Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeNeuFA: Neural Network Based End-to-End Forced Alignment with Bidirectional Attention Mechanism
Although deep learning and end-to-end models have been widely used and shown superiority in automatic speech recognition (ASR) and text-to-speech (TTS) synthesis, state-of-the-art forced alignment (FA) models are still based on hidden Markov model (HMM). HMM has limited view of contextual information and is developed with long pipelines, leading to error accumulation and unsatisfactory performance. Inspired by the capability of attention mechanism in capturing long term contextual information and learning alignments in ASR and TTS, we propose a neural network based end-to-end forced aligner called NeuFA, in which a novel bidirectional attention mechanism plays an essential role. NeuFA integrates the alignment learning of both ASR and TTS tasks in a unified framework by learning bidirectional alignment information from a shared attention matrix in the proposed bidirectional attention mechanism. Alignments are extracted from the learnt attention weights and optimized by the ASR, TTS and FA tasks in a multi-task learning manner. Experimental results demonstrate the effectiveness of our proposed model, with mean absolute error on test set drops from 25.8 ms to 23.7 ms at word level, and from 17.0 ms to 15.7 ms at phoneme level compared with state-of-the-art HMM based model.
Predicting the Flu from Instagram
Conventional surveillance systems for monitoring infectious diseases, such as influenza, face challenges due to shortage of skilled healthcare professionals, remoteness of communities and absence of communication infrastructures. Internet-based approaches for surveillance are appealing logistically as well as economically. Search engine queries and Twitter have been the primarily used data sources in such approaches. The aim of this study is to assess the predictive power of an alternative data source, Instagram. By using 317 weeks of publicly available data from Instagram, we trained several machine learning algorithms to both nowcast and forecast the number of official influenza-like illness incidents in Finland where population-wide official statistics about the weekly incidents are available. In addition to date and hashtag count features of online posts, we were able to utilize also the visual content of the posted images with the help of deep convolutional neural networks. Our best nowcasting model reached a mean absolute error of 11.33 incidents per week and a correlation coefficient of 0.963 on the test data. Forecasting models for predicting 1 week and 2 weeks ahead showed statistical significance as well by reaching correlation coefficients of 0.903 and 0.862, respectively. This study demonstrates how social media and in particular, digital photographs shared in them, can be a valuable source of information for the field of infodemiology.
Robust and Generalizable Heart Rate Estimation via Deep Learning for Remote Photoplethysmography in Complex Scenarios
Non-contact remote photoplethysmography (rPPG) technology enables heart rate measurement from facial videos. However, existing network models still face challenges in accu racy, robustness, and generalization capability under complex scenarios. This paper proposes an end-to-end rPPG extraction network that employs 3D convolutional neural networks to reconstruct accurate rPPG signals from raw facial videos. We introduce a differential frame fusion module that integrates differential frames with original frames, enabling frame-level representations to capture blood volume pulse (BVP) variations. Additionally, we incorporate Temporal Shift Module (TSM) with self-attention mechanisms, which effectively enhance rPPG features with minimal computational overhead. Furthermore, we propose a novel dynamic hybrid loss function that provides stronger supervision for the network, effectively mitigating over fitting. Comprehensive experiments were conducted on not only the PURE and UBFC-rPPG datasets but also the challenging MMPD dataset under complex scenarios, involving both intra dataset and cross-dataset evaluations, which demonstrate the superior robustness and generalization capability of our network. Specifically, after training on PURE, our model achieved a mean absolute error (MAE) of 7.58 on the MMPD test set, outperforming the state-of-the-art models.
Calculation of Femur Caput Collum Diaphyseal angle for X-Rays images using Semantic Segmentation
This paper investigates the use of deep learning approaches to estimate the femur caput-collum-diaphyseal (CCD) angle from X-ray images. The CCD angle is an important measurement in the diagnosis of hip problems, and correct prediction can help in the planning of surgical procedures. Manual measurement of this angle, on the other hand, can be time-intensive and vulnerable to inter-observer variability. In this paper, we present a deep-learning algorithm that can reliably estimate the femur CCD angle from X-ray images. To train and test the performance of our model, we employed an X-ray image dataset with associated femur CCD angle measurements. Furthermore, we built a prototype to display the resulting predictions and to allow the user to interact with the predictions. As this is happening in a sterile setting during surgery, we expanded our interface to the possibility of being used only by voice commands. Our results show that our deep learning model predicts the femur CCD angle on X-ray images with great accuracy, with a mean absolute error of 4.3 degrees on the left femur and 4.9 degrees on the right femur on the test dataset. Our results suggest that deep learning has the potential to give a more efficient and accurate technique for predicting the femur CCD angle, which might have substantial therapeutic implications for the diagnosis and management of hip problems.
Learning Speaker Representation with Semi-supervised Learning approach for Speaker Profiling
Speaker profiling, which aims to estimate speaker characteristics such as age and height, has a wide range of applications inforensics, recommendation systems, etc. In this work, we propose a semisupervised learning approach to mitigate the issue of low training data for speaker profiling. This is done by utilizing external corpus with speaker information to train a better representation which can help to improve the speaker profiling systems. Specifically, besides the standard supervised learning path, the proposed framework has two more paths: (1) an unsupervised speaker representation learning path that helps to capture the speaker information; (2) a consistency training path that helps to improve the robustness of the system by enforcing it to produce similar predictions for utterances of the same speaker.The proposed approach is evaluated on the TIMIT and NISP datasets for age, height, and gender estimation, while the Librispeech is used as the unsupervised external corpus. Trained both on single-task and multi-task settings, our approach was able to achieve state-of-the-art results on age estimation on the TIMIT Test dataset with Root Mean Square Error(RMSE) of6.8 and 7.4 years and Mean Absolute Error(MAE) of 4.8 and5.0 years for male and female speakers respectively.
An Effective Meaningful Way to Evaluate Survival Models
One straightforward metric to evaluate a survival prediction model is based on the Mean Absolute Error (MAE) -- the average of the absolute difference between the time predicted by the model and the true event time, over all subjects. Unfortunately, this is challenging because, in practice, the test set includes (right) censored individuals, meaning we do not know when a censored individual actually experienced the event. In this paper, we explore various metrics to estimate MAE for survival datasets that include (many) censored individuals. Moreover, we introduce a novel and effective approach for generating realistic semi-synthetic survival datasets to facilitate the evaluation of metrics. Our findings, based on the analysis of the semi-synthetic datasets, reveal that our proposed metric (MAE using pseudo-observations) is able to rank models accurately based on their performance, and often closely matches the true MAE -- in particular, is better than several alternative methods.
Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks
We identify label errors in the test sets of 10 of the most commonly-used computer vision, natural language, and audio datasets, and subsequently study the potential for these label errors to affect benchmark results. Errors in test sets are numerous and widespread: we estimate an average of at least 3.3% errors across the 10 datasets, where for example label errors comprise at least 6% of the ImageNet validation set. Putative label errors are identified using confident learning algorithms and then human-validated via crowdsourcing (51% of the algorithmically-flagged candidates are indeed erroneously labeled, on average across the datasets). Traditionally, machine learning practitioners choose which model to deploy based on test accuracy - our findings advise caution here, proposing that judging models over correctly labeled test sets may be more useful, especially for noisy real-world datasets. Surprisingly, we find that lower capacity models may be practically more useful than higher capacity models in real-world datasets with high proportions of erroneously labeled data. For example, on ImageNet with corrected labels: ResNet-18 outperforms ResNet-50 if the prevalence of originally mislabeled test examples increases by just 6%. On CIFAR-10 with corrected labels: VGG-11 outperforms VGG-19 if the prevalence of originally mislabeled test examples increases by just 5%. Test set errors across the 10 datasets can be viewed at https://labelerrors.com and all label errors can be reproduced by https://github.com/cleanlab/label-errors.
The Multilingual Amazon Reviews Corpus
We present the Multilingual Amazon Reviews Corpus (MARC), a large-scale collection of Amazon reviews for multilingual text classification. The corpus contains reviews in English, Japanese, German, French, Spanish, and Chinese, which were collected between 2015 and 2019. Each record in the dataset contains the review text, the review title, the star rating, an anonymized reviewer ID, an anonymized product ID, and the coarse-grained product category (e.g., 'books', 'appliances', etc.) The corpus is balanced across the 5 possible star ratings, so each rating constitutes 20% of the reviews in each language. For each language, there are 200,000, 5,000, and 5,000 reviews in the training, development, and test sets, respectively. We report baseline results for supervised text classification and zero-shot cross-lingual transfer learning by fine-tuning a multilingual BERT model on reviews data. We propose the use of mean absolute error (MAE) instead of classification accuracy for this task, since MAE accounts for the ordinal nature of the ratings.
