Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeKandinsky: an Improved Text-to-Image Synthesis with Image Prior and Latent Diffusion
Text-to-image generation is a significant domain in modern computer vision and has achieved substantial improvements through the evolution of generative architectures. Among these, there are diffusion-based models that have demonstrated essential quality enhancements. These models are generally split into two categories: pixel-level and latent-level approaches. We present Kandinsky1, a novel exploration of latent diffusion architecture, combining the principles of the image prior models with latent diffusion techniques. The image prior model is trained separately to map text embeddings to image embeddings of CLIP. Another distinct feature of the proposed model is the modified MoVQ implementation, which serves as the image autoencoder component. Overall, the designed model contains 3.3B parameters. We also deployed a user-friendly demo system that supports diverse generative modes such as text-to-image generation, image fusion, text and image fusion, image variations generation, and text-guided inpainting/outpainting. Additionally, we released the source code and checkpoints for the Kandinsky models. Experimental evaluations demonstrate a FID score of 8.03 on the COCO-30K dataset, marking our model as the top open-source performer in terms of measurable image generation quality.
Towards Fast and Scalable Normal Integration using Continuous Components
Surface normal integration is a fundamental problem in computer vision, dealing with the objective of reconstructing a surface from its corresponding normal map. Existing approaches require an iterative global optimization to jointly estimate the depth of each pixel, which scales poorly to larger normal maps. In this paper, we address this problem by recasting normal integration as the estimation of relative scales of continuous components. By constraining pixels belonging to the same component to jointly vary their scale, we drastically reduce the number of optimization variables. Our framework includes a heuristic to accurately estimate continuous components from the start, a strategy to rebalance optimization terms, and a technique to iteratively merge components to further reduce the size of the problem. Our method achieves state-of-the-art results on the standard normal integration benchmark in as little as a few seconds and achieves one-order-of-magnitude speedup over pixel-level approaches on large-resolution normal maps.
VideoGLaMM: A Large Multimodal Model for Pixel-Level Visual Grounding in Videos
Fine-grained alignment between videos and text is challenging due to complex spatial and temporal dynamics in videos. Existing video-based Large Multimodal Models (LMMs) handle basic conversations but struggle with precise pixel-level grounding in videos. To address this, we introduce VideoGLaMM, a LMM designed for fine-grained pixel-level grounding in videos based on user-provided textual inputs. Our design seamlessly connects three key components: a Large Language Model, a dual vision encoder that emphasizes both spatial and temporal details, and a spatio-temporal decoder for accurate mask generation. This connection is facilitated via tunable V-L and L-V adapters that enable close Vision-Language (VL) alignment. The architecture is trained to synchronize both spatial and temporal elements of video content with textual instructions. To enable fine-grained grounding, we curate a multimodal dataset featuring detailed visually-grounded conversations using a semiautomatic annotation pipeline, resulting in a diverse set of 38k video-QA triplets along with 83k objects and 671k masks. We evaluate VideoGLaMM on three challenging tasks: Grounded Conversation Generation, Visual Grounding, and Referring Video Segmentation. Experimental results show that our model consistently outperforms existing approaches across all three tasks.
PixFoundation: Are We Heading in the Right Direction with Pixel-level Vision Foundation Models?
Multiple works have emerged to push the boundaries on multi-modal large language models (MLLMs) towards pixel-level understanding. Such approaches have shown strong performance on benchmarks for referring expression segmentation and grounded conversation generation. The current trend in pixel-level MLLMs is to train with pixel-level grounding supervision on large-scale labelled data. However, we show that such MLLMs when evaluated on recent challenging vision centric benchmarks, exhibit a weak ability in visual question answering. Surprisingly, some of these methods even downgrade the grounding ability of MLLMs that were never trained with such supervision. In this work, we propose two novel challenging benchmarks and show that MLLMs without pixel-level grounding supervision can outperform the state of the art in such tasks when evaluating both the pixel-level grounding and visual question answering. We propose simple baselines to extract the grounding information that can be plugged into any MLLM, which we call as PixFoundation. More importantly, we study the research question of "When does grounding emerge in MLLMs that are not trained with pixel-level grounding supervision?" We show that grounding can coincide with object parts or location/appearance information. Code repository is at https://github.com/MSiam/PixFoundation/.
GRIN: Zero-Shot Metric Depth with Pixel-Level Diffusion
3D reconstruction from a single image is a long-standing problem in computer vision. Learning-based methods address its inherent scale ambiguity by leveraging increasingly large labeled and unlabeled datasets, to produce geometric priors capable of generating accurate predictions across domains. As a result, state of the art approaches show impressive performance in zero-shot relative and metric depth estimation. Recently, diffusion models have exhibited remarkable scalability and generalizable properties in their learned representations. However, because these models repurpose tools originally designed for image generation, they can only operate on dense ground-truth, which is not available for most depth labels, especially in real-world settings. In this paper we present GRIN, an efficient diffusion model designed to ingest sparse unstructured training data. We use image features with 3D geometric positional encodings to condition the diffusion process both globally and locally, generating depth predictions at a pixel-level. With comprehensive experiments across eight indoor and outdoor datasets, we show that GRIN establishes a new state of the art in zero-shot metric monocular depth estimation even when trained from scratch.
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning
Contrastive learning methods for unsupervised visual representation learning have reached remarkable levels of transfer performance. We argue that the power of contrastive learning has yet to be fully unleashed, as current methods are trained only on instance-level pretext tasks, leading to representations that may be sub-optimal for downstream tasks requiring dense pixel predictions. In this paper, we introduce pixel-level pretext tasks for learning dense feature representations. The first task directly applies contrastive learning at the pixel level. We additionally propose a pixel-to-propagation consistency task that produces better results, even surpassing the state-of-the-art approaches by a large margin. Specifically, it achieves 60.2 AP, 41.4 / 40.5 mAP and 77.2 mIoU when transferred to Pascal VOC object detection (C4), COCO object detection (FPN / C4) and Cityscapes semantic segmentation using a ResNet-50 backbone network, which are 2.6 AP, 0.8 / 1.0 mAP and 1.0 mIoU better than the previous best methods built on instance-level contrastive learning. Moreover, the pixel-level pretext tasks are found to be effective for pre-training not only regular backbone networks but also head networks used for dense downstream tasks, and are complementary to instance-level contrastive methods. These results demonstrate the strong potential of defining pretext tasks at the pixel level, and suggest a new path forward in unsupervised visual representation learning. Code is available at https://github.com/zdaxie/PixPro.
A Survey on Future Frame Synthesis: Bridging Deterministic and Generative Approaches
Future Frame Synthesis (FFS), the task of generating subsequent video frames from context, represents a core challenge in machine intelligence and a cornerstone for developing predictive world models. This survey provides a comprehensive analysis of the FFS landscape, charting its critical evolution from deterministic algorithms focused on pixel-level accuracy to modern generative paradigms that prioritize semantic coherence and dynamic plausibility. We introduce a novel taxonomy organized by algorithmic stochasticity, which not only categorizes existing methods but also reveals the fundamental drivers--advances in architectures, datasets, and computational scale--behind this paradigm shift. Critically, our analysis identifies a bifurcation in the field's trajectory: one path toward efficient, real-time prediction, and another toward large-scale, generative world simulation. By pinpointing key challenges and proposing concrete research questions for both frontiers, this survey serves as an essential guide for researchers aiming to advance the frontiers of visual dynamic modeling.
Closed-Loop Visuomotor Control with Generative Expectation for Robotic Manipulation
Despite significant progress in robotics and embodied AI in recent years, deploying robots for long-horizon tasks remains a great challenge. Majority of prior arts adhere to an open-loop philosophy and lack real-time feedback, leading to error accumulation and undesirable robustness. A handful of approaches have endeavored to establish feedback mechanisms leveraging pixel-level differences or pre-trained visual representations, yet their efficacy and adaptability have been found to be constrained. Inspired by classic closed-loop control systems, we propose CLOVER, a closed-loop visuomotor control framework that incorporates feedback mechanisms to improve adaptive robotic control. CLOVER consists of a text-conditioned video diffusion model for generating visual plans as reference inputs, a measurable embedding space for accurate error quantification, and a feedback-driven controller that refines actions from feedback and initiates replans as needed. Our framework exhibits notable advancement in real-world robotic tasks and achieves state-of-the-art on CALVIN benchmark, improving by 8% over previous open-loop counterparts. Code and checkpoints are maintained at https://github.com/OpenDriveLab/CLOVER.
Relax Image-Specific Prompt Requirement in SAM: A Single Generic Prompt for Segmenting Camouflaged Objects
Camouflaged object detection (COD) approaches heavily rely on pixel-level annotated datasets. Weakly-supervised COD (WSCOD) approaches use sparse annotations like scribbles or points to reduce annotation effort, but this can lead to decreased accuracy. The Segment Anything Model (SAM) shows remarkable segmentation ability with sparse prompts like points. However, manual prompt is not always feasible, as it may not be accessible in real-world application. Additionally, it only provides localization information instead of semantic one, which can intrinsically cause ambiguity in interpreting the targets. In this work, we aim to eliminate the need for manual prompt. The key idea is to employ Cross-modal Chains of Thought Prompting (CCTP) to reason visual prompts using the semantic information given by a generic text prompt. To that end, we introduce a test-time adaptation per-instance mechanism called Generalizable SAM (GenSAM) to automatically enerate and optimize visual prompts the generic task prompt for WSCOD. In particular, CCTP maps a single generic text prompt onto image-specific consensus foreground and background heatmaps using vision-language models, acquiring reliable visual prompts. Moreover, to test-time adapt the visual prompts, we further propose Progressive Mask Generation (PMG) to iteratively reweight the input image, guiding the model to focus on the targets in a coarse-to-fine manner. Crucially, all network parameters are fixed, avoiding the need for additional training. Experiments demonstrate the superiority of GenSAM. Experiments on three benchmarks demonstrate that GenSAM outperforms point supervision approaches and achieves comparable results to scribble supervision ones, solely relying on general task descriptions as prompts. our codes is in: https://lwpyh.github.io/GenSAM/.
DeH4R: A Decoupled and Hybrid Method for Road Network Graph Extraction
The automated extraction of complete and precise road network graphs from remote sensing imagery remains a critical challenge in geospatial computer vision. Segmentation-based approaches, while effective in pixel-level recognition, struggle to maintain topology fidelity after vectorization postprocessing. Graph-growing methods build more topologically faithful graphs but suffer from computationally prohibitive iterative ROI cropping. Graph-generating methods first predict global static candidate road network vertices, and then infer possible edges between vertices. They achieve fast topology-aware inference, but limits the dynamic insertion of vertices. To address these challenges, we propose DeH4R, a novel hybrid model that combines graph-generating efficiency and graph-growing dynamics. This is achieved by decoupling the task into candidate vertex detection, adjacent vertex prediction, initial graph contruction, and graph expansion. This architectural innovation enables dynamic vertex (edge) insertions while retaining fast inference speed and enhancing both topology fidelity and spatial consistency. Comprehensive evaluations on CityScale and SpaceNet benchmarks demonstrate state-of-the-art (SOTA) performance. DeH4R outperforms the prior SOTA graph-growing method RNGDet++ by 4.62 APLS and 10.18 IoU on CityScale, while being approximately 10 times faster. The code will be made publicly available at https://github.com/7777777FAN/DeH4R.
What does CLIP know about peeling a banana?
Humans show an innate capability to identify tools to support specific actions. The association between objects parts and the actions they facilitate is usually named affordance. Being able to segment objects parts depending on the tasks they afford is crucial to enable intelligent robots to use objects of daily living. Traditional supervised learning methods for affordance segmentation require costly pixel-level annotations, while weakly supervised approaches, though less demanding, still rely on object-interaction examples and support a closed set of actions. These limitations hinder scalability, may introduce biases, and usually restrict models to a limited set of predefined actions. This paper proposes AffordanceCLIP, to overcome these limitations by leveraging the implicit affordance knowledge embedded within large pre-trained Vision-Language models like CLIP. We experimentally demonstrate that CLIP, although not explicitly trained for affordances detection, retains valuable information for the task. Our AffordanceCLIP achieves competitive zero-shot performance compared to methods with specialized training, while offering several advantages: i) it works with any action prompt, not just a predefined set; ii) it requires training only a small number of additional parameters compared to existing solutions and iii) eliminates the need for direct supervision on action-object pairs, opening new perspectives for functionality-based reasoning of models.
Symmetrical Flow Matching: Unified Image Generation, Segmentation, and Classification with Score-Based Generative Models
Flow Matching has emerged as a powerful framework for learning continuous transformations between distributions, enabling high-fidelity generative modeling. This work introduces Symmetrical Flow Matching (SymmFlow), a new formulation that unifies semantic segmentation, classification, and image generation within a single model. Using a symmetric learning objective, SymmFlow models forward and reverse transformations jointly, ensuring bi-directional consistency, while preserving sufficient entropy for generative diversity. A new training objective is introduced to explicitly retain semantic information across flows, featuring efficient sampling while preserving semantic structure, allowing for one-step segmentation and classification without iterative refinement. Unlike previous approaches that impose strict one-to-one mapping between masks and images, SymmFlow generalizes to flexible conditioning, supporting both pixel-level and image-level class labels. Experimental results on various benchmarks demonstrate that SymmFlow achieves state-of-the-art performance on semantic image synthesis, obtaining FID scores of 11.9 on CelebAMask-HQ and 7.0 on COCO-Stuff with only 25 inference steps. Additionally, it delivers competitive results on semantic segmentation and shows promising capabilities in classification tasks. The code will be publicly available.
Scalp Diagnostic System With Label-Free Segmentation and Training-Free Image Translation
Scalp disorders are highly prevalent worldwide, yet remain underdiagnosed due to limited access to expert evaluation and the high cost of annotation. Although AI-based approaches hold great promise, their practical deployment is hindered by challenges such as severe data imbalance and the absence of pixel-level segmentation labels. To address these issues, we propose ScalpVision, an AI-driven system for the holistic diagnosis of scalp diseases. In ScalpVision, effective hair segmentation is achieved using pseudo image-label pairs and an innovative prompting method in the absence of traditional hair masking labels. Additionally, ScalpVision introduces DiffuseIT-M, a generative model adopted for dataset augmentation while maintaining hair information, facilitating improved predictions of scalp disease severity. Our experimental results affirm ScalpVision's efficiency in diagnosing a variety of scalp conditions, showcasing its potential as a valuable tool in dermatological care. Our code is available at https://github.com/winston1214/ScalpVision.
Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping
Instrumenting and collecting annotated visual grasping datasets to train modern machine learning algorithms can be extremely time-consuming and expensive. An appealing alternative is to use off-the-shelf simulators to render synthetic data for which ground-truth annotations are generated automatically. Unfortunately, models trained purely on simulated data often fail to generalize to the real world. We study how randomized simulated environments and domain adaptation methods can be extended to train a grasping system to grasp novel objects from raw monocular RGB images. We extensively evaluate our approaches with a total of more than 25,000 physical test grasps, studying a range of simulation conditions and domain adaptation methods, including a novel extension of pixel-level domain adaptation that we term the GraspGAN. We show that, by using synthetic data and domain adaptation, we are able to reduce the number of real-world samples needed to achieve a given level of performance by up to 50 times, using only randomly generated simulated objects. We also show that by using only unlabeled real-world data and our GraspGAN methodology, we obtain real-world grasping performance without any real-world labels that is similar to that achieved with 939,777 labeled real-world samples.
Towards Generic Image Manipulation Detection with Weakly-Supervised Self-Consistency Learning
As advanced image manipulation techniques emerge, detecting the manipulation becomes increasingly important. Despite the success of recent learning-based approaches for image manipulation detection, they typically require expensive pixel-level annotations to train, while exhibiting degraded performance when testing on images that are differently manipulated compared with training images. To address these limitations, we propose weakly-supervised image manipulation detection, such that only binary image-level labels (authentic or tampered with) are required for training purpose. Such a weakly-supervised setting can leverage more training images and has the potential to adapt quickly to new manipulation techniques. To improve the generalization ability, we propose weakly-supervised self-consistency learning (WSCL) to leverage the weakly annotated images. Specifically, two consistency properties are learned: multi-source consistency (MSC) and inter-patch consistency (IPC). MSC exploits different content-agnostic information and enables cross-source learning via an online pseudo label generation and refinement process. IPC performs global pair-wise patch-patch relationship reasoning to discover a complete region of manipulation. Extensive experiments validate that our WSCL, even though is weakly supervised, exhibits competitive performance compared with fully-supervised counterpart under both in-distribution and out-of-distribution evaluations, as well as reasonable manipulation localization ability.
Do LLMs Understand Visual Anomalies? Uncovering LLM's Capabilities in Zero-shot Anomaly Detection
Large vision-language models (LVLMs) are markedly proficient in deriving visual representations guided by natural language. Recent explorations have utilized LVLMs to tackle zero-shot visual anomaly detection (VAD) challenges by pairing images with textual descriptions indicative of normal and abnormal conditions, referred to as anomaly prompts. However, existing approaches depend on static anomaly prompts that are prone to cross-semantic ambiguity, and prioritize global image-level representations over crucial local pixel-level image-to-text alignment that is necessary for accurate anomaly localization. In this paper, we present ALFA, a training-free approach designed to address these challenges via a unified model. We propose a run-time prompt adaptation strategy, which first generates informative anomaly prompts to leverage the capabilities of a large language model (LLM). This strategy is enhanced by a contextual scoring mechanism for per-image anomaly prompt adaptation and cross-semantic ambiguity mitigation. We further introduce a novel fine-grained aligner to fuse local pixel-level semantics for precise anomaly localization, by projecting the image-text alignment from global to local semantic spaces. Extensive evaluations on MVTec and VisA datasets confirm ALFA's effectiveness in harnessing the language potential for zero-shot VAD, achieving significant PRO improvements of 12.1% on MVTec and 8.9% on VisA compared to state-of-the-art approaches.
Joint-task Self-supervised Learning for Temporal Correspondence
This paper proposes to learn reliable dense correspondence from videos in a self-supervised manner. Our learning process integrates two highly related tasks: tracking large image regions and establishing fine-grained pixel-level associations between consecutive video frames. We exploit the synergy between both tasks through a shared inter-frame affinity matrix, which simultaneously models transitions between video frames at both the region- and pixel-levels. While region-level localization helps reduce ambiguities in fine-grained matching by narrowing down search regions; fine-grained matching provides bottom-up features to facilitate region-level localization. Our method outperforms the state-of-the-art self-supervised methods on a variety of visual correspondence tasks, including video-object and part-segmentation propagation, keypoint tracking, and object tracking. Our self-supervised method even surpasses the fully-supervised affinity feature representation obtained from a ResNet-18 pre-trained on the ImageNet.
A Multi Camera Unsupervised Domain Adaptation Pipeline for Object Detection in Cultural Sites through Adversarial Learning and Self-Training
Object detection algorithms allow to enable many interesting applications which can be implemented in different devices, such as smartphones and wearable devices. In the context of a cultural site, implementing these algorithms in a wearable device, such as a pair of smart glasses, allow to enable the use of augmented reality (AR) to show extra information about the artworks and enrich the visitors' experience during their tour. However, object detection algorithms require to be trained on many well annotated examples to achieve reasonable results. This brings a major limitation since the annotation process requires human supervision which makes it expensive in terms of time and costs. A possible solution to reduce these costs consist in exploiting tools to automatically generate synthetic labeled images from a 3D model of the site. However, models trained with synthetic data do not generalize on real images acquired in the target scenario in which they are supposed to be used. Furthermore, object detectors should be able to work with different wearable devices or different mobile devices, which makes generalization even harder. In this paper, we present a new dataset collected in a cultural site to study the problem of domain adaptation for object detection in the presence of multiple unlabeled target domains corresponding to different cameras and a labeled source domain obtained considering synthetic images for training purposes. We present a new domain adaptation method which outperforms current state-of-the-art approaches combining the benefits of aligning the domains at the feature and pixel level with a self-training process. We release the dataset at the following link https://iplab.dmi.unict.it/OBJ-MDA/ and the code of the proposed architecture at https://github.com/fpv-iplab/STMDA-RetinaNet.
Growing Visual Generative Capacity for Pre-Trained MLLMs
Multimodal large language models (MLLMs) extend the success of language models to visual understanding, and recent efforts have sought to build unified MLLMs that support both understanding and generation. However, constructing such models remains challenging: hybrid approaches combine continuous embeddings with diffusion or flow-based objectives, producing high-quality images but breaking the autoregressive paradigm, while pure autoregressive approaches unify text and image prediction over discrete visual tokens but often face trade-offs between semantic alignment and pixel-level fidelity. In this work, we present Bridge, a pure autoregressive unified MLLM that augments pre-trained visual understanding models with generative ability through a Mixture-of-Transformers architecture, enabling both image understanding and generation within a single next-token prediction framework. To further improve visual generation fidelity, we propose a semantic-to-pixel discrete representation that integrates compact semantic tokens with fine-grained pixel tokens, achieving strong language alignment and precise description of visual details with only a 7.9% increase in sequence length. Extensive experiments across diverse multimodal benchmarks demonstrate that Bridge achieves competitive or superior results in both understanding and generation benchmarks, while requiring less training data and reduced training time compared to prior unified MLLMs.
Continual-MEGA: A Large-scale Benchmark for Generalizable Continual Anomaly Detection
In this paper, we introduce a new benchmark for continual learning in anomaly detection, aimed at better reflecting real-world deployment scenarios. Our benchmark, Continual-MEGA, includes a large and diverse dataset that significantly expands existing evaluation settings by combining carefully curated existing datasets with our newly proposed dataset, ContinualAD. In addition to standard continual learning with expanded quantity, we propose a novel scenario that measures zero-shot generalization to unseen classes, those not observed during continual adaptation. This setting poses a new problem setting that continual adaptation also enhances zero-shot performance. We also present a unified baseline algorithm that improves robustness in few-shot detection and maintains strong generalization. Through extensive evaluations, we report three key findings: (1) existing methods show substantial room for improvement, particularly in pixel-level defect localization; (2) our proposed method consistently outperforms prior approaches; and (3) the newly introduced ContinualAD dataset enhances the performance of strong anomaly detection models. We release the benchmark and code in https://github.com/Continual-Mega/Continual-Mega.
SeaS: Few-shot Industrial Anomaly Image Generation with Separation and Sharing Fine-tuning
We introduce SeaS, a unified industrial generative model for automatically creating diverse anomalies, authentic normal products, and precise anomaly masks. While extensive research exists, most efforts either focus on specific tasks, i.e., anomalies or normal products only, or require separate models for each anomaly type. Consequently, prior methods either offer limited generative capability or depend on a vast array of anomaly-specific models. We demonstrate that U-Net's differentiated learning ability captures the distinct visual traits of slightly-varied normal products and diverse anomalies, enabling us to construct a unified model for all tasks. Specifically, we first introduce an Unbalanced Abnormal (UA) Text Prompt, comprising one normal token and multiple anomaly tokens. More importantly, our Decoupled Anomaly Alignment (DA) loss decouples anomaly attributes and binds them to distinct anomaly tokens of UA, enabling SeaS to create unseen anomalies by recombining these attributes. Furthermore, our Normal-image Alignment (NA) loss aligns the normal token to normal patterns, making generated normal products globally consistent and locally varied. Finally, SeaS produces accurate anomaly masks by fusing discriminative U-Net features with high-resolution VAE features. SeaS sets a new benchmark for industrial generation, significantly enhancing downstream applications, with average improvements of +8.66% pixel-level AP for synthesis-based AD approaches, +1.10% image-level AP for unsupervised AD methods, and +12.79% IoU for supervised segmentation models. Code is available at https://github.com/HUST-SLOW/SeaS{https://github.com/HUST-SLOW/SeaS}.
PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization
Recent advances in image-based 3D human shape estimation have been driven by the significant improvement in representation power afforded by deep neural networks. Although current approaches have demonstrated the potential in real world settings, they still fail to produce reconstructions with the level of detail often present in the input images. We argue that this limitation stems primarily form two conflicting requirements; accurate predictions require large context, but precise predictions require high resolution. Due to memory limitations in current hardware, previous approaches tend to take low resolution images as input to cover large spatial context, and produce less precise (or low resolution) 3D estimates as a result. We address this limitation by formulating a multi-level architecture that is end-to-end trainable. A coarse level observes the whole image at lower resolution and focuses on holistic reasoning. This provides context to an fine level which estimates highly detailed geometry by observing higher-resolution images. We demonstrate that our approach significantly outperforms existing state-of-the-art techniques on single image human shape reconstruction by fully leveraging 1k-resolution input images.
CubiCasa5K: A Dataset and an Improved Multi-Task Model for Floorplan Image Analysis
Better understanding and modelling of building interiors and the emergence of more impressive AR/VR technology has brought up the need for automatic parsing of floorplan images. However, there is a clear lack of representative datasets to investigate the problem further. To address this shortcoming, this paper presents a novel image dataset called CubiCasa5K, a large-scale floorplan image dataset containing 5000 samples annotated into over 80 floorplan object categories. The dataset annotations are performed in a dense and versatile manner by using polygons for separating the different objects. Diverging from the classical approaches based on strong heuristics and low-level pixel operations, we present a method relying on an improved multi-task convolutional neural network. By releasing the novel dataset and our implementations, this study significantly boosts the research on automatic floorplan image analysis as it provides a richer set of tools for investigating the problem in a more comprehensive manner.
Per-Pixel Classification is Not All You Need for Semantic Segmentation
Modern approaches typically formulate semantic segmentation as a per-pixel classification task, while instance-level segmentation is handled with an alternative mask classification. Our key insight: mask classification is sufficiently general to solve both semantic- and instance-level segmentation tasks in a unified manner using the exact same model, loss, and training procedure. Following this observation, we propose MaskFormer, a simple mask classification model which predicts a set of binary masks, each associated with a single global class label prediction. Overall, the proposed mask classification-based method simplifies the landscape of effective approaches to semantic and panoptic segmentation tasks and shows excellent empirical results. In particular, we observe that MaskFormer outperforms per-pixel classification baselines when the number of classes is large. Our mask classification-based method outperforms both current state-of-the-art semantic (55.6 mIoU on ADE20K) and panoptic segmentation (52.7 PQ on COCO) models.
Text Rendering Strategies for Pixel Language Models
Pixel-based language models process text rendered as images, which allows them to handle any script, making them a promising approach to open vocabulary language modelling. However, recent approaches use text renderers that produce a large set of almost-equivalent input patches, which may prove sub-optimal for downstream tasks, due to redundancy in the input representations. In this paper, we investigate four approaches to rendering text in the PIXEL model (Rust et al., 2023), and find that simple character bigram rendering brings improved performance on sentence-level tasks without compromising performance on token-level or multilingual tasks. This new rendering strategy also makes it possible to train a more compact model with only 22M parameters that performs on par with the original 86M parameter model. Our analyses show that character bigram rendering leads to a consistently better model but with an anisotropic patch embedding space, driven by a patch frequency bias, highlighting the connections between image patch- and tokenization-based language models.
Towards Content-based Pixel Retrieval in Revisited Oxford and Paris
This paper introduces the first two pixel retrieval benchmarks. Pixel retrieval is segmented instance retrieval. Like semantic segmentation extends classification to the pixel level, pixel retrieval is an extension of image retrieval and offers information about which pixels are related to the query object. In addition to retrieving images for the given query, it helps users quickly identify the query object in true positive images and exclude false positive images by denoting the correlated pixels. Our user study results show pixel-level annotation can significantly improve the user experience. Compared with semantic and instance segmentation, pixel retrieval requires a fine-grained recognition capability for variable-granularity targets. To this end, we propose pixel retrieval benchmarks named PROxford and PRParis, which are based on the widely used image retrieval datasets, ROxford and RParis. Three professional annotators label 5,942 images with two rounds of double-checking and refinement. Furthermore, we conduct extensive experiments and analysis on the SOTA methods in image search, image matching, detection, segmentation, and dense matching using our pixel retrieval benchmarks. Results show that the pixel retrieval task is challenging to these approaches and distinctive from existing problems, suggesting that further research can advance the content-based pixel-retrieval and thus user search experience. The datasets can be downloaded from https://github.com/anguoyuan/Pixel_retrieval-Segmented_instance_retrieval{this link}.
