped entropy bonus with an automatically adjusted coefficient. The clamped entropy is evaluated with the re-normalized policy defined on certain smaller token space, which encourages exploration within a more compact response set. In addition, the algorithm automatically adjusts entropy coefficient according to the clamped entropy value, effectively controlling the entropy-induced bias while leveraging the entropy's benefits. AEnt is tested in math-reasoning tasks under different base models and datasets, and it is observed that AEnt outperforms the baselines consistently across multiple benchmarks.
Re-evaluating Open-ended Evaluation of Large Language Models
Evaluation has traditionally focused on ranking candidates for a specific skill. Modern generalist models, such as Large Language Models (LLMs), decidedly outpace this paradigm. Open-ended evaluation systems, where candidate models are compared on user-submitted prompts, have emerged as a popular solution. Despite their many advantages, we show that the current Elo-based rating systems can be susceptible to and even reinforce biases in data, intentional or accidental, due to their sensitivity to redundancies. To address this issue, we propose evaluation as a 3-player game, and introduce novel game-theoretic solution concepts to ensure robustness to redundancy. We show that our method leads to intuitive ratings and provide insights into the competitive landscape of LLM development.
SpecDec++: Boosting Speculative Decoding via Adaptive Candidate Lengths
Speculative decoding reduces the inference latency of a target large language model via utilizing a smaller and faster draft model. Its performance depends on a hyperparameter K -- the candidate length, i.e., the number of candidate tokens for the target model to verify in each round. However, previous methods often use simple heuristics to choose K, which may result in sub-optimal performance. We study the choice of the candidate length K and formulate it as a Markov Decision Process. We theoretically show that the optimal policy of this Markov decision process takes the form of a threshold policy, i.e., the current speculation should stop and be verified when the probability of getting a rejection exceeds a threshold value. Motivated by this theory, we propose SpecDec++, an enhanced version of speculative decoding that adaptively determines the candidate length on the fly. We augment the draft model with a trained acceptance prediction head to predict the conditional acceptance probability of the candidate tokens. SpecDec++ will stop the current speculation when the predicted probability that at least one token gets rejected exceeds a threshold. We implement SpecDec++ and apply it to the llama-2-chat 7B & 70B model pair. Our adaptive method achieves a 2.04x speedup on the Alpaca dataset (an additional 7.2% improvement over the baseline speculative decoding). On the GSM8K and HumanEval datasets, our method achieves a 2.26x speedup (9.4% improvement) and 2.23x speedup (11.1% improvement), respectively.
Delayed Bandits: When Do Intermediate Observations Help?
We study a K-armed bandit with delayed feedback and intermediate observations. We consider a model where intermediate observations have a form of a finite state, which is observed immediately after taking an action, whereas the loss is observed after an adversarially chosen delay. We show that the regime of the mapping of states to losses determines the complexity of the problem, irrespective of whether the mapping of actions to states is stochastic or adversarial. If the mapping of states to losses is adversarial, then the regret rate is of order (K+d)T (within log factors), where T is the time horizon and d is a fixed delay. This matches the regret rate of a K-armed bandit with delayed feedback and without intermediate observations, implying that intermediate observations are not helpful. However, if the mapping of states to losses is stochastic, we show that the regret grows at a rate of big(K+min{|mathcal{S|,d}big)T} (within log factors), implying that if the number |S| of states is smaller than the delay, then intermediate observations help. We also provide refined high-probability regret upper bounds for non-uniform delays, together with experimental validation of our algorithms.
Router-R1: Teaching LLMs Multi-Round Routing and Aggregation via Reinforcement Learning
The rapid emergence of diverse large language models (LLMs) has spurred the development of LLM routers that assign user queries to the most suitable model. However, existing LLM routers typically perform a single-round, one-to-one mapping (i.e., assigning each query to a single model in isolation), which limits their capability to tackle complex tasks that demand the complementary strengths of multiple LLMs. In this paper, we present Router-R1, a reinforcement learning (RL)-based framework that formulates multi-LLM routing and aggregation as a sequential decision process. Router-R1 instantiates the router itself as a capable LLM, leveraging its reasoning ability to interleave "think" actions (internal deliberation) with "route" actions (dynamic model invocation), and integrates each response into its evolving context. To guide learning, we employ a lightweight rule-based reward comprising format rewards, final outcome rewards, and a novel cost reward for performance and cost trade-off optimization, opening a pathway toward optimizing performance-cost tradeoffs via RL. Router-R1 also conditions only on simple model descriptors such as pricing, latency, and example performance, enabling strong generalization to unseen model selection. Experiments on seven general and multi-hop QA benchmarks show that Router-R1 outperforms over several strong baselines, achieving superior performance while maintaining robust generalization and cost management.Code is available at https://github.com/ulab-uiuc/Router-R1.
Harnessing the Plug-and-Play Controller by Prompting
Controllable text generation is a growing field within natural language generation (NLG) that focuses on producing text that meets specific constraints in real-world applications. Previous approaches, such as plug-and-play controllers (PPCs), aimed to steer the properties of generated text in a flexible manner. However, these methods often compromised the integrity of the language model's decoding process, resulting in less smooth text generation. Alternatively, other techniques utilized multiple attribute prompts to align the generated text with desired attributes, but this approach required prompt design for each attribute and was dependent on the size of the language model. This paper introduces a novel method for flexible attribute control in text generation using pre-trained language models (PLMs). The proposed approach aims to enhance the fluency of generated text by guiding the generation process with PPCs. The key idea is to dynamically adjust the distribution of generated text by modifying prompts, effectively constraining the output space of the language model and influencing the desired attribute. To enable smooth cooperation between the PLM and the PPC, our work innovatively proposes a new model fine-tuning method: Reinforcement Learning with Dynamic Adjust Feedback (RLDAF).This fine-tuning process adapts a small subset of the language model's parameters based on the generating actions taken during the PPC control process. The resulting harmonious collaboration between the PLM and PPC leads to improved smoothness in text generation during inference. Extensive experiments were conducted on the SST2 dataset, and the proposed method outperformed previous approaches in various evaluation metrics, including text fluency and attribute consistency.
Mastering Multi-Drone Volleyball through Hierarchical Co-Self-Play Reinforcement Learning
In this paper, we tackle the problem of learning to play 3v3 multi-drone volleyball, a new embodied competitive task that requires both high-level strategic coordination and low-level agile control. The task is turn-based, multi-agent, and physically grounded, posing significant challenges due to its long-horizon dependencies, tight inter-agent coupling, and the underactuated dynamics of quadrotors. To address this, we propose Hierarchical Co-Self-Play (HCSP), a hierarchical reinforcement learning framework that separates centralized high-level strategic decision-making from decentralized low-level motion control. We design a three-stage population-based training pipeline to enable both strategy and skill to emerge from scratch without expert demonstrations: (I) training diverse low-level skills, (II) learning high-level strategy via self-play with fixed low-level skills, and (III) joint fine-tuning through co-self-play. Experiments show that HCSP achieves superior performance, outperforming non-hierarchical self-play and rule-based hierarchical baselines with an average 82.9% win rate and a 71.5% win rate against the two-stage variant. Moreover, co-self-play leads to emergent team behaviors such as role switching and coordinated formations, demonstrating the effectiveness of our hierarchical design and training scheme. The project page is at https://sites.google.com/view/hi-co-self-play.
Prompt Risk Control: A Rigorous Framework for Responsible Deployment of Large Language Models
The recent explosion in the capabilities of large language models has led to a wave of interest in how best to prompt a model to perform a given task. While it may be tempting to simply choose a prompt based on average performance on a validation set, this can lead to a deployment where unexpectedly poor responses are generated, especially for the worst-off users. To mitigate this prospect, we propose Prompt Risk Control, a lightweight framework for selecting a prompt based on rigorous upper bounds on families of informative risk measures. We offer methods for producing bounds on a diverse set of metrics, including quantities that measure worst-case responses and disparities in generation quality across the population of users. In addition, we extend the underlying statistical bounding techniques to accommodate the possibility of distribution shifts in deployment. Experiments on applications such as open-ended chat, medical question summarization, and code generation highlight how such a framework can foster responsible deployment by reducing the risk of the worst outcomes.
CASTILLO: Characterizing Response Length Distributions of Large Language Models
Efficiently managing compute resources for Large Language Model (LLM) inference remains challenging due to the inherently stochastic and variable lengths of autoregressive text generation. Accurately estimating response lengths in advance enables proactive resource allocation, yet existing approaches either bias text generation towards certain lengths or rely on assumptions that ignore model- and prompt-specific variability. We introduce CASTILLO, a dataset characterizing response length distributions across 13 widely-used open-source LLMs evaluated on seven distinct instruction-following corpora. For each langleprompt, modelrangle sample pair, we generate 10 independent completions using fixed decoding hyper-parameters, record the token length of each response, and publish summary statistics (mean, std-dev, percentiles), along with the shortest and longest completions, and the exact generation settings. Our analysis reveals significant inter- and intra-model variability in response lengths (even under identical generation settings), as well as model-specific behaviors and occurrences of partial text degeneration in only subsets of responses. CASTILLO enables the development of predictive models for proactive scheduling and provides a systematic framework for analyzing model-specific generation behaviors. We publicly release the dataset and code to foster research at the intersection of generative language modeling and systems.
DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret
Dynamic treatment regimes (DTRs) are personalized, adaptive, multi-stage treatment plans that adapt treatment decisions both to an individual's initial features and to intermediate outcomes and features at each subsequent stage, which are affected by decisions in prior stages. Examples include personalized first- and second-line treatments of chronic conditions like diabetes, cancer, and depression, which adapt to patient response to first-line treatment, disease progression, and individual characteristics. While existing literature mostly focuses on estimating the optimal DTR from offline data such as from sequentially randomized trials, we study the problem of developing the optimal DTR in an online manner, where the interaction with each individual affect both our cumulative reward and our data collection for future learning. We term this the DTR bandit problem. We propose a novel algorithm that, by carefully balancing exploration and exploitation, is guaranteed to achieve rate-optimal regret when the transition and reward models are linear. We demonstrate our algorithm and its benefits both in synthetic experiments and in a case study of adaptive treatment of major depressive disorder using real-world data.