Uncertainty-Aware Remaining Lifespan Prediction from Images
Predicting mortality-related outcomes from images offers the prospect of accessible, noninvasive, and scalable health screening. We present a method that leverages pretrained vision transformer foundation models to estimate remaining lifespan from facial and whole-body images, alongside robust uncertainty quantification. We show that predictive uncertainty varies systematically with the true remaining lifespan, and that this uncertainty can be effectively modeled by learning a Gaussian distribution for each sample. Our approach achieves state-of-the-art mean absolute error (MAE) of 7.48 years on an established Dataset, and further improves to 4.79 and 5.07 years MAE on two new, higher-quality datasets curated and published in this work. Importantly, our models provide well-calibrated uncertainty estimates, as demonstrated by a bucketed expected calibration error of 0.62 years. While not intended for clinical deployment, these results highlight the potential of extracting medically relevant signals from images. We make all code and datasets available to facilitate further research.
AIRI: Predicting Retention Indices and their Uncertainties using Artificial Intelligence
The Kov\'ats Retention index (RI) is a quantity measured using gas chromatography and commonly used in the identification of chemical structures. Creating libraries of observed RI values is a laborious task, so we explore the use of a deep neural network for predicting RI values from structure for standard semipolar columns. This network generated predictions with a mean absolute error of 15.1 and, in a quantification of the tail of the error distribution, a 95th percentile absolute error of 46.5. Because of the Artificial Intelligence Retention Indices (AIRI) network's accuracy, it was used to predict RI values for the NIST EI-MS spectral libraries. These RI values are used to improve chemical identification methods and the quality of the library. Estimating uncertainty is an important practical need when using prediction models. To quantify the uncertainty of our network for each individual prediction, we used the outputs of an ensemble of 8 networks to calculate a predicted standard deviation for each RI value prediction. This predicted standard deviation was corrected to follow the error between observed and predicted RI values. The Z scores using these predicted standard deviations had a standard deviation of 1.52 and a 95th percentile absolute Z score corresponding to a mean RI value of 42.6.
Inference Scaling scriptsizeFLaws: The Limits of LLM Resampling with Imperfect Verifiers
Recent research has generated hope that inference scaling could allow weaker language models to match or exceed the accuracy of stronger models, such as by repeatedly sampling solutions to a coding problem until it passes unit tests. The central thesis of this paper is that there is no free lunch for inference scaling: indefinite accuracy improvement through resampling can only be realized if the "verifier" (in this case, a set of unit tests) is perfect. When the verifier is imperfect, as it almost always is in domains such as reasoning or coding (for example, unit tests have imperfect coverage), there is a nonzero probability of false positives: incorrect solutions that pass the verifier. Resampling cannot decrease this probability, so it imposes an upper bound to the accuracy of resampling-based inference scaling even with an infinite compute budget. We find that there is a very strong correlation between the model's single-sample accuracy (i.e. accuracy without unit tests) and its false positive rate on coding benchmarks HumanEval and MBPP, whose unit tests have limited coverage. Therefore, no amount of inference scaling of weaker models can enable them to match the single-sample accuracy of a sufficiently strong model (Fig. 1a). When we consider that false positives have a negative utility compared to abstaining from producing a solution, it bends the inference scaling curve further downward. Empirically, we find that the optimal number of samples can be less than 10 under realistic assumptions (Fig. 1b). Finally, we show that beyond accuracy, false positives may have other undesirable qualities, such as poor adherence to coding style conventions.
Guitar Effects Recognition and Parameter Estimation with Convolutional Neural Networks
Despite the popularity of guitar effects, there is very little existing research on classification and parameter estimation of specific plugins or effect units from guitar recordings. In this paper, convolutional neural networks were used for classification and parameter estimation for 13 overdrive, distortion and fuzz guitar effects. A novel dataset of processed electric guitar samples was assembled, with four sub-datasets consisting of monophonic or polyphonic samples and discrete or continuous settings values, for a total of about 250 hours of processed samples. Results were compared for networks trained and tested on the same or on a different sub-dataset. We found that discrete datasets could lead to equally high performance as continuous ones, whilst being easier to design, analyse and modify. Classification accuracy was above 80\%, with confusion matrices reflecting similarities in the effects timbre and circuits design. With parameter values between 0.0 and 1.0, the mean absolute error is in most cases below 0.05, while the root mean square error is below 0.1 in all cases but one.
Detecting Errors in a Numerical Response via any Regression Model
Noise plagues many numerical datasets, where the recorded values in the data may fail to match the true underlying values due to reasons including: erroneous sensors, data entry/processing mistakes, or imperfect human estimates. We consider general regression settings with covariates and a potentially corrupted response whose observed values may contain errors. By accounting for various uncertainties, we introduced veracity scores that distinguish between genuine errors and natural data fluctuations, conditioned on the available covariate information in the dataset. We propose a simple yet efficient filtering procedure for eliminating potential errors, and establish theoretical guarantees for our method. We also contribute a new error detection benchmark involving 5 regression datasets with real-world numerical errors (for which the true values are also known). In this benchmark and additional simulation studies, our method identifies incorrect values with better precision/recall than other approaches.
Metallicity and α-abundance for 48 million stars in low-extinction regions in the Milky Way
We estimate ([M/H], [alpha/M]) for 48 million giants and dwarfs in low-dust extinction regions from the Gaia DR3 XP spectra by using tree-based machine-learning models trained on APOGEE DR17 and metal-poor star sample from Li et al. The root mean square error of our estimation is 0.0890 dex for [M/H] and 0.0436 dex for [alpha/M], when we evaluate our models on the test data that are not used in training the models. Because the training data is dominated by giants, our estimation is most reliable for giants. The high-[alpha/M] stars and low-[alpha/M] stars selected by our ([M/H], [alpha/M]) show different kinematical properties for giants and low-temperature dwarfs. We further investigate how our machine-learning models extract information on ([M/H], [alpha/M]). Intriguingly, we find that our models seem to extract information on [alpha/M] from Na D lines (589 nm) and Mg I line (516 nm). This result is understandable given the observed correlation between Na and Mg abundances in the literature. The catalog of ([M/H], [alpha/M]) as well as their associated uncertainties are publicly available online.
Position: Don't use the CLT in LLM evals with fewer than a few hundred datapoints
Rigorous statistical evaluations of large language models (LLMs), including valid error bars and significance testing, are essential for meaningful and reliable performance assessment. Currently, when such statistical measures are reported, they typically rely on the Central Limit Theorem (CLT). In this position paper, we argue that while CLT-based methods for uncertainty quantification are appropriate when benchmarks consist of thousands of examples, they fail to provide adequate uncertainty estimates for LLM evaluations that rely on smaller, highly specialized benchmarks. In these small-data settings, we demonstrate that CLT-based methods perform very poorly, usually dramatically underestimating uncertainty (i.e. producing error bars that are too small). We give recommendations for alternative frequentist and Bayesian methods that are both easy to implement and more appropriate in these increasingly common scenarios. We provide a simple Python library for these Bayesian methods at https://github.com/sambowyer/bayes_evals .
Showing Your Work Doesn't Always Work
In natural language processing, a recently popular line of work explores how to best report the experimental results of neural networks. One exemplar publication, titled "Show Your Work: Improved Reporting of Experimental Results," advocates for reporting the expected validation effectiveness of the best-tuned model, with respect to the computational budget. In the present work, we critically examine this paper. As far as statistical generalizability is concerned, we find unspoken pitfalls and caveats with this approach. We analytically show that their estimator is biased and uses error-prone assumptions. We find that the estimator favors negative errors and yields poor bootstrapped confidence intervals. We derive an unbiased alternative and bolster our claims with empirical evidence from statistical simulation. Our codebase is at http://github.com/castorini/meanmax.
Automated SSIM Regression for Detection and Quantification of Motion Artefacts in Brain MR Images
Motion artefacts in magnetic resonance brain images can have a strong impact on diagnostic confidence. The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis. Motion artefacts can alter the delineation of structures such as the brain, lesions or tumours and may require a repeat scan. Otherwise, an inaccurate (e.g. correct pathology but wrong severity) or incorrect diagnosis (e.g. wrong pathology) may occur. "Image quality assessment" as a fast, automated step right after scanning can assist in deciding if the acquired images are diagnostically sufficient. An automated image quality assessment based on the structural similarity index (SSIM) regression through a residual neural network is proposed in this work. Additionally, a classification into different groups - by subdividing with SSIM ranges - is evaluated. Importantly, this method predicts SSIM values of an input image in the absence of a reference ground truth image. The networks were able to detect motion artefacts, and the best performance for the regression and classification task has always been achieved with ResNet-18 with contrast augmentation. The mean and standard deviation of residuals' distribution were mu=-0.0009 and sigma=0.0139, respectively. Whilst for the classification task in 3, 5 and 10 classes, the best accuracies were 97, 95 and 89\%, respectively. The results show that the proposed method could be a tool for supporting neuro-radiologists and radiographers in evaluating image quality quickly.
How predictable is language model benchmark performance?
We investigate large language model performance across five orders of magnitude of compute scaling in eleven recent model architectures. We show that average benchmark performance, aggregating over many individual tasks and evaluations as in the commonly-used BIG-Bench dataset, is decently predictable as a function of training compute scale. Specifically, when extrapolating BIG-Bench Hard performance across one order of magnitude in compute, we observe average absolute errors of 6 percentage points (pp). By contrast, extrapolation for individual BIG-Bench tasks across an order of magnitude in compute yields higher average errors of 18pp. Nonetheless, individual task performance remains significantly more predictable than chance. Overall, our work suggests compute scaling provides a promising basis to forecast AI capabilities in diverse benchmarks, though predicting performance in specific tasks poses challenges.