LoFTR: Detector-Free Local Feature Matching with Transformers
We present a novel method for local image feature matching. Instead of performing image feature detection, description, and matching sequentially, we propose to first establish pixel-wise dense matches at a coarse level and later refine the good matches at a fine level. In contrast to dense methods that use a cost volume to search correspondences, we use self and cross attention layers in Transformer to obtain feature descriptors that are conditioned on both images. The global receptive field provided by Transformer enables our method to produce dense matches in low-texture areas, where feature detectors usually struggle to produce repeatable interest points. The experiments on indoor and outdoor datasets show that LoFTR outperforms state-of-the-art methods by a large margin. LoFTR also ranks first on two public benchmarks of visual localization among the published methods.
Composed Image Retrieval for Remote Sensing
This work introduces composed image retrieval to remote sensing. It allows to query a large image archive by image examples alternated by a textual description, enriching the descriptive power over unimodal queries, either visual or textual. Various attributes can be modified by the textual part, such as shape, color, or context. A novel method fusing image-to-image and text-to-image similarity is introduced. We demonstrate that a vision-language model possesses sufficient descriptive power and no further learning step or training data are necessary. We present a new evaluation benchmark focused on color, context, density, existence, quantity, and shape modifications. Our work not only sets the state-of-the-art for this task, but also serves as a foundational step in addressing a gap in the field of remote sensing image retrieval. Code at: https://github.com/billpsomas/rscir
Understanding Mobile GUI: from Pixel-Words to Screen-Sentences
The ubiquity of mobile phones makes mobile GUI understanding an important task. Most previous works in this domain require human-created metadata of screens (e.g. View Hierarchy) during inference, which unfortunately is often not available or reliable enough for GUI understanding. Inspired by the impressive success of Transformers in NLP tasks, targeting for purely vision-based GUI understanding, we extend the concepts of Words/Sentence to Pixel-Words/Screen-Sentence, and propose a mobile GUI understanding architecture: Pixel-Words to Screen-Sentence (PW2SS). In analogy to the individual Words, we define the Pixel-Words as atomic visual components (text and graphic components), which are visually consistent and semantically clear across screenshots of a large variety of design styles. The Pixel-Words extracted from a screenshot are aggregated into Screen-Sentence with a Screen Transformer proposed to model their relations. Since the Pixel-Words are defined as atomic visual components, the ambiguity between their visual appearance and semantics is dramatically reduced. We are able to make use of metadata available in training data to auto-generate high-quality annotations for Pixel-Words. A dataset, RICO-PW, of screenshots with Pixel-Words annotations is built based on the public RICO dataset, which will be released to help to address the lack of high-quality training data in this area. We train a detector to extract Pixel-Words from screenshots on this dataset and achieve metadata-free GUI understanding during inference. We conduct experiments and show that Pixel-Words can be well extracted on RICO-PW and well generalized to a new dataset, P2S-UI, collected by ourselves. The effectiveness of PW2SS is further verified in the GUI understanding tasks including relation prediction, clickability prediction, screen retrieval, and app type classification.
Towards Open-Vocabulary Semantic Segmentation Without Semantic Labels
Large-scale vision-language models like CLIP have demonstrated impressive open-vocabulary capabilities for image-level tasks, excelling in recognizing what objects are present. However, they struggle with pixel-level recognition tasks like semantic segmentation, which additionally require understanding where the objects are located. In this work, we propose a novel method, PixelCLIP, to adapt the CLIP image encoder for pixel-level understanding by guiding the model on where, which is achieved using unlabeled images and masks generated from vision foundation models such as SAM and DINO. To address the challenges of leveraging masks without semantic labels, we devise an online clustering algorithm using learnable class names to acquire general semantic concepts. PixelCLIP shows significant performance improvements over CLIP and competitive results compared to caption-supervised methods in open-vocabulary semantic segmentation. Project page is available at https://cvlab-kaist.github.io/PixelCLIP
PixelLM: Pixel Reasoning with Large Multimodal Model
While large multimodal models (LMMs) have achieved remarkable progress, generating pixel-level masks for image reasoning tasks involving multiple open-world targets remains a challenge. To bridge this gap, we introduce PixelLM, an effective and efficient LMM for pixel-level reasoning and understanding. Central to PixelLM is a novel, lightweight pixel decoder and a comprehensive segmentation codebook. The decoder efficiently produces masks from the hidden embeddings of the codebook tokens, which encode detailed target-relevant information. With this design, PixelLM harmonizes with the structure of popular LMMs and avoids the need for additional costly segmentation models. Furthermore, we propose a target refinement loss to enhance the model's ability to differentiate between multiple targets, leading to substantially improved mask quality. To advance research in this area, we construct MUSE, a high-quality multi-target reasoning segmentation benchmark. PixelLM excels across various pixel-level image reasoning and understanding tasks, outperforming well-established methods in multiple benchmarks, including MUSE, single- and multi-referring segmentation. Comprehensive ablations confirm the efficacy of each proposed component. All code, models, and datasets will be publicly available.
UniPixel: Unified Object Referring and Segmentation for Pixel-Level Visual Reasoning
Recent advances in Large Multi-modal Models (LMMs) have demonstrated their remarkable success as general-purpose multi-modal assistants, with particular focuses on holistic image- and video-language understanding. Conversely, less attention has been given to scaling fine-grained pixel-level understanding capabilities, where the models are expected to realize pixel-level alignment between visual signals and language semantics. Some previous studies have applied LMMs to related tasks such as region-level captioning and referring expression segmentation. However, these models are limited to performing either referring or segmentation tasks independently and fail to integrate these fine-grained perception capabilities into visual reasoning. To bridge this gap, we propose UniPixel, a large multi-modal model capable of flexibly comprehending visual prompt inputs and generating mask-grounded responses. Our model distinguishes itself by seamlessly integrating pixel-level perception with general visual understanding capabilities. Specifically, UniPixel processes visual prompts and generates relevant masks on demand, and performs subsequent reasoning conditioning on these intermediate pointers during inference, thereby enabling fine-grained pixel-level reasoning. The effectiveness of our approach has been verified on 10 benchmarks across a diverse set of tasks, including pixel-level referring/segmentation and object-centric understanding in images/videos. A novel PixelQA task that jointly requires referring, segmentation, and question answering is also designed to verify the flexibility of our method.
Exploiting saliency for object segmentation from image level labels
There have been remarkable improvements in the semantic labelling task in the recent years. However, the state of the art methods rely on large-scale pixel-level annotations. This paper studies the problem of training a pixel-wise semantic labeller network from image-level annotations of the present object classes. Recently, it has been shown that high quality seeds indicating discriminative object regions can be obtained from image-level labels. Without additional information, obtaining the full extent of the object is an inherently ill-posed problem due to co-occurrences. We propose using a saliency model as additional information and hereby exploit prior knowledge on the object extent and image statistics. We show how to combine both information sources in order to recover 80% of the fully supervised performance - which is the new state of the art in weakly supervised training for pixel-wise semantic labelling. The code is available at https://goo.gl/KygSeb.
Look Less, Reason More: Rollout-Guided Adaptive Pixel-Space Reasoning
Vision-Language Models (VLMs) excel at many multimodal tasks, yet they frequently struggle with tasks requiring precise understanding and handling of fine-grained visual elements. This is mainly due to information loss during image encoding or insufficient attention to critical regions. Recent work has shown promise by incorporating pixel-level visual information into the reasoning process, enabling VLMs to access high-resolution visual details during their thought process. However, this pixel-level information is often overused, leading to inefficiency and distraction from irrelevant visual details. To address these challenges, we propose the first framework for adaptive pixel reasoning that dynamically determines necessary pixel-level operations based on the input query. Specifically, we first apply operation-aware supervised fine-tuning to establish baseline competence in textual reasoning and visual operations, then design a novel rollout-guided reinforcement learning framework relying on feedback of the model's own responses, which enables the VLM to determine when pixel operations should be invoked based on query difficulty. Experiments on extensive multimodal reasoning benchmarks show that our model achieves superior performance while significantly reducing unnecessary visual operations. Impressively, our model achieves 73.4\% accuracy on HR-Bench 4K while maintaining a tool usage ratio of only 20.1\%, improving accuracy and simultaneously reducing tool usage by 66.5\% compared to the previous methods.
good4cir: Generating Detailed Synthetic Captions for Composed Image Retrieval
Composed image retrieval (CIR) enables users to search images using a reference image combined with textual modifications. Recent advances in vision-language models have improved CIR, but dataset limitations remain a barrier. Existing datasets often rely on simplistic, ambiguous, or insufficient manual annotations, hindering fine-grained retrieval. We introduce good4cir, a structured pipeline leveraging vision-language models to generate high-quality synthetic annotations. Our method involves: (1) extracting fine-grained object descriptions from query images, (2) generating comparable descriptions for target images, and (3) synthesizing textual instructions capturing meaningful transformations between images. This reduces hallucination, enhances modification diversity, and ensures object-level consistency. Applying our method improves existing datasets and enables creating new datasets across diverse domains. Results demonstrate improved retrieval accuracy for CIR models trained on our pipeline-generated datasets. We release our dataset construction framework to support further research in CIR and multi-modal retrieval.
From Pixels to Prose: A Large Dataset of Dense Image Captions
Training large vision-language models requires extensive, high-quality image-text pairs. Existing web-scraped datasets, however, are noisy and lack detailed image descriptions. To bridge this gap, we introduce PixelProse, a comprehensive dataset of over 16M (million) synthetically generated captions, leveraging cutting-edge vision-language models for detailed and accurate descriptions. To ensure data integrity, we rigorously analyze our dataset for problematic content, including child sexual abuse material (CSAM), personally identifiable information (PII), and toxicity. We also provide valuable metadata such as watermark presence and aesthetic scores, aiding in further dataset filtering. We hope PixelProse will be a valuable resource for future vision-language research. PixelProse is available at https://huggingface.co/datasets/tomg-group-umd/pixelprose
PixelFlow: Pixel-Space Generative Models with Flow
We present PixelFlow, a family of image generation models that operate directly in the raw pixel space, in contrast to the predominant latent-space models. This approach simplifies the image generation process by eliminating the need for a pre-trained Variational Autoencoder (VAE) and enabling the whole model end-to-end trainable. Through efficient cascade flow modeling, PixelFlow achieves affordable computation cost in pixel space. It achieves an FID of 1.98 on 256times256 ImageNet class-conditional image generation benchmark. The qualitative text-to-image results demonstrate that PixelFlow excels in image quality, artistry, and semantic control. We hope this new paradigm will inspire and open up new opportunities for next-generation visual generation models. Code and models are available at https://github.com/ShoufaChen/PixelFlow.
Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation
In this paper, we address the semantic segmentation problem with a focus on the context aggregation strategy. Our motivation is that the label of a pixel is the category of the object that the pixel belongs to. We present a simple yet effective approach, object-contextual representations, characterizing a pixel by exploiting the representation of the corresponding object class. First, we learn object regions under the supervision of ground-truth segmentation. Second, we compute the object region representation by aggregating the representations of the pixels lying in the object region. Last, % the representation similarity we compute the relation between each pixel and each object region and augment the representation of each pixel with the object-contextual representation which is a weighted aggregation of all the object region representations according to their relations with the pixel. We empirically demonstrate that the proposed approach achieves competitive performance on various challenging semantic segmentation benchmarks: Cityscapes, ADE20K, LIP, PASCAL-Context, and COCO-Stuff. Cityscapes, ADE20K, LIP, PASCAL-Context, and COCO-Stuff. Our submission "HRNet + OCR + SegFix" achieves 1-st place on the Cityscapes leaderboard by the time of submission. Code is available at: https://git.io/openseg and https://git.io/HRNet.OCR. We rephrase the object-contextual representation scheme using the Transformer encoder-decoder framework. The details are presented in~Section3.3.
A Context-Driven Training-Free Network for Lightweight Scene Text Segmentation and Recognition
Modern scene text recognition systems often depend on large end-to-end architectures that require extensive training and are prohibitively expensive for real-time scenarios. In such cases, the deployment of heavy models becomes impractical due to constraints on memory, computational resources, and latency. To address these challenges, we propose a novel, training-free plug-and-play framework that leverages the strengths of pre-trained text recognizers while minimizing redundant computations. Our approach uses context-based understanding and introduces an attention-based segmentation stage, which refines candidate text regions at the pixel level, improving downstream recognition. Instead of performing traditional text detection that follows a block-level comparison between feature map and source image and harnesses contextual information using pretrained captioners, allowing the framework to generate word predictions directly from scene context.Candidate texts are semantically and lexically evaluated to get a final score. Predictions that meet or exceed a pre-defined confidence threshold bypass the heavier process of end-to-end text STR profiling, ensuring faster inference and cutting down on unnecessary computations. Experiments on public benchmarks demonstrate that our paradigm achieves performance on par with state-of-the-art systems, yet requires substantially fewer resources.
Flickr30k Entities: Collecting Region-to-Phrase Correspondences for Richer Image-to-Sentence Models
The Flickr30k dataset has become a standard benchmark for sentence-based image description. This paper presents Flickr30k Entities, which augments the 158k captions from Flickr30k with 244k coreference chains, linking mentions of the same entities across different captions for the same image, and associating them with 276k manually annotated bounding boxes. Such annotations are essential for continued progress in automatic image description and grounded language understanding. They enable us to define a new benchmark for localization of textual entity mentions in an image. We present a strong baseline for this task that combines an image-text embedding, detectors for common objects, a color classifier, and a bias towards selecting larger objects. While our baseline rivals in accuracy more complex state-of-the-art models, we show that its gains cannot be easily parlayed into improvements on such tasks as image-sentence retrieval, thus underlining the limitations of current methods and the need for further research.
Learning to Describe Differences Between Pairs of Similar Images
In this paper, we introduce the task of automatically generating text to describe the differences between two similar images. We collect a new dataset by crowd-sourcing difference descriptions for pairs of image frames extracted from video-surveillance footage. Annotators were asked to succinctly describe all the differences in a short paragraph. As a result, our novel dataset provides an opportunity to explore models that align language and vision, and capture visual salience. The dataset may also be a useful benchmark for coherent multi-sentence generation. We perform a firstpass visual analysis that exposes clusters of differing pixels as a proxy for object-level differences. We propose a model that captures visual salience by using a latent variable to align clusters of differing pixels with output sentences. We find that, for both single-sentence generation and as well as multi-sentence generation, the proposed model outperforms the models that use attention alone.
All you need are a few pixels: semantic segmentation with PixelPick
A central challenge for the task of semantic segmentation is the prohibitive cost of obtaining dense pixel-level annotations to supervise model training. In this work, we show that in order to achieve a good level of segmentation performance, all you need are a few well-chosen pixel labels. We make the following contributions: (i) We investigate the novel semantic segmentation setting in which labels are supplied only at sparse pixel locations, and show that deep neural networks can use a handful of such labels to good effect; (ii) We demonstrate how to exploit this phenomena within an active learning framework, termed PixelPick, to radically reduce labelling cost, and propose an efficient "mouse-free" annotation strategy to implement our approach; (iii) We conduct extensive experiments to study the influence of annotation diversity under a fixed budget, model pretraining, model capacity and the sampling mechanism for picking pixels in this low annotation regime; (iv) We provide comparisons to the existing state of the art in semantic segmentation with active learning, and demonstrate comparable performance with up to two orders of magnitude fewer pixel annotations on the CamVid, Cityscapes and PASCAL VOC 2012 benchmarks; (v) Finally, we evaluate the efficiency of our annotation pipeline and its sensitivity to annotator error to demonstrate its practicality.
PixelWorld: Towards Perceiving Everything as Pixels
Existing foundation models typically process visual input as pixels and textual input as tokens, a paradigm that contrasts with human perception, where both modalities are processed in a unified manner. With the rise of embodied and agentic AI, where inputs primarily come from camera pixels, the need for a unified perception framework becomes increasingly evident. In this paper, we propose to unify all modalities (text, tables, code, diagrams, images, etc) as pixel inputs, i.e. "Perceive Everything as Pixels" (PEAP). We introduce PixelWorld, a novel evaluation suite that unifies all the mentioned modalities into pixel space to gauge the existing models' performance. Our findings show that (1) PEAP outperforms baseline with token-based input in multimodal datasets, benefiting from unified input for better disambiguation, (2) significant declines in reasoning and coding capabilities across all models when processing pixel-based input, underscoring the need to enhance foundation models' perceptual abilities, (3) larger models can maintain strong performance on non-reasoning tasks under PEAP, while smaller models like Phi-3.5-V suffer significant performance degradation, (4) the attention pattern of PEAP is highly aligned with text token input, (5) PEAP can be accelerated significantly by exploiting the spatial sparsity. We conclude that the existing frontier models are competent in pixel perception, however, there is still headroom for improvement. Our code, dataset will be released upon acceptance.
Visual Clues: Bridging Vision and Language Foundations for Image Paragraph Captioning
People say, "A picture is worth a thousand words". Then how can we get the rich information out of the image? We argue that by using visual clues to bridge large pretrained vision foundation models and language models, we can do so without any extra cross-modal training. Thanks to the strong zero-shot capability of foundation models, we start by constructing a rich semantic representation of the image (e.g., image tags, object attributes / locations, captions) as a structured textual prompt, called visual clues, using a vision foundation model. Based on visual clues, we use large language model to produce a series of comprehensive descriptions for the visual content, which is then verified by the vision model again to select the candidate that aligns best with the image. We evaluate the quality of generated descriptions by quantitative and qualitative measurement. The results demonstrate the effectiveness of such a structured semantic representation.
CONFORM: Contrast is All You Need For High-Fidelity Text-to-Image Diffusion Models
Images produced by text-to-image diffusion models might not always faithfully represent the semantic intent of the provided text prompt, where the model might overlook or entirely fail to produce certain objects. Existing solutions often require customly tailored functions for each of these problems, leading to sub-optimal results, especially for complex prompts. Our work introduces a novel perspective by tackling this challenge in a contrastive context. Our approach intuitively promotes the segregation of objects in attention maps while also maintaining that pairs of related attributes are kept close to each other. We conduct extensive experiments across a wide variety of scenarios, each involving unique combinations of objects, attributes, and scenes. These experiments effectively showcase the versatility, efficiency, and flexibility of our method in working with both latent and pixel-based diffusion models, including Stable Diffusion and Imagen. Moreover, we publicly share our source code to facilitate further research.
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications
PixelCNNs are a recently proposed class of powerful generative models with tractable likelihood. Here we discuss our implementation of PixelCNNs which we make available at https://github.com/openai/pixel-cnn. Our implementation contains a number of modifications to the original model that both simplify its structure and improve its performance. 1) We use a discretized logistic mixture likelihood on the pixels, rather than a 256-way softmax, which we find to speed up training. 2) We condition on whole pixels, rather than R/G/B sub-pixels, simplifying the model structure. 3) We use downsampling to efficiently capture structure at multiple resolutions. 4) We introduce additional short-cut connections to further speed up optimization. 5) We regularize the model using dropout. Finally, we present state-of-the-art log likelihood results on CIFAR-10 to demonstrate the usefulness of these modifications.
SegAgent: Exploring Pixel Understanding Capabilities in MLLMs by Imitating Human Annotator Trajectories
While MLLMs have demonstrated adequate image understanding capabilities, they still struggle with pixel-level comprehension, limiting their practical applications. Current evaluation tasks like VQA and visual grounding remain too coarse to assess fine-grained pixel comprehension accurately. Though segmentation is foundational for pixel-level understanding, existing methods often require MLLMs to generate implicit tokens, decoded through external pixel decoders. This approach disrupts the MLLM's text output space, potentially compromising language capabilities and reducing flexibility and extensibility, while failing to reflect the model's intrinsic pixel-level understanding. Thus, we introduce the Human-Like Mask Annotation Task (HLMAT), a new paradigm where MLLMs mimic human annotators using interactive segmentation tools. Modeling segmentation as a multi-step Markov Decision Process, HLMAT enables MLLMs to iteratively generate text-based click points, achieving high-quality masks without architectural changes or implicit tokens. Through this setup, we develop SegAgent, a model fine-tuned on human-like annotation trajectories, which achieves performance comparable to state-of-the-art (SOTA) methods and supports additional tasks like mask refinement and annotation filtering. HLMAT provides a protocol for assessing fine-grained pixel understanding in MLLMs and introduces a vision-centric, multi-step decision-making task that facilitates exploration of MLLMs' visual reasoning abilities. Our adaptations of policy improvement method StaR and PRM-guided tree search further enhance model robustness in complex segmentation tasks, laying a foundation for future advancements in fine-grained visual perception and multi-step decision-making for MLLMs.
Localizing Object-level Shape Variations with Text-to-Image Diffusion Models
Text-to-image models give rise to workflows which often begin with an exploration step, where users sift through a large collection of generated images. The global nature of the text-to-image generation process prevents users from narrowing their exploration to a particular object in the image. In this paper, we present a technique to generate a collection of images that depicts variations in the shape of a specific object, enabling an object-level shape exploration process. Creating plausible variations is challenging as it requires control over the shape of the generated object while respecting its semantics. A particular challenge when generating object variations is accurately localizing the manipulation applied over the object's shape. We introduce a prompt-mixing technique that switches between prompts along the denoising process to attain a variety of shape choices. To localize the image-space operation, we present two techniques that use the self-attention layers in conjunction with the cross-attention layers. Moreover, we show that these localization techniques are general and effective beyond the scope of generating object variations. Extensive results and comparisons demonstrate the effectiveness of our method in generating object variations, and the competence of our localization techniques.
Fine-Grained Visual Prompting
Vision-Language Models (VLMs), such as CLIP, have demonstrated impressive zero-shot transfer capabilities in image-level visual perception. However, these models have shown limited performance in instance-level tasks that demand precise localization and recognition. Previous works have suggested that incorporating visual prompts, such as colorful boxes or circles, can improve the ability of models to recognize objects of interest. Nonetheless, compared to language prompting, visual prompting designs are rarely explored. Existing approaches, which employ coarse visual cues such as colorful boxes or circles, often result in sub-optimal performance due to the inclusion of irrelevant and noisy pixels. In this paper, we carefully study the visual prompting designs by exploring more fine-grained markings, such as segmentation masks and their variations. In addition, we introduce a new zero-shot framework that leverages pixel-level annotations acquired from a generalist segmentation model for fine-grained visual prompting. Consequently, our investigation reveals that a straightforward application of blur outside the target mask, referred to as the Blur Reverse Mask, exhibits exceptional effectiveness. This proposed prompting strategy leverages the precise mask annotations to reduce focus on weakly related regions while retaining spatial coherence between the target and the surrounding background. Our Fine-Grained Visual Prompting (FGVP) demonstrates superior performance in zero-shot comprehension of referring expressions on the RefCOCO, RefCOCO+, and RefCOCOg benchmarks. It outperforms prior methods by an average margin of 3.0% to 4.6%, with a maximum improvement of 12.5% on the RefCOCO+ testA subset. Code is available at https://github.com/ylingfeng/FGVP.
Scene Text Visual Question Answering
Current visual question answering datasets do not consider the rich semantic information conveyed by text within an image. In this work, we present a new dataset, ST-VQA, that aims to highlight the importance of exploiting high-level semantic information present in images as textual cues in the VQA process. We use this dataset to define a series of tasks of increasing difficulty for which reading the scene text in the context provided by the visual information is necessary to reason and generate an appropriate answer. We propose a new evaluation metric for these tasks to account both for reasoning errors as well as shortcomings of the text recognition module. In addition we put forward a series of baseline methods, which provide further insight to the newly released dataset, and set the scene for further research.
Binarizing Documents by Leveraging both Space and Frequency
Document Image Binarization is a well-known problem in Document Analysis and Computer Vision, although it is far from being solved. One of the main challenges of this task is that documents generally exhibit degradations and acquisition artifacts that can greatly vary throughout the page. Nonetheless, even when dealing with a local patch of the document, taking into account the overall appearance of a wide portion of the page can ease the prediction by enriching it with semantic information on the ink and background conditions. In this respect, approaches able to model both local and global information have been proven suitable for this task. In particular, recent applications of Vision Transformer (ViT)-based models, able to model short and long-range dependencies via the attention mechanism, have demonstrated their superiority over standard Convolution-based models, which instead struggle to model global dependencies. In this work, we propose an alternative solution based on the recently introduced Fast Fourier Convolutions, which overcomes the limitation of standard convolutions in modeling global information while requiring fewer parameters than ViTs. We validate the effectiveness of our approach via extensive experimental analysis considering different types of degradations.
Smart Multi-Modal Search: Contextual Sparse and Dense Embedding Integration in Adobe Express
As user content and queries become increasingly multi-modal, the need for effective multi-modal search systems has grown. Traditional search systems often rely on textual and metadata annotations for indexed images, while multi-modal embeddings like CLIP enable direct search using text and image embeddings. However, embedding-based approaches face challenges in integrating contextual features such as user locale and recency. Building a scalable multi-modal search system requires fine-tuning several components. This paper presents a multi-modal search architecture and a series of AB tests that optimize embeddings and multi-modal technologies in Adobe Express template search. We address considerations such as embedding model selection, the roles of embeddings in matching and ranking, and the balance between dense and sparse embeddings. Our iterative approach demonstrates how utilizing sparse, dense, and contextual features enhances short and long query search, significantly reduces null rates (over 70\%), and increases click-through rates (CTR). Our findings provide insights into developing robust multi-modal search systems, thereby enhancing relevance for complex queries.
Compositional Sketch Search
We present an algorithm for searching image collections using free-hand sketches that describe the appearance and relative positions of multiple objects. Sketch based image retrieval (SBIR) methods predominantly match queries containing a single, dominant object invariant to its position within an image. Our work exploits drawings as a concise and intuitive representation for specifying entire scene compositions. We train a convolutional neural network (CNN) to encode masked visual features from sketched objects, pooling these into a spatial descriptor encoding the spatial relationships and appearances of objects in the composition. Training the CNN backbone as a Siamese network under triplet loss yields a metric search embedding for measuring compositional similarity which may be efficiently leveraged for visual search by applying product quantization.
Weatherproofing Retrieval for Localization with Generative AI and Geometric Consistency
State-of-the-art visual localization approaches generally rely on a first image retrieval step whose role is crucial. Yet, retrieval often struggles when facing varying conditions, due to e.g. weather or time of day, with dramatic consequences on the visual localization accuracy. In this paper, we improve this retrieval step and tailor it to the final localization task. Among the several changes we advocate for, we propose to synthesize variants of the training set images, obtained from generative text-to-image models, in order to automatically expand the training set towards a number of nameable variations that particularly hurt visual localization. After expanding the training set, we propose a training approach that leverages the specificities and the underlying geometry of this mix of real and synthetic images. We experimentally show that those changes translate into large improvements for the most challenging visual localization datasets. Project page: https://europe.naverlabs.com/ret4loc
Semantic Amodal Segmentation
Common visual recognition tasks such as classification, object detection, and semantic segmentation are rapidly reaching maturity, and given the recent rate of progress, it is not unreasonable to conjecture that techniques for many of these problems will approach human levels of performance in the next few years. In this paper we look to the future: what is the next frontier in visual recognition? We offer one possible answer to this question. We propose a detailed image annotation that captures information beyond the visible pixels and requires complex reasoning about full scene structure. Specifically, we create an amodal segmentation of each image: the full extent of each region is marked, not just the visible pixels. Annotators outline and name all salient regions in the image and specify a partial depth order. The result is a rich scene structure, including visible and occluded portions of each region, figure-ground edge information, semantic labels, and object overlap. We create two datasets for semantic amodal segmentation. First, we label 500 images in the BSDS dataset with multiple annotators per image, allowing us to study the statistics of human annotations. We show that the proposed full scene annotation is surprisingly consistent between annotators, including for regions and edges. Second, we annotate 5000 images from COCO. This larger dataset allows us to explore a number of algorithmic ideas for amodal segmentation and depth ordering. We introduce novel metrics for these tasks, and along with our strong baselines, define concrete new challenges for the community.
UFO: A Unified Approach to Fine-grained Visual Perception via Open-ended Language Interface
Generalist models have achieved remarkable success in both language and vision-language tasks, showcasing the potential of unified modeling. However, effectively integrating fine-grained perception tasks like detection and segmentation into these models remains a significant challenge. This is primarily because these tasks often rely heavily on task-specific designs and architectures that can complicate the modeling process. To address this challenge, we present \ours, a framework that Unifies Fine-grained visual perception tasks through an Open-ended language interface. By transforming all perception targets into the language space, \ours unifies object-level detection, pixel-level segmentation, and image-level vision-language tasks into a single model. Additionally, we introduce a novel embedding retrieval approach that relies solely on the language interface to support segmentation tasks. Our framework bridges the gap between fine-grained perception and vision-language tasks, significantly simplifying architectural design and training strategies while achieving comparable or superior performance to methods with intricate task-specific designs. After multi-task training on five standard visual perception datasets, \ours outperforms the previous state-of-the-art generalist models by 12.3 mAP on COCO instance segmentation and 3.3 mIoU on ADE20K semantic segmentation. Furthermore, our method seamlessly integrates with existing MLLMs, effectively combining fine-grained perception capabilities with their advanced language abilities, thereby enabling more challenging tasks such as reasoning segmentation. Code and models will be publicly available.
