Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDynamic PlenOctree for Adaptive Sampling Refinement in Explicit NeRF
The explicit neural radiance field (NeRF) has gained considerable interest for its efficient training and fast inference capabilities, making it a promising direction such as virtual reality and gaming. In particular, PlenOctree (POT)[1], an explicit hierarchical multi-scale octree representation, has emerged as a structural and influential framework. However, POT's fixed structure for direct optimization is sub-optimal as the scene complexity evolves continuously with updates to cached color and density, necessitating refining the sampling distribution to capture signal complexity accordingly. To address this issue, we propose the dynamic PlenOctree DOT, which adaptively refines the sample distribution to adjust to changing scene complexity. Specifically, DOT proposes a concise yet novel hierarchical feature fusion strategy during the iterative rendering process. Firstly, it identifies the regions of interest through training signals to ensure adaptive and efficient refinement. Next, rather than directly filtering out valueless nodes, DOT introduces the sampling and pruning operations for octrees to aggregate features, enabling rapid parameter learning. Compared with POT, our DOT outperforms it by enhancing visual quality, reducing over 55.15/68.84% parameters, and providing 1.7/1.9 times FPS for NeRF-synthetic and Tanks & Temples, respectively. Project homepage:https://vlislab22.github.io/DOT. [1] Yu, Alex, et al. "Plenoctrees for real-time rendering of neural radiance fields." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.
PLEX: Making the Most of the Available Data for Robotic Manipulation Pretraining
A rich representation is key to general robotic manipulation, but existing model architectures require a lot of data to learn it. Unfortunately, ideal robotic manipulation training data, which comes in the form of expert visuomotor demonstrations for a variety of annotated tasks, is scarce. In this work we propose PLEX, a transformer-based architecture that learns from task-agnostic visuomotor trajectories accompanied by a much larger amount of task-conditioned object manipulation videos -- a type of robotics-relevant data available in quantity. The key insight behind PLEX is that the trajectories with observations and actions help induce a latent feature space and train a robot to execute task-agnostic manipulation routines, while a diverse set of video-only demonstrations can efficiently teach the robot how to plan in this feature space for a wide variety of tasks. In contrast to most works on robotic manipulation pretraining, PLEX learns a generalizable sensorimotor multi-task policy, not just an observational representation. We also show that using relative positional encoding in PLEX's transformers further increases its data efficiency when learning from human-collected demonstrations. Experiments showcase \appr's generalization on Meta-World-v2 benchmark and establish state-of-the-art performance in challenging Robosuite environments.
PLeaS -- Merging Models with Permutations and Least Squares
The democratization of machine learning systems has made the process of fine-tuning accessible to practitioners, leading to a wide range of open-source models fine-tuned on specialized tasks and datasets. Recent work has proposed to merge such models to combine their functionalities. However, prior approaches are usually restricted to models that are fine-tuned from the same base model. Furthermore, the final merged model is typically required to be of the same size as the original models. In this work, we propose a new two-step algorithm to merge models -- termed PLeaS -- which relaxes these constraints. First, leveraging the Permutation symmetries inherent in the two models, PLeaS partially matches nodes in each layer by maximizing alignment. Next, PLeaS computes the weights of the merged model as a layer-wise Least Squares solution to minimize the approximation error between the features of the merged model and the permuted features of the original models. PLeaS allows a practitioner to merge two models sharing the same architecture into a single performant model of a desired size, even when the two original models are fine-tuned from different base models. We also demonstrate how our method can be extended to address a challenging scenario where no data is available from the fine-tuning domains. We demonstrate our method to merge ResNet and ViT models trained with shared and different label spaces, and show improvement over the state-of-the-art merging methods of up to 15 percentage points for the same target compute while merging models trained on DomainNet and fine-grained classification tasks. Our code is open-sourced at https://github.com/SewoongLab/PLeaS-Merging .
PLeak: Prompt Leaking Attacks against Large Language Model Applications
Large Language Models (LLMs) enable a new ecosystem with many downstream applications, called LLM applications, with different natural language processing tasks. The functionality and performance of an LLM application highly depend on its system prompt, which instructs the backend LLM on what task to perform. Therefore, an LLM application developer often keeps a system prompt confidential to protect its intellectual property. As a result, a natural attack, called prompt leaking, is to steal the system prompt from an LLM application, which compromises the developer's intellectual property. Existing prompt leaking attacks primarily rely on manually crafted queries, and thus achieve limited effectiveness. In this paper, we design a novel, closed-box prompt leaking attack framework, called PLeak, to optimize an adversarial query such that when the attacker sends it to a target LLM application, its response reveals its own system prompt. We formulate finding such an adversarial query as an optimization problem and solve it with a gradient-based method approximately. Our key idea is to break down the optimization goal by optimizing adversary queries for system prompts incrementally, i.e., starting from the first few tokens of each system prompt step by step until the entire length of the system prompt. We evaluate PLeak in both offline settings and for real-world LLM applications, e.g., those on Poe, a popular platform hosting such applications. Our results show that PLeak can effectively leak system prompts and significantly outperforms not only baselines that manually curate queries but also baselines with optimized queries that are modified and adapted from existing jailbreaking attacks. We responsibly reported the issues to Poe and are still waiting for their response. Our implementation is available at this repository: https://github.com/BHui97/PLeak.
Resolving Pleiades binary stars with Gaia and speckle interferometric observations
The Pleiades is the most prominent open star cluster visible from Earth and an important benchmark for simple stellar populations, unified by common origin, age, and distance. Binary stars are its essential ingredient, yet their contribution remains uncertain due to heavy observational biases. A resolved multiplicity survey was conducted for a magnitude-limited G < 15mag sample of 423 potential cluster members, including sources with poorly fitted astrometric solutions in Gaia DR3. Speckle interferometric observations at the 2.5 meter telescope of SAI MSU observatory were combined with Gaia data, enabling the identification of 61 resolved binary or multiple systems within the 0.04 - 10 arcsec (5 - 1350 au) separation range. With speckle observations, we discovered 21 components in 20 systems. The existence of a Merope (23 Tau) companion is confirmed after several previous unsuccessful attempts. We show that the Gaia multipeak fraction is a strong predictor of subarcsecond multiplicity, as all sources with ipd_frac_multi_peak > 4% are successfully resolved. We found that 10% of Pleiades stars have a companion with a mass ratio q > 0.5 within projected separation of 27 < s < 1350 au, and confirm a deficit of wide binaries with s > 300 au. An observed dearth of wide pairs with large mass ratio (q > 0.55) may imprint the transition from hard to soft binaries regime at the early stages of cluster evolution. The total binary fraction for q > 0.5 systems is extrapolated to be around 25%.
