Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDRQA: Dynamic Reasoning Quota Allocation for Controlling Overthinking in Reasoning Large Language Models
Reasoning large language models (RLLMs), such as OpenAI-O3 and DeepSeek-R1, have recently demonstrated remarkable capabilities by performing structured and multi-step reasoning. However, recent studies reveal that RLLMs often suffer from overthinking, i.e., producing unnecessarily lengthy reasoning chains even for simple questions, leading to excessive token consumption and computational inefficiency. Interestingly, we observe that when processing multiple questions in batch mode, RLLMs exhibit more resource-efficient behavior by dynamically compressing reasoning steps for easier problems, due to implicit resource competition. Inspired by this, we propose Dynamic Reasoning Quota Allocation (DRQA), a novel method that transfers the benefits of resource competition from batch processing to single-question inference. Specifically, DRQA leverages batch-generated preference data and reinforcement learning to train the model to allocate reasoning resources adaptively. By encouraging the model to internalize a preference for responses that are both accurate and concise, DRQA enables it to generate concise answers for simple questions while retaining sufficient reasoning depth for more challenging ones. Extensive experiments on a wide range of mathematical and scientific reasoning benchmarks demonstrate that DRQA significantly reduces token usage while maintaining, and in many cases improving, answer accuracy. By effectively mitigating the overthinking problem, DRQA offers a promising direction for more efficient and scalable deployment of RLLMs, and we hope it inspires further exploration into fine-grained control of reasoning behaviors.
Multiview Contextual Commonsense Inference: A New Dataset and Task
Contextual commonsense inference is the task of generating various types of explanations around the events in a dyadic dialogue, including cause, motivation, emotional reaction, and others. Producing a coherent and non-trivial explanation requires awareness of the dialogue's structure and of how an event is grounded in the context. In this work, we create CICEROv2, a dataset consisting of 8,351 instances from 2,379 dialogues, containing multiple human-written answers for each contextual commonsense inference question, representing a type of explanation on cause, subsequent event, motivation, and emotional reaction. We show that the inferences in CICEROv2 are more semantically diverse than other contextual commonsense inference datasets. To solve the inference task, we propose a collection of pre-training objectives, including concept denoising and utterance sorting to prepare a pre-trained model for the downstream contextual commonsense inference task. Our results show that the proposed pre-training objectives are effective at adapting the pre-trained T5-Large model for the contextual commonsense inference task.
Superintelligent Agents Pose Catastrophic Risks: Can Scientist AI Offer a Safer Path?
The leading AI companies are increasingly focused on building generalist AI agents -- systems that can autonomously plan, act, and pursue goals across almost all tasks that humans can perform. Despite how useful these systems might be, unchecked AI agency poses significant risks to public safety and security, ranging from misuse by malicious actors to a potentially irreversible loss of human control. We discuss how these risks arise from current AI training methods. Indeed, various scenarios and experiments have demonstrated the possibility of AI agents engaging in deception or pursuing goals that were not specified by human operators and that conflict with human interests, such as self-preservation. Following the precautionary principle, we see a strong need for safer, yet still useful, alternatives to the current agency-driven trajectory. Accordingly, we propose as a core building block for further advances the development of a non-agentic AI system that is trustworthy and safe by design, which we call Scientist AI. This system is designed to explain the world from observations, as opposed to taking actions in it to imitate or please humans. It comprises a world model that generates theories to explain data and a question-answering inference machine. Both components operate with an explicit notion of uncertainty to mitigate the risks of overconfident predictions. In light of these considerations, a Scientist AI could be used to assist human researchers in accelerating scientific progress, including in AI safety. In particular, our system can be employed as a guardrail against AI agents that might be created despite the risks involved. Ultimately, focusing on non-agentic AI may enable the benefits of AI innovation while avoiding the risks associated with the current trajectory. We hope these arguments will motivate researchers, developers, and policymakers to favor this safer path.
$\textit{SKIntern}$: Internalizing Symbolic Knowledge for Distilling Better CoT Capabilities into Small Language Models
Small Language Models (SLMs) are attracting attention due to the high computational demands and privacy concerns of Large Language Models (LLMs). Some studies fine-tune SLMs using Chains of Thought (CoT) data distilled from LLMs, aiming to enhance their reasoning ability. Furthermore, Some CoT distillation methods introduce external symbolic knowledge into the generation process to improve the limited knowledge memory, reasoning ability and out-of-domain (OOD) generalization of SLMs. However, the introduction of symbolic knowledge increases computational overhead and introduces potential noise. In this paper, we introduce SKIntern, an innovative approach that empowers SLMs to internalize symbolic knowledge and few-shot examples gradually through a progressive fine-tuning process, guided by a predefined linear decay schedule under curriculum learning. By efficiently internalizing knowledge, SKIntern reduces computational overhead and speeds up the reasoning process by focusing solely on the question during inference. It outperforms state-of-the-art baselines by over 5\%, while reducing inference costs (measured in FLOPs) by up to 4times across a wide range of SLMs in both in-domain (ID) and out-of-domain (OOD) tasks. Our code will be available at https://github.com/Xnhyacinth/SKIntern.
Analyzing Semantic Faithfulness of Language Models via Input Intervention on Conversational Question Answering
Transformer-based language models have been shown to be highly effective for several NLP tasks. In this paper, we consider three transformer models, BERT, RoBERTa, and XLNet, in both small and large version, and investigate how faithful their representations are with respect to the semantic content of texts. We formalize a notion of semantic faithfulness, in which the semantic content of a text should causally figure in a model's inferences in question answering. We then test this notion by observing a model's behavior on answering questions about a story after performing two novel semantic interventions -- deletion intervention and negation intervention. While transformer models achieve high performance on standard question answering tasks, we show that they fail to be semantically faithful once we perform these interventions for a significant number of cases (~50% for deletion intervention, and ~20% drop in accuracy for negation intervention). We then propose an intervention-based training regime that can mitigate the undesirable effects for deletion intervention by a significant margin (from ~50% to ~6%). We analyze the inner-workings of the models to better understand the effectiveness of intervention-based training for deletion intervention. But we show that this training does not attenuate other aspects of semantic unfaithfulness such as the models' inability to deal with negation intervention or to capture the predicate-argument structure of texts. We also test InstructGPT, via prompting, for its ability to handle the two interventions and to capture predicate-argument structure. While InstructGPT models do achieve very high performance on predicate-argument structure task, they fail to respond adequately to our deletion and negation interventions.
BanglaBERT: Language Model Pretraining and Benchmarks for Low-Resource Language Understanding Evaluation in Bangla
In this work, we introduce BanglaBERT, a BERT-based Natural Language Understanding (NLU) model pretrained in Bangla, a widely spoken yet low-resource language in the NLP literature. To pretrain BanglaBERT, we collect 27.5 GB of Bangla pretraining data (dubbed `Bangla2B+') by crawling 110 popular Bangla sites. We introduce two downstream task datasets on natural language inference and question answering and benchmark on four diverse NLU tasks covering text classification, sequence labeling, and span prediction. In the process, we bring them under the first-ever Bangla Language Understanding Benchmark (BLUB). BanglaBERT achieves state-of-the-art results outperforming multilingual and monolingual models. We are making the models, datasets, and a leaderboard publicly available at https://github.com/csebuetnlp/banglabert to advance Bangla NLP.
XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models
Large multilingual language models typically rely on a single vocabulary shared across 100+ languages. As these models have increased in parameter count and depth, vocabulary size has remained largely unchanged. This vocabulary bottleneck limits the representational capabilities of multilingual models like XLM-R. In this paper, we introduce a new approach for scaling to very large multilingual vocabularies by de-emphasizing token sharing between languages with little lexical overlap and assigning vocabulary capacity to achieve sufficient coverage for each individual language. Tokenizations using our vocabulary are typically more semantically meaningful and shorter compared to XLM-R. Leveraging this improved vocabulary, we train XLM-V, a multilingual language model with a one million token vocabulary. XLM-V outperforms XLM-R on every task we tested on ranging from natural language inference (XNLI), question answering (MLQA, XQuAD, TyDiQA), and named entity recognition (WikiAnn) to low-resource tasks (Americas NLI, MasakhaNER).
Transforming Question Answering Datasets Into Natural Language Inference Datasets
Existing datasets for natural language inference (NLI) have propelled research on language understanding. We propose a new method for automatically deriving NLI datasets from the growing abundance of large-scale question answering datasets. Our approach hinges on learning a sentence transformation model which converts question-answer pairs into their declarative forms. Despite being primarily trained on a single QA dataset, we show that it can be successfully applied to a variety of other QA resources. Using this system, we automatically derive a new freely available dataset of over 500k NLI examples (QA-NLI), and show that it exhibits a wide range of inference phenomena rarely seen in previous NLI datasets.
Strong Membership Inference Attacks on Massive Datasets and (Moderately) Large Language Models
State-of-the-art membership inference attacks (MIAs) typically require training many reference models, making it difficult to scale these attacks to large pre-trained language models (LLMs). As a result, prior research has either relied on weaker attacks that avoid training reference models (e.g., fine-tuning attacks), or on stronger attacks applied to small-scale models and datasets. However, weaker attacks have been shown to be brittle - achieving close-to-arbitrary success - and insights from strong attacks in simplified settings do not translate to today's LLMs. These challenges have prompted an important question: are the limitations observed in prior work due to attack design choices, or are MIAs fundamentally ineffective on LLMs? We address this question by scaling LiRA - one of the strongest MIAs - to GPT-2 architectures ranging from 10M to 1B parameters, training reference models on over 20B tokens from the C4 dataset. Our results advance the understanding of MIAs on LLMs in three key ways: (1) strong MIAs can succeed on pre-trained LLMs; (2) their effectiveness, however, remains limited (e.g., AUC<0.7) in practical settings; and, (3) the relationship between MIA success and related privacy metrics is not as straightforward as prior work has suggested.
Inference Optimization of Foundation Models on AI Accelerators
Powerful foundation models, including large language models (LLMs), with Transformer architectures have ushered in a new era of Generative AI across various industries. Industry and research community have witnessed a large number of new applications, based on those foundation models. Such applications include question and answer, customer services, image and video generation, and code completions, among others. However, as the number of model parameters reaches to hundreds of billions, their deployment incurs prohibitive inference costs and high latency in real-world scenarios. As a result, the demand for cost-effective and fast inference using AI accelerators is ever more higher. To this end, our tutorial offers a comprehensive discussion on complementary inference optimization techniques using AI accelerators. Beginning with an overview of basic Transformer architectures and deep learning system frameworks, we deep dive into system optimization techniques for fast and memory-efficient attention computations and discuss how they can be implemented efficiently on AI accelerators. Next, we describe architectural elements that are key for fast transformer inference. Finally, we examine various model compression and fast decoding strategies in the same context.