Shatter and Gather: Learning Referring Image Segmentation with Text Supervision
Referring image segmentation, the task of segmenting any arbitrary entities described in free-form texts, opens up a variety of vision applications. However, manual labeling of training data for this task is prohibitively costly, leading to lack of labeled data for training. We address this issue by a weakly supervised learning approach using text descriptions of training images as the only source of supervision. To this end, we first present a new model that discovers semantic entities in input image and then combines such entities relevant to text query to predict the mask of the referent. We also present a new loss function that allows the model to be trained without any further supervision. Our method was evaluated on four public benchmarks for referring image segmentation, where it clearly outperformed the existing method for the same task and recent open-vocabulary segmentation models on all the benchmarks.
Vision-Language Pre-training: Basics, Recent Advances, and Future Trends
This paper surveys vision-language pre-training (VLP) methods for multimodal intelligence that have been developed in the last few years. We group these approaches into three categories: (i) VLP for image-text tasks, such as image captioning, image-text retrieval, visual question answering, and visual grounding; (ii) VLP for core computer vision tasks, such as (open-set) image classification, object detection, and segmentation; and (iii) VLP for video-text tasks, such as video captioning, video-text retrieval, and video question answering. For each category, we present a comprehensive review of state-of-the-art methods, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies. In addition, for each category, we discuss advanced topics being actively explored in the research community, such as big foundation models, unified modeling, in-context few-shot learning, knowledge, robustness, and computer vision in the wild, to name a few.
SegEarth-R1: Geospatial Pixel Reasoning via Large Language Model
Remote sensing has become critical for understanding environmental dynamics, urban planning, and disaster management. However, traditional remote sensing workflows often rely on explicit segmentation or detection methods, which struggle to handle complex, implicit queries that require reasoning over spatial context, domain knowledge, and implicit user intent. Motivated by this, we introduce a new task, \ie, geospatial pixel reasoning, which allows implicit querying and reasoning and generates the mask of the target region. To advance this task, we construct and release the first large-scale benchmark dataset called EarthReason, which comprises 5,434 manually annotated image masks with over 30,000 implicit question-answer pairs. Moreover, we propose SegEarth-R1, a simple yet effective language-guided segmentation baseline that integrates a hierarchical visual encoder, a large language model (LLM) for instruction parsing, and a tailored mask generator for spatial correlation. The design of SegEarth-R1 incorporates domain-specific adaptations, including aggressive visual token compression to handle ultra-high-resolution remote sensing images, a description projection module to fuse language and multi-scale features, and a streamlined mask prediction pipeline that directly queries description embeddings. Extensive experiments demonstrate that SegEarth-R1 achieves state-of-the-art performance on both reasoning and referring segmentation tasks, significantly outperforming traditional and LLM-based segmentation methods. Our data and code will be released at https://github.com/earth-insights/SegEarth-R1.
Sentence-level Prompts Benefit Composed Image Retrieval
Composed image retrieval (CIR) is the task of retrieving specific images by using a query that involves both a reference image and a relative caption. Most existing CIR models adopt the late-fusion strategy to combine visual and language features. Besides, several approaches have also been suggested to generate a pseudo-word token from the reference image, which is further integrated into the relative caption for CIR. However, these pseudo-word-based prompting methods have limitations when target image encompasses complex changes on reference image, e.g., object removal and attribute modification. In this work, we demonstrate that learning an appropriate sentence-level prompt for the relative caption (SPRC) is sufficient for achieving effective composed image retrieval. Instead of relying on pseudo-word-based prompts, we propose to leverage pretrained V-L models, e.g., BLIP-2, to generate sentence-level prompts. By concatenating the learned sentence-level prompt with the relative caption, one can readily use existing text-based image retrieval models to enhance CIR performance. Furthermore, we introduce both image-text contrastive loss and text prompt alignment loss to enforce the learning of suitable sentence-level prompts. Experiments show that our proposed method performs favorably against the state-of-the-art CIR methods on the Fashion-IQ and CIRR datasets. The source code and pretrained model are publicly available at https://github.com/chunmeifeng/SPRC
PixelHacker: Image Inpainting with Structural and Semantic Consistency
Image inpainting is a fundamental research area between image editing and image generation. Recent state-of-the-art (SOTA) methods have explored novel attention mechanisms, lightweight architectures, and context-aware modeling, demonstrating impressive performance. However, they often struggle with complex structure (e.g., texture, shape, spatial relations) and semantics (e.g., color consistency, object restoration, and logical correctness), leading to artifacts and inappropriate generation. To address this challenge, we design a simple yet effective inpainting paradigm called latent categories guidance, and further propose a diffusion-based model named PixelHacker. Specifically, we first construct a large dataset containing 14 million image-mask pairs by annotating foreground and background (potential 116 and 21 categories, respectively). Then, we encode potential foreground and background representations separately through two fixed-size embeddings, and intermittently inject these features into the denoising process via linear attention. Finally, by pre-training on our dataset and fine-tuning on open-source benchmarks, we obtain PixelHacker. Extensive experiments show that PixelHacker comprehensively outperforms the SOTA on a wide range of datasets (Places2, CelebA-HQ, and FFHQ) and exhibits remarkable consistency in both structure and semantics. Project page at https://hustvl.github.io/PixelHacker.
Understanding Cross-modal Interactions in V&L Models that Generate Scene Descriptions
Image captioning models tend to describe images in an object-centric way, emphasising visible objects. But image descriptions can also abstract away from objects and describe the type of scene depicted. In this paper, we explore the potential of a state-of-the-art Vision and Language model, VinVL, to caption images at the scene level using (1) a novel dataset which pairs images with both object-centric and scene descriptions. Through (2) an in-depth analysis of the effect of the fine-tuning, we show (3) that a small amount of curated data suffices to generate scene descriptions without losing the capability to identify object-level concepts in the scene; the model acquires a more holistic view of the image compared to when object-centric descriptions are generated. We discuss the parallels between these results and insights from computational and cognitive science research on scene perception.
Hierarchical Open-vocabulary Universal Image Segmentation
Open-vocabulary image segmentation aims to partition an image into semantic regions according to arbitrary text descriptions. However, complex visual scenes can be naturally decomposed into simpler parts and abstracted at multiple levels of granularity, introducing inherent segmentation ambiguity. Unlike existing methods that typically sidestep this ambiguity and treat it as an external factor, our approach actively incorporates a hierarchical representation encompassing different semantic-levels into the learning process. We propose a decoupled text-image fusion mechanism and representation learning modules for both "things" and "stuff". Additionally, we systematically examine the differences that exist in the textual and visual features between these types of categories. Our resulting model, named HIPIE, tackles HIerarchical, oPen-vocabulary, and unIvErsal segmentation tasks within a unified framework. Benchmarked on over 40 datasets, e.g., ADE20K, COCO, Pascal-VOC Part, RefCOCO/RefCOCOg, ODinW and SeginW, HIPIE achieves the state-of-the-art results at various levels of image comprehension, including semantic-level (e.g., semantic segmentation), instance-level (e.g., panoptic/referring segmentation and object detection), as well as part-level (e.g., part/subpart segmentation) tasks. Our code is released at https://github.com/berkeley-hipie/HIPIE.
Text Detection and Recognition in the Wild: A Review
Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.
Exploring CLIP for Assessing the Look and Feel of Images
Measuring the perception of visual content is a long-standing problem in computer vision. Many mathematical models have been developed to evaluate the look or quality of an image. Despite the effectiveness of such tools in quantifying degradations such as noise and blurriness levels, such quantification is loosely coupled with human language. When it comes to more abstract perception about the feel of visual content, existing methods can only rely on supervised models that are explicitly trained with labeled data collected via laborious user study. In this paper, we go beyond the conventional paradigms by exploring the rich visual language prior encapsulated in Contrastive Language-Image Pre-training (CLIP) models for assessing both the quality perception (look) and abstract perception (feel) of images in a zero-shot manner. In particular, we discuss effective prompt designs and show an effective prompt pairing strategy to harness the prior. We also provide extensive experiments on controlled datasets and Image Quality Assessment (IQA) benchmarks. Our results show that CLIP captures meaningful priors that generalize well to different perceptual assessments. Code is avaliable at https://github.com/IceClear/CLIP-IQA.
Back To The Drawing Board: Rethinking Scene-Level Sketch-Based Image Retrieval
The goal of Scene-level Sketch-Based Image Retrieval is to retrieve natural images matching the overall semantics and spatial layout of a free-hand sketch. Unlike prior work focused on architectural augmentations of retrieval models, we emphasize the inherent ambiguity and noise present in real-world sketches. This insight motivates a training objective that is explicitly designed to be robust to sketch variability. We show that with an appropriate combination of pre-training, encoder architecture, and loss formulation, it is possible to achieve state-of-the-art performance without the introduction of additional complexity. Extensive experiments on a challenging FS-COCO and widely-used SketchyCOCO datasets confirm the effectiveness of our approach and underline the critical role of training design in cross-modal retrieval tasks, as well as the need to improve the evaluation scenarios of scene-level SBIR.
Coarse-to-Fine: Learning Compact Discriminative Representation for Single-Stage Image Retrieval
Image retrieval targets to find images from a database that are visually similar to the query image. Two-stage methods following retrieve-and-rerank paradigm have achieved excellent performance, but their separate local and global modules are inefficient to real-world applications. To better trade-off retrieval efficiency and accuracy, some approaches fuse global and local feature into a joint representation to perform single-stage image retrieval. However, they are still challenging due to various situations to tackle, e.g., background, occlusion and viewpoint. In this work, we design a Coarse-to-Fine framework to learn Compact Discriminative representation (CFCD) for end-to-end single-stage image retrieval-requiring only image-level labels. Specifically, we first design a novel adaptive softmax-based loss which dynamically tunes its scale and margin within each mini-batch and increases them progressively to strengthen supervision during training and intra-class compactness. Furthermore, we propose a mechanism which attentively selects prominent local descriptors and infuse fine-grained semantic relations into the global representation by a hard negative sampling strategy to optimize inter-class distinctiveness at a global scale. Extensive experimental results have demonstrated the effectiveness of our method, which achieves state-of-the-art single-stage image retrieval performance on benchmarks such as Revisited Oxford and Revisited Paris. Code is available at https://github.com/bassyess/CFCD.
RedCaps: web-curated image-text data created by the people, for the people
Large datasets of paired images and text have become increasingly popular for learning generic representations for vision and vision-and-language tasks. Such datasets have been built by querying search engines or collecting HTML alt-text -- since web data is noisy, they require complex filtering pipelines to maintain quality. We explore alternate data sources to collect high quality data with minimal filtering. We introduce RedCaps -- a large-scale dataset of 12M image-text pairs collected from Reddit. Images and captions from Reddit depict and describe a wide variety of objects and scenes. We collect data from a manually curated set of subreddits, which give coarse image labels and allow us to steer the dataset composition without labeling individual instances. We show that captioning models trained on RedCaps produce rich and varied captions preferred by humans, and learn visual representations that transfer to many downstream tasks.
Beyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation
Despite the tremendous achievements of deep convolutional neural networks (CNNs) in many computer vision tasks, understanding how they actually work remains a significant challenge. In this paper, we propose a novel two-step understanding method, namely Salient Relevance (SR) map, which aims to shed light on how deep CNNs recognize images and learn features from areas, referred to as attention areas, therein. Our proposed method starts out with a layer-wise relevance propagation (LRP) step which estimates a pixel-wise relevance map over the input image. Following, we construct a context-aware saliency map, SR map, from the LRP-generated map which predicts areas close to the foci of attention instead of isolated pixels that LRP reveals. In human visual system, information of regions is more important than of pixels in recognition. Consequently, our proposed approach closely simulates human recognition. Experimental results using the ILSVRC2012 validation dataset in conjunction with two well-established deep CNN models, AlexNet and VGG-16, clearly demonstrate that our proposed approach concisely identifies not only key pixels but also attention areas that contribute to the underlying neural network's comprehension of the given images. As such, our proposed SR map constitutes a convenient visual interface which unveils the visual attention of the network and reveals which type of objects the model has learned to recognize after training. The source code is available at https://github.com/Hey1Li/Salient-Relevance-Propagation.
Convex Decomposition of Indoor Scenes
We describe a method to parse a complex, cluttered indoor scene into primitives which offer a parsimonious abstraction of scene structure. Our primitives are simple convexes. Our method uses a learned regression procedure to parse a scene into a fixed number of convexes from RGBD input, and can optionally accept segmentations to improve the decomposition. The result is then polished with a descent method which adjusts the convexes to produce a very good fit, and greedily removes superfluous primitives. Because the entire scene is parsed, we can evaluate using traditional depth, normal, and segmentation error metrics. Our evaluation procedure demonstrates that the error from our primitive representation is comparable to that of predicting depth from a single image.
ZoomEye: Enhancing Multimodal LLMs with Human-Like Zooming Capabilities through Tree-Based Image Exploration
An image, especially with high-resolution, typically consists of numerous visual elements, ranging from dominant large objects to fine-grained detailed objects. When perceiving such images, multimodal large language models~(MLLMs) face limitations due to the restricted input resolution of the pretrained vision encoder and the cluttered, dense context of the image, resulting in a focus on primary objects while easily overlooking detailed ones. In this paper, we propose Zoom Eye, a tree search algorithm designed to navigate the hierarchical and visual nature of images to capture relevant information. Zoom Eye conceptualizes an image as a tree, with each children node representing a zoomed sub-patch of the parent node and the root represents the overall image. Moreover, Zoom Eye is model-agnostic and training-free, so it enables any MLLMs to simulate human zooming actions by searching along the image tree from root to leaf nodes, seeking out pertinent information, and accurately responding to related queries. We experiment on a series of elaborate high-resolution benchmarks and the results demonstrate that Zoom Eye not only consistently improves the performance of a series base MLLMs with large margin~(e.g., LLaVA-v1.5-7B increases by 34.57\% on V^* Bench and 17.88\% on HR-Bench), but also enables small 7B MLLMs to outperform strong large models such as GPT-4o. Our code is available at https://github.com/om-ai-lab/ZoomEye{https://github.com/om-ai-lab/ZoomEye}.
AutoLUT: LUT-Based Image Super-Resolution with Automatic Sampling and Adaptive Residual Learning
In recent years, the increasing popularity of Hi-DPI screens has driven a rising demand for high-resolution images. However, the limited computational power of edge devices poses a challenge in deploying complex super-resolution neural networks, highlighting the need for efficient methods. While prior works have made significant progress, they have not fully exploited pixel-level information. Moreover, their reliance on fixed sampling patterns limits both accuracy and the ability to capture fine details in low-resolution images. To address these challenges, we introduce two plug-and-play modules designed to capture and leverage pixel information effectively in Look-Up Table (LUT) based super-resolution networks. Our method introduces Automatic Sampling (AutoSample), a flexible LUT sampling approach where sampling weights are automatically learned during training to adapt to pixel variations and expand the receptive field without added inference cost. We also incorporate Adaptive Residual Learning (AdaRL) to enhance inter-layer connections, enabling detailed information flow and improving the network's ability to reconstruct fine details. Our method achieves significant performance improvements on both MuLUT and SPF-LUT while maintaining similar storage sizes. Specifically, for MuLUT, we achieve a PSNR improvement of approximately +0.20 dB improvement on average across five datasets. For SPF-LUT, with more than a 50% reduction in storage space and about a 2/3 reduction in inference time, our method still maintains performance comparable to the original. The code is available at https://github.com/SuperKenVery/AutoLUT.
Sequential Modeling Enables Scalable Learning for Large Vision Models
We introduce a novel sequential modeling approach which enables learning a Large Vision Model (LVM) without making use of any linguistic data. To do this, we define a common format, "visual sentences", in which we can represent raw images and videos as well as annotated data sources such as semantic segmentations and depth reconstructions without needing any meta-knowledge beyond the pixels. Once this wide variety of visual data (comprising 420 billion tokens) is represented as sequences, the model can be trained to minimize a cross-entropy loss for next token prediction. By training across various scales of model architecture and data diversity, we provide empirical evidence that our models scale effectively. Many different vision tasks can be solved by designing suitable visual prompts at test time.
DICEPTION: A Generalist Diffusion Model for Visual Perceptual Tasks
Our primary goal here is to create a good, generalist perception model that can tackle multiple tasks, within limits on computational resources and training data. To achieve this, we resort to text-to-image diffusion models pre-trained on billions of images. Our exhaustive evaluation metrics demonstrate that DICEPTION effectively tackles multiple perception tasks, achieving performance on par with state-of-the-art models. We achieve results on par with SAM-vit-h using only 0.06% of their data (e.g., 600K vs. 1B pixel-level annotated images). Inspired by Wang et al., DICEPTION formulates the outputs of various perception tasks using color encoding; and we show that the strategy of assigning random colors to different instances is highly effective in both entity segmentation and semantic segmentation. Unifying various perception tasks as conditional image generation enables us to fully leverage pre-trained text-to-image models. Thus, DICEPTION can be efficiently trained at a cost of orders of magnitude lower, compared to conventional models that were trained from scratch. When adapting our model to other tasks, it only requires fine-tuning on as few as 50 images and 1% of its parameters. DICEPTION provides valuable insights and a more promising solution for visual generalist models.
Multi-Modal Prototypes for Open-World Semantic Segmentation
In semantic segmentation, generalizing a visual system to both seen categories and novel categories at inference time has always been practically valuable yet challenging. To enable such functionality, existing methods mainly rely on either providing several support demonstrations from the visual aspect or characterizing the informative clues from the textual aspect (e.g., the class names). Nevertheless, both two lines neglect the complementary intrinsic of low-level visual and high-level language information, while the explorations that consider visual and textual modalities as a whole to promote predictions are still limited. To close this gap, we propose to encompass textual and visual clues as multi-modal prototypes to allow more comprehensive support for open-world semantic segmentation, and build a novel prototype-based segmentation framework to realize this promise. To be specific, unlike the straightforward combination of bi-modal clues, we decompose the high-level language information as multi-aspect prototypes and aggregate the low-level visual information as more semantic prototypes, on basis of which, a fine-grained complementary fusion makes the multi-modal prototypes more powerful and accurate to promote the prediction. Based on an elastic mask prediction module that permits any number and form of prototype inputs, we are able to solve the zero-shot, few-shot and generalized counterpart tasks in one architecture. Extensive experiments on both PASCAL-5^i and COCO-20^i datasets show the consistent superiority of the proposed method compared with the previous state-of-the-art approaches, and a range of ablation studies thoroughly dissects each component in our framework both quantitatively and qualitatively that verify their effectiveness.
FLAIR: VLM with Fine-grained Language-informed Image Representations
CLIP has shown impressive results in aligning images and texts at scale. However, its ability to capture detailed visual features remains limited because CLIP matches images and texts at a global level. To address this issue, we propose FLAIR, Fine-grained Language-informed Image Representations, an approach that utilizes long and detailed image descriptions to learn localized image embeddings. By sampling diverse sub-captions that describe fine-grained details about an image, we train our vision-language model to produce not only global embeddings but also text-specific image representations. Our model introduces text-conditioned attention pooling on top of local image tokens to produce fine-grained image representations that excel at retrieving detailed image content. We achieve state-of-the-art performance on both, existing multimodal retrieval benchmarks, as well as, our newly introduced fine-grained retrieval task which evaluates vision-language models' ability to retrieve partial image content. Furthermore, our experiments demonstrate the effectiveness of FLAIR trained on 30M image-text pairs in capturing fine-grained visual information, including zero-shot semantic segmentation, outperforming models trained on billions of pairs. Code is available at https://github.com/ExplainableML/flair .
Reverse Region-to-Entity Annotation for Pixel-Level Visual Entity Linking
Visual Entity Linking (VEL) is a crucial task for achieving fine-grained visual understanding, matching objects within images (visual mentions) to entities in a knowledge base. Previous VEL tasks rely on textual inputs, but writing queries for complex scenes can be challenging. Visual inputs like clicks or bounding boxes offer a more convenient alternative. Therefore, we propose a new task, Pixel-Level Visual Entity Linking (PL-VEL), which uses pixel masks from visual inputs to refer to objects, supplementing reference methods for VEL. To facilitate research on this task, we have constructed the MaskOVEN-Wiki dataset through an entirely automatic reverse region-entity annotation framework. This dataset contains over 5 million annotations aligning pixel-level regions with entity-level labels, which will advance visual understanding towards fine-grained. Moreover, as pixel masks correspond to semantic regions in an image, we enhance previous patch-interacted attention with region-interacted attention by a visual semantic tokenization approach. Manual evaluation results indicate that the reverse annotation framework achieved a 94.8% annotation success rate. Experimental results show that models trained on this dataset improved accuracy by 18 points compared to zero-shot models. Additionally, the semantic tokenization method achieved a 5-point accuracy improvement over the trained baseline.
Segment Everything Everywhere All at Once
In this work, we present SEEM, a promptable and interactive model for segmenting everything everywhere all at once in an image, as shown in Fig.1. In SEEM, we propose a novel decoding mechanism that enables diverse prompting for all types of segmentation tasks, aiming at a universal segmentation interface that behaves like large language models (LLMs). More specifically, SEEM is designed with four desiderata: i) Versatility. We introduce a new visual prompt to unify different spatial queries including points, boxes, scribbles and masks, which can further generalize to a different referring image; ii) Compositionality. We learn a joint visual-semantic space between text and visual prompts, which facilitates the dynamic composition of two prompt types required for various segmentation tasks; iii) Interactivity. We further incorporate learnable memory prompts into the decoder to retain segmentation history through mask-guided cross-attention from decoder to image features; and iv) Semantic-awareness. We use a text encoder to encode text queries and mask labels into the same semantic space for open-vocabulary segmentation. We conduct a comprehensive empirical study to validate the effectiveness of SEEM across diverse segmentation tasks. Notably, our single SEEM model achieves competitive performance across interactive segmentation, generic segmentation, referring segmentation, and video object segmentation on 9 datasets with minimum 1/100 supervision. Furthermore, SEEM showcases a remarkable capacity for generalization to novel prompts or their combinations, rendering it a readily universal image segmentation interface.
SPair-71k: A Large-scale Benchmark for Semantic Correspondence
Establishing visual correspondences under large intra-class variations, which is often referred to as semantic correspondence or semantic matching, remains a challenging problem in computer vision. Despite its significance, however, most of the datasets for semantic correspondence are limited to a small amount of image pairs with similar viewpoints and scales. In this paper, we present a new large-scale benchmark dataset of semantically paired images, SPair-71k, which contains 70,958 image pairs with diverse variations in viewpoint and scale. Compared to previous datasets, it is significantly larger in number and contains more accurate and richer annotations. We believe this dataset will provide a reliable testbed to study the problem of semantic correspondence and will help to advance research in this area. We provide the results of recent methods on our new dataset as baselines for further research. Our benchmark is available online at http://cvlab.postech.ac.kr/research/SPair-71k/.
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
Inspired by recent work in machine translation and object detection, we introduce an attention based model that automatically learns to describe the content of images. We describe how we can train this model in a deterministic manner using standard backpropagation techniques and stochastically by maximizing a variational lower bound. We also show through visualization how the model is able to automatically learn to fix its gaze on salient objects while generating the corresponding words in the output sequence. We validate the use of attention with state-of-the-art performance on three benchmark datasets: Flickr8k, Flickr30k and MS COCO.
GenEval: An Object-Focused Framework for Evaluating Text-to-Image Alignment
Recent breakthroughs in diffusion models, multimodal pretraining, and efficient finetuning have led to an explosion of text-to-image generative models. Given human evaluation is expensive and difficult to scale, automated methods are critical for evaluating the increasingly large number of new models. However, most current automated evaluation metrics like FID or CLIPScore only offer a holistic measure of image quality or image-text alignment, and are unsuited for fine-grained or instance-level analysis. In this paper, we introduce GenEval, an object-focused framework to evaluate compositional image properties such as object co-occurrence, position, count, and color. We show that current object detection models can be leveraged to evaluate text-to-image models on a variety of generation tasks with strong human agreement, and that other discriminative vision models can be linked to this pipeline to further verify properties like object color. We then evaluate several open-source text-to-image models and analyze their relative generative capabilities on our benchmark. We find that recent models demonstrate significant improvement on these tasks, though they are still lacking in complex capabilities such as spatial relations and attribute binding. Finally, we demonstrate how GenEval might be used to help discover existing failure modes, in order to inform development of the next generation of text-to-image models. Our code to run the GenEval framework is publicly available at https://github.com/djghosh13/geneval.
ViCaS: A Dataset for Combining Holistic and Pixel-level Video Understanding using Captions with Grounded Segmentation
Recent advances in multimodal large language models (MLLMs) have expanded research in video understanding, primarily focusing on high-level tasks such as video captioning and question-answering. Meanwhile, a smaller body of work addresses dense, pixel-precise segmentation tasks, which typically involve category-guided or referral-based object segmentation. Although both research directions are essential for developing models with human-level video comprehension, they have largely evolved separately, with distinct benchmarks and architectures. This paper aims to unify these efforts by introducing ViCaS, a new dataset containing thousands of challenging videos, each annotated with detailed, human-written captions and temporally consistent, pixel-accurate masks for multiple objects with phrase grounding. Our benchmark evaluates models on both holistic/high-level understanding and language-guided, pixel-precise segmentation. We also present carefully validated evaluation measures and propose an effective model architecture that can tackle our benchmark. Project page: https://ali2500.github.io/vicas-project/
Object-Aware Query Perturbation for Cross-Modal Image-Text Retrieval
The pre-trained vision and language (V\&L) models have substantially improved the performance of cross-modal image-text retrieval. In general, however, V\&L models have limited retrieval performance for small objects because of the rough alignment between words and the small objects in the image. In contrast, it is known that human cognition is object-centric, and we pay more attention to important objects, even if they are small. To bridge this gap between the human cognition and the V\&L model's capability, we propose a cross-modal image-text retrieval framework based on ``object-aware query perturbation.'' The proposed method generates a key feature subspace of the detected objects and perturbs the corresponding queries using this subspace to improve the object awareness in the image. In our proposed method, object-aware cross-modal image-text retrieval is possible while keeping the rich expressive power and retrieval performance of existing V\&L models without additional fine-tuning. Comprehensive experiments on four public datasets show that our method outperforms conventional algorithms.
Object Hallucination in Image Captioning
Despite continuously improving performance, contemporary image captioning models are prone to "hallucinating" objects that are not actually in a scene. One problem is that standard metrics only measure similarity to ground truth captions and may not fully capture image relevance. In this work, we propose a new image relevance metric to evaluate current models with veridical visual labels and assess their rate of object hallucination. We analyze how captioning model architectures and learning objectives contribute to object hallucination, explore when hallucination is likely due to image misclassification or language priors, and assess how well current sentence metrics capture object hallucination. We investigate these questions on the standard image captioning benchmark, MSCOCO, using a diverse set of models. Our analysis yields several interesting findings, including that models which score best on standard sentence metrics do not always have lower hallucination and that models which hallucinate more tend to make errors driven by language priors.
SORCE: Small Object Retrieval in Complex Environments
Text-to-Image Retrieval (T2IR) is a highly valuable task that aims to match a given textual query to images in a gallery. Existing benchmarks primarily focus on textual queries describing overall image semantics or foreground salient objects, possibly overlooking inconspicuous small objects, especially in complex environments. Such small object retrieval is crucial, as in real-world applications, the targets of interest are not always prominent in the image. Thus, we introduce SORCE (Small Object Retrieval in Complex Environments), a new subfield of T2IR, focusing on retrieving small objects in complex images with textual queries. We propose a new benchmark, SORCE-1K, consisting of images with complex environments and textual queries describing less conspicuous small objects with minimal contextual cues from other salient objects. Preliminary analysis on SORCE-1K finds that existing T2IR methods struggle to capture small objects and encode all the semantics into a single embedding, leading to poor retrieval performance on SORCE-1K. Therefore, we propose to represent each image with multiple distinctive embeddings. We leverage Multimodal Large Language Models (MLLMs) to extract multiple embeddings for each image instructed by a set of Regional Prompts (ReP). Experimental results show that our multi-embedding approach through MLLM and ReP significantly outperforms existing T2IR methods on SORCE-1K. Our experiments validate the effectiveness of SORCE-1K for benchmarking SORCE performances, highlighting the potential of multi-embedding representation and text-customized MLLM features for addressing this task.