Rethinking the Influence of Source Code on Test Case Generation
Large language models (LLMs) have been widely applied to assist test generation with the source code under test provided as the context. This paper aims to answer the question: If the source code under test is incorrect, will LLMs be misguided when generating tests? The effectiveness of test cases is measured by their accuracy, coverage, and bug detection effectiveness. Our evaluation results with five open- and six closed-source LLMs on four datasets demonstrate that incorrect code can significantly mislead LLMs in generating correct, high-coverage, and bug-revealing tests. For instance, in the HumanEval dataset, LLMs achieve 80.45% test accuracy when provided with task descriptions and correct code, but only 57.12% when given task descriptions and incorrect code. For the APPS dataset, prompts with correct code yield tests that detect 39.85% of the bugs, while prompts with incorrect code detect only 19.61%. These findings have important implications for the deployment of LLM-based testing: using it on mature code may help protect against future regression, but on early-stage immature code, it may simply bake in errors. Our findings also underscore the need for further research to improve LLMs resilience against incorrect code in generating reliable and bug-revealing tests.
Improve Machine Learning carbon footprint using Nvidia GPU and Mixed Precision training for classification models -- Part I
This is the 1st part of the dissertation for my master degree and compares the power consumption using the default floating point (32bit) and Nvidia mixed precision (16bit and 32bit) while training a classification ML model. A custom PC with specific hardware was built to perform the experiments, and different ML hyper-parameters, such as batch size, neurons, and epochs, were chosen to build Deep Neural Networks (DNN). Additionally, various software was used during the experiments to collect the power consumption data in Watts from the Graphics Processing Unit (GPU), Central Processing Unit (CPU), Random Access Memory (RAM) and manually from a wattmeter connected to the wall. A benchmarking test with default hyper parameter values for the DNN was used as a reference, while the experiments used a combination of different settings. The results were recorded in Excel, and descriptive statistics were chosen to calculate the mean between the groups and compare them using graphs and tables. The outcome was positive when using mixed precision combined with specific hyper-parameters. Compared to the benchmarking, the optimisation for the classification reduced the power consumption between 7 and 11 Watts. Similarly, the carbon footprint is reduced because the calculation uses the same power consumption data. Still, a consideration is required when configuring hyper-parameters because it can negatively affect hardware performance. However, this research required inferential statistics, specifically ANOVA and T-test, to compare the relationship between the means. Furthermore, tests indicated no statistical significance of the relationship between the benchmarking and experiments. However, a more extensive implementation with a cluster of GPUs can increase the sample size significantly, as it is an essential factor and can change the outcome of the statistical analysis.
DengueNet: Dengue Prediction using Spatiotemporal Satellite Imagery for Resource-Limited Countries
Dengue fever presents a substantial challenge in developing countries where sanitation infrastructure is inadequate. The absence of comprehensive healthcare systems exacerbates the severity of dengue infections, potentially leading to life-threatening circumstances. Rapid response to dengue outbreaks is also challenging due to limited information exchange and integration. While timely dengue outbreak forecasts have the potential to prevent such outbreaks, the majority of dengue prediction studies have predominantly relied on data that impose significant burdens on individual countries for collection. In this study, our aim is to improve health equity in resource-constrained countries by exploring the effectiveness of high-resolution satellite imagery as a nontraditional and readily accessible data source. By leveraging the wealth of publicly available and easily obtainable satellite imagery, we present a scalable satellite extraction framework based on Sentinel Hub, a cloud-based computing platform. Furthermore, we introduce DengueNet, an innovative architecture that combines Vision Transformer, Radiomics, and Long Short-term Memory to extract and integrate spatiotemporal features from satellite images. This enables dengue predictions on an epi-week basis. To evaluate the effectiveness of our proposed method, we conducted experiments on five municipalities in Colombia. We utilized a dataset comprising 780 high-resolution Sentinel-2 satellite images for training and evaluation. The performance of DengueNet was assessed using the mean absolute error (MAE) metric. Across the five municipalities, DengueNet achieved an average MAE of 43.92. Our findings strongly support the efficacy of satellite imagery as a valuable resource for dengue prediction, particularly in informing public health policies within countries where manually collected data is scarce and dengue virus prevalence is severe.
UTFix: Change Aware Unit Test Repairing using LLM
Software updates, including bug repair and feature additions, are frequent in modern applications but they often leave test suites outdated, resulting in undetected bugs and increased chances of system failures. A recent study by Meta revealed that 14%-22% of software failures stem from outdated tests that fail to reflect changes in the codebase. This highlights the need to keep tests in sync with code changes to ensure software reliability. In this paper, we present UTFix, a novel approach for repairing unit tests when their corresponding focal methods undergo changes. UTFix addresses two critical issues: assertion failure and reduced code coverage caused by changes in the focal method. Our approach leverages language models to repair unit tests by providing contextual information such as static code slices, dynamic code slices, and failure messages. We evaluate UTFix on our generated synthetic benchmarks (Tool-Bench), and real-world benchmarks. Tool- Bench includes diverse changes from popular open-source Python GitHub projects, where UTFix successfully repaired 89.2% of assertion failures and achieved 100% code coverage for 96 tests out of 369 tests. On the real-world benchmarks, UTFix repairs 60% of assertion failures while achieving 100% code coverage for 19 out of 30 unit tests. To the best of our knowledge, this is the first comprehensive study focused on unit test in evolving Python projects. Our contributions include the development of UTFix, the creation of Tool-Bench and real-world benchmarks, and the demonstration of the effectiveness of LLM-based methods in addressing unit test failures due to software evolution.
The Multi-Range Theory of Translation Quality Measurement: MQM scoring models and Statistical Quality Control
The year 2024 marks the 10th anniversary of the Multidimensional Quality Metrics (MQM) framework for analytic translation quality evaluation. The MQM error typology has been widely used by practitioners in the translation and localization industry and has served as the basis for many derivative projects. The annual Conference on Machine Translation (WMT) shared tasks on both human and automatic translation quality evaluations used the MQM error typology. The metric stands on two pillars: error typology and the scoring model. The scoring model calculates the quality score from annotation data, detailing how to convert error type and severity counts into numeric scores to determine if the content meets specifications. Previously, only the raw scoring model had been published. This April, the MQM Council published the Linear Calibrated Scoring Model, officially presented herein, along with the Non-Linear Scoring Model, which had not been published before. This paper details the latest MQM developments and presents a universal approach to translation quality measurement across three sample size ranges. It also explains why Statistical Quality Control should be used for very small sample sizes, starting from a single sentence.
Are We Done with MMLU?
Maybe not. We identify and analyse errors in the popular Massive Multitask Language Understanding (MMLU) benchmark. Even though MMLU is widely adopted, our analysis demonstrates numerous ground truth errors that obscure the true capabilities of LLMs. For example, we find that 57% of the analysed questions in the Virology subset contain errors. To address this issue, we introduce a comprehensive framework for identifying dataset errors using a novel error taxonomy. Then, we create MMLU-Redux, which is a subset of 3,000 manually re-annotated questions across 30 MMLU subjects. Using MMLU-Redux, we demonstrate significant discrepancies with the model performance metrics that were originally reported. Our results strongly advocate for revising MMLU's error-ridden questions to enhance its future utility and reliability as a benchmark. Therefore, we open up MMLU-Redux for additional annotation https://huggingface.co/datasets/edinburgh-dawg/mmlu-redux.
SimpleSafetyTests: a Test Suite for Identifying Critical Safety Risks in Large Language Models
The past year has seen rapid acceleration in the development of large language models (LLMs). However, without proper steering and safeguards, LLMs will readily follow malicious instructions, provide unsafe advice, and generate toxic content. We introduce SimpleSafetyTests (SST) as a new test suite for rapidly and systematically identifying such critical safety risks. The test suite comprises 100 test prompts across five harm areas that LLMs, for the vast majority of applications, should refuse to comply with. We test 11 open-access and open-source LLMs and four closed-source LLMs, and find critical safety weaknesses. While some of the models do not give a single unsafe response, most give unsafe responses to more than 20% of the prompts, with over 50% unsafe responses in the extreme. Prepending a safety-emphasising system prompt substantially reduces the occurrence of unsafe responses, but does not completely stop them from happening. Trained annotators labelled every model response to SST (n = 3,000). We use these annotations to evaluate five AI safety filters (which assess whether a models' response is unsafe given a prompt) as a way of automatically evaluating models' performance on SST. The filters' performance varies considerably. There are also differences across the five harm areas, and on the unsafe versus safe responses. The widely-used Perspective API has 72% accuracy and a newly-created zero-shot prompt to OpenAI's GPT-4 performs best with 89% accuracy. Content Warning: This paper contains prompts and responses that relate to child abuse, suicide, self-harm and eating disorders, scams and fraud, illegal items, and physical harm.