Policy Compliance Detection via Expression Tree Inference
Policy Compliance Detection (PCD) is a task we encounter when reasoning over texts, e.g. legal frameworks. Previous work to address PCD relies heavily on modeling the task as a special case of Recognizing Textual Entailment. Entailment is applicable to the problem of PCD, however viewing the policy as a single proposition, as opposed to multiple interlinked propositions, yields poor performance and lacks explainability. To address this challenge, more recent proposals for PCD have argued for decomposing policies into expression trees consisting of questions connected with logic operators. Question answering is used to obtain answers to these questions with respect to a scenario. Finally, the expression tree is evaluated in order to arrive at an overall solution. However, this work assumes expression trees are provided by experts, thus limiting its applicability to new policies. In this work, we learn how to infer expression trees automatically from policy texts. We ensure the validity of the inferred trees by introducing constrained decoding using a finite state automaton to ensure the generation of valid trees. We determine through automatic evaluation that 63% of the expression trees generated by our constrained generation model are logically equivalent to gold trees. Human evaluation shows that 88% of trees generated by our model are correct.
Learning to Inference Adaptively for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have shown impressive capabilities in reasoning, yet come with substantial computational cost, limiting their deployment in resource-constrained settings. Despite recent efforts on improving the efficiency of MLLMs, prior solutions fall short in responding to varying runtime conditions, in particular changing resource availability (e.g., contention due to the execution of other programs on the device). To bridge this gap, we introduce AdaLLaVA, an adaptive inference framework that learns to dynamically reconfigure operations in an MLLM during inference, accounting for the input data and a latency budget. We conduct extensive experiments across benchmarks involving question-answering, reasoning, and hallucination. Our results show that AdaLLaVA effectively adheres to input latency budget, achieving varying accuracy and latency tradeoffs at runtime. Further, we demonstrate that AdaLLaVA adapts to both input latency and content, can be integrated with token selection for enhanced efficiency, and generalizes across MLLMs. Our project webpage with code release is at https://zhuoyan-xu.github.io/ada-llava/.
Beyond Memorization: Violating Privacy Via Inference with Large Language Models
Current privacy research on large language models (LLMs) primarily focuses on the issue of extracting memorized training data. At the same time, models' inference capabilities have increased drastically. This raises the key question of whether current LLMs could violate individuals' privacy by inferring personal attributes from text given at inference time. In this work, we present the first comprehensive study on the capabilities of pretrained LLMs to infer personal attributes from text. We construct a dataset consisting of real Reddit profiles, and show that current LLMs can infer a wide range of personal attributes (e.g., location, income, sex), achieving up to 85% top-1 and 95.8% top-3 accuracy at a fraction of the cost (100times) and time (240times) required by humans. As people increasingly interact with LLM-powered chatbots across all aspects of life, we also explore the emerging threat of privacy-invasive chatbots trying to extract personal information through seemingly benign questions. Finally, we show that common mitigations, i.e., text anonymization and model alignment, are currently ineffective at protecting user privacy against LLM inference. Our findings highlight that current LLMs can infer personal data at a previously unattainable scale. In the absence of working defenses, we advocate for a broader discussion around LLM privacy implications beyond memorization, striving for a wider privacy protection.
Does Pre-training Induce Systematic Inference? How Masked Language Models Acquire Commonsense Knowledge
Transformer models pre-trained with a masked-language-modeling objective (e.g., BERT) encode commonsense knowledge as evidenced by behavioral probes; however, the extent to which this knowledge is acquired by systematic inference over the semantics of the pre-training corpora is an open question. To answer this question, we selectively inject verbalized knowledge into the minibatches of a BERT model during pre-training and evaluate how well the model generalizes to supported inferences. We find generalization does not improve over the course of pre-training, suggesting that commonsense knowledge is acquired from surface-level, co-occurrence patterns rather than induced, systematic reasoning.
ScaleCap: Inference-Time Scalable Image Captioning via Dual-Modality Debiasing
This paper presents ScaleCap, an inference-time scalable image captioning strategy that generates comprehensive and detailed image captions. The key challenges of high-quality image captioning lie in the inherent biases of LVLMs: multimodal bias resulting in imbalanced descriptive granularity, offering detailed accounts of some elements while merely skimming over others; linguistic bias leading to hallucinated descriptions of non-existent objects. To address these issues, we propose a scalable debiased captioning strategy, which continuously enriches and calibrates the caption with increased inference budget. Specifically, we propose two novel components: heuristic question answering and contrastive sentence rating. The former generates content-specific questions based on the image and answers them to progressively inject relevant information into the caption. The latter employs sentence-level offline contrastive decoding to effectively identify and eliminate hallucinations caused by linguistic biases. With increased inference cost, more heuristic questions are raised by ScaleCap to progressively capture additional visual details, generating captions that are more accurate, balanced, and informative. Extensive modality alignment experiments demonstrate the effectiveness of ScaleCap. Annotating 450K images with ScaleCap and using them for LVLM pretraining leads to consistent performance gains across 11 widely used benchmarks. Furthermore, ScaleCap showcases superb richness and fidelity of generated captions with two additional tasks: replacing images with captions in VQA task, and reconstructing images from captions to assess semantic coverage. Code is available at https://github.com/Cooperx521/ScaleCap.
Blackbox Model Provenance via Palimpsestic Membership Inference
Suppose Alice trains an open-weight language model and Bob uses a blackbox derivative of Alice's model to produce text. Can Alice prove that Bob is using her model, either by querying Bob's derivative model (query setting) or from the text alone (observational setting)? We formulate this question as an independence testing problem--in which the null hypothesis is that Bob's model or text is independent of Alice's randomized training run--and investigate it through the lens of palimpsestic memorization in language models: models are more likely to memorize data seen later in training, so we can test whether Bob is using Alice's model using test statistics that capture correlation between Bob's model or text and the ordering of training examples in Alice's training run. If Alice has randomly shuffled her training data, then any significant correlation amounts to exactly quantifiable statistical evidence against the null hypothesis, regardless of the composition of Alice's training data. In the query setting, we directly estimate (via prompting) the likelihood Bob's model gives to Alice's training examples and order; we correlate the likelihoods of over 40 fine-tunes of various Pythia and OLMo base models ranging from 1B to 12B parameters with the base model's training data order, achieving a p-value on the order of at most 1e-8 in all but six cases. In the observational setting, we try two approaches based on estimating 1) the likelihood of Bob's text overlapping with spans of Alice's training examples and 2) the likelihood of Bob's text with respect to different versions of Alice's model we obtain by repeating the last phase (e.g., 1%) of her training run on reshuffled data. The second approach can reliably distinguish Bob's text from as little as a few hundred tokens; the first does not involve any retraining but requires many more tokens (several hundred thousand) to achieve high power.
MARLIN: Mixed-Precision Auto-Regressive Parallel Inference on Large Language Models
As inference on Large Language Models (LLMs) emerges as an important workload in machine learning applications, weight quantization has become a standard technique for efficient GPU deployment. Quantization not only reduces model size, but has also been shown to yield substantial speedups for single-user inference, due to reduced memory movement, with low accuracy impact. Yet, it remains open whether speedups are achievable also in batched settings with multiple parallel clients, which are highly relevant for practical serving. It is unclear whether GPU kernels can be designed to remain practically memory-bound, while supporting the substantially increased compute requirements of batched workloads. This paper resolves this question positively by describing the design of Mixed-precision Auto-Regressive LINear kernels, called MARLIN. Concretely, given a model whose weights are compressed via quantization to, e.g., 4 bits per element, MARLIN shows that batchsizes up to 16-32 can be supported with close to maximum (4times) quantization speedup, and larger batchsizes up to 64-128 with gradually decreasing, but still significant, acceleration. MARLIN accomplishes this via a combination of techniques, such as asynchronous memory access, complex task scheduling and pipelining, and bespoke quantization support. Our experiments show that MARLIN's near-optimal performance on individual LLM layers across different scenarios can also lead to end-to-end LLM inference speedups (of up to 2.8times) when integrated with the popular vLLM serving engine. Finally, MARLIN is extensible to further compression techniques, like NVIDIA 2:4 sparsity, leading to additional speedups.
FP8 versus INT8 for efficient deep learning inference
Recently, the idea of using FP8 as a number format for neural network training has been floating around the deep learning world. Given that most training is currently conducted with entire networks in FP32, or sometimes FP16 with mixed-precision, the step to having some parts of a network run in FP8 with 8-bit weights is an appealing potential speed-up for the generally costly and time-intensive training procedures in deep learning. A natural question arises regarding what this development means for efficient inference on edge devices. In the efficient inference device world, workloads are frequently executed in INT8. Sometimes going even as low as INT4 when efficiency calls for it. In this whitepaper, we compare the performance for both the FP8 and INT formats for efficient on-device inference. We theoretically show the difference between the INT and FP formats for neural networks and present a plethora of post-training quantization and quantization-aware-training results to show how this theory translates to practice. We also provide a hardware analysis showing that the FP formats are somewhere between 50-180% less efficient in terms of compute in dedicated hardware than the INT format. Based on our research and a read of the research field, we conclude that although the proposed FP8 format could be good for training, the results for inference do not warrant a dedicated implementation of FP8 in favor of INT8 for efficient inference. We show that our results are mostly consistent with previous findings but that important comparisons between the formats have thus far been lacking. Finally, we discuss what happens when FP8-trained networks are converted to INT8 and conclude with a brief discussion on the most efficient way for on-device deployment and an extensive suite of INT8 results for many models.
A Puzzle-Based Dataset for Natural Language Inference
We provide here a dataset for tasks related to natural language understanding and natural language inference. The dataset contains logical puzzles in natural language from three domains: comparing puzzles, knighs and knaves, and zebra puzzles. Each puzzle is associated with the entire set of atomic questions that can be generated based on the relations and individuals occurring in the text. For each question we provide the correct answer: entailment, contradiction or ambiguity. The answer's correctness is verified against theorem provers. Good puzzles have two properties: (i) each piece of information is necessary and (ii) no unnecessary information is provided. These properties make puzzles interesting candidates for machine comprehension tasks.
LazyLLM: Dynamic Token Pruning for Efficient Long Context LLM Inference
The inference of transformer-based large language models consists of two sequential stages: 1) a prefilling stage to compute the KV cache of prompts and generate the first token, and 2) a decoding stage to generate subsequent tokens. For long prompts, the KV cache must be computed for all tokens during the prefilling stage, which can significantly increase the time needed to generate the first token. Consequently, the prefilling stage may become a bottleneck in the generation process. An open question remains whether all prompt tokens are essential for generating the first token. To answer this, we introduce a novel method, LazyLLM, that selectively computes the KV for tokens important for the next token prediction in both the prefilling and decoding stages. Contrary to static pruning approaches that prune the prompt at once, LazyLLM allows language models to dynamically select different subsets of tokens from the context in different generation steps, even though they might be pruned in previous steps. Extensive experiments on standard datasets across various tasks demonstrate that LazyLLM is a generic method that can be seamlessly integrated with existing language models to significantly accelerate the generation without fine-tuning. For instance, in the multi-document question-answering task, LazyLLM accelerates the prefilling stage of the LLama 2 7B model by 2.34x while maintaining accuracy.