Prior Constraints-based Reward Model Training for Aligning Large Language Models
Reinforcement learning with human feedback for aligning large language models (LLMs) trains a reward model typically using ranking loss with comparison pairs.However, the training procedure suffers from an inherent problem: the uncontrolled scaling of reward scores during reinforcement learning due to the lack of constraints while training the reward model.This paper proposes a Prior Constraints-based Reward Model (namely PCRM) training method to mitigate this problem. PCRM incorporates prior constraints, specifically, length ratio and cosine similarity between outputs of each comparison pair, during reward model training to regulate optimization magnitude and control score margins. We comprehensively evaluate PCRM by examining its rank correlation with human preferences and its effectiveness in aligning LLMs via RL. Experimental results demonstrate that PCRM significantly improves alignment performance by effectively constraining reward score scaling. As another bonus, our method is easily integrated into arbitrary rank-based alignment methods, such as direct preference optimization, and can yield consistent improvement.
What Characterizes Effective Reasoning? Revisiting Length, Review, and Structure of CoT
Large reasoning models (LRMs) spend substantial test-time compute on long chain-of-thought (CoT) traces, but what *characterizes* an effective CoT remains unclear. While prior work reports gains from lengthening CoTs and increasing review (revisiting earlier steps) via appended *wait* tokens, recent studies suggest that shorter thinking can outperform longer traces. We therefore conduct a systematic evaluation across ten LRMs on math and scientific reasoning. Contrary to the "longer-is-better" narrative, we find that both naive CoT lengthening and increased review are associated with *lower* accuracy. As CoT unfolds step by step, token-level metrics can conflate verbosity with process quality. We introduce a graph view of CoT to extract structure and identify a single statistic-the *Failed-Step Fraction (FSF)*, the fraction of steps in abandoned branches-that consistently outpredicts length and review ratio for correctness across models. To probe causality, we design two interventions. First, we rank candidate CoTs by each metric at test time, where FSF yields the largest pass@1 gains; second, we edit CoTs to remove failed branches, which significantly improves accuracy, indicating that failed branches bias subsequent reasoning. Taken together, these results characterize effective CoTs as those that *fail less* and support *structure-aware* test-time scaling over indiscriminately generating long CoT.
Preference Learning Algorithms Do Not Learn Preference Rankings
Preference learning algorithms (e.g., RLHF and DPO) are frequently used to steer LLMs to produce generations that are more preferred by humans, but our understanding of their inner workings is still limited. In this work, we study the conventional wisdom that preference learning trains models to assign higher likelihoods to more preferred outputs than less preferred outputs, measured via ranking accuracy. Surprisingly, we find that most state-of-the-art preference-tuned models achieve a ranking accuracy of less than 60% on common preference datasets. We furthermore derive the idealized ranking accuracy that a preference-tuned LLM would achieve if it optimized the DPO or RLHF objective perfectly. We demonstrate that existing models exhibit a significant alignment gap -- i.e., a gap between the observed and idealized ranking accuracies. We attribute this discrepancy to the DPO objective, which is empirically and theoretically ill-suited to fix even mild ranking errors in the reference model, and derive a simple and efficient formula for quantifying the difficulty of learning a given preference datapoint. Finally, we demonstrate that ranking accuracy strongly correlates with the empirically popular win rate metric when the model is close to the reference model used in the objective, shedding further light on the differences between on-policy (e.g., RLHF) and off-policy (e.g., DPO) preference learning algorithms.
Controlling Large Language Models Through Concept Activation Vectors
As large language models (LLMs) are widely deployed across various domains, the ability to control their generated outputs has become more critical. This control involves aligning LLMs outputs with human values and ethical principles or customizing LLMs on specific topics or styles for individual users. Existing controlled generation methods either require significant computational resources and extensive trial-and-error or provide coarse-grained control. In this paper, we propose Generation with Concept Activation Vector (GCAV), a lightweight model control framework that ensures accurate control without requiring resource-extensive fine-tuning. Specifically, GCAV first trains a concept activation vector for specified concepts to be controlled, such as toxicity. During inference, GCAV steers the concept vector in LLMs, for example, by removing the toxicity concept vector from the activation layers. Control experiments from different perspectives, including toxicity reduction, sentiment control, linguistic style, and topic control, demonstrate that our framework achieves state-of-the-art performance with granular control, allowing for fine-grained adjustments of both the steering layers and the steering magnitudes for individual samples.
Adversarial Cheap Talk
Adversarial attacks in reinforcement learning (RL) often assume highly-privileged access to the victim's parameters, environment, or data. Instead, this paper proposes a novel adversarial setting called a Cheap Talk MDP in which an Adversary can merely append deterministic messages to the Victim's observation, resulting in a minimal range of influence. The Adversary cannot occlude ground truth, influence underlying environment dynamics or reward signals, introduce non-stationarity, add stochasticity, see the Victim's actions, or access their parameters. Additionally, we present a simple meta-learning algorithm called Adversarial Cheap Talk (ACT) to train Adversaries in this setting. We demonstrate that an Adversary trained with ACT still significantly influences the Victim's training and testing performance, despite the highly constrained setting. Affecting train-time performance reveals a new attack vector and provides insight into the success and failure modes of existing RL algorithms. More specifically, we show that an ACT Adversary is capable of harming performance by interfering with the learner's function approximation, or instead helping the Victim's performance by outputting useful features. Finally, we show that an ACT Adversary can manipulate messages during train-time to directly and arbitrarily control the Victim at test-time. Project video and code are available at https://sites.google.com/view/adversarial-cheap-talk
Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning
We propose a new method for count-based exploration in high-dimensional state spaces. Unlike previous work which relies on density models, we show that counts can be derived by averaging samples from the Rademacher distribution (or coin flips). This insight is used to set up a simple supervised learning objective which, when optimized, yields a state's visitation count. We show that our method is significantly more effective at deducing ground-truth visitation counts than previous work; when used as an exploration bonus for a model-free reinforcement learning algorithm, it outperforms existing approaches on most of 9 challenging exploration tasks, including the Atari game Montezuma's Revenge.
Mitigating Overthinking through Reasoning Shaping
Large reasoning models (LRMs) boosted by Reinforcement Learning from Verifier Reward (RLVR) have shown great power in problem solving, yet they often cause overthinking: excessive, meandering reasoning that inflates computational cost. Prior designs of penalization in RLVR manage to reduce token consumption while often harming model performance, which arises from the oversimplicity of token-level supervision. In this paper, we argue that the granularity of supervision plays a crucial role in balancing efficiency and accuracy, and propose Group Relative Segment Penalization (GRSP), a step-level method to regularize reasoning. Since preliminary analyses show that reasoning segments are strongly correlated with token consumption and model performance, we design a length-aware weighting mechanism across segment clusters. Extensive experiments demonstrate that GRSP achieves superior token efficiency without heavily compromising accuracy, especially the advantages with harder problems. Moreover, GRSP stabilizes RL training and scales effectively across model sizes.
Long-term Control for Dialogue Generation: Methods and Evaluation
Current approaches for controlling dialogue response generation are primarily focused on high-level attributes like style, sentiment, or topic. In this work, we focus on constrained long-term dialogue generation, which involves more fine-grained control and requires a given set of control words to appear in generated responses. This setting requires a model to not only consider the generation of these control words in the immediate context, but also produce utterances that will encourage the generation of the words at some time in the (possibly distant) future. We define the problem of constrained long-term control for dialogue generation, identify gaps in current methods for evaluation, and propose new metrics that better measure long-term control. We also propose a retrieval-augmented method that improves performance of long-term controlled generation via logit modification techniques. We show through experiments on three task-oriented dialogue datasets that our metrics better assess dialogue control relative to current alternatives and that our method outperforms state-of-the-art constrained generation baselines.
Democratizing Diplomacy: A Harness for Evaluating Any Large Language Model on Full-Press Diplomacy
We present the first evaluation harness that enables any out-of-the-box, local, Large Language Models (LLMs) to play full-press Diplomacy without fine-tuning or specialized training. Previous work required frontier LLMs, or fine-tuning, due to the high complexity and information density of Diplomacy's game state. Combined with the high variance of matches, these factors made Diplomacy prohibitive for study. In this work, we used data-driven iteration to optimize a textual game state representation such that a 24B model can reliably complete matches without any fine tuning. We develop tooling to facilitate hypothesis testing and statistical analysis, and we present case studies on persuasion, aggressive playstyles, and performance across a range of models. We conduct a variety of experiments across many popular LLMs, finding the larger models perform the best, but the smaller models still play adequately. We also introduce Critical State Analysis: an experimental protocol for rapidly iterating and analyzing key moments in a game at depth. Our harness democratizes the evaluation of strategic reasoning in LLMs by eliminating the need for fine-tuning, and it provides insights into how these capabilities emerge naturally from widely used LLMs. Our code is available in the supplement and will be open sourced.
COIG-Writer: A High-Quality Dataset for Chinese Creative Writing with Thought Processes
Large language models exhibit systematic deficiencies in creative writing, particularly in non-English contexts where training data is scarce and lacks process-level supervision. We present COIG-Writer, a novel Chinese creative writing dataset that captures both diverse outputs and their underlying thought processes through systematic reverse-engineering of high-quality texts. Unlike existing datasets that provide only input-output pairs, COIG-Writer comprises 1,665 meticulously curated triplets spanning 51 genres, each containing: (1) a reverse-engineered prompt, (2) detailed creative reasoning documenting decision-making processes, and (3) the final text. Through comprehensive experiments, we identify a two-component model of creative writing: narrative logic (provided by process supervision) and linguistic expression (maintained by general-purpose data). Our findings reveal three critical insights: (1) Process supervision is highly effective but requires stabilization with general data. A ratio of at least one creative sample to twelve general samples is needed to achieve optimal performance; below this threshold, the win rate progressively degrades (from 62.75% down to 35.78%)., (2) creative capabilities are culturally-bound with no cross-lingual transfer (89.26pp gap between Chinese and English performance), and (3) lexical diversity inversely correlates with creative quality (TTR paradox), suggesting high diversity signals compensatory behavior for logical deficiencies. These findings establish that creative excellence emerges from the interaction between logical scaffolding and linguistic grounding, analogous to how mathematical reasoning enhances but cannot replace linguistic competence in foundation models.