NLP Evaluation in trouble: On the Need to Measure LLM Data Contamination for each Benchmark
In this position paper, we argue that the classical evaluation on Natural Language Processing (NLP) tasks using annotated benchmarks is in trouble. The worst kind of data contamination happens when a Large Language Model (LLM) is trained on the test split of a benchmark, and then evaluated in the same benchmark. The extent of the problem is unknown, as it is not straightforward to measure. Contamination causes an overestimation of the performance of a contaminated model in a target benchmark and associated task with respect to their non-contaminated counterparts. The consequences can be very harmful, with wrong scientific conclusions being published while other correct ones are discarded. This position paper defines different levels of data contamination and argues for a community effort, including the development of automatic and semi-automatic measures to detect when data from a benchmark was exposed to a model, and suggestions for flagging papers with conclusions that are compromised by data contamination.
Language Models Prefer What They Know: Relative Confidence Estimation via Confidence Preferences
Language models (LMs) should provide reliable confidence estimates to help users detect mistakes in their outputs and defer to human experts when necessary. Asking a language model to assess its confidence ("Score your confidence from 0-1.") is a natural way of evaluating its uncertainty. However, models struggle to provide absolute assessments of confidence (i.e. judging confidence in answering a question independent of other questions) and the coarse-grained scores they produce are not useful for evaluating the correctness of their answers. We propose relative confidence estimation, where we match up questions against each other and ask the model to make relative judgments of confidence ("Which question are you more confident in answering correctly?"). Treating each question as a "player" in a series of matchups against other questions and the model's preferences as match outcomes, we can use rank aggregation methods like Elo rating and Bradley-Terry to translate the model's confidence preferences into confidence scores. We evaluate relative confidence estimation against absolute confidence estimation and self-consistency confidence methods on five state-of-the-art LMs -- GPT-4, GPT-4o, Gemini 1.5 Pro, Claude 3.5 Sonnet, and Llama 3.1 405B -- across 14 challenging STEM, social science, and commonsense reasoning question answering tasks. Our results demonstrate that relative confidence estimation consistently provides more reliable confidence scores than absolute confidence estimation, with average gains of 3.5% in selective classification AUC over direct absolute confidence estimation methods and 1.7% over self-consistency approaches across all models and datasets.
ACES: Translation Accuracy Challenge Sets for Evaluating Machine Translation Metrics
As machine translation (MT) metrics improve their correlation with human judgement every year, it is crucial to understand the limitations of such metrics at the segment level. Specifically, it is important to investigate metric behaviour when facing accuracy errors in MT because these can have dangerous consequences in certain contexts (e.g., legal, medical). We curate ACES, a translation accuracy challenge set, consisting of 68 phenomena ranging from simple perturbations at the word/character level to more complex errors based on discourse and real-world knowledge. We use ACES to evaluate a wide range of MT metrics including the submissions to the WMT 2022 metrics shared task and perform several analyses leading to general recommendations for metric developers. We recommend: a) combining metrics with different strengths, b) developing metrics that give more weight to the source and less to surface-level overlap with the reference and c) explicitly modelling additional language-specific information beyond what is available via multilingual embeddings.
Time to Revist Exact Match
Temporal question answering is an established method for evaluating temporal reasoning in large language models. Expected answers are often numeric (e.g., dates or durations), yet model responses are evaluated like regular text with exact match (EM), unable to distinguish small from large errors. In this investigative work, we frame temporal question answering as a numerical estimation task to assess the shortcomings of EM. We introduce TempAnswerQA, a benchmark distilled from Test of Time and TempTabQA, where all questions require a numerical, temporal answer, allowing us to evaluate models beyond EM. We use the forecasting metrics symmetric mean absolute percentage error (sMAPE) and mean absolute scaled error (MASE). With sMAPE, we find that error size and EM are decoupled. Models with low EM still have low sMAPE (both ~20%), and some models have high sMAPE despite high EM. Scaling errors by the deviation of the ground truth data with MASE reshuffles model rankings compared to EM, revealing gaps in models' understanding of temporal domain knowledge, especially when trained with synthetic data. Lastly, the models' most frequent error is to deviate by only pm1 from the ground truth. sMAPE and MASE, unlike EM, adequately weight these errors. Our findings underscore the need for specialised metrics for temporal QA tasks. Code and data are available on https://github.com/aauss/temporal-answer-qa.
Is Your Automated Software Engineer Trustworthy?
Large Language Models (LLMs) are being increasingly used in software engineering tasks, with an increased focus on bug report resolution over the past year. However, most proposed systems fail to properly handle uncertain or incorrect inputs and outputs. Existing LLM-based tools and coding agents respond to every issue and generate a patch for every case, even when the input is vague or their own output is incorrect. There are no mechanisms in place to abstain when confidence is low. This leads to unreliable behaviour, such as hallucinated code changes or responses based on vague issue reports. We introduce BouncerBench, a benchmark that evaluates whether LLM-based software agents can refuse to act when inputs are ill-defined or refuse to respond when their own outputs are likely to be incorrect. Unlike prior benchmarks that implicitly incentivize models to generate responses even when uncertain, BouncerBench aims to improve precision by targeting two overlooked failure points: (1) vague or underspecified issue descriptions in tickets and (2) logically or functionally incorrect code patches created by the system. It measures whether proposed systems can distinguish actionable issues from vague tickets and valid patches from untrustworthy ones. We also implement a basic input and output bouncer, evaluating how well current LLMs can abstain when needed. Our results show that most models fail to abstain from underspecified inputs or incorrect outputs. Hence, we conclude that there is significant room for improvement before LLMs can be trusted to make correct decisions and recommendations in real-world software engineering workflows. BouncerBench provides a first step toward evaluating and building more cautious, trustworthy code agents. The replication package, dataset, and leaderboard can be found at bouncerbench.com
TACRED Revisited: A Thorough Evaluation of the TACRED Relation Extraction Task
TACRED (Zhang et al., 2017) is one of the largest, most widely used crowdsourced datasets in Relation Extraction (RE). But, even with recent advances in unsupervised pre-training and knowledge enhanced neural RE, models still show a high error rate. In this paper, we investigate the questions: Have we reached a performance ceiling or is there still room for improvement? And how do crowd annotations, dataset, and models contribute to this error rate? To answer these questions, we first validate the most challenging 5K examples in the development and test sets using trained annotators. We find that label errors account for 8% absolute F1 test error, and that more than 50% of the examples need to be relabeled. On the relabeled test set the average F1 score of a large baseline model set improves from 62.1 to 70.1. After validation, we analyze misclassifications on the challenging instances, categorize them into linguistically motivated error groups, and verify the resulting error hypotheses on three state-of-the-art RE models. We show that two groups of ambiguous relations are responsible for most of the remaining errors and that models may adopt shallow heuristics on the dataset when entities are not masked.
High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy with Cardiovascular Deep Learning
Left ventricular hypertrophy (LVH) results from chronic remodeling caused by a broad range of systemic and cardiovascular disease including hypertension, aortic stenosis, hypertrophic cardiomyopathy, and cardiac amyloidosis. Early detection and characterization of LVH can significantly impact patient care but is limited by under-recognition of hypertrophy, measurement error and variability, and difficulty differentiating etiologies of LVH. To overcome this challenge, we present EchoNet-LVH - a deep learning workflow that automatically quantifies ventricular hypertrophy with precision equal to human experts and predicts etiology of LVH. Trained on 28,201 echocardiogram videos, our model accurately measures intraventricular wall thickness (mean absolute error [MAE] 1.4mm, 95% CI 1.2-1.5mm), left ventricular diameter (MAE 2.4mm, 95% CI 2.2-2.6mm), and posterior wall thickness (MAE 1.2mm, 95% CI 1.1-1.3mm) and classifies cardiac amyloidosis (area under the curve of 0.83) and hypertrophic cardiomyopathy (AUC 0.98) from other etiologies of LVH. In external datasets from independent domestic and international healthcare systems, EchoNet-LVH accurately quantified ventricular parameters (R2 of 0.96 and 0.90 respectively) and detected cardiac amyloidosis (AUC 0.79) and hypertrophic cardiomyopathy (AUC 0.89) on the domestic external validation site. Leveraging measurements across multiple heart beats, our model can more accurately identify subtle changes in LV geometry and its causal etiologies. Compared to human experts, EchoNet-LVH is fully automated, allowing for reproducible, precise measurements, and lays the foundation for precision diagnosis of cardiac hypertrophy. As a resource to promote further innovation, we also make publicly available a large dataset of 23,212 annotated echocardiogram videos.
An Empirical Study of Flaky Tests in Python
Tests that cause spurious failures without any code changes, i.e., flaky tests, hamper regression testing, increase maintenance costs, may shadow real bugs, and decrease trust in tests. While the prevalence and importance of flakiness is well established, prior research focused on Java projects, thus raising the question of how the findings generalize. In order to provide a better understanding of the role of flakiness in software development beyond Java, we empirically study the prevalence, causes, and degree of flakiness within software written in Python, one of the currently most popular programming languages. For this, we sampled 22352 open source projects from the popular PyPI package index, and analyzed their 876186 test cases for flakiness. Our investigation suggests that flakiness is equally prevalent in Python as it is in Java. The reasons, however, are different: Order dependency is a much more dominant problem in Python, causing 59% of the 7571 flaky tests in our dataset. Another 28% were caused by test infrastructure problems, which represent a previously undocumented cause of flakiness. The remaining 13% can mostly be attributed to the use of network and randomness APIs by the projects, which is indicative of the type of software commonly written in Python. Our data also suggests that finding flaky tests requires more runs than are often done in the literature: A 95% confidence that a passing test case is not flaky on average would require 170 reruns.