FPO++: Efficient Encoding and Rendering of Dynamic Neural Radiance Fields by Analyzing and Enhancing Fourier PlenOctrees
Fourier PlenOctrees have shown to be an efficient representation for real-time rendering of dynamic Neural Radiance Fields (NeRF). Despite its many advantages, this method suffers from artifacts introduced by the involved compression when combining it with recent state-of-the-art techniques for training the static per-frame NeRF models. In this paper, we perform an in-depth analysis of these artifacts and leverage the resulting insights to propose an improved representation. In particular, we present a novel density encoding that adapts the Fourier-based compression to the characteristics of the transfer function used by the underlying volume rendering procedure and leads to a substantial reduction of artifacts in the dynamic model. Furthermore, we show an augmentation of the training data that relaxes the periodicity assumption of the compression. We demonstrate the effectiveness of our enhanced Fourier PlenOctrees in the scope of quantitative and qualitative evaluations on synthetic and real-world scenes.
Relationship between pulmonary nodule malignancy and surrounding pleurae, airways and vessels: a quantitative study using the public LIDC-IDRI dataset
To investigate whether the pleurae, airways and vessels surrounding a nodule on non-contrast computed tomography (CT) can discriminate benign and malignant pulmonary nodules. The LIDC-IDRI dataset, one of the largest publicly available CT database, was exploited for study. A total of 1556 nodules from 694 patients were involved in statistical analysis, where nodules with average scorings <3 and >3 were respectively denoted as benign and malignant. Besides, 339 nodules from 113 patients with diagnosis ground-truth were independently evaluated. Computer algorithms were developed to segment pulmonary structures and quantify the distances to pleural surface, airways and vessels, as well as the counting number and normalized volume of airways and vessels near a nodule. Odds ratio (OR) and Chi-square (\chi^2) testing were performed to demonstrate the correlation between features of surrounding structures and nodule malignancy. A non-parametric receiver operating characteristic (ROC) analysis was conducted in logistic regression to evaluate discrimination ability of each structure. For benign and malignant groups, the average distances from nodules to pleural surface, airways and vessels are respectively (6.56, 5.19), (37.08, 26.43) and (1.42, 1.07) mm. The correlation between nodules and the counting number of airways and vessels that contact or project towards nodules are respectively (OR=22.96, \chi^2=105.04) and (OR=7.06, \chi^2=290.11). The correlation between nodules and the volume of airways and vessels are (OR=9.19, \chi^2=159.02) and (OR=2.29, \chi^2=55.89). The areas-under-curves (AUCs) for pleurae, airways and vessels are respectively 0.5202, 0.6943 and 0.6529. Our results show that malignant nodules are often surrounded by more pulmonary structures compared with benign ones, suggesting that features of these structures could be viewed as lung cancer biomarkers.
Axe the X in XAI: A Plea for Understandable AI
In a recent paper, Erasmus et al. (2021) defend the idea that the ambiguity of the term "explanation" in explainable AI (XAI) can be solved by adopting any of four different extant accounts of explanation in the philosophy of science: the Deductive Nomological, Inductive Statistical, Causal Mechanical, and New Mechanist models. In this chapter, I show that the authors' claim that these accounts can be applied to deep neural networks as they would to any natural phenomenon is mistaken. I also provide a more general argument as to why the notion of explainability as it is currently used in the XAI literature bears little resemblance to the traditional concept of scientific explanation. It would be more fruitful to use the label "understandable AI" to avoid the confusion that surrounds the goal and purposes of XAI. In the second half of the chapter, I argue for a pragmatic conception of understanding that is better suited to play the central role attributed to explanation in XAI. Following Kuorikoski & Ylikoski (2015), the conditions of satisfaction for understanding an ML system are fleshed out in terms of an agent's success in using the system, in drawing correct inferences from it.
Regional Multi-scale Approach for Visually Pleasing Explanations of Deep Neural Networks
Recently, many methods to interpret and visualize deep neural network predictions have been proposed and significant progress has been made. However, a more class-discriminative and visually pleasing explanation is required. Thus, this paper proposes a region-based approach that estimates feature importance in terms of appropriately segmented regions. By fusing the saliency maps generated from multi-scale segmentations, a more class-discriminative and visually pleasing map is obtained. We incorporate this regional multi-scale concept into a prediction difference method that is model-agnostic. An input image is segmented in several scales using the super-pixel method, and exclusion of a region is simulated by sampling a normal distribution constructed using the boundary prior. The experimental results demonstrate that the regional multi-scale method produces much more class-discriminative and visually pleasing saliency maps.
Attention, Please! Revisiting Attentive Probing for Masked Image Modeling
As fine-tuning (FT) becomes increasingly impractical at scale, probing is emerging as the preferred evaluation protocol for self-supervised learning (SSL). Yet, the standard linear probing (LP) fails to adequately reflect the potential of models trained with Masked Image Modeling (MIM), due to the distributed nature of patch tokens. This motivates the need for attentive probing, an alternative that uses attention to selectively aggregate patch-level features. Despite its growing adoption, attentive probing remains under-explored, with existing methods suffering from excessive parameterization and poor computational efficiency. In this work, we revisit attentive probing through the lens of the accuracy-efficiency trade-off. We conduct a systematic study of existing methods, analyzing their mechanisms and benchmarking their performance. We introduce efficient probing (EP), a multi-query cross-attention mechanism that eliminates redundant projections, reduces the number of trainable parameters, and achieves up to a 10times speed-up over conventional multi-head attention. Despite its simplicity, EP outperforms LP and prior attentive probing approaches across seven benchmarks, generalizes well beyond MIM to diverse pre-training paradigms, produces interpretable attention maps, and achieves strong gains in low-shot and layer-wise settings. Code available at https://github.com/billpsomas/efficient-probing.
This Is Your Doge, If It Please You: Exploring Deception and Robustness in Mixture of LLMs
Mixture of large language model (LLMs) Agents (MoA) architectures achieve state-of-the-art performance on prominent benchmarks like AlpacaEval 2.0 by leveraging the collaboration of multiple LLMs at inference time. Despite these successes, an evaluation of the safety and reliability of MoA is missing. We present the first comprehensive study of MoA's robustness against deceptive LLM agents that deliberately provide misleading responses. We examine factors like the propagation of deceptive information, model size, and information availability, and uncover critical vulnerabilities. On AlpacaEval 2.0, the popular LLaMA 3.1-70B model achieves a length-controlled Win Rate (LC WR) of 49.2% when coupled with 3-layer MoA (6 LLM agents). However, we demonstrate that introducing only a single carefully-instructed deceptive agent into the MoA can reduce performance to 37.9%, effectively nullifying all MoA gains. On QuALITY, a multiple-choice comprehension task, the impact is also severe, with accuracy plummeting by a staggering 48.5%. Inspired in part by the historical Doge of Venice voting process, designed to minimize influence and deception, we propose a range of unsupervised defense mechanisms that recover most of the lost performance.