Monopoly Deal: A Benchmark Environment for Bounded One-Sided Response Games
Card games are widely used to study sequential decision-making under uncertainty, with real-world analogues in negotiation, finance, and cybersecurity. These games typically fall into three categories based on the flow of control: strictly sequential (players alternate single actions), deterministic response (some actions trigger a fixed outcome), and unbounded reciprocal response (alternating counterplays are permitted). A less-explored but strategically rich structure is the bounded one-sided response, where a player's action briefly transfers control to the opponent, who must satisfy a fixed condition through one or more moves before the turn resolves. We term games featuring this mechanism Bounded One-Sided Response Games (BORGs). We introduce a modified version of Monopoly Deal as a benchmark environment that isolates this dynamic, where a Rent action forces the opponent to choose payment assets. The gold-standard algorithm, Counterfactual Regret Minimization (CFR), converges on effective strategies without novel algorithmic extensions. A lightweight full-stack research platform unifies the environment, a parallelized CFR runtime, and a human-playable web interface. The trained CFR agent and source code are available at https://monopolydeal.ai.
Identifying Copeland Winners in Dueling Bandits with Indifferences
We consider the task of identifying the Copeland winner(s) in a dueling bandits problem with ternary feedback. This is an underexplored but practically relevant variant of the conventional dueling bandits problem, in which, in addition to strict preference between two arms, one may observe feedback in the form of an indifference. We provide a lower bound on the sample complexity for any learning algorithm finding the Copeland winner(s) with a fixed error probability. Moreover, we propose POCOWISTA, an algorithm with a sample complexity that almost matches this lower bound, and which shows excellent empirical performance, even for the conventional dueling bandits problem. For the case where the preference probabilities satisfy a specific type of stochastic transitivity, we provide a refined version with an improved worst case sample complexity.
Understanding and Improving Length Generalization in Recurrent Models
Recently, recurrent models such as state space models and linear attention have become popular due to their linear complexity in the sequence length. Thanks to their recurrent nature, in principle they can process arbitrarily long sequences, but their performance sometimes drops considerably beyond their training context lengths-i.e. they fail to length generalize. In this work, we provide comprehensive empirical and theoretical analysis to support the unexplored states hypothesis, which posits that models fail to length generalize when during training they are only exposed to a limited subset of the distribution of all attainable states (i.e. states that would be attained if the recurrence was applied to long sequences). Furthermore, we investigate simple training interventions that aim to increase the coverage of the states that the model is trained on, e.g. by initializing the state with Gaussian noise or with the final state of a different input sequence. With only 500 post-training steps (sim 0.1% of the pre-training budget), these interventions enable length generalization for sequences that are orders of magnitude longer than the training context (e.g. 2klongrightarrow 128k) and show improved performance in long context tasks, thus presenting a simple and efficient way to enable robust length generalization in general recurrent models.
Control-R: Towards controllable test-time scaling
This paper target in addressing the challenges of underthinking and overthinking in long chain-of-thought (CoT) reasoning for Large Reasoning Models (LRMs) by introducing Reasoning Control Fields (RCF)--a novel test-time approach that injects structured control signals to guide reasoning from a tree search perspective. RCF enables models to adjust reasoning effort according to given control conditions when solving complex tasks. Additionally, we present the Control-R-4K dataset, which consists of challenging problems annotated with detailed reasoning processes and corresponding control fields. To further enhance reasoning control, we propose a Conditional Distillation Finetuning (CDF) method, which trains model--particularly Control-R-32B--to effectively adjust reasoning effort during test time. Experimental results on benchmarks such as AIME2024 and MATH500 demonstrate that our approach achieves state-of-the-art performance at the 32B scale while enabling a controllable Long CoT reasoning process (L-CoT). Overall, this work introduces an effective paradigm for controllable test-time scaling reasoning.
The Reasoning Boundary Paradox: How Reinforcement Learning Constrains Language Models
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key method for improving Large Language Models' reasoning capabilities, yet recent evidence suggests it may paradoxically shrink the reasoning boundary rather than expand it. This paper investigates the shrinkage issue of RLVR by analyzing its learning dynamics and reveals two critical phenomena that explain this failure. First, we expose negative interference in RLVR, where learning to solve certain training problems actively reduces the likelihood of correct solutions for others, leading to the decline of Pass@k performance, or the probability of generating a correct solution within k attempts. Second, we uncover the winner-take-all phenomenon: RLVR disproportionately reinforces problems with high likelihood, correct solutions, under the base model, while suppressing other initially low-likelihood ones. Through extensive theoretical and empirical analysis on multiple mathematical reasoning benchmarks, we show that this effect arises from the inherent on-policy sampling in standard RL objectives, causing the model to converge toward narrow solution strategies. Based on these insights, we propose a simple yet effective data curation algorithm that focuses RLVR learning on low-likelihood problems, achieving notable improvement in Pass@k performance. Our code is available at https://github.com/mail-research/SELF-llm-interference.
When Greedy Wins: Emergent Exploitation Bias in Meta-Bandit LLM Training
While Large Language Models (LLMs) hold promise to become autonomous agents, they often explore suboptimally in sequential decision-making. Recent work has sought to enhance this capability via supervised fine-tuning (SFT) or reinforcement learning (RL), improving regret on the classic multi-armed bandit task. However, it remains unclear how these learning methods shape exploration strategies and how well they generalize. We investigate both paradigms by training LLMs with SFT on expert trajectories and RL with a range of tailored reward signals including a strategic, regret-shaped reward to reduce variance, and an algorithmic reward that enables oracle imitation. The resulting agents outperform pre-trained models and achieve performance comparable to Upper Confidence Bound (UCB) and Thompson Sampling, with robust generalization to 6x longer horizons and across bandit families. Behavioral analysis reveals that gains often stem from more sophisticated but greedier exploitation: RL/SFT agents are more prone to early catastrophic failure than pre-trained models, prematurely abandoning exploration. Furthermore, agents trained to imitate UCB learn to outperform their teacher by adopting more exploitative variants. Our findings clarify when each training paradigm is preferable and advocate tailored reward design and evaluation beyond average regret to promote robust exploratory behavior.
Rethinking Thinking Tokens: LLMs as Improvement Operators
Reasoning training incentivizes LLMs to produce long chains of thought (long CoT), which among other things, allows them to explore solution strategies with self-checking. This results in higher accuracy, but inflates context length, token/compute cost, and answer latency. We ask: Can current models leverage their metacognition to provide other combinations on this Pareto frontier, e.g., better accuracy with lower context length and/or latency? Abstractly, we view the model as an improvement operator on its own "thoughts" with a continuum of possible strategies. We identify an interesting inference family Parallel-Distill-Refine (PDR), which performs the following: (i) generate diverse drafts in parallel; (ii) distill them into a bounded, textual workspace; and (iii) refine conditioned on this workspace, producing an output that seeds the next round. Importantly, context length (hence compute cost) is controllable via degree of parallelism, and is no longer conflated with the total number of generated tokens. We report PDR instantiations of current models that give better accuracy than long CoT while incurring lower latency. Setting degree of parallelism to 1 yields an interesting subcase, Sequential Refinement (SR) (iteratively improve a single candidate answer) which provides performance superior to long CoT. Success of such model orchestrations raises the question whether further training could shift the Pareto frontier. To this end, we train an 8B thinking model with Reinforcement Learning (RL) to make it consistent with PDR as the inference method. On math tasks with verifiable answers, iterative pipelines surpass single-pass baselines at matched sequential budgets, with PDR delivering the largest gains (e.g., +11% on AIME 2024 and +9% on AIME 2025).
The Fellowship of the LLMs: Multi-Agent Workflows for Synthetic Preference Optimization Dataset Generation
This paper presents synthetic Preference Optimization (PO) datasets generated using multi-agent workflows and evaluates the effectiveness and potential of these workflows in the dataset generation process. PO dataset generation requires two modules: (1) response evaluation, and (2) response generation. In the response evaluation module, the responses from Large Language Models (LLMs) are evaluated and ranked - a task typically carried out by human annotators that we automate using LLMs. We assess the response evaluation module in a 2 step process. In step 1, we assess LLMs as evaluators using three distinct prompting strategies. In step 2, we apply the winning prompting strategy to compare the performance of LLM-as-a-Judge, LLMs-as-a-Jury, and LLM Debate. In each step, we use inter-rater agreement using Cohen's Kappa between human annotators and LLMs. For the response generation module, we compare different configurations for the LLM Feedback Loop using the identified LLM evaluator configuration. We use the win rate (the fraction of times a generation framework is selected as the best by an LLM evaluator) to determine the best multi-agent configuration for generation. After identifying the best configurations for both modules, we use models from the GPT, Gemma, and Llama families to generate our PO datasets using the above pipeline. We generate two types of PO datasets, one to improve the generation capabilities of individual LLM and the other to improve the multi-agent workflow. Our evaluation shows that GPT-4o-as-a-Judge is more consistent across datasets when the candidate responses do not include responses from the GPT family. Additionally, we find that the LLM Feedback Loop, with Llama as the generator and Gemma as the reviewer, achieves a notable 71.8% and 73.8% win rate over single-agent Llama and Gemma, respectively.
