- Excitonic phases in a spatially separated electron-hole ladder model We obtain the numerical ground state of a one-dimensional ladder model with the upper and lower chains occupied by spatially-separated electrons and holes, respectively. Under charge neutrality, we find that the excitonic bound states are always formed, i.e., no finite regime of decoupled electron and hole plasma exists at zero temperature. The system either behaves like a bosonic liquid or a bosonic crystal depending on the inter-chain attractive and intra-chain repulsive interaction strengths. We also provide the detailed excitonic phase diagrams in the intra- and inter-chain interaction parameters, with and without disorder. We also comment on the corresponding two-dimensional electron-hole bilayer exciton condensation. 2 authors · May 25, 2023
- 4+3 Phases of Compute-Optimal Neural Scaling Laws We consider the solvable neural scaling model with three parameters: data complexity, target complexity, and model-parameter-count. We use this neural scaling model to derive new predictions about the compute-limited, infinite-data scaling law regime. To train the neural scaling model, we run one-pass stochastic gradient descent on a mean-squared loss. We derive a representation of the loss curves which holds over all iteration counts and improves in accuracy as the model parameter count grows. We then analyze the compute-optimal model-parameter-count, and identify 4 phases (+3 subphases) in the data-complexity/target-complexity phase-plane. The phase boundaries are determined by the relative importance of model capacity, optimizer noise, and embedding of the features. We furthermore derive, with mathematical proof and extensive numerical evidence, the scaling-law exponents in all of these phases, in particular computing the optimal model-parameter-count as a function of floating point operation budget. 4 authors · May 23, 2024
- A Human-Like Reasoning Framework for Multi-Phases Planning Task with Large Language Models Recent studies have highlighted their proficiency in some simple tasks like writing and coding through various reasoning strategies. However, LLM agents still struggle with tasks that require comprehensive planning, a process that challenges current models and remains a critical research issue. In this study, we concentrate on travel planning, a Multi-Phases planning problem, that involves multiple interconnected stages, such as outlining, information gathering, and planning, often characterized by the need to manage various constraints and uncertainties. Existing reasoning approaches have struggled to effectively address this complex task. Our research aims to address this challenge by developing a human-like planning framework for LLM agents, i.e., guiding the LLM agent to simulate various steps that humans take when solving Multi-Phases problems. Specifically, we implement several strategies to enable LLM agents to generate a coherent outline for each travel query, mirroring human planning patterns. Additionally, we integrate Strategy Block and Knowledge Block into our framework: Strategy Block facilitates information collection, while Knowledge Block provides essential information for detailed planning. Through our extensive experiments, we demonstrate that our framework significantly improves the planning capabilities of LLM agents, enabling them to tackle the travel planning task with improved efficiency and effectiveness. Our experimental results showcase the exceptional performance of the proposed framework; when combined with GPT-4-Turbo, it attains 10times the performance gains in comparison to the baseline framework deployed on GPT-4-Turbo. 2 authors · May 28, 2024
- To the origin of the difference of FSI phases in $B\toππ$ and $B\toρρ$ decays The final state interactions (FSI) model in which soft rescattering of low mass intermediate states dominates is suggested. It explains why the strong interaction phases are large in the B_dtopipi channel and are considerably smaller in the B_dtorhorho one. Direct CP asymmetries of B_dtopipi decays which are determined by FSI phases are considered as well. 2 authors · Apr 3, 2007