Will It Still Be True Tomorrow? Multilingual Evergreen Question Classification to Improve Trustworthy QA
Large Language Models (LLMs) often hallucinate in question answering (QA) tasks. A key yet underexplored factor contributing to this is the temporality of questions -- whether they are evergreen (answers remain stable over time) or mutable (answers change). In this work, we introduce EverGreenQA, the first multilingual QA dataset with evergreen labels, supporting both evaluation and training. Using EverGreenQA, we benchmark 12 modern LLMs to assess whether they encode question temporality explicitly (via verbalized judgments) or implicitly (via uncertainty signals). We also train EG-E5, a lightweight multilingual classifier that achieves SoTA performance on this task. Finally, we demonstrate the practical utility of evergreen classification across three applications: improving self-knowledge estimation, filtering QA datasets, and explaining GPT-4o retrieval behavior.
How Much Knowledge Can You Pack into a LoRA Adapter without Harming LLM?
The performance of Large Language Models (LLMs) on many tasks is greatly limited by the knowledge learned during pre-training and stored in the model's parameters. Low-rank adaptation (LoRA) is a popular and efficient training technique for updating or domain-specific adaptation of LLMs. In this study, we investigate how new facts can be incorporated into the LLM using LoRA without compromising the previously learned knowledge. We fine-tuned Llama-3.1-8B-instruct using LoRA with varying amounts of new knowledge. Our experiments have shown that the best results are obtained when the training data contains a mixture of known and new facts. However, this approach is still potentially harmful because the model's performance on external question-answering benchmarks declines after such fine-tuning. When the training data is biased towards certain entities, the model tends to regress to few overrepresented answers. In addition, we found that the model becomes more confident and refuses to provide an answer in only few cases. These findings highlight the potential pitfalls of LoRA-based LLM updates and underscore the importance of training data composition and tuning parameters to balance new knowledge integration and general model capabilities.
<think> So let's replace this phrase with insult... </think> Lessons learned from generation of toxic texts with LLMs
Modern Large Language Models (LLMs) are excellent at generating synthetic data. However, their performance in sensitive domains such as text detoxification has not received proper attention from the scientific community. This paper explores the possibility of using LLM-generated synthetic toxic data as an alternative to human-generated data for training models for detoxification. Using Llama 3 and Qwen activation-patched models, we generated synthetic toxic counterparts for neutral texts from ParaDetox and SST-2 datasets. Our experiments show that models fine-tuned on synthetic data consistently perform worse than those trained on human data, with a drop in performance of up to 30% in joint metrics. The root cause is identified as a critical lexical diversity gap: LLMs generate toxic content using a small, repetitive vocabulary of insults that fails to capture the nuances and variety of human toxicity. These findings highlight the limitations of current LLMs in this domain and emphasize the continued importance of diverse, human-annotated data for building robust detoxification systems.
Breaking reCAPTCHAv2
Our work examines the efficacy of employing advanced machine learning methods to solve captchas from Google's reCAPTCHAv2 system. We evaluate the effectiveness of automated systems in solving captchas by utilizing advanced YOLO models for image segmentation and classification. Our main result is that we can solve 100% of the captchas, while previous work only solved 68-71%. Furthermore, our findings suggest that there is no significant difference in the number of challenges humans and bots must solve to pass the captchas in reCAPTCHAv2. This implies that current AI technologies can exploit advanced image-based captchas. We also look under the hood of reCAPTCHAv2, and find evidence that reCAPTCHAv2 is heavily based on cookie and browser history data when evaluating whether a user is human or not. The code is provided alongside this paper.
Graph Language Models
While Language Models have become workhorses for NLP, their interplay with textual knowledge graphs (KGs) - structured memories of general or domain knowledge - is actively researched. Current embedding methodologies for such graphs typically either (i) linearize graphs for embedding them using sequential Language Models (LMs), which underutilize structural information, or (ii) use Graph Neural Networks (GNNs) to preserve graph structure, while GNNs cannot represent textual features as well as a pre-trained LM could. In this work we introduce a novel language model, the Graph Language Model (GLM), that integrates the strengths of both approaches, while mitigating their weaknesses. The GLM parameters are initialized from a pretrained LM, to facilitate nuanced understanding of individual concepts and triplets. Simultaneously, its architectural design incorporates graph biases, thereby promoting effective knowledge distribution within the graph. Empirical evaluations on relation classification tasks on ConceptNet subgraphs reveal that GLM embeddings surpass both LM- and GNN-based baselines in supervised and zero-shot settings.
On the Verge of Solving Rocket League using Deep Reinforcement Learning and Sim-to-sim Transfer
Autonomously trained agents that are supposed to play video games reasonably well rely either on fast simulation speeds or heavy parallelization across thousands of machines running concurrently. This work explores a third way that is established in robotics, namely sim-to-real transfer, or if the game is considered a simulation itself, sim-to-sim transfer. In the case of Rocket League, we demonstrate that single behaviors of goalies and strikers can be successfully learned using Deep Reinforcement Learning in the simulation environment and transferred back to the original game. Although the implemented training simulation is to some extent inaccurate, the goalkeeping agent saves nearly 100% of its faced shots once transferred, while the striking agent scores in about 75% of cases. Therefore, the trained agent is robust enough and able to generalize to the target domain of Rocket League.
SSL4Eco: A Global Seasonal Dataset for Geospatial Foundation Models in Ecology
With the exacerbation of the biodiversity and climate crises, macroecological pursuits such as global biodiversity mapping become more urgent. Remote sensing offers a wealth of Earth observation data for ecological studies, but the scarcity of labeled datasets remains a major challenge. Recently, self-supervised learning has enabled learning representations from unlabeled data, triggering the development of pretrained geospatial models with generalizable features. However, these models are often trained on datasets biased toward areas of high human activity, leaving entire ecological regions underrepresented. Additionally, while some datasets attempt to address seasonality through multi-date imagery, they typically follow calendar seasons rather than local phenological cycles. To better capture vegetation seasonality at a global scale, we propose a simple phenology-informed sampling strategy and introduce corresponding SSL4Eco, a multi-date Sentinel-2 dataset, on which we train an existing model with a season-contrastive objective. We compare representations learned from SSL4Eco against other datasets on diverse ecological downstream tasks and demonstrate that our straightforward sampling method consistently improves representation quality, highlighting the importance of dataset construction. The model pretrained on SSL4Eco reaches state of the art performance on 7 out of 8 downstream tasks spanning (multi-label) classification and regression. We release our code, data, and model weights to support macroecological and computer vision research at https://github.com/PlekhanovaElena/ssl4eco.