Direction-Oriented Visual-semantic Embedding Model for Remote Sensing Image-text Retrieval
Image-text retrieval has developed rapidly in recent years. However, it is still a challenge in remote sensing due to visual-semantic imbalance, which leads to incorrect matching of non-semantic visual and textual features. To solve this problem, we propose a novel Direction-Oriented Visual-semantic Embedding Model (DOVE) to mine the relationship between vision and language. Our highlight is to conduct visual and textual representations in latent space, directing them as close as possible to a redundancy-free regional visual representation. Concretely, a Regional-Oriented Attention Module (ROAM) adaptively adjusts the distance between the final visual and textual embeddings in the latent semantic space, oriented by regional visual features. Meanwhile, a lightweight Digging Text Genome Assistant (DTGA) is designed to expand the range of tractable textual representation and enhance global word-level semantic connections using less attention operations. Ultimately, we exploit a global visual-semantic constraint to reduce single visual dependency and serve as an external constraint for the final visual and textual representations. The effectiveness and superiority of our method are verified by extensive experiments including parameter evaluation, quantitative comparison, ablation studies and visual analysis, on two benchmark datasets, RSICD and RSITMD.
Vision Search Assistant: Empower Vision-Language Models as Multimodal Search Engines
Search engines enable the retrieval of unknown information with texts. However, traditional methods fall short when it comes to understanding unfamiliar visual content, such as identifying an object that the model has never seen before. This challenge is particularly pronounced for large vision-language models (VLMs): if the model has not been exposed to the object depicted in an image, it struggles to generate reliable answers to the user's question regarding that image. Moreover, as new objects and events continuously emerge, frequently updating VLMs is impractical due to heavy computational burdens. To address this limitation, we propose Vision Search Assistant, a novel framework that facilitates collaboration between VLMs and web agents. This approach leverages VLMs' visual understanding capabilities and web agents' real-time information access to perform open-world Retrieval-Augmented Generation via the web. By integrating visual and textual representations through this collaboration, the model can provide informed responses even when the image is novel to the system. Extensive experiments conducted on both open-set and closed-set QA benchmarks demonstrate that the Vision Search Assistant significantly outperforms the other models and can be widely applied to existing VLMs.
INQUIRE: A Natural World Text-to-Image Retrieval Benchmark
We introduce INQUIRE, a text-to-image retrieval benchmark designed to challenge multimodal vision-language models on expert-level queries. INQUIRE includes iNaturalist 2024 (iNat24), a new dataset of five million natural world images, along with 250 expert-level retrieval queries. These queries are paired with all relevant images comprehensively labeled within iNat24, comprising 33,000 total matches. Queries span categories such as species identification, context, behavior, and appearance, emphasizing tasks that require nuanced image understanding and domain expertise. Our benchmark evaluates two core retrieval tasks: (1) INQUIRE-Fullrank, a full dataset ranking task, and (2) INQUIRE-Rerank, a reranking task for refining top-100 retrievals. Detailed evaluation of a range of recent multimodal models demonstrates that INQUIRE poses a significant challenge, with the best models failing to achieve an mAP@50 above 50%. In addition, we show that reranking with more powerful multimodal models can enhance retrieval performance, yet there remains a significant margin for improvement. By focusing on scientifically-motivated ecological challenges, INQUIRE aims to bridge the gap between AI capabilities and the needs of real-world scientific inquiry, encouraging the development of retrieval systems that can assist with accelerating ecological and biodiversity research. Our dataset and code are available at https://inquire-benchmark.github.io
GeoGround: A Unified Large Vision-Language Model. for Remote Sensing Visual Grounding
Remote sensing (RS) visual grounding aims to use natural language expression to locate specific objects (in the form of the bounding box or segmentation mask) in RS images, enhancing human interaction with intelligent RS interpretation systems. Early research in this area was primarily based on horizontal bounding boxes (HBBs), but as more diverse RS datasets have become available, tasks involving oriented bounding boxes (OBBs) and segmentation masks have emerged. In practical applications, different targets require different grounding types: HBB can localize an object's position, OBB provides its orientation, and mask depicts its shape. However, existing specialized methods are typically tailored to a single type of RS visual grounding task and are hard to generalize across tasks. In contrast, large vision-language models (VLMs) exhibit powerful multi-task learning capabilities but struggle to handle dense prediction tasks like segmentation. This paper proposes GeoGround, a novel framework that unifies support for HBB, OBB, and mask RS visual grounding tasks, allowing flexible output selection. Rather than customizing the architecture of VLM, our work aims to elegantly support pixel-level visual grounding output through the Text-Mask technique. We define prompt-assisted and geometry-guided learning to enhance consistency across different signals. To support model training, we present refGeo, a large-scale RS visual instruction-following dataset containing 161k image-text pairs. Experimental results show that GeoGround demonstrates strong performance across four RS visual grounding tasks, matching or surpassing the performance of specialized methods on multiple benchmarks. Code available at https://github.com/zytx121/GeoGround
What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis
Many new proposals for scene text recognition (STR) models have been introduced in recent years. While each claim to have pushed the boundary of the technology, a holistic and fair comparison has been largely missing in the field due to the inconsistent choices of training and evaluation datasets. This paper addresses this difficulty with three major contributions. First, we examine the inconsistencies of training and evaluation datasets, and the performance gap results from inconsistencies. Second, we introduce a unified four-stage STR framework that most existing STR models fit into. Using this framework allows for the extensive evaluation of previously proposed STR modules and the discovery of previously unexplored module combinations. Third, we analyze the module-wise contributions to performance in terms of accuracy, speed, and memory demand, under one consistent set of training and evaluation datasets. Such analyses clean up the hindrance on the current comparisons to understand the performance gain of the existing modules.
Composed Object Retrieval: Object-level Retrieval via Composed Expressions
Retrieving fine-grained visual content based on user intent remains a challenge in multi-modal systems. Although current Composed Image Retrieval (CIR) methods combine reference images with retrieval texts, they are constrained to image-level matching and cannot localize specific objects. To this end, we propose Composed Object Retrieval (COR), a brand-new task that goes beyond image-level retrieval to achieve object-level precision, allowing the retrieval and segmentation of target objects based on composed expressions combining reference objects and retrieval texts. COR presents significant challenges in retrieval flexibility, which requires systems to identify arbitrary objects satisfying composed expressions while avoiding semantically similar but irrelevant negative objects within the same scene. We construct COR127K, the first large-scale COR benchmark that contains 127,166 retrieval triplets with various semantic transformations in 408 categories. We also present CORE, a unified end-to-end model that integrates reference region encoding, adaptive visual-textual interaction, and region-level contrastive learning. Extensive experiments demonstrate that CORE significantly outperforms existing models in both base and novel categories, establishing a simple and effective baseline for this challenging task while opening new directions for fine-grained multi-modal retrieval research.
Unified Multi-Modal Interleaved Document Representation for Information Retrieval
Information Retrieval (IR) methods aim to identify relevant documents in response to a given query, which have gained remarkable attention due to their successful application in various natural language tasks. However, existing approaches typically consider only the textual information within the documents, which overlooks the fact that documents can contain multiple modalities, including texts, images, and tables. Further, they often segment each long document into multiple discrete passages for embedding, preventing them from capturing the overall document context and interactions between paragraphs. We argue that these two limitations lead to suboptimal document representations for retrieval. In this work, to address them, we aim to produce more comprehensive and nuanced document representations by holistically embedding documents interleaved with different modalities. Specifically, we achieve this by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation. Moreover, to mitigate the information loss from segmenting documents into passages, instead of representing and retrieving passages individually, we further merge the representations of segmented passages into one single document representation, while we additionally introduce a reranking strategy to decouple and identify the relevant passage within the document if necessary. Then, through extensive experiments on diverse information retrieval scenarios considering both the textual and multimodal queries, we show that our approach substantially outperforms relevant baselines, thanks to the consideration of the multimodal information interleaved within the documents in a unified way.
Benchmarking Human and Automated Prompting in the Segment Anything Model
The remarkable capabilities of the Segment Anything Model (SAM) for tackling image segmentation tasks in an intuitive and interactive manner has sparked interest in the design of effective visual prompts. Such interest has led to the creation of automated point prompt selection strategies, typically motivated from a feature extraction perspective. However, there is still very little understanding of how appropriate these automated visual prompting strategies are, particularly when compared to humans, across diverse image domains. Additionally, the performance benefits of including such automated visual prompting strategies within the finetuning process of SAM also remains unexplored, as does the effect of interpretable factors like distance between the prompt points on segmentation performance. To bridge these gaps, we leverage a recently released visual prompting dataset, PointPrompt, and introduce a number of benchmarking tasks that provide an array of opportunities to improve the understanding of the way human prompts differ from automated ones and what underlying factors make for effective visual prompts. We demonstrate that the resulting segmentation scores obtained by humans are approximately 29% higher than those given by automated strategies and identify potential features that are indicative of prompting performance with R^2 scores over 0.5. Additionally, we demonstrate that performance when using automated methods can be improved by up to 68% via a finetuning approach. Overall, our experiments not only showcase the existing gap between human prompts and automated methods, but also highlight potential avenues through which this gap can be leveraged to improve effective visual prompt design. Further details along with the dataset links and codes are available at https://github.com/olivesgatech/PointPrompt
Vision-Free Retrieval: Rethinking Multimodal Search with Textual Scene Descriptions
Contrastively-trained Vision-Language Models (VLMs), such as CLIP, have become the standard approach for learning discriminative vision-language representations. However, these models often exhibit shallow language understanding, manifesting bag-of-words behaviour. These limitations are reinforced by their dual-encoder design, which induces a modality gap. Additionally, the reliance on vast web-collected data corpora for training makes the process computationally expensive and introduces significant privacy concerns. To address these limitations, in this work, we challenge the necessity of vision encoders for retrieval tasks by introducing a vision-free, single-encoder retrieval pipeline. Departing from the traditional text-to-image retrieval paradigm, we migrate to a text-to-text paradigm with the assistance of VLLM-generated structured image descriptions. We demonstrate that this paradigm shift has significant advantages, including a substantial reduction of the modality gap, improved compositionality, and better performance on short and long caption queries, all attainable with only a few hours of calibration on two GPUs. Additionally, substituting raw images with textual descriptions introduces a more privacy-friendly alternative for retrieval. To further assess generalisation and address some of the shortcomings of prior compositionality benchmarks, we release two benchmarks derived from Flickr30k and COCO, containing diverse compositional queries made of short captions, which we coin subFlickr and subCOCO. Our vision-free retriever matches and often surpasses traditional multimodal models. Importantly, our approach achieves state-of-the-art zero-shot performance on multiple retrieval and compositionality benchmarks, with models as small as 0.3B parameters. Code is available at: https://github.com/IoannaNti/LexiCLIP
Pyramid Token Pruning for High-Resolution Large Vision-Language Models via Region, Token, and Instruction-Guided Importance
Large Vision-Language Models (LVLMs) have recently demonstrated strong multimodal understanding, yet their fine-grained visual perception is often constrained by low input resolutions. A common remedy is to partition high-resolution images into multiple sub-images for separate encoding, but this approach drastically inflates the number of visual tokens and introduces prohibitive inference overhead. To overcome this challenge, we propose Pyramid Token Pruning (PTP), a training-free strategy that hierarchically integrates bottom-up visual saliency at both region and token levels with top-down instruction-guided relevance. Inspired by human visual cognition, PTP selectively preserves more tokens from salient regions while further emphasizing those most relevant to task instructions. Extensive experiments on 13 diverse benchmarks show that PTP substantially reduces computational cost, memory usage, and inference latency, with negligible performance degradation.
UniGlyph: Unified Segmentation-Conditioned Diffusion for Precise Visual Text Synthesis
Text-to-image generation has greatly advanced content creation, yet accurately rendering visual text remains a key challenge due to blurred glyphs, semantic drift, and limited style control. Existing methods often rely on pre-rendered glyph images as conditions, but these struggle to retain original font styles and color cues, necessitating complex multi-branch designs that increase model overhead and reduce flexibility. To address these issues, we propose a segmentation-guided framework that uses pixel-level visual text masks -- rich in glyph shape, color, and spatial detail -- as unified conditional inputs. Our method introduces two core components: (1) a fine-tuned bilingual segmentation model for precise text mask extraction, and (2) a streamlined diffusion model augmented with adaptive glyph conditioning and a region-specific loss to preserve textual fidelity in both content and style. Our approach achieves state-of-the-art performance on the AnyText benchmark, significantly surpassing prior methods in both Chinese and English settings. To enable more rigorous evaluation, we also introduce two new benchmarks: GlyphMM-benchmark for testing layout and glyph consistency in complex typesetting, and MiniText-benchmark for assessing generation quality in small-scale text regions. Experimental results show that our model outperforms existing methods by a large margin in both scenarios, particularly excelling at small text rendering and complex layout preservation, validating its strong generalization and deployment readiness.
PIRC Net : Using Proposal Indexing, Relationships and Context for Phrase Grounding
Phrase Grounding aims to detect and localize objects in images that are referred to and are queried by natural language phrases. Phrase grounding finds applications in tasks such as Visual Dialog, Visual Search and Image-text co-reference resolution. In this paper, we present a framework that leverages information such as phrase category, relationships among neighboring phrases in a sentence and context to improve the performance of phrase grounding systems. We propose three modules: Proposal Indexing Network(PIN); Inter-phrase Regression Network(IRN) and Proposal Ranking Network(PRN) each of which analyze the region proposals of an image at increasing levels of detail by incorporating the above information. Also, in the absence of ground-truth spatial locations of the phrases(weakly-supervised), we propose knowledge transfer mechanisms that leverages the framework of PIN module. We demonstrate the effectiveness of our approach on the Flickr 30k Entities and ReferItGame datasets, for which we achieve improvements over state-of-the-art approaches in both supervised and weakly-supervised variants.
Visual-Text Cross Alignment: Refining the Similarity Score in Vision-Language Models
It has recently been discovered that using a pre-trained vision-language model (VLM), e.g., CLIP, to align a whole query image with several finer text descriptions generated by a large language model can significantly enhance zero-shot performance. However, in this paper, we empirically find that the finer descriptions tend to align more effectively with local areas of the query image rather than the whole image, and then we theoretically validate this finding. Thus, we present a method called weighted visual-text cross alignment (WCA). This method begins with a localized visual prompting technique, designed to identify local visual areas within the query image. The local visual areas are then cross-aligned with the finer descriptions by creating a similarity matrix using the pre-trained VLM. To determine how well a query image aligns with each category, we develop a score function based on the weighted similarities in this matrix. Extensive experiments demonstrate that our method significantly improves zero-shot performance across various datasets, achieving results that are even comparable to few-shot learning methods.
Improving Pixel-based MIM by Reducing Wasted Modeling Capability
There has been significant progress in Masked Image Modeling (MIM). Existing MIM methods can be broadly categorized into two groups based on the reconstruction target: pixel-based and tokenizer-based approaches. The former offers a simpler pipeline and lower computational cost, but it is known to be biased toward high-frequency details. In this paper, we provide a set of empirical studies to confirm this limitation of pixel-based MIM and propose a new method that explicitly utilizes low-level features from shallow layers to aid pixel reconstruction. By incorporating this design into our base method, MAE, we reduce the wasted modeling capability of pixel-based MIM, improving its convergence and achieving non-trivial improvements across various downstream tasks. To the best of our knowledge, we are the first to systematically investigate multi-level feature fusion for isotropic architectures like the standard Vision Transformer (ViT). Notably, when applied to a smaller model (e.g., ViT-S), our method yields significant performance gains, such as 1.2\% on fine-tuning, 2.8\% on linear probing, and 2.6\% on semantic segmentation. Code and models are available at https://github.com/open-mmlab/mmpretrain.
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
In this paper we address issues with image retrieval benchmarking on standard and popular Oxford 5k and Paris 6k datasets. In particular, annotation errors, the size of the dataset, and the level of challenge are addressed: new annotation for both datasets is created with an extra attention to the reliability of the ground truth. Three new protocols of varying difficulty are introduced. The protocols allow fair comparison between different methods, including those using a dataset pre-processing stage. For each dataset, 15 new challenging queries are introduced. Finally, a new set of 1M hard, semi-automatically cleaned distractors is selected. An extensive comparison of the state-of-the-art methods is performed on the new benchmark. Different types of methods are evaluated, ranging from local-feature-based to modern CNN based methods. The best results are achieved by taking the best of the two worlds. Most importantly, image retrieval appears far from being solved.
xT: Nested Tokenization for Larger Context in Large Images
Modern computer vision pipelines handle large images in one of two sub-optimal ways: down-sampling or cropping. These two methods incur significant losses in the amount of information and context present in an image. There are many downstream applications in which global context matters as much as high frequency details, such as in real-world satellite imagery; in such cases researchers have to make the uncomfortable choice of which information to discard. We introduce xT, a simple framework for vision transformers which effectively aggregates global context with local details and can model large images end-to-end on contemporary GPUs. We select a set of benchmark datasets across classic vision tasks which accurately reflect a vision model's ability to understand truly large images and incorporate fine details over large scales and assess our method's improvement on them. By introducing a nested tokenization scheme for large images in conjunction with long-sequence length models normally used for natural language processing, we are able to increase accuracy by up to 8.6% on challenging classification tasks and F_1 score by 11.6 on context-dependent segmentation in large images.
Watch Your Steps: Local Image and Scene Editing by Text Instructions
Denoising diffusion models have enabled high-quality image generation and editing. We present a method to localize the desired edit region implicit in a text instruction. We leverage InstructPix2Pix (IP2P) and identify the discrepancy between IP2P predictions with and without the instruction. This discrepancy is referred to as the relevance map. The relevance map conveys the importance of changing each pixel to achieve the edits, and is used to to guide the modifications. This guidance ensures that the irrelevant pixels remain unchanged. Relevance maps are further used to enhance the quality of text-guided editing of 3D scenes in the form of neural radiance fields. A field is trained on relevance maps of training views, denoted as the relevance field, defining the 3D region within which modifications should be made. We perform iterative updates on the training views guided by rendered relevance maps from the relevance field. Our method achieves state-of-the-art performance on both image and NeRF editing tasks. Project page: https://ashmrz.github.io/WatchYourSteps/
Hierarchical Patch Compression for ColPali: Efficient Multi-Vector Document Retrieval with Dynamic Pruning and Quantization
Multi-vector document retrieval systems, such as ColPali, excel in fine-grained matching for complex queries but incur significant storage and computational costs due to their reliance on high-dimensional patch embeddings and late-interaction scoring. To address these challenges, we propose HPC-ColPali, a Hierarchical Patch Compression framework that enhances the efficiency of ColPali while preserving its retrieval accuracy. Our approach integrates three innovative techniques: (1) K-Means quantization, which compresses patch embeddings into 1-byte centroid indices, achieving up to 32times storage reduction; (2) attention-guided dynamic pruning, utilizing Vision-Language Model attention weights to retain only the top-p% most salient patches, reducing late-interaction computation by up to 60\% with less than 2\% nDCG@10 loss; and (3) optional binary encoding of centroid indices into b-bit strings (b=lceillog_2 Krceil), enabling rapid Hamming distance-based similarity search for resource-constrained environments. Evaluated on the ViDoRe and SEC-Filings datasets, HPC-ColPali achieves 30--50\% lower query latency under HNSW indexing while maintaining high retrieval precision. When integrated into a Retrieval-Augmented Generation pipeline for legal summarization, it reduces hallucination rates by 30\% and halves end-to-end latency. These advancements establish HPC-ColPali as a scalable and efficient solution for multi-vector document retrieval across diverse applications. Code is available at https://github.com/DngBack/HPC-ColPali.
Guided Query Refinement: Multimodal Hybrid Retrieval with Test-Time Optimization
Multimodal encoders have pushed the boundaries of visual document retrieval, matching textual query tokens directly to image patches and achieving state-of-the-art performance on public benchmarks. Recent models relying on this paradigm have massively scaled the sizes of their query and document representations, presenting obstacles to deployment and scalability in real-world pipelines. Furthermore, purely vision-centric approaches may be constrained by the inherent modality gap still exhibited by modern vision-language models. In this work, we connect these challenges to the paradigm of hybrid retrieval, investigating whether a lightweight dense text retriever can enhance a stronger vision-centric model. Existing hybrid methods, which rely on coarse-grained fusion of ranks or scores, fail to exploit the rich interactions within each model's representation space. To address this, we introduce Guided Query Refinement (GQR), a novel test-time optimization method that refines a primary retriever's query embedding using guidance from a complementary retriever's scores. Through extensive experiments on visual document retrieval benchmarks, we demonstrate that GQR allows vision-centric models to match the performance of models with significantly larger representations, while being up to 14x faster and requiring 54x less memory. Our findings show that GQR effectively pushes the Pareto frontier for performance and efficiency in multimodal retrieval. We release our code at https://github.com/IBM/test-time-hybrid-retrieval
Rethinking Benchmarks for Cross-modal Image-text Retrieval
Image-text retrieval, as a fundamental and important branch of information retrieval, has attracted extensive research attentions. The main challenge of this task is cross-modal semantic understanding and matching. Some recent works focus more on fine-grained cross-modal semantic matching. With the prevalence of large scale multimodal pretraining models, several state-of-the-art models (e.g. X-VLM) have achieved near-perfect performance on widely-used image-text retrieval benchmarks, i.e. MSCOCO-Test-5K and Flickr30K-Test-1K. In this paper, we review the two common benchmarks and observe that they are insufficient to assess the true capability of models on fine-grained cross-modal semantic matching. The reason is that a large amount of images and texts in the benchmarks are coarse-grained. Based on the observation, we renovate the coarse-grained images and texts in the old benchmarks and establish the improved benchmarks called MSCOCO-FG and Flickr30K-FG. Specifically, on the image side, we enlarge the original image pool by adopting more similar images. On the text side, we propose a novel semi-automatic renovation approach to refine coarse-grained sentences into finer-grained ones with little human effort. Furthermore, we evaluate representative image-text retrieval models on our new benchmarks to demonstrate the effectiveness of our method. We also analyze the capability of models on fine-grained semantic comprehension through extensive experiments. The results show that even the state-of-the-art models have much room for improvement in fine-grained semantic understanding, especially in distinguishing attributes of close objects in images. Our code and improved benchmark datasets are publicly available at: https://github.com/cwj1412/MSCOCO-Flikcr30K_FG, which we hope will inspire further in-depth research on cross-modal retrieval.
Learning the Visualness of Text Using Large Vision-Language Models
Visual text evokes an image in a person's mind, while non-visual text fails to do so. A method to automatically detect visualness in text will unlock the ability to augment text with relevant images, as neural text-to-image generation and retrieval models operate on the implicit assumption that the input text is visual in nature. We curate a dataset of 3,620 English sentences and their visualness scores provided by multiple human annotators. Additionally, we use documents that contain text and visual assets to create a distantly supervised corpus of document text and associated images. We also propose a fine-tuning strategy that adapts large vision-language models like CLIP that assume a one-to-one correspondence between text and image to the task of scoring text visualness from text input alone. Our strategy involves modifying the model's contrastive learning objective to map text identified as non-visual to a common NULL image while matching visual text to their corresponding images in the document. We evaluate the proposed approach on its ability to (i) classify visual and non-visual text accurately, and (ii) attend over words that are identified as visual in psycholinguistic studies. Empirical evaluation indicates that our approach performs better than several heuristics and baseline models for the proposed task. Furthermore, to highlight the importance of modeling the visualness of text, we conduct qualitative analyses of text-to-image generation systems like DALL-E.
Beyond LLaVA-HD: Diving into High-Resolution Large Multimodal Models
Seeing clearly with high resolution is a foundation of Large Multimodal Models (LMMs), which has been proven to be vital for visual perception and reasoning. Existing works usually employ a straightforward resolution upscaling method, where the image consists of global and local branches, with the latter being the sliced image patches but resized to the same resolution as the former. This means that higher resolution requires more local patches, resulting in exorbitant computational expenses, and meanwhile, the dominance of local image tokens may diminish the global context. In this paper, we dive into the problems and propose a new framework as well as an elaborate optimization strategy. Specifically, we extract contextual information from the global view using a mixture of adapters, based on the observation that different adapters excel at different tasks. With regard to local patches, learnable query embeddings are introduced to reduce image tokens, the most important tokens accounting for the user question will be further selected by a similarity-based selector. Our empirical results demonstrate a `less is more' pattern, where utilizing fewer but more informative local image tokens leads to improved performance. Besides, a significant challenge lies in the training strategy, as simultaneous end-to-end training of the global mining block and local compression block does not yield optimal results. We thus advocate for an alternating training way, ensuring balanced learning between global and local aspects. Finally, we also introduce a challenging dataset with high requirements for image detail, enhancing the training of the local compression layer. The proposed method, termed LMM with Sophisticated Tasks, Local image compression, and Mixture of global Experts (SliME), achieves leading performance across various benchmarks with only 2 million training data.
Visual Transformers: Token-based Image Representation and Processing for Computer Vision
Computer vision has achieved remarkable success by (a) representing images as uniformly-arranged pixel arrays and (b) convolving highly-localized features. However, convolutions treat all image pixels equally regardless of importance; explicitly model all concepts across all images, regardless of content; and struggle to relate spatially-distant concepts. In this work, we challenge this paradigm by (a) representing images as semantic visual tokens and (b) running transformers to densely model token relationships. Critically, our Visual Transformer operates in a semantic token space, judiciously attending to different image parts based on context. This is in sharp contrast to pixel-space transformers that require orders-of-magnitude more compute. Using an advanced training recipe, our VTs significantly outperform their convolutional counterparts, raising ResNet accuracy on ImageNet top-1 by 4.6 to 7 points while using fewer FLOPs and parameters. For semantic segmentation on LIP and COCO-stuff, VT-based feature pyramid networks (FPN) achieve 0.35 points higher mIoU while reducing the FPN module's FLOPs by 6.5x.
Parameter-Efficient Adaptation of mPLUG-Owl2 via Pixel-Level Visual Prompts for NR-IQA
In this paper, we propose a novel parameter-efficient adaptation method for No- Reference Image Quality Assessment (NR-IQA) using visual prompts optimized in pixel-space. Unlike full fine-tuning of Multimodal Large Language Models (MLLMs), our approach trains only 600K parameters at most (< 0.01% of the base model), while keeping the underlying model fully frozen. During inference, these visual prompts are combined with images via addition and processed by mPLUG-Owl2 with the textual query "Rate the technical quality of the image." Evaluations across distortion types (synthetic, realistic, AI-generated) on KADID- 10k, KonIQ-10k, and AGIQA-3k demonstrate competitive performance against full finetuned methods and specialized NR-IQA models, achieving 0.93 SRCC on KADID-10k. To our knowledge, this is the first work to leverage pixel-space visual prompts for NR-IQA, enabling efficient MLLM adaptation for low-level vision tasks. The source code is publicly available at https: // github. com/ yahya-ben/ mplug2-vp-for-nriqa .
Vision-Language Model for Object Detection and Segmentation: A Review and Evaluation
Vision-Language Model (VLM) have gained widespread adoption in Open-Vocabulary (OV) object detection and segmentation tasks. Despite they have shown promise on OV-related tasks, their effectiveness in conventional vision tasks has thus far been unevaluated. In this work, we present the systematic review of VLM-based detection and segmentation, view VLM as the foundational model and conduct comprehensive evaluations across multiple downstream tasks for the first time: 1) The evaluation spans eight detection scenarios (closed-set detection, domain adaptation, crowded objects, etc.) and eight segmentation scenarios (few-shot, open-world, small object, etc.), revealing distinct performance advantages and limitations of various VLM architectures across tasks. 2) As for detection tasks, we evaluate VLMs under three finetuning granularities: zero prediction, visual fine-tuning, and text prompt, and further analyze how different finetuning strategies impact performance under varied task. 3) Based on empirical findings, we provide in-depth analysis of the correlations between task characteristics, model architectures, and training methodologies, offering insights for future VLM design. 4) We believe that this work shall be valuable to the pattern recognition experts working in the fields of computer vision, multimodal learning, and vision foundation models by introducing them to the problem, and familiarizing them with the current status of the progress while providing promising directions for future research. A project associated with this review and evaluation has been created at https://github.com/better-chao/perceptual_abilities_evaluation.
