Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeNewtonGen: Physics-Consistent and Controllable Text-to-Video Generation via Neural Newtonian Dynamics
A primary bottleneck in large-scale text-to-video generation today is physical consistency and controllability. Despite recent advances, state-of-the-art models often produce unrealistic motions, such as objects falling upward, or abrupt changes in velocity and direction. Moreover, these models lack precise parameter control, struggling to generate physically consistent dynamics under different initial conditions. We argue that this fundamental limitation stems from current models learning motion distributions solely from appearance, while lacking an understanding of the underlying dynamics. In this work, we propose NewtonGen, a framework that integrates data-driven synthesis with learnable physical principles. At its core lies trainable Neural Newtonian Dynamics (NND), which can model and predict a variety of Newtonian motions, thereby injecting latent dynamical constraints into the video generation process. By jointly leveraging data priors and dynamical guidance, NewtonGen enables physically consistent video synthesis with precise parameter control.
Physics-aware generative models for turbulent fluid flows through energy-consistent stochastic interpolants
Generative models have demonstrated remarkable success in domains such as text, image, and video synthesis. In this work, we explore the application of generative models to fluid dynamics, specifically for turbulence simulation, where classical numerical solvers are computationally expensive. We propose a novel stochastic generative model based on stochastic interpolants, which enables probabilistic forecasting while incorporating physical constraints such as energy stability and divergence-freeness. Unlike conventional stochastic generative models, which are often agnostic to underlying physical laws, our approach embeds energy consistency by making the parameters of the stochastic interpolant learnable coefficients. We evaluate our method on a benchmark turbulence problem - Kolmogorov flow - demonstrating superior accuracy and stability over state-of-the-art alternatives such as autoregressive conditional diffusion models (ACDMs) and PDE-Refiner. Furthermore, we achieve stable results for significantly longer roll-outs than standard stochastic interpolants. Our results highlight the potential of physics-aware generative models in accelerating and enhancing turbulence simulations while preserving fundamental conservation properties.
Context-Aware Deep Lagrangian Networks for Model Predictive Control
Controlling a robot based on physics-consistent dynamic models, such as Deep Lagrangian Networks (DeLaN), can improve the generalizability and interpretability of the resulting behavior. However, in complex environments, the number of objects to potentially interact with is vast, and their physical properties are often uncertain. This complexity makes it infeasible to employ a single global model. Therefore, we need to resort to online system identification of context-aware models that capture only the currently relevant aspects of the environment. While physical principles such as the conservation of energy may not hold across varying contexts, ensuring physical plausibility for any individual context-aware model can still be highly desirable, particularly when using it for receding horizon control methods such as model predictive control (MPC). Hence, in this work, we extend DeLaN to make it context-aware, combine it with a recurrent network for online system identification, and integrate it with an MPC for adaptive, physics-consistent control. We also combine DeLaN with a residual dynamics model to leverage the fact that a nominal model of the robot is typically available. We evaluate our method on a 7-DOF robot arm for trajectory tracking under varying loads. Our method reduces the end-effector tracking error by 39%, compared to a 21% improvement achieved by a baseline that uses an extended Kalman filter.
Can World Models Benefit VLMs for World Dynamics?
Trained on internet-scale video data, generative world models are increasingly recognized as powerful world simulators that can generate consistent and plausible dynamics over structure, motion, and physics. This raises a natural question: with the advent of strong video foundational models, might they supplant conventional vision encoder paradigms for general-purpose multimodal understanding? While recent studies have begun to explore the potential of world models on common vision tasks, these explorations typically lack a systematic investigation of generic, multimodal tasks. In this work, we strive to investigate the capabilities when world model priors are transferred into Vision-Language Models: we re-purpose a video diffusion model as a generative encoder to perform a single denoising step and treat the resulting latents as a set of visual embedding. We empirically investigate this class of models, which we refer to as World-Language Models (WorldLMs), and we find that generative encoders can capture latents useful for downstream understanding that show distinctions from conventional encoders. Naming our best-performing variant Dynamic Vision Aligner (DyVA), we further discover that this method significantly enhances spatial reasoning abilities and enables single-image models to perform multi-frame reasoning. Through the curation of a suite of visual reasoning tasks, we find DyVA to surpass both open-source and proprietary baselines, achieving state-of-the-art or comparable performance. We attribute these gains to WorldLM's inherited motion-consistency internalization from video pre-training. Finally, we systematically explore extensive model designs to highlight promising directions for future work. We hope our study can pave the way for a new family of VLMs that leverage priors from world models and are on a promising path towards generalist vision learners.
Generative AI models enable efficient and physically consistent sea-ice simulations
Sea ice is governed by highly complex, scale-invariant, and anisotropic processes that are challenging to represent in Earth system models. While advanced numerical models have improved our understanding of the sea-ice dynamics, their computational costs often limit their application in ensemble forecasting and climate simulations. Here, we introduce GenSIM, the first generative AI-based pan-Arctic model that predicts the evolution of all relevant key properties, including concentration, thickness, and drift, in a 12-hour window with improved accuracy over deterministic predictions and high computational efficiency, while remaining physically consistent. Trained on a long simulation from a state-of-the-art sea-ice--ocean system, GenSIM robustly reproduces statistics as observed in numerical models and observations, exhibiting brittle-like short-term dynamics while also depicting the long-term sea-ice decline. Driven solely by atmospheric forcings, we attribute GenSIM's emergent extrapolation capabilities to patterns that reflect the long-term impact of the ocean: it seemingly has learned an internal ocean emulator. This ability to infer slowly evolving climate-relevant dynamics from short-term predictions underlines the large potential of generative models to generalise for unseen climates and to encode hidden physics.
VDT: General-purpose Video Diffusion Transformers via Mask Modeling
This work introduces Video Diffusion Transformer (VDT), which pioneers the use of transformers in diffusion-based video generation. It features transformer blocks with modularized temporal and spatial attention modules to leverage the rich spatial-temporal representation inherited in transformers. We also propose a unified spatial-temporal mask modeling mechanism, seamlessly integrated with the model, to cater to diverse video generation scenarios. VDT offers several appealing benefits. 1) It excels at capturing temporal dependencies to produce temporally consistent video frames and even simulate the physics and dynamics of 3D objects over time. 2) It facilitates flexible conditioning information, \eg, simple concatenation in the token space, effectively unifying different token lengths and modalities. 3) Pairing with our proposed spatial-temporal mask modeling mechanism, it becomes a general-purpose video diffuser for harnessing a range of tasks, including unconditional generation, video prediction, interpolation, animation, and completion, etc. Extensive experiments on these tasks spanning various scenarios, including autonomous driving, natural weather, human action, and physics-based simulation, demonstrate the effectiveness of VDT. Additionally, we present comprehensive studies on how \model handles conditioning information with the mask modeling mechanism, which we believe will benefit future research and advance the field. Project page: https:VDT-2023.github.io
PIORF: Physics-Informed Ollivier-Ricci Flow for Long-Range Interactions in Mesh Graph Neural Networks
Recently, data-driven simulators based on graph neural networks have gained attention in modeling physical systems on unstructured meshes. However, they struggle with long-range dependencies in fluid flows, particularly in refined mesh regions. This challenge, known as the 'over-squashing' problem, hinders information propagation. While existing graph rewiring methods address this issue to some extent, they only consider graph topology, overlooking the underlying physical phenomena. We propose Physics-Informed Ollivier-Ricci Flow (PIORF), a novel rewiring method that combines physical correlations with graph topology. PIORF uses Ollivier-Ricci curvature (ORC) to identify bottleneck regions and connects these areas with nodes in high-velocity gradient nodes, enabling long-range interactions and mitigating over-squashing. Our approach is computationally efficient in rewiring edges and can scale to larger simulations. Experimental results on 3 fluid dynamics benchmark datasets show that PIORF consistently outperforms baseline models and existing rewiring methods, achieving up to 26.2 improvement.
Reward-Consistent Dynamics Models are Strongly Generalizable for Offline Reinforcement Learning
Learning a precise dynamics model can be crucial for offline reinforcement learning, which, unfortunately, has been found to be quite challenging. Dynamics models that are learned by fitting historical transitions often struggle to generalize to unseen transitions. In this study, we identify a hidden but pivotal factor termed dynamics reward that remains consistent across transitions, offering a pathway to better generalization. Therefore, we propose the idea of reward-consistent dynamics models: any trajectory generated by the dynamics model should maximize the dynamics reward derived from the data. We implement this idea as the MOREC (Model-based Offline reinforcement learning with Reward Consistency) method, which can be seamlessly integrated into previous offline model-based reinforcement learning (MBRL) methods. MOREC learns a generalizable dynamics reward function from offline data, which is subsequently employed as a transition filter in any offline MBRL method: when generating transitions, the dynamics model generates a batch of transitions and selects the one with the highest dynamics reward value. On a synthetic task, we visualize that MOREC has a strong generalization ability and can surprisingly recover some distant unseen transitions. On 21 offline tasks in D4RL and NeoRL benchmarks, MOREC improves the previous state-of-the-art performance by a significant margin, i.e., 4.6% on D4RL tasks and 25.9% on NeoRL tasks. Notably, MOREC is the first method that can achieve above 95% online RL performance in 6 out of 12 D4RL tasks and 3 out of 9 NeoRL tasks.
End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and Compliant Impedance Control
It is well-known that inverse dynamics models can improve tracking performance in robot control. These models need to precisely capture the robot dynamics, which consist of well-understood components, e.g., rigid body dynamics, and effects that remain challenging to capture, e.g., stick-slip friction and mechanical flexibilities. Such effects exhibit hysteresis and partial observability, rendering them, particularly challenging to model. Hence, hybrid models, which combine a physical prior with data-driven approaches are especially well-suited in this setting. We present a novel hybrid model formulation that enables us to identify fully physically consistent inertial parameters of a rigid body dynamics model which is paired with a recurrent neural network architecture, allowing us to capture unmodeled partially observable effects using the network memory. We compare our approach against state-of-the-art inverse dynamics models on a 7 degree of freedom manipulator. Using data sets obtained through an optimal experiment design approach, we study the accuracy of offline torque prediction and generalization capabilities of joint learning methods. In control experiments on the real system, we evaluate the model as a feed-forward term for impedance control and show the feedback gains can be drastically reduced to achieve a given tracking accuracy.
FlashMD: long-stride, universal prediction of molecular dynamics
Molecular dynamics (MD) provides insights into atomic-scale processes by integrating over time the equations that describe the motion of atoms under the action of interatomic forces. Machine learning models have substantially accelerated MD by providing inexpensive predictions of the forces, but they remain constrained to minuscule time integration steps, which are required by the fast time scale of atomic motion. In this work, we propose FlashMD, a method to predict the evolution of positions and momenta over strides that are between one and two orders of magnitude longer than typical MD time steps. We incorporate considerations on the mathematical and physical properties of Hamiltonian dynamics in the architecture, generalize the approach to allow the simulation of any thermodynamic ensemble, and carefully assess the possible failure modes of such a long-stride MD approach. We validate FlashMD's accuracy in reproducing equilibrium and time-dependent properties, using both system-specific and general-purpose models, extending the ability of MD simulation to reach the long time scales needed to model microscopic processes of high scientific and technological relevance.
Towards Cross Domain Generalization of Hamiltonian Representation via Meta Learning
Recent advances in deep learning for physics have focused on discovering shared representations of target systems by incorporating physics priors or inductive biases into neural networks. While effective, these methods are limited to the system domain, where the type of system remains consistent and thus cannot ensure the adaptation to new, or unseen physical systems governed by different laws. For instance, a neural network trained on a mass-spring system cannot guarantee accurate predictions for the behavior of a two-body system or any other system with different physical laws. In this work, we take a significant leap forward by targeting cross domain generalization within the field of Hamiltonian dynamics. We model our system with a graph neural network and employ a meta learning algorithm to enable the model to gain experience over a distribution of tasks and make it adapt to new physics. Our approach aims to learn a unified Hamiltonian representation that is generalizable across multiple system domains, thereby overcoming the limitations of system-specific models. Our results demonstrate that the meta-trained model not only adapts effectively to new systems but also captures a generalized Hamiltonian representation that is consistent across different physical domains. Overall, through the use of meta learning, we offer a framework that achieves cross domain generalization, providing a step towards a unified model for understanding a wide array of dynamical systems via deep learning.
RoboScape: Physics-informed Embodied World Model
World models have become indispensable tools for embodied intelligence, serving as powerful simulators capable of generating realistic robotic videos while addressing critical data scarcity challenges. However, current embodied world models exhibit limited physical awareness, particularly in modeling 3D geometry and motion dynamics, resulting in unrealistic video generation for contact-rich robotic scenarios. In this paper, we present RoboScape, a unified physics-informed world model that jointly learns RGB video generation and physics knowledge within an integrated framework. We introduce two key physics-informed joint training tasks: temporal depth prediction that enhances 3D geometric consistency in video rendering, and keypoint dynamics learning that implicitly encodes physical properties (e.g., object shape and material characteristics) while improving complex motion modeling. Extensive experiments demonstrate that RoboScape generates videos with superior visual fidelity and physical plausibility across diverse robotic scenarios. We further validate its practical utility through downstream applications including robotic policy training with generated data and policy evaluation. Our work provides new insights for building efficient physics-informed world models to advance embodied intelligence research. The code is available at: https://github.com/tsinghua-fib-lab/RoboScape.
Align Your Tangent: Training Better Consistency Models via Manifold-Aligned Tangents
With diffusion and flow matching models achieving state-of-the-art generating performance, the interest of the community now turned to reducing the inference time without sacrificing sample quality. Consistency Models (CMs), which are trained to be consistent on diffusion or probability flow ordinary differential equation (PF-ODE) trajectories, enable one or two-step flow or diffusion sampling. However, CMs typically require prolonged training with large batch sizes to obtain competitive sample quality. In this paper, we examine the training dynamics of CMs near convergence and discover that CM tangents -- CM output update directions -- are quite oscillatory, in the sense that they move parallel to the data manifold, not towards the manifold. To mitigate oscillatory tangents, we propose a new loss function, called the manifold feature distance (MFD), which provides manifold-aligned tangents that point toward the data manifold. Consequently, our method -- dubbed Align Your Tangent (AYT) -- can accelerate CM training by orders of magnitude and even out-perform the learned perceptual image patch similarity metric (LPIPS). Furthermore, we find that our loss enables training with extremely small batch sizes without compromising sample quality. Code: https://github.com/1202kbs/AYT
Mamba Integrated with Physics Principles Masters Long-term Chaotic System Forecasting
Long-term forecasting of chaotic systems from short-term observations remains a fundamental and underexplored challenge due to the intrinsic sensitivity to initial conditions and the complex geometry of strange attractors. Existing approaches often rely on long-term training data or focus on short-term sequence correlations, struggling to maintain predictive stability and dynamical coherence over extended horizons. We propose PhyxMamba, a novel framework that integrates a Mamba-based state-space model with physics-informed principles to capture the underlying dynamics of chaotic systems. By reconstructing the attractor manifold from brief observations using time-delay embeddings, PhyxMamba extracts global dynamical features essential for accurate forecasting. Our generative training scheme enables Mamba to replicate the physical process, augmented by multi-token prediction and attractor geometry regularization for physical constraints, enhancing prediction accuracy and preserving key statistical invariants. Extensive evaluations on diverse simulated and real-world chaotic systems demonstrate that PhyxMamba delivers superior long-term forecasting and faithfully captures essential dynamical invariants from short-term data. This framework opens new avenues for reliably predicting chaotic systems under observation-scarce conditions, with broad implications across climate science, neuroscience, epidemiology, and beyond. Our code is open-source at https://github.com/tsinghua-fib-lab/PhyxMamba.
LikePhys: Evaluating Intuitive Physics Understanding in Video Diffusion Models via Likelihood Preference
Intuitive physics understanding in video diffusion models plays an essential role in building general-purpose physically plausible world simulators, yet accurately evaluating such capacity remains a challenging task due to the difficulty in disentangling physics correctness from visual appearance in generation. To the end, we introduce LikePhys, a training-free method that evaluates intuitive physics in video diffusion models by distinguishing physically valid and impossible videos using the denoising objective as an ELBO-based likelihood surrogate on a curated dataset of valid-invalid pairs. By testing on our constructed benchmark of twelve scenarios spanning over four physics domains, we show that our evaluation metric, Plausibility Preference Error (PPE), demonstrates strong alignment with human preference, outperforming state-of-the-art evaluator baselines. We then systematically benchmark intuitive physics understanding in current video diffusion models. Our study further analyses how model design and inference settings affect intuitive physics understanding and highlights domain-specific capacity variations across physical laws. Empirical results show that, despite current models struggling with complex and chaotic dynamics, there is a clear trend of improvement in physics understanding as model capacity and inference settings scale.
Denoising Hamiltonian Network for Physical Reasoning
Machine learning frameworks for physical problems must capture and enforce physical constraints that preserve the structure of dynamical systems. Many existing approaches achieve this by integrating physical operators into neural networks. While these methods offer theoretical guarantees, they face two key limitations: (i) they primarily model local relations between adjacent time steps, overlooking longer-range or higher-level physical interactions, and (ii) they focus on forward simulation while neglecting broader physical reasoning tasks. We propose the Denoising Hamiltonian Network (DHN), a novel framework that generalizes Hamiltonian mechanics operators into more flexible neural operators. DHN captures non-local temporal relationships and mitigates numerical integration errors through a denoising mechanism. DHN also supports multi-system modeling with a global conditioning mechanism. We demonstrate its effectiveness and flexibility across three diverse physical reasoning tasks with distinct inputs and outputs.
Flow Matching Meets PDEs: A Unified Framework for Physics-Constrained Generation
Generative machine learning methods, such as diffusion models and flow matching, have shown great potential in modeling complex system behaviors and building efficient surrogate models. However, these methods typically learn the underlying physics implicitly from data. We propose Physics-Based Flow Matching (PBFM), a novel generative framework that explicitly embeds physical constraints, both PDE residuals and algebraic relations, into the flow matching objective. We also introduce temporal unrolling at training time that improves the accuracy of the final, noise-free sample prediction. Our method jointly minimizes the flow matching loss and the physics-based residual loss without requiring hyperparameter tuning of their relative weights. Additionally, we analyze the role of the minimum noise level, sigma_{min}, in the context of physical constraints and evaluate a stochastic sampling strategy that helps to reduce physical residuals. Through extensive benchmarks on three representative PDE problems, we show that our approach yields up to an 8times more accurate physical residuals compared to FM, while clearly outperforming existing algorithms in terms of distributional accuracy. PBFM thus provides a principled and efficient framework for surrogate modeling, uncertainty quantification, and accelerated simulation in physics and engineering applications.
PhysCtrl: Generative Physics for Controllable and Physics-Grounded Video Generation
Existing video generation models excel at producing photo-realistic videos from text or images, but often lack physical plausibility and 3D controllability. To overcome these limitations, we introduce PhysCtrl, a novel framework for physics-grounded image-to-video generation with physical parameters and force control. At its core is a generative physics network that learns the distribution of physical dynamics across four materials (elastic, sand, plasticine, and rigid) via a diffusion model conditioned on physics parameters and applied forces. We represent physical dynamics as 3D point trajectories and train on a large-scale synthetic dataset of 550K animations generated by physics simulators. We enhance the diffusion model with a novel spatiotemporal attention block that emulates particle interactions and incorporates physics-based constraints during training to enforce physical plausibility. Experiments show that PhysCtrl generates realistic, physics-grounded motion trajectories which, when used to drive image-to-video models, yield high-fidelity, controllable videos that outperform existing methods in both visual quality and physical plausibility. Project Page: https://cwchenwang.github.io/physctrl
PFGM++: Unlocking the Potential of Physics-Inspired Generative Models
We introduce a new family of physics-inspired generative models termed PFGM++ that unifies diffusion models and Poisson Flow Generative Models (PFGM). These models realize generative trajectories for N dimensional data by embedding paths in N{+}D dimensional space while still controlling the progression with a simple scalar norm of the D additional variables. The new models reduce to PFGM when D{=}1 and to diffusion models when D{to}infty. The flexibility of choosing D allows us to trade off robustness against rigidity as increasing D results in more concentrated coupling between the data and the additional variable norms. We dispense with the biased large batch field targets used in PFGM and instead provide an unbiased perturbation-based objective similar to diffusion models. To explore different choices of D, we provide a direct alignment method for transferring well-tuned hyperparameters from diffusion models (D{to} infty) to any finite D values. Our experiments show that models with finite D can be superior to previous state-of-the-art diffusion models on CIFAR-10/FFHQ 64{times}64 datasets, with FID scores of 1.91/2.43 when D{=}2048/128. In class-conditional setting, D{=}2048 yields current state-of-the-art FID of 1.74 on CIFAR-10. In addition, we demonstrate that models with smaller D exhibit improved robustness against modeling errors. Code is available at https://github.com/Newbeeer/pfgmpp
Towards Physically Plausible Video Generation via VLM Planning
Video diffusion models (VDMs) have advanced significantly in recent years, enabling the generation of highly realistic videos and drawing the attention of the community in their potential as world simulators. However, despite their capabilities, VDMs often fail to produce physically plausible videos due to an inherent lack of understanding of physics, resulting in incorrect dynamics and event sequences. To address this limitation, we propose a novel two-stage image-to-video generation framework that explicitly incorporates physics. In the first stage, we employ a Vision Language Model (VLM) as a coarse-grained motion planner, integrating chain-of-thought and physics-aware reasoning to predict a rough motion trajectories/changes that approximate real-world physical dynamics while ensuring the inter-frame consistency. In the second stage, we use the predicted motion trajectories/changes to guide the video generation of a VDM. As the predicted motion trajectories/changes are rough, noise is added during inference to provide freedom to the VDM in generating motion with more fine details. Extensive experimental results demonstrate that our framework can produce physically plausible motion, and comparative evaluations highlight the notable superiority of our approach over existing methods. More video results are available on our Project Page: https://madaoer.github.io/projects/physically_plausible_video_generation.