FLIP Reasoning Challenge
Over the past years, advances in artificial intelligence (AI) have demonstrated how AI can solve many perception and generation tasks, such as image classification and text writing, yet reasoning remains a challenge. This paper introduces the FLIP dataset, a benchmark for evaluating AI reasoning capabilities based on human verification tasks on the Idena blockchain. FLIP challenges present users with two orderings of 4 images, requiring them to identify the logically coherent one. By emphasizing sequential reasoning, visual storytelling, and common sense, FLIP provides a unique testbed for multimodal AI systems. Our experiments evaluate state-of-the-art models, leveraging both vision-language models (VLMs) and large language models (LLMs). Results reveal that even the best open-sourced and closed-sourced models achieve maximum accuracies of 75.5% and 77.9%, respectively, in zero-shot settings, compared to human performance of 95.3%. Captioning models aid reasoning models by providing text descriptions of images, yielding better results than when using the raw images directly, 69.6% vs. 75.2% for Gemini 1.5 Pro. Combining the predictions from 15 models in an ensemble increases the accuracy to 85.2%. These findings highlight the limitations of existing reasoning models and the need for robust multimodal benchmarks like FLIP. The full codebase and dataset will be available at https://github.com/aplesner/FLIP-Reasoning-Challenge.
Accurate Computation of the Logarithm of Modified Bessel Functions on GPUs
Bessel functions are critical in scientific computing for applications such as machine learning, protein structure modeling, and robotics. However, currently, available routines lack precision or fail for certain input ranges, such as when the order v is large, and GPU-specific implementations are limited. We address the precision limitations of current numerical implementations while dramatically improving the runtime. We propose two novel algorithms for computing the logarithm of modified Bessel functions of the first and second kinds by computing intermediate values on a logarithmic scale. Our algorithms are robust and never have issues with underflows or overflows while having relative errors on the order of machine precision, even for inputs where existing libraries fail. In C++/CUDA, our algorithms have median and maximum speedups of 45x and 6150x for GPU and 17x and 3403x for CPU, respectively, over the ranges of inputs and third-party libraries tested. Compared to SciPy, the algorithms have median and maximum speedups of 77x and 300x for GPU and 35x and 98x for CPU, respectively, over the tested inputs. The ability to robustly compute a solution and the low relative errors allow us to fit von Mises-Fisher, vMF, distributions to high-dimensional neural network features. This is, e.g., relevant for uncertainty quantification in metric learning. We obtain image feature data by processing CIFAR10 training images with the convolutional layers of a pre-trained ResNet50. We successfully fit vMF distributions to 2048-, 8192-, and 32768-dimensional image feature data using our algorithms. Our approach provides fast and accurate results while existing implementations in SciPy and mpmath fail to fit successfully. Our approach is readily implementable on GPUs, and we provide a fast open-source implementation alongside this paper.
Memory Gym: Towards Endless Tasks to Benchmark Memory Capabilities of Agents
Memory Gym presents a suite of 2D partially observable environments, namely Mortar Mayhem, Mystery Path, and Searing Spotlights, designed to benchmark memory capabilities in decision-making agents. These environments, originally with finite tasks, are expanded into innovative, endless formats, mirroring the escalating challenges of cumulative memory games such as ``I packed my bag''. This progression in task design shifts the focus from merely assessing sample efficiency to also probing the levels of memory effectiveness in dynamic, prolonged scenarios. To address the gap in available memory-based Deep Reinforcement Learning baselines, we introduce an implementation that integrates Transformer-XL (TrXL) with Proximal Policy Optimization. This approach utilizes TrXL as a form of episodic memory, employing a sliding window technique. Our comparative study between the Gated Recurrent Unit (GRU) and TrXL reveals varied performances across different settings. TrXL, on the finite environments, demonstrates superior sample efficiency in Mystery Path and outperforms in Mortar Mayhem. However, GRU is more efficient on Searing Spotlights. Most notably, in all endless tasks, GRU makes a remarkable resurgence, consistently outperforming TrXL by significant margins. Website and Source Code: https://github.com/MarcoMeter/endless-memory-gym/
Identifying Mislabeled Data using the Area Under the Margin Ranking
Not all data in a typical training set help with generalization; some samples can be overly ambiguous or outrightly mislabeled. This paper introduces a new method to identify such samples and mitigate their impact when training neural networks. At the heart of our algorithm is the Area Under the Margin (AUM) statistic, which exploits differences in the training dynamics of clean and mislabeled samples. A simple procedure - adding an extra class populated with purposefully mislabeled threshold samples - learns a AUM upper bound that isolates mislabeled data. This approach consistently improves upon prior work on synthetic and real-world datasets. On the WebVision50 classification task our method removes 17% of training data, yielding a 1.6% (absolute) improvement in test error. On CIFAR100 removing 13% of the data leads to a 1.2% drop in error.
Predicting sepsis in multi-site, multi-national intensive care cohorts using deep learning
Despite decades of clinical research, sepsis remains a global public health crisis with high mortality, and morbidity. Currently, when sepsis is detected and the underlying pathogen is identified, organ damage may have already progressed to irreversible stages. Effective sepsis management is therefore highly time-sensitive. By systematically analysing trends in the plethora of clinical data available in the intensive care unit (ICU), an early prediction of sepsis could lead to earlier pathogen identification, resistance testing, and effective antibiotic and supportive treatment, and thereby become a life-saving measure. Here, we developed and validated a machine learning (ML) system for the prediction of sepsis in the ICU. Our analysis represents the largest multi-national, multi-centre in-ICU study for sepsis prediction using ML to date. Our dataset contains 156,309 unique ICU admissions, which represent a refined and harmonised subset of five large ICU databases originating from three countries. Using the international consensus definition Sepsis-3, we derived hourly-resolved sepsis label annotations, amounting to 26,734 (17.1%) septic stays. We compared our approach, a deep self-attention model, to several clinical baselines as well as ML baselines and performed an extensive internal and external validation within and across databases. On average, our model was able to predict sepsis with an AUROC of 0.847 pm 0.050 (internal out-of sample validation) and 0.761 pm 0.052 (external validation). For a harmonised prevalence of 17%, at 80% recall our model detects septic patients with 39% precision 3.7 hours in advance.
Sybil Detection using Graph Neural Networks
This paper presents SYBILGAT, a novel approach to Sybil detection in social networks using Graph Attention Networks (GATs). Traditional methods for Sybil detection primarily leverage structural properties of networks; however, they tend to struggle with a large number of attack edges and are often unable to simultaneously utilize both known Sybil and honest nodes. Our proposed method addresses these limitations by dynamically assigning attention weights to different nodes during aggregations, enhancing detection performance. We conducted extensive experiments in various scenarios, including pretraining in sampled subgraphs, synthetic networks, and networks under targeted attacks. The results show that SYBILGAT significantly outperforms the state-of-the-art algorithms, particularly in scenarios with high attack complexity and when the number of attack edges increases. Our approach shows robust performance across different network models and sizes, even as the detection task becomes more challenging. We successfully applied the model to a real-world Twitter graph with more than 269k nodes and 6.8M edges. The flexibility and generalizability of SYBILGAT make it a promising tool to defend against Sybil attacks in online social networks with only structural information.