FineCIR: Explicit Parsing of Fine-Grained Modification Semantics for Composed Image Retrieval
Composed Image Retrieval (CIR) facilitates image retrieval through a multimodal query consisting of a reference image and modification text. The reference image defines the retrieval context, while the modification text specifies desired alterations. However, existing CIR datasets predominantly employ coarse-grained modification text (CoarseMT), which inadequately captures fine-grained retrieval intents. This limitation introduces two key challenges: (1) ignoring detailed differences leads to imprecise positive samples, and (2) greater ambiguity arises when retrieving visually similar images. These issues degrade retrieval accuracy, necessitating manual result filtering or repeated queries. To address these limitations, we develop a robust fine-grained CIR data annotation pipeline that minimizes imprecise positive samples and enhances CIR systems' ability to discern modification intents accurately. Using this pipeline, we refine the FashionIQ and CIRR datasets to create two fine-grained CIR datasets: Fine-FashionIQ and Fine-CIRR. Furthermore, we introduce FineCIR, the first CIR framework explicitly designed to parse the modification text. FineCIR effectively captures fine-grained modification semantics and aligns them with ambiguous visual entities, enhancing retrieval precision. Extensive experiments demonstrate that FineCIR consistently outperforms state-of-the-art CIR baselines on both fine-grained and traditional CIR benchmark datasets. Our FineCIR code and fine-grained CIR datasets are available at https://github.com/SDU-L/FineCIR.git.
Index-Preserving Lightweight Token Pruning for Efficient Document Understanding in Vision-Language Models
Recent progress in vision-language models (VLMs) has led to impressive results in document understanding tasks, but their high computational demands remain a challenge. To mitigate the compute burdens, we propose a lightweight token pruning framework that filters out non-informative background regions from document images prior to VLM processing. A binary patch-level classifier removes non-text areas, and a max-pooling refinement step recovers fragmented text regions to enhance spatial coherence. Experiments on real-world document datasets demonstrate that our approach substantially lowers computational costs, while maintaining comparable accuracy.
GeoPix: Multi-Modal Large Language Model for Pixel-level Image Understanding in Remote Sensing
Multi-modal large language models (MLLMs) have achieved remarkable success in image- and region-level remote sensing (RS) image understanding tasks, such as image captioning, visual question answering, and visual grounding. However, existing RS MLLMs lack the pixel-level dialogue capability, which involves responding to user instructions with segmentation masks for specific instances. In this paper, we propose GeoPix, a RS MLLM that extends image understanding capabilities to the pixel level. This is achieved by equipping the MLLM with a mask predictor, which transforms visual features from the vision encoder into masks conditioned on the LLM's segmentation token embeddings. To facilitate the segmentation of multi-scale objects in RS imagery, a class-wise learnable memory module is integrated into the mask predictor to capture and store class-wise geo-context at the instance level across the entire dataset. In addition, to address the absence of large-scale datasets for training pixel-level RS MLLMs, we construct the GeoPixInstruct dataset, comprising 65,463 images and 140,412 instances, with each instance annotated with text descriptions, bounding boxes, and masks. Furthermore, we develop a two-stage training strategy to balance the distinct requirements of text generation and masks prediction in multi-modal multi-task optimization. Extensive experiments verify the effectiveness and superiority of GeoPix in pixel-level segmentation tasks, while also maintaining competitive performance in image- and region-level benchmarks.
PixelRefer: A Unified Framework for Spatio-Temporal Object Referring with Arbitrary Granularity
Multimodal large language models (MLLMs) have demonstrated strong general-purpose capabilities in open-world visual comprehension. However, most existing MLLMs primarily focus on holistic, scene-level understanding, often overlooking the need for fine-grained, object-centric reasoning. In this paper, we present PixelRefer, a unified region-level MLLM framework that enables advanced fine-grained understanding over user-specified regions across both images and videos. Motivated by the observation that LLM attention predominantly focuses on object-level tokens, we propose a Scale-Adaptive Object Tokenizer (SAOT) to generate compact and semantically rich object representations from free-form regions. Our analysis reveals that global visual tokens contribute mainly in early LLM layers, inspiring the design of PixelRefer-Lite, an efficient variant that employs an Object-Centric Infusion module to pre-fuse global context into object tokens. This yields a lightweight Object-Only Framework that substantially reduces computational cost while maintaining high semantic fidelity. To facilitate fine-grained instruction tuning, we curate PixelRefer-2.2M, a high-quality object-centric instruction dataset. Extensive experiments across a range of benchmarks validate that PixelRefer achieves leading performance with fewer training samples, while PixelRefer-Lite offers competitive accuracy with notable gains in efficiency.
Focus on Local: Finding Reliable Discriminative Regions for Visual Place Recognition
Visual Place Recognition (VPR) is aimed at predicting the location of a query image by referencing a database of geotagged images. For VPR task, often fewer discriminative local regions in an image produce important effects while mundane background regions do not contribute or even cause perceptual aliasing because of easy overlap. However, existing methods lack precisely modeling and full exploitation of these discriminative regions. In this paper, we propose the Focus on Local (FoL) approach to stimulate the performance of image retrieval and re-ranking in VPR simultaneously by mining and exploiting reliable discriminative local regions in images and introducing pseudo-correlation supervision. First, we design two losses, Extraction-Aggregation Spatial Alignment Loss (SAL) and Foreground-Background Contrast Enhancement Loss (CEL), to explicitly model reliable discriminative local regions and use them to guide the generation of global representations and efficient re-ranking. Second, we introduce a weakly-supervised local feature training strategy based on pseudo-correspondences obtained from aggregating global features to alleviate the lack of local correspondences ground truth for the VPR task. Third, we suggest an efficient re-ranking pipeline that is efficiently and precisely based on discriminative region guidance. Finally, experimental results show that our FoL achieves the state-of-the-art on multiple VPR benchmarks in both image retrieval and re-ranking stages and also significantly outperforms existing two-stage VPR methods in terms of computational efficiency. Code and models are available at https://github.com/chenshunpeng/FoL
TextBite: A Historical Czech Document Dataset for Logical Page Segmentation
Logical page segmentation is an important step in document analysis, enabling better semantic representations, information retrieval, and text understanding. Previous approaches define logical segmentation either through text or geometric objects, relying on OCR or precise geometry. To avoid the need for OCR, we define the task purely as segmentation in the image domain. Furthermore, to ensure the evaluation remains unaffected by geometrical variations that do not impact text segmentation, we propose to use only foreground text pixels in the evaluation metric and disregard all background pixels. To support research in logical document segmentation, we introduce TextBite, a dataset of historical Czech documents spanning the 18th to 20th centuries, featuring diverse layouts from newspapers, dictionaries, and handwritten records. The dataset comprises 8,449 page images with 78,863 annotated segments of logically and thematically coherent text. We propose a set of baseline methods combining text region detection and relation prediction. The dataset, baselines and evaluation framework can be accessed at https://github.com/DCGM/textbite-dataset.
Document Haystack: A Long Context Multimodal Image/Document Understanding Vision LLM Benchmark
The proliferation of multimodal Large Language Models has significantly advanced the ability to analyze and understand complex data inputs from different modalities. However, the processing of long documents remains under-explored, largely due to a lack of suitable benchmarks. To address this, we introduce Document Haystack, a comprehensive benchmark designed to evaluate the performance of Vision Language Models (VLMs) on long, visually complex documents. Document Haystack features documents ranging from 5 to 200 pages and strategically inserts pure text or multimodal text+image "needles" at various depths within the documents to challenge VLMs' retrieval capabilities. Comprising 400 document variants and a total of 8,250 questions, it is supported by an objective, automated evaluation framework. We detail the construction and characteristics of the Document Haystack dataset, present results from prominent VLMs and discuss potential research avenues in this area.
Context-aware Feature Generation for Zero-shot Semantic Segmentation
Existing semantic segmentation models heavily rely on dense pixel-wise annotations. To reduce the annotation pressure, we focus on a challenging task named zero-shot semantic segmentation, which aims to segment unseen objects with zero annotations. This task can be accomplished by transferring knowledge across categories via semantic word embeddings. In this paper, we propose a novel context-aware feature generation method for zero-shot segmentation named CaGNet. In particular, with the observation that a pixel-wise feature highly depends on its contextual information, we insert a contextual module in a segmentation network to capture the pixel-wise contextual information, which guides the process of generating more diverse and context-aware features from semantic word embeddings. Our method achieves state-of-the-art results on three benchmark datasets for zero-shot segmentation. Codes are available at: https://github.com/bcmi/CaGNet-Zero-Shot-Semantic-Segmentation.
Where We Are and What We're Looking At: Query Based Worldwide Image Geo-localization Using Hierarchies and Scenes
Determining the exact latitude and longitude that a photo was taken is a useful and widely applicable task, yet it remains exceptionally difficult despite the accelerated progress of other computer vision tasks. Most previous approaches have opted to learn a single representation of query images, which are then classified at different levels of geographic granularity. These approaches fail to exploit the different visual cues that give context to different hierarchies, such as the country, state, and city level. To this end, we introduce an end-to-end transformer-based architecture that exploits the relationship between different geographic levels (which we refer to as hierarchies) and the corresponding visual scene information in an image through hierarchical cross-attention. We achieve this by learning a query for each geographic hierarchy and scene type. Furthermore, we learn a separate representation for different environmental scenes, as different scenes in the same location are often defined by completely different visual features. We achieve state of the art street level accuracy on 4 standard geo-localization datasets : Im2GPS, Im2GPS3k, YFCC4k, and YFCC26k, as well as qualitatively demonstrate how our method learns different representations for different visual hierarchies and scenes, which has not been demonstrated in the previous methods. These previous testing datasets mostly consist of iconic landmarks or images taken from social media, which makes them either a memorization task, or biased towards certain places. To address this issue we introduce a much harder testing dataset, Google-World-Streets-15k, comprised of images taken from Google Streetview covering the whole planet and present state of the art results. Our code will be made available in the camera-ready version.
ImageInWords: Unlocking Hyper-Detailed Image Descriptions
Despite the longstanding adage "an image is worth a thousand words," creating accurate and hyper-detailed image descriptions for training Vision-Language models remains challenging. Current datasets typically have web-scraped descriptions that are short, low-granularity, and often contain details unrelated to the visual content. As a result, models trained on such data generate descriptions replete with missing information, visual inconsistencies, and hallucinations. To address these issues, we introduce ImageInWords (IIW), a carefully designed human-in-the-loop annotation framework for curating hyper-detailed image descriptions and a new dataset resulting from this process. We validate the framework through evaluations focused on the quality of the dataset and its utility for fine-tuning with considerations for readability, comprehensiveness, specificity, hallucinations, and human-likeness. Our dataset significantly improves across these dimensions compared to recently released datasets (+66%) and GPT-4V outputs (+48%). Furthermore, models fine-tuned with IIW data excel by +31% against prior work along the same human evaluation dimensions. Given our fine-tuned models, we also evaluate text-to-image generation and vision-language reasoning. Our model's descriptions can generate images closest to the original, as judged by both automated and human metrics. We also find our model produces more compositionally rich descriptions, outperforming the best baseline by up to 6% on ARO, SVO-Probes, and Winoground datasets.
Generative Powers of Ten
We present a method that uses a text-to-image model to generate consistent content across multiple image scales, enabling extreme semantic zooms into a scene, e.g., ranging from a wide-angle landscape view of a forest to a macro shot of an insect sitting on one of the tree branches. We achieve this through a joint multi-scale diffusion sampling approach that encourages consistency across different scales while preserving the integrity of each individual sampling process. Since each generated scale is guided by a different text prompt, our method enables deeper levels of zoom than traditional super-resolution methods that may struggle to create new contextual structure at vastly different scales. We compare our method qualitatively with alternative techniques in image super-resolution and outpainting, and show that our method is most effective at generating consistent multi-scale content.
Not All Pixels Are Equal: Learning Pixel Hardness for Semantic Segmentation
Semantic segmentation has recently witnessed great progress. Despite the impressive overall results, the segmentation performance in some hard areas (e.g., small objects or thin parts) is still not promising. A straightforward solution is hard sample mining, which is widely used in object detection. Yet, most existing hard pixel mining strategies for semantic segmentation often rely on pixel's loss value, which tends to decrease during training. Intuitively, the pixel hardness for segmentation mainly depends on image structure and is expected to be stable. In this paper, we propose to learn pixel hardness for semantic segmentation, leveraging hardness information contained in global and historical loss values. More precisely, we add a gradient-independent branch for learning a hardness level (HL) map by maximizing hardness-weighted segmentation loss, which is minimized for the segmentation head. This encourages large hardness values in difficult areas, leading to appropriate and stable HL map. Despite its simplicity, the proposed method can be applied to most segmentation methods with no and marginal extra cost during inference and training, respectively. Without bells and whistles, the proposed method achieves consistent/significant improvement (1.37% mIoU on average) over most popular semantic segmentation methods on Cityscapes dataset, and demonstrates good generalization ability across domains. The source codes are available at https://github.com/Menoly-xin/Hardness-Level-Learning .
Open-RGBT: Open-vocabulary RGB-T Zero-shot Semantic Segmentation in Open-world Environments
Semantic segmentation is a critical technique for effective scene understanding. Traditional RGB-T semantic segmentation models often struggle to generalize across diverse scenarios due to their reliance on pretrained models and predefined categories. Recent advancements in Visual Language Models (VLMs) have facilitated a shift from closed-set to open-vocabulary semantic segmentation methods. However, these models face challenges in dealing with intricate scenes, primarily due to the heterogeneity between RGB and thermal modalities. To address this gap, we present Open-RGBT, a novel open-vocabulary RGB-T semantic segmentation model. Specifically, we obtain instance-level detection proposals by incorporating visual prompts to enhance category understanding. Additionally, we employ the CLIP model to assess image-text similarity, which helps correct semantic consistency and mitigates ambiguities in category identification. Empirical evaluations demonstrate that Open-RGBT achieves superior performance in diverse and challenging real-world scenarios, even in the wild, significantly advancing the field of RGB-T semantic segmentation.
Re-thinking Temporal Search for Long-Form Video Understanding
Efficient understanding of long-form videos remains a significant challenge in computer vision. In this work, we revisit temporal search paradigms for long-form video understanding, studying a fundamental issue pertaining to all state-of-the-art (SOTA) long-context vision-language models (VLMs). In particular, our contributions are two-fold: First, we formulate temporal search as a Long Video Haystack problem, i.e., finding a minimal set of relevant frames (typically one to five) among tens of thousands of frames from real-world long videos given specific queries. To validate our formulation, we create LV-Haystack, the first benchmark containing 3,874 human-annotated instances with fine-grained evaluation metrics for assessing keyframe search quality and computational efficiency. Experimental results on LV-Haystack highlight a significant research gap in temporal search capabilities, with SOTA keyframe selection methods achieving only 2.1% temporal F1 score on the LVBench subset. Next, inspired by visual search in images, we re-think temporal searching and propose a lightweight keyframe searching framework, T*, which casts the expensive temporal search as a spatial search problem. T* leverages superior visual localization capabilities typically used in images and introduces an adaptive zooming-in mechanism that operates across both temporal and spatial dimensions. Our extensive experiments show that when integrated with existing methods, T* significantly improves SOTA long-form video understanding performance. Specifically, under an inference budget of 32 frames, T* improves GPT-4o's performance from 50.5% to 53.1% and LLaVA-OneVision-72B's performance from 56.5% to 62.4% on LongVideoBench XL subset. Our PyTorch code, benchmark dataset and models are included in the Supplementary material.
Pixel-SAIL: Single Transformer For Pixel-Grounded Understanding
Multimodal Large Language Models (MLLMs) achieve remarkable performance for fine-grained pixel-level understanding tasks. However, all the works rely heavily on extra components, such as vision encoder (CLIP), segmentation experts, leading to high system complexity and limiting model scaling. In this work, our goal is to explore a highly simplified MLLM without introducing extra components. Our work is motivated by the recent works on Single trAnsformer as a unified vIsion-Language Model (SAIL) design, where these works jointly learn vision tokens and text tokens in transformers. We present Pixel-SAIL, a single transformer for pixel-wise MLLM tasks. In particular, we present three technical improvements on the plain baseline. First, we design a learnable upsampling module to refine visual token features. Secondly, we propose a novel visual prompt injection strategy to enable the single transformer to understand visual prompt inputs and benefit from the early fusion of visual prompt embeddings and vision tokens. Thirdly, we introduce a vision expert distillation strategy to efficiently enhance the single transformer's fine-grained feature extraction capability. In addition, we have collected a comprehensive pixel understanding benchmark (PerBench), using a manual check. It includes three tasks: detailed object description, visual prompt-based question answering, and visual-text referring segmentation. Extensive experiments on four referring segmentation benchmarks, one visual prompt benchmark, and our PerBench show that our Pixel-SAIL achieves comparable or even better results with a much simpler pipeline. Code and model will be released at https://github.com/magic-research/Sa2VA.
To Match or Not to Match: Revisiting Image Matching for Reliable Visual Place Recognition
Visual Place Recognition (VPR) is a critical task in computer vision, traditionally enhanced by re-ranking retrieval results with image matching. However, recent advancements in VPR methods have significantly improved performance, challenging the necessity of re-ranking. In this work, we show that modern retrieval systems often reach a point where re-ranking can degrade results, as current VPR datasets are largely saturated. We propose using image matching as a verification step to assess retrieval confidence, demonstrating that inlier counts can reliably predict when re-ranking is beneficial. Our findings shift the paradigm of retrieval pipelines, offering insights for more robust and adaptive VPR systems. The code is available at https://github.com/FarInHeight/To-Match-or-Not-to-Match.
Hybrid Global-Local Representation with Augmented Spatial Guidance for Zero-Shot Referring Image Segmentation
Recent advances in zero-shot referring image segmentation (RIS), driven by models such as the Segment Anything Model (SAM) and CLIP, have made substantial progress in aligning visual and textual information. Despite these successes, the extraction of precise and high-quality mask region representations remains a critical challenge, limiting the full potential of RIS tasks. In this paper, we introduce a training-free, hybrid global-local feature extraction approach that integrates detailed mask-specific features with contextual information from the surrounding area, enhancing mask region representation. To further strengthen alignment between mask regions and referring expressions, we propose a spatial guidance augmentation strategy that improves spatial coherence, which is essential for accurately localizing described areas. By incorporating multiple spatial cues, this approach facilitates more robust and precise referring segmentation. Extensive experiments on standard RIS benchmarks demonstrate that our method significantly outperforms existing zero-shot RIS models, achieving substantial performance gains. We believe our approach advances RIS tasks and establishes a versatile framework for region-text alignment, offering broader implications for cross-modal understanding and interaction. Code is available at https://github.com/fhgyuanshen/HybridGL .
A Picture is Worth More Than 77 Text Tokens: Evaluating CLIP-Style Models on Dense Captions
Curation methods for massive vision-language datasets trade off between dataset size and quality. However, even the highest quality of available curated captions are far too short to capture the rich visual detail in an image. To show the value of dense and highly-aligned image-text pairs, we collect the Densely Captioned Images (DCI) dataset, containing 8012 natural images human-annotated with mask-aligned descriptions averaging above 1000 words each. With precise and reliable captions associated with specific parts of an image, we can evaluate vision-language models' (VLMs) understanding of image content with a novel task that matches each caption with its corresponding subcrop. As current models are often limited to 77 text tokens, we also introduce a summarized version (sDCI) in which each caption length is limited. We show that modern techniques that make progress on standard benchmarks do not correspond with significant improvement on our sDCI based benchmark. Lastly, we finetune CLIP using sDCI and show significant improvements over the baseline despite a small training set. By releasing the first human annotated dense image captioning dataset, we hope to enable the development of new benchmarks or fine-tuning recipes for the next generation of VLMs to come.
Monkey: Image Resolution and Text Label Are Important Things for Large Multi-modal Models
Large Multimodal Models have demonstrated impressive capabilities in understanding general vision-language tasks. However, due to the limitation of supported input resolution (e.g., 448 x 448) as well as the inexhaustive description of the training image-text pair, these models often encounter challenges when dealing with intricate scene understandings and narratives. Here we address the problem by proposing the Monkey. Our contributions are two-fold: 1) without pretraining from the start, our method can be built upon an existing vision encoder (e.g., vit-BigHuge) to effectively improve the input resolution capacity up to 896 x 1344 pixels; 2) we propose a multi-level description generation method, which automatically provides rich information that can guide model to learn contextual association between scenes and objects. Our extensive testing across more than 16 distinct datasets reveals that Monkey achieves consistently competitive performance over the existing LMMs on fundamental tasks, such as Image Captioning, General Visual Question Answering (VQA), and Document-oriented VQA. Models, interactive demo, and the source code are provided at the following https://github.com/Yuliang-Liu/Monkey.
EAST: An Efficient and Accurate Scene Text Detector
Previous approaches for scene text detection have already achieved promising performances across various benchmarks. However, they usually fall short when dealing with challenging scenarios, even when equipped with deep neural network models, because the overall performance is determined by the interplay of multiple stages and components in the pipelines. In this work, we propose a simple yet powerful pipeline that yields fast and accurate text detection in natural scenes. The pipeline directly predicts words or text lines of arbitrary orientations and quadrilateral shapes in full images, eliminating unnecessary intermediate steps (e.g., candidate aggregation and word partitioning), with a single neural network. The simplicity of our pipeline allows concentrating efforts on designing loss functions and neural network architecture. Experiments on standard datasets including ICDAR 2015, COCO-Text and MSRA-TD500 demonstrate that the proposed algorithm significantly outperforms state-of-the-art methods in terms of both accuracy and efficiency. On the ICDAR 2015 dataset, the proposed algorithm achieves an F-score of 0.7820 at 13.2fps at 720p resolution.
TextCaps: a Dataset for Image Captioning with Reading Comprehension
Image descriptions can help visually impaired people to quickly understand the image content. While we made significant progress in automatically describing images and optical character recognition, current approaches are unable to include written text in their descriptions, although text is omnipresent in human environments and frequently critical to understand our surroundings. To study how to comprehend text in the context of an image we collect a novel dataset, TextCaps, with 145k captions for 28k images. Our dataset challenges a model to recognize text, relate it to its visual context, and decide what part of the text to copy or paraphrase, requiring spatial, semantic, and visual reasoning between multiple text tokens and visual entities, such as objects. We study baselines and adapt existing approaches to this new task, which we refer to as image captioning with reading comprehension. Our analysis with automatic and human studies shows that our new TextCaps dataset provides many new technical challenges over previous datasets.
PixLore: A Dataset-driven Approach to Rich Image Captioning
In the domain of vision-language integration, generating detailed image captions poses a significant challenge due to the lack of a curated and rich dataset. This study introduces PixLore, a novel method that leverages Querying Transformers through the fine-tuning of the BLIP-2 model using the LoRa method on a standard commercial GPU. Our approach, which involves training on a carefully assembled dataset from state-of-the-art Computer Vision models combined and augmented by ChatGPT, addresses the question of whether intricate image understanding can be achieved with an ensemble of smaller-scale models. Comparative evaluations against major models such as GPT-4 and Google Bard demonstrate that PixLore-2.7B, despite having considerably fewer parameters, is rated higher than the existing State-of-the-Art models in over half of the assessments. This research not only presents a groundbreaking approach but also highlights the importance of well-curated datasets in enhancing the performance of smaller models.
NExT-Chat: An LMM for Chat, Detection and Segmentation
The development of large language models (LLMs) has greatly advanced the field of multimodal understanding, leading to the emergence of large multimodal models (LMMs). In order to enhance the level of visual comprehension, recent studies have equipped LMMs with region-level understanding capabilities by representing object bounding box coordinates as a series of text sequences (pixel2seq). In this paper, we introduce a novel paradigm for object location modeling called pixel2emb method, where we ask the LMM to output the location embeddings and then decoded by different decoders. This paradigm allows for different location formats (such as bounding boxes and masks) to be used in multimodal conversations Furthermore, this kind of embedding based location modeling enables the utilization of existing practices in localization tasks, such as detection and segmentation. In scenarios with limited resources, our pixel2emb demonstrates superior performance compared to existing state-of-the-art (SOTA) approaches in both the location input and output tasks under fair comparison. Leveraging the proposed pixel2emb method, we train an LMM named NExT-Chat and demonstrate its capability of handling multiple tasks like visual grounding, region caption, and grounded reasoning.
SpaText: Spatio-Textual Representation for Controllable Image Generation
Recent text-to-image diffusion models are able to generate convincing results of unprecedented quality. However, it is nearly impossible to control the shapes of different regions/objects or their layout in a fine-grained fashion. Previous attempts to provide such controls were hindered by their reliance on a fixed set of labels. To this end, we present SpaText - a new method for text-to-image generation using open-vocabulary scene control. In addition to a global text prompt that describes the entire scene, the user provides a segmentation map where each region of interest is annotated by a free-form natural language description. Due to lack of large-scale datasets that have a detailed textual description for each region in the image, we choose to leverage the current large-scale text-to-image datasets and base our approach on a novel CLIP-based spatio-textual representation, and show its effectiveness on two state-of-the-art diffusion models: pixel-based and latent-based. In addition, we show how to extend the classifier-free guidance method in diffusion models to the multi-conditional case and present an alternative accelerated inference algorithm. Finally, we offer several automatic evaluation metrics and use them, in addition to FID scores and a user study, to evaluate our method and show that it achieves state-of-the-art results on image generation with free-form textual scene control.
D2-Net: A Trainable CNN for Joint Detection and Description of Local Features
In this work we address the problem of finding reliable pixel-level correspondences under difficult imaging conditions. We propose an approach where a single convolutional neural network plays a dual role: It is simultaneously a dense feature descriptor and a feature detector. By postponing the detection to a later stage, the obtained keypoints are more stable than their traditional counterparts based on early detection of low-level structures. We show that this model can be trained using pixel correspondences extracted from readily available large-scale SfM reconstructions, without any further annotations. The proposed method obtains state-of-the-art performance on both the difficult Aachen Day-Night localization dataset and the InLoc indoor localization benchmark, as well as competitive performance on other benchmarks for image matching and 3D reconstruction.
Recognize Any Regions
Understanding the semantics of individual regions or patches within unconstrained images, such as in open-world object detection, represents a critical yet challenging task in computer vision. Building on the success of powerful image-level vision-language (ViL) foundation models like CLIP, recent efforts have sought to harness their capabilities by either training a contrastive model from scratch with an extensive collection of region-label pairs or aligning the outputs of a detection model with image-level representations of region proposals. Despite notable progress, these approaches are plagued by computationally intensive training requirements, susceptibility to data noise, and deficiency in contextual information. To address these limitations, we explore the synergistic potential of off-the-shelf foundation models, leveraging their respective strengths in localization and semantics. We introduce a novel, generic, and efficient region recognition architecture, named RegionSpot, designed to integrate position-aware localization knowledge from a localization foundation model (e.g., SAM) with semantic information extracted from a ViL model (e.g., CLIP). To fully exploit pretrained knowledge while minimizing training overhead, we keep both foundation models frozen, focusing optimization efforts solely on a lightweight attention-based knowledge integration module. Through extensive experiments in the context of open-world object recognition, our RegionSpot demonstrates significant performance improvements over prior alternatives, while also providing substantial computational savings. For instance, training our model with 3 million data in a single day using 8 V100 GPUs. Our model outperforms GLIP by 6.5 % in mean average precision (mAP), with an even larger margin by 14.8 % for more challenging and rare categories.
MTA-CLIP: Language-Guided Semantic Segmentation with Mask-Text Alignment
Recent approaches have shown that large-scale vision-language models such as CLIP can improve semantic segmentation performance. These methods typically aim for pixel-level vision-language alignment, but often rely on low resolution image features from CLIP, resulting in class ambiguities along boundaries. Moreover, the global scene representations in CLIP text embeddings do not directly correlate with the local and detailed pixel-level features, making meaningful alignment more difficult. To address these limitations, we introduce MTA-CLIP, a novel framework employing mask-level vision-language alignment. Specifically, we first propose Mask-Text Decoder that enhances the mask representations using rich textual data with the CLIP language model. Subsequently, it aligns mask representations with text embeddings using Mask-to-Text Contrastive Learning. Furthermore, we introduce MaskText Prompt Learning, utilizing multiple context-specific prompts for text embeddings to capture diverse class representations across masks. Overall, MTA-CLIP achieves state-of-the-art, surpassing prior works by an average of 2.8% and 1.3% on on standard benchmark datasets, ADE20k and Cityscapes, respectively.