Using Natural Language for Reward Shaping in Reinforcement Learning
Recent reinforcement learning (RL) approaches have shown strong performance in complex domains such as Atari games, but are often highly sample inefficient. A common approach to reduce interaction time with the environment is to use reward shaping, which involves carefully designing reward functions that provide the agent intermediate rewards for progress towards the goal. However, designing appropriate shaping rewards is known to be difficult as well as time-consuming. In this work, we address this problem by using natural language instructions to perform reward shaping. We propose the LanguagE-Action Reward Network (LEARN), a framework that maps free-form natural language instructions to intermediate rewards based on actions taken by the agent. These intermediate language-based rewards can seamlessly be integrated into any standard reinforcement learning algorithm. We experiment with Montezuma's Revenge from the Atari Learning Environment, a popular benchmark in RL. Our experiments on a diverse set of 15 tasks demonstrate that, for the same number of interactions with the environment, language-based rewards lead to successful completion of the task 60% more often on average, compared to learning without language.
Option-aware Temporally Abstracted Value for Offline Goal-Conditioned Reinforcement Learning
Offline goal-conditioned reinforcement learning (GCRL) offers a practical learning paradigm where goal-reaching policies are trained from abundant unlabeled (reward-free) datasets without additional environment interaction. However, offline GCRL still struggles with long-horizon tasks, even with recent advances that employ hierarchical policy structures, such as HIQL. By identifying the root cause of this challenge, we observe the following insights: First, performance bottlenecks mainly stem from the high-level policy's inability to generate appropriate subgoals. Second, when learning the high-level policy in the long-horizon regime, the sign of the advantage signal frequently becomes incorrect. Thus, we argue that improving the value function to produce a clear advantage signal for learning the high-level policy is essential. In this paper, we propose a simple yet effective solution: Option-aware Temporally Abstracted value learning, dubbed OTA, which incorporates temporal abstraction into the temporal-difference learning process. By modifying the value update to be option-aware, the proposed learning scheme contracts the effective horizon length, enabling better advantage estimates even in long-horizon regimes. We experimentally show that the high-level policy extracted using the OTA value function achieves strong performance on complex tasks from OGBench, a recently proposed offline GCRL benchmark, including maze navigation and visual robotic manipulation environments.
Length Desensitization in Direct Preference Optimization
Direct Preference Optimization (DPO) is widely utilized in the Reinforcement Learning from Human Feedback (RLHF) phase to align Large Language Models (LLMs) with human preferences, thereby enhancing both their harmlessness and efficacy. However, it has been observed that DPO tends to over-optimize for verbosity, which can detrimentally affect both performance and user experience. In this paper, we conduct an in-depth theoretical analysis of DPO's optimization objective and reveal a strong correlation between its implicit reward and data length. This correlation misguides the optimization direction, resulting in length sensitivity during the DPO training and leading to verbosity. To address this issue, we propose a length-desensitization improvement method for DPO, termed LD-DPO. The proposed method aims to desensitize DPO to data length by decoupling explicit length preference, which is relatively insignificant, from the other implicit preferences, thereby enabling more effective learning of the intrinsic preferences. We utilized two settings (Base and Instruct) of Llama2-13B, Llama3-8B, and Qwen2-7B for experimental validation on various benchmarks including MT-Bench and AlpacaEval 2. The experimental results indicate that LD-DPO consistently outperforms DPO and other baseline methods, achieving more concise responses with a 10-40% reduction in length compared to DPO. We conducted in-depth experimental analyses to demonstrate that LD-DPO can indeed achieve length desensitization and align the model more closely with human-like preferences.
Banker Online Mirror Descent: A Universal Approach for Delayed Online Bandit Learning
We propose Banker Online Mirror Descent (Banker-OMD), a novel framework generalizing the classical Online Mirror Descent (OMD) technique in the online learning literature. The Banker-OMD framework almost completely decouples feedback delay handling and the task-specific OMD algorithm design, thus facilitating the design of new algorithms capable of efficiently and robustly handling feedback delays. Specifically, it offers a general methodology for achieving mathcal O(T + D)-style regret bounds in online bandit learning tasks with delayed feedback, where T is the number of rounds and D is the total feedback delay. We demonstrate the power of Banker-OMD by applications to two important bandit learning scenarios with delayed feedback, including delayed scale-free adversarial Multi-Armed Bandits (MAB) and delayed adversarial linear bandits. Banker-OMD leads to the first delayed scale-free adversarial MAB algorithm achieving mathcal O(KL(sqrt T+sqrt D)) regret and the first delayed adversarial linear bandit algorithm achieving mathcal O(poly(n)(T + D)) regret. As a corollary, the first application also implies mathcal O(KTL) regret for non-delayed scale-free adversarial MABs, which is the first to match the Omega(KTL) lower bound up to logarithmic factors and can be of independent interest.
Demystifying Long Chain-of-Thought Reasoning in LLMs
Scaling inference compute enhances reasoning in large language models (LLMs), with long chains-of-thought (CoTs) enabling strategies like backtracking and error correction. Reinforcement learning (RL) has emerged as a crucial method for developing these capabilities, yet the conditions under which long CoTs emerge remain unclear, and RL training requires careful design choices. In this study, we systematically investigate the mechanics of long CoT reasoning, identifying the key factors that enable models to generate long CoT trajectories. Through extensive supervised fine-tuning (SFT) and RL experiments, we present four main findings: (1) While SFT is not strictly necessary, it simplifies training and improves efficiency; (2) Reasoning capabilities tend to emerge with increased training compute, but their development is not guaranteed, making reward shaping crucial for stabilizing CoT length growth; (3) Scaling verifiable reward signals is critical for RL. We find that leveraging noisy, web-extracted solutions with filtering mechanisms shows strong potential, particularly for out-of-distribution (OOD) tasks such as STEM reasoning; and (4) Core abilities like error correction are inherently present in base models, but incentivizing these skills effectively for complex tasks via RL demands significant compute, and measuring their emergence requires a nuanced approach. These insights provide practical guidance for optimizing training strategies to enhance long CoT reasoning in LLMs. Our code is available at: https://github.com/eddycmu/demystify-long-cot.
GuardReasoner-VL: Safeguarding VLMs via Reinforced Reasoning
To enhance the safety of VLMs, this paper introduces a novel reasoning-based VLM guard model dubbed GuardReasoner-VL. The core idea is to incentivize the guard model to deliberatively reason before making moderation decisions via online RL. First, we construct GuardReasoner-VLTrain, a reasoning corpus with 123K samples and 631K reasoning steps, spanning text, image, and text-image inputs. Then, based on it, we cold-start our model's reasoning ability via SFT. In addition, we further enhance reasoning regarding moderation through online RL. Concretely, to enhance diversity and difficulty of samples, we conduct rejection sampling followed by data augmentation via the proposed safety-aware data concatenation. Besides, we use a dynamic clipping parameter to encourage exploration in early stages and exploitation in later stages. To balance performance and token efficiency, we design a length-aware safety reward that integrates accuracy, format, and token cost. Extensive experiments demonstrate the superiority of our model. Remarkably, it surpasses the runner-up by 19.27% F1 score on average. We release data, code, and models (3B/7B) of GuardReasoner-VL at https://github.com/yueliu1999/GuardReasoner-VL/
Language modeling via stochastic processes
Modern language models can generate high-quality short texts. However, they often meander or are incoherent when generating longer texts. These issues arise from the next-token-only language modeling objective. Recent work in self-supervised learning suggests that models can learn good latent representations via contrastive learning, which can be effective for discriminative tasks. Our work analyzes the application of contrastive representations for generative tasks, like long text generation. We propose one approach for leveraging constrastive representations, which we call Time Control (TC). TC first learns a contrastive representation of the target text domain, then generates text by decoding from these representations. Compared to domain-specific methods and fine-tuning GPT2 across a variety of text domains, TC performs competitively to methods specific for learning sentence representations on discourse coherence. On long text generation settings, TC preserves the text structure both in terms of ordering (up to +15% better) and text length consistency (up to +90% better).
Supervised Fine Tuning on Curated Data is Reinforcement Learning (and can be improved)
Behavior Cloning (BC) on curated (or filtered) data is the predominant paradigm for supervised fine-tuning (SFT) of large language models; as well as for imitation learning of control policies. Here, we draw on a connection between this successful strategy and the theory and practice of finding optimal policies via Reinforcement Learning (RL). Building on existing literature, we clarify that SFT can be understood as maximizing a lower bound on the RL objective in a sparse reward setting. Giving support to its often observed good performance. From this viewpoint, we realize that a small modification to SFT leads to an importance weighted variant that behaves closer to training with RL as it: i) optimizes a tighter bound to the RL objective and, ii) can improve performance compared to SFT on curated data. We refer to this variant as importance weighted supervised fine-tuning (iw-SFT). We show that it is easy to implement and can be further generalized to training with quality scored data. The resulting SFT variants are competitive with more advanced RL algorithms for large language models and for training policies in continuous control tasks. For example achieving 66.7% on the AIME 2024 dataset.
Just Enough Thinking: Efficient Reasoning with Adaptive Length Penalties Reinforcement Learning
Large reasoning models (LRMs) achieve higher performance on challenging reasoning tasks by generating more tokens at inference time, but this verbosity often wastes computation on easy problems. Existing solutions, including supervised finetuning on shorter traces, user-controlled budgets, or RL with uniform penalties, either require data curation, manual configuration, or treat all problems alike regardless of difficulty. We introduce Adaptive Length Penalty (ALP), a reinforcement learning objective tailoring generation length to per-prompt solve rate. During training, ALP monitors each prompt's online solve rate through multiple rollouts and adds a differentiable penalty whose magnitude scales inversely with that rate, so confident (easy) prompts incur a high cost for extra tokens while hard prompts remain unhindered. Posttraining DeepScaleR-1.5B with ALP cuts average token usage by 50\% without significantly dropping performance. Relative to fixed-budget and uniform penalty baselines, ALP redistributes its reduced budget more intelligently by cutting compute on easy prompts and reallocating saved tokens to difficult ones, delivering higher accuracy on the hardest problems with higher cost.