ContPhy: Continuum Physical Concept Learning and Reasoning from Videos
We introduce the Continuum Physical Dataset (ContPhy), a novel benchmark for assessing machine physical commonsense. ContPhy complements existing physical reasoning benchmarks by encompassing the inference of diverse physical properties, such as mass and density, across various scenarios and predicting corresponding dynamics. We evaluated a range of AI models and found that they still struggle to achieve satisfactory performance on ContPhy, which shows that the current AI models still lack physical commonsense for the continuum, especially soft-bodies, and illustrates the value of the proposed dataset. We also introduce an oracle model (ContPRO) that marries the particle-based physical dynamic models with the recent large language models, which enjoy the advantages of both models, precise dynamic predictions, and interpretable reasoning. ContPhy aims to spur progress in perception and reasoning within diverse physical settings, narrowing the divide between human and machine intelligence in understanding the physical world. Project page: https://physical-reasoning-project.github.io.
Respecting causality is all you need for training physics-informed neural networks
While the popularity of physics-informed neural networks (PINNs) is steadily rising, to this date PINNs have not been successful in simulating dynamical systems whose solution exhibits multi-scale, chaotic or turbulent behavior. In this work we attribute this shortcoming to the inability of existing PINNs formulations to respect the spatio-temporal causal structure that is inherent to the evolution of physical systems. We argue that this is a fundamental limitation and a key source of error that can ultimately steer PINN models to converge towards erroneous solutions. We address this pathology by proposing a simple re-formulation of PINNs loss functions that can explicitly account for physical causality during model training. We demonstrate that this simple modification alone is enough to introduce significant accuracy improvements, as well as a practical quantitative mechanism for assessing the convergence of a PINNs model. We provide state-of-the-art numerical results across a series of benchmarks for which existing PINNs formulations fail, including the chaotic Lorenz system, the Kuramoto-Sivashinsky equation in the chaotic regime, and the Navier-Stokes equations in the turbulent regime. To the best of our knowledge, this is the first time that PINNs have been successful in simulating such systems, introducing new opportunities for their applicability to problems of industrial complexity.
Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling
Integrating physics models within machine learning models holds considerable promise toward learning robust models with improved interpretability and abilities to extrapolate. In this work, we focus on the integration of incomplete physics models into deep generative models. In particular, we introduce an architecture of variational autoencoders (VAEs) in which a part of the latent space is grounded by physics. A key technical challenge is to strike a balance between the incomplete physics and trainable components such as neural networks for ensuring that the physics part is used in a meaningful manner. To this end, we propose a regularized learning method that controls the effect of the trainable components and preserves the semantics of the physics-based latent variables as intended. We not only demonstrate generative performance improvements over a set of synthetic and real-world datasets, but we also show that we learn robust models that can consistently extrapolate beyond the training distribution in a meaningful manner. Moreover, we show that we can control the generative process in an interpretable manner.
"PhyWorldBench": A Comprehensive Evaluation of Physical Realism in Text-to-Video Models
Video generation models have achieved remarkable progress in creating high-quality, photorealistic content. However, their ability to accurately simulate physical phenomena remains a critical and unresolved challenge. This paper presents PhyWorldBench, a comprehensive benchmark designed to evaluate video generation models based on their adherence to the laws of physics. The benchmark covers multiple levels of physical phenomena, ranging from fundamental principles like object motion and energy conservation to more complex scenarios involving rigid body interactions and human or animal motion. Additionally, we introduce a novel ""Anti-Physics"" category, where prompts intentionally violate real-world physics, enabling the assessment of whether models can follow such instructions while maintaining logical consistency. Besides large-scale human evaluation, we also design a simple yet effective method that could utilize current MLLM to evaluate the physics realism in a zero-shot fashion. We evaluate 12 state-of-the-art text-to-video generation models, including five open-source and five proprietary models, with a detailed comparison and analysis. we identify pivotal challenges models face in adhering to real-world physics. Through systematic testing of their outputs across 1,050 curated prompts-spanning fundamental, composite, and anti-physics scenarios-we identify pivotal challenges these models face in adhering to real-world physics. We then rigorously examine their performance on diverse physical phenomena with varying prompt types, deriving targeted recommendations for crafting prompts that enhance fidelity to physical principles.
Action Matching: Learning Stochastic Dynamics from Samples
Learning the continuous dynamics of a system from snapshots of its temporal marginals is a problem which appears throughout natural sciences and machine learning, including in quantum systems, single-cell biological data, and generative modeling. In these settings, we assume access to cross-sectional samples that are uncorrelated over time, rather than full trajectories of samples. In order to better understand the systems under observation, we would like to learn a model of the underlying process that allows us to propagate samples in time and thereby simulate entire individual trajectories. In this work, we propose Action Matching, a method for learning a rich family of dynamics using only independent samples from its time evolution. We derive a tractable training objective, which does not rely on explicit assumptions about the underlying dynamics and does not require back-propagation through differential equations or optimal transport solvers. Inspired by connections with optimal transport, we derive extensions of Action Matching to learn stochastic differential equations and dynamics involving creation and destruction of probability mass. Finally, we showcase applications of Action Matching by achieving competitive performance in a diverse set of experiments from biology, physics, and generative modeling.
Hierarchical Fine-grained Preference Optimization for Physically Plausible Video Generation
Recent advancements in video generation have enabled the creation of high-quality, visually compelling videos. However, generating videos that adhere to the laws of physics remains a critical challenge for applications requiring realism and accuracy. In this work, we propose PhysHPO, a novel framework for Hierarchical Cross-Modal Direct Preference Optimization, to tackle this challenge by enabling fine-grained preference alignment for physically plausible video generation. PhysHPO optimizes video alignment across four hierarchical granularities: a) Instance Level, aligning the overall video content with the input prompt; b) State Level, ensuring temporal consistency using boundary frames as anchors; c) Motion Level, modeling motion trajectories for realistic dynamics; and d) Semantic Level, maintaining logical consistency between narrative and visuals. Recognizing that real-world videos are the best reflections of physical phenomena, we further introduce an automated data selection pipeline to efficiently identify and utilize "good data" from existing large-scale text-video datasets, thereby eliminating the need for costly and time-intensive dataset construction. Extensive experiments on both physics-focused and general capability benchmarks demonstrate that PhysHPO significantly improves physical plausibility and overall video generation quality of advanced models. To the best of our knowledge, this is the first work to explore fine-grained preference alignment and data selection for video generation, paving the way for more realistic and human-preferred video generation paradigms.
CausalDynamics: A large-scale benchmark for structural discovery of dynamical causal models
Causal discovery for dynamical systems poses a major challenge in fields where active interventions are infeasible. Most methods used to investigate these systems and their associated benchmarks are tailored to deterministic, low-dimensional and weakly nonlinear time-series data. To address these limitations, we present CausalDynamics, a large-scale benchmark and extensible data generation framework to advance the structural discovery of dynamical causal models. Our benchmark consists of true causal graphs derived from thousands of coupled ordinary and stochastic differential equations as well as two idealized climate models. We perform a comprehensive evaluation of state-of-the-art causal discovery algorithms for graph reconstruction on systems with noisy, confounded, and lagged dynamics. CausalDynamics consists of a plug-and-play, build-your-own coupling workflow that enables the construction of a hierarchy of physical systems. We anticipate that our framework will facilitate the development of robust causal discovery algorithms that are broadly applicable across domains while addressing their unique challenges. We provide a user-friendly implementation and documentation on https://kausable.github.io/CausalDynamics.
ChaosBench: A Multi-Channel, Physics-Based Benchmark for Subseasonal-to-Seasonal Climate Prediction
Accurate prediction of climate in the subseasonal-to-seasonal scale is crucial for disaster readiness, reduced economic risk, and improved policy-making amidst climate change. Yet, S2S prediction remains challenging due to the chaotic nature of the system. At present, existing benchmarks for weather and climate applications, tend to (1) have shorter forecasting range of up-to 14 days, (2) do not include a wide range of operational baseline forecasts, and (3) lack physics-based constraints for explainability. Thus, we propose ChaosBench, a large-scale, multi-channel, physics-based benchmark for S2S prediction. ChaosBench has over 460K frames of real-world observations and simulations, each with 60 variable-channels and spanning for up-to 45 years. We also propose several physics-based, in addition to vision-based metrics, that enables for a more physically-consistent model. Furthermore, we include a diverse set of physics-based forecasts from 4 national weather agencies as baselines to our data-driven counterpart. We establish two tasks that vary in complexity: full and sparse dynamics prediction. Our benchmark is one of the first to perform large-scale evaluation on existing models including PanguWeather, FourCastNetV2, GraphCast, and ClimaX, and finds methods originally developed for weather-scale applications fails on S2S task. We release our benchmark code and datasets at https://leap-stc.github.io/ChaosBench.
Generative Modeling with Phase Stochastic Bridges
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs. DMs work by constructing a Stochastic Differential Equation (SDE) in the input space (ie, position space), and using a neural network to reverse it. In this work, we introduce a novel generative modeling framework grounded in phase space dynamics, where a phase space is defined as {an augmented space encompassing both position and velocity.} Leveraging insights from Stochastic Optimal Control, we construct a path measure in the phase space that enables efficient sampling. {In contrast to DMs, our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.} This early prediction sets the stage for efficient data generation by leveraging additional velocity information along the trajectory. On standard image generation benchmarks, our model yields favorable performance over baselines in the regime of small Number of Function Evaluations (NFEs). Furthermore, our approach rivals the performance of diffusion models equipped with efficient sampling techniques, underscoring its potential as a new tool generative modeling.
Towards Physics-Guided Foundation Models
Traditional foundation models are pre-trained on broad datasets to reduce the training resources (e.g., time, energy, labeled samples) needed for fine-tuning a wide range of downstream tasks. However, traditional foundation models struggle with out-of-distribution prediction and can produce outputs that are unrealistic and physically infeasible. We propose the notation of physics-guided foundation models (PGFM), that is, foundation models integrated with broad or general domain (e.g., scientific) physical knowledge applicable to a wide range of downstream tasks.
Towards a Physics Foundation Model
Foundation models have revolutionized natural language processing through a ``train once, deploy anywhere'' paradigm, where a single pre-trained model adapts to countless downstream tasks without retraining. Access to a Physics Foundation Model (PFM) would be transformative -- democratizing access to high-fidelity simulations, accelerating scientific discovery, and eliminating the need for specialized solver development. Yet current physics-aware machine learning approaches remain fundamentally limited to single, narrow domains and require retraining for each new system. We present the General Physics Transformer (GPhyT), trained on 1.8 TB of diverse simulation data, that demonstrates foundation model capabilities are achievable for physics. Our key insight is that transformers can learn to infer governing dynamics from context, enabling a single model to simulate fluid-solid interactions, shock waves, thermal convection, and multi-phase dynamics without being told the underlying equations. GPhyT achieves three critical breakthroughs: (1) superior performance across multiple physics domains, outperforming specialized architectures by up to 29x, (2) zero-shot generalization to entirely unseen physical systems through in-context learning, and (3) stable long-term predictions through 50-timestep rollouts. By establishing that a single model can learn generalizable physical principles from data alone, this work opens the path toward a universal PFM that could transform computational science and engineering.
Hitchhiker's guide on Energy-Based Models: a comprehensive review on the relation with other generative models, sampling and statistical physics
Energy-Based Models (EBMs) have emerged as a powerful framework in the realm of generative modeling, offering a unique perspective that aligns closely with principles of statistical mechanics. This review aims to provide physicists with a comprehensive understanding of EBMs, delineating their connection to other generative models such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Normalizing Flows. We explore the sampling techniques crucial for EBMs, including Markov Chain Monte Carlo (MCMC) methods, and draw parallels between EBM concepts and statistical mechanics, highlighting the significance of energy functions and partition functions. Furthermore, we delve into state-of-the-art training methodologies for EBMs, covering recent advancements and their implications for enhanced model performance and efficiency. This review is designed to clarify the often complex interconnections between these models, which can be challenging due to the diverse communities working on the topic.
Efficient Dynamics Modeling in Interactive Environments with Koopman Theory
The accurate modeling of dynamics in interactive environments is critical for successful long-range prediction. Such a capability could advance Reinforcement Learning (RL) and Planning algorithms, but achieving it is challenging. Inaccuracies in model estimates can compound, resulting in increased errors over long horizons. We approach this problem from the lens of Koopman theory, where the nonlinear dynamics of the environment can be linearized in a high-dimensional latent space. This allows us to efficiently parallelize the sequential problem of long-range prediction using convolution while accounting for the agent's action at every time step. Our approach also enables stability analysis and better control over gradients through time. Taken together, these advantages result in significant improvement over the existing approaches, both in the efficiency and the accuracy of modeling dynamics over extended horizons. We also show that this model can be easily incorporated into dynamics modeling for model-based planning and model-free RL and report promising experimental results.
SEGNO: Generalizing Equivariant Graph Neural Networks with Physical Inductive Biases
Graph Neural Networks (GNNs) with equivariant properties have emerged as powerful tools for modeling complex dynamics of multi-object physical systems. However, their generalization ability is limited by the inadequate consideration of physical inductive biases: (1) Existing studies overlook the continuity of transitions among system states, opting to employ several discrete transformation layers to learn the direct mapping between two adjacent states; (2) Most models only account for first-order velocity information, despite the fact that many physical systems are governed by second-order motion laws. To incorporate these inductive biases, we propose the Second-order Equivariant Graph Neural Ordinary Differential Equation (SEGNO). Specifically, we show how the second-order continuity can be incorporated into GNNs while maintaining the equivariant property. Furthermore, we offer theoretical insights into SEGNO, highlighting that it can learn a unique trajectory between adjacent states, which is crucial for model generalization. Additionally, we prove that the discrepancy between this learned trajectory of SEGNO and the true trajectory is bounded. Extensive experiments on complex dynamical systems including molecular dynamics and motion capture demonstrate that our model yields a significant improvement over the state-of-the-art baselines.
Consistency Flow Matching: Defining Straight Flows with Velocity Consistency
Flow matching (FM) is a general framework for defining probability paths via Ordinary Differential Equations (ODEs) to transform between noise and data samples. Recent approaches attempt to straighten these flow trajectories to generate high-quality samples with fewer function evaluations, typically through iterative rectification methods or optimal transport solutions. In this paper, we introduce Consistency Flow Matching (Consistency-FM), a novel FM method that explicitly enforces self-consistency in the velocity field. Consistency-FM directly defines straight flows starting from different times to the same endpoint, imposing constraints on their velocity values. Additionally, we propose a multi-segment training approach for Consistency-FM to enhance expressiveness, achieving a better trade-off between sampling quality and speed. Preliminary experiments demonstrate that our Consistency-FM significantly improves training efficiency by converging 4.4x faster than consistency models and 1.7x faster than rectified flow models while achieving better generation quality. Our code is available at: https://github.com/YangLing0818/consistency_flow_matching
Learning Flexible Body Collision Dynamics with Hierarchical Contact Mesh Transformer
Recently, many mesh-based graph neural network (GNN) models have been proposed for modeling complex high-dimensional physical systems. Remarkable achievements have been made in significantly reducing the solving time compared to traditional numerical solvers. These methods are typically designed to i) reduce the computational cost in solving physical dynamics and/or ii) propose techniques to enhance the solution accuracy in fluid and rigid body dynamics. However, it remains under-explored whether they are effective in addressing the challenges of flexible body dynamics, where instantaneous collisions occur within a very short timeframe. In this paper, we present Hierarchical Contact Mesh Transformer (HCMT), which uses hierarchical mesh structures and can learn long-range dependencies (occurred by collisions) among spatially distant positions of a body -- two close positions in a higher-level mesh correspond to two distant positions in a lower-level mesh. HCMT enables long-range interactions, and the hierarchical mesh structure quickly propagates collision effects to faraway positions. To this end, it consists of a contact mesh Transformer and a hierarchical mesh Transformer (CMT and HMT, respectively). Lastly, we propose a flexible body dynamics dataset, consisting of trajectories that reflect experimental settings frequently used in the display industry for product designs. We also compare the performance of several baselines using well-known benchmark datasets. Our results show that HCMT provides significant performance improvements over existing methods. Our code is available at https://github.com/yuyudeep/hcmt.
PhysDiff: Physics-Guided Human Motion Diffusion Model
Denoising diffusion models hold great promise for generating diverse and realistic human motions. However, existing motion diffusion models largely disregard the laws of physics in the diffusion process and often generate physically-implausible motions with pronounced artifacts such as floating, foot sliding, and ground penetration. This seriously impacts the quality of generated motions and limits their real-world application. To address this issue, we present a novel physics-guided motion diffusion model (PhysDiff), which incorporates physical constraints into the diffusion process. Specifically, we propose a physics-based motion projection module that uses motion imitation in a physics simulator to project the denoised motion of a diffusion step to a physically-plausible motion. The projected motion is further used in the next diffusion step to guide the denoising diffusion process. Intuitively, the use of physics in our model iteratively pulls the motion toward a physically-plausible space, which cannot be achieved by simple post-processing. Experiments on large-scale human motion datasets show that our approach achieves state-of-the-art motion quality and improves physical plausibility drastically (>78% for all datasets).
Consistency Models as a Rich and Efficient Policy Class for Reinforcement Learning
Score-based generative models like the diffusion model have been testified to be effective in modeling multi-modal data from image generation to reinforcement learning (RL). However, the inference process of diffusion model can be slow, which hinders its usage in RL with iterative sampling. We propose to apply the consistency model as an efficient yet expressive policy representation, namely consistency policy, with an actor-critic style algorithm for three typical RL settings: offline, offline-to-online and online. For offline RL, we demonstrate the expressiveness of generative models as policies from multi-modal data. For offline-to-online RL, the consistency policy is shown to be more computational efficient than diffusion policy, with a comparable performance. For online RL, the consistency policy demonstrates significant speedup and even higher average performances than the diffusion policy.
Towards Physically Interpretable World Models: Meaningful Weakly Supervised Representations for Visual Trajectory Prediction
Deep learning models are increasingly employed for perception, prediction, and control in complex systems. Embedding physical knowledge into these models is crucial for achieving realistic and consistent outputs, a challenge often addressed by physics-informed machine learning. However, integrating physical knowledge with representation learning becomes difficult when dealing with high-dimensional observation data, such as images, particularly under conditions of incomplete or imprecise state information. To address this, we propose Physically Interpretable World Models, a novel architecture that aligns learned latent representations with real-world physical quantities. Our method combines a variational autoencoder with a dynamical model that incorporates unknown system parameters, enabling the discovery of physically meaningful representations. By employing weak supervision with interval-based constraints, our approach eliminates the reliance on ground-truth physical annotations. Experimental results demonstrate that our method improves the quality of learned representations while achieving accurate predictions of future states, advancing the field of representation learning in dynamic systems.
Liquid Time-constant Networks
We introduce a new class of time-continuous recurrent neural network models. Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems modulated via nonlinear interlinked gates. The resulting models represent dynamical systems with varying (i.e., liquid) time-constants coupled to their hidden state, with outputs being computed by numerical differential equation solvers. These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations, and give rise to improved performance on time-series prediction tasks. To demonstrate these properties, we first take a theoretical approach to find bounds over their dynamics and compute their expressive power by the trajectory length measure in latent trajectory space. We then conduct a series of time-series prediction experiments to manifest the approximation capability of Liquid Time-Constant Networks (LTCs) compared to classical and modern RNNs. Code and data are available at https://github.com/raminmh/liquid_time_constant_networks
Learning Neural Constitutive Laws From Motion Observations for Generalizable PDE Dynamics
We propose a hybrid neural network (NN) and PDE approach for learning generalizable PDE dynamics from motion observations. Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and constitutive models (or material models). Without explicit PDE knowledge, these approaches cannot guarantee physical correctness and have limited generalizability. We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned. Instead, constitutive models are particularly suitable for learning due to their data-fitting nature. To this end, we introduce a new framework termed "Neural Constitutive Laws" (NCLaw), which utilizes a network architecture that strictly guarantees standard constitutive priors, including rotation equivariance and undeformed state equilibrium. We embed this network inside a differentiable simulation and train the model by minimizing a loss function based on the difference between the simulation and the motion observation. We validate NCLaw on various large-deformation dynamical systems, ranging from solids to fluids. After training on a single motion trajectory, our method generalizes to new geometries, initial/boundary conditions, temporal ranges, and even multi-physics systems. On these extremely out-of-distribution generalization tasks, NCLaw is orders-of-magnitude more accurate than previous NN approaches. Real-world experiments demonstrate our method's ability to learn constitutive laws from videos.
True Zero-Shot Inference of Dynamical Systems Preserving Long-Term Statistics
Complex, temporally evolving phenomena, from climate to brain activity, are governed by dynamical systems (DS). DS reconstruction (DSR) seeks to infer generative surrogate models of these from observed data, reproducing their long-term behavior. Existing DSR approaches require purpose-training for any new system observed, lacking the zero-shot and in-context inference capabilities known from LLMs. Here we introduce DynaMix, a novel multivariate ALRNN-based mixture-of-experts architecture pre-trained for DSR, the first DSR model able to generalize zero-shot to out-of-domain DS. Just from a provided context signal, without any re-training, DynaMix faithfully forecasts the long-term evolution of novel DS where existing time series (TS) foundation models, like Chronos, fail -- at a fraction of the number of parameters and orders of magnitude faster inference times. DynaMix outperforms TS foundation models in terms of long-term statistics, and often also short-term forecasts, even on real-world time series, like traffic or weather data, typically used for training and evaluating TS models, but not at all part of DynaMix' training corpus. We illustrate some of the failure modes of TS models for DSR problems, and conclude that models built on DS principles may bear a huge potential also for advancing the TS prediction field.
Particle-Grid Neural Dynamics for Learning Deformable Object Models from RGB-D Videos
Modeling the dynamics of deformable objects is challenging due to their diverse physical properties and the difficulty of estimating states from limited visual information. We address these challenges with a neural dynamics framework that combines object particles and spatial grids in a hybrid representation. Our particle-grid model captures global shape and motion information while predicting dense particle movements, enabling the modeling of objects with varied shapes and materials. Particles represent object shapes, while the spatial grid discretizes the 3D space to ensure spatial continuity and enhance learning efficiency. Coupled with Gaussian Splattings for visual rendering, our framework achieves a fully learning-based digital twin of deformable objects and generates 3D action-conditioned videos. Through experiments, we demonstrate that our model learns the dynamics of diverse objects -- such as ropes, cloths, stuffed animals, and paper bags -- from sparse-view RGB-D recordings of robot-object interactions, while also generalizing at the category level to unseen instances. Our approach outperforms state-of-the-art learning-based and physics-based simulators, particularly in scenarios with limited camera views. Furthermore, we showcase the utility of our learned models in model-based planning, enabling goal-conditioned object manipulation across a range of tasks. The project page is available at https://kywind.github.io/pgnd .
Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion
In recent years, there has been rapid development in 3D generation models, opening up new possibilities for applications such as simulating the dynamic movements of 3D objects and customizing their behaviors. However, current 3D generative models tend to focus only on surface features such as color and shape, neglecting the inherent physical properties that govern the behavior of objects in the real world. To accurately simulate physics-aligned dynamics, it is essential to predict the physical properties of materials and incorporate them into the behavior prediction process. Nonetheless, predicting the diverse materials of real-world objects is still challenging due to the complex nature of their physical attributes. In this paper, we propose Physics3D, a novel method for learning various physical properties of 3D objects through a video diffusion model. Our approach involves designing a highly generalizable physical simulation system based on a viscoelastic material model, which enables us to simulate a wide range of materials with high-fidelity capabilities. Moreover, we distill the physical priors from a video diffusion model that contains more understanding of realistic object materials. Extensive experiments demonstrate the effectiveness of our method with both elastic and plastic materials. Physics3D shows great potential for bridging the gap between the physical world and virtual neural space, providing a better integration and application of realistic physical principles in virtual environments. Project page: https://liuff19.github.io/Physics3D.
Guiding Diffusion Models with Reinforcement Learning for Stable Molecule Generation
Generating physically realistic 3D molecular structures remains a core challenge in molecular generative modeling. While diffusion models equipped with equivariant neural networks have made progress in capturing molecular geometries, they often struggle to produce equilibrium structures that adhere to physical principles such as force field consistency. To bridge this gap, we propose Reinforcement Learning with Physical Feedback (RLPF), a novel framework that extends Denoising Diffusion Policy Optimization to 3D molecular generation. RLPF formulates the task as a Markov decision process and applies proximal policy optimization to fine-tune equivariant diffusion models. Crucially, RLPF introduces reward functions derived from force-field evaluations, providing direct physical feedback to guide the generation toward energetically stable and physically meaningful structures. Experiments on the QM9 and GEOM-drug datasets demonstrate that RLPF significantly improves molecular stability compared to existing methods. These results highlight the value of incorporating physics-based feedback into generative modeling. The code is available at: https://github.com/ZhijianZhou/RLPF/tree/verl_diffusion.
Physics-Learning AI Datamodel (PLAID) datasets: a collection of physics simulations for machine learning
Machine learning-based surrogate models have emerged as a powerful tool to accelerate simulation-driven scientific workflows. However, their widespread adoption is hindered by the lack of large-scale, diverse, and standardized datasets tailored to physics-based simulations. While existing initiatives provide valuable contributions, many are limited in scope-focusing on specific physics domains, relying on fragmented tooling, or adhering to overly simplistic datamodels that restrict generalization. To address these limitations, we introduce PLAID (Physics-Learning AI Datamodel), a flexible and extensible framework for representing and sharing datasets of physics simulations. PLAID defines a unified standard for describing simulation data and is accompanied by a library for creating, reading, and manipulating complex datasets across a wide range of physical use cases (gitlab.com/drti/plaid). We release six carefully crafted datasets under the PLAID standard, covering structural mechanics and computational fluid dynamics, and provide baseline benchmarks using representative learning methods. Benchmarking tools are made available on Hugging Face, enabling direct participation by the community and contribution to ongoing evaluation efforts (huggingface.co/PLAIDcompetitions).
PhysiX: A Foundation Model for Physics Simulations
Foundation models have achieved remarkable success across video, image, and language domains. By scaling up the number of parameters and training datasets, these models acquire generalizable world knowledge and often surpass task-specific approaches. However, such progress has yet to extend to the domain of physics simulation. A primary bottleneck is data scarcity: while millions of images, videos, and textual resources are readily available on the internet, the largest physics simulation datasets contain only tens of thousands of samples. This data limitation hinders the use of large models, as overfitting becomes a major concern. As a result, physics applications typically rely on small models, which struggle with long-range prediction due to limited context understanding. Additionally, unlike images, videos, or text-which typically exhibit fixed granularity-physics datasets often vary drastically in scale, amplifying the challenges of scaling up multitask training. We introduce PhysiX, the first large-scale foundation model for physics simulation. PhysiX is a 4.5B parameter autoregressive generative model. It uses a discrete tokenizer to encode physical processes at different scales into a sequence of discrete tokens, and employs an autoregressive next-token prediction objective to model such processes in the token space. To mitigate the rounding error in the discretization process, PhysiX incorporates a specialized refinement module. Through extensive experiments, we show that PhysiX effectively addresses the data bottleneck, outperforming task-specific baselines under comparable settings as well as the previous absolute state-of-the-art approaches on The Well benchmark. Our results indicate that knowledge learned from natural videos can be successfully transferred to physics simulation, and that joint training across diverse simulation tasks enables synergistic learning.
Scaling physics-informed hard constraints with mixture-of-experts
Imposing known physical constraints, such as conservation laws, during neural network training introduces an inductive bias that can improve accuracy, reliability, convergence, and data efficiency for modeling physical dynamics. While such constraints can be softly imposed via loss function penalties, recent advancements in differentiable physics and optimization improve performance by incorporating PDE-constrained optimization as individual layers in neural networks. This enables a stricter adherence to physical constraints. However, imposing hard constraints significantly increases computational and memory costs, especially for complex dynamical systems. This is because it requires solving an optimization problem over a large number of points in a mesh, representing spatial and temporal discretizations, which greatly increases the complexity of the constraint. To address this challenge, we develop a scalable approach to enforce hard physical constraints using Mixture-of-Experts (MoE), which can be used with any neural network architecture. Our approach imposes the constraint over smaller decomposed domains, each of which is solved by an "expert" through differentiable optimization. During training, each expert independently performs a localized backpropagation step by leveraging the implicit function theorem; the independence of each expert allows for parallelization across multiple GPUs. Compared to standard differentiable optimization, our scalable approach achieves greater accuracy in the neural PDE solver setting for predicting the dynamics of challenging non-linear systems. We also improve training stability and require significantly less computation time during both training and inference stages.
Force-Free Molecular Dynamics Through Autoregressive Equivariant Networks
Molecular dynamics (MD) simulations play a crucial role in scientific research. Yet their computational cost often limits the timescales and system sizes that can be explored. Most data-driven efforts have been focused on reducing the computational cost of accurate interatomic forces required for solving the equations of motion. Despite their success, however, these machine learning interatomic potentials (MLIPs) are still bound to small time-steps. In this work, we introduce TrajCast, a transferable and data-efficient framework based on autoregressive equivariant message passing networks that directly updates atomic positions and velocities lifting the constraints imposed by traditional numerical integration. We benchmark our framework across various systems, including a small molecule, crystalline material, and bulk liquid, demonstrating excellent agreement with reference MD simulations for structural, dynamical, and energetic properties. Depending on the system, TrajCast allows for forecast intervals up to 30times larger than traditional MD time-steps, generating over 15 ns of trajectory data per day for a solid with more than 4,000 atoms. By enabling efficient large-scale simulations over extended timescales, TrajCast can accelerate materials discovery and explore physical phenomena beyond the reach of traditional simulations and experiments. An open-source implementation of TrajCast is accessible under https://github.com/IBM/trajcast.
How Far is Video Generation from World Model: A Physical Law Perspective
OpenAI's Sora highlights the potential of video generation for developing world models that adhere to fundamental physical laws. However, the ability of video generation models to discover such laws purely from visual data without human priors can be questioned. A world model learning the true law should give predictions robust to nuances and correctly extrapolate on unseen scenarios. In this work, we evaluate across three key scenarios: in-distribution, out-of-distribution, and combinatorial generalization. We developed a 2D simulation testbed for object movement and collisions to generate videos deterministically governed by one or more classical mechanics laws. This provides an unlimited supply of data for large-scale experimentation and enables quantitative evaluation of whether the generated videos adhere to physical laws. We trained diffusion-based video generation models to predict object movements based on initial frames. Our scaling experiments show perfect generalization within the distribution, measurable scaling behavior for combinatorial generalization, but failure in out-of-distribution scenarios. Further experiments reveal two key insights about the generalization mechanisms of these models: (1) the models fail to abstract general physical rules and instead exhibit "case-based" generalization behavior, i.e., mimicking the closest training example; (2) when generalizing to new cases, models are observed to prioritize different factors when referencing training data: color > size > velocity > shape. Our study suggests that scaling alone is insufficient for video generation models to uncover fundamental physical laws, despite its role in Sora's broader success. See our project page at https://phyworld.github.io
Solving physics-based initial value problems with unsupervised machine learning
Initial value problems -- a system of ordinary differential equations and corresponding initial conditions -- can be used to describe many physical phenomena including those arise in classical mechanics. We have developed a novel approach to solve physics-based initial value problems using unsupervised machine learning. We propose a deep learning framework that models the dynamics of a variety of mechanical systems through neural networks. Our framework is flexible, allowing us to solve non-linear, coupled, and chaotic dynamical systems. We demonstrate the effectiveness of our approach on systems including a free particle, a particle in a gravitational field, a classical pendulum, and the H\'enon--Heiles system (a pair of coupled harmonic oscillators with a non-linear perturbation, used in celestial mechanics). Our results show that deep neural networks can successfully approximate solutions to these problems, producing trajectories which conserve physical properties such as energy and those with stationary action. We note that probabilistic activation functions, as defined in this paper, are required to learn any solutions of initial value problems in their strictest sense, and we introduce coupled neural networks to learn solutions of coupled systems.
Exploring Model Transferability through the Lens of Potential Energy
Transfer learning has become crucial in computer vision tasks due to the vast availability of pre-trained deep learning models. However, selecting the optimal pre-trained model from a diverse pool for a specific downstream task remains a challenge. Existing methods for measuring the transferability of pre-trained models rely on statistical correlations between encoded static features and task labels, but they overlook the impact of underlying representation dynamics during fine-tuning, leading to unreliable results, especially for self-supervised models. In this paper, we present an insightful physics-inspired approach named PED to address these challenges. We reframe the challenge of model selection through the lens of potential energy and directly model the interaction forces that influence fine-tuning dynamics. By capturing the motion of dynamic representations to decline the potential energy within a force-driven physical model, we can acquire an enhanced and more stable observation for estimating transferability. The experimental results on 10 downstream tasks and 12 self-supervised models demonstrate that our approach can seamlessly integrate into existing ranking techniques and enhance their performances, revealing its effectiveness for the model selection task and its potential for understanding the mechanism in transfer learning. Code will be available at https://github.com/lixiaotong97/PED.
Learning fast, accurate, and stable closures of a kinetic theory of an active fluid
Important classes of active matter systems can be modeled using kinetic theories. However, kinetic theories can be high dimensional and challenging to simulate. Reduced-order representations based on tracking only low-order moments of the kinetic model serve as an efficient alternative, but typically require closure assumptions to model unrepresented higher-order moments. In this study, we present a learning framework based on neural networks that exploit rotational symmetries in the closure terms to learn accurate closure models directly from kinetic simulations. The data-driven closures demonstrate excellent a-priori predictions comparable to the state-of-the-art Bingham closure. We provide a systematic comparison between different neural network architectures and demonstrate that nonlocal effects can be safely ignored to model the closure terms. We develop an active learning strategy that enables accurate prediction of the closure terms across the entire parameter space using a single neural network without the need for retraining. We also propose a data-efficient training procedure based on time-stepping constraints and a differentiable pseudo-spectral solver, which enables the learning of stable closures suitable for a-posteriori inference. The coarse-grained simulations equipped with data-driven closure models faithfully reproduce the mean velocity statistics, scalar order parameters, and velocity power spectra observed in simulations of the kinetic theory. Our differentiable framework also facilitates the estimation of parameters in coarse-grained descriptions conditioned on data.
Matrix approach to generalized ensemble theory
We provide a concise framework for generalized ensemble theory through a matrix-based approach. By introducing an observation matrix, any discrete probability distribution, including those for non-equilibrium steady states, can be expressed as a generalized Boltzmann distribution, with observables and conjugate variables as the basis and coordinates in a linear space. In this framework, we identify the minimal sufficient statistics required for inferring the Boltzmann distribution. Furthermore, we show that the Hadamard and Vandermonde matrices are suitable observation matrices for spin systems and random walks. In master equation systems, the probability flux observation matrix facilitates the identification of detailed balance violations. Our findings provide a new approach to developing generalized ensemble theory for non-equilibrium steady-state systems.
Simplified Temporal Consistency Reinforcement Learning
Reinforcement learning is able to solve complex sequential decision-making tasks but is currently limited by sample efficiency and required computation. To improve sample efficiency, recent work focuses on model-based RL which interleaves model learning with planning. Recent methods further utilize policy learning, value estimation, and, self-supervised learning as auxiliary objectives. In this paper we show that, surprisingly, a simple representation learning approach relying only on a latent dynamics model trained by latent temporal consistency is sufficient for high-performance RL. This applies when using pure planning with a dynamics model conditioned on the representation, but, also when utilizing the representation as policy and value function features in model-free RL. In experiments, our approach learns an accurate dynamics model to solve challenging high-dimensional locomotion tasks with online planners while being 4.1 times faster to train compared to ensemble-based methods. With model-free RL without planning, especially on high-dimensional tasks, such as the DeepMind Control Suite Humanoid and Dog tasks, our approach outperforms model-free methods by a large margin and matches model-based methods' sample efficiency while training 2.4 times faster.
Training-Free Constrained Generation With Stable Diffusion Models
Stable diffusion models represent the state-of-the-art in data synthesis across diverse domains and hold transformative potential for applications in science and engineering, e.g., by facilitating the discovery of novel solutions and simulating systems that are computationally intractable to model explicitly. While there is increasing effort to incorporate physics-based constraints into generative models, existing techniques are either limited in their applicability to latent diffusion frameworks or lack the capability to strictly enforce domain-specific constraints. To address this limitation this paper proposes a novel integration of stable diffusion models with constrained optimization frameworks, enabling the generation of outputs satisfying stringent physical and functional requirements. The effectiveness of this approach is demonstrated through material design experiments requiring adherence to precise morphometric properties, challenging inverse design tasks involving the generation of materials inducing specific stress-strain responses, and copyright-constrained content generation tasks. All code has been released at https://github.com/RAISELab-atUVA/Constrained-Stable-Diffusion.
Transition Models: Rethinking the Generative Learning Objective
A fundamental dilemma in generative modeling persists: iterative diffusion models achieve outstanding fidelity, but at a significant computational cost, while efficient few-step alternatives are constrained by a hard quality ceiling. This conflict between generation steps and output quality arises from restrictive training objectives that focus exclusively on either infinitesimal dynamics (PF-ODEs) or direct endpoint prediction. We address this challenge by introducing an exact, continuous-time dynamics equation that analytically defines state transitions across any finite time interval. This leads to a novel generative paradigm, Transition Models (TiM), which adapt to arbitrary-step transitions, seamlessly traversing the generative trajectory from single leaps to fine-grained refinement with more steps. Despite having only 865M parameters, TiM achieves state-of-the-art performance, surpassing leading models such as SD3.5 (8B parameters) and FLUX.1 (12B parameters) across all evaluated step counts. Importantly, unlike previous few-step generators, TiM demonstrates monotonic quality improvement as the sampling budget increases. Additionally, when employing our native-resolution strategy, TiM delivers exceptional fidelity at resolutions up to 4096x4096.
Inconsistencies In Consistency Models: Better ODE Solving Does Not Imply Better Samples
Although diffusion models can generate remarkably high-quality samples, they are intrinsically bottlenecked by their expensive iterative sampling procedure. Consistency models (CMs) have recently emerged as a promising diffusion model distillation method, reducing the cost of sampling by generating high-fidelity samples in just a few iterations. Consistency model distillation aims to solve the probability flow ordinary differential equation (ODE) defined by an existing diffusion model. CMs are not directly trained to minimize error against an ODE solver, rather they use a more computationally tractable objective. As a way to study how effectively CMs solve the probability flow ODE, and the effect that any induced error has on the quality of generated samples, we introduce Direct CMs, which directly minimize this error. Intriguingly, we find that Direct CMs reduce the ODE solving error compared to CMs but also result in significantly worse sample quality, calling into question why exactly CMs work well in the first place. Full code is available at: https://github.com/layer6ai-labs/direct-cms.
Bootstrapping World Models from Dynamics Models in Multimodal Foundation Models
To what extent do vision-and-language foundation models possess a realistic world model (observation times action rightarrow observation) and a dynamics model (observation times observation rightarrow action), when actions are expressed through language? While open-source foundation models struggle with both, we find that fine-tuning them to acquire a dynamics model through supervision is significantly easier than acquiring a world model. In turn, dynamics models can be used to bootstrap world models through two main strategies: 1) weakly supervised learning from synthetic data and 2) inference time verification. Firstly, the dynamics model can annotate actions for unlabelled pairs of video frame observations to expand the training data. We further propose a new objective, where image tokens in observation pairs are weighted by their importance, as predicted by a recognition model. Secondly, the dynamics models can assign rewards to multiple samples of the world model to score them, effectively guiding search at inference time. We evaluate the world models resulting from both strategies through the task of action-centric image editing on Aurora-Bench. Our best model achieves a performance competitive with state-of-the-art image editing models, improving on them by a margin of 15% on real-world subsets according to GPT4o-as-judge, and achieving the best average human evaluation across all subsets of Aurora-Bench.
ROCM: RLHF on consistency models
Diffusion models have revolutionized generative modeling in continuous domains like image, audio, and video synthesis. However, their iterative sampling process leads to slow generation and inefficient training, challenges that are further exacerbated when incorporating Reinforcement Learning from Human Feedback (RLHF) due to sparse rewards and long time horizons. Consistency models address these issues by enabling single-step or efficient multi-step generation, significantly reducing computational costs. In this work, we propose a direct reward optimization framework for applying RLHF to consistency models, incorporating distributional regularization to enhance training stability and prevent reward hacking. We investigate various f-divergences as regularization strategies, striking a balance between reward maximization and model consistency. Unlike policy gradient methods, our approach leverages first-order gradients, making it more efficient and less sensitive to hyperparameter tuning. Empirical results show that our method achieves competitive or superior performance compared to policy gradient based RLHF methods, across various automatic metrics and human evaluation. Additionally, our analysis demonstrates the impact of different regularization techniques in improving model generalization and preventing overfitting.
Imitation Learning via Differentiable Physics
Existing imitation learning (IL) methods such as inverse reinforcement learning (IRL) usually have a double-loop training process, alternating between learning a reward function and a policy and tend to suffer long training time and high variance. In this work, we identify the benefits of differentiable physics simulators and propose a new IL method, i.e., Imitation Learning via Differentiable Physics (ILD), which gets rid of the double-loop design and achieves significant improvements in final performance, convergence speed, and stability. The proposed ILD incorporates the differentiable physics simulator as a physics prior into its computational graph for policy learning. It unrolls the dynamics by sampling actions from a parameterized policy, simply minimizing the distance between the expert trajectory and the agent trajectory, and back-propagating the gradient into the policy via temporal physics operators. With the physics prior, ILD policies can not only be transferable to unseen environment specifications but also yield higher final performance on a variety of tasks. In addition, ILD naturally forms a single-loop structure, which significantly improves the stability and training speed. To simplify the complex optimization landscape induced by temporal physics operations, ILD dynamically selects the learning objectives for each state during optimization. In our experiments, we show that ILD outperforms state-of-the-art methods in a variety of continuous control tasks with Brax, requiring only one expert demonstration. In addition, ILD can be applied to challenging deformable object manipulation tasks and can be generalized to unseen configurations.
AirPhyNet: Harnessing Physics-Guided Neural Networks for Air Quality Prediction
Air quality prediction and modelling plays a pivotal role in public health and environment management, for individuals and authorities to make informed decisions. Although traditional data-driven models have shown promise in this domain, their long-term prediction accuracy can be limited, especially in scenarios with sparse or incomplete data and they often rely on black-box deep learning structures that lack solid physical foundation leading to reduced transparency and interpretability in predictions. To address these limitations, this paper presents a novel approach named Physics guided Neural Network for Air Quality Prediction (AirPhyNet). Specifically, we leverage two well-established physics principles of air particle movement (diffusion and advection) by representing them as differential equation networks. Then, we utilize a graph structure to integrate physics knowledge into a neural network architecture and exploit latent representations to capture spatio-temporal relationships within the air quality data. Experiments on two real-world benchmark datasets demonstrate that AirPhyNet outperforms state-of-the-art models for different testing scenarios including different lead time (24h, 48h, 72h), sparse data and sudden change prediction, achieving reduction in prediction errors up to 10%. Moreover, a case study further validates that our model captures underlying physical processes of particle movement and generates accurate predictions with real physical meaning.
Piecewise DMD for oscillatory and Turing spatio-temporal dynamics
Dynamic Mode Decomposition (DMD) is an equation-free method that aims at reconstructing the best linear fit from temporal datasets. In this paper, we show that DMD does not provide accurate approximation for datasets describing oscillatory dynamics, like spiral waves and relaxation oscillations, or spatio-temporal Turing instability. Inspired from the classical "divide and conquer" approach, we propose a piecewise version of DMD (pDMD) to overcome this problem. The main idea is to split the original dataset in N submatrices and then apply the exact (randomized) DMD method in each subset of the obtained partition. We describe the pDMD algorithm in detail and we introduce some error indicators to evaluate its performance when N is increased. Numerical experiments show that very accurate reconstructions are obtained by pDMD for datasets arising from time snapshots of some reaction-diffusion PDE systems, like the FitzHugh-Nagumo model, the lambda-omega system and the DIB morpho-chemical system for battery modeling.