SemViQA: A Semantic Question Answering System for Vietnamese Information Fact-Checking
The rise of misinformation, exacerbated by Large Language Models (LLMs) like GPT and Gemini, demands robust fact-checking solutions, especially for low-resource languages like Vietnamese. Existing methods struggle with semantic ambiguity, homonyms, and complex linguistic structures, often trading accuracy for efficiency. We introduce SemViQA, a novel Vietnamese fact-checking framework integrating Semantic-based Evidence Retrieval (SER) and Two-step Verdict Classification (TVC). Our approach balances precision and speed, achieving state-of-the-art results with 78.97\% strict accuracy on ISE-DSC01 and 80.82\% on ViWikiFC, securing 1st place in the UIT Data Science Challenge. Additionally, SemViQA Faster improves inference speed 7x while maintaining competitive accuracy. SemViQA sets a new benchmark for Vietnamese fact verification, advancing the fight against misinformation. The source code is available at: https://github.com/DAVID-NGUYEN-S16/SemViQA.
XC-Cache: Cross-Attending to Cached Context for Efficient LLM Inference
In-context learning (ICL) approaches typically leverage prompting to condition decoder-only language model generation on reference information. Just-in-time processing of a context is inefficient due to the quadratic cost of self-attention operations, and caching is desirable. However, caching transformer states can easily require almost as much space as the model parameters. When the right context isn't known in advance, caching ICL can be challenging. This work addresses these limitations by introducing models that, inspired by the encoder-decoder architecture, use cross-attention to condition generation on reference text without the prompt. More precisely, we leverage pre-trained decoder-only models and only train a small number of added layers. We use Question-Answering (QA) as a testbed to evaluate the ability of our models to perform conditional generation and observe that they outperform ICL, are comparable to fine-tuned prompted LLMs, and drastically reduce the space footprint relative to standard KV caching by two orders of magnitude.
Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners
Recent advancements have demonstrated that the performance of large language models (LLMs) can be significantly enhanced by scaling computational resources at test time. A common strategy involves generating multiple Chain-of-Thought (CoT) trajectories and aggregating their outputs through various selection mechanisms. This raises a fundamental question: can models with lower complexity leverage their superior generation throughput to outperform similarly sized Transformers for a fixed computational budget? To address this question and overcome the lack of strong subquadratic reasoners, we distill pure and hybrid Mamba models from pretrained Transformers. Trained on only 8 billion tokens, our distilled models show strong performance and scaling on mathematical reasoning datasets while being much faster at inference for large batches and long sequences. Despite the zero-shot performance hit due to distillation, both pure and hybrid Mamba models can scale their coverage and accuracy performance past their Transformer teacher models under fixed time budgets, opening a new direction for scaling inference compute.
LLM Guided Inductive Inference for Solving Compositional Problems
While large language models (LLMs) have demonstrated impressive performance in question-answering tasks, their performance is limited when the questions require knowledge that is not included in the model's training data and can only be acquired through direct observation or interaction with the real world. Existing methods decompose reasoning tasks through the use of modules invoked sequentially, limiting their ability to answer deep reasoning tasks. We introduce a method, Recursion based extensible LLM (REBEL), which handles open-world, deep reasoning tasks by employing automated reasoning techniques like dynamic planning and forward-chaining strategies. REBEL allows LLMs to reason via recursive problem decomposition and utilization of external tools. The tools that REBEL uses are specified only by natural language description. We further demonstrate REBEL capabilities on a set of problems that require a deeply nested use of external tools in a compositional and conversational setting.
Block-Skim: Efficient Question Answering for Transformer
Transformer models have achieved promising results on natural language processing (NLP) tasks including extractive question answering (QA). Common Transformer encoders used in NLP tasks process the hidden states of all input tokens in the context paragraph throughout all layers. However, different from other tasks such as sequence classification, answering the raised question does not necessarily need all the tokens in the context paragraph. Following this motivation, we propose Block-skim, which learns to skim unnecessary context in higher hidden layers to improve and accelerate the Transformer performance. The key idea of Block-Skim is to identify the context that must be further processed and those that could be safely discarded early on during inference. Critically, we find that such information could be sufficiently derived from the self-attention weights inside the Transformer model. We further prune the hidden states corresponding to the unnecessary positions early in lower layers, achieving significant inference-time speedup. To our surprise, we observe that models pruned in this way outperform their full-size counterparts. Block-Skim improves QA models' accuracy on different datasets and achieves 3 times speedup on BERT-base model.
When LLM Meets Time Series: Can LLMs Perform Multi-Step Time Series Reasoning and Inference
The rapid advancement of Large Language Models (LLMs) has sparked growing interest in their application to time series analysis tasks. However, their ability to perform complex reasoning over temporal data in real-world application domains remains underexplored. To move toward this goal, a first step is to establish a rigorous benchmark dataset for evaluation. In this work, we introduce the TSAIA Benchmark, a first attempt to evaluate LLMs as time-series AI assistants. To ensure both scientific rigor and practical relevance, we surveyed over 20 academic publications and identified 33 real-world task formulations. The benchmark encompasses a broad spectrum of challenges, ranging from constraint-aware forecasting to anomaly detection with threshold calibration: tasks that require compositional reasoning and multi-step time series analysis. The question generator is designed to be dynamic and extensible, supporting continuous expansion as new datasets or task types are introduced. Given the heterogeneous nature of the tasks, we adopt task-specific success criteria and tailored inference-quality metrics to ensure meaningful evaluation for each task. We apply this benchmark to assess eight state-of-the-art LLMs under a unified evaluation protocol. Our analysis reveals limitations in current models' ability to assemble complex time series analysis workflows, underscoring the need for specialized methodologies for domain-specific adaptation. Our benchmark is available at https://huggingface.co/datasets/Melady/TSAIA, and the code is available at https://github.com/USC-Melady/TSAIA.
Improving Factuality in LLMs via Inference-Time Knowledge Graph Construction
Large Language Models (LLMs) often struggle with producing factually consistent answers due to limitations in their parametric memory. Retrieval-Augmented Generation (RAG) paradigms mitigate this issue by incorporating external knowledge at inference time. However, such methods typically handle knowledge as unstructured text, which reduces retrieval accuracy, hinders compositional reasoning, and amplifies the influence of irrelevant information on the factual consistency of LLM outputs. To overcome these limitations, we propose a novel framework that dynamically constructs and expands knowledge graphs (KGs) during inference, integrating both internal knowledge extracted from LLMs and external knowledge retrieved from external sources. Our method begins by extracting a seed KG from the question via prompting, followed by iterative expansion using the LLM's internal knowledge. The KG is then selectively refined through external retrieval, enhancing factual coverage and correcting inaccuracies. We evaluate our approach on three diverse Factual QA benchmarks, demonstrating consistent gains in factual accuracy over baselines. Our findings reveal that inference-time KG construction is a promising direction for enhancing LLM factuality in a structured, interpretable, and scalable manner.
Train It and Forget It: Merge Lists are Unnecessary for BPE Inference in Language Models
Standard Byte-Pair Encoding (BPE) tokenization compresses text by pairing a learned token vocabulary with a detailed merge list. Recent work has shown that this merge list exposes a potential attack surface for extracting information about language model's training data. In this paper, we explore the downstream impact of BPE inference algorithms that do not rely on this merge list at all, and hence differ from the encoding process during BPE training. To address this question, we investigate two broad classes of BPE inference schemes that differ from BPE application during training: a) targeted deviation from merge-lists including random merge orders, and various corruptions of merge list involving deletion/truncation, and b) non-targeted BPE inference algorithms that do not depend on the merge list but focus on compressing the text either greedily or exactly. Extensive experiments across diverse language modeling tasks like accuracy-based QA benchmarks, machine translation, and open-ended generation reveal that while targeted deviation from the merge lists exhibits significant degradation in language model performance, the non-targeted merge-list-free inference algorithms result in minimal impact on downstream performance that is often much smaller than expected. These findings pave way for simpler and potentially more privacy-preserving tokenization schemes that do not catastrophically compromise model performance.
Marten: Visual Question Answering with Mask Generation for Multi-modal Document Understanding
Multi-modal Large Language Models (MLLMs) have introduced a novel dimension to document understanding, i.e., they endow large language models with visual comprehension capabilities; however, how to design a suitable image-text pre-training task for bridging the visual and language modality in document-level MLLMs remains underexplored. In this study, we introduce a novel visual-language alignment method that casts the key issue as a Visual Question Answering with Mask generation (VQAMask) task, optimizing two tasks simultaneously: VQA-based text parsing and mask generation. The former allows the model to implicitly align images and text at the semantic level. The latter introduces an additional mask generator (discarded during inference) to explicitly ensure alignment between visual texts within images and their corresponding image regions at a spatially-aware level. Together, they can prevent model hallucinations when parsing visual text and effectively promote spatially-aware feature representation learning. To support the proposed VQAMask task, we construct a comprehensive image-mask generation pipeline and provide a large-scale dataset with 6M data (MTMask6M). Subsequently, we demonstrate that introducing the proposed mask generation task yields competitive document-level understanding performance. Leveraging the proposed VQAMask, we introduce Marten, a training-efficient MLLM tailored for document-level understanding. Extensive experiments show that our Marten consistently achieves significant improvements among 8B-MLLMs in document-centric tasks. Code and datasets are available at https://github.com/PriNing/Marten.
Toward Inference-optimal Mixture-of-Expert Large Language Models
Mixture-of-Expert (MoE) based large language models (LLMs), such as the recent Mixtral and DeepSeek-MoE, have shown great promise in scaling model size without suffering from the quadratic growth of training cost of dense transformers. Like dense models, training MoEs requires answering the same question: given a training budget, what is the optimal allocation on the model size and number of tokens? We study the scaling law of MoE-based LLMs regarding the relations between the model performance, model size, dataset size, and the expert degree. Echoing previous research studying MoE in different contexts, we observe the diminishing return of increasing the number of experts, but this seems to suggest we should scale the number of experts until saturation, as the training cost would remain constant, which is problematic during inference time. We propose to amend the scaling law of MoE by introducing inference efficiency as another metric besides the validation loss. We find that MoEs with a few (4/8) experts are the most serving efficient solution under the same performance, but costs 2.5-3.5x more in training. On the other hand, training a (16/32) expert MoE much smaller (70-85%) than the loss-optimal solution, but with a larger training dataset is a promising setup under a training budget.