Stabilizing RLHF through Advantage Model and Selective Rehearsal
Large Language Models (LLMs) have revolutionized natural language processing, yet aligning these models with human values and preferences using RLHF remains a significant challenge. This challenge is characterized by various instabilities, such as reward hacking and catastrophic forgetting. In this technical report, we propose two innovations to stabilize RLHF training: 1) Advantage Model, which directly models advantage score i.e., extra reward compared to the expected rewards and regulates score distributions across tasks to prevent reward hacking. 2) Selective Rehearsal, which mitigates catastrophic forgetting by strategically selecting data for PPO training and knowledge rehearsing. Our experimental analysis on public and proprietary datasets reveals that the proposed methods not only increase stability in RLHF training but also achieve higher reward scores and win rates.
Harnessing Mixed Offline Reinforcement Learning Datasets via Trajectory Weighting
Most offline reinforcement learning (RL) algorithms return a target policy maximizing a trade-off between (1) the expected performance gain over the behavior policy that collected the dataset, and (2) the risk stemming from the out-of-distribution-ness of the induced state-action occupancy. It follows that the performance of the target policy is strongly related to the performance of the behavior policy and, thus, the trajectory return distribution of the dataset. We show that in mixed datasets consisting of mostly low-return trajectories and minor high-return trajectories, state-of-the-art offline RL algorithms are overly restrained by low-return trajectories and fail to exploit high-performing trajectories to the fullest. To overcome this issue, we show that, in deterministic MDPs with stochastic initial states, the dataset sampling can be re-weighted to induce an artificial dataset whose behavior policy has a higher return. This re-weighted sampling strategy may be combined with any offline RL algorithm. We further analyze that the opportunity for performance improvement over the behavior policy correlates with the positive-sided variance of the returns of the trajectories in the dataset. We empirically show that while CQL, IQL, and TD3+BC achieve only a part of this potential policy improvement, these same algorithms combined with our reweighted sampling strategy fully exploit the dataset. Furthermore, we empirically demonstrate that, despite its theoretical limitation, the approach may still be efficient in stochastic environments. The code is available at https://github.com/Improbable-AI/harness-offline-rl.
Direct Nash Optimization: Teaching Language Models to Self-Improve with General Preferences
This paper studies post-training large language models (LLMs) using preference feedback from a powerful oracle to help a model iteratively improve over itself. The typical approach for post-training LLMs involves Reinforcement Learning from Human Feedback (RLHF), which traditionally separates reward learning and subsequent policy optimization. However, such a reward maximization approach is limited by the nature of "point-wise" rewards (such as Bradley-Terry model), which fails to express complex intransitive or cyclic preference relations. While advances on RLHF show reward learning and policy optimization can be merged into a single contrastive objective for stability, they yet still remain tethered to the reward maximization framework. Recently, a new wave of research sidesteps the reward maximization presumptions in favor of directly optimizing over "pair-wise" or general preferences. In this paper, we introduce Direct Nash Optimization (DNO), a provable and scalable algorithm that marries the simplicity and stability of contrastive learning with theoretical generality from optimizing general preferences. Because DNO is a batched on-policy algorithm using a regression-based objective, its implementation is straightforward and efficient. Moreover, DNO enjoys monotonic improvement across iterations that help it improve even over a strong teacher (such as GPT-4). In our experiments, a resulting 7B parameter Orca-2.5 model aligned by DNO achieves the state-of-the-art win-rate against GPT-4-Turbo of 33% on AlpacaEval 2.0 (even after controlling for response length), an absolute gain of 26% (7% to 33%) over the initializing model. It outperforms models with far more parameters, including Mistral Large, Self-Rewarding LM (70B parameters), and older versions of GPT-4.
A Benchmark for Generalizing Across Diverse Team Strategies in Competitive Pokémon
Developing AI agents that can robustly adapt to dramatically different strategic landscapes without retraining is a central challenge for multi-agent learning. Pok\'emon Video Game Championships (VGC) is a domain with an extraordinarily large space of possible team configurations of approximately 10^{139} - far larger than those of Dota or Starcraft. The highly discrete, combinatorial nature of team building in Pok\'emon VGC causes optimal strategies to shift dramatically depending on both the team being piloted and the opponent's team, making generalization uniquely challenging. To advance research on this problem, we introduce VGC-Bench: a benchmark that provides critical infrastructure, standardizes evaluation protocols, and supplies human-play datasets and a range of baselines - from large-language-model agents and behavior cloning to reinforcement learning and empirical game-theoretic methods such as self-play, fictitious play, and double oracle. In the restricted setting where an agent is trained and evaluated on a single-team configuration, our methods are able to win against a professional VGC competitor. We extensively evaluated all baseline methods over progressively larger team sets and find that even the best-performing algorithm in the single-team setting struggles at scaling up as team size grows. Thus, policy generalization across diverse team strategies remains an open challenge for the community. Our code is open sourced at https://github.com/cameronangliss/VGC-Bench.
On Double Descent in Reinforcement Learning with LSTD and Random Features
Temporal Difference (TD) algorithms are widely used in Deep Reinforcement Learning (RL). Their performance is heavily influenced by the size of the neural network. While in supervised learning, the regime of over-parameterization and its benefits are well understood, the situation in RL is much less clear. In this paper, we present a theoretical analysis of the influence of network size and l_2-regularization on performance. We identify the ratio between the number of parameters and the number of visited states as a crucial factor and define over-parameterization as the regime when it is larger than one. Furthermore, we observe a double descent phenomenon, i.e., a sudden drop in performance around the parameter/state ratio of one. Leveraging random features and the lazy training regime, we study the regularized Least-Square Temporal Difference (LSTD) algorithm in an asymptotic regime, as both the number of parameters and states go to infinity, maintaining a constant ratio. We derive deterministic limits of both the empirical and the true Mean-Squared Bellman Error (MSBE) that feature correction terms responsible for the double descent. Correction terms vanish when the l_2-regularization is increased or the number of unvisited states goes to zero. Numerical experiments with synthetic and small real-world environments closely match the theoretical predictions.
Solving Football by Exploiting Equilibrium Structure of 2p0s Differential Games with One-Sided Information
For a two-player imperfect-information extensive-form game (IIEFG) with K time steps and a player action space of size U, the game tree complexity is U^{2K}, causing existing IIEFG solvers to struggle with large or infinite (U,K), e.g., differential games with continuous action spaces. To partially address this scalability challenge, we focus on an important class of 2p0s games where the informed player (P1) knows the payoff while the uninformed player (P2) only has a belief over the set of I possible payoffs. Such games encompass a wide range of scenarios in sports, defense, cybersecurity, and finance. We prove that under mild conditions, P1's (resp. P2's) equilibrium strategy at any infostate concentrates on at most I (resp. I+1) action prototypes. When Ill U, this equilibrium structure causes the game tree complexity to collapse to I^K for P1 when P2 plays pure best responses, and (I+1)^K for P2 in a dual game where P1 plays pure best responses. We then show that exploiting this structure in standard learning modes, i.e., model-free multiagent reinforcement learning and model predictive control, is straightforward, leading to significant improvements in learning accuracy and efficiency from SOTA IIEFG solvers. Our demonstration solves a 22-player football game (K=10, U=infty) where the attacking team has to strategically conceal their intention until a critical moment in order to exploit information advantage. Code is available at https://github.com/ghimiremukesh/cams/tree/iclr
Hindsight PRIORs for Reward Learning from Human Preferences
Preference based Reinforcement Learning (PbRL) removes the need to hand specify a reward function by learning a reward from preference feedback over policy behaviors. Current approaches to PbRL do not address the credit assignment problem inherent in determining which parts of a behavior most contributed to a preference, which result in data intensive approaches and subpar reward functions. We address such limitations by introducing a credit assignment strategy (Hindsight PRIOR) that uses a world model to approximate state importance within a trajectory and then guides rewards to be proportional to state importance through an auxiliary predicted return redistribution objective. Incorporating state importance into reward learning improves the speed of policy learning, overall policy performance, and reward recovery on both locomotion and manipulation tasks. For example, Hindsight PRIOR recovers on average significantly (p<0.05) more reward on MetaWorld (20%) and DMC (15%). The performance gains and our ablations demonstrate the benefits even a simple credit assignment strategy can have on reward learning and that state importance in forward dynamics prediction is a strong proxy for a state's contribution to a preference decision. Code repository can be found at https://github.com/apple/ml-rlhf-hindsight-prior.
Single-agent Reinforcement Learning Model for Regional Adaptive Traffic Signal Control
Several studies have employed reinforcement learning (RL) to address the challenges of regional adaptive traffic signal control (ATSC) and achieved promising results. In this field, existing research predominantly adopts multi-agent frameworks. However, the adoption of multi-agent frameworks presents challenges for scalability. Instead, the Traffic signal control (TSC) problem necessitates a single-agent framework. TSC inherently relies on centralized management by a single control center, which can monitor traffic conditions across all roads in the study area and coordinate the control of all intersections. This work proposes a single-agent RL-based regional ATSC model compatible with probe vehicle technology. Key components of the RL design include state, action, and reward function definitions. To facilitate learning and manage congestion, both state and reward functions are defined based on queue length, with action designed to regulate queue dynamics. The queue length definition used in this study differs slightly from conventional definitions but is closely correlated with congestion states. More importantly, it allows for reliable estimation using link travel time data from probe vehicles. With probe vehicle data already covering most urban roads, this feature enhances the proposed method's potential for widespread deployment. The method was comprehensively evaluated using the SUMO simulation platform. Experimental results demonstrate that the proposed model effectively mitigates large-scale regional congestion levels via coordinated multi-intersection control.