AIC CTU system at AVeriTeC: Re-framing automated fact-checking as a simple RAG task
This paper describes our 3^{rd} place submission in the AVeriTeC shared task in which we attempted to address the challenge of fact-checking with evidence retrieved in the wild using a simple scheme of Retrieval-Augmented Generation (RAG) designed for the task, leveraging the predictive power of Large Language Models. We release our codebase and explain its two modules - the Retriever and the Evidence & Label generator - in detail, justifying their features such as MMR-reranking and Likert-scale confidence estimation. We evaluate our solution on AVeriTeC dev and test set and interpret the results, picking the GPT-4o as the most appropriate model for our pipeline at the time of our publication, with Llama 3.1 70B being a promising open-source alternative. We perform an empirical error analysis to see that faults in our predictions often coincide with noise in the data or ambiguous fact-checks, provoking further research and data augmentation.
A^2Search: Ambiguity-Aware Question Answering with Reinforcement Learning
Recent advances in Large Language Models (LLMs) and Reinforcement Learning (RL) have led to strong performance in open-domain question answering (QA). However, existing models still struggle with questions that admit multiple valid answers. Standard QA benchmarks, which typically assume a single gold answer, overlook this reality and thus produce inappropriate training signals. Existing attempts to handle ambiguity often rely on costly manual annotation, which is difficult to scale to multi-hop datasets such as HotpotQA and MuSiQue. In this paper, we present A^2Search, an annotation-free, end-to-end training framework to recognize and handle ambiguity. At its core is an automated pipeline that detects ambiguous questions and gathers alternative answers via trajectory sampling and evidence verification. The model is then optimized with RL using a carefully designed AnsF1 reward, which naturally accommodates multiple answers. Experiments on eight open-domain QA benchmarks demonstrate that A^2Search achieves new state-of-the-art performance. With only a single rollout, A^2Search-7B yields an average AnsF1@1 score of 48.4% across four multi-hop benchmarks, outperforming all strong baselines, including the substantially larger ReSearch-32B (46.2%). Extensive analyses further show that A^2Search resolves ambiguity and generalizes across benchmarks, highlighting that embracing ambiguity is essential for building more reliable QA systems. Our code, data, and model weights can be found at https://github.com/zfj1998/A2Search
Un-Mixing Test-Time Normalization Statistics: Combatting Label Temporal Correlation
Recent test-time adaptation methods heavily rely on nuanced adjustments of batch normalization (BN) parameters. However, one critical assumption often goes overlooked: that of independently and identically distributed (i.i.d.) test batches with respect to unknown labels. This oversight leads to skewed BN statistics and undermines the reliability of the model under non-i.i.d. scenarios. To tackle this challenge, this paper presents a novel method termed 'Un-Mixing Test-Time Normalization Statistics' (UnMix-TNS). Our method re-calibrates the statistics for each instance within a test batch by mixing it with multiple distinct statistics components, thus inherently simulating the i.i.d. scenario. The core of this method hinges on a distinctive online unmixing procedure that continuously updates these statistics components by incorporating the most similar instances from new test batches. Remarkably generic in its design, UnMix-TNS seamlessly integrates with a wide range of leading test-time adaptation methods and pre-trained architectures equipped with BN layers. Empirical evaluations corroborate the robustness of UnMix-TNS under varied scenarios-ranging from single to continual and mixed domain shifts, particularly excelling with temporally correlated test data and corrupted non-i.i.d. real-world streams. This adaptability is maintained even with very small batch sizes or single instances. Our results highlight UnMix-TNS's capacity to markedly enhance stability and performance across various benchmarks. Our code is publicly available at https://github.com/devavratTomar/unmixtns.
Can LLMs Generate High-Quality Test Cases for Algorithm Problems? TestCase-Eval: A Systematic Evaluation of Fault Coverage and Exposure
We introduce TestCase-Eval, a new benchmark for systematic evaluation of LLMs in test-case generation. TestCase-Eval includes 500 algorithm problems and 100,000 human-crafted solutions from the Codeforces platform. It focuses on two pivotal tasks: (1) Fault Coverage, which measures how well LLM-generated test sets probe diverse input scenarios and cover a wide range of potential failure modes. (2) Fault Exposure, which evaluates whether LLMs can craft a tailored test input that reveals a specific incorrect code implementation. We provide a comprehensive assessment of 19 state-of-the-art open-source and proprietary LLMs on TestCase-Eval, offering insights into their strengths and limitations in generating effective test cases for algorithm problems.
Can Large Multimodal Models Actively Recognize Faulty Inputs? A Systematic Evaluation Framework of Their Input Scrutiny Ability
Large Multimodal Models (LMMs) have witnessed remarkable growth, showcasing formidable capabilities in handling intricate multimodal tasks with exceptional performance. Recent research has underscored the inclination of large language models to passively accept defective inputs, often resulting in futile reasoning on invalid prompts. However, the same critical question of whether LMMs can actively detect and scrutinize erroneous inputs still remains unexplored. To address this gap, we introduce the Input Scrutiny Ability Evaluation Framework (ISEval), which encompasses seven categories of flawed premises and three evaluation metrics. Our extensive evaluation of ten advanced LMMs has identified key findings. Most models struggle to actively detect flawed textual premises without guidance, which reflects a strong reliance on explicit prompts for premise error identification. Error type affects performance: models excel at identifying logical fallacies but struggle with surface-level linguistic errors and certain conditional flaws. Modality trust varies-Gemini 2.5 pro and Claude Sonnet 4 balance visual and textual info, while aya-vision-8b over-rely on text in conflicts. These insights underscore the urgent need to enhance LMMs' proactive verification of input validity and shed novel insights into mitigating the problem. The code is available at https://github.com/MLGroupJLU/LMM_ISEval.
Input-Specific Robustness Certification for Randomized Smoothing
Although randomized smoothing has demonstrated high certified robustness and superior scalability to other certified defenses, the high computational overhead of the robustness certification bottlenecks the practical applicability, as it depends heavily on the large sample approximation for estimating the confidence interval. In existing works, the sample size for the confidence interval is universally set and agnostic to the input for prediction. This Input-Agnostic Sampling (IAS) scheme may yield a poor Average Certified Radius (ACR)-runtime trade-off which calls for improvement. In this paper, we propose Input-Specific Sampling (ISS) acceleration to achieve the cost-effectiveness for robustness certification, in an adaptive way of reducing the sampling size based on the input characteristic. Furthermore, our method universally controls the certified radius decline from the ISS sample size reduction. The empirical results on CIFAR-10 and ImageNet show that ISS can speed up the certification by more than three times at a limited cost of 0.05 certified radius. Meanwhile, ISS surpasses IAS on the average certified radius across the extensive hyperparameter settings. Specifically, ISS achieves ACR=0.958 on ImageNet (sigma=1.0) in 250 minutes, compared to ACR=0.917 by IAS under the same condition. We release our code in https://github.com/roy-ch/Input-Specific-Certification.
Introducing an Improved Information-Theoretic Measure of Predictive Uncertainty
Applying a machine learning model for decision-making in the real world requires to distinguish what the model knows from what it does not. A critical factor in assessing the knowledge of a model is to quantify its predictive uncertainty. Predictive uncertainty is commonly measured by the entropy of the Bayesian model average (BMA) predictive distribution. Yet, the properness of this current measure of predictive uncertainty was recently questioned. We provide new insights regarding those limitations. Our analyses show that the current measure erroneously assumes that the BMA predictive distribution is equivalent to the predictive distribution of the true model that generated the dataset. Consequently, we introduce a theoretically grounded measure to overcome these limitations. We experimentally verify the benefits of our introduced measure of predictive uncertainty. We find that our introduced measure behaves more reasonably in controlled synthetic tasks. Moreover, our evaluations on ImageNet demonstrate that our introduced measure is advantageous in real-world applications utilizing predictive uncertainty.
On Pitfalls of Test-Time Adaptation
Test-Time Adaptation (TTA) has recently emerged as a promising approach for tackling the robustness challenge under distribution shifts. However, the lack of consistent settings and systematic studies in prior literature hinders thorough assessments of existing methods. To address this issue, we present TTAB, a test-time adaptation benchmark that encompasses ten state-of-the-art algorithms, a diverse array of distribution shifts, and two evaluation protocols. Through extensive experiments, our benchmark reveals three common pitfalls in prior efforts. First, selecting appropriate hyper-parameters, especially for model selection, is exceedingly difficult due to online batch dependency. Second, the effectiveness of TTA varies greatly depending on the quality and properties of the model being adapted. Third, even under optimal algorithmic conditions, none of the existing methods are capable of addressing all common types of distribution shifts. Our findings underscore the need for future research in the field to conduct rigorous evaluations on a broader set of models and shifts, and to re-examine the assumptions behind the empirical success of TTA. Our code is available at https://github.com/lins-lab/ttab.
