new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 27

Multiple Instance Learning Framework with Masked Hard Instance Mining for Whole Slide Image Classification

The whole slide image (WSI) classification is often formulated as a multiple instance learning (MIL) problem. Since the positive tissue is only a small fraction of the gigapixel WSI, existing MIL methods intuitively focus on identifying salient instances via attention mechanisms. However, this leads to a bias towards easy-to-classify instances while neglecting hard-to-classify instances. Some literature has revealed that hard examples are beneficial for modeling a discriminative boundary accurately. By applying such an idea at the instance level, we elaborate a novel MIL framework with masked hard instance mining (MHIM-MIL), which uses a Siamese structure (Teacher-Student) with a consistency constraint to explore the potential hard instances. With several instance masking strategies based on attention scores, MHIM-MIL employs a momentum teacher to implicitly mine hard instances for training the student model, which can be any attention-based MIL model. This counter-intuitive strategy essentially enables the student to learn a better discriminating boundary. Moreover, the student is used to update the teacher with an exponential moving average (EMA), which in turn identifies new hard instances for subsequent training iterations and stabilizes the optimization. Experimental results on the CAMELYON-16 and TCGA Lung Cancer datasets demonstrate that MHIM-MIL outperforms other latest methods in terms of performance and training cost. The code is available at: https://github.com/DearCaat/MHIM-MIL.

  • 6 authors
·
Jul 27, 2023

Multiple Instance Learning Framework with Masked Hard Instance Mining for Gigapixel Histopathology Image Analysis

Digitizing pathological images into gigapixel Whole Slide Images (WSIs) has opened new avenues for Computational Pathology (CPath). As positive tissue comprises only a small fraction of gigapixel WSIs, existing Multiple Instance Learning (MIL) methods typically focus on identifying salient instances via attention mechanisms. However, this leads to a bias towards easy-to-classify instances while neglecting challenging ones. Recent studies have shown that hard examples are crucial for accurately modeling discriminative boundaries. Applying such an idea at the instance level, we elaborate a novel MIL framework with masked hard instance mining (MHIM-MIL), which utilizes a Siamese structure with a consistency constraint to explore the hard instances. Using a class-aware instance probability, MHIM-MIL employs a momentum teacher to mask salient instances and implicitly mine hard instances for training the student model. To obtain diverse, non-redundant hard instances, we adopt large-scale random masking while utilizing a global recycle network to mitigate the risk of losing key features. Furthermore, the student updates the teacher using an exponential moving average, which identifies new hard instances for subsequent training iterations and stabilizes optimization. Experimental results on cancer diagnosis, subtyping, survival analysis tasks, and 12 benchmarks demonstrate that MHIM-MIL outperforms the latest methods in both performance and efficiency. The code is available at: https://github.com/DearCaat/MHIM-MIL.

  • 6 authors
·
Sep 14 2