WARM: On the Benefits of Weight Averaged Reward Models
Aligning large language models (LLMs) with human preferences through reinforcement learning (RLHF) can lead to reward hacking, where LLMs exploit failures in the reward model (RM) to achieve seemingly high rewards without meeting the underlying objectives. We identify two primary challenges when designing RMs to mitigate reward hacking: distribution shifts during the RL process and inconsistencies in human preferences. As a solution, we propose Weight Averaged Reward Models (WARM), first fine-tuning multiple RMs, then averaging them in the weight space. This strategy follows the observation that fine-tuned weights remain linearly mode connected when sharing the same pre-training. By averaging weights, WARM improves efficiency compared to the traditional ensembling of predictions, while improving reliability under distribution shifts and robustness to preference inconsistencies. Our experiments on summarization tasks, using best-of-N and RL methods, shows that WARM improves the overall quality and alignment of LLM predictions; for example, a policy RL fine-tuned with WARM has a 79.4% win rate against a policy RL fine-tuned with a single RM.
Fast Rates for Maximum Entropy Exploration
We address the challenge of exploration in reinforcement learning (RL) when the agent operates in an unknown environment with sparse or no rewards. In this work, we study the maximum entropy exploration problem of two different types. The first type is visitation entropy maximization previously considered by Hazan et al.(2019) in the discounted setting. For this type of exploration, we propose a game-theoretic algorithm that has mathcal{O}(H^3S^2A/varepsilon^2) sample complexity thus improving the varepsilon-dependence upon existing results, where S is a number of states, A is a number of actions, H is an episode length, and varepsilon is a desired accuracy. The second type of entropy we study is the trajectory entropy. This objective function is closely related to the entropy-regularized MDPs, and we propose a simple algorithm that has a sample complexity of order mathcal{O}(poly(S,A,H)/varepsilon). Interestingly, it is the first theoretical result in RL literature that establishes the potential statistical advantage of regularized MDPs for exploration. Finally, we apply developed regularization techniques to reduce sample complexity of visitation entropy maximization to mathcal{O}(H^2SA/varepsilon^2), yielding a statistical separation between maximum entropy exploration and reward-free exploration.
Walk Before You Run! Concise LLM Reasoning via Reinforcement Learning
As test-time scaling becomes a pivotal research frontier in Large Language Models (LLMs) development, contemporary and advanced post-training methodologies increasingly focus on extending the generation length of long Chain-of-Thought (CoT) responses to enhance reasoning capabilities toward DeepSeek R1-like performance. However, recent studies reveal a persistent overthinking phenomenon in state-of-the-art reasoning models, manifesting as excessive redundancy or repetitive thinking patterns in long CoT responses. To address this issue, in this paper, we propose a simple yet effective two-stage reinforcement learning framework for achieving concise reasoning in LLMs, named ConciseR. Specifically, the first stage, using more training steps, aims to incentivize the model's reasoning capabilities via Group Relative Policy Optimization with clip-higher and dynamic sampling components (GRPO++), and the second stage, using fewer training steps, explicitly enforces conciseness and improves efficiency via Length-aware Group Relative Policy Optimization (L-GRPO). Significantly, ConciseR only optimizes response length once all rollouts of a sample are correct, following the "walk before you run" principle. Extensive experimental results demonstrate that our ConciseR model, which generates more concise CoT reasoning responses, outperforms recent state-of-the-art reasoning models with zero RL paradigm across AIME 2024, MATH-500, AMC 2023, Minerva, and Olympiad benchmarks.
Can Large Language Models Serve as Rational Players in Game Theory? A Systematic Analysis
Game theory, as an analytical tool, is frequently utilized to analyze human behavior in social science research. With the high alignment between the behavior of Large Language Models (LLMs) and humans, a promising research direction is to employ LLMs as substitutes for humans in game experiments, enabling social science research. However, despite numerous empirical researches on the combination of LLMs and game theory, the capability boundaries of LLMs in game theory remain unclear. In this research, we endeavor to systematically analyze LLMs in the context of game theory. Specifically, rationality, as the fundamental principle of game theory, serves as the metric for evaluating players' behavior -- building a clear desire, refining belief about uncertainty, and taking optimal actions. Accordingly, we select three classical games (dictator game, Rock-Paper-Scissors, and ring-network game) to analyze to what extent LLMs can achieve rationality in these three aspects. The experimental results indicate that even the current state-of-the-art LLM (GPT-4) exhibits substantial disparities compared to humans in game theory. For instance, LLMs struggle to build desires based on uncommon preferences, fail to refine belief from many simple patterns, and may overlook or modify refined belief when taking actions. Therefore, we consider that introducing LLMs into game experiments in the field of social science should be approached with greater caution.
Using a Logarithmic Mapping to Enable Lower Discount Factors in Reinforcement Learning
In an effort to better understand the different ways in which the discount factor affects the optimization process in reinforcement learning, we designed a set of experiments to study each effect in isolation. Our analysis reveals that the common perception that poor performance of low discount factors is caused by (too) small action-gaps requires revision. We propose an alternative hypothesis that identifies the size-difference of the action-gap across the state-space as the primary cause. We then introduce a new method that enables more homogeneous action-gaps by mapping value estimates to a logarithmic space. We prove convergence for this method under standard assumptions and demonstrate empirically that it indeed enables lower discount factors for approximate reinforcement-learning methods. This in turn allows tackling a class of reinforcement-learning problems that are challenging to solve with traditional methods.
A Distributional Perspective on Reinforcement Learning
In this paper we argue for the fundamental importance of the value distribution: the distribution of the random return received by a reinforcement learning agent. This is in contrast to the common approach to reinforcement learning which models the expectation of this return, or value. Although there is an established body of literature studying the value distribution, thus far it has always been used for a specific purpose such as implementing risk-aware behaviour. We begin with theoretical results in both the policy evaluation and control settings, exposing a significant distributional instability in the latter. We then use the distributional perspective to design a new algorithm which applies Bellman's equation to the learning of approximate value distributions. We evaluate our algorithm using the suite of games from the Arcade Learning Environment. We obtain both state-of-the-art results and anecdotal evidence demonstrating the importance of the value distribution in approximate reinforcement learning. Finally, we combine theoretical and empirical evidence to highlight the ways in which the value distribution impacts learning in the approximate setting.
Shorter but not Worse: Frugal Reasoning via Easy Samples as Length Regularizers in Math RLVR
Large language models (LLMs) trained for step-by-step reasoning often become excessively verbose, raising inference cost. Standard Reinforcement Learning with Verifiable Rewards (RLVR) pipelines filter out ``easy'' problems for training efficiency, leaving the model to train primarily on harder problems that require longer reasoning chains. This skews the output length distribution upward, resulting in a model that conflates ``thinking longer'' with ``thinking better''. In this work, we show that retaining and modestly up-weighting moderately easy problems acts as an implicit length regularizer. Exposing the model to solvable short-chain tasks constrains its output distribution and prevents runaway verbosity. The result is \emph{emergent brevity for free}: the model learns to solve harder problems without inflating the output length, despite the absence of any explicit length penalization. RLVR experiments using this approach on Qwen3-4B-Thinking-2507 (with a 16k token limit) achieve baseline pass@1 AIME25 accuracy while generating solutions that are, on average, nearly twice as short. The code is available at https://github.com/MBZUAI-Paris/Frugal-AI{GitHub}, with datasets and models on https://huggingface.co/collections/MBZUAI-Paris/k2-think-mini-68dcfa8b114686a4bd3dc2bc{Hugging Face}.
Pretty darn good control: when are approximate solutions better than approximate models
Existing methods for optimal control struggle to deal with the complexity commonly encountered in real-world systems, including dimensionality, process error, model bias and data heterogeneity. Instead of tackling these system complexities directly, researchers have typically sought to simplify models to fit optimal control methods. But when is the optimal solution to an approximate, stylized model better than an approximate solution to a more accurate model? While this question has largely gone unanswered owing to the difficulty of finding even approximate solutions for complex models, recent algorithmic and computational advances in deep reinforcement learning (DRL) might finally allow us to address these questions. DRL methods have to date been applied primarily in the context of games or robotic mechanics, which operate under precisely known rules. Here, we demonstrate the ability for DRL algorithms using deep neural networks to successfully approximate solutions (the "policy function" or control rule) in a non-linear three-variable model for a fishery without knowing or ever attempting to infer a model for the process itself. We find that the reinforcement learning agent discovers an effective simplification of the problem to obtain an interpretable control rule. We show that the policy obtained with DRL is both more profitable and more sustainable than any constant mortality policy -- the standard family of policies considered in fishery management.
Principled Reinforcement Learning with Human Feedback from Pairwise or K-wise Comparisons
We provide a theoretical framework for Reinforcement Learning with Human Feedback (RLHF). Our analysis shows that when the true reward function is linear, the widely used maximum likelihood estimator (MLE) converges under both the Bradley-Terry-Luce (BTL) model and the Plackett-Luce (PL) model. However, we show that when training a policy based on the learned reward model, MLE fails while a pessimistic MLE provides policies with improved performance under certain coverage assumptions. Additionally, we demonstrate that under the PL model, the true MLE and an alternative MLE that splits the K-wise comparison into pairwise comparisons both converge. Moreover, the true MLE is asymptotically more efficient. Our results validate the empirical success of existing RLHF algorithms in InstructGPT and provide new insights for algorithm design. Furthermore, our results unify the problem of RLHF and max-entropy Inverse Reinforcement Learning (IRL), and provide the first sample complexity bound for max-entropy IRL.
Achieving Sample and Computational Efficient Reinforcement Learning by Action Space Reduction via Grouping
Reinforcement learning often needs to deal with the exponential growth of states and actions when exploring optimal control in high-dimensional spaces (often known as the curse of dimensionality). In this work, we address this issue by learning the inherent structure of action-wise similar MDP to appropriately balance the performance degradation versus sample/computational complexity. In particular, we partition the action spaces into multiple groups based on the similarity in transition distribution and reward function, and build a linear decomposition model to capture the difference between the intra-group transition kernel and the intra-group rewards. Both our theoretical analysis and experiments reveal a surprising and counter-intuitive result: while a more refined grouping strategy can reduce the approximation error caused by treating actions in the same group as identical, it also leads to increased estimation error when the size of samples or the computation resources is limited. This finding highlights the grouping strategy as a new degree of freedom that can be optimized to minimize the overall performance loss. To address this issue, we formulate a general optimization problem for determining the optimal grouping strategy, which strikes a balance between performance loss and sample/computational complexity. We further propose a computationally efficient method for selecting a nearly-optimal grouping strategy, which maintains its computational complexity independent of the size of the action space.