The Impact of Scaling Training Data on Adversarial Robustness
Deep neural networks remain vulnerable to adversarial examples despite advances in architectures and training paradigms. We investigate how training data characteristics affect adversarial robustness across 36 state-of-the-art vision models spanning supervised, self-supervised, and contrastive learning approaches, trained on datasets from 1.2M to 22B images. Models were evaluated under six black-box attack categories: random perturbations, two types of geometric masks, COCO object manipulations, ImageNet-C corruptions, and ImageNet-R style shifts. Robustness follows a logarithmic scaling law with both data volume and model size: a tenfold increase in data reduces attack success rate (ASR) on average by ~3.2%, whereas a tenfold increase in model size reduces ASR on average by ~13.4%. Notably, some self-supervised models trained on curated datasets, such as DINOv2, outperform others trained on much larger but less curated datasets, challenging the assumption that scale alone drives robustness. Adversarial fine-tuning of ResNet50s improves generalization across structural variations but not across color distributions. Human evaluation reveals persistent gaps between human and machine vision. These results show that while scaling improves robustness, data quality, architecture, and training objectives play a more decisive role than raw scale in achieving broad-spectrum adversarial resilience.
Recurrent Deep Differentiable Logic Gate Networks
While differentiable logic gates have shown promise in feedforward networks, their application to sequential modeling remains unexplored. This paper presents the first implementation of Recurrent Deep Differentiable Logic Gate Networks (RDDLGN), combining Boolean operations with recurrent architectures for sequence-to-sequence learning. Evaluated on WMT'14 English-German translation, RDDLGN achieves 5.00 BLEU and 30.9\% accuracy during training, approaching GRU performance (5.41 BLEU) and graceful degradation (4.39 BLEU) during inference. This work establishes recurrent logic-based neural computation as viable, opening research directions for FPGA acceleration in sequential modeling and other recursive network architectures.
Mind the Gap: Removing the Discretization Gap in Differentiable Logic Gate Networks
Modern neural networks demonstrate state-of-the-art performance on numerous existing benchmarks; however, their high computational requirements and energy consumption prompt researchers to seek more efficient solutions for real-world deployment. Logic gate networks (LGNs) learns a large network of logic gates for efficient image classification. However, learning a network that can solve a simple problem like CIFAR-10 can take days to weeks to train. Even then, almost half of the network remains unused, causing a discretization gap. This discretization gap hinders real-world deployment of LGNs, as the performance drop between training and inference negatively impacts accuracy. We inject Gumbel noise with a straight-through estimator during training to significantly speed up training, improve neuron utilization, and decrease the discretization gap. We theoretically show that this results from implicit Hessian regularization, which improves the convergence properties of LGNs. We train networks 4.5 times faster in wall-clock time, reduce the discretization gap by 98%, and reduce the number of unused gates by 100%.
Boosting Reservoir Computing with Brain-inspired Adaptive Dynamics
Reservoir computers (RCs) provide a computationally efficient alternative to deep learning while also offering a framework for incorporating brain-inspired computational principles. By using an internal neural network with random, fixed connections-the 'reservoir'-and training only the output weights, RCs simplify the training process but remain sensitive to the choice of hyperparameters that govern activation functions and network architecture. Moreover, typical RC implementations overlook a critical aspect of neuronal dynamics: the balance between excitatory and inhibitory (E-I) signals, which is essential for robust brain function. We show that RCs characteristically perform best in balanced or slightly over-inhibited regimes, outperforming excitation-dominated ones. To reduce the need for precise hyperparameter tuning, we introduce a self-adapting mechanism that locally adjusts E/I balance to achieve target neuronal firing rates, improving performance by up to 130% in tasks like memory capacity and time series prediction compared with globally tuned RCs. Incorporating brain-inspired heterogeneity in target neuronal firing rates further reduces the need for fine-tuning hyperparameters and enables RCs to excel across linear and non-linear tasks. These results support a shift from static optimization to dynamic adaptation in reservoir design, demonstrating how brain-inspired mechanisms improve RC performance and robustness while deepening our understanding of neural computation.
Human Aligned Compression for Robust Models
Adversarial attacks on image models threaten system robustness by introducing imperceptible perturbations that cause incorrect predictions. We investigate human-aligned learned lossy compression as a defense mechanism, comparing two learned models (HiFiC and ELIC) against traditional JPEG across various quality levels. Our experiments on ImageNet subsets demonstrate that learned compression methods outperform JPEG, particularly for Vision Transformer architectures, by preserving semantically meaningful content while removing adversarial noise. Even in white-box settings where attackers can access the defense, these methods maintain substantial effectiveness. We also show that sequential compression--applying rounds of compression/decompression--significantly enhances defense efficacy while maintaining classification performance. Our findings reveal that human-aligned compression provides an effective, computationally efficient defense that protects the image features most relevant to human and machine understanding. It offers a practical approach to improving model robustness against adversarial threats.
Synthetic Data for Blood Vessel Network Extraction
Blood vessel networks in the brain play a crucial role in stroke research, where understanding their topology is essential for analyzing blood flow dynamics. However, extracting detailed topological vessel network information from microscopy data remains a significant challenge, mainly due to the scarcity of labeled training data and the need for high topological accuracy. This work combines synthetic data generation with deep learning to automatically extract vessel networks as graphs from volumetric microscopy data. To combat data scarcity, we introduce a comprehensive pipeline for generating large-scale synthetic datasets that mirror the characteristics of real vessel networks. Our three-stage approach progresses from abstract graph generation through vessel mask creation to realistic medical image synthesis, incorporating biological constraints and imaging artifacts at each stage. Using this synthetic data, we develop a two-stage deep learning pipeline of 3D U-Net-based models for node detection and edge prediction. Fine-tuning on real microscopy data shows promising adaptation, improving edge prediction F1 scores from 0.496 to 0.626 by training on merely 5 manually labeled samples. These results suggest that automated vessel network extraction is becoming practically feasible, opening new possibilities for large-scale vascular analysis in stroke research.
Seeing Through the Mask: Rethinking Adversarial Examples for CAPTCHAs
Modern CAPTCHAs rely heavily on vision tasks that are supposedly hard for computers but easy for humans. However, advances in image recognition models pose a significant threat to such CAPTCHAs. These models can easily be fooled by generating some well-hidden "random" noise and adding it to the image, or hiding objects in the image. However, these methods are model-specific and thus can not aid CAPTCHAs in fooling all models. We show in this work that by allowing for more significant changes to the images while preserving the semantic information and keeping it solvable by humans, we can fool many state-of-the-art models. Specifically, we demonstrate that by adding masks of various intensities the Accuracy @ 1 (Acc@1) drops by more than 50%-points for all models, and supposedly robust models such as vision transformers see an Acc@1 drop of 80%-points. These masks can therefore effectively fool modern image classifiers, thus showing that machines have not caught up with humans -- yet.