Variational Open-Domain Question Answering
Retrieval-augmented models have proven to be effective in natural language processing tasks, yet there remains a lack of research on their optimization using variational inference. We introduce the Variational Open-Domain (VOD) framework for end-to-end training and evaluation of retrieval-augmented models, focusing on open-domain question answering and language modelling. The VOD objective, a self-normalized estimate of the R\'enyi variational bound, approximates the task marginal likelihood and is evaluated under samples drawn from an auxiliary sampling distribution (cached retriever and/or approximate posterior). It remains tractable, even for retriever distributions defined on large corpora. We demonstrate VOD's versatility by training reader-retriever BERT-sized models on multiple-choice medical exam questions. On the MedMCQA dataset, we outperform the domain-tuned Med-PaLM by +5.3% despite using 2.500times fewer parameters. Our retrieval-augmented BioLinkBERT model scored 62.9% on the MedMCQA and 55.0% on the MedQA-USMLE. Last, we show the effectiveness of our learned retriever component in the context of medical semantic search.
Enhancing Dual-Encoders with Question and Answer Cross-Embeddings for Answer Retrieval
Dual-Encoders is a promising mechanism for answer retrieval in question answering (QA) systems. Currently most conventional Dual-Encoders learn the semantic representations of questions and answers merely through matching score. Researchers proposed to introduce the QA interaction features in scoring function but at the cost of low efficiency in inference stage. To keep independent encoding of questions and answers during inference stage, variational auto-encoder is further introduced to reconstruct answers (questions) from question (answer) embeddings as an auxiliary task to enhance QA interaction in representation learning in training stage. However, the needs of text generation and answer retrieval are different, which leads to hardness in training. In this work, we propose a framework to enhance the Dual-Encoders model with question answer cross-embeddings and a novel Geometry Alignment Mechanism (GAM) to align the geometry of embeddings from Dual-Encoders with that from Cross-Encoders. Extensive experimental results show that our framework significantly improves Dual-Encoders model and outperforms the state-of-the-art method on multiple answer retrieval datasets.
CoreMatching: A Co-adaptive Sparse Inference Framework with Token and Neuron Pruning for Comprehensive Acceleration of Vision-Language Models
Vision-Language Models (VLMs) excel across diverse tasks but suffer from high inference costs in time and memory. Token sparsity mitigates inefficiencies in token usage, while neuron sparsity reduces high-dimensional computations, both offering promising solutions to enhance efficiency. Recently, these two sparsity paradigms have evolved largely in parallel, fostering the prevailing assumption that they function independently. However, a fundamental yet underexplored question remains: Do they truly operate in isolation, or is there a deeper underlying interplay that has yet to be uncovered? In this paper, we conduct the first comprehensive investigation into this question. By introducing and analyzing the matching mechanism between Core Neurons and Core Tokens, we found that key neurons and tokens for inference mutually influence and reinforce each other. Building on this insight, we propose CoreMatching, a co-adaptive sparse inference framework, which leverages the synergy between token and neuron sparsity to enhance inference efficiency. Through theoretical analysis and efficiency evaluations, we demonstrate that the proposed method surpasses state-of-the-art baselines on ten image understanding tasks and three hardware devices. Notably, on the NVIDIA Titan Xp, it achieved 5x FLOPs reduction and a 10x overall speedup. Code is released at https://github.com/wangqinsi1/2025-ICML-CoreMatching/tree/main.
Conformal Inference under High-Dimensional Covariate Shifts via Likelihood-Ratio Regularization
We consider the problem of conformal prediction under covariate shift. Given labeled data from a source domain and unlabeled data from a covariate shifted target domain, we seek to construct prediction sets with valid marginal coverage in the target domain. Most existing methods require estimating the unknown likelihood ratio function, which can be prohibitive for high-dimensional data such as images. To address this challenge, we introduce the likelihood ratio regularized quantile regression (LR-QR) algorithm, which combines the pinball loss with a novel choice of regularization in order to construct a threshold function without directly estimating the unknown likelihood ratio. We show that the LR-QR method has coverage at the desired level in the target domain, up to a small error term that we can control. Our proofs draw on a novel analysis of coverage via stability bounds from learning theory. Our experiments demonstrate that the LR-QR algorithm outperforms existing methods on high-dimensional prediction tasks, including a regression task for the Communities and Crime dataset, an image classification task from the WILDS repository, and an LLM question-answering task on the MMLU benchmark.
QOG:Question and Options Generation based on Language Model
Question-Options Generation (QOG) is a task that involves generating a set of question-options pairs given context. This task has various applications, including fine-tuning large models, information retrieval, and automated multiple-choice question generation for education. In this paper, we develop QOG models using three different methods based on fine-tuning sequence-to-sequence language models (LMs). Experiments demonstrate that the end-to-end QOG model is computationally efficient and stable during both training and inference, outperforming other methods. Furthermore, our analysis indicates that our QOG models are competitive on the QOG task compared to the large language model Llama 3-8B.
EEE-QA: Exploring Effective and Efficient Question-Answer Representations
Current approaches to question answering rely on pre-trained language models (PLMs) like RoBERTa. This work challenges the existing question-answer encoding convention and explores finer representations. We begin with testing various pooling methods compared to using the begin-of-sentence token as a question representation for better quality. Next, we explore opportunities to simultaneously embed all answer candidates with the question. This enables cross-reference between answer choices and improves inference throughput via reduced memory usage. Despite their simplicity and effectiveness, these methods have yet to be widely studied in current frameworks. We experiment with different PLMs, and with and without the integration of knowledge graphs. Results prove that the memory efficacy of the proposed techniques with little sacrifice in performance. Practically, our work enhances 38-100% throughput with 26-65% speedups on consumer-grade GPUs by allowing for considerably larger batch sizes. Our work sends a message to the community with promising directions in both representation quality and efficiency for the question-answering task in natural language processing.
On diffusion models for amortized inference: Benchmarking and improving stochastic control and sampling
We study the problem of training diffusion models to sample from a distribution with a given unnormalized density or energy function. We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods (continuous generative flow networks). Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work. We also propose a novel exploration strategy for off-policy methods, based on local search in the target space with the use of a replay buffer, and show that it improves the quality of samples on a variety of target distributions. Our code for the sampling methods and benchmarks studied is made public at https://github.com/GFNOrg/gfn-diffusion as a base for future work on diffusion models for amortized inference.
Lookahead: An Inference Acceleration Framework for Large Language Model with Lossless Generation Accuracy
As Large Language Models (LLMs) have made significant advancements across various tasks, such as question answering, translation, text summarization, and dialogue systems, the need for accuracy in information becomes crucial, especially for serious financial products serving billions of users like Alipay. To address this, Alipay has developed a Retrieval-Augmented Generation (RAG) system that grounds LLMs on the most accurate and up-to-date information. However, for a real-world product serving millions of users, the inference speed of LLMs becomes a critical factor compared to a mere experimental model. Hence, this paper presents a generic framework for accelerating the inference process, resulting in a substantial increase in speed and cost reduction for our RAG system, with lossless generation accuracy. In the traditional inference process, each token is generated sequentially by the LLM, leading to a time consumption proportional to the number of generated tokens. To enhance this process, our framework, named lookahead, introduces a multi-branch strategy. Instead of generating a single token at a time, we propose a Trie-based Retrieval (TR) process that enables the generation of multiple branches simultaneously, each of which is a sequence of tokens. Subsequently, for each branch, a Verification and Accept (VA) process is performed to identify the longest correct sub-sequence as the final output. Our strategy offers two distinct advantages: (1) it guarantees absolute correctness of the output, avoiding any approximation algorithms, and (2) the worst-case performance of our approach is equivalent to the conventional process. We conduct extensive experiments to demonstrate the significant improvements achieved by applying our inference acceleration framework. Code is avaliable: https://github.com/alipay/PainlessInferenceAcceleration.
Self-Chained Image-Language Model for Video Localization and Question Answering
Recent studies have shown promising results on utilizing pre-trained image-language models for video question answering. While these image-language models can efficiently bootstrap the representation learning of video-language models, they typically concatenate uniformly sampled video frames as visual inputs without explicit language-aware, temporal modeling. When only a portion of a video input is relevant to the language query, such uniform frame sampling can often lead to missing important visual cues. Although humans often find a video moment to focus on and rewind the moment to answer questions, training a query-aware video moment localizer often requires expensive annotations and high computational costs. To address this issue, we propose Self-Chained Video Localization-Answering (SeViLA), a novel framework that leverages a single image-language model (BLIP-2) to tackle both temporal keyframe localization and QA on videos. SeViLA framework consists of two modules: Localizer and Answerer, where both are parameter-efficiently fine-tuned from BLIP-2. We chain these modules for cascaded inference and self-refinement. First, in the forward chain, the Localizer finds multiple language-aware keyframes in a video, which the Answerer uses to predict the answer. Second, in the reverse chain, the Answerer generates keyframe pseudo-labels to refine the Localizer, alleviating the need for expensive video moment localization annotations. SeViLA outperforms several strong baselines/previous works on five video QA and event prediction tasks, and achieves the state-of-the-art in both fine-tuning (NExT-QA, STAR) and zero-shot (NExT-QA, STAR, How2QA, VLEP) settings. We show a comprehensive analysis, e.g., the impact of Localizer, comparisons of Localizer with other temporal localization models, pre-training/self-refinement of Localizer, and varying the number of keyframes.
ROCK: Causal Inference Principles for Reasoning about Commonsense Causality
Commonsense causality reasoning (CCR) aims at identifying plausible causes and effects in natural language descriptions that are deemed reasonable by an average person. Although being of great academic and practical interest, this problem is still shadowed by the lack of a well-posed theoretical framework; existing work usually relies on deep language models wholeheartedly, and is potentially susceptible to confounding co-occurrences. Motivated by classical causal principles, we articulate the central question of CCR and draw parallels between human subjects in observational studies and natural languages to adopt CCR to the potential-outcomes framework, which is the first such attempt for commonsense tasks. We propose a novel framework, ROCK, to Reason O(A)bout Commonsense K(C)ausality, which utilizes temporal signals as incidental supervision, and balances confounding effects using temporal propensities that are analogous to propensity scores. The ROCK implementation is modular and zero-shot, and demonstrates good CCR capabilities.
SpecExec: Massively Parallel Speculative Decoding for Interactive LLM Inference on Consumer Devices
As large language models gain widespread adoption, running them efficiently becomes crucial. Recent works on LLM inference use speculative decoding to achieve extreme speedups. However, most of these works implicitly design their algorithms for high-end datacenter hardware. In this work, we ask the opposite question: how fast can we run LLMs on consumer machines? Consumer GPUs can no longer fit the largest available models (50B+ parameters) and must offload them to RAM or SSD. When running with offloaded parameters, the inference engine can process batches of hundreds or thousands of tokens at the same time as just one token, making it a natural fit for speculative decoding. We propose SpecExec (Speculative Execution), a simple parallel decoding method that can generate up to 20 tokens per target model iteration for popular LLM families. It utilizes the high spikiness of the token probabilities distribution in modern LLMs and a high degree of alignment between model output probabilities. SpecExec takes the most probable tokens continuation from the draft model to build a "cache" tree for the target model, which then gets validated in a single pass. Using SpecExec, we demonstrate inference of 50B+ parameter LLMs on consumer GPUs with RAM offloading at 4-6 tokens per second with 4-bit quantization or 2-3 tokens per second with 16-bit weights.