Depth Anything V2
This work presents Depth Anything V2. Without pursuing fancy techniques, we aim to reveal crucial findings to pave the way towards building a powerful monocular depth estimation model. Notably, compared with V1, this version produces much finer and more robust depth predictions through three key practices: 1) replacing all labeled real images with synthetic images, 2) scaling up the capacity of our teacher model, and 3) teaching student models via the bridge of large-scale pseudo-labeled real images. Compared with the latest models built on Stable Diffusion, our models are significantly more efficient (more than 10x faster) and more accurate. We offer models of different scales (ranging from 25M to 1.3B params) to support extensive scenarios. Benefiting from their strong generalization capability, we fine-tune them with metric depth labels to obtain our metric depth models. In addition to our models, considering the limited diversity and frequent noise in current test sets, we construct a versatile evaluation benchmark with precise annotations and diverse scenes to facilitate future research.
SETR: A Two-Stage Semantic-Enhanced Framework for Zero-Shot Composed Image Retrieval
Zero-shot Composed Image Retrieval (ZS-CIR) aims to retrieve a target image given a reference image and a relative text, without relying on costly triplet annotations. Existing CLIP-based methods face two core challenges: (1) union-based feature fusion indiscriminately aggregates all visual cues, carrying over irrelevant background details that dilute the intended modification, and (2) global cosine similarity from CLIP embeddings lacks the ability to resolve fine-grained semantic relations. To address these issues, we propose SETR (Semantic-enhanced Two-Stage Retrieval). In the coarse retrieval stage, SETR introduces an intersection-driven strategy that retains only the overlapping semantics between the reference image and relative text, thereby filtering out distractors inherent to union-based fusion and producing a cleaner, high-precision candidate set. In the fine-grained re-ranking stage, we adapt a pretrained multimodal LLM with Low-Rank Adaptation to conduct binary semantic relevance judgments ("Yes/No"), which goes beyond CLIP's global feature matching by explicitly verifying relational and attribute-level consistency. Together, these two stages form a complementary pipeline: coarse retrieval narrows the candidate pool with high recall, while re-ranking ensures precise alignment with nuanced textual modifications. Experiments on CIRR, Fashion-IQ, and CIRCO show that SETR achieves new state-of-the-art performance, improving Recall@1 on CIRR by up to 15.15 points. Our results establish two-stage reasoning as a general paradigm for robust and portable ZS-CIR.
Set-of-Mark Prompting Unleashes Extraordinary Visual Grounding in GPT-4V
We present Set-of-Mark (SoM), a new visual prompting method, to unleash the visual grounding abilities of large multimodal models (LMMs), such as GPT-4V. As illustrated in Fig. 1 (right), we employ off-the-shelf interactive segmentation models, such as SAM, to partition an image into regions at different levels of granularity, and overlay these regions with a set of marks e.g., alphanumerics, masks, boxes. Using the marked image as input, GPT-4V can answer the questions that require visual grounding. We perform a comprehensive empirical study to validate the effectiveness of SoM on a wide range of fine-grained vision and multimodal tasks. For example, our experiments show that GPT-4V with SoM outperforms the state-of-the-art fully-finetuned referring segmentation model on RefCOCOg in a zero-shot setting.
DPSeg: Dual-Prompt Cost Volume Learning for Open-Vocabulary Semantic Segmentation
Open-vocabulary semantic segmentation aims to segment images into distinct semantic regions for both seen and unseen categories at the pixel level. Current methods utilize text embeddings from pre-trained vision-language models like CLIP but struggle with the inherent domain gap between image and text embeddings, even after extensive alignment during training. Additionally, relying solely on deep text-aligned features limits shallow-level feature guidance, which is crucial for detecting small objects and fine details, ultimately reducing segmentation accuracy. To address these limitations, we propose a dual prompting framework, DPSeg, for this task. Our approach combines dual-prompt cost volume generation, a cost volume-guided decoder, and a semantic-guided prompt refinement strategy that leverages our dual prompting scheme to mitigate alignment issues in visual prompt generation. By incorporating visual embeddings from a visual prompt encoder, our approach reduces the domain gap between text and image embeddings while providing multi-level guidance through shallow features. Extensive experiments demonstrate that our method significantly outperforms existing state-of-the-art approaches on multiple public datasets.
Generalized Few-Shot Semantic Segmentation: All You Need is Fine-Tuning
Generalized few-shot semantic segmentation was introduced to move beyond only evaluating few-shot segmentation models on novel classes to include testing their ability to remember base classes. While the current state-of-the-art approach is based on meta-learning, it performs poorly and saturates in learning after observing only a few shots. We propose the first fine-tuning solution, and demonstrate that it addresses the saturation problem while achieving state-of-the-art results on two datasets, PASCAL-5i and COCO-20i. We also show that it outperforms existing methods, whether fine-tuning multiple final layers or only the final layer. Finally, we present a triplet loss regularization that shows how to redistribute the balance of performance between novel and base categories so that there is a smaller gap between them.
Probing the Role of Positional Information in Vision-Language Models
In most Vision-Language models (VL), the understanding of the image structure is enabled by injecting the position information (PI) about objects in the image. In our case study of LXMERT, a state-of-the-art VL model, we probe the use of the PI in the representation and study its effect on Visual Question Answering. We show that the model is not capable of leveraging the PI for the image-text matching task on a challenge set where only position differs. Yet, our experiments with probing confirm that the PI is indeed present in the representation. We introduce two strategies to tackle this: (i) Positional Information Pre-training and (ii) Contrastive Learning on PI using Cross-Modality Matching. Doing so, the model can correctly classify if images with detailed PI statements match. Additionally to the 2D information from bounding boxes, we introduce the object's depth as new feature for a better object localization in the space. Even though we were able to improve the model properties as defined by our probes, it only has a negligible effect on the downstream performance. Our results thus highlight an important issue of multimodal modeling: the mere presence of information detectable by a probing classifier is not a guarantee that the information is available in a cross-modal setup.
Image2Sentence based Asymmetrical Zero-shot Composed Image Retrieval
The task of composed image retrieval (CIR) aims to retrieve images based on the query image and the text describing the users' intent. Existing methods have made great progress with the advanced large vision-language (VL) model in CIR task, however, they generally suffer from two main issues: lack of labeled triplets for model training and difficulty of deployment on resource-restricted environments when deploying the large vision-language model. To tackle the above problems, we propose Image2Sentence based Asymmetric zero-shot composed image retrieval (ISA), which takes advantage of the VL model and only relies on unlabeled images for composition learning. In the framework, we propose a new adaptive token learner that maps an image to a sentence in the word embedding space of VL model. The sentence adaptively captures discriminative visual information and is further integrated with the text modifier. An asymmetric structure is devised for flexible deployment, in which the lightweight model is adopted for the query side while the large VL model is deployed on the gallery side. The global contrastive distillation and the local alignment regularization are adopted for the alignment between the light model and the VL model for CIR task. Our experiments demonstrate that the proposed ISA could better cope with the real retrieval scenarios and further improve retrieval accuracy and efficiency.
GOAL: Global-local Object Alignment Learning
Vision-language models like CLIP have shown impressive capabilities in aligning images and text, but they often struggle with lengthy and detailed text descriptions because of their training focus on short and concise captions. We present GOAL (Global-local Object Alignment Learning), a novel fine-tuning method that enhances CLIP's ability to handle lengthy text by leveraging both global and local semantic alignments between image and lengthy text. Our approach consists of two key components: Local Image-Sentence Matching (LISM), which identifies corresponding pairs between image segments and descriptive sentences, and Token Similarity-based Learning (TSL), which efficiently propagates local element attention through these matched pairs. Evaluating GOAL on three new benchmarks for image-lengthy text retrieval, we demonstrate significant improvements over baseline CLIP fine-tuning, establishing a simple yet effective approach for adapting CLIP to detailed textual descriptions. Through extensive experiments, we show that our method's focus on local semantic alignment alongside global context leads to more nuanced and representative embeddings, particularly beneficial for tasks requiring fine-grained understanding of lengthy text descriptions.
See More Details: Efficient Image Super-Resolution by Experts Mining
Reconstructing high-resolution (HR) images from low-resolution (LR) inputs poses a significant challenge in image super-resolution (SR). While recent approaches have demonstrated the efficacy of intricate operations customized for various objectives, the straightforward stacking of these disparate operations can result in a substantial computational burden, hampering their practical utility. In response, we introduce SeemoRe, an efficient SR model employing expert mining. Our approach strategically incorporates experts at different levels, adopting a collaborative methodology. At the macro scale, our experts address rank-wise and spatial-wise informative features, providing a holistic understanding. Subsequently, the model delves into the subtleties of rank choice by leveraging a mixture of low-rank experts. By tapping into experts specialized in distinct key factors crucial for accurate SR, our model excels in uncovering intricate intra-feature details. This collaborative approach is reminiscent of the concept of "see more", allowing our model to achieve an optimal performance with minimal computational costs in efficient settings. The source will be publicly made available at https://github.com/eduardzamfir/seemoredetails
SAIR: Learning Semantic-aware Implicit Representation
Implicit representation of an image can map arbitrary coordinates in the continuous domain to their corresponding color values, presenting a powerful capability for image reconstruction. Nevertheless, existing implicit representation approaches only focus on building continuous appearance mapping, ignoring the continuities of the semantic information across pixels. As a result, they can hardly achieve desired reconstruction results when the semantic information within input images is corrupted, for example, a large region misses. To address the issue, we propose to learn semantic-aware implicit representation (SAIR), that is, we make the implicit representation of each pixel rely on both its appearance and semantic information (\eg, which object does the pixel belong to). To this end, we propose a framework with two modules: (1) building a semantic implicit representation (SIR) for a corrupted image whose large regions miss. Given an arbitrary coordinate in the continuous domain, we can obtain its respective text-aligned embedding indicating the object the pixel belongs. (2) building an appearance implicit representation (AIR) based on the SIR. Given an arbitrary coordinate in the continuous domain, we can reconstruct its color whether or not the pixel is missed in the input. We validate the novel semantic-aware implicit representation method on the image inpainting task, and the extensive experiments demonstrate that our method surpasses state-of-the-art approaches by a significant margin.
SePiCo: Semantic-Guided Pixel Contrast for Domain Adaptive Semantic Segmentation
Domain adaptive semantic segmentation attempts to make satisfactory dense predictions on an unlabeled target domain by utilizing the supervised model trained on a labeled source domain. In this work, we propose Semantic-Guided Pixel Contrast (SePiCo), a novel one-stage adaptation framework that highlights the semantic concepts of individual pixels to promote learning of class-discriminative and class-balanced pixel representations across domains, eventually boosting the performance of self-training methods. Specifically, to explore proper semantic concepts, we first investigate a centroid-aware pixel contrast that employs the category centroids of the entire source domain or a single source image to guide the learning of discriminative features. Considering the possible lack of category diversity in semantic concepts, we then blaze a trail of distributional perspective to involve a sufficient quantity of instances, namely distribution-aware pixel contrast, in which we approximate the true distribution of each semantic category from the statistics of labeled source data. Moreover, such an optimization objective can derive a closed-form upper bound by implicitly involving an infinite number of (dis)similar pairs, making it computationally efficient. Extensive experiments show that SePiCo not only helps stabilize training but also yields discriminative representations, making significant progress on both synthetic-to-real and daytime-to-nighttime adaptation scenarios.
Towards VQA Models That Can Read
Studies have shown that a dominant class of questions asked by visually impaired users on images of their surroundings involves reading text in the image. But today's VQA models can not read! Our paper takes a first step towards addressing this problem. First, we introduce a new "TextVQA" dataset to facilitate progress on this important problem. Existing datasets either have a small proportion of questions about text (e.g., the VQA dataset) or are too small (e.g., the VizWiz dataset). TextVQA contains 45,336 questions on 28,408 images that require reasoning about text to answer. Second, we introduce a novel model architecture that reads text in the image, reasons about it in the context of the image and the question, and predicts an answer which might be a deduction based on the text and the image or composed of the strings found in the image. Consequently, we call our approach Look, Read, Reason & Answer (LoRRA). We show that LoRRA outperforms existing state-of-the-art VQA models on our TextVQA dataset. We find that the gap between human performance and machine performance is significantly larger on TextVQA than on VQA 2.0, suggesting that TextVQA is well-suited to benchmark progress along directions complementary to VQA 2.0.
Aligning and Prompting Everything All at Once for Universal Visual Perception
Vision foundation models have been explored recently to build general-purpose vision systems. However, predominant paradigms, driven by casting instance-level tasks as an object-word alignment, bring heavy cross-modality interaction, which is not effective in prompting object detection and visual grounding. Another line of work that focuses on pixel-level tasks often encounters a large annotation gap of things and stuff, and suffers from mutual interference between foreground-object and background-class segmentation. In stark contrast to the prevailing methods, we present APE, a universal visual perception model for aligning and prompting everything all at once in an image to perform diverse tasks, i.e., detection, segmentation, and grounding, as an instance-level sentence-object matching paradigm. Specifically, APE advances the convergence of detection and grounding by reformulating language-guided grounding as open-vocabulary detection, which efficiently scales up model prompting to thousands of category vocabularies and region descriptions while maintaining the effectiveness of cross-modality fusion. To bridge the granularity gap of different pixel-level tasks, APE equalizes semantic and panoptic segmentation to proxy instance learning by considering any isolated regions as individual instances. APE aligns vision and language representation on broad data with natural and challenging characteristics all at once without task-specific fine-tuning. The extensive experiments on over 160 datasets demonstrate that, with only one-suit of weights, APE outperforms (or is on par with) the state-of-the-art models, proving that an effective yet universal perception for anything aligning and prompting is indeed feasible. Codes and trained models are released at https://github.com/shenyunhang/APE.
Inherently Faithful Attention Maps for Vision Transformers
We introduce an attention-based method that uses learned binary attention masks to ensure that only attended image regions influence the prediction. Context can strongly affect object perception, sometimes leading to biased representations, particularly when objects appear in out-of-distribution backgrounds. At the same time, many image-level object-centric tasks require identifying relevant regions, often requiring context. To address this conundrum, we propose a two-stage framework: stage 1 processes the full image to discover object parts and identify task-relevant regions, while stage 2 leverages input attention masking to restrict its receptive field to these regions, enabling a focused analysis while filtering out potentially spurious information. Both stages are trained jointly, allowing stage 2 to refine stage 1. Extensive experiments across diverse benchmarks demonstrate that our approach significantly improves robustness against spurious correlations and out-of-distribution backgrounds.
OAT: Object-Level Attention Transformer for Gaze Scanpath Prediction
Visual search is important in our daily life. The efficient allocation of visual attention is critical to effectively complete visual search tasks. Prior research has predominantly modelled the spatial allocation of visual attention in images at the pixel level, e.g. using a saliency map. However, emerging evidence shows that visual attention is guided by objects rather than pixel intensities. This paper introduces the Object-level Attention Transformer (OAT), which predicts human scanpaths as they search for a target object within a cluttered scene of distractors. OAT uses an encoder-decoder architecture. The encoder captures information about the position and appearance of the objects within an image and about the target. The decoder predicts the gaze scanpath as a sequence of object fixations, by integrating output features from both the encoder and decoder. We also propose a new positional encoding that better reflects spatial relationships between objects. We evaluated OAT on the Amazon book cover dataset and a new dataset for visual search that we collected. OAT's predicted gaze scanpaths align more closely with human gaze patterns, compared to predictions by algorithms based on spatial attention on both established metrics and a novel behavioural-based metric. Our results demonstrate the generalization ability of OAT, as it accurately predicts human scanpaths for unseen layouts and target objects.
SemVink: Advancing VLMs' Semantic Understanding of Optical Illusions via Visual Global Thinking
Vision-language models (VLMs) excel in semantic tasks but falter at a core human capability: detecting hidden content in optical illusions or AI-generated images through perceptual adjustments like zooming. We introduce HC-Bench, a benchmark of 112 images with hidden text, objects, and illusions, revealing that leading VLMs achieve near-zero accuracy (0-5.36%)-even with explicit prompting. Humans resolve such ambiguities instinctively, yet VLMs fail due to an overreliance on high-level semantics. Strikingly, we propose SemVink (Semantic Visual Thinking) by simply scaling images to low resolutions (32-128 pixels), which unlocks >99% accuracy by eliminating redundant visual noise. This exposes a critical architectural flaw: VLMs prioritize abstract reasoning over low-level visual operations crucial for real-world robustness. Our work urges a shift toward hybrid models integrating multi-scale processing, bridging the gap between computational vision and human cognition for applications in medical imaging, security, and beyond.
Diffusion Models for Zero-Shot Open-Vocabulary Segmentation
The variety of objects in the real world is nearly unlimited and is thus impossible to capture using models trained on a fixed set of categories. As a result, in recent years, open-vocabulary methods have attracted the interest of the community. This paper proposes a new method for zero-shot open-vocabulary segmentation. Prior work largely relies on contrastive training using image-text pairs, leveraging grouping mechanisms to learn image features that are both aligned with language and well-localised. This however can introduce ambiguity as the visual appearance of images with similar captions often varies. Instead, we leverage the generative properties of large-scale text-to-image diffusion models to sample a set of support images for a given textual category. This provides a distribution of appearances for a given text circumventing the ambiguity problem. We further propose a mechanism that considers the contextual background of the sampled images to better localise objects and segment the background directly. We show that our method can be used to ground several existing pre-trained self-supervised feature extractors in natural language and provide explainable predictions by mapping back to regions in the support set. Our proposal is training-free, relying on pre-trained components only, yet, shows strong performance on a range of open-vocabulary segmentation benchmarks, obtaining a lead of more than 10% on the Pascal VOC benchmark.
Visual Haystacks: Answering Harder Questions About Sets of Images
Recent advancements in Large Multimodal Models (LMMs) have made significant progress in the field of single-image visual question answering. However, these models face substantial challenges when tasked with queries that span extensive collections of images, similar to real-world scenarios like searching through large photo albums, finding specific information across the internet, or monitoring environmental changes through satellite imagery. This paper explores the task of Multi-Image Visual Question Answering (MIQA): given a large set of images and a natural language query, the task is to generate a relevant and grounded response. We propose a new public benchmark, dubbed "Visual Haystacks (VHs)," specifically designed to evaluate LMMs' capabilities in visual retrieval and reasoning over sets of unrelated images, where we perform comprehensive evaluations demonstrating that even robust closed-source models struggle significantly. Towards addressing these shortcomings, we introduce MIRAGE (Multi-Image Retrieval Augmented Generation), a novel retrieval/QA framework tailored for LMMs that confronts the challenges of MIQA with marked efficiency and accuracy improvements over baseline methods. Our evaluation shows that MIRAGE surpasses closed-source GPT-4o models by up to 11% on the VHs benchmark and offers up to 3.4x improvements in efficiency over text-focused multi-stage approaches.
Freeview Sketching: View-Aware Fine-Grained Sketch-Based Image Retrieval
In this paper, we delve into the intricate dynamics of Fine-Grained Sketch-Based Image Retrieval (FG-SBIR) by addressing a critical yet overlooked aspect -- the choice of viewpoint during sketch creation. Unlike photo systems that seamlessly handle diverse views through extensive datasets, sketch systems, with limited data collected from fixed perspectives, face challenges. Our pilot study, employing a pre-trained FG-SBIR model, highlights the system's struggle when query-sketches differ in viewpoint from target instances. Interestingly, a questionnaire however shows users desire autonomy, with a significant percentage favouring view-specific retrieval. To reconcile this, we advocate for a view-aware system, seamlessly accommodating both view-agnostic and view-specific tasks. Overcoming dataset limitations, our first contribution leverages multi-view 2D projections of 3D objects, instilling cross-modal view awareness. The second contribution introduces a customisable cross-modal feature through disentanglement, allowing effortless mode switching. Extensive experiments on standard datasets validate the effectiveness of our method.
Deep Learning Applied to Image and Text Matching
The ability to describe images with natural language sentences is the hallmark for image and language understanding. Such a system has wide ranging applications such as annotating images and using natural sentences to search for images.In this project we focus on the task of bidirectional image retrieval: such asystem is capable of retrieving an image based on a sentence (image search) andretrieve sentence based on an image query (image annotation). We present asystem based on a global ranking objective function which uses a combinationof convolutional neural networks (CNN) and multi layer perceptrons (MLP).It takes a pair of image and sentence and processes them in different channels,finally embedding it into a common multimodal vector space. These embeddingsencode abstract semantic information about the two inputs and can be comparedusing traditional information retrieval approaches. For each such pair, the modelreturns a score which is interpretted as a similarity metric. If this score is high,the image and sentence are likely to convey similar meaning, and if the score is low then they are likely not to. The visual input is modeled via deep convolutional neural network. On theother hand we explore three models for the textual module. The first one isbag of words with an MLP. The second one uses n-grams (bigram, trigrams,and a combination of trigram & skip-grams) with an MLP. The third is morespecialized deep network specific for modeling variable length sequences (SSE).We report comparable performance to recent work in the field, even though ouroverall model is simpler. We also show that the training time choice of how wecan generate our negative samples has a significant impact on performance, and can be used to specialize the bi-directional system in one particular task.
Unsupervised Deep Features for Remote Sensing Image Matching via Discriminator Network
The advent of deep perceptual networks brought about a paradigm shift in machine vision and image perception. Image apprehension lately carried out by hand-crafted features in the latent space have been replaced by deep features acquired from supervised networks for improved understanding. However, such deep networks require strict supervision with a substantial amount of the labeled data for authentic training process. These methods perform poorly in domains lacking labeled data especially in case of remote sensing image retrieval. Resolving this, we propose an unsupervised encoder-decoder feature for remote sensing image matching (RSIM). Moreover, we replace the conventional distance metrics with a deep discriminator network to identify the similarity of the image pairs. To the best of our knowledge, discriminator network has never been used before for solving RSIM problem. Results have been validated with two publicly available benchmark remote sensing image datasets. The technique has also been investigated for content-based remote sensing image retrieval (CBRSIR); one of the widely used applications of RSIM. Results demonstrate that our technique supersedes the state-of-the-art methods used for unsupervised image matching with mean average precision (mAP) of 81%, and image retrieval with an overall improvement in mAP score of about 12%.
Self-supervised learning of visual features through embedding images into text topic spaces
End-to-end training from scratch of current deep architectures for new computer vision problems would require Imagenet-scale datasets, and this is not always possible. In this paper we present a method that is able to take advantage of freely available multi-modal content to train computer vision algorithms without human supervision. We put forward the idea of performing self-supervised learning of visual features by mining a large scale corpus of multi-modal (text and image) documents. We show that discriminative visual features can be learnt efficiently by training a CNN to predict the semantic context in which a particular image is more probable to appear as an illustration. For this we leverage the hidden semantic structures discovered in the text corpus with a well-known topic modeling technique. Our experiments demonstrate state of the art performance in image classification, object detection, and multi-modal retrieval compared to recent self-supervised or natural-supervised approaches.
ICC: Quantifying Image Caption Concreteness for Multimodal Dataset Curation
Web-scale training on paired text-image data is becoming increasingly central to multimodal learning, but is challenged by the highly noisy nature of datasets in the wild. Standard data filtering approaches succeed in removing mismatched text-image pairs, but permit semantically related but highly abstract or subjective text. These approaches lack the fine-grained ability to isolate the most concrete samples that provide the strongest signal for learning in a noisy dataset. In this work, we propose a new metric, image caption concreteness, that evaluates caption text without an image reference to measure its concreteness and relevancy for use in multimodal learning. Our approach leverages strong foundation models for measuring visual-semantic information loss in multimodal representations. We demonstrate that this strongly correlates with human evaluation of concreteness in both single-word and sentence-level texts. Moreover, we show that curation using ICC complements existing approaches: It succeeds in selecting the highest quality samples from multimodal web-scale datasets to allow for efficient training in resource-constrained settings.
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting
Recent progress has shown that large-scale pre-training using contrastive image-text pairs can be a promising alternative for high-quality visual representation learning from natural language supervision. Benefiting from a broader source of supervision, this new paradigm exhibits impressive transferability to downstream classification tasks and datasets. However, the problem of transferring the knowledge learned from image-text pairs to more complex dense prediction tasks has barely been visited. In this work, we present a new framework for dense prediction by implicitly and explicitly leveraging the pre-trained knowledge from CLIP. Specifically, we convert the original image-text matching problem in CLIP to a pixel-text matching problem and use the pixel-text score maps to guide the learning of dense prediction models. By further using the contextual information from the image to prompt the language model, we are able to facilitate our model to better exploit the pre-trained knowledge. Our method is model-agnostic, which can be applied to arbitrary dense prediction systems and various pre-trained visual backbones including both CLIP models and ImageNet pre-trained models. Extensive experiments demonstrate the superior performance of our methods on semantic segmentation, object detection, and instance segmentation tasks. Code is available at https://github.com/raoyongming/DenseCLIP
AGLA: Mitigating Object Hallucinations in Large Vision-Language Models with Assembly of Global and Local Attention
Despite their great success across various multimodal tasks, Large Vision-Language Models (LVLMs) are facing a prevalent problem with object hallucinations, where the generated textual responses are inconsistent with ground-truth objects in the given image. This paper investigates various LVLMs and pinpoints attention deficiency toward discriminative local image features as one root cause of object hallucinations. Specifically, LVLMs predominantly attend to prompt-independent global image features, while failing to capture prompt-relevant local features, consequently undermining the visual grounding capacity of LVLMs and leading to hallucinations. To this end, we propose Assembly of Global and Local Attention (AGLA), a training-free and plug-and-play approach that mitigates object hallucinations by exploring an ensemble of global features for response generation and local features for visual discrimination simultaneously. Our approach exhibits an image-prompt matching scheme that captures prompt-relevant local features from images, leading to an augmented view of the input image where prompt-relevant content is reserved while irrelevant distractions are masked. With the augmented view, a calibrated decoding distribution can be derived by integrating generative global features from the original image and discriminative local features from the augmented image. Extensive experiments show that AGLA consistently mitigates object hallucinations and enhances general perception capability for LVLMs across various discriminative and generative benchmarks. Our code will be released at https://github.com/Lackel/AGLA.
Omni-RGPT: Unifying Image and Video Region-level Understanding via Token Marks
We present Omni-RGPT, a multimodal large language model designed to facilitate region-level comprehension for both images and videos. To achieve consistent region representation across spatio-temporal dimensions, we introduce Token Mark, a set of tokens highlighting the target regions within the visual feature space. These tokens are directly embedded into spatial regions using region prompts (e.g., boxes or masks) and simultaneously incorporated into the text prompt to specify the target, establishing a direct connection between visual and text tokens. To further support robust video understanding without requiring tracklets, we introduce an auxiliary task that guides Token Mark by leveraging the consistency of the tokens, enabling stable region interpretation across the video. Additionally, we introduce a large-scale region-level video instruction dataset (RegVID-300k). Omni-RGPT achieves state-of-the-art results on image and video-based commonsense reasoning benchmarks while showing strong performance in captioning and referring expression comprehension tasks.
Scalable Performance Analysis for Vision-Language Models
Joint vision-language models have shown great performance over a diverse set of tasks. However, little is known about their limitations, as the high dimensional space learned by these models makes it difficult to identify semantic errors. Recent work has addressed this problem by designing highly controlled probing task benchmarks. Our paper introduces a more scalable solution that relies on already annotated benchmarks. Our method consists of extracting a large set of diverse features from a vision-language benchmark and measuring their correlation with the output of the target model. We confirm previous findings that CLIP behaves like a bag of words model and performs better with nouns and verbs; we also uncover novel insights such as CLIP getting confused by concrete words. Our framework is available at https://github.com/MichiganNLP/Scalable-VLM-Probing and can be used with other multimodal models and benchmarks.
Remote Sensing Large Vision-Language Model: Semantic-augmented Multi-level Alignment and Semantic-aware Expert Modeling
Large Vision and Language Models (LVLMs) have shown strong performance across various vision-language tasks in natural image domains. However, their application to remote sensing (RS) remains underexplored due to significant domain differences in visual appearances, object scales, and semantics. These discrepancies hider the effective understanding of RS scenes, which contain rich, multi-level semantic information spanning from coarse-to-fine levels. Hence, it limits the direct adaptation of existing LVLMs to RS imagery. To address this gap, we propose a novel LVLM framework tailored for RS understanding, incorporating two core components: Semantic-augmented Multi-level Alignment and Semantic-aware Expert Modeling. First, to align multi-level visual features, we introduce the retrieval-based Semantic Augmentation Module which enriches the visual features with relevant semantics across fine-to-coarse levels (e.g., object- and scene-level information). It is designed to retrieve relevant semantic cues from a RS semantic knowledge database, followed by aggregation of semantic cues with user query and multi-level visual features, resulting in semantically enriched representation across multiple levels. Second, for Semantic-aware Expert Modeling, we design semantic experts, where each expert is responsible for processing semantic representation at different levels separately. This enables hierarchical semantic understanding from coarse to fine levels. Evaluations across multiple RS tasks-including scene classification and VQA, etc.-demonstrate that the proposed framework achieves consistent improvements across multiple semantic levels. This highlights its capability and effectiveness in bridging the gap between general LVLMs and unique demands of RS-specific vision-language understanding.