On Calibration of Modern Neural Networks
Confidence calibration -- the problem of predicting probability estimates representative of the true correctness likelihood -- is important for classification models in many applications. We discover that modern neural networks, unlike those from a decade ago, are poorly calibrated. Through extensive experiments, we observe that depth, width, weight decay, and Batch Normalization are important factors influencing calibration. We evaluate the performance of various post-processing calibration methods on state-of-the-art architectures with image and document classification datasets. Our analysis and experiments not only offer insights into neural network learning, but also provide a simple and straightforward recipe for practical settings: on most datasets, temperature scaling -- a single-parameter variant of Platt Scaling -- is surprisingly effective at calibrating predictions.
SynthDetoxM: Modern LLMs are Few-Shot Parallel Detoxification Data Annotators
Existing approaches to multilingual text detoxification are hampered by the scarcity of parallel multilingual datasets. In this work, we introduce a pipeline for the generation of multilingual parallel detoxification data. We also introduce SynthDetoxM, a manually collected and synthetically generated multilingual parallel text detoxification dataset comprising 16,000 high-quality detoxification sentence pairs across German, French, Spanish and Russian. The data was sourced from different toxicity evaluation datasets and then rewritten with nine modern open-source LLMs in few-shot setting. Our experiments demonstrate that models trained on the produced synthetic datasets have superior performance to those trained on the human-annotated MultiParaDetox dataset even in data limited setting. Models trained on SynthDetoxM outperform all evaluated LLMs in few-shot setting. We release our dataset and code to help further research in multilingual text detoxification.
LLM-Independent Adaptive RAG: Let the Question Speak for Itself
Large Language Models~(LLMs) are prone to hallucinations, and Retrieval-Augmented Generation (RAG) helps mitigate this, but at a high computational cost while risking misinformation. Adaptive retrieval aims to retrieve only when necessary, but existing approaches rely on LLM-based uncertainty estimation, which remain inefficient and impractical. In this study, we introduce lightweight LLM-independent adaptive retrieval methods based on external information. We investigated 27 features, organized into 7 groups, and their hybrid combinations. We evaluated these methods on 6 QA datasets, assessing the QA performance and efficiency. The results show that our approach matches the performance of complex LLM-based methods while achieving significant efficiency gains, demonstrating the potential of external information for adaptive retrieval.
Keep It Real: Challenges in Attacking Compression-Based Adversarial Purification
Previous work has suggested that preprocessing images through lossy compression can defend against adversarial perturbations, but comprehensive attack evaluations have been lacking. In this paper, we construct strong white-box and adaptive attacks against various compression models and identify a critical challenge for attackers: high realism in reconstructed images significantly increases attack difficulty. Through rigorous evaluation across multiple attack scenarios, we demonstrate that compression models capable of producing realistic, high-fidelity reconstructions are substantially more resistant to our attacks. In contrast, low-realism compression models can be broken. Our analysis reveals that this is not due to gradient masking. Rather, realistic reconstructions maintaining distributional alignment with natural images seem to offer inherent robustness. This work highlights a significant obstacle for future adversarial attacks and suggests that developing more effective techniques to overcome realism represents an essential challenge for comprehensive security evaluation.
A Neural Operator based on Dynamic Mode Decomposition
The scientific computation methods development in conjunction with artificial intelligence technologies remains a hot research topic. Finding a balance between lightweight and accurate computations is a solid foundation for this direction. The study presents a neural operator based on the dynamic mode decomposition algorithm (DMD), mapping functional spaces, which combines DMD and deep learning (DL) for spatiotemporal processes efficient modeling. Solving PDEs for various initial and boundary conditions requires significant computational resources. The method suggested automatically extracts key modes and system dynamics using them to construct predictions, reducing computational costs compared to traditional numerical methods. The approach has demonstrated its efficiency through comparative analysis of performance with closest analogues DeepONet and FNO in the heat equation, Laplaces equation, and Burgers equation solutions approximation, where it achieves high reconstruction accuracy.
From MNIST to ImageNet: Understanding the Scalability Boundaries of Differentiable Logic Gate Networks
Differentiable Logic Gate Networks (DLGNs) are a very fast and energy-efficient alternative to conventional feed-forward networks. With learnable combinations of logical gates, DLGNs enable fast inference by hardware-friendly execution. Since the concept of DLGNs has only recently gained attention, these networks are still in their developmental infancy, including the design and scalability of their output layer. To date, this architecture has primarily been tested on datasets with up to ten classes. This work examines the behavior of DLGNs on large multi-class datasets. We investigate its general expressiveness, its scalability, and evaluate alternative output strategies. Using both synthetic and real-world datasets, we provide key insights into the importance of temperature tuning and its impact on output layer performance. We evaluate conditions under which the Group-Sum layer performs well and how it can be applied to large-scale classification of up to 2000 classes.
Light Differentiable Logic Gate Networks
Differentiable logic gate networks (DLGNs) exhibit extraordinary efficiency at inference while sustaining competitive accuracy. But vanishing gradients, discretization errors, and high training cost impede scaling these networks. Even with dedicated parameter initialization schemes from subsequent works, increasing depth still harms accuracy. We show that the root cause of these issues lies in the underlying parametrization of logic gate neurons themselves. To overcome this issue, we propose a reparametrization that also shrinks the parameter size logarithmically in the number of inputs per gate. For binary inputs, this already reduces the model size by 4x, speeds up the backward pass by up to 1.86x, and converges in 8.5x fewer training steps. On top of that, we show that the accuracy on CIFAR-100 remains stable and sometimes superior to the original parametrization.
The Unwinnable Arms Race of AI Image Detection
The rapid progress of image generative AI has blurred the boundary between synthetic and real images, fueling an arms race between generators and discriminators. This paper investigates the conditions under which discriminators are most disadvantaged in this competition. We analyze two key factors: data dimensionality and data complexity. While increased dimensionality often strengthens the discriminators ability to detect subtle inconsistencies, complexity introduces a more nuanced effect. Using Kolmogorov complexity as a measure of intrinsic dataset structure, we show that both very simple and highly complex datasets reduce the detectability of synthetic images; generators can learn simple datasets almost perfectly, whereas extreme diversity masks imperfections. In contrast, intermediate-complexity datasets create the most favorable conditions for detection, as generators fail to fully capture the distribution and their errors remain visible.
