- Intrinsically Motivated Open-Ended Multi-Task Learning Using Transfer Learning to Discover Task Hierarchy In open-ended continuous environments, robots need to learn multiple parameterised control tasks in hierarchical reinforcement learning. We hypothesise that the most complex tasks can be learned more easily by transferring knowledge from simpler tasks, and faster by adapting the complexity of the actions to the task. We propose a task-oriented representation of complex actions, called procedures, to learn online task relationships and unbounded sequences of action primitives to control the different observables of the environment. Combining both goal-babbling with imitation learning, and active learning with transfer of knowledge based on intrinsic motivation, our algorithm self-organises its learning process. It chooses at any given time a task to focus on; and what, how, when and from whom to transfer knowledge. We show with a simulation and a real industrial robot arm, in cross-task and cross-learner transfer settings, that task composition is key to tackle highly complex tasks. Task decomposition is also efficiently transferred across different embodied learners and by active imitation, where the robot requests just a small amount of demonstrations and the adequate type of information. The robot learns and exploits task dependencies so as to learn tasks of every complexity. 5 authors · Feb 19, 2021
- A Mobile Manipulation System for One-Shot Teaching of Complex Tasks in Homes We describe a mobile manipulation hardware and software system capable of autonomously performing complex human-level tasks in real homes, after being taught the task with a single demonstration from a person in virtual reality. This is enabled by a highly capable mobile manipulation robot, whole-body task space hybrid position/force control, teaching of parameterized primitives linked to a robust learned dense visual embeddings representation of the scene, and a task graph of the taught behaviors. We demonstrate the robustness of the approach by presenting results for performing a variety of tasks, under different environmental conditions, in multiple real homes. Our approach achieves 85% overall success rate on three tasks that consist of an average of 45 behaviors each. 13 authors · Sep 30, 2019
- Automotive-ENV: Benchmarking Multimodal Agents in Vehicle Interface Systems Multimodal agents have demonstrated strong performance in general GUI interactions, but their application in automotive systems has been largely unexplored. In-vehicle GUIs present distinct challenges: drivers' limited attention, strict safety requirements, and complex location-based interaction patterns. To address these challenges, we introduce Automotive-ENV, the first high-fidelity benchmark and interaction environment tailored for vehicle GUIs. This platform defines 185 parameterized tasks spanning explicit control, implicit intent understanding, and safety-aware tasks, and provides structured multimodal observations with precise programmatic checks for reproducible evaluation. Building on this benchmark, we propose ASURADA, a geo-aware multimodal agent that integrates GPS-informed context to dynamically adjust actions based on location, environmental conditions, and regional driving norms. Experiments show that geo-aware information significantly improves success on safety-aware tasks, highlighting the importance of location-based context in automotive environments. We will release Automotive-ENV, complete with all tasks and benchmarking tools, to further the development of safe and adaptive in-vehicle agents. 4 authors · Sep 25