Scaling Test-Time Inference with Policy-Optimized, Dynamic Retrieval-Augmented Generation via KV Caching and Decoding
We present a comprehensive framework for enhancing Retrieval-Augmented Generation (RAG) systems through dynamic retrieval strategies and reinforcement fine-tuning. This approach significantly improves large language models on knowledge-intensive tasks, including opendomain question answering and complex reasoning. Our framework integrates two complementary techniques: Policy-Optimized RetrievalAugmented Generation (PORAG), which optimizes the use of retrieved information, and Adaptive Token-Layer Attention Scoring (ATLAS), which dynamically determines retrieval timing and content based on contextual needs. Together, these techniques enhance both the utilization and relevance of retrieved content, improving factual accuracy and response quality. Designed as a lightweight solution compatible with any Transformer-based LLM without requiring additional training, our framework excels in knowledge-intensive tasks, boosting output accuracy in RAG settings. We further propose CRITIC, a novel method to selectively compress key-value caches by token importance, mitigating memory bottlenecks in long-context applications. The framework also incorporates test-time scaling techniques to dynamically balance reasoning depth and computational resources, alongside optimized decoding strategies for faster inference. Experiments on benchmark datasets show that our framework reduces hallucinations, strengthens domain-specific reasoning, and achieves significant efficiency and scalability gains over traditional RAG systems. This integrated approach advances the development of robust, efficient, and scalable RAG systems across diverse applications.
Cheaply Evaluating Inference Efficiency Metrics for Autoregressive Transformer APIs
Large language models (LLMs) power many state-of-the-art systems in natural language processing. However, these models are extremely computationally expensive, even at inference time, raising the natural question: when is the extra cost of deploying a larger model worth the anticipated boost in capabilities? Better understanding this tradeoff fundamentally could benefit from an inference efficiency metric that is both (i) easily comparable across models from different providers, and (ii) representative of the true cost of running queries in an isolated performance environment. Unfortunately, access to LLMs today is largely restricted to black-box text generation APIs and raw runtimes measured through this interface do not satisfy these desiderata: model providers can apply various software and hardware optimizations orthogonal to the model, and models served on shared infrastructure are susceptible to performance contention. To circumvent these problems, we propose a new metric for comparing inference efficiency across models. This metric puts models on equal footing as though they were served (i) on uniform hardware and software, and (ii) without performance contention. We call this metric the idealized runtime, and we propose a methodology to efficiently estimate this metric for autoregressive Transformer models. We also propose cost-aware variants that incorporate the number of accelerators needed to serve the model. Using these metrics, we compare ten state-of-the-art LLMs to provide the first analysis of inference efficiency-capability tradeoffs; we make several observations from this analysis, including the fact that the superior inference runtime performance of certain APIs is often a byproduct of optimizations within the API rather than the underlying model. Our methodology also facilitates the efficient comparison of different software and hardware stacks.
ORBIT: An Object Property Reasoning Benchmark for Visual Inference Tasks
While vision-language models (VLMs) have made remarkable progress on many popular visual question answering (VQA) benchmarks, it remains unclear whether they abstract and reason over depicted objects. Inspired by human object categorisation, object property reasoning involves identifying and recognising low-level details and higher-level abstractions. While current VQA benchmarks consider a limited set of object property attributes like size, they typically blend perception and reasoning, and lack representativeness in terms of reasoning and image categories. To this end, we introduce a systematic evaluation framework with images of three representative types, three reasoning levels of increasing complexity, and four object property dimensions driven by prior work on commonsense reasoning. We develop a procedure to instantiate this benchmark into ORBIT, a multi-level reasoning VQA benchmark for object properties comprising 360 images paired with a total of 1,080 count-based questions. Experiments with 12 state-of-the-art VLMs in zero-shot settings reveal significant limitations compared to humans, with the best-performing model only reaching 40\% accuracy. VLMs struggle particularly with realistic (photographic) images, counterfactual reasoning about physical and functional properties, and higher counts. ORBIT points to the need to develop methods for scalable benchmarking, generalize annotation guidelines, and explore additional reasoning VLMs. We make the ORBIT benchmark and the experimental code available to support such endeavors.
AdaptInfer: Adaptive Token Pruning for Vision-Language Model Inference with Dynamical Text Guidance
Vision-language models (VLMs) have achieved impressive performance on multimodal reasoning tasks such as visual question answering (VQA), but their inference cost remains a significant challenge due to the large number of vision tokens processed during the prefill stage. Existing pruning methods often rely on directly using the attention patterns or static text prompt guidance, failing to exploit the dynamic internal signals generated during inference. To address these issues, we propose AdaptInfer, a plug-and-play framework for adaptive vision token pruning in VLMs. First, we introduce a fine-grained, dynamic text-guided pruning mechanism that reuses layer-wise text-to-text attention maps to construct soft priors over text-token importance, allowing more informed scoring of vision tokens at each stage. Second, we perform an offline analysis of cross-modal attention shifts and identify consistent inflection locations in inference, which inspire us to propose a more principled and efficient pruning schedule. Our method is lightweight and plug-and-play, also generalizable across multi-modal tasks. Experimental results have verified the effectiveness of the proposed method. For example, it reduces CUDA latency by 61.3\% while maintaining an average accuracy of 92.9\% on vanilla LLaVA-1.5-7B. Under the same token budget, AdaptInfer surpasses SOTA in accuracy.
Benchmarking Open-Source Language Models for Efficient Question Answering in Industrial Applications
In the rapidly evolving landscape of Natural Language Processing (NLP), Large Language Models (LLMs) have demonstrated remarkable capabilities in tasks such as question answering (QA). However, the accessibility and practicality of utilizing these models for industrial applications pose significant challenges, particularly concerning cost-effectiveness, inference speed, and resource efficiency. This paper presents a comprehensive benchmarking study comparing open-source LLMs with their non-open-source counterparts on the task of question answering. Our objective is to identify open-source alternatives capable of delivering comparable performance to proprietary models while being lightweight in terms of resource requirements and suitable for Central Processing Unit (CPU)-based inference. Through rigorous evaluation across various metrics including accuracy, inference speed, and resource consumption, we aim to provide insights into selecting efficient LLMs for real-world applications. Our findings shed light on viable open-source alternatives that offer acceptable performance and efficiency, addressing the pressing need for accessible and efficient NLP solutions in industry settings.
Not all Layers of LLMs are Necessary during Inference
The inference phase of Large Language Models (LLMs) is very expensive. An ideal inference stage of LLMs could utilize fewer computational resources while still maintaining its capabilities (e.g., generalization and in-context learning ability). In this paper, we try to answer the question, "During LLM inference, can we use shallow layers for easy instances; and deep layers for hard ones?" To answer this question, we first indicate that Not all Layers are Necessary during Inference by statistically analyzing the activated layers across tasks. Then, we propose a simple algorithm named AdaInfer to determine the inference termination moment based on the input instance adaptively. More importantly, AdaInfer does not alter LLM parameters and maintains generalizability across tasks. Experiments on well-known LLMs (i.e., Llama2 series and OPT) show that AdaInfer saves an average of 14.8% of computational resources, even up to 50% on sentiment tasks, while maintaining comparable performance. Additionally, this method is orthogonal to other model acceleration techniques, potentially boosting inference efficiency further.
CR-LT-KGQA: A Knowledge Graph Question Answering Dataset Requiring Commonsense Reasoning and Long-Tail Knowledge
Knowledge graph question answering (KGQA) is a well-established field that seeks to provide factual answers to natural language (NL) questions by leveraging knowledge graphs (KGs). However, existing KGQA datasets suffer from two significant limitations: (1) no existing KGQA dataset requires commonsense reasoning to arrive at an answer and (2) existing KGQA datasets focus on popular entities for which large language models (LLMs) can directly answer without hallucinating and without leveraging the KG. In this work, we seek a novel KGQA dataset that supports commonsense reasoning and focuses on long-tail entities (e.g., non-mainstream and recent entities) where LLMs frequently hallucinate, and thus create the need for novel methodologies that leverage the KG for factual and attributable commonsense inference. We create a novel Commonsense Reasoning (CR) and Long-Tail (LT) KGQA dataset with two subtasks -- question answering and claim verification -- that address both limitations (1) and (2). We construct CR-LT-KGQA by building extensions to existing reasoning datasets StrategyQA and CREAK over Wikidata. While existing KGQA methods are not applicable due to their lack of commonsense inference support, baseline evaluation of LLMs on CR-LT KGQA demonstrate a high rate of hallucination. Thus, CR-LT KGQA poses significant challenges for hallucination-prone LLMs, hence paving the way for future commonsense KGQA research to provide accurate and factual answers for long-tail entities in the era of LLMs.
Understanding AI Cognition: A Neural Module for Inference Inspired by Human Memory Mechanisms
How humans and machines make sense of current inputs for relation reasoning and question-answering while putting the perceived information into context of our past memories, has been a challenging conundrum in cognitive science and artificial intelligence. Inspired by human brain's memory system and cognitive architectures, we propose a PMI framework that consists of perception, memory and inference components. Notably, the memory module comprises working and long-term memory, with the latter endowed with a higher-order structure to retain more accumulated knowledge and experiences. Through a differentiable competitive write access, current perceptions update working memory, which is later merged with long-term memory via outer product associations, averting memory overflow and minimizing information conflicts. In the inference module, relevant information is retrieved from two separate memory origins and associatively integrated to attain a more comprehensive and precise interpretation of current perceptions. We exploratively apply our PMI to improve prevailing Transformers and CNN models on question-answering tasks like bAbI-20k and Sort-of-CLEVR datasets, as well as relation calculation and image classification tasks, and in each case, our PMI enhancements consistently outshine their original counterparts significantly. Visualization analyses reveal that memory consolidation, along with the interaction and integration of information from diverse memory sources, substantially contributes to the model effectiveness on inference tasks.
DocNLI: A Large-scale Dataset for Document-level Natural Language Inference
Natural language inference (NLI) is formulated as a unified framework for solving various NLP problems such as relation extraction, question answering, summarization, etc. It has been studied intensively in the past few years thanks to the availability of large-scale labeled datasets. However, most existing studies focus on merely sentence-level inference, which limits the scope of NLI's application in downstream NLP problems. This work presents DocNLI -- a newly-constructed large-scale dataset for document-level NLI. DocNLI is transformed from a broad range of NLP problems and covers multiple genres of text. The premises always stay in the document granularity, whereas the hypotheses vary in length from single sentences to passages with hundreds of words. Additionally, DocNLI has pretty limited artifacts which unfortunately widely exist in some popular sentence-level NLI datasets. Our experiments demonstrate that, even without fine-tuning, a model pretrained on DocNLI shows promising performance on popular sentence-level benchmarks, and generalizes well to out-of-domain NLP tasks that rely on inference at document granularity. Task-specific fine-tuning can bring further improvements. Data, code, and pretrained models can be found at https://github.com/salesforce/DocNLI.