A Case Study of Web App Coding with OpenAI Reasoning Models
This paper presents a case study of coding tasks by the latest reasoning models of OpenAI, i.e. o1-preview and o1-mini, in comparison with other frontier models. The o1 models deliver SOTA results for WebApp1K, a single-task benchmark. To this end, we introduce WebApp1K-Duo, a harder benchmark doubling number of tasks and test cases. The new benchmark causes the o1 model performances to decline significantly, falling behind Claude 3.5. Moreover, they consistently fail when confronted with atypical yet correct test cases, a trap non-reasoning models occasionally avoid. We hypothesize that the performance variability is due to instruction comprehension. Specifically, the reasoning mechanism boosts performance when all expectations are captured, meanwhile exacerbates errors when key expectations are missed, potentially impacted by input lengths. As such, we argue that the coding success of reasoning models hinges on the top-notch base model and SFT to ensure meticulous adherence to instructions.
Non-Uniform Spatial Alignment Errors in sUAS Imagery From Wide-Area Disasters
This work presents the first quantitative study of alignment errors between small uncrewed aerial systems (sUAS) geospatial imagery and a priori building polygons and finds that alignment errors are non-uniform and irregular. The work also introduces a publicly available dataset of imagery, building polygons, and human-generated and curated adjustments that can be used to evaluate existing strategies for aligning building polygons with sUAS imagery. There are no efforts that have aligned pre-existing spatial data with sUAS imagery, and thus, there is no clear state of practice. However, this effort and analysis show that the translational alignment errors present in this type of data, averaging 82px and an intersection over the union of 0.65, which would induce further errors and biases in downstream machine learning systems unless addressed. This study identifies and analyzes the translational alignment errors of 21,619 building polygons in fifty-one orthomosaic images, covering 16787.2 Acres (26.23 square miles), constructed from sUAS raw imagery from nine wide-area disasters (Hurricane Ian, Hurricane Harvey, Hurricane Michael, Hurricane Ida, Hurricane Idalia, Hurricane Laura, the Mayfield Tornado, the Musset Bayou Fire, and the Kilauea Eruption). The analysis finds no uniformity among the angle and distance metrics of the building polygon alignments as they present an average degree variance of 0.4 and an average pixel distance variance of 0.45. This work alerts the sUAS community to the problem of spatial alignment and that a simple linear transform, often used to align satellite imagery, will not be sufficient to align spatial data in sUAS orthomosaic imagery.
Early External Safety Testing of OpenAI's o3-mini: Insights from the Pre-Deployment Evaluation
Large Language Models (LLMs) have become an integral part of our daily lives. However, they impose certain risks, including those that can harm individuals' privacy, perpetuate biases and spread misinformation. These risks highlight the need for robust safety mechanisms, ethical guidelines, and thorough testing to ensure their responsible deployment. Safety of LLMs is a key property that needs to be thoroughly tested prior the model to be deployed and accessible to the general users. This paper reports the external safety testing experience conducted by researchers from Mondragon University and University of Seville on OpenAI's new o3-mini LLM as part of OpenAI's early access for safety testing program. In particular, we apply our tool, ASTRAL, to automatically and systematically generate up to date unsafe test inputs (i.e., prompts) that helps us test and assess different safety categories of LLMs. We automatically generate and execute a total of 10,080 unsafe test input on a early o3-mini beta version. After manually verifying the test cases classified as unsafe by ASTRAL, we identify a total of 87 actual instances of unsafe LLM behavior. We highlight key insights and findings uncovered during the pre-deployment external testing phase of OpenAI's latest LLM.
Predicting User Experience on Laptops from Hardware Specifications
Estimating the overall user experience (UX) on a device is a common challenge faced by manufacturers. Today, device makers primarily rely on microbenchmark scores, such as Geekbench, that stress test specific hardware components, such as CPU or RAM, but do not satisfactorily capture consumer workloads. System designers often rely on domain-specific heuristics and extensive testing of prototypes to reach a desired UX goal, and yet there is often a mismatch between the manufacturers' performance claims and the consumers' experience. We present our initial results on predicting real-life experience on laptops from their hardware specifications. We target web applications that run on Chromebooks (ChromeOS laptops) for a simple and fair aggregation of experience across applications and workloads. On 54 laptops, we track 9 UX metrics on common end-user workloads: web browsing, video playback and audio/video calls. We focus on a subset of high-level metrics exposed by the Chrome browser, that are part of the Web Vitals initiative for judging the UX on web applications. With a dataset of 100K UX data points, we train gradient boosted regression trees that predict the metric values from device specifications. Across our 9 metrics, we note a mean R^2 score (goodness-of-fit on our dataset) of 97.8% and a mean MAAPE (percentage error in prediction on unseen data) of 10.1%.
Detecting Dataset Drift and Non-IID Sampling via k-Nearest Neighbors
We present a straightforward statistical test to detect certain violations of the assumption that the data are Independent and Identically Distributed (IID). The specific form of violation considered is common across real-world applications: whether the examples are ordered in the dataset such that almost adjacent examples tend to have more similar feature values (e.g. due to distributional drift, or attractive interactions between datapoints). Based on a k-Nearest Neighbors estimate, our approach can be used to audit any multivariate numeric data as well as other data types (image, text, audio, etc.) that can be numerically represented, perhaps with model embeddings. Compared with existing methods to detect drift or auto-correlation, our approach is both applicable to more types of data and also able to detect a wider variety of IID violations in practice. Code: https://github.com/cleanlab/cleanlab
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Modern deep neural networks can achieve high accuracy when the training distribution and test distribution are identically distributed, but this assumption is frequently violated in practice. When the train and test distributions are mismatched, accuracy can plummet. Currently there are few techniques that improve robustness to unforeseen data shifts encountered during deployment. In this work, we propose a technique to improve the robustness and uncertainty estimates of image classifiers. We propose AugMix, a data processing technique that is simple to implement, adds limited computational overhead, and helps models withstand unforeseen corruptions. AugMix significantly improves robustness and uncertainty measures on challenging image classification benchmarks, closing the gap between previous methods and the best possible performance in some cases by more than half.
YATE: The Role of Test Repair in LLM-Based Unit Test Generation
Recent advances in automated test generation utilises language models to produce unit tests. While effective, language models tend to generate many incorrect tests with respect to both syntax and semantics. Although such incorrect tests can be easily detected and discarded, they constitute a "missed opportunity" -- if fixed, they are often valuable as they directly add testing value (they effectively target the underlying program logic to be tested) and indirectly form good seeds for generating additional tests. To this end, we propose a simple technique for repairing some of these incorrect tests through a combination of rule-based static analysis and re-prompting. We evaluate this simple approach, named YATE, on a set of 6 open-source projects and show that it can effectively produce tests that cover on average 32.06% more lines and kill 21.77% more mutants than a plain LLM-based method. We also compare YATE with four other LLM-based methods, namely HITS, SYMPROMPT, TESTSPARK and COVERUP and show that it produces tests that cover substantially more code. YATE achieves 22% higher line coverage, 20% higher branch coverage and kill 20% more mutants at a comparable cost (number of calls to LLMs).
Don't Take the Premise for Granted: Evaluating the Premise Critique Ability of Large Language Models
Large language models (LLMs) have witnessed rapid advancements, demonstrating remarkable capabilities. However, a notable vulnerability persists: LLMs often uncritically accept flawed or contradictory premises, leading to inefficient reasoning and unreliable outputs. This emphasizes the significance of possessing the Premise Critique Ability for LLMs, defined as the capacity to proactively identify and articulate errors in input premises. Most existing studies assess LLMs' reasoning ability in ideal settings, largely ignoring their vulnerabilities when faced with flawed premises. Thus, we introduce the Premise Critique Bench (PCBench), designed by incorporating four error types across three difficulty levels, paired with multi-faceted evaluation metrics. We conducted systematic evaluations of 15 representative LLMs. Our findings reveal: (1) Most models rely heavily on explicit prompts to detect errors, with limited autonomous critique; (2) Premise critique ability depends on question difficulty and error type, with direct contradictions being easier to detect than complex or procedural errors; (3) Reasoning ability does not consistently correlate with the premise critique ability; (4) Flawed premises trigger overthinking in reasoning models, markedly lengthening responses due to repeated attempts at resolving conflicts. These insights underscore the urgent need to enhance LLMs' proactive evaluation of input validity, positioning premise critique as a foundational capability for developing reliable, human-centric systems. The code is available at https://github.com/MLGroupJLU/Premise_Critique.
ViDAS: Vision-based Danger Assessment and Scoring
We present a novel dataset aimed at advancing danger analysis and assessment by addressing the challenge of quantifying danger in video content and identifying how human-like a Large Language Model (LLM) evaluator is for the same. This is achieved by compiling a collection of 100 YouTube videos featuring various events. Each video is annotated by human participants who provided danger ratings on a scale from 0 (no danger to humans) to 10 (life-threatening), with precise timestamps indicating moments of heightened danger. Additionally, we leverage LLMs to independently assess the danger levels in these videos using video summaries. We introduce Mean Squared Error (MSE) scores for multimodal meta-evaluation of the alignment between human and LLM danger assessments. Our dataset not only contributes a new resource for danger assessment in video content but also demonstrates the potential of LLMs in achieving human-like evaluations.
