1 Edify 3D: Scalable High-Quality 3D Asset Generation We introduce Edify 3D, an advanced solution designed for high-quality 3D asset generation. Our method first synthesizes RGB and surface normal images of the described object at multiple viewpoints using a diffusion model. The multi-view observations are then used to reconstruct the shape, texture, and PBR materials of the object. Our method can generate high-quality 3D assets with detailed geometry, clean shape topologies, high-resolution textures, and materials within 2 minutes of runtime. 24 authors · Nov 11, 2024 1
- Towards Methane Detection Onboard Satellites Methane is a potent greenhouse gas and a major driver of climate change, making its timely detection critical for effective mitigation. Machine learning (ML) deployed onboard satellites can enable rapid detection while reducing downlink costs, supporting faster response systems. Conventional methane detection methods often rely on image processing techniques, such as orthorectification to correct geometric distortions and matched filters to enhance plume signals. We introduce a novel approach that bypasses these preprocessing steps by using unorthorectified data (UnorthoDOS). We find that ML models trained on this dataset achieve performance comparable to those trained on orthorectified data. Moreover, we also train models on an orthorectified dataset, showing that they can outperform the matched filter baseline (mag1c). We release model checkpoints and two ML-ready datasets comprising orthorectified and unorthorectified hyperspectral images from the Earth Surface Mineral Dust Source Investigation (EMIT) sensor at https://huggingface.co/datasets/SpaceML/UnorthoDOS , along with code at https://github.com/spaceml-org/plume-hunter. 6 authors · Aug 30