KQA Pro: A Dataset with Explicit Compositional Programs for Complex Question Answering over Knowledge Base
Complex question answering over knowledge base (Complex KBQA) is challenging because it requires various compositional reasoning capabilities, such as multi-hop inference, attribute comparison, set operation. Existing benchmarks have some shortcomings that limit the development of Complex KBQA: 1) they only provide QA pairs without explicit reasoning processes; 2) questions are poor in diversity or scale. To this end, we introduce KQA Pro, a dataset for Complex KBQA including ~120K diverse natural language questions. We introduce a compositional and interpretable programming language KoPL to represent the reasoning process of complex questions. For each question, we provide the corresponding KoPL program and SPARQL query, so that KQA Pro serves for both KBQA and semantic parsing tasks. Experimental results show that SOTA KBQA methods cannot achieve promising results on KQA Pro as on current datasets, which suggests that KQA Pro is challenging and Complex KBQA requires further research efforts. We also treat KQA Pro as a diagnostic dataset for testing multiple reasoning skills, conduct a thorough evaluation of existing models and discuss further directions for Complex KBQA. Our codes and datasets can be obtained from https://github.com/shijx12/KQAPro_Baselines.
Guiding Vision-Language Model Selection for Visual Question-Answering Across Tasks, Domains, and Knowledge Types
Visual Question-Answering (VQA) has become a key use-case in several applications to aid user experience, particularly after Vision-Language Models (VLMs) achieving good results in zero-shot inference. But evaluating different VLMs for an application requirement using a standardized framework in practical settings is still challenging. This paper introduces a comprehensive framework for evaluating VLMs tailored to VQA tasks in practical settings. We present a novel dataset derived from established VQA benchmarks, annotated with task types, application domains, and knowledge types, three key practical aspects on which tasks can vary. We also introduce GoEval, a multimodal evaluation metric developed using GPT-4o, achieving a correlation factor of 56.71% with human judgments. Our experiments with ten state-of-the-art VLMs reveals that no single model excelling universally, making appropriate selection a key design decision. Proprietary models such as Gemini-1.5-Pro and GPT-4o-mini generally outperform others, though open-source models like InternVL-2-8B and CogVLM-2-Llama-3-19B demonstrate competitive strengths in specific contexts, while providing additional advantages. This study guides the selection of VLMs based on specific task requirements and resource constraints, and can also be extended to other vision-language tasks.
Is That Your Final Answer? Test-Time Scaling Improves Selective Question Answering
Scaling the test-time compute of large language models has demonstrated impressive performance on reasoning benchmarks. However, existing evaluations of test-time scaling make the strong assumption that a reasoning system should always give an answer to any question provided. This overlooks concerns about whether a model is confident in its answer, and whether it is appropriate to always provide a response. To address these concerns, we extract confidence scores during reasoning for thresholding model responses. We find that increasing compute budget at inference time not only helps models answer more questions correctly, but also increases confidence in correct responses. We then extend the current paradigm of zero-risk responses during evaluation by considering settings with non-zero levels of response risk, and suggest a recipe for reporting evaluations under these settings.
LLMCad: Fast and Scalable On-device Large Language Model Inference
Generative tasks, such as text generation and question answering, hold a crucial position in the realm of mobile applications. Due to their sensitivity to privacy concerns, there is a growing demand for their execution directly on mobile devices. Currently, the execution of these generative tasks heavily depends on Large Language Models (LLMs). Nevertheless, the limited memory capacity of these devices presents a formidable challenge to the scalability of such models. In our research, we introduce LLMCad, an innovative on-device inference engine specifically designed for efficient generative Natural Language Processing (NLP) tasks. The core idea behind LLMCad revolves around model collaboration: a compact LLM, residing in memory, takes charge of generating the most straightforward tokens, while a high-precision LLM steps in to validate these tokens and rectify any identified errors. LLMCad incorporates three novel techniques: (1) Instead of generating candidate tokens in a sequential manner, LLMCad employs the smaller LLM to construct a token tree, encompassing a wider range of plausible token pathways. Subsequently, the larger LLM can efficiently validate all of these pathways simultaneously. (2) It employs a self-adjusting fallback strategy, swiftly initiating the verification process whenever the smaller LLM generates an erroneous token. (3) To ensure a continuous flow of token generation, LLMCad speculatively generates tokens during the verification process by implementing a compute-IO pipeline. Through an extensive series of experiments, LLMCad showcases an impressive token generation speed, achieving rates up to 9.3x faster than existing inference engines.
Contextualized Sparse Representations for Real-Time Open-Domain Question Answering
Open-domain question answering can be formulated as a phrase retrieval problem, in which we can expect huge scalability and speed benefit but often suffer from low accuracy due to the limitation of existing phrase representation models. In this paper, we aim to improve the quality of each phrase embedding by augmenting it with a contextualized sparse representation (Sparc). Unlike previous sparse vectors that are term-frequency-based (e.g., tf-idf) or directly learned (only few thousand dimensions), we leverage rectified self-attention to indirectly learn sparse vectors in n-gram vocabulary space. By augmenting the previous phrase retrieval model (Seo et al., 2019) with Sparc, we show 4%+ improvement in CuratedTREC and SQuAD-Open. Our CuratedTREC score is even better than the best known retrieve & read model with at least 45x faster inference speed.
Real-Time Open-Domain Question Answering with Dense-Sparse Phrase Index
Existing open-domain question answering (QA) models are not suitable for real-time usage because they need to process several long documents on-demand for every input query. In this paper, we introduce the query-agnostic indexable representation of document phrases that can drastically speed up open-domain QA and also allows us to reach long-tail targets. In particular, our dense-sparse phrase encoding effectively captures syntactic, semantic, and lexical information of the phrases and eliminates the pipeline filtering of context documents. Leveraging optimization strategies, our model can be trained in a single 4-GPU server and serve entire Wikipedia (up to 60 billion phrases) under 2TB with CPUs only. Our experiments on SQuAD-Open show that our model is more accurate than DrQA (Chen et al., 2017) with 6000x reduced computational cost, which translates into at least 58x faster end-to-end inference benchmark on CPUs.
MIRAGE: Scaling Test-Time Inference with Parallel Graph-Retrieval-Augmented Reasoning Chains
Large reasoning models (LRMs) have shown significant progress in test-time scaling through chain-of-thought prompting. Current approaches like search-o1 integrate retrieval augmented generation (RAG) into multi-step reasoning processes but rely on a single, linear reasoning chain while incorporating unstructured textual information in a flat, context-agnostic manner. As a result, these approaches can lead to error accumulation throughout the reasoning chain, which significantly limits its effectiveness in medical question-answering (QA) tasks where both accuracy and traceability are critical requirements. To address these challenges, we propose MIRAGE (Multi-chain Inference with Retrieval-Augmented Graph Exploration), a novel test-time scalable reasoning framework that performs dynamic multi-chain inference over structured medical knowledge graphs. Specifically, MIRAGE 1) decomposes complex queries into entity-grounded sub-questions, 2) executes parallel inference chains, 3) retrieves evidence adaptively via neighbor expansion and multi-hop traversal, and 4) integrates answers using cross-chain verification to resolve contradictions. Experiments on three medical QA benchmarks (GenMedGPT-5k, CMCQA, and ExplainCPE) show that MIRAGE consistently outperforms GPT-4o, Tree-of-Thought variants, and other retrieval-augmented baselines in both automatic and human evaluations. Additionally, MIRAGE improves interpretability by generating explicit reasoning chains that trace each factual claim to concrete chains within the knowledge graph, making it well-suited for complex medical reasoning scenarios. The code will be available for further research.
Multi-TW: Benchmarking Multimodal Models on Traditional Chinese Question Answering in Taiwan
Multimodal Large Language Models (MLLMs) process visual, acoustic, and textual inputs, addressing the limitations of single-modality LLMs. However, existing benchmarks often overlook tri-modal evaluation in Traditional Chinese and do not consider inference latency. To address this, we introduce Multi-TW, the first Traditional Chinese benchmark for evaluating the performance and latency of any-to-any multimodal models. Multi-TW includes 900 multiple-choice questions (image and text, audio and text pairs) sourced from official proficiency tests developed with the Steering Committee for the Test of Proficiency-Huayu (SC-TOP). We evaluated various any-to-any models and vision-language models (VLMs) with audio transcription. Our results show that closed-source models generally outperform open-source ones across modalities, although open-source models can perform well in audio tasks. End-to-end any-to-any pipelines offer clear latency advantages compared to VLMs using separate audio transcription. Multi-TW presents a comprehensive view of model capabilities and highlights the need for Traditional Chinese fine-tuning and efficient multimodal architectures.
KunLunBaizeRAG: Reinforcement Learning Driven Inference Performance Leap for Large Language Models
This paper introduces KunLunBaizeRAG, a reinforcement learning-driven reasoning framework designed to enhance the reasoning capabilities of large language models (LLMs) in complex multi-hop question-answering tasks. The framework addresses key limitations of traditional RAG, such as retrieval drift, information redundancy, and strategy rigidity. Key innovations include the RAG-driven Reasoning Alignment (RDRA) mechanism, the Search-Think Iterative Enhancement (STIE) mechanism, the Network-Local Intelligent Routing (NLR) mechanism, and a progressive hybrid training strategy. Experimental results demonstrate significant improvements in exact match (EM) and LLM-judged score (LJ) across four benchmarks, highlighting the framework's robustness and effectiveness in complex reasoning scenarios.
Faster MoE LLM Inference for Extremely Large Models
Sparse Mixture of Experts (MoE) large language models (LLMs) are gradually becoming the mainstream approach for ultra-large-scale models. Existing optimization efforts for MoE models have focused primarily on coarse-grained MoE architectures. With the emergence of DeepSeek Models, fine-grained MoE models are gaining popularity, yet research on them remains limited. Therefore, we want to discuss the efficiency dynamic under different service loads. Additionally, fine-grained models allow deployers to reduce the number of routed experts, both activated counts and total counts, raising the question of how this reduction affects the trade-off between MoE efficiency and performance. Our findings indicate that while deploying MoE models presents greater challenges, it also offers significant optimization opportunities. Reducing the number of activated experts can lead to substantial efficiency improvements in certain scenarios, with only minor performance degradation. Reducing the total number of experts provides limited efficiency gains but results in severe performance degradation. Our method can increase throughput by at least 10\% without any performance degradation. Overall, we conclude that MoE inference optimization remains an area with substantial potential for exploration and improvement.