Towards Reliable Testing for Multiple Information Retrieval System Comparisons
Null Hypothesis Significance Testing is the de facto tool for assessing effectiveness differences between Information Retrieval systems. Researchers use statistical tests to check whether those differences will generalise to online settings or are just due to the samples observed in the laboratory. Much work has been devoted to studying which test is the most reliable when comparing a pair of systems, but most of the IR real-world experiments involve more than two. In the multiple comparisons scenario, testing several systems simultaneously may inflate the errors committed by the tests. In this paper, we use a new approach to assess the reliability of multiple comparison procedures using simulated and real TREC data. Experiments show that Wilcoxon plus the Benjamini-Hochberg correction yields Type I error rates according to the significance level for typical sample sizes while being the best test in terms of statistical power.
Measuring Massive Multitask Language Understanding
We propose a new test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more. To attain high accuracy on this test, models must possess extensive world knowledge and problem solving ability. We find that while most recent models have near random-chance accuracy, the very largest GPT-3 model improves over random chance by almost 20 percentage points on average. However, on every one of the 57 tasks, the best models still need substantial improvements before they can reach expert-level accuracy. Models also have lopsided performance and frequently do not know when they are wrong. Worse, they still have near-random accuracy on some socially important subjects such as morality and law. By comprehensively evaluating the breadth and depth of a model's academic and professional understanding, our test can be used to analyze models across many tasks and to identify important shortcomings.
Passing the Brazilian OAB Exam: data preparation and some experiments
In Brazil, all legal professionals must demonstrate their knowledge of the law and its application by passing the OAB exams, the national bar exams. The OAB exams therefore provide an excellent benchmark for the performance of legal information systems since passing the exam would arguably signal that the system has acquired capacity of legal reasoning comparable to that of a human lawyer. This article describes the construction of a new data set and some preliminary experiments on it, treating the problem of finding the justification for the answers to questions. The results provide a baseline performance measure against which to evaluate future improvements. We discuss the reasons to the poor performance and propose next steps.
Debate Helps Supervise Unreliable Experts
As AI systems are used to answer more difficult questions and potentially help create new knowledge, judging the truthfulness of their outputs becomes more difficult and more important. How can we supervise unreliable experts, which have access to the truth but may not accurately report it, to give answers that are systematically true and don't just superficially seem true, when the supervisor can't tell the difference between the two on their own? In this work, we show that debate between two unreliable experts can help a non-expert judge more reliably identify the truth. We collect a dataset of human-written debates on hard reading comprehension questions where the judge has not read the source passage, only ever seeing expert arguments and short quotes selectively revealed by 'expert' debaters who have access to the passage. In our debates, one expert argues for the correct answer, and the other for an incorrect answer. Comparing debate to a baseline we call consultancy, where a single expert argues for only one answer which is correct half of the time, we find that debate performs significantly better, with 84% judge accuracy compared to consultancy's 74%. Debates are also more efficient, being 68% of the length of consultancies. By comparing human to AI debaters, we find evidence that with more skilled (in this case, human) debaters, the performance of debate goes up but the performance of consultancy goes down. Our error analysis also supports this trend, with 46% of errors in human debate attributable to mistakes by the honest debater (which should go away with increased skill); whereas 52% of errors in human consultancy are due to debaters obfuscating the relevant evidence from the judge (which should become worse with increased skill). Overall, these results show that debate is a promising approach for supervising increasingly capable but potentially unreliable AI systems.
Rethinking Benchmark and Contamination for Language Models with Rephrased Samples
Large language models are increasingly trained on all the data ever produced by humans. Many have raised concerns about the trustworthiness of public benchmarks due to potential contamination in pre-training or fine-tuning datasets. While most data decontamination efforts apply string matching (e.g., n-gram overlap) to remove benchmark data, we show that these methods are insufficient, and simple variations of test data (e.g., paraphrasing, translation) can easily bypass these decontamination measures. Furthermore, we demonstrate that if such variation of test data is not eliminated, a 13B model can easily overfit a test benchmark and achieve drastically high performance, on par with GPT-4. We validate such observations in widely used benchmarks such as MMLU, GSK8k, and HumanEval. To address this growing risk, we propose a stronger LLM-based decontamination method and apply it to widely used pre-training and fine-tuning datasets, revealing significant previously unknown test overlap. For example, in pre-training sets such as RedPajama-Data-1T and StarCoder-Data, we identified that 8-18\% of the HumanEval benchmark overlaps. Interestingly, we also find such contamination in synthetic dataset generated by GPT-3.5/4, suggesting a potential risk of unintentional contamination. We urge the community to adopt stronger decontamination approaches when using public benchmarks. Moreover, we call for the community to actively develop fresh one-time exams to evaluate models accurately. Our decontamination tool is publicly available at https://github.com/lm-sys/llm-decontaminator.
Recommendations and Reporting Checklist for Rigorous & Transparent Human Baselines in Model Evaluations
In this position paper, we argue that human baselines in foundation model evaluations must be more rigorous and more transparent to enable meaningful comparisons of human vs. AI performance, and we provide recommendations and a reporting checklist towards this end. Human performance baselines are vital for the machine learning community, downstream users, and policymakers to interpret AI evaluations. Models are often claimed to achieve "super-human" performance, but existing baselining methods are neither sufficiently rigorous nor sufficiently well-documented to robustly measure and assess performance differences. Based on a meta-review of the measurement theory and AI evaluation literatures, we derive a framework with recommendations for designing, executing, and reporting human baselines. We synthesize our recommendations into a checklist that we use to systematically review 115 human baselines (studies) in foundation model evaluations and thus identify shortcomings in existing baselining methods; our checklist can also assist researchers in conducting human baselines and reporting results. We hope our work can advance more rigorous AI evaluation practices that can better serve both the research community and policymakers. Data is available at: https://github.com/kevinlwei/human-baselines
LiveBench: A Challenging, Contamination-Free LLM Benchmark
Test set contamination, wherein test data from a benchmark ends up in a newer model's training set, is a well-documented obstacle for fair LLM evaluation and can quickly render benchmarks obsolete. To mitigate this, many recent benchmarks crowdsource new prompts and evaluations from human or LLM judges; however, these can introduce significant biases, and break down when scoring hard questions. In this work, we introduce a new benchmark for LLMs designed to be immune to both test set contamination and the pitfalls of LLM judging and human crowdsourcing. We release LiveBench, the first benchmark that (1) contains frequently-updated questions from recent information sources, (2) scores answers automatically according to objective ground-truth values, and (3) contains a wide variety of challenging tasks, spanning math, coding, reasoning, language, instruction following, and data analysis. To achieve this, LiveBench contains questions that are based on recently-released math competitions, arXiv papers, news articles, and datasets, and it contains harder, contamination-free versions of tasks from previous benchmarks such as Big-Bench Hard, AMPS, and IFEval. We evaluate many prominent closed-source models, as well as dozens of open-source models ranging from 0.5B to 110B in size. LiveBench is difficult, with top models achieving below 65% accuracy. We release all questions, code, and model answers. Questions will be added and updated on a monthly basis, and we will release new tasks and harder versions of tasks over time so that LiveBench can distinguish between the capabilities of LLMs as they improve in the future. We welcome community engagement and collaboration for expanding the benchmark tasks and models.
BaRDa: A Belief and Reasoning Dataset that Separates Factual Accuracy and Reasoning Ability
While there are numerous benchmarks comparing the performance of modern language models (LMs), end-task evaluations often conflate notions of *factual accuracy* ("truth") and *reasoning ability* ("rationality", or "honesty" in the sense of correctly reporting implications of beliefs). Our goal is a dataset that clearly distinguishes these two notions. Our approach is to leverage and extend a collection of human-annotated *entailment trees*, engineered to express both good and bad chains of reasoning, and using a mixture of true and false facts, in particular including counterfactual examples, to avoid belief bias (also known as the "content effect"). The resulting dataset, called BaRDa, contains 3000 entailments (1787 valid, 1213 invalid), using 6681 true and 2319 false statements. Testing on four GPT-series models, GPT3(curie)/GPT3(davinici)/3.5/4, we find factual accuracy (truth) scores of 74.1/80.6/82.6/87.1 and reasoning accuracy scores of 63.1/78.0/71.8/79.2. This shows the clear progression of models towards improved factual accuracy and entailment reasoning, and the dataset provides a new benchmark that more cleanly separates and quantifies these two notions.