Climplicit: Climatic Implicit Embeddings for Global Ecological Tasks
Deep learning on climatic data holds potential for macroecological applications. However, its adoption remains limited among scientists outside the deep learning community due to storage, compute, and technical expertise barriers. To address this, we introduce Climplicit, a spatio-temporal geolocation encoder pretrained to generate implicit climatic representations anywhere on Earth. By bypassing the need to download raw climatic rasters and train feature extractors, our model uses x3500 less disk space and significantly reduces computational needs for downstream tasks. We evaluate our Climplicit embeddings on biomes classification, species distribution modeling, and plant trait regression. We find that single-layer probing our Climplicit embeddings consistently performs better or on par with training a model from scratch on downstream tasks and overall better than alternative geolocation encoding models.
good4cir: Generating Detailed Synthetic Captions for Composed Image Retrieval
Composed image retrieval (CIR) enables users to search images using a reference image combined with textual modifications. Recent advances in vision-language models have improved CIR, but dataset limitations remain a barrier. Existing datasets often rely on simplistic, ambiguous, or insufficient manual annotations, hindering fine-grained retrieval. We introduce good4cir, a structured pipeline leveraging vision-language models to generate high-quality synthetic annotations. Our method involves: (1) extracting fine-grained object descriptions from query images, (2) generating comparable descriptions for target images, and (3) synthesizing textual instructions capturing meaningful transformations between images. This reduces hallucination, enhances modification diversity, and ensures object-level consistency. Applying our method improves existing datasets and enables creating new datasets across diverse domains. Results demonstrate improved retrieval accuracy for CIR models trained on our pipeline-generated datasets. We release our dataset construction framework to support further research in CIR and multi-modal retrieval.
Visualizing Deep Similarity Networks
For convolutional neural network models that optimize an image embedding, we propose a method to highlight the regions of images that contribute most to pairwise similarity. This work is a corollary to the visualization tools developed for classification networks, but applicable to the problem domains better suited to similarity learning. The visualization shows how similarity networks that are fine-tuned learn to focus on different features. We also generalize our approach to embedding networks that use different pooling strategies and provide a simple mechanism to support image similarity searches on objects or sub-regions in the query image.
Adaptive Retrieval Without Self-Knowledge? Bringing Uncertainty Back Home
Retrieval Augmented Generation (RAG) improves correctness of Question Answering (QA) and addresses hallucinations in Large Language Models (LLMs), yet greatly increase computational costs. Besides, RAG is not always needed as may introduce irrelevant information. Recent adaptive retrieval methods integrate LLMs' intrinsic knowledge with external information appealing to LLM self-knowledge, but they often neglect efficiency evaluations and comparisons with uncertainty estimation techniques. We bridge this gap by conducting a comprehensive analysis of 35 adaptive retrieval methods, including 8 recent approaches and 27 uncertainty estimation techniques, across 6 datasets using 10 metrics for QA performance, self-knowledge, and efficiency. Our findings show that uncertainty estimation techniques often outperform complex pipelines in terms of efficiency and self-knowledge, while maintaining comparable QA performance.
Pathologies of Predictive Diversity in Deep Ensembles
Classic results establish that encouraging predictive diversity improves performance in ensembles of low-capacity models, e.g. through bagging or boosting. Here we demonstrate that these intuitions do not apply to high-capacity neural network ensembles (deep ensembles), and in fact the opposite is often true. In a large scale study of nearly 600 neural network classification ensembles, we examine a variety of interventions that trade off component model performance for predictive diversity. While such interventions can improve the performance of small neural network ensembles (in line with standard intuitions), they harm the performance of the large neural network ensembles most often used in practice. Surprisingly, we also find that discouraging predictive diversity is often benign in large-network ensembles, fully inverting standard intuitions. Even when diversity-promoting interventions do not sacrifice component model performance (e.g. using heterogeneous architectures and training paradigms), we observe an opportunity cost associated with pursuing increased predictive diversity. Examining over 1000 ensembles, we observe that the performance benefits of diverse architectures/training procedures are easily dwarfed by the benefits of simply using higher-capacity models, despite the fact that such higher capacity models often yield significantly less predictive diversity. Overall, our findings demonstrate that standard intuitions around predictive diversity, originally developed for low-capacity ensembles, do not directly apply to modern high-capacity deep ensembles. This work clarifies fundamental challenges to the goal of improving deep ensembles by making them more diverse, while suggesting an alternative path: simply forming ensembles from ever more powerful (and less diverse) component models.
ACORD: An Expert-Annotated Retrieval Dataset for Legal Contract Drafting
Information retrieval, specifically contract clause retrieval, is foundational to contract drafting because lawyers rarely draft contracts from scratch; instead, they locate and revise the most relevant precedent. We introduce the Atticus Clause Retrieval Dataset (ACORD), the first retrieval benchmark for contract drafting fully annotated by experts. ACORD focuses on complex contract clauses such as Limitation of Liability, Indemnification, Change of Control, and Most Favored Nation. It includes 114 queries and over 126,000 query-clause pairs, each ranked on a scale from 1 to 5 stars. The task is to find the most relevant precedent clauses to a query. The bi-encoder retriever paired with pointwise LLMs re-rankers shows promising results. However, substantial improvements are still needed to effectively manage the complex legal work typically undertaken by lawyers. As the first retrieval benchmark for contract drafting annotated by experts, ACORD can serve as a valuable IR benchmark for the NLP community.
Do Multilingual Large Language Models Mitigate Stereotype Bias?
While preliminary findings indicate that multilingual LLMs exhibit reduced bias compared to monolingual ones, a comprehensive understanding of the effect of multilingual training on bias mitigation, is lacking. This study addresses this gap by systematically training six LLMs of identical size (2.6B parameters) and architecture: five monolingual models (English, German, French, Italian, and Spanish) and one multilingual model trained on an equal distribution of data across these languages, all using publicly available data. To ensure robust evaluation, standard bias benchmarks were automatically translated into the five target languages and verified for both translation quality and bias preservation by human annotators. Our results consistently demonstrate that multilingual training effectively mitigates bias. Moreover, we observe that multilingual models achieve not only lower bias but also superior prediction accuracy when compared to monolingual models with the same amount of training data, model architecture, and size.
Deep Ensembles Work, But Are They Necessary?
Ensembling neural networks is an effective way to increase accuracy, and can often match the performance of individual larger models. This observation poses a natural question: given the choice between a deep ensemble and a single neural network with similar accuracy, is one preferable over the other? Recent work suggests that deep ensembles may offer distinct benefits beyond predictive power: namely, uncertainty quantification and robustness to dataset shift. In this work, we demonstrate limitations to these purported benefits, and show that a single (but larger) neural network can replicate these qualities. First, we show that ensemble diversity, by any metric, does not meaningfully contribute to an ensemble's uncertainty quantification on out-of-distribution (OOD) data, but is instead highly correlated with the relative improvement of a single larger model. Second, we show that the OOD performance afforded by ensembles is strongly determined by their in-distribution (InD) performance, and -- in this sense -- is not indicative of any "effective robustness". While deep ensembles are a practical way to achieve improvements to predictive power, uncertainty quantification, and robustness, our results show that these improvements can be replicated by a (larger) single model.