PHYSICS: Benchmarking Foundation Models on University-Level Physics Problem Solving
We introduce PHYSICS, a comprehensive benchmark for university-level physics problem solving. It contains 1297 expert-annotated problems covering six core areas: classical mechanics, quantum mechanics, thermodynamics and statistical mechanics, electromagnetism, atomic physics, and optics. Each problem requires advanced physics knowledge and mathematical reasoning. We develop a robust automated evaluation system for precise and reliable validation. Our evaluation of leading foundation models reveals substantial limitations. Even the most advanced model, o3-mini, achieves only 59.9% accuracy, highlighting significant challenges in solving high-level scientific problems. Through comprehensive error analysis, exploration of diverse prompting strategies, and Retrieval-Augmented Generation (RAG)-based knowledge augmentation, we identify key areas for improvement, laying the foundation for future advancements.
Latent Field Discovery In Interacting Dynamical Systems With Neural Fields
Systems of interacting objects often evolve under the influence of field effects that govern their dynamics, yet previous works have abstracted away from such effects, and assume that systems evolve in a vacuum. In this work, we focus on discovering these fields, and infer them from the observed dynamics alone, without directly observing them. We theorize the presence of latent force fields, and propose neural fields to learn them. Since the observed dynamics constitute the net effect of local object interactions and global field effects, recently popularized equivariant networks are inapplicable, as they fail to capture global information. To address this, we propose to disentangle local object interactions -- which are SE(n) equivariant and depend on relative states -- from external global field effects -- which depend on absolute states. We model interactions with equivariant graph networks, and combine them with neural fields in a novel graph network that integrates field forces. Our experiments show that we can accurately discover the underlying fields in charged particles settings, traffic scenes, and gravitational n-body problems, and effectively use them to learn the system and forecast future trajectories.
Graph Switching Dynamical Systems
Dynamical systems with complex behaviours, e.g. immune system cells interacting with a pathogen, are commonly modelled by splitting the behaviour into different regimes, or modes, each with simpler dynamics, and then learning the switching behaviour from one mode to another. Switching Dynamical Systems (SDS) are a powerful tool that automatically discovers these modes and mode-switching behaviour from time series data. While effective, these methods focus on independent objects, where the modes of one object are independent of the modes of the other objects. In this paper, we focus on the more general interacting object setting for switching dynamical systems, where the per-object dynamics also depends on an unknown and dynamically changing subset of other objects and their modes. To this end, we propose a novel graph-based approach for switching dynamical systems, GRAph Switching dynamical Systems (GRASS), in which we use a dynamic graph to characterize interactions between objects and learn both intra-object and inter-object mode-switching behaviour. We introduce two new datasets for this setting, a synthesized ODE-driven particles dataset and a real-world Salsa Couple Dancing dataset. Experiments show that GRASS can consistently outperforms previous state-of-the-art methods.
Solving High-Dimensional PDEs with Latent Spectral Models
Deep models have achieved impressive progress in solving partial differential equations (PDEs). A burgeoning paradigm is learning neural operators to approximate the input-output mappings of PDEs. While previous deep models have explored the multiscale architectures and various operator designs, they are limited to learning the operators as a whole in the coordinate space. In real physical science problems, PDEs are complex coupled equations with numerical solvers relying on discretization into high-dimensional coordinate space, which cannot be precisely approximated by a single operator nor efficiently learned due to the curse of dimensionality. We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs. Going beyond the coordinate space, LSM enables an attention-based hierarchical projection network to reduce the high-dimensional data into a compact latent space in linear time. Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space that approximates complex input-output mappings via learning multiple basis operators, enjoying nice theoretical guarantees for convergence and approximation. Experimentally, LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks covering both solid and fluid physics. Code is available at https://github.com/thuml/Latent-Spectral-Models.
Transforming Simulation to Data Without Pairing
We explore a generative machine learning-based approach for estimating multi-dimensional probability density functions (PDFs) in a target sample using a statistically independent but related control sample - a common challenge in particle physics data analysis. The generative model must accurately reproduce individual observable distributions while preserving the correlations between them, based on the input multidimensional distribution from the control sample. Here we present a conditional normalizing flow model (CNF) based on a chain of bijectors which learns to transform unpaired simulation events to data events. We assess the performance of the CNF model in the context of LHC Higgs to diphoton analysis, where we use the CNF model to convert a Monte Carlo diphoton sample to one that models data. We show that the CNF model can accurately model complex data distributions and correlations. We also leverage the recently popularized Modified Differential Multiplier Method (MDMM) to improve the convergence of our model and assign physical meaning to usually arbitrary loss-function parameters.
Neural Continuous-Discrete State Space Models for Irregularly-Sampled Time Series
Learning accurate predictive models of real-world dynamic phenomena (e.g., climate, biological) remains a challenging task. One key issue is that the data generated by both natural and artificial processes often comprise time series that are irregularly sampled and/or contain missing observations. In this work, we propose the Neural Continuous-Discrete State Space Model (NCDSSM) for continuous-time modeling of time series through discrete-time observations. NCDSSM employs auxiliary variables to disentangle recognition from dynamics, thus requiring amortized inference only for the auxiliary variables. Leveraging techniques from continuous-discrete filtering theory, we demonstrate how to perform accurate Bayesian inference for the dynamic states. We propose three flexible parameterizations of the latent dynamics and an efficient training objective that marginalizes the dynamic states during inference. Empirical results on multiple benchmark datasets across various domains show improved imputation and forecasting performance of NCDSSM over existing models.
Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion
Consistency Models (CM) (Song et al., 2023) accelerate score-based diffusion model sampling at the cost of sample quality but lack a natural way to trade-off quality for speed. To address this limitation, we propose Consistency Trajectory Model (CTM), a generalization encompassing CM and score-based models as special cases. CTM trains a single neural network that can -- in a single forward pass -- output scores (i.e., gradients of log-density) and enables unrestricted traversal between any initial and final time along the Probability Flow Ordinary Differential Equation (ODE) in a diffusion process. CTM enables the efficient combination of adversarial training and denoising score matching loss to enhance performance and achieves new state-of-the-art FIDs for single-step diffusion model sampling on CIFAR-10 (FID 1.73) and ImageNet at 64x64 resolution (FID 1.92). CTM also enables a new family of sampling schemes, both deterministic and stochastic, involving long jumps along the ODE solution trajectories. It consistently improves sample quality as computational budgets increase, avoiding the degradation seen in CM. Furthermore, unlike CM, CTM's access to the score function can streamline the adoption of established controllable/conditional generation methods from the diffusion community. This access also enables the computation of likelihood. The code is available at https://github.com/sony/ctm.
Geometric Trajectory Diffusion Models
Generative models have shown great promise in generating 3D geometric systems, which is a fundamental problem in many natural science domains such as molecule and protein design. However, existing approaches only operate on static structures, neglecting the fact that physical systems are always dynamic in nature. In this work, we propose geometric trajectory diffusion models (GeoTDM), the first diffusion model for modeling the temporal distribution of 3D geometric trajectories. Modeling such distribution is challenging as it requires capturing both the complex spatial interactions with physical symmetries and temporal correspondence encapsulated in the dynamics. We theoretically justify that diffusion models with equivariant temporal kernels can lead to density with desired symmetry, and develop a novel transition kernel leveraging SE(3)-equivariant spatial convolution and temporal attention. Furthermore, to induce an expressive trajectory distribution for conditional generation, we introduce a generalized learnable geometric prior into the forward diffusion process to enhance temporal conditioning. We conduct extensive experiments on both unconditional and conditional generation in various scenarios, including physical simulation, molecular dynamics, and pedestrian motion. Empirical results on a wide suite of metrics demonstrate that GeoTDM can generate realistic geometric trajectories with significantly higher quality.
PhysMaster: Mastering Physical Representation for Video Generation via Reinforcement Learning
Video generation models nowadays are capable of generating visually realistic videos, but often fail to adhere to physical laws, limiting their ability to generate physically plausible videos and serve as ''world models''. To address this issue, we propose PhysMaster, which captures physical knowledge as a representation for guiding video generation models to enhance their physics-awareness. Specifically, PhysMaster is based on the image-to-video task where the model is expected to predict physically plausible dynamics from the input image. Since the input image provides physical priors like relative positions and potential interactions of objects in the scenario, we devise PhysEncoder to encode physical information from it as an extra condition to inject physical knowledge into the video generation process. The lack of proper supervision on the model's physical performance beyond mere appearance motivates PhysEncoder to apply reinforcement learning with human feedback to physical representation learning, which leverages feedback from generation models to optimize physical representations with Direct Preference Optimization (DPO) in an end-to-end manner. PhysMaster provides a feasible solution for improving physics-awareness of PhysEncoder and thus of video generation, proving its ability on a simple proxy task and generalizability to wide-ranging physical scenarios. This implies that our PhysMaster, which unifies solutions for various physical processes via representation learning in the reinforcement learning paradigm, can act as a generic and plug-in solution for physics-aware video generation and broader applications.
A Multi-Branched Radial Basis Network Approach to Predicting Complex Chaotic Behaviours
In this study, we propose a multi branched network approach to predict the dynamics of a physics attractor characterized by intricate and chaotic behavior. We introduce a unique neural network architecture comprised of Radial Basis Function (RBF) layers combined with an attention mechanism designed to effectively capture nonlinear inter-dependencies inherent in the attractor's temporal evolution. Our results demonstrate successful prediction of the attractor's trajectory across 100 predictions made using a real-world dataset of 36,700 time-series observations encompassing approximately 28 minutes of activity. To further illustrate the performance of our proposed technique, we provide comprehensive visualizations depicting the attractor's original and predicted behaviors alongside quantitative measures comparing observed versus estimated outcomes. Overall, this work showcases the potential of advanced machine learning algorithms in elucidating hidden structures in complex physical systems while offering practical applications in various domains requiring accurate short-term forecasting capabilities.
PhysicsGen: Can Generative Models Learn from Images to Predict Complex Physical Relations?
The image-to-image translation abilities of generative learning models have recently made significant progress in the estimation of complex (steered) mappings between image distributions. While appearance based tasks like image in-painting or style transfer have been studied at length, we propose to investigate the potential of generative models in the context of physical simulations. Providing a dataset of 300k image-pairs and baseline evaluations for three different physical simulation tasks, we propose a benchmark to investigate the following research questions: i) are generative models able to learn complex physical relations from input-output image pairs? ii) what speedups can be achieved by replacing differential equation based simulations? While baseline evaluations of different current models show the potential for high speedups (ii), these results also show strong limitations toward the physical correctness (i). This underlines the need for new methods to enforce physical correctness. Data, baseline models and evaluation code http://www.physics-gen.org.
Predicting 3D Rigid Body Dynamics with Deep Residual Network
This study investigates the application of deep residual networks for predicting the dynamics of interacting three-dimensional rigid bodies. We present a framework combining a 3D physics simulator implemented in C++ with a deep learning model constructed using PyTorch. The simulator generates training data encompassing linear and angular motion, elastic collisions, fluid friction, gravitational effects, and damping. Our deep residual network, consisting of an input layer, multiple residual blocks, and an output layer, is designed to handle the complexities of 3D dynamics. We evaluate the network's performance using a datasetof 10,000 simulated scenarios, each involving 3-5 interacting rigid bodies. The model achieves a mean squared error of 0.015 for position predictions and 0.022 for orientation predictions, representing a 25% improvement over baseline methods. Our results demonstrate the network's ability to capture intricate physical interactions, with particular success in predicting elastic collisions and rotational dynamics. This work significantly contributes to physics-informed machine learning by showcasing the immense potential of deep residual networks in modeling complex 3D physical systems. We discuss our approach's limitations and propose future directions for improving generalization to more diverse object shapes and materials.
Model scale versus domain knowledge in statistical forecasting of chaotic systems
Chaos and unpredictability are traditionally synonymous, yet large-scale machine learning methods recently have demonstrated a surprising ability to forecast chaotic systems well beyond typical predictability horizons. However, recent works disagree on whether specialized methods grounded in dynamical systems theory, such as reservoir computers or neural ordinary differential equations, outperform general-purpose large-scale learning methods such as transformers or recurrent neural networks. These prior studies perform comparisons on few individually-chosen chaotic systems, thereby precluding robust quantification of how statistical modeling choices and dynamical invariants of different chaotic systems jointly determine empirical predictability. Here, we perform the largest to-date comparative study of forecasting methods on the classical problem of forecasting chaos: we benchmark 24 state-of-the-art forecasting methods on a crowdsourced database of 135 low-dimensional systems with 17 forecast metrics. We find that large-scale, domain-agnostic forecasting methods consistently produce predictions that remain accurate up to two dozen Lyapunov times, thereby accessing a new long-horizon forecasting regime well beyond classical methods. We find that, in this regime, accuracy decorrelates with classical invariant measures of predictability like the Lyapunov exponent. However, in data-limited settings outside the long-horizon regime, we find that physics-based hybrid methods retain a comparative advantage due to their strong inductive biases.
Discovery of interpretable structural model errors by combining Bayesian sparse regression and data assimilation: A chaotic Kuramoto-Sivashinsky test case
Models of many engineering and natural systems are imperfect. The discrepancy between the mathematical representations of a true physical system and its imperfect model is called the model error. These model errors can lead to substantial differences between the numerical solutions of the model and the state of the system, particularly in those involving nonlinear, multi-scale phenomena. Thus, there is increasing interest in reducing model errors, particularly by leveraging the rapidly growing observational data to understand their physics and sources. Here, we introduce a framework named MEDIDA: Model Error Discovery with Interpretability and Data Assimilation. MEDIDA only requires a working numerical solver of the model and a small number of noise-free or noisy sporadic observations of the system. In MEDIDA, first the model error is estimated from differences between the observed states and model-predicted states (the latter are obtained from a number of one-time-step numerical integrations from the previous observed states). If observations are noisy, a data assimilation (DA) technique such as ensemble Kalman filter (EnKF) is employed to provide the analysis state of the system, which is then used to estimate the model error. Finally, an equation-discovery technique, here the relevance vector machine (RVM), a sparsity-promoting Bayesian method, is used to identify an interpretable, parsimonious, and closed-form representation of the model error. Using the chaotic Kuramoto-Sivashinsky (KS) system as the test case, we demonstrate the excellent performance of MEDIDA in discovering different types of structural/parametric model errors, representing different types of missing physics, using noise-free and noisy observations.
InterDyn: Controllable Interactive Dynamics with Video Diffusion Models
Predicting the dynamics of interacting objects is essential for both humans and intelligent systems. However, existing approaches are limited to simplified, toy settings and lack generalizability to complex, real-world environments. Recent advances in generative models have enabled the prediction of state transitions based on interventions, but focus on generating a single future state which neglects the continuous dynamics resulting from the interaction. To address this gap, we propose InterDyn, a novel framework that generates videos of interactive dynamics given an initial frame and a control signal encoding the motion of a driving object or actor. Our key insight is that large video generation models can act as both neural renderers and implicit physics ``simulators'', having learned interactive dynamics from large-scale video data. To effectively harness this capability, we introduce an interactive control mechanism that conditions the video generation process on the motion of the driving entity. Qualitative results demonstrate that InterDyn generates plausible, temporally consistent videos of complex object interactions while generalizing to unseen objects. Quantitative evaluations show that InterDyn outperforms baselines that focus on static state transitions. This work highlights the potential of leveraging video generative models as implicit physics engines. Project page: https://interdyn.is.tue.mpg.de/
Multiscale Neural Operator: Learning Fast and Grid-independent PDE Solvers
Numerical simulations in climate, chemistry, or astrophysics are computationally too expensive for uncertainty quantification or parameter-exploration at high-resolution. Reduced-order or surrogate models are multiple orders of magnitude faster, but traditional surrogates are inflexible or inaccurate and pure machine learning (ML)-based surrogates too data-hungry. We propose a hybrid, flexible surrogate model that exploits known physics for simulating large-scale dynamics and limits learning to the hard-to-model term, which is called parametrization or closure and captures the effect of fine- onto large-scale dynamics. Leveraging neural operators, we are the first to learn grid-independent, non-local, and flexible parametrizations. Our multiscale neural operator is motivated by a rich literature in multiscale modeling, has quasilinear runtime complexity, is more accurate or flexible than state-of-the-art parametrizations and demonstrated on the chaotic equation multiscale Lorenz96.
KETJU -- resolving small-scale supermassive black hole dynamics in GADGET-4
We present the new public version of the KETJU supermassive black hole (SMBH) dynamics module, as implemented into GADGET-4. KETJU adds a small region around each SMBH where the dynamics of the SMBHs and stellar particles are integrated using an algorithmically regularised integrator instead of the leapfrog integrator with gravitational softening used by GADGET-4. This enables modelling SMBHs as point particles even during close interactions with stellar particles or other SMBHs, effectively removing the spatial resolution limitation caused by gravitational softening. KETJU also includes post-Newtonian corrections, which allows following the dynamics of SMBH binaries to sub-parsec scales and down to tens of Schwarzschild radii. Systems with multiple SMBHs are also supported, with the code also including the leading non-linear cross terms that appear in the post-Newtonian equations for such systems. We present tests of the code showing that it correctly captures, at sufficient mass resolution, the sinking driven by dynamical friction and binary hardening driven by stellar scattering. We also present an example application demonstrating how the code can be applied to study the dynamics of SMBHs in mergers of multiple galaxies and the effect they have on the properties of the surrounding galaxy. We expect that the presented KETJU SMBH dynamics module can also be straightforwardly incorporated into other codes similar to GADGET-4, which would allow coupling small-scale SMBH dynamics to the rich variety of galactic physics models that exist in the literature.
Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs
We present a neural operator architecture to simulate Lagrangian dynamics, such as fluid flow, granular flows, and elastoplasticity. Traditional numerical methods, such as the finite element method (FEM), suffer from long run times and large memory consumption. On the other hand, approaches based on graph neural networks are faster but still suffer from long computation times on dense graphs, which are often required for high-fidelity simulations. Our model, GIOROM or Graph Interaction Operator for Reduced-Order Modeling, learns temporal dynamics within a reduced-order setting, capturing spatial features from a highly sparse graph representation of the input and generalizing to arbitrary spatial locations during inference. The model is geometry-aware and discretization-agnostic and can generalize to different initial conditions, velocities, and geometries after training. We show that point clouds of the order of 100,000 points can be inferred from sparse graphs with sim1000 points, with negligible change in computation time. We empirically evaluate our model on elastic solids, Newtonian fluids, Non-Newtonian fluids, Drucker-Prager granular flows, and von Mises elastoplasticity. On these benchmarks, our approach results in a 25times speedup compared to other neural network-based physics simulators while delivering high-fidelity predictions of complex physical systems and showing better performance on most benchmarks. The code and the demos are provided at https://github.com/HrishikeshVish/GIOROM.
Hybrid Neural-MPM for Interactive Fluid Simulations in Real-Time
We propose a neural physics system for real-time, interactive fluid simulations. Traditional physics-based methods, while accurate, are computationally intensive and suffer from latency issues. Recent machine-learning methods reduce computational costs while preserving fidelity; yet most still fail to satisfy the latency constraints for real-time use and lack support for interactive applications. To bridge this gap, we introduce a novel hybrid method that integrates numerical simulation, neural physics, and generative control. Our neural physics jointly pursues low-latency simulation and high physical fidelity by employing a fallback safeguard to classical numerical solvers. Furthermore, we develop a diffusion-based controller that is trained using a reverse modeling strategy to generate external dynamic force fields for fluid manipulation. Our system demonstrates robust performance across diverse 2D/3D scenarios, material types, and obstacle interactions, achieving real-time simulations at high frame rates (11~29% latency) while enabling fluid control guided by user-friendly freehand sketches. We present a significant step towards practical, controllable, and physically plausible fluid simulations for real-time interactive applications. We promise to release both models and data upon acceptance.
Stochastic interpolants with data-dependent couplings
Generative models inspired by dynamical transport of measure -- such as flows and diffusions -- construct a continuous-time map between two probability densities. Conventionally, one of these is the target density, only accessible through samples, while the other is taken as a simple base density that is data-agnostic. In this work, using the framework of stochastic interpolants, we formalize how to couple the base and the target densities. This enables us to incorporate information about class labels or continuous embeddings to construct dynamical transport maps that serve as conditional generative models. We show that these transport maps can be learned by solving a simple square loss regression problem analogous to the standard independent setting. We demonstrate the usefulness of constructing dependent couplings in practice through experiments in super-resolution and in-painting.
Lattice models of random advection and diffusion and their statistics
We study in detail a one-dimensional lattice model of a continuum, conserved field (mass) that is transferred deterministically between neighbouring random sites. The model falls in a wider class of lattice models capturing the joint effect of random advection and diffusion and encompassing as specific cases, some models studied in the literature, like the Kang-Redner, Kipnis-Marchioro-Presutti, Takayasu-Taguchi, etc. The motivation for our setup comes from a straightforward interpretation as advection of particles in one-dimensional turbulence, but it is also related to a problem of synchronization of dynamical systems driven by common noise. For finite lattices, we study both the coalescence of an initially spread field (interpreted as roughening), and the statistical steady-state properties. We distinguish two main size-dependent regimes, depending on the strength of the diffusion term and on the lattice size. Using numerical simulations and mean-field approach, we study the statistics of the field. For weak diffusion, we unveil a characteristic hierarchical structure of the field. We also connect the model and the iterated function systems concept.
LETS Forecast: Learning Embedology for Time Series Forecasting
Real-world time series are often governed by complex nonlinear dynamics. Understanding these underlying dynamics is crucial for precise future prediction. While deep learning has achieved major success in time series forecasting, many existing approaches do not explicitly model the dynamics. To bridge this gap, we introduce DeepEDM, a framework that integrates nonlinear dynamical systems modeling with deep neural networks. Inspired by empirical dynamic modeling (EDM) and rooted in Takens' theorem, DeepEDM presents a novel deep model that learns a latent space from time-delayed embeddings, and employs kernel regression to approximate the underlying dynamics, while leveraging efficient implementation of softmax attention and allowing for accurate prediction of future time steps. To evaluate our method, we conduct comprehensive experiments on synthetic data of nonlinear dynamical systems as well as real-world time series across domains. Our results show that DeepEDM is robust to input noise, and outperforms state-of-the-art methods in forecasting accuracy. Our code is available at: https://abrarmajeedi.github.io/deep_edm.