Chess Rating Estimation from Moves and Clock Times Using a CNN-LSTM
Current rating systems update ratings incrementally and may not always accurately reflect a player's true strength at all times, especially for rapidly improving players or very rusty players. To overcome this, we explore a method to estimate player ratings directly from game moves and clock times. We compiled a benchmark dataset from Lichess, encompassing various time controls and including move sequences and clock times. Our model architecture comprises a CNN to learn positional features, which are then integrated with clock-time data into a bidirectional LSTM, predicting player ratings after each move. The model achieved an MAE of 182 rating points in the test data. Additionally, we applied our model to the 2024 IEEE Big Data Cup Chess Puzzle Difficulty Competition dataset, predicted puzzle ratings and achieved competitive results. This model is the first to use no hand-crafted features to estimate chess ratings and also the first to output a rating prediction for each move. Our method highlights the potential of using move-based rating estimation for enhancing rating systems and potentially other applications such as cheating detection.
S-GRPO: Early Exit via Reinforcement Learning in Reasoning Models
As Test-Time Scaling emerges as an active research focus in the large language model community, advanced post-training methods increasingly emphasize extending chain-of-thought (CoT) generation length, thereby enhancing reasoning capabilities to approach Deepseek R1-like reasoning models. However, recent studies reveal that reasoning models (even Qwen3) consistently exhibit excessive thought redundancy in CoT generation. This overthinking issue arises from the inherent limitations of conventional outcome-reward reinforcement learning, which systematically overlooks the regulation of intermediate reasoning processes. This paper introduces Serial-Group Decaying-Reward Policy Optimization (S-GRPO), a novel reinforcement learning paradigm that enables models to implicitly evaluate the sufficiency of intermediate reasoning steps, thereby facilitating early exit in CoT generation. Unlike GRPO, which samples multiple possible reasoning paths in parallel (parallel group), S-GRPO only samples one reasoning path and serially selects multiple temporal positions from the path to exit thinking and directly generate answers (serial group). For correct answers within a serial group, rewards gradually decrease based on the exit positions along the reasoning path from front to back. This design encourages the model to produce more accurate and concise thoughts, while also incentivizing early thinking termination when appropriate. Empirical evaluations demonstrate that S-GRPO is compatible with state-of-the-art reasoning models, including Qwen3 and Deepseek-distill. Across diverse benchmarks such as GSM8K, AIME 2024, AMC 2023, MATH-500, and GPQA Diamond, S-GRPO achieves a substantial reduction in sequence length (35.4% - 61.1%) while simultaneously improving accuracy (absolute 0.72% - 6.08%).
Last Switch Dependent Bandits with Monotone Payoff Functions
In a recent work, Laforgue et al. introduce the model of last switch dependent (LSD) bandits, in an attempt to capture nonstationary phenomena induced by the interaction between the player and the environment. Examples include satiation, where consecutive plays of the same action lead to decreased performance, or deprivation, where the payoff of an action increases after an interval of inactivity. In this work, we take a step towards understanding the approximability of planning LSD bandits, namely, the (NP-hard) problem of computing an optimal arm-pulling strategy under complete knowledge of the model. In particular, we design the first efficient constant approximation algorithm for the problem and show that, under a natural monotonicity assumption on the payoffs, its approximation guarantee (almost) matches the state-of-the-art for the special and well-studied class of recharging bandits (also known as delay-dependent). In this attempt, we develop new tools and insights for this class of problems, including a novel higher-dimensional relaxation and the technique of mirroring the evolution of virtual states. We believe that these novel elements could potentially be used for approaching richer classes of action-induced nonstationary bandits (e.g., special instances of restless bandits). In the case where the model parameters are initially unknown, we develop an online learning adaptation of our algorithm for which we provide sublinear regret guarantees against its full-information counterpart.
Symbol Guided Hindsight Priors for Reward Learning from Human Preferences
Specifying rewards for reinforcement learned (RL) agents is challenging. Preference-based RL (PbRL) mitigates these challenges by inferring a reward from feedback over sets of trajectories. However, the effectiveness of PbRL is limited by the amount of feedback needed to reliably recover the structure of the target reward. We present the PRIor Over Rewards (PRIOR) framework, which incorporates priors about the structure of the reward function and the preference feedback into the reward learning process. Imposing these priors as soft constraints on the reward learning objective reduces the amount of feedback required by half and improves overall reward recovery. Additionally, we demonstrate that using an abstract state space for the computation of the priors further improves the reward learning and the agent's performance.
Beyond Reward Hacking: Causal Rewards for Large Language Model Alignment
Recent advances in large language models (LLMs) have demonstrated significant progress in performing complex tasks. While Reinforcement Learning from Human Feedback (RLHF) has been effective in aligning LLMs with human preferences, it is susceptible to spurious correlations in reward modeling. Consequently, it often introduces biases-such as length bias, sycophancy, conceptual bias, and discrimination that hinder the model's ability to capture true causal relationships. To address this, we propose a novel causal reward modeling approach that integrates causal inference to mitigate these spurious correlations. Our method enforces counterfactual invariance, ensuring reward predictions remain consistent when irrelevant variables are altered. Through experiments on both synthetic and real-world datasets, we show that our approach mitigates various types of spurious correlations effectively, resulting in more reliable and fair alignment of LLMs with human preferences. As a drop-in enhancement to the existing RLHF workflow, our causal reward modeling provides a practical way to improve the trustworthiness and fairness of LLM finetuning.
Customer Lifetime Value Prediction with Uncertainty Estimation Using Monte Carlo Dropout
Accurately predicting customer Lifetime Value (LTV) is crucial for companies to optimize their revenue strategies. Traditional deep learning models for LTV prediction are effective but typically provide only point estimates and fail to capture model uncertainty in modeling user behaviors. To address this limitation, we propose a novel approach that enhances the architecture of purely neural network models by incorporating the Monte Carlo Dropout (MCD) framework. We benchmarked the proposed method using data from one of the most downloaded mobile games in the world, and demonstrated a substantial improvement in predictive Top 5\% Mean Absolute Percentage Error compared to existing state-of-the-art methods. Additionally, our approach provides confidence metric as an extra dimension for performance evaluation across various neural network models, facilitating more informed business decisions.
SIRI: Scaling Iterative Reinforcement Learning with Interleaved Compression
We introduce SIRI, Scaling Iterative Reinforcement Learning with Interleaved Compression, a simple yet effective RL approach for Large Reasoning Models (LRMs) that enables more efficient and accurate reasoning. Existing studies have observed repetitive thinking patterns in LRMs, and attempts to reduce them often come at the cost of performance. In this paper, we show that this trade-off can be overcome through a training regime that iteratively alternates between compressing and expanding the reasoning budget, by dynamically adjusting the maximum rollout length during training. The compression phase cuts the rollout length, forcing the model to make precise and valuable decisions within a limited context, which effectively reduces redundant tokens and increases reasoning density. The expansion phase then relaxes the length limit, providing space for the model to explore and plan in long-horizon settings. Remarkably, we find that after each compression-expansion cycle, the model's performance improves even as its output length decreases, steadily pushing it closer to the Pareto frontier in the performance-efficiency trade-off. Training on DeepSeek-R1-Distill-Qwen-1.5B, SIRI-low improves performance on AIME24 by 43.2% while reducing token usage by 46.9% after three iterations, and SIRI-high achieves the highest accuracy compared to all other methods (Figure 1). Our findings shed light on the potential of periodically oscillating the LRM's output truncation length during training to dynamically balance exploration and efficiency in reasoning, converging towards an optimal "sweet spot" between the two. Our models are publicly available.
The Benefits of Model-Based Generalization in Reinforcement Learning
Model-Based Reinforcement Learning (RL) is widely believed to have the potential to improve sample efficiency by allowing an agent to synthesize large amounts of imagined experience. Experience Replay (ER) can be considered a simple kind of model, which has proved extremely effective at improving the stability and efficiency of deep RL. In principle, a learned parametric model could improve on ER by generalizing from real experience to augment the dataset with additional plausible experience. However, owing to the many design choices involved in empirically successful algorithms, it can be very hard to establish where the benefits are actually coming from. Here, we provide theoretical and empirical insight into when, and how, we can expect data generated by a learned model to be useful. First, we provide a general theorem motivating how learning a model as an intermediate step can narrow down the set of possible value functions more than learning a value function directly from data using the Bellman equation. Second, we provide an illustrative example showing empirically how a similar effect occurs in a more concrete setting with neural network function approximation. Finally, we provide extensive experiments showing the benefit of model-based learning for online RL in environments with combinatorial complexity, but factored structure that allows a learned model to generalize. In these experiments, we take care to control for other factors in order to isolate, insofar as possible, the benefit of using experience generated by a learned model relative to ER alone.
MAPO: Mixed Advantage Policy Optimization
Recent advances in reinforcement learning for foundation models, such as Group Relative Policy Optimization (GRPO), have significantly improved the performance of foundation models on reasoning tasks. Notably, the advantage function serves as a central mechanism in GRPO for ranking the trajectory importance. However, existing explorations encounter both advantage reversion and advantage mirror problems, which hinder the reasonable advantage allocation across different query samples. In this work, we propose an easy but effective GRPO strategy, Mixed Advantage Policy Optimization (MAPO). We reveal that the trajectory appears with different certainty and propose the advantage percent deviation for samples with high-certainty trajectories. Furthermore, we dynamically reweight the advantage function for samples with varying trajectory certainty, thereby adaptively configuring the advantage function to account for sample-specific characteristics. Comparison with related state-of-the-art methods, along with ablation studies on different advantage variants, validates the effectiveness of our approach.