Bridging the Training-Inference Gap in LLMs by Leveraging Self-Generated Tokens
Language models are often trained to maximize the likelihood of the next token given past tokens in the training dataset. However, during inference time, they are utilized differently, generating text sequentially and auto-regressively by using previously generated tokens as input to predict the next one. Marginal differences in predictions at each step can cascade over successive steps, resulting in different distributions from what the models were trained for and potentially leading to unpredictable behavior. This paper proposes two simple approaches based on model own generation to address this discrepancy between the training and inference time. Our first approach is Batch-Scheduled Sampling, where, during training, we stochastically choose between the ground-truth token from the dataset and the model's own generated token as input to predict the next token. This is done in an offline manner, modifying the context window by interleaving ground-truth tokens with those generated by the model. Our second approach is Reference-Answer-based Correction, where we explicitly incorporate a self-correction capability into the model during training. This enables the model to effectively self-correct the gaps between the generated sequences and the ground truth data without relying on an external oracle model. By incorporating our proposed strategies during training, we have observed an overall improvement in performance compared to baseline methods, as demonstrated by our extensive experiments using summarization, general question-answering, and math question-answering tasks.
Crayon: Customized On-Device LLM via Instant Adapter Blending and Edge-Server Hybrid Inference
The customization of large language models (LLMs) for user-specified tasks gets important. However, maintaining all the customized LLMs on cloud servers incurs substantial memory and computational overheads, and uploading user data can also lead to privacy concerns. On-device LLMs can offer a promising solution by mitigating these issues. Yet, the performance of on-device LLMs is inherently constrained by the limitations of small-scaled models. To overcome these restrictions, we first propose Crayon, a novel approach for on-device LLM customization. Crayon begins by constructing a pool of diverse base adapters, and then we instantly blend them into a customized adapter without extra training. In addition, we develop a device-server hybrid inference strategy, which deftly allocates more demanding queries or non-customized tasks to a larger, more capable LLM on a server. This ensures optimal performance without sacrificing the benefits of on-device customization. We carefully craft a novel benchmark from multiple question-answer datasets, and show the efficacy of our method in the LLM customization.
TIGQA:An Expert Annotated Question Answering Dataset in Tigrinya
The absence of explicitly tailored, accessible annotated datasets for educational purposes presents a notable obstacle for NLP tasks in languages with limited resources.This study initially explores the feasibility of using machine translation (MT) to convert an existing dataset into a Tigrinya dataset in SQuAD format. As a result, we present TIGQA, an expert annotated educational dataset consisting of 2.68K question-answer pairs covering 122 diverse topics such as climate, water, and traffic. These pairs are from 537 context paragraphs in publicly accessible Tigrinya and Biology books. Through comprehensive analyses, we demonstrate that the TIGQA dataset requires skills beyond simple word matching, requiring both single-sentence and multiple-sentence inference abilities. We conduct experiments using state-of-the art MRC methods, marking the first exploration of such models on TIGQA. Additionally, we estimate human performance on the dataset and juxtapose it with the results obtained from pretrained models.The notable disparities between human performance and best model performance underscore the potential for further enhancements to TIGQA through continued research. Our dataset is freely accessible via the provided link to encourage the research community to address the challenges in the Tigrinya MRC.
Compressing Context to Enhance Inference Efficiency of Large Language Models
Large language models (LLMs) achieved remarkable performance across various tasks. However, they face challenges in managing long documents and extended conversations, due to significantly increased computational requirements, both in memory and inference time, and potential context truncation when the input exceeds the LLM's fixed context length. This paper proposes a method called Selective Context that enhances the inference efficiency of LLMs by identifying and pruning redundancy in the input context to make the input more compact. We test our approach using common data sources requiring long context processing: arXiv papers, news articles, and long conversations, on tasks of summarisation, question answering, and response generation. Experimental results show that Selective Context significantly reduces memory cost and decreases generation latency while maintaining comparable performance compared to that achieved when full context is used. Specifically, we achieve a 50\% reduction in context cost, resulting in a 36\% reduction in inference memory usage and a 32\% reduction in inference time, while observing only a minor drop of .023 in BERTscore and .038 in faithfulness on four downstream applications, indicating that our method strikes a good balance between efficiency and performance.
ArNLI: Arabic Natural Language Inference for Entailment and Contradiction Detection
Natural Language Inference (NLI) is a hot topic research in natural language processing, contradiction detection between sentences is a special case of NLI. This is considered a difficult NLP task which has a big influence when added as a component in many NLP applications, such as Question Answering Systems, text Summarization. Arabic Language is one of the most challenging low-resources languages in detecting contradictions due to its rich lexical, semantics ambiguity. We have created a data set of more than 12k sentences and named ArNLI, that will be publicly available. Moreover, we have applied a new model inspired by Stanford contradiction detection proposed solutions on English language. We proposed an approach to detect contradictions between pairs of sentences in Arabic language using contradiction vector combined with language model vector as an input to machine learning model. We analyzed results of different traditional machine learning classifiers and compared their results on our created data set (ArNLI) and on an automatic translation of both PHEME, SICK English data sets. Best results achieved using Random Forest classifier with an accuracy of 99%, 60%, 75% on PHEME, SICK and ArNLI respectively.
Zero-Shot Video Question Answering via Frozen Bidirectional Language Models
Video question answering (VideoQA) is a complex task that requires diverse multi-modal data for training. Manual annotation of question and answers for videos, however, is tedious and prohibits scalability. To tackle this problem, recent methods consider zero-shot settings with no manual annotation of visual question-answer. In particular, a promising approach adapts frozen autoregressive language models pretrained on Web-scale text-only data to multi-modal inputs. In contrast, we here build on frozen bidirectional language models (BiLM) and show that such an approach provides a stronger and cheaper alternative for zero-shot VideoQA. In particular, (i) we combine visual inputs with the frozen BiLM using light trainable modules, (ii) we train such modules using Web-scraped multi-modal data, and finally (iii) we perform zero-shot VideoQA inference through masked language modeling, where the masked text is the answer to a given question. Our proposed approach, FrozenBiLM, outperforms the state of the art in zero-shot VideoQA by a significant margin on a variety of datasets, including LSMDC-FiB, iVQA, MSRVTT-QA, MSVD-QA, ActivityNet-QA, TGIF-FrameQA, How2QA and TVQA. It also demonstrates competitive performance in the few-shot and fully-supervised setting. Our code and models are publicly available at https://github.com/antoyang/FrozenBiLM.
Sequence-to-Sequence Knowledge Graph Completion and Question Answering
Knowledge graph embedding (KGE) models represent each entity and relation of a knowledge graph (KG) with low-dimensional embedding vectors. These methods have recently been applied to KG link prediction and question answering over incomplete KGs (KGQA). KGEs typically create an embedding for each entity in the graph, which results in large model sizes on real-world graphs with millions of entities. For downstream tasks these atomic entity representations often need to be integrated into a multi stage pipeline, limiting their utility. We show that an off-the-shelf encoder-decoder Transformer model can serve as a scalable and versatile KGE model obtaining state-of-the-art results for KG link prediction and incomplete KG question answering. We achieve this by posing KG link prediction as a sequence-to-sequence task and exchange the triple scoring approach taken by prior KGE methods with autoregressive decoding. Such a simple but powerful method reduces the model size up to 98% compared to conventional KGE models while keeping inference time tractable. After finetuning this model on the task of KGQA over incomplete KGs, our approach outperforms baselines on multiple large-scale datasets without extensive hyperparameter tuning.
Uncertainty-Aware Text-to-Program for Question Answering on Structured Electronic Health Records
Question Answering on Electronic Health Records (EHR-QA) has a significant impact on the healthcare domain, and it is being actively studied. Previous research on structured EHR-QA focuses on converting natural language queries into query language such as SQL or SPARQL (NLQ2Query), so the problem scope is limited to pre-defined data types by the specific query language. In order to expand the EHR-QA task beyond this limitation to handle multi-modal medical data and solve complex inference in the future, more primitive systemic language is needed. In this paper, we design the program-based model (NLQ2Program) for EHR-QA as the first step towards the future direction. We tackle MIMICSPARQL*, the graph-based EHR-QA dataset, via a program-based approach in a semi-supervised manner in order to overcome the absence of gold programs. Without the gold program, our proposed model shows comparable performance to the previous state-of-the-art model, which is an NLQ2Query model (0.9% gain). In addition, for a reliable EHR-QA model, we apply the uncertainty decomposition method to measure the ambiguity in the input question. We empirically confirmed data uncertainty is most indicative of the ambiguity in the input question.
Internet-augmented language models through few-shot prompting for open-domain question answering
In this work, we aim to capitalize on the unique few-shot capabilities of large-scale language models (LSLMs) to overcome some of their challenges with respect to grounding to factual and up-to-date information. Motivated by semi-parametric language models (LMs), which ground their decisions in external retrieved evidence, we use few-shot prompting to learn to condition LMs on information returned from the web using Google Search, a broad and constantly updated knowledge source. Our approach does not involve fine-tuning or learning additional parameters, thus making it applicable to any LM, offering therefore a strong baseline. Indeed, we find that LMs conditioned on the web surpass performance of closed-book models of similar, or even larger, model sizes in open-domain question answering. Finally, we find that increasing the inference-time compute of models, achieved via using multiple retrieved evidences to generate multiple answers followed by a reranking stage that uses scores generated by the same LMs, leads to better performance and alleviates lower performance of smaller few-shot LMs. All in all, our findings suggest that it might be beneficial to slow down the race towards the biggest model and instead shift attention towards finding more effective ways to use models, including but not limited to, better prompting or increasing inference-time compute.
Dynamic-TinyBERT: Boost TinyBERT's Inference Efficiency by Dynamic Sequence Length
Limited computational budgets often prevent transformers from being used in production and from having their high accuracy utilized. TinyBERT addresses the computational efficiency by self-distilling BERT into a smaller transformer representation having fewer layers and smaller internal embedding. However, TinyBERT's performance drops when we reduce the number of layers by 50%, and drops even more abruptly when we reduce the number of layers by 75% for advanced NLP tasks such as span question answering. Additionally, a separate model must be trained for each inference scenario with its distinct computational budget. In this work we present Dynamic-TinyBERT, a TinyBERT model that utilizes sequence-length reduction and Hyperparameter Optimization for enhanced inference efficiency per any computational budget. Dynamic-TinyBERT is trained only once, performing on-par with BERT and achieving an accuracy-speedup trade-off superior to any other efficient approaches (up to 3.3x with <1% loss-drop). Upon publication, the code to reproduce our work will be open-sourced.
SUTD-TrafficQA: A Question Answering Benchmark and an Efficient Network for Video Reasoning over Traffic Events
Traffic event cognition and reasoning in videos is an important task that has a wide range of applications in intelligent transportation, assisted driving, and autonomous vehicles. In this paper, we create a novel dataset, SUTD-TrafficQA (Traffic Question Answering), which takes the form of video QA based on the collected 10,080 in-the-wild videos and annotated 62,535 QA pairs, for benchmarking the cognitive capability of causal inference and event understanding models in complex traffic scenarios. Specifically, we propose 6 challenging reasoning tasks corresponding to various traffic scenarios, so as to evaluate the reasoning capability over different kinds of complex yet practical traffic events. Moreover, we propose Eclipse, a novel Efficient glimpse network via dynamic inference, in order to achieve computation-efficient and reliable video reasoning. The experiments show that our method achieves superior performance while reducing the computation cost significantly. The project page: https://github.com/SUTDCV/SUTD-TrafficQA.