Morpheus: Benchmarking Physical Reasoning of Video Generative Models with Real Physical Experiments
Recent advances in image and video generation raise hopes that these models possess world modeling capabilities, the ability to generate realistic, physically plausible videos. This could revolutionize applications in robotics, autonomous driving, and scientific simulation. However, before treating these models as world models, we must ask: Do they adhere to physical conservation laws? To answer this, we introduce Morpheus, a benchmark for evaluating video generation models on physical reasoning. It features 80 real-world videos capturing physical phenomena, guided by conservation laws. Since artificial generations lack ground truth, we assess physical plausibility using physics-informed metrics evaluated with respect to infallible conservation laws known per physical setting, leveraging advances in physics-informed neural networks and vision-language foundation models. Our findings reveal that even with advanced prompting and video conditioning, current models struggle to encode physical principles despite generating aesthetically pleasing videos. All data, leaderboard, and code are open-sourced at our project page.
Enhancing Physical Plausibility in Video Generation by Reasoning the Implausibility
Diffusion models can generate realistic videos, but existing methods rely on implicitly learning physical reasoning from large-scale text-video datasets, which is costly, difficult to scale, and still prone to producing implausible motions that violate fundamental physical laws. We introduce a training-free framework that improves physical plausibility at inference time by explicitly reasoning about implausibility and guiding the generation away from it. Specifically, we employ a lightweight physics-aware reasoning pipeline to construct counterfactual prompts that deliberately encode physics-violating behaviors. Then, we propose a novel Synchronized Decoupled Guidance (SDG) strategy, which leverages these prompts through synchronized directional normalization to counteract lagged suppression and trajectory-decoupled denoising to mitigate cumulative trajectory bias, ensuring that implausible content is suppressed immediately and consistently throughout denoising. Experiments across different physical domains show that our approach substantially enhances physical fidelity while maintaining photorealism, despite requiring no additional training. Ablation studies confirm the complementary effectiveness of both the physics-aware reasoning component and SDG. In particular, the aforementioned two designs of SDG are also individually validated to contribute critically to the suppression of implausible content and the overall gains in physical plausibility. This establishes a new and plug-and-play physics-aware paradigm for video generation.
Lagrangian Flow Networks for Conservation Laws
We introduce Lagrangian Flow Networks (LFlows) for modeling fluid densities and velocities continuously in space and time. By construction, the proposed LFlows satisfy the continuity equation, a PDE describing mass conservation in its differentiable form. Our model is based on the insight that solutions to the continuity equation can be expressed as time-dependent density transformations via differentiable and invertible maps. This follows from classical theory of the existence and uniqueness of Lagrangian flows for smooth vector fields. Hence, we model fluid densities by transforming a base density with parameterized diffeomorphisms conditioned on time. The key benefit compared to methods relying on numerical ODE solvers or PINNs is that the analytic expression of the velocity is always consistent with changes in density. Furthermore, we require neither expensive numerical solvers, nor additional penalties to enforce the PDE. LFlows show higher predictive accuracy in density modeling tasks compared to competing models in 2D and 3D, while being computationally efficient. As a real-world application, we model bird migration based on sparse weather radar measurements.
Generating particle physics Lagrangians with transformers
In physics, Lagrangians provide a systematic way to describe laws governing physical systems. In the context of particle physics, they encode the interactions and behavior of the fundamental building blocks of our universe. By treating Lagrangians as complex, rule-based constructs similar to linguistic expressions, we trained a transformer model -- proven to be effective in natural language tasks -- to predict the Lagrangian corresponding to a given list of particles. We report on the transformer's performance in constructing Lagrangians respecting the Standard Model SU(3)times SU(2)times U(1) gauge symmetries. The resulting model is shown to achieve high accuracies (over 90\%) with Lagrangians up to six matter fields, with the capacity to generalize beyond the training distribution, albeit within architectural constraints. We show through an analysis of input embeddings that the model has internalized concepts such as group representations and conjugation operations as it learned to generate Lagrangians. We make the model and training datasets available to the community. An interactive demonstration can be found at: https://huggingface.co/spaces/JoseEliel/generate-lagrangians.
Space and Time Continuous Physics Simulation From Partial Observations
Modern techniques for physical simulations rely on numerical schemes and mesh-refinement methods to address trade-offs between precision and complexity, but these handcrafted solutions are tedious and require high computational power. Data-driven methods based on large-scale machine learning promise high adaptivity by integrating long-range dependencies more directly and efficiently. In this work, we focus on fluid dynamics and address the shortcomings of a large part of the literature, which are based on fixed support for computations and predictions in the form of regular or irregular grids. We propose a novel setup to perform predictions in a continuous spatial and temporal domain while being trained on sparse observations. We formulate the task as a double observation problem and propose a solution with two interlinked dynamical systems defined on, respectively, the sparse positions and the continuous domain, which allows to forecast and interpolate a solution from the initial condition. Our practical implementation involves recurrent GNNs and a spatio-temporal attention observer capable of interpolating the solution at arbitrary locations. Our model not only generalizes to new initial conditions (as standard auto-regressive models do) but also performs evaluation at arbitrary space and time locations. We evaluate on three standard datasets in fluid dynamics and compare to strong baselines, which are outperformed both in classical settings and in the extended new task requiring continuous predictions.
What Has a Foundation Model Found? Using Inductive Bias to Probe for World Models
Foundation models are premised on the idea that sequence prediction can uncover deeper domain understanding, much like how Kepler's predictions of planetary motion later led to the discovery of Newtonian mechanics. However, evaluating whether these models truly capture deeper structure remains a challenge. We develop a technique for evaluating foundation models that examines how they adapt to synthetic datasets generated from some postulated world model. Our technique measures whether the foundation model's inductive bias aligns with the world model, and so we refer to it as an inductive bias probe. Across multiple domains, we find that foundation models can excel at their training tasks yet fail to develop inductive biases towards the underlying world model when adapted to new tasks. We particularly find that foundation models trained on orbital trajectories consistently fail to apply Newtonian mechanics when adapted to new physics tasks. Further analysis reveals that these models behave as if they develop task-specific heuristics that fail to generalize.
MeLM, a generative pretrained language modeling framework that solves forward and inverse mechanics problems
We report a flexible multi-modal mechanics language model, MeLM, applied to solve various nonlinear forward and inverse problems, that can deal with a set of instructions, numbers and microstructure data. The framework is applied to various examples including bio-inspired hierarchical honeycomb design, carbon nanotube mechanics, and protein unfolding. In spite of the flexible nature of the model-which allows us to easily incorporate diverse materials, scales, and mechanical features-it performs well across disparate forward and inverse tasks. Based on an autoregressive attention-model, MeLM effectively represents a large multi-particle system consisting of hundreds of millions of neurons, where the interaction potentials are discovered through graph-forming self-attention mechanisms that are then used to identify relationships from emergent structures, while taking advantage of synergies discovered in the training data. We show that the model can solve complex degenerate mechanics design problems and determine novel material architectures across a range of hierarchical levels, providing an avenue for materials discovery and analysis. Looking beyond the demonstrations reported in this paper, we discuss other opportunities in applied mechanics and general considerations about the use of large language models in modeling, design, and analysis that can span a broad spectrum of material properties from mechanical, thermal, optical, to electronic.
Multi-marginal temporal Schrödinger Bridge Matching for video generation from unpaired data
Many natural dynamic processes -- such as in vivo cellular differentiation or disease progression -- can only be observed through the lens of static sample snapshots. While challenging, reconstructing their temporal evolution to decipher underlying dynamic properties is of major interest to scientific research. Existing approaches enable data transport along a temporal axis but are poorly scalable in high dimension and require restrictive assumptions to be met. To address these issues, we propose \textbf{Multi-Marginal temporal Schr\"odinger Bridge Matching} (MMtSBM) for video generation from unpaired data, extending the theoretical guarantees and empirical efficiency of Diffusion Schr\"odinger Bridge Matching (arXiv:archive/2303.16852) by deriving the Iterative Markovian Fitting algorithm to multiple marginals in a novel factorized fashion. Experiments show that MMtSBM retains theoretical properties on toy examples, achieves state-of-the-art performance on real world datasets such as transcriptomic trajectory inference in 100 dimensions, and for the first time recovers couplings and dynamics in very high dimensional image settings. Our work establishes multi-marginal Schr\"odinger bridges as a practical and principled approach for recovering hidden dynamics from static data.
Learning Mesh-Based Simulation with Graph Networks
Mesh-based simulations are central to modeling complex physical systems in many disciplines across science and engineering. Mesh representations support powerful numerical integration methods and their resolution can be adapted to strike favorable trade-offs between accuracy and efficiency. However, high-dimensional scientific simulations are very expensive to run, and solvers and parameters must often be tuned individually to each system studied. Here we introduce MeshGraphNets, a framework for learning mesh-based simulations using graph neural networks. Our model can be trained to pass messages on a mesh graph and to adapt the mesh discretization during forward simulation. Our results show it can accurately predict the dynamics of a wide range of physical systems, including aerodynamics, structural mechanics, and cloth. The model's adaptivity supports learning resolution-independent dynamics and can scale to more complex state spaces at test time. Our method is also highly efficient, running 1-2 orders of magnitude faster than the simulation on which it is trained. Our approach broadens the range of problems on which neural network simulators can operate and promises to improve the efficiency of complex, scientific modeling tasks.
Cross-Domain Policy Adaptation via Value-Guided Data Filtering
Generalizing policies across different domains with dynamics mismatch poses a significant challenge in reinforcement learning. For example, a robot learns the policy in a simulator, but when it is deployed in the real world, the dynamics of the environment may be different. Given the source and target domain with dynamics mismatch, we consider the online dynamics adaptation problem, in which case the agent can access sufficient source domain data while online interactions with the target domain are limited. Existing research has attempted to solve the problem from the dynamics discrepancy perspective. In this work, we reveal the limitations of these methods and explore the problem from the value difference perspective via a novel insight on the value consistency across domains. Specifically, we present the Value-Guided Data Filtering (VGDF) algorithm, which selectively shares transitions from the source domain based on the proximity of paired value targets across the two domains. Empirical results on various environments with kinematic and morphology shifts demonstrate that our method achieves superior performance compared to prior approaches.
Quantum algorithm for collisionless Boltzmann simulation of self-gravitating systems
The collisionless Boltzmann equation (CBE) is a fundamental equation that governs the dynamics of a broad range of astrophysical systems from space plasma to star clusters and galaxies. It is computationally expensive to integrate the CBE directly in a multi-dimensional phase space, and thus the applications to realistic astrophysical problems have been limited so far. Recently, Todorova & Steijl (2020) proposed an efficient quantum algorithm to solve the CBE with significantly reduced computational complexity. We extend the algorithm to perform quantum simulations of self-gravitating systems, incorporating the method to calculate gravity with the major Fourier modes of the density distribution extracted from the solution-encoding quantum state. Our method improves the dependency of time and space complexities on Nv , the number of grid points in each velocity coordinate, compared to the classical simulation methods. We then conduct some numerical demonstrations of our method. We first run a 1+1 dimensional test calculation of free streaming motion on 64*64 grids using 13 simulated qubits and validate our method. We then perform simulations of Jeans collapse, and compare the result with analytic and linear theory calculations. It will thus allow us to perform large-scale CBE simulations on future quantum computers.
Mitigating Propagation Failures in Physics-informed Neural Networks using Retain-Resample-Release (R3) Sampling
Despite the success of physics-informed neural networks (PINNs) in approximating partial differential equations (PDEs), PINNs can sometimes fail to converge to the correct solution in problems involving complicated PDEs. This is reflected in several recent studies on characterizing the "failure modes" of PINNs, although a thorough understanding of the connection between PINN failure modes and sampling strategies is missing. In this paper, we provide a novel perspective of failure modes of PINNs by hypothesizing that training PINNs relies on successful "propagation" of solution from initial and/or boundary condition points to interior points. We show that PINNs with poor sampling strategies can get stuck at trivial solutions if there are propagation failures, characterized by highly imbalanced PDE residual fields. To mitigate propagation failures, we propose a novel Retain-Resample-Release sampling (R3) algorithm that can incrementally accumulate collocation points in regions of high PDE residuals with little to no computational overhead. We provide an extension of R3 sampling to respect the principle of causality while solving time-dependent PDEs. We theoretically analyze the behavior of R3 sampling and empirically demonstrate its efficacy and efficiency in comparison with baselines on a variety of PDE problems.
Energy-conserving equivariant GNN for elasticity of lattice architected metamaterials
Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work, we generate a big dataset of structure-property relationships for strut-based lattices. The dataset is made available to the community which can fuel the development of methods anchored in physical principles for the fitting of fourth-order tensors. In addition, we present a higher-order GNN model trained on this dataset. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate its benefits in terms of predictive performance and reduced training requirements. Finally, we demonstrate an example application of the model to an architected material design task. The methods which we developed are applicable to fourth-order tensors beyond elasticity such as piezo-optical tensor etc.
Text2PDE: Latent Diffusion Models for Accessible Physics Simulation
Recent advances in deep learning have inspired numerous works on data-driven solutions to partial differential equation (PDE) problems. These neural PDE solvers can often be much faster than their numerical counterparts; however, each presents its unique limitations and generally balances training cost, numerical accuracy, and ease of applicability to different problem setups. To address these limitations, we introduce several methods to apply latent diffusion models to physics simulation. Firstly, we introduce a mesh autoencoder to compress arbitrarily discretized PDE data, allowing for efficient diffusion training across various physics. Furthermore, we investigate full spatio-temporal solution generation to mitigate autoregressive error accumulation. Lastly, we investigate conditioning on initial physical quantities, as well as conditioning solely on a text prompt to introduce text2PDE generation. We show that language can be a compact, interpretable, and accurate modality for generating physics simulations, paving the way for more usable and accessible PDE solvers. Through experiments on both uniform and structured grids, we show that the proposed approach is competitive with current neural PDE solvers in both accuracy and efficiency, with promising scaling behavior up to sim3 billion parameters. By introducing a scalable, accurate, and usable physics simulator, we hope to bring neural PDE solvers closer to practical use.
Structure-Preserving Operator Learning
Learning complex dynamics driven by partial differential equations directly from data holds great promise for fast and accurate simulations of complex physical systems. In most cases, this problem can be formulated as an operator learning task, where one aims to learn the operator representing the physics of interest, which entails discretization of the continuous system. However, preserving key continuous properties at the discrete level, such as boundary conditions, and addressing physical systems with complex geometries is challenging for most existing approaches. We introduce a family of operator learning architectures, structure-preserving operator networks (SPONs), that allows to preserve key mathematical and physical properties of the continuous system by leveraging finite element (FE) discretizations of the input-output spaces. SPONs are encode-process-decode architectures that are end-to-end differentiable, where the encoder and decoder follows from the discretizations of the input-output spaces. SPONs can operate on complex geometries, enforce certain boundary conditions exactly, and offer theoretical guarantees. Our framework provides a flexible way of devising structure-preserving architectures tailored to specific applications, and offers an explicit trade-off between performance and efficiency, all thanks to the FE discretization of the input-output spaces. Additionally, we introduce a multigrid-inspired SPON architecture that yields improved performance at higher efficiency. Finally, we release a software to automate the design and training of SPON architectures.
VisionLaw: Inferring Interpretable Intrinsic Dynamics from Visual Observations via Bilevel Optimization
The intrinsic dynamics of an object governs its physical behavior in the real world, playing a critical role in enabling physically plausible interactive simulation with 3D assets. Existing methods have attempted to infer the intrinsic dynamics of objects from visual observations, but generally face two major challenges: one line of work relies on manually defined constitutive priors, making it difficult to generalize to complex scenarios; the other models intrinsic dynamics using neural networks, resulting in limited interpretability and poor generalization. To address these challenges, we propose VisionLaw, a bilevel optimization framework that infers interpretable expressions of intrinsic dynamics from visual observations. At the upper level, we introduce an LLMs-driven decoupled constitutive evolution strategy, where LLMs are prompted as a knowledgeable physics expert to generate and revise constitutive laws, with a built-in decoupling mechanism that substantially reduces the search complexity of LLMs. At the lower level, we introduce a vision-guided constitutive evaluation mechanism, which utilizes visual simulation to evaluate the consistency between the generated constitutive law and the underlying intrinsic dynamics, thereby guiding the upper-level evolution. Experiments on both synthetic and real-world datasets demonstrate that VisionLaw can effectively infer interpretable intrinsic dynamics from visual observations. It significantly outperforms existing state-of-the-art methods and exhibits strong generalization for interactive simulation in novel scenarios.
A Model Zoo on Phase Transitions in Neural Networks
Using the weights of trained Neural Network (NN) models as data modality has recently gained traction as a research field - dubbed Weight Space Learning (WSL). Multiple recent works propose WSL methods to analyze models, evaluate methods, or synthesize weights. Weight space learning methods require populations of trained models as datasets for development and evaluation. However, existing collections of models - called `model zoos' - are unstructured or follow a rudimentary definition of diversity. In parallel, work rooted in statistical physics has identified phases and phase transitions in NN models. Models are homogeneous within the same phase but qualitatively differ from one phase to another. We combine the idea of `model zoos' with phase information to create a controlled notion of diversity in populations. We introduce 12 large-scale zoos that systematically cover known phases and vary over model architecture, size, and datasets. These datasets cover different modalities, such as computer vision, natural language processing, and scientific ML. For every model, we compute loss landscape metrics and validate full coverage of the phases. With this dataset, we provide the community with a resource with a wide range of potential applications for WSL and beyond. Evidence suggests the loss landscape phase plays a role in applications such as model training, analysis, or sparsification. We demonstrate this in an exploratory study of the downstream methods like transfer learning or model weights averaging.
Learning to Generate Object Interactions with Physics-Guided Video Diffusion
Recent models for video generation have achieved remarkable progress and are now deployed in film, social media production, and advertising. Beyond their creative potential, such models also hold promise as world simulators for robotics and embodied decision making. Despite strong advances, however, current approaches still struggle to generate physically plausible object interactions and lack physics-grounded control mechanisms. To address this limitation, we introduce KineMask, an approach for physics-guided video generation that enables realistic rigid body control, interactions, and effects. Given a single image and a specified object velocity, our method generates videos with inferred motions and future object interactions. We propose a two-stage training strategy that gradually removes future motion supervision via object masks. Using this strategy we train video diffusion models (VDMs) on synthetic scenes of simple interactions and demonstrate significant improvements of object interactions in real scenes. Furthermore, KineMask integrates low-level motion control with high-level textual conditioning via predictive scene descriptions, leading to effective support for synthesis of complex dynamical phenomena. Extensive experiments show that KineMask achieves strong improvements over recent models of comparable size. Ablation studies further highlight the complementary roles of low- and high-level conditioning in VDMs. Our code, model, and data will be made publicly available.
Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks
Physics-informed neural networks (PINNs) leverage neural-networks to find the solutions of partial differential equation (PDE)-constrained optimization problems with initial conditions and boundary conditions as soft constraints. These soft constraints are often considered to be the sources of the complexity in the training phase of PINNs. Here, we demonstrate that the challenge of training (i) persists even when the boundary conditions are strictly enforced, and (ii) is closely related to the Kolmogorov n-width associated with problems demonstrating transport, convection, traveling waves, or moving fronts. Given this realization, we describe the mechanism underlying the training schemes such as those used in eXtended PINNs (XPINN), curriculum regularization, and sequence-to-sequence learning. For an important category of PDEs, i.e., governed by non-linear convection-diffusion equation, we propose reformulating PINNs on a Lagrangian frame of reference, i.e., LPINNs, as a PDE-informed solution. A parallel architecture with two branches is proposed. One branch solves for the state variables on the characteristics, and the second branch solves for the low-dimensional characteristics curves. The proposed architecture conforms to the causality innate to the convection, and leverages the direction of travel of the information in the domain. Finally, we demonstrate that the loss landscapes of LPINNs are less sensitive to the so-called "complexity" of the problems, compared to those in the traditional PINNs in the Eulerian framework.
Newton-Cotes Graph Neural Networks: On the Time Evolution of Dynamic Systems
Reasoning system dynamics is one of the most important analytical approaches for many scientific studies. With the initial state of a system as input, the recent graph neural networks (GNNs)-based methods are capable of predicting the future state distant in time with high accuracy. Although these methods have diverse designs in modeling the coordinates and interacting forces of the system, we show that they actually share a common paradigm that learns the integration of the velocity over the interval between the initial and terminal coordinates. However, their integrand is constant w.r.t. time. Inspired by this observation, we propose a new approach to predict the integration based on several velocity estimations with Newton-Cotes formulas and prove its effectiveness theoretically. Extensive experiments on several benchmarks empirically demonstrate consistent and significant improvement compared with the state-of-the-art methods.
rd-spiral: An open-source Python library for learning 2D reaction-diffusion dynamics through pseudo-spectral method
We introduce rd-spiral, an open-source Python library for simulating 2D reaction-diffusion systems using pseudo-spectral methods. The framework combines FFT-based spatial discretization with adaptive Dormand-Prince time integration, achieving exponential convergence while maintaining pedagogical clarity. We analyze three dynamical regimes: stable spirals, spatiotemporal chaos, and pattern decay, revealing extreme non-Gaussian statistics (kurtosis >96) in stable states. Information-theoretic metrics show 10.7% reduction in activator-inhibitor coupling during turbulence versus 6.5% in stable regimes. The solver handles stiffness ratios >6:1 with features including automated equilibrium classification and checkpointing. Effect sizes (delta=0.37--0.78) distinguish regimes, with asymmetric field sensitivities to perturbations. By balancing computational rigor with educational transparency, rd-spiral bridges theoretical and practical nonlinear dynamics.
Semi-automatic tuning of coupled climate models with multiple intrinsic timescales: lessons learned from the Lorenz96 model
The objective of this study is to evaluate the potential for History Matching (HM) to tune a climate system with multi-scale dynamics. By considering a toy climate model, namely, the two-scale Lorenz96 model and producing experiments in perfect-model setting, we explore in detail how several built-in choices need to be carefully tested. We also demonstrate the importance of introducing physical expertise in the range of parameters, a priori to running HM. Finally we revisit a classical procedure in climate model tuning, that consists of tuning the slow and fast components separately. By doing so in the Lorenz96 model, we illustrate the non-uniqueness of plausible parameters and highlight the specificity of metrics emerging from the coupling. This paper contributes also to bridging the communities of uncertainty quantification, machine learning and climate modeling, by making connections between the terms used by each community for the same concept and presenting promising collaboration avenues that would benefit climate modeling research.