HoloDetect: Few-Shot Learning for Error Detection
We introduce a few-shot learning framework for error detection. We show that data augmentation (a form of weak supervision) is key to training high-quality, ML-based error detection models that require minimal human involvement. Our framework consists of two parts: (1) an expressive model to learn rich representations that capture the inherent syntactic and semantic heterogeneity of errors; and (2) a data augmentation model that, given a small seed of clean records, uses dataset-specific transformations to automatically generate additional training data. Our key insight is to learn data augmentation policies from the noisy input dataset in a weakly supervised manner. We show that our framework detects errors with an average precision of ~94% and an average recall of ~93% across a diverse array of datasets that exhibit different types and amounts of errors. We compare our approach to a comprehensive collection of error detection methods, ranging from traditional rule-based methods to ensemble-based and active learning approaches. We show that data augmentation yields an average improvement of 20 F1 points while it requires access to 3x fewer labeled examples compared to other ML approaches.
An Empirical Evaluation of Using Large Language Models for Automated Unit Test Generation
Unit tests play a key role in ensuring the correctness of software. However, manually creating unit tests is a laborious task, motivating the need for automation. Large Language Models (LLMs) have recently been applied to this problem, utilizing additional training or few-shot learning on examples of existing tests. This paper presents a large-scale empirical evaluation on the effectiveness of LLMs for automated unit test generation without additional training or manual effort, providing the LLM with the signature and implementation of the function under test, along with usage examples extracted from documentation. We also attempt to repair failed generated tests by re-prompting the model with the failing test and error message. We implement our approach in TestPilot, a test generation tool for JavaScript that automatically generates unit tests for all API functions in an npm package. We evaluate TestPilot using OpenAI's gpt3.5-turbo LLM on 25 npm packages with a total of 1,684 API functions. The generated tests achieve a median statement coverage of 70.2% and branch coverage of 52.8%, significantly improving on Nessie, a recent feedback-directed JavaScript test generation technique, which achieves only 51.3% statement coverage and 25.6% branch coverage. We also find that 92.8% of TestPilot's generated tests have no more than 50% similarity with existing tests (as measured by normalized edit distance), with none of them being exact copies. Finally, we run TestPilot with two additional LLMs, OpenAI's older code-cushman-002 LLM and the open LLM StarCoder. Overall, we observed similar results with the former (68.2% median statement coverage), and somewhat worse results with the latter (54.0% median statement coverage), suggesting that the effectiveness of the approach is influenced by the size and training set of the LLM, but does not fundamentally depend on the specific model.
Evaluating Sakana's AI Scientist for Autonomous Research: Wishful Thinking or an Emerging Reality Towards 'Artificial Research Intelligence' (ARI)?
A major step toward Artificial General Intelligence (AGI) and Super Intelligence is AI's ability to autonomously conduct research - what we term Artificial Research Intelligence (ARI). If machines could generate hypotheses, conduct experiments, and write research papers without human intervention, it would transform science. Sakana recently introduced the 'AI Scientist', claiming to conduct research autonomously, i.e. they imply to have achieved what we term Artificial Research Intelligence (ARI). The AI Scientist gained much attention, but a thorough independent evaluation has yet to be conducted. Our evaluation of the AI Scientist reveals critical shortcomings. The system's literature reviews produced poor novelty assessments, often misclassifying established concepts (e.g., micro-batching for stochastic gradient descent) as novel. It also struggles with experiment execution: 42% of experiments failed due to coding errors, while others produced flawed or misleading results. Code modifications were minimal, averaging 8% more characters per iteration, suggesting limited adaptability. Generated manuscripts were poorly substantiated, with a median of five citations, most outdated (only five of 34 from 2020 or later). Structural errors were frequent, including missing figures, repeated sections, and placeholder text like 'Conclusions Here'. Some papers contained hallucinated numerical results. Despite these flaws, the AI Scientist represents a leap forward in research automation. It generates full research manuscripts with minimal human input, challenging expectations of AI-driven science. Many reviewers might struggle to distinguish its work from human researchers. While its quality resembles a rushed undergraduate paper, its speed and cost efficiency are unprecedented, producing a full paper for USD 6 to 15 with 3.5 hours of human involvement, far outpacing traditional researchers.
Machine Translation Meta Evaluation through Translation Accuracy Challenge Sets
Recent machine translation (MT) metrics calibrate their effectiveness by correlating with human judgement but without any insights about their behaviour across different error types. Challenge sets are used to probe specific dimensions of metric behaviour but there are very few such datasets and they either focus on a limited number of phenomena or a limited number of language pairs. We introduce ACES, a contrastive challenge set spanning 146 language pairs, aimed at discovering whether metrics can identify 68 translation accuracy errors. These phenomena range from simple alterations at the word/character level to more complex errors based on discourse and real-world knowledge. We conduct a large-scale study by benchmarking ACES on 50 metrics submitted to the WMT 2022 and 2023 metrics shared tasks. We benchmark metric performance, assess their incremental performance over successive campaigns, and measure their sensitivity to a range of linguistic phenomena. We also investigate claims that Large Language Models (LLMs) are effective as MT evaluators by evaluating on ACES. Our results demonstrate that different metric families struggle with different phenomena and that LLM-based methods fail to demonstrate reliable performance. Our analyses indicate that most metrics ignore the source sentence, tend to prefer surface-level overlap and end up incorporating properties of base models which are not always beneficial. We expand ACES to include error span annotations, denoted as SPAN-ACES and we use this dataset to evaluate span-based error metrics showing these metrics also need considerable improvement. Finally, we provide a set of recommendations for building better MT metrics, including focusing on error labels instead of scores, ensembling, designing strategies to explicitly focus on the source sentence, focusing on semantic content and choosing the right base model for representations.
Mutation-Guided LLM-based Test Generation at Meta
This paper describes Meta's ACH system for mutation-guided LLM-based test generation. ACH generates relatively few mutants (aka simulated faults), compared to traditional mutation testing. Instead, it focuses on generating currently undetected faults that are specific to an issue of concern. From these currently uncaught faults, ACH generates tests that can catch them, thereby `killing' the mutants and consequently hardening the platform against regressions. We use privacy concerns to illustrate our approach, but ACH can harden code against {\em any} type of regression. In total, ACH was applied to 10,795 Android Kotlin classes in 7 software platforms deployed by Meta, from which it generated 9,095 mutants and 571 privacy-hardening test cases. ACH also deploys an LLM-based equivalent mutant detection agent that achieves a precision of 0.79 and a recall of 0.47 (rising to 0.95 and 0.96 with simple pre-processing). ACH was used by Messenger and WhatsApp test-a-thons where engineers accepted 73% of its tests, judging 36% to privacy relevant. We conclude that ACH hardens code against specific concerns and that, even when its tests do not directly tackle the specific concern, engineers find them useful for their other benefits.
Federated Learning Approach for Lifetime Prediction of Semiconductor Lasers
A new privacy-preserving federated learning framework allowing laser manufacturers to collaboratively build a robust ML-based laser lifetime prediction model, is proposed. It achieves a mean absolute error of 0.1 years and a significant performance improvement
Susceptibility of Large Language Models to User-Driven Factors in Medical Queries
Large language models (LLMs) are increasingly used in healthcare, but their reliability is heavily influenced by user-driven factors such as question phrasing and the completeness of clinical information. In this study, we examined how misinformation framing, source authority, model persona, and omission of key clinical details affect the diagnostic accuracy and reliability of LLM outputs. We conducted two experiments: one introducing misleading external opinions with varying assertiveness (perturbation test), and another removing specific categories of patient information (ablation test). Using public datasets (MedQA and Medbullets), we evaluated proprietary models (GPT-4o, Claude 3.5 Sonnet, Claude 3.5 Haiku, Gemini 1.5 Pro, Gemini 1.5 Flash) and open-source models (LLaMA 3 8B, LLaMA 3 Med42 8B, DeepSeek R1 8B). All models were vulnerable to user-driven misinformation, with proprietary models especially affected by definitive and authoritative language. Assertive tone had the greatest negative impact on accuracy. In the ablation test, omitting physical exam findings and lab results caused the most significant performance drop. Although proprietary models had higher baseline accuracy, their performance declined sharply under misinformation. These results highlight the need for well-structured prompts and complete clinical context. Users should avoid authoritative framing of misinformation and provide full clinical details, especially for complex cases.
o3-mini vs DeepSeek-R1: Which One is Safer?
The irruption of DeepSeek-R1 constitutes a turning point for the AI industry in general and the LLMs in particular. Its capabilities have demonstrated outstanding performance in several tasks, including creative thinking, code generation, maths and automated program repair, at apparently lower execution cost. However, LLMs must adhere to an important qualitative property, i.e., their alignment with safety and human values. A clear competitor of DeepSeek-R1 is its American counterpart, OpenAI's o3-mini model, which is expected to set high standards in terms of performance, safety and cost. In this paper we conduct a systematic assessment of the safety level of both, DeepSeek-R1 (70b version) and OpenAI's o3-mini (beta version). To this end, we make use of our recently released automated safety testing tool, named ASTRAL. By leveraging this tool, we automatically and systematically generate and execute a total of 1260 unsafe test inputs on both models. After conducting a semi-automated assessment of the outcomes provided by both LLMs, the results indicate that DeepSeek-R1 is highly unsafe as compared to OpenAI's o3-mini. Based on our evaluation, DeepSeek-R1 answered unsafely to 11.98% of the executed prompts whereas o3-mini only to 1.19%.