ColPali: Efficient Document Retrieval with Vision Language Models
Documents are visually rich structures that convey information through text, as well as tables, figures, page layouts, or fonts. While modern document retrieval systems exhibit strong performance on query-to-text matching, they struggle to exploit visual cues efficiently, hindering their performance on practical document retrieval applications such as Retrieval Augmented Generation. To benchmark current systems on visually rich document retrieval, we introduce the Visual Document Retrieval Benchmark ViDoRe, composed of various page-level retrieving tasks spanning multiple domains, languages, and settings. The inherent shortcomings of modern systems motivate the introduction of a new retrieval model architecture, ColPali, which leverages the document understanding capabilities of recent Vision Language Models to produce high-quality contextualized embeddings solely from images of document pages. Combined with a late interaction matching mechanism, ColPali largely outperforms modern document retrieval pipelines while being drastically faster and end-to-end trainable.
Compositional Scene Representation Learning via Reconstruction: A Survey
Visual scenes are composed of visual concepts and have the property of combinatorial explosion. An important reason for humans to efficiently learn from diverse visual scenes is the ability of compositional perception, and it is desirable for artificial intelligence to have similar abilities. Compositional scene representation learning is a task that enables such abilities. In recent years, various methods have been proposed to apply deep neural networks, which have been proven to be advantageous in representation learning, to learn compositional scene representations via reconstruction, advancing this research direction into the deep learning era. Learning via reconstruction is advantageous because it may utilize massive unlabeled data and avoid costly and laborious data annotation. In this survey, we first outline the current progress on reconstruction-based compositional scene representation learning with deep neural networks, including development history and categorizations of existing methods from the perspectives of the modeling of visual scenes and the inference of scene representations; then provide benchmarks, including an open source toolbox to reproduce the benchmark experiments, of representative methods that consider the most extensively studied problem setting and form the foundation for other methods; and finally discuss the limitations of existing methods and future directions of this research topic.
V*: Guided Visual Search as a Core Mechanism in Multimodal LLMs
When we look around and perform complex tasks, how we see and selectively process what we see is crucial. However, the lack of this visual search mechanism in current multimodal LLMs (MLLMs) hinders their ability to focus on important visual details, especially when handling high-resolution and visually crowded images. To address this, we introduce V*, an LLM-guided visual search mechanism that employs the world knowledge in LLMs for efficient visual querying. When combined with an MLLM, this mechanism enhances collaborative reasoning, contextual understanding, and precise targeting of specific visual elements. This integration results in a new MLLM meta-architecture, named Show, sEArch, and TelL (SEAL). We further create V*Bench, a benchmark specifically designed to evaluate MLLMs in their ability to process high-resolution images and focus on visual details. Our study highlights the necessity of incorporating visual search capabilities into multimodal systems. The code is available https://github.com/penghao-wu/vstar.
ILIAS: Instance-Level Image retrieval At Scale
This work introduces ILIAS, a new test dataset for Instance-Level Image retrieval At Scale. It is designed to evaluate the ability of current and future foundation models and retrieval techniques to recognize particular objects. The key benefits over existing datasets include large scale, domain diversity, accurate ground truth, and a performance that is far from saturated. ILIAS includes query and positive images for 1,000 object instances, manually collected to capture challenging conditions and diverse domains. Large-scale retrieval is conducted against 100 million distractor images from YFCC100M. To avoid false negatives without extra annotation effort, we include only query objects confirmed to have emerged after 2014, i.e. the compilation date of YFCC100M. An extensive benchmarking is performed with the following observations: i) models fine-tuned on specific domains, such as landmarks or products, excel in that domain but fail on ILIAS ii) learning a linear adaptation layer using multi-domain class supervision results in performance improvements, especially for vision-language models iii) local descriptors in retrieval re-ranking are still a key ingredient, especially in the presence of severe background clutter iv) the text-to-image performance of the vision-language foundation models is surprisingly close to the corresponding image-to-image case. website: https://vrg.fel.cvut.cz/ilias/
LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation
Pixel-wise semantic segmentation for visual scene understanding not only needs to be accurate, but also efficient in order to find any use in real-time application. Existing algorithms even though are accurate but they do not focus on utilizing the parameters of neural network efficiently. As a result they are huge in terms of parameters and number of operations; hence slow too. In this paper, we propose a novel deep neural network architecture which allows it to learn without any significant increase in number of parameters. Our network uses only 11.5 million parameters and 21.2 GFLOPs for processing an image of resolution 3x640x360. It gives state-of-the-art performance on CamVid and comparable results on Cityscapes dataset. We also compare our networks processing time on NVIDIA GPU and embedded system device with existing state-of-the-art architectures for different image resolutions.
FocalLens: Instruction Tuning Enables Zero-Shot Conditional Image Representations
Visual understanding is inherently contextual -- what we focus on in an image depends on the task at hand. For instance, given an image of a person holding a bouquet of flowers, we may focus on either the person such as their clothing, or the type of flowers, depending on the context of interest. Yet, most existing image encoding paradigms represent an image as a fixed, generic feature vector, overlooking the potential needs of prioritizing varying visual information for different downstream use cases. In this work, we introduce FocalLens, a conditional visual encoding method that produces different representations for the same image based on the context of interest, expressed flexibly through natural language. We leverage vision instruction tuning data and contrastively finetune a pretrained vision encoder to take natural language instructions as additional inputs for producing conditional image representations. Extensive experiments validate that conditional image representation from FocalLens better pronounce the visual features of interest compared to generic features produced by standard vision encoders like CLIP. In addition, we show FocalLens further leads to performance improvements on a range of downstream tasks including image-image retrieval, image classification, and image-text retrieval, with an average gain of 5 and 10 points on the challenging SugarCrepe and MMVP-VLM benchmarks, respectively.
Learning to Make Keypoints Sub-Pixel Accurate
This work addresses the challenge of sub-pixel accuracy in detecting 2D local features, a cornerstone problem in computer vision. Despite the advancements brought by neural network-based methods like SuperPoint and ALIKED, these modern approaches lag behind classical ones such as SIFT in keypoint localization accuracy due to their lack of sub-pixel precision. We propose a novel network that enhances any detector with sub-pixel precision by learning an offset vector for detected features, thereby eliminating the need for designing specialized sub-pixel accurate detectors. This optimization directly minimizes test-time evaluation metrics like relative pose error. Through extensive testing with both nearest neighbors matching and the recent LightGlue matcher across various real-world datasets, our method consistently outperforms existing methods in accuracy. Moreover, it adds only around 7 ms to the time of a particular detector. The code is available at https://github.com/KimSinjeong/keypt2subpx .
Greedy Growing Enables High-Resolution Pixel-Based Diffusion Models
We address the long-standing problem of how to learn effective pixel-based image diffusion models at scale, introducing a remarkably simple greedy growing method for stable training of large-scale, high-resolution models. without the needs for cascaded super-resolution components. The key insight stems from careful pre-training of core components, namely, those responsible for text-to-image alignment {\it vs.} high-resolution rendering. We first demonstrate the benefits of scaling a {\it Shallow UNet}, with no down(up)-sampling enc(dec)oder. Scaling its deep core layers is shown to improve alignment, object structure, and composition. Building on this core model, we propose a greedy algorithm that grows the architecture into high-resolution end-to-end models, while preserving the integrity of the pre-trained representation, stabilizing training, and reducing the need for large high-resolution datasets. This enables a single stage model capable of generating high-resolution images without the need of a super-resolution cascade. Our key results rely on public datasets and show that we are able to train non-cascaded models up to 8B parameters with no further regularization schemes. Vermeer, our full pipeline model trained with internal datasets to produce 1024x1024 images, without cascades, is preferred by 44.0% vs. 21.4% human evaluators over SDXL.
Searching the Search Space of Vision Transformer
Vision Transformer has shown great visual representation power in substantial vision tasks such as recognition and detection, and thus been attracting fast-growing efforts on manually designing more effective architectures. In this paper, we propose to use neural architecture search to automate this process, by searching not only the architecture but also the search space. The central idea is to gradually evolve different search dimensions guided by their E-T Error computed using a weight-sharing supernet. Moreover, we provide design guidelines of general vision transformers with extensive analysis according to the space searching process, which could promote the understanding of vision transformer. Remarkably, the searched models, named S3 (short for Searching the Search Space), from the searched space achieve superior performance to recently proposed models, such as Swin, DeiT and ViT, when evaluated on ImageNet. The effectiveness of S3 is also illustrated on object detection, semantic segmentation and visual question answering, demonstrating its generality to downstream vision and vision-language tasks. Code and models will be available at https://github.com/microsoft/Cream.
PDV: Prompt Directional Vectors for Zero-shot Composed Image Retrieval
Zero-shot composed image retrieval (ZS-CIR) enables image search using a reference image and text prompt without requiring specialized text-image composition networks trained on large-scale paired data. However, current ZS-CIR approaches face three critical limitations in their reliance on composed text embeddings: static query embedding representations, insufficient utilization of image embeddings, and suboptimal performance when fusing text and image embeddings. To address these challenges, we introduce the Prompt Directional Vector (PDV), a simple yet effective training-free enhancement that captures semantic modifications induced by user prompts. PDV enables three key improvements: (1) dynamic composed text embeddings where prompt adjustments are controllable via a scaling factor, (2) composed image embeddings through semantic transfer from text prompts to image features, and (3) weighted fusion of composed text and image embeddings that enhances retrieval by balancing visual and semantic similarity. Our approach serves as a plug-and-play enhancement for existing ZS-CIR methods with minimal computational overhead. Extensive experiments across multiple benchmarks demonstrate that PDV consistently improves retrieval performance when integrated with state-of-the-art ZS-CIR approaches, particularly for methods that generate accurate compositional embeddings. The code will be publicly available.
Visual Text Processing: A Comprehensive Review and Unified Evaluation
Visual text is a crucial component in both document and scene images, conveying rich semantic information and attracting significant attention in the computer vision community. Beyond traditional tasks such as text detection and recognition, visual text processing has witnessed rapid advancements driven by the emergence of foundation models, including text image reconstruction and text image manipulation. Despite significant progress, challenges remain due to the unique properties that differentiate text from general objects. Effectively capturing and leveraging these distinct textual characteristics is essential for developing robust visual text processing models. In this survey, we present a comprehensive, multi-perspective analysis of recent advancements in visual text processing, focusing on two key questions: (1) What textual features are most suitable for different visual text processing tasks? (2) How can these distinctive text features be effectively incorporated into processing frameworks? Furthermore, we introduce VTPBench, a new benchmark that encompasses a broad range of visual text processing datasets. Leveraging the advanced visual quality assessment capabilities of multimodal large language models (MLLMs), we propose VTPScore, a novel evaluation metric designed to ensure fair and reliable evaluation. Our empirical study with more than 20 specific models reveals substantial room for improvement in the current techniques. Our aim is to establish this work as a fundamental resource that fosters future exploration and innovation in the dynamic field of visual text processing. The relevant repository is available at https://github.com/shuyansy/Visual-Text-Processing-survey.
Simpler Diffusion (SiD2): 1.5 FID on ImageNet512 with pixel-space diffusion
Latent diffusion models have become the popular choice for scaling up diffusion models for high resolution image synthesis. Compared to pixel-space models that are trained end-to-end, latent models are perceived to be more efficient and to produce higher image quality at high resolution. Here we challenge these notions, and show that pixel-space models can in fact be very competitive to latent approaches both in quality and efficiency, achieving 1.5 FID on ImageNet512 and new SOTA results on ImageNet128 and ImageNet256. We present a simple recipe for scaling end-to-end pixel-space diffusion models to high resolutions. 1: Use the sigmoid loss (Kingma & Gao, 2023) with our prescribed hyper-parameters. 2: Use our simplified memory-efficient architecture with fewer skip-connections. 3: Scale the model to favor processing the image at high resolution with fewer parameters, rather than using more parameters but at a lower resolution. When combining these three steps with recently proposed tricks like guidance intervals, we obtain a family of pixel-space diffusion models we call Simple Diffusion v2 (SiD2).
ECO: Ensembling Context Optimization for Vision-Language Models
Image recognition has recently witnessed a paradigm shift, where vision-language models are now used to perform few-shot classification based on textual prompts. Among these, the CLIP model has shown remarkable capabilities for zero-shot transfer by matching an image and a custom textual prompt in its latent space. This has paved the way for several works that focus on engineering or learning textual contexts for maximizing CLIP's classification capabilities. In this paper, we follow this trend by learning an ensemble of prompts for image classification. We show that learning diverse and possibly shorter contexts improves considerably and consistently the results rather than relying on a single trainable prompt. In particular, we report better few-shot capabilities with no additional cost at inference time. We demonstrate the capabilities of our approach on 11 different benchmarks.
Boundary Attention: Learning to Find Faint Boundaries at Any Resolution
We present a differentiable model that explicitly models boundaries -- including contours, corners and junctions -- using a new mechanism that we call boundary attention. We show that our model provides accurate results even when the boundary signal is very weak or is swamped by noise. Compared to previous classical methods for finding faint boundaries, our model has the advantages of being differentiable; being scalable to larger images; and automatically adapting to an appropriate level of geometric detail in each part of an image. Compared to previous deep methods for finding boundaries via end-to-end training, it has the advantages of providing sub-pixel precision, being more resilient to noise, and being able to process any image at its native resolution and aspect ratio.
When Semantics Mislead Vision: Mitigating Large Multimodal Models Hallucinations in Scene Text Spotting and Understanding
Large Multimodal Models (LMMs) have achieved impressive progress in visual perception and reasoning. However, when confronted with visually ambiguous or non-semantic scene text, they often struggle to accurately spot and understand the content, frequently generating semantically plausible yet visually incorrect answers, which we refer to as semantic hallucination. In this work, we investigate the underlying causes of semantic hallucination and identify a key finding: Transformer layers in LLM with stronger attention focus on scene text regions are less prone to producing semantic hallucinations. Thus, we propose a training-free semantic hallucination mitigation framework comprising two key components: (1) ZoomText, a coarse-to-fine strategy that identifies potential text regions without external detectors; and (2) Grounded Layer Correction, which adaptively leverages the internal representations from layers less prone to hallucination to guide decoding, correcting hallucinated outputs for non-semantic samples while preserving the semantics of meaningful ones. To enable rigorous evaluation, we introduce TextHalu-Bench, a benchmark of over 1,730 samples spanning both semantic and non-semantic cases, with manually curated question-answer pairs designed to probe model hallucinations. Extensive experiments demonstrate that our method not only effectively mitigates semantic hallucination but also achieves strong performance on public benchmarks for scene text spotting and understanding.
ViewDelta: Text-Prompted Change Detection in Unaligned Images
Detecting changes between images is a fundamental problem in computer vision with broad applications in situational awareness, infrastructure assessment, environment monitoring, and industrial automation. Existing supervised models are typically limited to detecting specific types of changes, necessitating retraining for new tasks. To address these limitations with a single approach, we propose a novel change detection method that is the first to utilize unaligned images and textual prompts to output a binary segmentation of changes relevant to user-provided text. Our architecture not only enables flexible detection across diverse change detection use cases, but also yields state-of-the art performance on established benchmarks. Additionally, we release an accompanying dataset comprising of 100,311 pairs of images with text prompts and the corresponding change detection labels. We demonstrate the effectiveness of our method both quantitatively and qualitatively on datasets with a wide variety of viewpoints in indoor, outdoor, street level, synthetic, and satellite images.
FOCUS: Towards Universal Foreground Segmentation
Foreground segmentation is a fundamental task in computer vision, encompassing various subdivision tasks. Previous research has typically designed task-specific architectures for each task, leading to a lack of unification. Moreover, they primarily focus on recognizing foreground objects without effectively distinguishing them from the background. In this paper, we emphasize the importance of the background and its relationship with the foreground. We introduce FOCUS, the Foreground ObjeCts Universal Segmentation framework that can handle multiple foreground tasks. We develop a multi-scale semantic network using the edge information of objects to enhance image features. To achieve boundary-aware segmentation, we propose a novel distillation method, integrating the contrastive learning strategy to refine the prediction mask in multi-modal feature space. We conduct extensive experiments on a total of 13 datasets across 5 tasks, and the results demonstrate that FOCUS consistently outperforms the state-of-the-art task-specific models on most metrics.
CLIPTER: Looking at the Bigger Picture in Scene Text Recognition
Reading text in real-world scenarios often requires understanding the context surrounding it, especially when dealing with poor-quality text. However, current scene text recognizers are unaware of the bigger picture as they operate on cropped text images. In this study, we harness the representative capabilities of modern vision-language models, such as CLIP, to provide scene-level information to the crop-based recognizer. We achieve this by fusing a rich representation of the entire image, obtained from the vision-language model, with the recognizer word-level features via a gated cross-attention mechanism. This component gradually shifts to the context-enhanced representation, allowing for stable fine-tuning of a pretrained recognizer. We demonstrate the effectiveness of our model-agnostic framework, CLIPTER (CLIP TExt Recognition), on leading text recognition architectures and achieve state-of-the-art results across multiple benchmarks. Furthermore, our analysis highlights improved robustness to out-of-vocabulary words and enhanced generalization in low-data regimes.
UniFine: A Unified and Fine-grained Approach for Zero-shot Vision-Language Understanding
Vision-language tasks, such as VQA, SNLI-VE, and VCR are challenging because they require the model's reasoning ability to understand the semantics of the visual world and natural language. Supervised methods working for vision-language tasks have been well-studied. However, solving these tasks in a zero-shot setting is less explored. Since Contrastive Language-Image Pre-training (CLIP) has shown remarkable zero-shot performance on image-text matching, previous works utilized its strong zero-shot ability by converting vision-language tasks into an image-text matching problem, and they mainly consider global-level matching (e.g., the whole image or sentence). However, we find visual and textual fine-grained information, e.g., keywords in the sentence and objects in the image, can be fairly informative for semantics understanding. Inspired by this, we propose a unified framework to take advantage of the fine-grained information for zero-shot vision-language learning, covering multiple tasks such as VQA, SNLI-VE, and VCR. Our experiments show that our framework outperforms former zero-shot methods on VQA and achieves substantial improvement on SNLI-VE and VCR. Furthermore, our ablation studies confirm the effectiveness and generalizability of our proposed method. Code will be available at https://github.com/ThreeSR/UniFine
SCENIR: Visual Semantic Clarity through Unsupervised Scene Graph Retrieval
Despite the dominance of convolutional and transformer-based architectures in image-to-image retrieval, these models are prone to biases arising from low-level visual features, such as color. Recognizing the lack of semantic understanding as a key limitation, we propose a novel scene graph-based retrieval framework that emphasizes semantic content over superficial image characteristics. Prior approaches to scene graph retrieval predominantly rely on supervised Graph Neural Networks (GNNs), which require ground truth graph pairs driven from image captions. However, the inconsistency of caption-based supervision stemming from variable text encodings undermine retrieval reliability. To address these, we present SCENIR, a Graph Autoencoder-based unsupervised retrieval framework, which eliminates the dependence on labeled training data. Our model demonstrates superior performance across metrics and runtime efficiency, outperforming existing vision-based, multimodal, and supervised GNN approaches. We further advocate for Graph Edit Distance (GED) as a deterministic and robust ground truth measure for scene graph similarity, replacing the inconsistent caption-based alternatives for the first time in image-to-image retrieval evaluation. Finally, we validate the generalizability of our method by applying it to unannotated datasets via automated scene graph generation, while substantially contributing in advancing state-of-the-art in counterfactual image retrieval.
MIEB: Massive Image Embedding Benchmark
Image representations are often evaluated through disjointed, task-specific protocols, leading to a fragmented understanding of model capabilities. For instance, it is unclear whether an image embedding model adept at clustering images is equally good at retrieving relevant images given a piece of text. We introduce the Massive Image Embedding Benchmark (MIEB) to evaluate the performance of image and image-text embedding models across the broadest spectrum to date. MIEB spans 38 languages across 130 individual tasks, which we group into 8 high-level categories. We benchmark 50 models across our benchmark, finding that no single method dominates across all task categories. We reveal hidden capabilities in advanced vision models such as their accurate visual representation of texts, and their yet limited capabilities in interleaved encodings and matching images and texts in the presence of confounders. We also show that the performance of vision encoders on MIEB correlates highly with their performance when used in multimodal large language models. Our code, dataset, and leaderboard are publicly available at https://github.com/embeddings-benchmark/mteb.
Visual In-Context Prompting
In-context prompting in large language models (LLMs) has become a prevalent approach to improve zero-shot capabilities, but this idea is less explored in the vision domain. Existing visual prompting methods focus on referring segmentation to segment the most relevant object, falling short of addressing many generic vision tasks like open-set segmentation and detection. In this paper, we introduce a universal visual in-context prompting framework for both tasks. In particular, we build on top of an encoder-decoder architecture, and develop a versatile prompt encoder to support a variety of prompts like strokes, boxes, and points. We further enhance it to take an arbitrary number of reference image segments as the context. Our extensive explorations show that the proposed visual in-context prompting elicits extraordinary referring and generic segmentation capabilities to refer and detect, yielding competitive performance to close-set in-domain datasets and showing promising results on many open-set segmentation datasets. By joint training on COCO and SA-1B, our model achieves 57.7 PQ on COCO and 23.2 PQ on ADE20K. Code will be available at https://github.com/UX-Decoder/DINOv.
What's in the Image? A Deep-Dive into the Vision of Vision Language Models
Vision-Language Models (VLMs) have recently demonstrated remarkable capabilities in comprehending complex visual content. However, the mechanisms underlying how VLMs process visual information remain largely unexplored. In this paper, we conduct a thorough empirical analysis, focusing on attention modules across layers. We reveal several key insights about how these models process visual data: (i) the internal representation of the query tokens (e.g., representations of "describe the image"), is utilized by VLMs to store global image information; we demonstrate that these models generate surprisingly descriptive responses solely from these tokens, without direct access to image tokens. (ii) Cross-modal information flow is predominantly influenced by the middle layers (approximately 25% of all layers), while early and late layers contribute only marginally.(iii) Fine-grained visual attributes and object details are directly extracted from image tokens in a spatially localized manner, i.e., the generated tokens associated with a specific object or attribute attend strongly to their corresponding regions in the image. We propose novel quantitative evaluation to validate our observations, leveraging real-world complex visual scenes. Finally, we demonstrate the potential of our findings in facilitating efficient visual processing in state-of-the-art VLMs.
Q-Ground: Image Quality Grounding with Large Multi-modality Models
Recent advances of large multi-modality models (LMM) have greatly improved the ability of image quality assessment (IQA) method to evaluate and explain the quality of visual content. However, these advancements are mostly focused on overall quality assessment, and the detailed examination of local quality, which is crucial for comprehensive visual understanding, is still largely unexplored. In this work, we introduce Q-Ground, the first framework aimed at tackling fine-scale visual quality grounding by combining large multi-modality models with detailed visual quality analysis. Central to our contribution is the introduction of the QGround-100K dataset, a novel resource containing 100k triplets of (image, quality text, distortion segmentation) to facilitate deep investigations into visual quality. The dataset comprises two parts: one with human-labeled annotations for accurate quality assessment, and another labeled automatically by LMMs such as GPT4V, which helps improve the robustness of model training while also reducing the costs of data collection. With the QGround-100K dataset, we propose a LMM-based method equipped with multi-scale feature learning to learn models capable of performing both image quality answering and distortion segmentation based on text prompts. This dual-capability approach not only refines the model's understanding of region-aware image quality but also enables it to interactively respond to complex, text-based queries about image quality and specific distortions. Q-Ground takes a step towards sophisticated visual quality analysis in a finer scale, establishing a new benchmark for future research in the area. Codes and dataset are available at https://github.com/Q-Future/Q-Ground.
MovieNet-PS: A Large-Scale Person Search Dataset in the Wild
Person search aims to jointly localize and identify a query person from natural, uncropped images, which has been actively studied over the past few years. In this paper, we delve into the rich context information globally and locally surrounding the target person, which we refer to as scene and group context, respectively. Unlike previous works that treat the two types of context individually, we exploit them in a unified global-local context network (GLCNet) with the intuitive aim of feature enhancement. Specifically, re-ID embeddings and context features are simultaneously learned in a multi-stage fashion, ultimately leading to enhanced, discriminative features for person search. We conduct the experiments on two person search benchmarks (i.e., CUHK-SYSU and PRW) as well as extend our approach to a more challenging setting (i.e., character search on MovieNet). Extensive experimental results demonstrate the consistent improvement of the proposed GLCNet over the state-of-the-art methods on all three datasets. Our source codes, pre-trained models, and the new dataset are publicly available at: https://github.com/ZhengPeng7/GLCNet.
Learning semantic sentence representations from visually grounded language without lexical knowledge
Current approaches to learning semantic representations of sentences often use prior word-level knowledge. The current study aims to leverage visual information in order to capture sentence level semantics without the need for word embeddings. We use a multimodal sentence encoder trained on a corpus of images with matching text captions to produce visually grounded sentence embeddings. Deep Neural Networks are trained to map the two modalities to a common embedding space such that for an image the corresponding caption can be retrieved and vice versa. We show that our model achieves results comparable to the current state-of-the-art on two popular image-caption retrieval benchmark data sets: MSCOCO and Flickr8k. We evaluate the semantic content of the resulting sentence embeddings using the data from the Semantic Textual Similarity benchmark task and show that the multimodal embeddings correlate well with human semantic similarity judgements. The system achieves state-of-the-art results on several of these benchmarks, which shows that a system trained solely on multimodal data, without assuming any word representations, is able to capture sentence level semantics. Importantly, this result shows that we do not need prior knowledge of lexical level semantics in order to model sentence level semantics. These findings demonstrate the importance of visual information in semantics.
SuperInpaint: Learning Detail-Enhanced Attentional Implicit Representation for Super-resolutional Image Inpainting
In this work, we introduce a challenging image restoration task, referred to as SuperInpaint, which aims to reconstruct missing regions in low-resolution images and generate completed images with arbitrarily higher resolutions. We have found that this task cannot be effectively addressed by stacking state-of-the-art super-resolution and image inpainting methods as they amplify each other's flaws, leading to noticeable artifacts. To overcome these limitations, we propose the detail-enhanced attentional implicit representation (DEAR) that can achieve SuperInpaint with a single model, resulting in high-quality completed images with arbitrary resolutions. Specifically, we use a deep convolutional network to extract the latent embedding of an input image and then enhance the high-frequency components of the latent embedding via an adaptive high-pass filter. This leads to detail-enhanced semantic embedding. We further feed the semantic embedding into an unmask-attentional module that suppresses embeddings from ineffective masked pixels. Additionally, we extract a pixel-wise importance map that indicates which pixels should be used for image reconstruction. Given the coordinates of a pixel we want to reconstruct, we first collect its neighboring pixels in the input image and extract their detail-enhanced semantic embeddings, unmask-attentional semantic embeddings, importance values, and spatial distances to the desired pixel. Then, we feed all the above terms into an implicit representation and generate the color of the specified pixel. To evaluate our method, we extend three existing datasets for this new task and build 18 meaningful baselines using SOTA inpainting and super-resolution methods. Extensive experimental results demonstrate that our method outperforms all existing methods by a significant margin on four widely used metrics.
C3L: Content Correlated Vision-Language Instruction Tuning Data Generation via Contrastive Learning
Vision-Language Instruction Tuning (VLIT) is a critical training phase for Large Vision-Language Models (LVLMs). With the improving capabilities of open-source LVLMs, researchers have increasingly turned to generate VLIT data by using open-source LVLMs and achieved significant progress. However, such data generation approaches are bottlenecked by the following challenges: 1) Since multi-modal models tend to be influenced by prior language knowledge, directly using LVLMs to generate VLIT data would inevitably lead to low content relevance between generated data and images. 2) To improve the ability of the models to generate VLIT data, previous methods have incorporated an additional training phase to boost the generative capacity. This process hurts the generalization of the models to unseen inputs (i.e., "exposure bias" problem). In this paper, we propose a new Content Correlated VLIT data generation via Contrastive Learning (C3L). Specifically, we design a new content relevance module which enhances the content relevance between VLIT data and images by computing Image Instruction Correspondence Scores S(I2C). Moreover, a contrastive learning module is introduced to further boost the VLIT data generation capability of the LVLMs. A large number of automatic measures on four benchmarks show the effectiveness of our method.