Bi-Level Motion Imitation for Humanoid Robots
Imitation learning from human motion capture (MoCap) data provides a promising way to train humanoid robots. However, due to differences in morphology, such as varying degrees of joint freedom and force limits, exact replication of human behaviors may not be feasible for humanoid robots. Consequently, incorporating physically infeasible MoCap data in training datasets can adversely affect the performance of the robot policy. To address this issue, we propose a bi-level optimization-based imitation learning framework that alternates between optimizing both the robot policy and the target MoCap data. Specifically, we first develop a generative latent dynamics model using a novel self-consistent auto-encoder, which learns sparse and structured motion representations while capturing desired motion patterns in the dataset. The dynamics model is then utilized to generate reference motions while the latent representation regularizes the bi-level motion imitation process. Simulations conducted with a realistic model of a humanoid robot demonstrate that our method enhances the robot policy by modifying reference motions to be physically consistent.
Towards Foundation Model for Chemical Reactor Modeling: Meta-Learning with Physics-Informed Adaptation
Developing accurate models for chemical reactors is often challenging due to the complexity of reaction kinetics and process dynamics. Traditional approaches require retraining models for each new system, limiting generalizability and efficiency. In this work, we take a step toward foundation models for chemical reactor modeling by introducing a neural network framework that generalizes across diverse reactor types and rapidly adapts to new chemical processes. Our approach leverages meta-learning to pretrain the model on a broad set of reactor dynamics, enabling efficient adaptation to unseen reactions with minimal data. To further enhance generalizability, we incorporate physics-informed fine-tuning, ensuring physically consistent adaptation to new reactor conditions. Our framework is evaluated across three integer-order fundamental reactor types - continuous stirred tank reactors, batch reactors, and plug flow reactors - demonstrating superior few-shot adaptation compared to conventional data-driven, physics-informed, and transfer learning approaches. By combining meta-learning with physics-informed adaptation, this work lays the foundation for a generalizable modeling framework, advancing the development of foundation models for chemical engineering applications. Source code is available at https://github.com/killingbear999/chemical-reactor-foundation-model.
LE-PDE++: Mamba for accelerating PDEs Simulations
Partial Differential Equations are foundational in modeling science and natural systems such as fluid dynamics and weather forecasting. The Latent Evolution of PDEs method is designed to address the computational intensity of classical and deep learning-based PDE solvers by proposing a scalable and efficient alternative. To enhance the efficiency and accuracy of LE-PDE, we incorporate the Mamba model, an advanced machine learning model known for its predictive efficiency and robustness in handling complex dynamic systems with a progressive learning strategy. The LE-PDE was tested on several benchmark problems. The method demonstrated a marked reduction in computational time compared to traditional solvers and standalone deep learning models while maintaining high accuracy in predicting system behavior over time. Our method doubles the inference speed compared to the LE-PDE while retaining the same level of parameter efficiency, making it well-suited for scenarios requiring long-term predictions.
Atlas3D: Physically Constrained Self-Supporting Text-to-3D for Simulation and Fabrication
Existing diffusion-based text-to-3D generation methods primarily focus on producing visually realistic shapes and appearances, often neglecting the physical constraints necessary for downstream tasks. Generated models frequently fail to maintain balance when placed in physics-based simulations or 3D printed. This balance is crucial for satisfying user design intentions in interactive gaming, embodied AI, and robotics, where stable models are needed for reliable interaction. Additionally, stable models ensure that 3D-printed objects, such as figurines for home decoration, can stand on their own without requiring additional supports. To fill this gap, we introduce Atlas3D, an automatic and easy-to-implement method that enhances existing Score Distillation Sampling (SDS)-based text-to-3D tools. Atlas3D ensures the generation of self-supporting 3D models that adhere to physical laws of stability under gravity, contact, and friction. Our approach combines a novel differentiable simulation-based loss function with physically inspired regularization, serving as either a refinement or a post-processing module for existing frameworks. We verify Atlas3D's efficacy through extensive generation tasks and validate the resulting 3D models in both simulated and real-world environments.
On Neural Differential Equations
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.
PhysX: Physical-Grounded 3D Asset Generation
3D modeling is moving from virtual to physical. Existing 3D generation primarily emphasizes geometries and textures while neglecting physical-grounded modeling. Consequently, despite the rapid development of 3D generative models, the synthesized 3D assets often overlook rich and important physical properties, hampering their real-world application in physical domains like simulation and embodied AI. As an initial attempt to address this challenge, we propose PhysX, an end-to-end paradigm for physical-grounded 3D asset generation. 1) To bridge the critical gap in physics-annotated 3D datasets, we present PhysXNet - the first physics-grounded 3D dataset systematically annotated across five foundational dimensions: absolute scale, material, affordance, kinematics, and function description. In particular, we devise a scalable human-in-the-loop annotation pipeline based on vision-language models, which enables efficient creation of physics-first assets from raw 3D assets.2) Furthermore, we propose PhysXGen, a feed-forward framework for physics-grounded image-to-3D asset generation, injecting physical knowledge into the pre-trained 3D structural space. Specifically, PhysXGen employs a dual-branch architecture to explicitly model the latent correlations between 3D structures and physical properties, thereby producing 3D assets with plausible physical predictions while preserving the native geometry quality. Extensive experiments validate the superior performance and promising generalization capability of our framework. All the code, data, and models will be released to facilitate future research in generative physical AI.
PhysicsEval: Inference-Time Techniques to Improve the Reasoning Proficiency of Large Language Models on Physics Problems
The discipline of physics stands as a cornerstone of human intellect, driving the evolution of technology and deepening our understanding of the fundamental principles of the cosmos. Contemporary literature includes some works centered on the task of solving physics problems - a crucial domain of natural language reasoning. In this paper, we evaluate the performance of frontier LLMs in solving physics problems, both mathematical and descriptive. We also employ a plethora of inference-time techniques and agentic frameworks to improve the performance of the models. This includes the verification of proposed solutions in a cumulative fashion by other, smaller LLM agents, and we perform a comparative analysis of the performance that the techniques entail. There are significant improvements when the multi-agent framework is applied to problems that the models initially perform poorly on. Furthermore, we introduce a new evaluation benchmark for physics problems, {rm P{small HYSICS}E{small VAL}}, consisting of 19,609 problems sourced from various physics textbooks and their corresponding correct solutions scraped from physics forums and educational websites. Our code and data are publicly available at https://github.com/areebuzair/PhysicsEval.
Improving Generative Model-based Unfolding with Schrödinger Bridges
Machine learning-based unfolding has enabled unbinned and high-dimensional differential cross section measurements. Two main approaches have emerged in this research area: one based on discriminative models and one based on generative models. The main advantage of discriminative models is that they learn a small correction to a starting simulation while generative models scale better to regions of phase space with little data. We propose to use Schroedinger Bridges and diffusion models to create SBUnfold, an unfolding approach that combines the strengths of both discriminative and generative models. The key feature of SBUnfold is that its generative model maps one set of events into another without having to go through a known probability density as is the case for normalizing flows and standard diffusion models. We show that SBUnfold achieves excellent performance compared to state of the art methods on a synthetic Z+jets dataset.
Demystifying the Token Dynamics of Deep Selective State Space Models
Selective state space models (SSM), such as Mamba, have gained prominence for their effectiveness in modeling sequential data. Despite their outstanding empirical performance, a comprehensive theoretical understanding of deep selective SSM remains elusive, hindering their further development and adoption for applications that need high fidelity. In this paper, we investigate the dynamical properties of tokens in a pre-trained Mamba model. In particular, we derive the dynamical system governing the continuous-time limit of the Mamba model and characterize the asymptotic behavior of its solutions. In the one-dimensional case, we prove that only one of the following two scenarios happens: either all tokens converge to zero, or all tokens diverge to infinity. We provide criteria based on model parameters to determine when each scenario occurs. For the convergent scenario, we empirically verify that this scenario negatively impacts the model's performance. For the divergent scenario, we prove that different tokens will diverge to infinity at different rates, thereby contributing unequally to the updates during model training. Based on these investigations, we propose two refinements for the model: excluding the convergent scenario and reordering tokens based on their importance scores, both aimed at improving practical performance. Our experimental results validate these refinements, offering insights into enhancing Mamba's effectiveness in real-world applications.
Physics-Informed Learning of Characteristic Trajectories for Smoke Reconstruction
We delve into the physics-informed neural reconstruction of smoke and obstacles through sparse-view RGB videos, tackling challenges arising from limited observation of complex dynamics. Existing physics-informed neural networks often emphasize short-term physics constraints, leaving the proper preservation of long-term conservation less explored. We introduce Neural Characteristic Trajectory Fields, a novel representation utilizing Eulerian neural fields to implicitly model Lagrangian fluid trajectories. This topology-free, auto-differentiable representation facilitates efficient flow map calculations between arbitrary frames as well as efficient velocity extraction via auto-differentiation. Consequently, it enables end-to-end supervision covering long-term conservation and short-term physics priors. Building on the representation, we propose physics-informed trajectory learning and integration into NeRF-based scene reconstruction. We enable advanced obstacle handling through self-supervised scene decomposition and seamless integrated boundary constraints. Our results showcase the ability to overcome challenges like occlusion uncertainty, density-color ambiguity, and static-dynamic entanglements. Code and sample tests are at https://github.com/19reborn/PICT_smoke.
PROSE-FD: A Multimodal PDE Foundation Model for Learning Multiple Operators for Forecasting Fluid Dynamics
We propose PROSE-FD, a zero-shot multimodal PDE foundational model for simultaneous prediction of heterogeneous two-dimensional physical systems related to distinct fluid dynamics settings. These systems include shallow water equations and the Navier-Stokes equations with incompressible and compressible flow, regular and complex geometries, and different buoyancy settings. This work presents a new transformer-based multi-operator learning approach that fuses symbolic information to perform operator-based data prediction, i.e. non-autoregressive. By incorporating multiple modalities in the inputs, the PDE foundation model builds in a pathway for including mathematical descriptions of the physical behavior. We pre-train our foundation model on 6 parametric families of equations collected from 13 datasets, including over 60K trajectories. Our model outperforms popular operator learning, computer vision, and multi-physics models, in benchmark forward prediction tasks. We test our architecture choices with ablation studies.
Orb-v3: atomistic simulation at scale
We introduce Orb-v3, the next generation of the Orb family of universal interatomic potentials. Models in this family expand the performance-speed-memory Pareto frontier, offering near SoTA performance across a range of evaluations with a >10x reduction in latency and > 8x reduction in memory. Our experiments systematically traverse this frontier, charting the trade-off induced by roto-equivariance, conservatism and graph sparsity. Contrary to recent literature, we find that non-equivariant, non-conservative architectures can accurately model physical properties, including those which require higher-order derivatives of the potential energy surface. This model release is guided by the principle that the most valuable foundation models for atomic simulation will excel on all fronts: accuracy, latency and system size scalability. The reward for doing so is a new era of computational chemistry driven by high-throughput and mesoscale all-atom simulations.
DyFraNet: Forecasting and Backcasting Dynamic Fracture Mechanics in Space and Time Using a 2D-to-3D Deep Neural Network
The dynamics of materials failure is one of the most critical phenomena in a range of scientific and engineering fields, from healthcare to structural materials to transportation. In this paper we propose a specially designed deep neural network, DyFraNet, which can predict dynamic fracture behaviors by identifying a complete history of fracture propagation - from cracking onset, as a crack grows through the material, modeled as a series of frames evolving over time and dependent on each other. Furthermore, this model can not only forecast future fracture processes but also backcast to elucidate the past fracture history. In this scenario, once provided with the outcome of a fracture event, the model will elucidate past events that led to this state and will predict the future evolution of the failure process. By comparing the predicted results with atomistic-level simulations and theory, we show that DyFraNet can capture dynamic fracture mechanics by accurately predicting how cracks develop over time, including measures such as the crack speed, as well as when cracks become unstable. We use GradCAM to interpret how DyFraNet perceives the relationship between geometric conditions and fracture dynamics and we find DyFraNet pays special attention to the areas around crack tips, which have a critical influence in the early stage of fracture propagation. In later stages, the model pays increased attention to the existing or newly formed damage distribution in the material. The proposed approach offers significant potential to accelerate the exploration of the dynamics in material design against fracture failures and can be beneficially adapted for all kinds of dynamical engineering problems.
Part^{2}GS: Part-aware Modeling of Articulated Objects using 3D Gaussian Splatting
Articulated objects are common in the real world, yet modeling their structure and motion remains a challenging task for 3D reconstruction methods. In this work, we introduce Part^{2}GS, a novel framework for modeling articulated digital twins of multi-part objects with high-fidelity geometry and physically consistent articulation. Part^{2}GS leverages a part-aware 3D Gaussian representation that encodes articulated components with learnable attributes, enabling structured, disentangled transformations that preserve high-fidelity geometry. To ensure physically consistent motion, we propose a motion-aware canonical representation guided by physics-based constraints, including contact enforcement, velocity consistency, and vector-field alignment. Furthermore, we introduce a field of repel points to prevent part collisions and maintain stable articulation paths, significantly improving motion coherence over baselines. Extensive evaluations on both synthetic and real-world datasets show that Part^{2}GS consistently outperforms state-of-the-art methods by up to 10times in Chamfer Distance for movable parts.
FLD: Fourier Latent Dynamics for Structured Motion Representation and Learning
Motion trajectories offer reliable references for physics-based motion learning but suffer from sparsity, particularly in regions that lack sufficient data coverage. To address this challenge, we introduce a self-supervised, structured representation and generation method that extracts spatial-temporal relationships in periodic or quasi-periodic motions. The motion dynamics in a continuously parameterized latent space enable our method to enhance the interpolation and generalization capabilities of motion learning algorithms. The motion learning controller, informed by the motion parameterization, operates online tracking of a wide range of motions, including targets unseen during training. With a fallback mechanism, the controller dynamically adapts its tracking strategy and automatically resorts to safe action execution when a potentially risky target is proposed. By leveraging the identified spatial-temporal structure, our work opens new possibilities for future advancements in general motion representation and learning algorithms.
Chaos as an interpretable benchmark for forecasting and data-driven modelling
The striking fractal geometry of strange attractors underscores the generative nature of chaos: like probability distributions, chaotic systems can be repeatedly measured to produce arbitrarily-detailed information about the underlying attractor. Chaotic systems thus pose a unique challenge to modern statistical learning techniques, while retaining quantifiable mathematical properties that make them controllable and interpretable as benchmarks. Here, we present a growing database currently comprising 131 known chaotic dynamical systems spanning fields such as astrophysics, climatology, and biochemistry. Each system is paired with precomputed multivariate and univariate time series. Our dataset has comparable scale to existing static time series databases; however, our systems can be re-integrated to produce additional datasets of arbitrary length and granularity. Our dataset is annotated with known mathematical properties of each system, and we perform feature analysis to broadly categorize the diverse dynamics present across the collection. Chaotic systems inherently challenge forecasting models, and across extensive benchmarks we correlate forecasting performance with the degree of chaos present. We also exploit the unique generative properties of our dataset in several proof-of-concept experiments: surrogate transfer learning to improve time series classification, importance sampling to accelerate model training, and benchmarking symbolic regression algorithms.
TraFlow: Trajectory Distillation on Pre-Trained Rectified Flow
Majorities of distillation methods on pre-trained diffusion models or on pre-trained rectified flow, focus on either the distillation outputs or the trajectories between random noises and clean images to speed up sample generations from pre-trained models. In those trajectory-based distillation methods, consistency distillation requires the self-consistent trajectory projection to regulate the trajectory, which might avoid the common ODE approximation error {while still be concerning about sampling efficiencies}. At the same time, rectified flow distillations enforce straight trajectory for fast sampling, although an ODE solver is still required. In this work, we propose a trajectory distillation method, \modelname, that enjoys the benefits of both and enables few-step generations. TraFlow adopts the settings of consistency trajectory models, and further enforces the properties of self-consistency and straightness throughout the entire trajectory. These two properties are pursued by reaching a balance with following three targets: (1) reconstruct the output from pre-trained models; (2) learn the amount of changes by pre-trained models; (3) satisfy the self-consistency over its trajectory. Extensive experimental results have shown the effectiveness of our proposed method.
Dynamic 3D Gaussian Tracking for Graph-Based Neural Dynamics Modeling
Videos of robots interacting with objects encode rich information about the objects' dynamics. However, existing video prediction approaches typically do not explicitly account for the 3D information from videos, such as robot actions and objects' 3D states, limiting their use in real-world robotic applications. In this work, we introduce a framework to learn object dynamics directly from multi-view RGB videos by explicitly considering the robot's action trajectories and their effects on scene dynamics. We utilize the 3D Gaussian representation of 3D Gaussian Splatting (3DGS) to train a particle-based dynamics model using Graph Neural Networks. This model operates on sparse control particles downsampled from the densely tracked 3D Gaussian reconstructions. By learning the neural dynamics model on offline robot interaction data, our method can predict object motions under varying initial configurations and unseen robot actions. The 3D transformations of Gaussians can be interpolated from the motions of control particles, enabling the rendering of predicted future object states and achieving action-conditioned video prediction. The dynamics model can also be applied to model-based planning frameworks for object manipulation tasks. We conduct experiments on various kinds of deformable materials, including ropes, clothes, and stuffed animals, demonstrating our framework's ability to model complex shapes and dynamics. Our project page is available at https://gs-dynamics.github.io.
Mimicking the Physicist's Eye:A VLM-centric Approach for Physics Formula Discovery
Automated discovery of physical laws from observational data in the real world is a grand challenge in AI. Current methods, relying on symbolic regression or LLMs, are limited to uni-modal data and overlook the rich, visual phenomenological representations of motion that are indispensable to physicists. This "sensory deprivation" severely weakens their ability to interpret the inherent spatio-temporal patterns within dynamic phenomena. To address this gap, we propose VIPER-R1, a multimodal model that performs Visual Induction for Physics-based Equation Reasoning to discover fundamental symbolic formulas. It integrates visual perception, trajectory data, and symbolic reasoning to emulate the scientific discovery process. The model is trained via a curriculum of Motion Structure Induction (MSI), using supervised fine-tuning to interpret kinematic phase portraits and to construct hypotheses guided by a Causal Chain of Thought (C-CoT), followed by Reward-Guided Symbolic Calibration (RGSC) to refine the formula structure with reinforcement learning. During inference, the trained VIPER-R1 acts as an agent: it first posits a high-confidence symbolic ansatz, then proactively invokes an external symbolic regression tool to perform Symbolic Residual Realignment (SR^2). This final step, analogous to a physicist's perturbation analysis, reconciles the theoretical model with empirical data. To support this research, we introduce PhysSymbol, a new 5,000-instance multimodal corpus. Experiments show that VIPER-R1 consistently outperforms state-of-the-art VLM baselines in accuracy and interpretability, enabling more precise discovery of physical laws. Project page: https://jiaaqiliu.github.io/VIPER-R1/
ConCerNet: A Contrastive Learning Based Framework for Automated Conservation Law Discovery and Trustworthy Dynamical System Prediction
Deep neural networks (DNN) have shown great capacity of modeling a dynamical system; nevertheless, they usually do not obey physics constraints such as conservation laws. This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling to endow the invariant properties. ConCerNet consists of two steps: (i) a contrastive learning method to automatically capture the system invariants (i.e. conservation properties) along the trajectory observations; (ii) a neural projection layer to guarantee that the learned dynamics models preserve the learned invariants. We theoretically prove the functional relationship between the learned latent representation and the unknown system invariant function. Experiments show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics by a large margin. With neural network based parameterization and no dependence on prior knowledge, our method can be extended to complex and large-scale dynamics by leveraging an autoencoder.
Constructor Theory of Thermodynamics
All current formulations of thermodynamics invoke some form of coarse-graining or ensembles as the supposed link between their own laws and the microscopic laws of motion. They deal only with ensemble-averages, expectation values, macroscopic limits, infinite heat baths, etc., not with the details of physical variables of individual microscopic systems. They are consistent with the laws of motion for finite systems only in certain approximations, which improve with increasing scale, given various assumptions about initial conditions which are neither specified precisely nor even thought to hold exactly in nature. Here I propose a new formulation of the zeroth, first and second laws, improving upon the axiomatic approach to thermodynamics (Carath\'eodory, 1909; Lieb & Yngvason, 1999), via the principles of the recently proposed constructor theory. Specifically, I provide a non-approximative, scale-independent formulation of 'adiabatic accessibility'; this in turn provides a non-approximative, scale-independent distinction between work and heat and reveals an unexpected connection between information theory and the first law of thermodynamics (not just the second). It also achieves the long-sought unification of the axiomatic approach with Kelvin's.
Live in the Moment: Learning Dynamics Model Adapted to Evolving Policy
Model-based reinforcement learning (RL) often achieves higher sample efficiency in practice than model-free RL by learning a dynamics model to generate samples for policy learning. Previous works learn a dynamics model that fits under the empirical state-action visitation distribution for all historical policies, i.e., the sample replay buffer. However, in this paper, we observe that fitting the dynamics model under the distribution for all historical policies does not necessarily benefit model prediction for the current policy since the policy in use is constantly evolving over time. The evolving policy during training will cause state-action visitation distribution shifts. We theoretically analyze how this distribution shift over historical policies affects the model learning and model rollouts. We then propose a novel dynamics model learning method, named Policy-adapted Dynamics Model Learning (PDML). PDML dynamically adjusts the historical policy mixture distribution to ensure the learned model can continually adapt to the state-action visitation distribution of the evolving policy. Experiments on a range of continuous control environments in MuJoCo show that PDML achieves significant improvement in sample efficiency and higher asymptotic performance combined with the state-of-the-art model-based RL methods.