Multilingual Autoregressive Entity Linking
We present mGENRE, a sequence-to-sequence system for the Multilingual Entity Linking (MEL) problem -- the task of resolving language-specific mentions to a multilingual Knowledge Base (KB). For a mention in a given language, mGENRE predicts the name of the target entity left-to-right, token-by-token in an autoregressive fashion. The autoregressive formulation allows us to effectively cross-encode mention string and entity names to capture more interactions than the standard dot product between mention and entity vectors. It also enables fast search within a large KB even for mentions that do not appear in mention tables and with no need for large-scale vector indices. While prior MEL works use a single representation for each entity, we match against entity names of as many languages as possible, which allows exploiting language connections between source input and target name. Moreover, in a zero-shot setting on languages with no training data at all, mGENRE treats the target language as a latent variable that is marginalized at prediction time. This leads to over 50% improvements in average accuracy. We show the efficacy of our approach through extensive evaluation including experiments on three popular MEL benchmarks where mGENRE establishes new state-of-the-art results. Code and pre-trained models at https://github.com/facebookresearch/GENRE.
The Machine Learning Landscape of Top Taggers
Based on the established task of identifying boosted, hadronically decaying top quarks, we compare a wide range of modern machine learning approaches. Unlike most established methods they rely on low-level input, for instance calorimeter output. While their network architectures are vastly different, their performance is comparatively similar. In general, we find that these new approaches are extremely powerful and great fun.
A Theoretical Analysis of Contrastive Unsupervised Representation Learning
Recent empirical works have successfully used unlabeled data to learn feature representations that are broadly useful in downstream classification tasks. Several of these methods are reminiscent of the well-known word2vec embedding algorithm: leveraging availability of pairs of semantically "similar" data points and "negative samples," the learner forces the inner product of representations of similar pairs with each other to be higher on average than with negative samples. The current paper uses the term contrastive learning for such algorithms and presents a theoretical framework for analyzing them by introducing latent classes and hypothesizing that semantically similar points are sampled from the same latent class. This framework allows us to show provable guarantees on the performance of the learned representations on the average classification task that is comprised of a subset of the same set of latent classes. Our generalization bound also shows that learned representations can reduce (labeled) sample complexity on downstream tasks. We conduct controlled experiments in both the text and image domains to support the theory.
ARE: Scaling Up Agent Environments and Evaluations
We introduce Meta Agents Research Environments (ARE), a research platform for scalable creation of environments, integration of synthetic or real applications, and execution of agentic orchestrations. ARE provides simple abstractions to build complex and diverse environments, each with their own rules, tools, content, and verifiers, helping to bridge the gap between model development and real-world deployment. We also propose Gaia2, a benchmark built in ARE and designed to measure general agent capabilities. Beyond search and execution, Gaia2 requires agents to handle ambiguities and noise, adapt to dynamic environments, collaborate with other agents, and operate under temporal constraints. Unlike prior benchmarks, Gaia2 runs asynchronously, surfacing new failure modes that are invisible in static settings. Our experiments show that no system dominates across the intelligence spectrum: stronger reasoning often comes at the cost of efficiency, and budget scaling curves plateau, highlighting the need for new architectures and adaptive compute strategies. Perhaps more importantly, ARE abstractions enable continuous extension of Gaia2 to other environments, empowering the community to rapidly create new benchmarks tailored to their domains. In AI's second half, progress increasingly depends on defining meaningful tasks and robust evaluations to drive frontier capabilities forward.
34 Examples of LLM Applications in Materials Science and Chemistry: Towards Automation, Assistants, Agents, and Accelerated Scientific Discovery
Large Language Models (LLMs) are reshaping many aspects of materials science and chemistry research, enabling advances in molecular property prediction, materials design, scientific automation, knowledge extraction, and more. Recent developments demonstrate that the latest class of models are able to integrate structured and unstructured data, assist in hypothesis generation, and streamline research workflows. To explore the frontier of LLM capabilities across the research lifecycle, we review applications of LLMs through 34 total projects developed during the second annual Large Language Model Hackathon for Applications in Materials Science and Chemistry, a global hybrid event. These projects spanned seven key research areas: (1) molecular and material property prediction, (2) molecular and material design, (3) automation and novel interfaces, (4) scientific communication and education, (5) research data management and automation, (6) hypothesis generation and evaluation, and (7) knowledge extraction and reasoning from the scientific literature. Collectively, these applications illustrate how LLMs serve as versatile predictive models, platforms for rapid prototyping of domain-specific tools, and much more. In particular, improvements in both open source and proprietary LLM performance through the addition of reasoning, additional training data, and new techniques have expanded effectiveness, particularly in low-data environments and interdisciplinary research. As LLMs continue to improve, their integration into scientific workflows presents both new opportunities and new challenges, requiring ongoing exploration, continued refinement, and further research to address reliability, interpretability, and reproducibility.
Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy
Synthetic Data Generation (SDG) based on Artificial Intelligence (AI) can transform the way clinical medicine is delivered by overcoming privacy barriers that currently render clinical data sharing difficult. This is the key to accelerating the development of digital tools contributing to enhanced patient safety. Such tools include robust data-driven clinical decision support systems, and example-based digital training tools that will enable healthcare professionals to improve their diagnostic performance for enhanced patient safety. This study focuses on the clinical evaluation of medical SDG, with a proof-of-concept investigation on diagnosing Inflammatory Bowel Disease (IBD) using Wireless Capsule Endoscopy (WCE) images. Its scientific contributions include a) a novel protocol for the systematic Clinical Evaluation of Medical Image Synthesis (CEMIS); b) a novel variational autoencoder-based model for the generation of high-resolution synthetic WCE images; and c) a comprehensive evaluation of the synthetic images using the CEMIS protocol by 10 international WCE specialists, in terms of image quality, diversity, and realism, as well as their utility for clinical decision-making. The results show that TIDE-II generates clinically plausible, very realistic WCE images, of improved quality compared to relevant state-of-the-art generative models. Concludingly, CEMIS can serve as a reference for future research on medical image-generation techniques, while the adaptation/extension of the architecture of TIDE-II to other imaging domains can be promising.
Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry
Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) molecular and material design; (3) automation and novel interfaces; (4) scientific communication and education; (5) research data management and automation; (6) hypothesis generation and evaluation; and (7) knowledge extraction and reasoning from scientific literature. Each team submission is presented in a summary table with links to the code and as brief papers in the appendix. Beyond team results, we discuss the hackathon event and its hybrid format, which included physical hubs in Toronto, Montreal, San Francisco, Berlin, Lausanne, and Tokyo, alongside a global online hub to enable local and virtual collaboration. Overall, the event highlighted significant improvements in LLM capabilities since the previous year's hackathon, suggesting continued expansion of LLMs for applications in materials science and chemistry research. These outcomes demonstrate the dual utility of LLMs as both multipurpose models for diverse machine learning tasks and platforms for rapid prototyping custom applications in scientific research.
Humanity's Last Exam
Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 3,000 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.