DeepStyle: Multimodal Search Engine for Fashion and Interior Design
In this paper, we propose a multimodal search engine that combines visual and textual cues to retrieve items from a multimedia database aesthetically similar to the query. The goal of our engine is to enable intuitive retrieval of fashion merchandise such as clothes or furniture. Existing search engines treat textual input only as an additional source of information about the query image and do not correspond to the real-life scenario where the user looks for 'the same shirt but of denim'. Our novel method, dubbed DeepStyle, mitigates those shortcomings by using a joint neural network architecture to model contextual dependencies between features of different modalities. We prove the robustness of this approach on two different challenging datasets of fashion items and furniture where our DeepStyle engine outperforms baseline methods by 18-21% on the tested datasets. Our search engine is commercially deployed and available through a Web-based application.
Dense and Aligned Captions (DAC) Promote Compositional Reasoning in VL Models
Vision and Language (VL) models offer an effective method for aligning representation spaces of images and text, leading to numerous applications such as cross-modal retrieval, visual question answering, captioning, and more. However, the aligned image-text spaces learned by all the popular VL models are still suffering from the so-called `object bias' - their representations behave as `bags of nouns', mostly ignoring or downsizing the attributes, relations, and states of objects described/appearing in texts/images. Although some great attempts at fixing these `compositional reasoning' issues were proposed in the recent literature, the problem is still far from being solved. In this paper, we uncover two factors limiting the VL models' compositional reasoning performance. These two factors are properties of the paired VL dataset used for finetuning and pre-training the VL model: (i) the caption quality, or in other words `image-alignment', of the texts; and (ii) the `density' of the captions in the sense of mentioning all the details appearing on the image. We propose a fine-tuning approach for automatically treating these factors leveraging a standard VL dataset (CC3M). Applied to CLIP, we demonstrate its significant compositional reasoning performance increase of up to sim27% over the base model, up to sim20% over the strongest baseline, and by 6.7% on average.
CoReS: Compatible Representations via Stationarity
Compatible features enable the direct comparison of old and new learned features allowing to use them interchangeably over time. In visual search systems, this eliminates the need to extract new features from the gallery-set when the representation model is upgraded with novel data. This has a big value in real applications as re-indexing the gallery-set can be computationally expensive when the gallery-set is large, or even infeasible due to privacy or other concerns of the application. In this paper, we propose CoReS, a new training procedure to learn representations that are compatible with those previously learned, grounding on the stationarity of the features as provided by fixed classifiers based on polytopes. With this solution, classes are maximally separated in the representation space and maintain their spatial configuration stationary as new classes are added, so that there is no need to learn any mappings between representations nor to impose pairwise training with the previously learned model. We demonstrate that our training procedure largely outperforms the current state of the art and is particularly effective in the case of multiple upgrades of the training-set, which is the typical case in real applications.
LEOPARD : A Vision Language Model For Text-Rich Multi-Image Tasks
Text-rich images, where text serves as the central visual element guiding the overall understanding, are prevalent in real-world applications, such as presentation slides, scanned documents, and webpage snapshots. Tasks involving multiple text-rich images are especially challenging, as they require not only understanding the content of individual images but reasoning about inter-relationships and logical flows across multiple visual inputs. Despite the importance of these scenarios, current multimodal large language models (MLLMs) struggle to handle such tasks due to two key challenges: (1) the scarcity of high-quality instruction tuning datasets for text-rich multi-image scenarios, and (2) the difficulty in balancing image resolution with visual feature sequence length. To address these challenges, we propose \OurMethod, a MLLM designed specifically for handling vision-language tasks involving multiple text-rich images. First, we curated about one million high-quality multimodal instruction-tuning data, tailored to text-rich, multi-image scenarios. Second, we developed an adaptive high-resolution multi-image encoding module to dynamically optimize the allocation of visual sequence length based on the original aspect ratios and resolutions of the input images. Experiments across a wide range of benchmarks demonstrate our model's superior capabilities in text-rich, multi-image evaluations and competitive performance in general domain evaluations.
Multimodal C4: An Open, Billion-scale Corpus of Images Interleaved With Text
In-context vision and language models like Flamingo support arbitrarily interleaved sequences of images and text as input. This format not only enables few-shot learning via interleaving independent supervised (image, text) examples, but also, more complex prompts involving interaction between images, e.g., "What do image A and image B have in common?" To support this interface, pretraining occurs over web corpora that similarly contain interleaved images+text. To date, however, large-scale data of this form have not been publicly available. We release Multimodal C4 (mmc4), an augmentation of the popular text-only c4 corpus with images interleaved. We use a linear assignment algorithm to place images into longer bodies of text using CLIP features, a process that we show outperforms alternatives. mmc4 spans everyday topics like cooking, travel, technology, etc. A manual inspection of a random sample of documents shows that a vast majority (90%) of images are topically relevant, and that linear assignment frequently selects individual sentences specifically well-aligned with each image (78%). After filtering NSFW images, ads, etc., the corpus contains 103M documents containing 585M images interleaved with 43B English tokens.
Language Modelling with Pixels
Language models are defined over a finite set of inputs, which creates a vocabulary bottleneck when we attempt to scale the number of supported languages. Tackling this bottleneck results in a trade-off between what can be represented in the embedding matrix and computational issues in the output layer. This paper introduces PIXEL, the Pixel-based Encoder of Language, which suffers from neither of these issues. PIXEL is a pretrained language model that renders text as images, making it possible to transfer representations across languages based on orthographic similarity or the co-activation of pixels. PIXEL is trained to reconstruct the pixels of masked patches, instead of predicting a distribution over tokens. We pretrain the 86M parameter PIXEL model on the same English data as BERT and evaluate on syntactic and semantic tasks in typologically diverse languages, including various non-Latin scripts. We find that PIXEL substantially outperforms BERT on syntactic and semantic processing tasks on scripts that are not found in the pretraining data, but PIXEL is slightly weaker than BERT when working with Latin scripts. Furthermore, we find that PIXEL is more robust to noisy text inputs than BERT, further confirming the benefits of modelling language with pixels.
High-Resolution Image Inpainting using Multi-Scale Neural Patch Synthesis
Recent advances in deep learning have shown exciting promise in filling large holes in natural images with semantically plausible and context aware details, impacting fundamental image manipulation tasks such as object removal. While these learning-based methods are significantly more effective in capturing high-level features than prior techniques, they can only handle very low-resolution inputs due to memory limitations and difficulty in training. Even for slightly larger images, the inpainted regions would appear blurry and unpleasant boundaries become visible. We propose a multi-scale neural patch synthesis approach based on joint optimization of image content and texture constraints, which not only preserves contextual structures but also produces high-frequency details by matching and adapting patches with the most similar mid-layer feature correlations of a deep classification network. We evaluate our method on the ImageNet and Paris Streetview datasets and achieved state-of-the-art inpainting accuracy. We show our approach produces sharper and more coherent results than prior methods, especially for high-resolution images.
FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation
We propose an accurate and efficient scene text detection framework, termed FAST (i.e., faster arbitrarily-shaped text detector). Different from recent advanced text detectors that used complicated post-processing and hand-crafted network architectures, resulting in low inference speed, FAST has two new designs. (1) We design a minimalist kernel representation (only has 1-channel output) to model text with arbitrary shape, as well as a GPU-parallel post-processing to efficiently assemble text lines with a negligible time overhead. (2) We search the network architecture tailored for text detection, leading to more powerful features than most networks that are searched for image classification. Benefiting from these two designs, FAST achieves an excellent trade-off between accuracy and efficiency on several challenging datasets, including Total Text, CTW1500, ICDAR 2015, and MSRA-TD500. For example, FAST-T yields 81.6% F-measure at 152 FPS on Total-Text, outperforming the previous fastest method by 1.7 points and 70 FPS in terms of accuracy and speed. With TensorRT optimization, the inference speed can be further accelerated to over 600 FPS. Code and models will be released at https://github.com/czczup/FAST.
ModernVBERT: Towards Smaller Visual Document Retrievers
Multimodal embedding models are gaining prevalence, notably for document retrieval as efficient alternatives to text-only pipelines. These models are typically built by finetuning large vision-language decoders (VLMs) with contrastive losses on text-image pairs. In this work, we show that, while cost-efficient, this repurposing approach often bottlenecks retrieval performance. Through controlled experiments, we establish a principled recipe for improving visual document retrieval models. We notably measure the impact of attention masking, image resolution, modality alignment data regimes, and late interaction centered contrastive objectives which emerge as central performance factors. Building on these insights, we release ModernVBERT, a compact 250M-parameter vision-language encoder that outperforms models up to 10 times larger when finetuned on document retrieval tasks. Models and code are made available at https://huggingface.co/ModernVBERT.
Recurrence-Enhanced Vision-and-Language Transformers for Robust Multimodal Document Retrieval
Cross-modal retrieval is gaining increasing efficacy and interest from the research community, thanks to large-scale training, novel architectural and learning designs, and its application in LLMs and multimodal LLMs. In this paper, we move a step forward and design an approach that allows for multimodal queries, composed of both an image and a text, and can search within collections of multimodal documents, where images and text are interleaved. Our model, ReT, employs multi-level representations extracted from different layers of both visual and textual backbones, both at the query and document side. To allow for multi-level and cross-modal understanding and feature extraction, ReT employs a novel Transformer-based recurrent cell that integrates both textual and visual features at different layers, and leverages sigmoidal gates inspired by the classical design of LSTMs. Extensive experiments on M2KR and M-BEIR benchmarks show that ReT achieves state-of-the-art performance across diverse settings. Our source code and trained models are publicly available at https://github.com/aimagelab/ReT.
Text4Seg++: Advancing Image Segmentation via Generative Language Modeling
Multimodal Large Language Models (MLLMs) have shown exceptional capabilities in vision-language tasks. However, effectively integrating image segmentation into these models remains a significant challenge. In this work, we propose a novel text-as-mask paradigm that casts image segmentation as a text generation problem, eliminating the need for additional decoders and significantly simplifying the segmentation process. Our key innovation is semantic descriptors, a new textual representation of segmentation masks where each image patch is mapped to its corresponding text label. We first introduce image-wise semantic descriptors, a patch-aligned textual representation of segmentation masks that integrates naturally into the language modeling pipeline. To enhance efficiency, we introduce the Row-wise Run-Length Encoding (R-RLE), which compresses redundant text sequences, reducing the length of semantic descriptors by 74% and accelerating inference by 3times, without compromising performance. Building upon this, our initial framework Text4Seg achieves strong segmentation performance across a wide range of vision tasks. To further improve granularity and compactness, we propose box-wise semantic descriptors, which localizes regions of interest using bounding boxes and represents region masks via structured mask tokens called semantic bricks. This leads to our refined model, Text4Seg++, which formulates segmentation as a next-brick prediction task, combining precision, scalability, and generative efficiency. Comprehensive experiments on natural and remote sensing datasets show that Text4Seg++ consistently outperforms state-of-the-art models across diverse benchmarks without any task-specific fine-tuning, while remaining compatible with existing MLLM backbones. Our work highlights the effectiveness, scalability, and generalizability of text-driven image segmentation within the MLLM framework.
Screentone-Preserved Manga Retargeting
As a popular comic style, manga offers a unique impression by utilizing a rich set of bitonal patterns, or screentones, for illustration. However, screentones can easily be contaminated with visual-unpleasant aliasing and/or blurriness after resampling, which harms its visualization on displays of diverse resolutions. To address this problem, we propose the first manga retargeting method that synthesizes a rescaled manga image while retaining the screentone in each screened region. This is a non-trivial task as accurate region-wise segmentation remains challenging. Fortunately, the rescaled manga shares the same region-wise screentone correspondences with the original manga, which enables us to simplify the screentone synthesis problem as an anchor-based proposals selection and rearrangement problem. Specifically, we design a novel manga sampling strategy to generate aliasing-free screentone proposals, based on hierarchical grid-based anchors that connect the correspondences between the original and the target rescaled manga. Furthermore, a Recurrent Proposal Selection Module (RPSM) is proposed to adaptively integrate these proposals for target screentone synthesis. Besides, to deal with the translation insensitivity nature of screentones, we propose a translation-invariant screentone loss to facilitate the training convergence. Extensive qualitative and quantitative experiments are conducted to verify the effectiveness of our method, and notably compelling results are achieved compared to existing alternative techniques.
DeCLIP: Decoupled Learning for Open-Vocabulary Dense Perception
Dense visual prediction tasks have been constrained by their reliance on predefined categories, limiting their applicability in real-world scenarios where visual concepts are unbounded. While Vision-Language Models (VLMs) like CLIP have shown promise in open-vocabulary tasks, their direct application to dense prediction often leads to suboptimal performance due to limitations in local feature representation. In this work, we present our observation that CLIP's image tokens struggle to effectively aggregate information from spatially or semantically related regions, resulting in features that lack local discriminability and spatial consistency. To address this issue, we propose DeCLIP, a novel framework that enhances CLIP by decoupling the self-attention module to obtain ``content'' and ``context'' features respectively. The ``content'' features are aligned with image crop representations to improve local discriminability, while ``context'' features learn to retain the spatial correlations under the guidance of vision foundation models, such as DINO. Extensive experiments demonstrate that DeCLIP significantly outperforms existing methods across multiple open-vocabulary dense prediction tasks, including object detection and semantic segmentation. Code is available at magenta{https://github.com/xiaomoguhz/DeCLIP}.
CPT: Colorful Prompt Tuning for Pre-trained Vision-Language Models
Pre-Trained Vision-Language Models (VL-PTMs) have shown promising capabilities in grounding natural language in image data, facilitating a broad variety of cross-modal tasks. However, we note that there exists a significant gap between the objective forms of model pre-training and fine-tuning, resulting in a need for large amounts of labeled data to stimulate the visual grounding capability of VL-PTMs for downstream tasks. To address the challenge, we present Cross-modal Prompt Tuning (CPT, alternatively, Colorful Prompt Tuning), a novel paradigm for tuning VL-PTMs, which reformulates visual grounding into a fill-in-the-blank problem with color-based co-referential markers in image and text, maximally mitigating the gap. In this way, CPT enables strong few-shot and even zero-shot visual grounding capabilities of VL-PTMs. Comprehensive experimental results show that the prompt-tuned VL-PTMs outperform their fine-tuned counterparts by a large margin (e.g., 17.3% absolute accuracy improvement, and 73.8% relative standard deviation reduction on average with one shot in RefCOCO evaluation). We make the data and code for this paper publicly available at https://github.com/thunlp/CPT.
From Codicology to Code: A Comparative Study of Transformer and YOLO-based Detectors for Layout Analysis in Historical Documents
Robust Document Layout Analysis (DLA) is critical for the automated processing and understanding of historical documents with complex page organizations. This paper benchmarks five state-of-the-art object detection architectures on three annotated datasets representing a spectrum of codicological complexity: The e-NDP, a corpus of Parisian medieval registers (1326-1504); CATMuS, a diverse multiclass dataset derived from various medieval and modern sources (ca.12th-17th centuries) and HORAE, a corpus of decorated books of hours (ca.13th-16th centuries). We evaluate two Transformer-based models (Co-DETR, Grounding DINO) against three YOLO variants (AABB, OBB, and YOLO-World). Our findings reveal significant performance variations dependent on model architecture, data set characteristics, and bounding box representation. In the e-NDP dataset, Co-DETR achieves state-of-the-art results (0.752 [email protected]:.95), closely followed by YOLOv11X-OBB (0.721). Conversely, on the more complex CATMuS and HORAE datasets, the CNN-based YOLOv11x-OBB significantly outperforms all other models (0.564 and 0.568, respectively). This study unequivocally demonstrates that using Oriented Bounding Boxes (OBB) is not a minor refinement but a fundamental requirement for accurately modeling the non-Cartesian nature of historical manuscripts. We conclude that a key trade-off exists between the global context awareness of Transformers, ideal for structured layouts, and the superior generalization of CNN-OBB models for visually diverse and complex documents.
Feather the Throttle: Revisiting Visual Token Pruning for Vision-Language Model Acceleration
Recent works on accelerating Vision-Language Models show that strong performance can be maintained across a variety of vision-language tasks despite highly compressing visual information. In this work, we examine the popular acceleration approach of early pruning of visual tokens inside the language model and find that its strong performance across many tasks is not due to an exceptional ability to compress visual information, but rather the benchmarks' limited ability to assess fine-grained visual capabilities. Namely, we demonstrate a core issue with the acceleration approach where most tokens towards the top of the image are pruned away. Yet, this issue is only reflected in performance for a small subset of tasks such as localization. For the other evaluated tasks, strong performance is maintained with the flawed pruning strategy. Noting the limited visual capabilities of the studied acceleration technique, we propose FEATHER (Fast and Effective Acceleration wiTH Ensemble cRiteria), a straightforward approach that (1) resolves the identified issue with early-layer pruning, (2) incorporates uniform sampling to ensure coverage across all image regions, and (3) applies pruning in two stages to allow the criteria to become more effective at a later layer while still achieving significant speedup through early-layer pruning. With comparable computational savings, we find that FEATHER has more than 5times performance improvement on the vision-centric localization benchmarks compared to the original acceleration approach.
Evaluating Pixel Language Models on Non-Standardized Languages
We explore the potential of pixel-based models for transfer learning from standard languages to dialects. These models convert text into images that are divided into patches, enabling a continuous vocabulary representation that proves especially useful for out-of-vocabulary words common in dialectal data. Using German as a case study, we compare the performance of pixel-based models to token-based models across various syntactic and semantic tasks. Our results show that pixel-based models outperform token-based models in part-of-speech tagging, dependency parsing and intent detection for zero-shot dialect evaluation by up to 26 percentage points in some scenarios, though not in Standard German. However, pixel-based models fall short in topic classification. These findings emphasize the potential of pixel-based models for handling dialectal data, though further research should be conducted to assess their effectiveness in various linguistic contexts.
SQUARE: Semantic Query-Augmented Fusion and Efficient Batch Reranking for Training-free Zero-Shot Composed Image Retrieval
Composed Image Retrieval (CIR) aims to retrieve target images that preserve the visual content of a reference image while incorporating user-specified textual modifications. Training-free zero-shot CIR (ZS-CIR) approaches, which require no task-specific training or labeled data, are highly desirable, yet accurately capturing user intent remains challenging. In this paper, we present SQUARE, a novel two-stage training-free framework that leverages Multimodal Large Language Models (MLLMs) to enhance ZS-CIR. In the Semantic Query-Augmented Fusion (SQAF) stage, we enrich the query embedding derived from a vision-language model (VLM) such as CLIP with MLLM-generated captions of the target image. These captions provide high-level semantic guidance, enabling the query to better capture the user's intent and improve global retrieval quality. In the Efficient Batch Reranking (EBR) stage, top-ranked candidates are presented as an image grid with visual marks to the MLLM, which performs joint visual-semantic reasoning across all candidates. Our reranking strategy operates in a single pass and yields more accurate rankings. Experiments show that SQUARE, with its simplicity and effectiveness, delivers strong performance on four standard CIR benchmarks. Notably, it maintains high performance even with lightweight pre-trained, demonstrating its potential applicability.
Object Detection with Multimodal Large Vision-Language Models: An In-depth Review
The fusion of language and vision in large vision-language models (LVLMs) has revolutionized deep learning-based object detection by enhancing adaptability, contextual reasoning, and generalization beyond traditional architectures. This in-depth review presents a structured exploration of the state-of-the-art in LVLMs, systematically organized through a three-step research review process. First, we discuss the functioning of vision language models (VLMs) for object detection, describing how these models harness natural language processing (NLP) and computer vision (CV) techniques to revolutionize object detection and localization. We then explain the architectural innovations, training paradigms, and output flexibility of recent LVLMs for object detection, highlighting how they achieve advanced contextual understanding for object detection. The review thoroughly examines the approaches used in integration of visual and textual information, demonstrating the progress made in object detection using VLMs that facilitate more sophisticated object detection and localization strategies. This review presents comprehensive visualizations demonstrating LVLMs' effectiveness in diverse scenarios including localization and segmentation, and then compares their real-time performance, adaptability, and complexity to traditional deep learning systems. Based on the review, its is expected that LVLMs will soon meet or surpass the performance of conventional methods in object detection. The review also identifies a few major limitations of the current LVLM modes, proposes solutions to address those challenges, and presents a clear roadmap for the future advancement in this field. We conclude, based on this study, that the recent advancement in LVLMs have made and will continue to make a transformative impact on object detection and robotic applications in the future.
VideoClick: Video Object Segmentation with a Single Click
Annotating videos with object segmentation masks typically involves a two stage procedure of drawing polygons per object instance for all the frames and then linking them through time. While simple, this is a very tedious, time consuming and expensive process, making the creation of accurate annotations at scale only possible for well-funded labs. What if we were able to segment an object in the full video with only a single click? This will enable video segmentation at scale with a very low budget opening the door to many applications. Towards this goal, in this paper we propose a bottom up approach where given a single click for each object in a video, we obtain the segmentation masks of these objects in the full video. In particular, we construct a correlation volume that assigns each pixel in a target frame to either one of the objects in the reference frame or the background. We then refine this correlation volume via a recurrent attention module and decode the final segmentation. To evaluate the performance, we label the popular and challenging Cityscapes dataset with video object segmentations. Results on this new CityscapesVideo dataset show that our approach outperforms all the baselines in this challenging setting.
SALOVA: Segment-Augmented Long Video Assistant for Targeted Retrieval and Routing in Long-Form Video Analysis
Despite advances in Large Multi-modal Models, applying them to long and untrimmed video content remains challenging due to limitations in context length and substantial memory overhead. These constraints often lead to significant information loss and reduced relevance in the model responses. With the exponential growth of video data across web platforms, understanding long-form video is crucial for advancing generalized intelligence. In this paper, we introduce SALOVA: Segment-Augmented LOng Video Assistant, a novel video-LLM framework designed to enhance the comprehension of lengthy video content through targeted retrieval process. We address two main challenges to achieve it: (i) We present the SceneWalk dataset, a high-quality collection of 87.8K long videos, each densely captioned at the segment level to enable models to capture scene continuity and maintain rich descriptive context. (ii) We develop robust architectural designs integrating dynamic routing mechanism and spatio-temporal projector to efficiently retrieve and process relevant video segments based on user queries. Our framework mitigates the limitations of current video-LMMs by allowing for precise identification and retrieval of relevant video segments in response to queries, thereby improving the contextual relevance of the generated responses. Through extensive experiments, SALOVA demonstrates enhanced capability in processing complex long-form videos, showing significant capability to maintain contextual integrity across extended sequences.
SDMatte: Grafting Diffusion Models for Interactive Matting
Recent interactive matting methods have shown satisfactory performance in capturing the primary regions of objects, but they fall short in extracting fine-grained details in edge regions. Diffusion models trained on billions of image-text pairs, demonstrate exceptional capability in modeling highly complex data distributions and synthesizing realistic texture details, while exhibiting robust text-driven interaction capabilities, making them an attractive solution for interactive matting. To this end, we propose SDMatte, a diffusion-driven interactive matting model, with three key contributions. First, we exploit the powerful priors of diffusion models and transform the text-driven interaction capability into visual prompt-driven interaction capability to enable interactive matting. Second, we integrate coordinate embeddings of visual prompts and opacity embeddings of target objects into U-Net, enhancing SDMatte's sensitivity to spatial position information and opacity information. Third, we propose a masked self-attention mechanism that enables the model to focus on areas specified by visual prompts, leading to better performance. Extensive experiments on multiple datasets demonstrate the superior performance of our method, validating its effectiveness in interactive matting. Our code and model are available at https://github.com/vivoCameraResearch/SDMatte.
Manga Rescreening with Interpretable Screentone Representation
The process of adapting or repurposing manga pages is a time-consuming task that requires manga artists to manually work on every single screentone region and apply new patterns to create novel screentones across multiple panels. To address this issue, we propose an automatic manga rescreening pipeline that aims to minimize the human effort involved in manga adaptation. Our pipeline automatically recognizes screentone regions and generates novel screentones with newly specified characteristics (e.g., intensity or type). Existing manga generation methods have limitations in understanding and synthesizing complex tone- or intensity-varying regions. To overcome these limitations, we propose a novel interpretable representation of screentones that disentangles their intensity and type features, enabling better recognition and synthesis of screentones. This interpretable screentone representation reduces ambiguity in recognizing intensity-varying regions and provides fine-grained controls during screentone synthesis by decoupling and anchoring the type or the intensity feature. Our proposed method is demonstrated to be effective and convenient through various experiments, showcasing the superiority of the newly proposed pipeline with the interpretable screentone representations.
A Comprehensive Survey on Composed Image Retrieval
Composed Image Retrieval (CIR) is an emerging yet challenging task that allows users to search for target images using a multimodal query, comprising a reference image and a modification text specifying the user's desired changes to the reference image. Given its significant academic and practical value, CIR has become a rapidly growing area of interest in the computer vision and machine learning communities, particularly with the advances in deep learning. To the best of our knowledge, there is currently no comprehensive review of CIR to provide a timely overview of this field. Therefore, we synthesize insights from over 120 publications in top conferences and journals, including ACM TOIS, SIGIR, and CVPR In particular, we systematically categorize existing supervised CIR and zero-shot CIR models using a fine-grained taxonomy. For a comprehensive review, we also briefly discuss approaches for tasks closely related to CIR, such as attribute-based CIR and dialog-based CIR. Additionally, we summarize benchmark datasets for evaluation and analyze existing supervised and zero-shot CIR methods by comparing experimental results across multiple datasets. Furthermore, we present promising future directions in this field, offering practical insights for researchers interested in further exploration. The curated collection of related works is maintained and continuously updated in https://github.com/haokunwen/Awesome-Composed-Image-Retrieval.
MMDocIR: Benchmarking Multi-Modal Retrieval for Long Documents
Multi-modal document retrieval is designed to identify and retrieve various forms of multi-modal content, such as figures, tables, charts, and layout information from extensive documents. Despite its significance, there is a notable lack of a robust benchmark to effectively evaluate the performance of systems in multi-modal document retrieval. To address this gap, this work introduces a new benchmark, named as MMDocIR, encompassing two distinct tasks: page-level and layout-level retrieval. The former focuses on localizing the most relevant pages within a long document, while the latter targets the detection of specific layouts, offering a more fine-grained granularity than whole-page analysis. A layout can refer to a variety of elements such as textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring expertly annotated labels for 1,685 questions and bootstrapped labels for 173,843 questions, making it a pivotal resource for advancing multi-modal document retrieval for both training and evaluation. Through rigorous experiments, we reveal that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR train set can effectively benefit the training process of multi-modal document retrieval and (iii) text retrievers leveraging on VLM-text perform much better than those using OCR-text. These findings underscores the potential advantages of integrating visual elements for multi-modal document retrieval.
Spatially Guiding Unsupervised Semantic Segmentation Through Depth-Informed Feature Distillation and Sampling
Traditionally, training neural networks to perform semantic segmentation required expensive human-made annotations. But more recently, advances in the field of unsupervised learning have made significant progress on this issue and towards closing the gap to supervised algorithms. To achieve this, semantic knowledge is distilled by learning to correlate randomly sampled features from images across an entire dataset. In this work, we build upon these advances by incorporating information about the structure of the scene into the training process through the use of depth information. We achieve this by (1) learning depth-feature correlation by spatially correlate the feature maps with the depth maps to induce knowledge about the structure of the scene and (2) implementing farthest-point sampling to more effectively select relevant features by utilizing 3D sampling techniques on depth information of the scene. Finally, we demonstrate the effectiveness of our technical contributions through extensive experimentation and present significant improvements in performance across multiple benchmark datasets.
Remote Sensing Vision-Language Foundation Models without Annotations via Ground Remote Alignment
We introduce a method to train vision-language models for remote-sensing images without using any textual annotations. Our key insight is to use co-located internet imagery taken on the ground as an intermediary for connecting remote-sensing images and language. Specifically, we train an image encoder for remote sensing images to align with the image encoder of CLIP using a large amount of paired internet and satellite images. Our unsupervised approach enables the training of a first-of-its-kind large-scale vision language model (VLM) for remote sensing images at two different resolutions. We show that these VLMs enable zero-shot, open-vocabulary image classification, retrieval, segmentation and visual question answering for satellite images. On each of these tasks, our VLM trained without textual annotations outperforms existing VLMs trained with supervision, with gains of up to 20% for classification and 80% for segmentation.