Disentangled Generative Models for Robust Prediction of System Dynamics
Deep neural networks have become increasingly of interest in dynamical system prediction, but out-of-distribution generalization and long-term stability still remains challenging. In this work, we treat the domain parameters of dynamical systems as factors of variation of the data generating process. By leveraging ideas from supervised disentanglement and causal factorization, we aim to separate the domain parameters from the dynamics in the latent space of generative models. In our experiments we model dynamics both in phase space and in video sequences and conduct rigorous OOD evaluations. Results indicate that disentangled VAEs adapt better to domain parameters spaces that were not present in the training data. At the same time, disentanglement can improve the long-term and out-of-distribution predictions of state-of-the-art models in video sequences.
Enhancing the significance of astrophysical events with multimessenger coincidences
Coincident multimessenger observations of cosmic sources can offer numerous benefits, especially when used in the context of synergistic astrophysics. One significant advantage is enhancing the detection significance of separate detectors by correlating their data and assuming joint emission. We have formulated an approach for updating the Bayesian posterior probability of an astrophysical origin, namely p_{rm astro}, relying on multimessenger coincidences assuming an emission model. The description is applicable to any combination of messengers. We demonstrated the formalism for the gravitational waves and high-energy neutrinos case. Applying our method to the public data of candidate coincident high-energy neutrinos with subthreshold gravitational-wave triggers, we found that in the case of highly energetic neutrino coincidences, p_{rm astro} can increase from approximately sim 0.1 to sim 0.9. The amount of improvement depends on the assumed joint emission model. If models are trusted, the marked improvement makes subthreshold detections much more confident. Moreover, the model dependency can also be used to test the consistency of different models. This work is a crucial step toward the goal of uniting all detectors on equal footing into a statistically integrated, Earth-sized observatory for comprehensive multimessenger astrophysics.
Learning 3D Particle-based Simulators from RGB-D Videos
Realistic simulation is critical for applications ranging from robotics to animation. Traditional analytic simulators sometimes struggle to capture sufficiently realistic simulation which can lead to problems including the well known "sim-to-real" gap in robotics. Learned simulators have emerged as an alternative for better capturing real-world physical dynamics, but require access to privileged ground truth physics information such as precise object geometry or particle tracks. Here we propose a method for learning simulators directly from observations. Visual Particle Dynamics (VPD) jointly learns a latent particle-based representation of 3D scenes, a neural simulator of the latent particle dynamics, and a renderer that can produce images of the scene from arbitrary views. VPD learns end to end from posed RGB-D videos and does not require access to privileged information. Unlike existing 2D video prediction models, we show that VPD's 3D structure enables scene editing and long-term predictions. These results pave the way for downstream applications ranging from video editing to robotic planning.
LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery
Large Language Models have recently gained significant attention in scientific discovery for their extensive knowledge and advanced reasoning capabilities. However, they encounter challenges in effectively simulating observational feedback and grounding it with language to propel advancements in physical scientific discovery. Conversely, human scientists undertake scientific discovery by formulating hypotheses, conducting experiments, and revising theories through observational analysis. Inspired by this, we propose to enhance the knowledge-driven, abstract reasoning abilities of LLMs with the computational strength of simulations. We introduce Scientific Generative Agent (SGA), a bilevel optimization framework: LLMs act as knowledgeable and versatile thinkers, proposing scientific hypotheses and reason about discrete components, such as physics equations or molecule structures; meanwhile, simulations function as experimental platforms, providing observational feedback and optimizing via differentiability for continuous parts, such as physical parameters. We conduct extensive experiments to demonstrate our framework's efficacy in constitutive law discovery and molecular design, unveiling novel solutions that differ from conventional human expectations yet remain coherent upon analysis.
Deep Learning-based Approaches for State Space Models: A Selective Review
State-space models (SSMs) offer a powerful framework for dynamical system analysis, wherein the temporal dynamics of the system are assumed to be captured through the evolution of the latent states, which govern the values of the observations. This paper provides a selective review of recent advancements in deep neural network-based approaches for SSMs, and presents a unified perspective for discrete time deep state space models and continuous time ones such as latent neural Ordinary Differential and Stochastic Differential Equations. It starts with an overview of the classical maximum likelihood based approach for learning SSMs, reviews variational autoencoder as a general learning pipeline for neural network-based approaches in the presence of latent variables, and discusses in detail representative deep learning models that fall under the SSM framework. Very recent developments, where SSMs are used as standalone architectural modules for improving efficiency in sequence modeling, are also examined. Finally, examples involving mixed frequency and irregularly-spaced time series data are presented to demonstrate the advantage of SSMs in these settings.
A Comprehensive Survey on World Models for Embodied AI
Embodied AI requires agents that perceive, act, and anticipate how actions reshape future world states. World models serve as internal simulators that capture environment dynamics, enabling forward and counterfactual rollouts to support perception, prediction, and decision making. This survey presents a unified framework for world models in embodied AI. Specifically, we formalize the problem setting and learning objectives, and propose a three-axis taxonomy encompassing: (1) Functionality, Decision-Coupled vs. General-Purpose; (2) Temporal Modeling, Sequential Simulation and Inference vs. Global Difference Prediction; (3) Spatial Representation, Global Latent Vector, Token Feature Sequence, Spatial Latent Grid, and Decomposed Rendering Representation. We systematize data resources and metrics across robotics, autonomous driving, and general video settings, covering pixel prediction quality, state-level understanding, and task performance. Furthermore, we offer a quantitative comparison of state-of-the-art models and distill key open challenges, including the scarcity of unified datasets and the need for evaluation metrics that assess physical consistency over pixel fidelity, the trade-off between model performance and the computational efficiency required for real-time control, and the core modeling difficulty of achieving long-horizon temporal consistency while mitigating error accumulation. Finally, we maintain a curated bibliography at https://github.com/Li-Zn-H/AwesomeWorldModels.
Diffusion World Model
We introduce Diffusion World Model (DWM), a conditional diffusion model capable of predicting multistep future states and rewards concurrently. As opposed to traditional one-step dynamics models, DWM offers long-horizon predictions in a single forward pass, eliminating the need for recursive quires. We integrate DWM into model-based value estimation, where the short-term return is simulated by future trajectories sampled from DWM. In the context of offline reinforcement learning, DWM can be viewed as a conservative value regularization through generative modeling. Alternatively, it can be seen as a data source that enables offline Q-learning with synthetic data. Our experiments on the D4RL dataset confirm the robustness of DWM to long-horizon simulation. In terms of absolute performance, DWM significantly surpasses one-step dynamics models with a 44% performance gain, and achieves state-of-the-art performance.
Enhancing Physical Consistency in Lightweight World Models
A major challenge in deploying world models is the trade-off between size and performance. Large world models can capture rich physical dynamics but require massive computing resources, making them impractical for edge devices. Small world models are easier to deploy but often struggle to learn accurate physics, leading to poor predictions. We propose the Physics-Informed BEV World Model (PIWM), a compact model designed to efficiently capture physical interactions in bird's-eye-view (BEV) representations. PIWM uses Soft Mask during training to improve dynamic object modeling and future prediction. We also introduce a simple yet effective technique, Warm Start, for inference to enhance prediction quality with a zero-shot model. Experiments show that at the same parameter scale (400M), PIWM surpasses the baseline by 60.6% in weighted overall score. Moreover, even when compared with the largest baseline model (400M), the smallest PIWM (130M Soft Mask) achieves a 7.4% higher weighted overall score with a 28% faster inference speed.
Mean-field underdamped Langevin dynamics and its spacetime discretization
We propose a new method called the N-particle underdamped Langevin algorithm for optimizing a special class of non-linear functionals defined over the space of probability measures. Examples of problems with this formulation include training mean-field neural networks, maximum mean discrepancy minimization and kernel Stein discrepancy minimization. Our algorithm is based on a novel spacetime discretization of the mean-field underdamped Langevin dynamics, for which we provide a new, fast mixing guarantee. In addition, we demonstrate that our algorithm converges globally in total variation distance, bridging the theoretical gap between the dynamics and its practical implementation.
NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with Spatial-temporal Decomposition
Neural networks have shown great potential in accelerating the solution of partial differential equations (PDEs). Recently, there has been a growing interest in introducing physics constraints into training neural PDE solvers to reduce the use of costly data and improve the generalization ability. However, these physics constraints, based on certain finite dimensional approximations over the function space, must resolve the smallest scaled physics to ensure the accuracy and stability of the simulation, resulting in high computational costs from large input, output, and neural networks. This paper proposes a general acceleration methodology called NeuralStagger by spatially and temporally decomposing the original learning tasks into several coarser-resolution subtasks. We define a coarse-resolution neural solver for each subtask, which requires fewer computational resources, and jointly train them with the vanilla physics-constrained loss by simply arranging their outputs to reconstruct the original solution. Due to the perfect parallelism between them, the solution is achieved as fast as a coarse-resolution neural solver. In addition, the trained solvers bring the flexibility of simulating with multiple levels of resolution. We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations, which leads to an additional 10sim100times speed-up. Moreover, the experiment also shows that the learned model could be well used for optimal control.
Limits and Powers of Koopman Learning
Dynamical systems provide a comprehensive way to study complex and changing behaviors across various sciences. Many modern systems are too complicated to analyze directly or we do not have access to models, driving significant interest in learning methods. Koopman operators have emerged as a dominant approach because they allow the study of nonlinear dynamics using linear techniques by solving an infinite-dimensional spectral problem. However, current algorithms face challenges such as lack of convergence, hindering practical progress. This paper addresses a fundamental open question: When can we robustly learn the spectral properties of Koopman operators from trajectory data of dynamical systems, and when can we not? Understanding these boundaries is crucial for analysis, applications, and designing algorithms. We establish a foundational approach that combines computational analysis and ergodic theory, revealing the first fundamental barriers -- universal for any algorithm -- associated with system geometry and complexity, regardless of data quality and quantity. For instance, we demonstrate well-behaved smooth dynamical systems on tori where non-trivial eigenfunctions of the Koopman operator cannot be determined by any sequence of (even randomized) algorithms, even with unlimited training data. Additionally, we identify when learning is possible and introduce optimal algorithms with verification that overcome issues in standard methods. These results pave the way for a sharp classification theory of data-driven dynamical systems based on how many limits are needed to solve a problem. These limits characterize all previous methods, presenting a unified view. Our framework systematically determines when and how Koopman spectral properties can be learned.
WISA: World Simulator Assistant for Physics-Aware Text-to-Video Generation
Recent rapid advancements in text-to-video (T2V) generation, such as SoRA and Kling, have shown great potential for building world simulators. However, current T2V models struggle to grasp abstract physical principles and generate videos that adhere to physical laws. This challenge arises primarily from a lack of clear guidance on physical information due to a significant gap between abstract physical principles and generation models. To this end, we introduce the World Simulator Assistant (WISA), an effective framework for decomposing and incorporating physical principles into T2V models. Specifically, WISA decomposes physical principles into textual physical descriptions, qualitative physical categories, and quantitative physical properties. To effectively embed these physical attributes into the generation process, WISA incorporates several key designs, including Mixture-of-Physical-Experts Attention (MoPA) and a Physical Classifier, enhancing the model's physics awareness. Furthermore, most existing datasets feature videos where physical phenomena are either weakly represented or entangled with multiple co-occurring processes, limiting their suitability as dedicated resources for learning explicit physical principles. We propose a novel video dataset, WISA-32K, collected based on qualitative physical categories. It consists of 32,000 videos, representing 17 physical laws across three domains of physics: dynamics, thermodynamics, and optics. Experimental results demonstrate that WISA can effectively enhance the compatibility of T2V models with real-world physical laws, achieving a considerable improvement on the VideoPhy benchmark. The visual exhibitions of WISA and WISA-32K are available in the https://360cvgroup.github.io/WISA/.
EquiNO: A Physics-Informed Neural Operator for Multiscale Simulations
Multiscale problems are ubiquitous in physics. Numerical simulations of such problems by solving partial differential equations (PDEs) at high resolution are computationally too expensive for many-query scenarios, e.g., uncertainty quantification, remeshing applications, topology optimization, and so forth. This limitation has motivated the application of data-driven surrogate models, where the microscale computations are substituted with a surrogate, usually acting as a black-box mapping between macroscale quantities. These models offer significant speedups but struggle with incorporating microscale physical constraints, such as the balance of linear momentum and constitutive models. In this contribution, we propose Equilibrium Neural Operator (EquiNO) as a complementary physics-informed PDE surrogate for predicting microscale physics and compare it with variational physics-informed neural and operator networks. Our framework, applicable to the so-called multiscale FE^{,2}, computations, introduces the FE-OL approach by integrating the finite element (FE) method with operator learning (OL). We apply the proposed FE-OL approach to quasi-static problems of solid mechanics. The results demonstrate that FE-OL can yield accurate solutions even when confronted with a restricted dataset during model development. Our results show that EquiNO achieves speedup factors exceeding 8000-fold compared to traditional methods and offers an optimal balance between data-driven and physics-based strategies.
User-defined Event Sampling and Uncertainty Quantification in Diffusion Models for Physical Dynamical Systems
Diffusion models are a class of probabilistic generative models that have been widely used as a prior for image processing tasks like text conditional generation and inpainting. We demonstrate that these models can be adapted to make predictions and provide uncertainty quantification for chaotic dynamical systems. In these applications, diffusion models can implicitly represent knowledge about outliers and extreme events; however, querying that knowledge through conditional sampling or measuring probabilities is surprisingly difficult. Existing methods for conditional sampling at inference time seek mainly to enforce the constraints, which is insufficient to match the statistics of the distribution or compute the probability of the chosen events. To achieve these ends, optimally one would use the conditional score function, but its computation is typically intractable. In this work, we develop a probabilistic approximation scheme for the conditional score function which provably converges to the true distribution as the noise level decreases. With this scheme we are able to sample conditionally on nonlinear userdefined events at inference time, and matches data statistics even when sampling from the tails of the distribution.
Deep Learning and Foundation Models for Weather Prediction: A Survey
Physics-based numerical models have been the bedrock of atmospheric sciences for decades, offering robust solutions but often at the cost of significant computational resources. Deep learning (DL) models have emerged as powerful tools in meteorology, capable of analyzing complex weather and climate data by learning intricate dependencies and providing rapid predictions once trained. While these models demonstrate promising performance in weather prediction, often surpassing traditional physics-based methods, they still face critical challenges. This paper presents a comprehensive survey of recent deep learning and foundation models for weather prediction. We propose a taxonomy to classify existing models based on their training paradigms: deterministic predictive learning, probabilistic generative learning, and pre-training and fine-tuning. For each paradigm, we delve into the underlying model architectures, address major challenges, offer key insights, and propose targeted directions for future research. Furthermore, we explore real-world applications of these methods and provide a curated summary of open-source code repositories and widely used datasets, aiming to bridge research advancements with practical implementations while fostering open and trustworthy scientific practices in adopting cutting-edge artificial intelligence for weather prediction. The related sources are available at https://github.com/JimengShi/ DL-Foundation-Models-Weather.
Multi-marginal Schrödinger Bridges with Iterative Reference Refinement
Practitioners frequently aim to infer an unobserved population trajectory using sample snapshots at multiple time points. For instance, in single-cell sequencing, scientists would like to learn how gene expression evolves over time. But sequencing any cell destroys that cell. So we cannot access any cell's full trajectory, but we can access snapshot samples from many cells. Stochastic differential equations are commonly used to analyze systems with full individual-trajectory access; since here we have only sample snapshots, these methods are inapplicable. The deep learning community has recently explored using Schr\"odinger bridges (SBs) and their extensions to estimate these dynamics. However, these methods either (1) interpolate between just two time points or (2) require a single fixed reference dynamic within the SB, which is often just set to be Brownian motion. But learning piecewise from adjacent time points can fail to capture long-term dependencies. And practitioners are typically able to specify a model class for the reference dynamic but not the exact values of the parameters within it. So we propose a new method that (1) learns the unobserved trajectories from sample snapshots across multiple time points and (2) requires specification only of a class of reference dynamics, not a single fixed one. In particular, we suggest an iterative projection method inspired by Schr\"odinger bridges; we alternate between learning a piecewise SB on the unobserved trajectories and using the learned SB to refine our best guess for the dynamics within the reference class. We demonstrate the advantages of our method via a well-known simulated parametric model from ecology, simulated and real data from systems biology, and real motion-capture data.
Dynamic-Resolution Model Learning for Object Pile Manipulation
Dynamics models learned from visual observations have shown to be effective in various robotic manipulation tasks. One of the key questions for learning such dynamics models is what scene representation to use. Prior works typically assume representation at a fixed dimension or resolution, which may be inefficient for simple tasks and ineffective for more complicated tasks. In this work, we investigate how to learn dynamic and adaptive representations at different levels of abstraction to achieve the optimal trade-off between efficiency and effectiveness. Specifically, we construct dynamic-resolution particle representations of the environment and learn a unified dynamics model using graph neural networks (GNNs) that allows continuous selection of the abstraction level. During test time, the agent can adaptively determine the optimal resolution at each model-predictive control (MPC) step. We evaluate our method in object pile manipulation, a task we commonly encounter in cooking, agriculture, manufacturing, and pharmaceutical applications. Through comprehensive evaluations both in the simulation and the real world, we show that our method achieves significantly better performance than state-of-the-art fixed-resolution baselines at the gathering, sorting, and redistribution of granular object piles made with various instances like coffee beans, almonds, corn, etc.
Neural Context Flows for Meta-Learning of Dynamical Systems
Neural Ordinary Differential Equations (NODEs) often struggle to adapt to new dynamic behaviors caused by parameter changes in the underlying physical system, even when these dynamics are similar to previously observed behaviors. This problem becomes more challenging when the changing parameters are unobserved, meaning their value or influence cannot be directly measured when collecting data. To address this issue, we introduce Neural Context Flow (NCF), a robust and interpretable Meta-Learning framework that includes uncertainty estimation. NCF uses Taylor expansion to enable contextual self-modulation, allowing context vectors to influence dynamics from other domains while also modulating themselves. After establishing theoretical guarantees, we empirically test NCF and compare it to related adaptation methods. Our results show that NCF achieves state-of-the-art Out-of-Distribution performance on 5 out of 6 linear and non-linear benchmark problems. Through extensive experiments, we explore the flexible model architecture of NCF and the encoded representations within the learned context vectors. Our findings highlight the potential implications of NCF for foundational models in the physical sciences, offering a promising approach to improving the adaptability and generalization of NODEs in various scientific applications. Our code is openly available at https://github.com/ddrous/ncflow.
Shaping Laser Pulses with Reinforcement Learning
High Power Laser (HPL) systems operate in the attoseconds regime -- the shortest timescale ever created by humanity. HPL systems are instrumental in high-energy physics, leveraging ultra-short impulse durations to yield extremely high intensities, which are essential for both practical applications and theoretical advancements in light-matter interactions. Traditionally, the parameters regulating HPL optical performance have been manually tuned by human experts, or optimized using black-box methods that can be computationally demanding. Critically, black box methods rely on stationarity assumptions overlooking complex dynamics in high-energy physics and day-to-day changes in real-world experimental settings, and thus need to be often restarted. Deep Reinforcement Learning (DRL) offers a promising alternative by enabling sequential decision making in non-static settings. This work explores the feasibility of applying DRL to HPL systems, extending the current research by (1) learning a control policy relying solely on non-destructive image observations obtained from readily available diagnostic devices, and (2) retaining performance when the underlying dynamics vary. We evaluate our method across various test dynamics, and observe that DRL effectively enables cross-domain adaptability, coping with dynamics' fluctuations while achieving 90\% of the target intensity in test environments.
Multimarginal generative modeling with stochastic interpolants
Given a set of K probability densities, we consider the multimarginal generative modeling problem of learning a joint distribution that recovers these densities as marginals. The structure of this joint distribution should identify multi-way correspondences among the prescribed marginals. We formalize an approach to this task within a generalization of the stochastic interpolant framework, leading to efficient learning algorithms built upon dynamical transport of measure. Our generative models are defined by velocity and score fields that can be characterized as the minimizers of simple quadratic objectives, and they are defined on a simplex that generalizes the time variable in the usual dynamical transport framework. The resulting transport on the simplex is influenced by all marginals, and we show that multi-way correspondences can be extracted. The identification of such correspondences has applications to style transfer, algorithmic fairness, and data decorruption. In addition, the multimarginal perspective enables an efficient algorithm for reducing the dynamical transport cost in the ordinary two-marginal setting. We demonstrate these capacities with several numerical examples.
ReinDiffuse: Crafting Physically Plausible Motions with Reinforced Diffusion Model
Generating human motion from textual descriptions is a challenging task. Existing methods either struggle with physical credibility or are limited by the complexities of physics simulations. In this paper, we present ReinDiffuse that combines reinforcement learning with motion diffusion model to generate physically credible human motions that align with textual descriptions. Our method adapts Motion Diffusion Model to output a parameterized distribution of actions, making them compatible with reinforcement learning paradigms. We employ reinforcement learning with the objective of maximizing physically plausible rewards to optimize motion generation for physical fidelity. Our approach outperforms existing state-of-the-art models on two major datasets, HumanML3D and KIT-ML, achieving significant improvements in physical plausibility and motion quality. Project: https://reindiffuse.github.io/
Modeling transport in weakly collisional plasmas using thermodynamic forcing
How momentum, energy, and magnetic fields are transported in the presence of macroscopic gradients is a fundamental question in plasma physics. Answering this question is especially challenging for weakly collisional, magnetized plasmas, where macroscopic gradients influence the plasma's microphysical structure. In this paper, we introduce thermodynamic forcing, a new method for systematically modeling how macroscopic gradients in magnetized or unmagnetized plasmas shape the distribution functions of constituent particles. In this method, we propose to apply an anomalous force to those particles inducing the anisotropy that would naturally emerge due to macroscopic gradients in weakly collisional plasmas. We implement thermodynamic forcing in particle-in-cell (TF-PIC) simulations using a modified Vay particle pusher and validate it against analytic solutions of the equations of motion. We then carry out a series of simulations of electron-proton plasmas with periodic boundary conditions using TF-PIC. First, we confirm that the properties of two electron-scale kinetic instabilities -- one driven by a temperature gradient and the other by pressure anisotropy -- are consistent with previous results. Then, we demonstrate that in the presence of multiple macroscopic gradients, the saturated state can differ significantly from current expectations. This work enables, for the first time, systematic and self-consistent transport modeling in weakly collisional plasmas, with broad applications in astrophysics, laser-plasma physics, and inertial confinement fusion.