The Optimal Strategy for Playing Lucky 13
The game show Lucky 13 differs from other television game shows in that contestants are required to place a bet on their own knowledge of trivia by selecting a range that contains the number of questions that they answered correctly. We present a model for this game show using binomial random variables and generate tables outlining the optimal range the player should select based on maximization of two different utility functions. After analyzing the decisions made by some actual contestants on this show, we present a numerical simulation for how many questions an average player is expected to answer correctly based on question categories observed for two sample contestants.
Diffusion Guided Language Modeling
Current language models demonstrate remarkable proficiency in text generation. However, for many applications it is desirable to control attributes, such as sentiment, or toxicity, of the generated language -- ideally tailored towards each specific use case and target audience. For auto-regressive language models, existing guidance methods are prone to decoding errors that cascade during generation and degrade performance. In contrast, text diffusion models can easily be guided with, for example, a simple linear sentiment classifier -- however they do suffer from significantly higher perplexity than auto-regressive alternatives. In this paper we use a guided diffusion model to produce a latent proposal that steers an auto-regressive language model to generate text with desired properties. Our model inherits the unmatched fluency of the auto-regressive approach and the plug-and-play flexibility of diffusion. We show that it outperforms previous plug-and-play guidance methods across a wide range of benchmark data sets. Further, controlling a new attribute in our framework is reduced to training a single logistic regression classifier.
Enhancing Predictive Accuracy in Tennis: Integrating Fuzzy Logic and CV-GRNN for Dynamic Match Outcome and Player Momentum Analysis
The predictive analysis of match outcomes and player momentum in professional tennis has long been a subject of scholarly debate. In this paper, we introduce a novel approach to game prediction by combining a multi-level fuzzy evaluation model with a CV-GRNN model. We first identify critical statistical indicators via Principal Component Analysis and then develop a two-tier fuzzy model based on the Wimbledon data. In addition, the results of Pearson Correlation Coefficient indicate that the momentum indicators, such as Player Win Streak and Score Difference, have a strong correlation among them, revealing insightful trends among players transitioning between losing and winning streaks. Subsequently, we refine the CV-GRNN model by incorporating 15 statistically significant indicators, resulting in an increase in accuracy to 86.64% and a decrease in MSE by 49.21%. This consequently strengthens the methodological framework for predicting tennis match outcomes, emphasizing its practical utility and potential for adaptation in various athletic contexts.
Good Learners Think Their Thinking: Generative PRM Makes Large Reasoning Model More Efficient Math Learner
Large reasoning models (LRMs) have recently shown promise in solving complex math problems when optimized with Reinforcement Learning (RL). But conventional approaches rely on outcome-only rewards that provide sparse feedback, resulting in inefficient optimization process. In this work, we investigate the function of process reward models (PRMs) to accelerate the RL training for LRMs. We propose a novel intrinsic signal-driven generative process evaluation mechanism operating at the thought level to address major bottlenecks in RL-based training. Specifically, instead of requiring PRMs to know how to solve problems, our method uses intrinsic signals in solutions to judge stepwise correctness and aggregate contiguous correct/incorrect steps into coherent 'thought' units. This structured, thought-level rewards enable more reliable credit assignment by reducing ambiguity in step segmentation and alleviating reward hacking. We further introduce a capability-adaptive reward mechanism that dynamically balances exploration and exploitation based on the LRM's current proficiency, guiding learning without stifling creative trial-and-error. These innovations are integrated into a new off-policy RL algorithm, TP-GRPO, which extends grouped proximal optimization with process-based rewards and improves training efficiency. Experiments on 1.5B and 7B parameter LRMs demonstrate that our method achieves higher problem-solving accuracy with significantly fewer training samples than outcome-only reward baselines. The results validate that well-structured process rewards can substantially accelerate LRM optimization in math reasoning tasks. Code is available at https://github.com/cs-holder/tp_grpo.
The Update-Equivalence Framework for Decision-Time Planning
The process of revising (or constructing) a policy at execution time -- known as decision-time planning -- has been key to achieving superhuman performance in perfect-information games like chess and Go. A recent line of work has extended decision-time planning to imperfect-information games, leading to superhuman performance in poker. However, these methods involve solving subgames whose sizes grow quickly in the amount of non-public information, making them unhelpful when the amount of non-public information is large. Motivated by this issue, we introduce an alternative framework for decision-time planning that is not based on solving subgames, but rather on update equivalence. In this update-equivalence framework, decision-time planning algorithms replicate the updates of last-iterate algorithms, which need not rely on public information. This facilitates scalability to games with large amounts of non-public information. Using this framework, we derive a provably sound search algorithm for fully cooperative games based on mirror descent and a search algorithm for adversarial games based on magnetic mirror descent. We validate the performance of these algorithms in cooperative and adversarial domains, notably in Hanabi, the standard benchmark for search in fully cooperative imperfect-information games. Here, our mirror descent approach exceeds or matches the performance of public information-based search while using two orders of magnitude less search time. This is the first instance of a non-public-information-based algorithm outperforming public-information-based approaches in a domain they have historically dominated.
GTPO and GRPO-S: Token and Sequence-Level Reward Shaping with Policy Entropy
Reinforcement learning (RL) is a pivotal task for enhancing Large Language Model (LLM) reasoning. Conventional algorithms, however, typically adhere to a coarse-grained credit assignment paradigm, applying a uniform reward to all tokens in a sequence, a critical flaw in long-chain reasoning tasks. In this paper, we address this challenge and propose Dynamic Entropy Weighting, a novel mechanism that facilitates fine-grained rewards through two new algorithms: Group Token Policy Optimization (GTPO), which assigns an entropy-weighted reward to each token, and the analogous algorithm Sequence-Level GRPO (GRPO-S). Our approach is founded on the hypothesis that high policy entropy within a reasoning path is a powerful heuristic for cognitive effort at pivotal junctures, which can be repurposed into a learning signal. By repurposing policy entropy for reward shaping, we achieve true per-token credit assignment. Experimental results across challenging reasoning benchmarks validate the superiority of our approach, showing our methods significantly outperform a strong DAPO baseline and confirming our entropy-weighting mechanism as the key driver of this performance boost.
Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI), especially when compared with the remarkable progress made in fine-tuning Large Language Models (LLMs). While cutting-edge diffusion models such as Stable Diffusion (SD) and SDXL rely on supervised fine-tuning, their performance inevitably plateaus after seeing a certain volume of data. Recently, reinforcement learning (RL) has been employed to fine-tune diffusion models with human preference data, but it requires at least two images ("winner" and "loser" images) for each text prompt. In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion), where the diffusion model engages in competition with its earlier versions, facilitating an iterative self-improvement process. Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment. Our experiments on the Pick-a-Pic dataset reveal that SPIN-Diffusion outperforms the existing supervised fine-tuning method in aspects of human preference alignment and visual appeal right from its first iteration. By the second iteration, it exceeds the performance of RLHF-based methods across all metrics, achieving these results with less data.
What Makes a Reward Model a Good Teacher? An Optimization Perspective
The success of Reinforcement Learning from Human Feedback (RLHF) critically depends on the quality of the reward model. While this quality is primarily evaluated through accuracy, it remains unclear whether accuracy fully captures what makes a reward model an effective teacher. We address this question from an optimization perspective. First, we prove that regardless of how accurate a reward model is, if it induces low reward variance, then the RLHF objective suffers from a flat landscape. Consequently, even a perfectly accurate reward model can lead to extremely slow optimization, underperforming less accurate models that induce higher reward variance. We additionally show that a reward model that works well for one language model can induce low reward variance, and thus a flat objective landscape, for another. These results establish a fundamental limitation of evaluating reward models solely based on accuracy or independently of the language model they guide. Experiments using models of up to 8B parameters corroborate our theory, demonstrating the interplay between reward variance, accuracy, and reward maximization rate. Overall, our findings highlight that beyond accuracy, a reward model needs to induce sufficient variance for efficient optimization.
Decentralized Online Learning in General-Sum Stackelberg Games
We study an online learning problem in general-sum Stackelberg games, where players act in a decentralized and strategic manner. We study two settings depending on the type of information for the follower: (1) the limited information setting where the follower only observes its own reward, and (2) the side information setting where the follower has extra side information about the leader's reward. We show that for the follower, myopically best responding to the leader's action is the best strategy for the limited information setting, but not necessarily so for the side information setting -- the follower can manipulate the leader's reward signals with strategic actions, and hence induce the leader's strategy to converge to an equilibrium that is better off for itself. Based on these insights, we study decentralized online learning for both players in the two settings. Our main contribution is to derive last-iterate convergence and sample complexity results in both settings. Notably, we design a new manipulation strategy for the follower in the latter setting, and show that it has an intrinsic advantage against the best response strategy. Our theories are also supported by empirical results.
Doubly Optimal No-Regret Learning in Monotone Games
We consider online learning in multi-player smooth monotone games. Existing algorithms have limitations such as (1) being only applicable to strongly monotone games; (2) lacking the no-regret guarantee; (3) having only asymptotic or slow O(1{T}) last-iterate convergence rate to a Nash equilibrium. While the O(1{T}) rate is tight for a large class of algorithms including the well-studied extragradient algorithm and optimistic gradient algorithm, it is not optimal for all gradient-based algorithms. We propose the accelerated optimistic gradient (AOG) algorithm, the first doubly optimal no-regret learning algorithm for smooth monotone games. Namely, our algorithm achieves both (i) the optimal O(T) regret in the adversarial setting under smooth and convex loss functions and (ii) the optimal O(1{T}) last-iterate convergence rate to a Nash equilibrium in multi-player smooth monotone games. As a byproduct of the accelerated last-iterate convergence rate, we further show that each player suffers only an O(log T) individual worst-case dynamic regret, providing an exponential improvement over the previous state-of-the-art O(T) bound.