Latent Traversals in Generative Models as Potential Flows
Despite the significant recent progress in deep generative models, the underlying structure of their latent spaces is still poorly understood, thereby making the task of performing semantically meaningful latent traversals an open research challenge. Most prior work has aimed to solve this challenge by modeling latent structures linearly, and finding corresponding linear directions which result in `disentangled' generations. In this work, we instead propose to model latent structures with a learned dynamic potential landscape, thereby performing latent traversals as the flow of samples down the landscape's gradient. Inspired by physics, optimal transport, and neuroscience, these potential landscapes are learned as physically realistic partial differential equations, thereby allowing them to flexibly vary over both space and time. To achieve disentanglement, multiple potentials are learned simultaneously, and are constrained by a classifier to be distinct and semantically self-consistent. Experimentally, we demonstrate that our method achieves both more qualitatively and quantitatively disentangled trajectories than state-of-the-art baselines. Further, we demonstrate that our method can be integrated as a regularization term during training, thereby acting as an inductive bias towards the learning of structured representations, ultimately improving model likelihood on similarly structured data.
Learning Dynamical Demand Response Model in Real-Time Pricing Program
Price responsiveness is a major feature of end use customers (EUCs) that participate in demand response (DR) programs, and has been conventionally modeled with static demand functions, which take the electricity price as the input and the aggregate energy consumption as the output. This, however, neglects the inherent temporal correlation of the EUC behaviors, and may result in large errors when predicting the actual responses of EUCs in real-time pricing (RTP) programs. In this paper, we propose a dynamical DR model so as to capture the temporal behavior of the EUCs. The states in the proposed dynamical DR model can be explicitly chosen, in which case the model can be represented by a linear function or a multi-layer feedforward neural network, or implicitly chosen, in which case the model can be represented by a recurrent neural network or a long short-term memory unit network. In both cases, the dynamical DR model can be learned from historical price and energy consumption data. Numerical simulation illustrated how the states are chosen and also showed the proposed dynamical DR model significantly outperforms the static ones.
Self-Correcting Self-Consuming Loops for Generative Model Training
As synthetic data becomes higher quality and proliferates on the internet, machine learning models are increasingly trained on a mix of human- and machine-generated data. Despite the successful stories of using synthetic data for representation learning, using synthetic data for generative model training creates "self-consuming loops" which may lead to training instability or even collapse, unless certain conditions are met. Our paper aims to stabilize self-consuming generative model training. Our theoretical results demonstrate that by introducing an idealized correction function, which maps a data point to be more likely under the true data distribution, self-consuming loops can be made exponentially more stable. We then propose self-correction functions, which rely on expert knowledge (e.g. the laws of physics programmed in a simulator), and aim to approximate the idealized corrector automatically and at scale. We empirically validate the effectiveness of self-correcting self-consuming loops on the challenging human motion synthesis task, and observe that it successfully avoids model collapse, even when the ratio of synthetic data to real data is as high as 100%.
Generative Latent Space Dynamics of Electron Density
Modeling the time-dependent evolution of electron density is essential for understanding quantum mechanical behaviors of condensed matter and enabling predictive simulations in spectroscopy, photochemistry, and ultrafast science. Yet, while machine learning methods have advanced static density prediction, modeling its spatiotemporal dynamics remains largely unexplored. In this work, we introduce a generative framework that combines a 3D convolutional autoencoder with a latent diffusion model (LDM) to learn electron density trajectories from ab-initio molecular dynamics (AIMD) simulations. Our method encodes electron densities into a compact latent space and predicts their future states by sampling from the learned conditional distribution, enabling stable long-horizon rollouts without drift or collapse. To preserve statistical fidelity, we incorporate a scaled Jensen-Shannon divergence regularization that aligns generated and reference density distributions. On AIMD trajectories of liquid lithium at 800 K, our model accurately captures both the spatial correlations and the log-normal-like statistical structure of the density. The proposed framework has the potential to accelerate the simulation of quantum dynamics and overcome key challenges faced by current spatiotemporal machine learning methods as surrogates of quantum mechanical simulators.
WSM: Decay-Free Learning Rate Schedule via Checkpoint Merging for LLM Pre-training
Recent advances in learning rate (LR) scheduling have demonstrated the effectiveness of decay-free approaches that eliminate the traditional decay phase while maintaining competitive performance. Model merging techniques have emerged as particularly promising solutions in this domain. We present Warmup-Stable and Merge (WSM), a general framework that establishes a formal connection between learning rate decay and model merging. WSM provides a unified theoretical foundation for emulating various decay strategies-including cosine decay, linear decay and inverse square root decay-as principled model averaging schemes, while remaining fully compatible with diverse optimization methods. Through extensive experiments, we identify merge duration-the training window for checkpoint aggregation-as the most critical factor influencing model performance, surpassing the importance of both checkpoint interval and merge quantity. Our framework consistently outperforms the widely-adopted Warmup-Stable-Decay (WSD) approach across multiple benchmarks, achieving significant improvements of +3.5% on MATH, +2.9% on HumanEval, and +5.5% on MMLU-Pro. The performance advantages extend to supervised fine-tuning scenarios, highlighting WSM's potential for long-term model refinement.
The discrete generalized exchange-driven system
We study a discrete model for generalized exchange-driven growth in which the particle exchanged between two clusters is not limited to be of size one. This set of models include as special cases the usual exchange-driven growth system and the coagulation-fragmentation system with binary fragmentation. Under reasonable general condition on the rate coefficients we establish the existence of admissible solutions, meaning solutions that are obtained as appropriate limit of solutions to a finite-dimensional truncation of the infinite-dimensional ODE. For these solutions we prove that, in the class of models we call isolated both the total number of particles and the total mass are conserved, whereas in those models we can non-isolated only the mass is conserved. Additionally, under more restrictive growth conditions for the rate equations we obtain uniqueness of solutions to the initial value problems.
HyPINO: Multi-Physics Neural Operators via HyperPINNs and the Method of Manufactured Solutions
We present HyPINO, a multi-physics neural operator designed for zero-shot generalization across a broad class of parametric PDEs without requiring task-specific fine-tuning. Our approach combines a Swin Transformer-based hypernetwork with mixed supervision: (i) labeled data from analytical solutions generated via the Method of Manufactured Solutions (MMS), and (ii) unlabeled samples optimized using physics-informed objectives. The model maps PDE parametrizations to target Physics-Informed Neural Networks (PINNs) and can handle linear elliptic, hyperbolic, and parabolic equations in two dimensions with varying source terms, geometries, and mixed Dirichlet/Neumann boundary conditions, including interior boundaries. HyPINO achieves strong zero-shot accuracy on seven benchmark problems from PINN literature, outperforming U-Nets, Poseidon, and Physics-Informed Neural Operators (PINO). Further, we introduce an iterative refinement procedure that compares the physics of the generated PINN to the requested PDE and uses the discrepancy to generate a "delta" PINN. Summing their contributions and repeating this process forms an ensemble whose combined solution progressively reduces the error on six benchmarks and achieves over 100x gain in average L_2 loss in the best case, while retaining forward-only inference. Additionally, we evaluate the fine-tuning behavior of PINNs initialized by HyPINO and show that they converge faster and to lower final error than both randomly initialized and Reptile-meta-learned PINNs on five benchmarks, performing on par on the remaining two. Our results highlight the potential of this scalable approach as a foundation for extending neural operators toward solving increasingly complex, nonlinear, and high-dimensional PDE problems with significantly improved accuracy and reduced computational cost.
Towards Multi-Layered 3D Garments Animation
Mimicking realistic dynamics in 3D garment animations is a challenging task due to the complex nature of multi-layered garments and the variety of outer forces involved. Existing approaches mostly focus on single-layered garments driven by only human bodies and struggle to handle general scenarios. In this paper, we propose a novel data-driven method, called LayersNet, to model garment-level animations as particle-wise interactions in a micro physics system. We improve simulation efficiency by representing garments as patch-level particles in a two-level structural hierarchy. Moreover, we introduce a novel Rotation Equivalent Transformation that leverages the rotation invariance and additivity of physics systems to better model outer forces. To verify the effectiveness of our approach and bridge the gap between experimental environments and real-world scenarios, we introduce a new challenging dataset, D-LAYERS, containing 700K frames of dynamics of 4,900 different combinations of multi-layered garments driven by both human bodies and randomly sampled wind. Our experiments show that LayersNet achieves superior performance both quantitatively and qualitatively. We will make the dataset and code publicly available at https://mmlab-ntu.github.io/project/layersnet/index.html .
Random Grid Neural Processes for Parametric Partial Differential Equations
We introduce a new class of spatially stochastic physics and data informed deep latent models for parametric partial differential equations (PDEs) which operate through scalable variational neural processes. We achieve this by assigning probability measures to the spatial domain, which allows us to treat collocation grids probabilistically as random variables to be marginalised out. Adapting this spatial statistics view, we solve forward and inverse problems for parametric PDEs in a way that leads to the construction of Gaussian process models of solution fields. The implementation of these random grids poses a unique set of challenges for inverse physics informed deep learning frameworks and we propose a new architecture called Grid Invariant Convolutional Networks (GICNets) to overcome these challenges. We further show how to incorporate noisy data in a principled manner into our physics informed model to improve predictions for problems where data may be available but whose measurement location does not coincide with any fixed mesh or grid. The proposed method is tested on a nonlinear Poisson problem, Burgers equation, and Navier-Stokes equations, and we provide extensive numerical comparisons. We demonstrate significant computational advantages over current physics informed neural learning methods for parametric PDEs while improving the predictive capabilities and flexibility of these models.
Classical Glasses, Black Holes, and Strange Quantum Liquids
From the dynamics of a broad class of classical mean-field glass models one may obtain a quantum model with finite zero-temperature entropy, a quantum transition at zero temperature, and a time-reparametrization (quasi-)invariance in the dynamical equations for correlations. The low eigenvalue spectrum of the resulting quantum model is directly related to the structure and exploration of metastable states in the landscape of the original classical glass model. This mapping reveals deep connections between classical glasses and the properties of SYK-like models.
Roto-translated Local Coordinate Frames For Interacting Dynamical Systems
Modelling interactions is critical in learning complex dynamical systems, namely systems of interacting objects with highly non-linear and time-dependent behaviour. A large class of such systems can be formalized as geometric graphs, i.e., graphs with nodes positioned in the Euclidean space given an arbitrarily chosen global coordinate system, for instance vehicles in a traffic scene. Notwithstanding the arbitrary global coordinate system, the governing dynamics of the respective dynamical systems are invariant to rotations and translations, also known as Galilean invariance. As ignoring these invariances leads to worse generalization, in this work we propose local coordinate frames per node-object to induce roto-translation invariance to the geometric graph of the interacting dynamical system. Further, the local coordinate frames allow for a natural definition of anisotropic filtering in graph neural networks. Experiments in traffic scenes, 3D motion capture, and colliding particles demonstrate that the proposed approach comfortably outperforms the recent state-of-the-art.
Dynamical Model of J/Ψ photo-production on the nucleon
A dynamical model based on a phenomenological charm quark-nucleon(c-N) potential v_{cN} and the Pomeron-exchange mechanism is constructed to investigate the J/Psi photo-production on the nucleon from threshold to invariant mass W=300 GeV. The J/Psi-N potential,V_{J/Psi N}(r),is constructed by folding v_{cN} into the wavefunction Phi_{J/Psi}(cc) of J/Psi within a Constituent Quark Model(CQM) of Ref.[43]. A photo-production amplitude is also generated by v_{cN} by a cc-loop integration over the gammarightarrow cc vertex function and Phi_{J/Psi}(cc). No commonly used Vector Meson Dominance assumption is used to define this photo-production amplitude which is needed to describe the data near the threshold. The potential v_{cN}(r) is parameterized in a form such that the predicted V_{J/Psi N}(r) at large distances has the same Yukawa potential form extracted from a Lattice QCD(LQCD) calculation of Ref.[18]. The parameters of v_{cN} are determined by fitting the total cross section data of JLab by performing calculations that include J/Psi-N final state interactions(FSI). The resulting differential cross sections are found in good agreements with the data. It is shown that the FSI effects dominate the cross section in the very near threshold region, allowing for sensitive testing of the predicted J/Psi-N scattering amplitudes. By imposing the constraints of J/Psi-N potential extracted from the LQCD calculation, we have obtained three J/Psi-N potentials which fit the JLab data equally well. The resulting J/Psi-N scattering lengths are in the range of a=(-0.05 fm sim -0.25 fm). With the determined v_{cN}(r) and the wavefunctions generated from the same CQM, the constructed model is used to predict the cross sections of photo-production of eta_c(1S) and Psi(2S) mesons for future experimental tests.
MultiAdam: Parameter-wise Scale-invariant Optimizer for Multiscale Training of Physics-informed Neural Networks
Physics-informed Neural Networks (PINNs) have recently achieved remarkable progress in solving Partial Differential Equations (PDEs) in various fields by minimizing a weighted sum of PDE loss and boundary loss. However, there are several critical challenges in the training of PINNs, including the lack of theoretical frameworks and the imbalance between PDE loss and boundary loss. In this paper, we present an analysis of second-order non-homogeneous PDEs, which are classified into three categories and applicable to various common problems. We also characterize the connections between the training loss and actual error, guaranteeing convergence under mild conditions. The theoretical analysis inspires us to further propose MultiAdam, a scale-invariant optimizer that leverages gradient momentum to parameter-wisely balance the loss terms. Extensive experiment results on multiple problems from different physical domains demonstrate that our MultiAdam solver can improve the predictive accuracy by 1-2 orders of magnitude compared with strong baselines.
ConFIG: Towards Conflict-free Training of Physics Informed Neural Networks
The loss functions of many learning problems contain multiple additive terms that can disagree and yield conflicting update directions. For Physics-Informed Neural Networks (PINNs), loss terms on initial/boundary conditions and physics equations are particularly interesting as they are well-established as highly difficult tasks. To improve learning the challenging multi-objective task posed by PINNs, we propose the ConFIG method, which provides conflict-free updates by ensuring a positive dot product between the final update and each loss-specific gradient. It also maintains consistent optimization rates for all loss terms and dynamically adjusts gradient magnitudes based on conflict levels. We additionally leverage momentum to accelerate optimizations by alternating the back-propagation of different loss terms. We provide a mathematical proof showing the convergence of the ConFIG method, and it is evaluated across a range of challenging PINN scenarios. ConFIG consistently shows superior performance and runtime compared to baseline methods. We also test the proposed method in a classic multi-task benchmark, where the ConFIG method likewise exhibits a highly promising performance. Source code is available at https://tum-pbs.github.io/ConFIG
Physical Autoregressive Model for Robotic Manipulation without Action Pretraining
The scarcity of manipulation data has motivated the use of pretrained large models from other modalities in robotics. In this work, we build upon autoregressive video generation models to propose a Physical Autoregressive Model (PAR), where physical tokens combine frames and actions to represent the joint evolution of the robot and its environment. PAR leverages the world knowledge embedded in video pretraining to understand physical dynamics without requiring action pretraining, enabling accurate video prediction and consistent action trajectories. It also adopts a DiT-based de-tokenizer to model frames and actions as continuous tokens, mitigating quantization errors and facilitating mutual enhancement. Furthermore, we incorporate a causal mask with inverse kinematics, parallel training, and the KV-cache mechanism to further improve performance and efficiency. Experiments on the ManiSkill benchmark show that PAR achieves a 100\% success rate on the PushCube task, matches the performance of action-pretrained baselines on other tasks, and accurately predicts future videos with tightly aligned action trajectories. These findings underscore a promising direction for robotic manipulation by transferring world knowledge from autoregressive video pretraining. The project page is here: https://hcplab-sysu.github.io/PhysicalAutoregressiveModel/
Foundation Inference Models for Markov Jump Processes
Markov jump processes are continuous-time stochastic processes which describe dynamical systems evolving in discrete state spaces. These processes find wide application in the natural sciences and machine learning, but their inference is known to be far from trivial. In this work we introduce a methodology for zero-shot inference of Markov jump processes (MJPs), on bounded state spaces, from noisy and sparse observations, which consists of two components. First, a broad probability distribution over families of MJPs, as well as over possible observation times and noise mechanisms, with which we simulate a synthetic dataset of hidden MJPs and their noisy observation process. Second, a neural network model that processes subsets of the simulated observations, and that is trained to output the initial condition and rate matrix of the target MJP in a supervised way. We empirically demonstrate that one and the same (pretrained) model can infer, in a zero-shot fashion, hidden MJPs evolving in state spaces of different dimensionalities. Specifically, we infer MJPs which describe (i) discrete flashing ratchet systems, which are a type of Brownian motors, and the conformational dynamics in (ii) molecular simulations, (iii) experimental ion channel data and (iv) simple protein folding models. What is more, we show that our model performs on par with state-of-the-art models which are finetuned to the target datasets.
A foundation model for atomistic materials chemistry
Machine-learned force fields have transformed the atomistic modelling of materials by enabling simulations of ab initio quality on unprecedented time and length scales. However, they are currently limited by: (i) the significant computational and human effort that must go into development and validation of potentials for each particular system of interest; and (ii) a general lack of transferability from one chemical system to the next. Here, using the state-of-the-art MACE architecture we introduce a single general-purpose ML model, trained on a public database of 150k inorganic crystals, that is capable of running stable molecular dynamics on molecules and materials. We demonstrate the power of the MACE-MP-0 model -- and its qualitative and at times quantitative accuracy -- on a diverse set problems in the physical sciences, including the properties of solids, liquids, gases, and chemical reactions. The model can be applied out of the box and as a starting or "foundation model" for any atomistic system of interest and is thus a step towards democratising the revolution of ML force fields by lowering the barriers to entry.
Improving thermal state preparation of Sachdev-Ye-Kitaev model with reinforcement learning on quantum hardware
The Sachdev-Ye-Kitaev (SYK) model, known for its strong quantum correlations and chaotic behavior, serves as a key platform for quantum gravity studies. However, variationally preparing thermal states on near-term quantum processors for large systems (N>12, where N is the number of Majorana fermions) presents a significant challenge due to the rapid growth in the complexity of parameterized quantum circuits. This paper addresses this challenge by integrating reinforcement learning (RL) with convolutional neural networks, employing an iterative approach to optimize the quantum circuit and its parameters. The refinement process is guided by a composite reward signal derived from entropy and the expectation values of the SYK Hamiltonian. This approach reduces the number of CNOT gates by two orders of magnitude for systems Ngeq12 compared to traditional methods like first-order Trotterization. We demonstrate the effectiveness of the RL framework in both noiseless and noisy quantum hardware environments, maintaining high accuracy in thermal state preparation. This work advances a scalable, RL-based framework with applications for quantum gravity studies and out-of-time-ordered thermal correlators computation in quantum many-body systems on near-term quantum hardware. The code is available at https://github.com/Aqasch/solving_SYK_model_with_RL.
DropletVideo: A Dataset and Approach to Explore Integral Spatio-Temporal Consistent Video Generation
Spatio-temporal consistency is a critical research topic in video generation. A qualified generated video segment must ensure plot plausibility and coherence while maintaining visual consistency of objects and scenes across varying viewpoints. Prior research, especially in open-source projects, primarily focuses on either temporal or spatial consistency, or their basic combination, such as appending a description of a camera movement after a prompt without constraining the outcomes of this movement. However, camera movement may introduce new objects to the scene or eliminate existing ones, thereby overlaying and affecting the preceding narrative. Especially in videos with numerous camera movements, the interplay between multiple plots becomes increasingly complex. This paper introduces and examines integral spatio-temporal consistency, considering the synergy between plot progression and camera techniques, and the long-term impact of prior content on subsequent generation. Our research encompasses dataset construction through to the development of the model. Initially, we constructed a DropletVideo-10M dataset, which comprises 10 million videos featuring dynamic camera motion and object actions. Each video is annotated with an average caption of 206 words, detailing various camera movements and plot developments. Following this, we developed and trained the DropletVideo model, which excels in preserving spatio-temporal coherence during video generation. The DropletVideo dataset and model are accessible at https://dropletx.github.io.
HMC with Normalizing Flows
We propose using Normalizing Flows as a trainable kernel within the molecular dynamics update of Hamiltonian Monte Carlo (HMC). By learning (invertible) transformations that simplify our dynamics, we can outperform traditional methods at generating independent configurations. We show that, using a carefully constructed network architecture, our approach can be easily scaled to large lattice volumes with minimal retraining effort. The source code for our implementation is publicly available online at https://github.com/nftqcd/fthmc.
An SIDM simulation of the merging cluster El Gordo and its tension between the post collision DM density profiles and weak lensing constraints
We review recent findings from a detailed simulation study of the merging cluster El Gordo and present new results inferred from weak lensing data. We found that the observed spatial offsets between the different mass components are well reproduced in merging simulations that include self-interacting dark matter (DM), with an elastic cross-section per unit mass of approximately \sigma_DM/m_X ~ 4 -5 cm^2/gr. Moreover, a relative line-of-sight peculiar velocity on the order of several hundred km/s is found between the two stellar components of the colliding subclusters. These findings strongly suggest the possibility that, in a very energetic cluster collision, DM could possess collisional properties. However, the self-interacting DM merger model presented here is not without difficulties. The values found for \sigma_DM/m_X being in conflict with the current upper bounds on cluster scales. As a solution to this tension we argue that in major cluster mergers the physical modeling of DM interactions, based on the scattering of DM particles, should be considered too simplistic. Additionally, the DM halos of the post-collision clusters have cored density profiles with core radii r_c ~ 300 kpc. Consequently, the associated reduced tangential shear lensing profiles consistently tend to zero at angles \theta <~ 40^{''}. This result is inconsistent with what is deduced from the measured profiles. These profiles exhibit a diverging behavior when \theta --> 0, as predicted by an NFW mass model. We argue that such contradictions cannot be easily reconciled within the DM models presented so far as an alternative to the collisionless paradigm. However, we suggest that this tension can be used as a unique test bed to probe new DM physics.