The LLM Already Knows: Estimating LLM-Perceived Question Difficulty via Hidden Representations
Estimating the difficulty of input questions as perceived by large language models (LLMs) is essential for accurate performance evaluation and adaptive inference. Existing methods typically rely on repeated response sampling, auxiliary models, or fine-tuning the target model itself, which may incur substantial computational costs or compromise generality. In this paper, we propose a novel approach for difficulty estimation that leverages only the hidden representations produced by the target LLM. We model the token-level generation process as a Markov chain and define a value function to estimate the expected output quality given any hidden state. This allows for efficient and accurate difficulty estimation based solely on the initial hidden state, without generating any output tokens. Extensive experiments across both textual and multimodal tasks demonstrate that our method consistently outperforms existing baselines in difficulty estimation. Moreover, we apply our difficulty estimates to guide adaptive reasoning strategies, including Self-Consistency, Best-of-N, and Self-Refine, achieving higher inference efficiency with fewer generated tokens.
Prompt Cache: Modular Attention Reuse for Low-Latency Inference
We present Prompt Cache, an approach for accelerating inference for large language models (LLM) by reusing attention states across different LLM prompts. Many input prompts have overlapping text segments, such as system messages, prompt templates, and documents provided for context. Our key insight is that by precomputing and storing the attention states of these frequently occurring text segments on the inference server, we can efficiently reuse them when these segments appear in user prompts. Prompt Cache employs a schema to explicitly define such reusable text segments, called prompt modules. The schema ensures positional accuracy during attention state reuse and provides users with an interface to access cached states in their prompt. Using a prototype implementation, we evaluate Prompt Cache across several LLMs. We show that Prompt Cache significantly reduce latency in time-to-first-token, especially for longer prompts such as document-based question answering and recommendations. The improvements range from 8x for GPU-based inference to 60x for CPU-based inference, all while maintaining output accuracy and without the need for model parameter modifications.
Adamas: Hadamard Sparse Attention for Efficient Long-Context Inference
Large language models (LLMs) now support context windows of hundreds of thousands to millions of tokens, enabling applications such as long-document summarization, large-scale code synthesis, multi-document question answering and persistent multi-turn dialogue. However, such extended contexts exacerbate the quadratic cost of self-attention, leading to severe latency in autoregressive decoding. Existing sparse attention methods alleviate these costs but rely on heuristic patterns that struggle to recall critical key-value (KV) pairs for each query, resulting in accuracy degradation. We introduce Adamas, a lightweight yet highly accurate sparse attention mechanism designed for long-context inference. Adamas applies the Hadamard transform, bucketization and 2-bit compression to produce compact representations, and leverages Manhattan-distance estimation for efficient top-k selections. Experiments show that Adamas matches the accuracy of full attention with only a 64-token budget, achieves near-lossless performance at 128, and supports up to 8x higher sparsity than prior state-of-the-art (SOTA) methods while delivering up to 4.4x self-attention and 1.5x end-to-end speedups on 32K-length sequences. Remarkably, Adamas attains comparable or even lower perplexity than full attention, underscoring its effectiveness in maintaining accuracy under aggressive sparsity.
DiffAdapt: Difficulty-Adaptive Reasoning for Token-Efficient LLM Inference
Recent reasoning Large Language Models (LLMs) demonstrate remarkable problem-solving abilities but often generate long thinking traces whose utility is unclear. Our work aims to improve their efficiency, enabling them to reach high performance without overthinking. First, we analyze the entropy of token probabilities in reasoning traces. Across three models, we observe a consistent U-shaped entropy pattern: high entropy on easy problems despite high accuracy, low entropy on problems with medium difficulty, and high entropy on hard problems reflecting uncertainty. Specifically, we notice 22--25\% entropy reduction from easy to medium difficulty regions, suggesting an {overthinking} phenomenon on easy instances. Building on these insights, we introduce DiffAdapt, a lightweight framework that selects Easy/Normal/Hard inference strategies per question based on their difficulty and reasoning trace entropy. Each inference strategy consists of a fixed prompt, temperature and maximum token length. In contrast to existing efficiency optimization methods, our approach does not fine-tune base LLM but a small probe that classifies LLM's final hidden state, allowing inexpensive adaptation. We comprehensively evaluate our method on five models and eight benchmarks. Our method achieves comparable or improved accuracy while reducing token usage by up to 22.4\%, establishing a practical path toward compute-efficient reasoning.
XL3M: A Training-free Framework for LLM Length Extension Based on Segment-wise Inference
Length generalization failure problem, namely the large language model (LLM) fails to generalize to texts longer than its maximum training length, greatly restricts the application of LLM in the scenarios with streaming long inputs. To address this problem, the existing methods either require substantial costs or introduce precision loss. In this paper, we empirically find that the accuracy of the LLM's prediction is highly correlated to its certainty. Based on this, we propose an efficient training free framework, named XL3M (it means extra-long large language model), which enables the LLMs trained on short sequences to reason extremely long sequence without any further training or fine-tuning. Under the XL3M framework, the input context will be firstly decomposed into multiple short sub-contexts, where each sub-context contains an independent segment and a common ``question'' which is a few tokens from the end of the original context. Then XL3M gives a method to measure the relevance between each segment and the ``question'', and constructs a concise key context by splicing all the relevant segments in chronological order. The key context is further used instead of the original context to complete the inference task. Evaluations on comprehensive benchmarks show the superiority of XL3M. Using our framework, a Llama2-7B model is able to reason 20M long sequences on an 8-card Huawei Ascend 910B NPU machine with 64GB memory per card.
MMToM-QA: Multimodal Theory of Mind Question Answering
Theory of Mind (ToM), the ability to understand people's mental states, is an essential ingredient for developing machines with human-level social intelligence. Recent machine learning models, particularly large language models, seem to show some aspects of ToM understanding. However, existing ToM benchmarks use unimodal datasets - either video or text. Human ToM, on the other hand, is more than video or text understanding. People can flexibly reason about another person's mind based on conceptual representations (e.g., goals, beliefs, plans) extracted from any available data. To address this, we introduce a multimodal Theory of Mind question answering (MMToM-QA) benchmark. MMToM-QA comprehensively evaluates machine ToM both on multimodal data and on different kinds of unimodal data about a person's activity in a household environment. To engineer multimodal ToM capacity, we propose a novel method, BIP-ALM (Bayesian Inverse Planning Accelerated by Language Models). BIP-ALM extracts unified representations from multimodal data and utilizes language models for scalable Bayesian inverse planning. We conducted a systematic comparison of human performance, BIP-ALM, and state-of-the-art models, including GPT-4. The experiments demonstrate that large language models and large multimodal models still lack robust ToM capacity. BIP-ALM, on the other hand, shows promising results, by leveraging the power of both model-based mental inference and language models.
The Natural Language Decathlon: Multitask Learning as Question Answering
Deep learning has improved performance on many natural language processing (NLP) tasks individually. However, general NLP models cannot emerge within a paradigm that focuses on the particularities of a single metric, dataset, and task. We introduce the Natural Language Decathlon (decaNLP), a challenge that spans ten tasks: question answering, machine translation, summarization, natural language inference, sentiment analysis, semantic role labeling, zero-shot relation extraction, goal-oriented dialogue, semantic parsing, and commonsense pronoun resolution. We cast all tasks as question answering over a context. Furthermore, we present a new Multitask Question Answering Network (MQAN) jointly learns all tasks in decaNLP without any task-specific modules or parameters in the multitask setting. MQAN shows improvements in transfer learning for machine translation and named entity recognition, domain adaptation for sentiment analysis and natural language inference, and zero-shot capabilities for text classification. We demonstrate that the MQAN's multi-pointer-generator decoder is key to this success and performance further improves with an anti-curriculum training strategy. Though designed for decaNLP, MQAN also achieves state of the art results on the WikiSQL semantic parsing task in the single-task setting. We also release code for procuring and processing data, training and evaluating models, and reproducing all experiments for decaNLP.
On Synthesizing Data for Context Attribution in Question Answering
Question Answering (QA) accounts for a significant portion of LLM usage "in the wild". However, LLMs sometimes produce false or misleading responses, also known as "hallucinations". Therefore, grounding the generated answers in contextually provided information -- i.e., providing evidence for the generated text -- is paramount for LLMs' trustworthiness. Providing this information is the task of context attribution. In this paper, we systematically study LLM-based approaches for this task, namely we investigate (i) zero-shot inference, (ii) LLM ensembling, and (iii) fine-tuning of small LMs on synthetic data generated by larger LLMs. Our key contribution is SynQA: a novel generative strategy for synthesizing context attribution data. Given selected context sentences, an LLM generates QA pairs that are supported by these sentences. This leverages LLMs' natural strengths in text generation while ensuring clear attribution paths in the synthetic training data. We show that the attribution data synthesized via SynQA is highly effective for fine-tuning small LMs for context attribution in different QA tasks and domains. Finally, with a user study, we validate the usefulness of small LMs (fine-tuned on synthetic data from SynQA) in context attribution for QA.
Sources of Hallucination by Large Language Models on Inference Tasks
Large Language Models (LLMs) are claimed to be capable of Natural Language Inference (NLI), necessary for applied tasks like question answering and summarization. We present a series of behavioral studies on several LLM families (LLaMA, GPT-3.5, and PaLM) which probe their behavior using controlled experiments. We establish two biases originating from pretraining which predict much of their behavior, and show that these are major sources of hallucination in generative LLMs. First, memorization at the level of sentences: we show that, regardless of the premise, models falsely label NLI test samples as entailing when the hypothesis is attested in training data, and that entities are used as ``indices'' to access the memorized data. Second, statistical patterns of usage learned at the level of corpora: we further show a similar effect when the premise predicate is less frequent than that of the hypothesis in the training data, a bias following from previous studies. We demonstrate that LLMs perform significantly worse on NLI test samples which do not conform to these biases than those which do, and we offer these as valuable controls for future LLM evaluation.
Entity-Based Knowledge Conflicts in Question Answering
Knowledge-dependent tasks typically use two sources of knowledge: parametric, learned at training time, and contextual, given as a passage at inference time. To understand how models use these sources together, we formalize the problem of knowledge conflicts, where the contextual information contradicts the learned information. Analyzing the behaviour of popular models, we measure their over-reliance on memorized information (the cause of hallucinations), and uncover important factors that exacerbate this behaviour. Lastly, we propose a simple method to mitigate over-reliance on parametric knowledge, which minimizes hallucination, and improves out-of-distribution generalization by 4%-7%. Our findings demonstrate the importance for practitioners to evaluate model tendency to hallucinate rather than read, and show that our mitigation strategy encourages generalization to evolving information (i.e., time-dependent queries). To encourage these practices, we have released our framework for generating knowledge conflicts.
When Big Models Train Small Ones: Label-Free Model Parity Alignment for Efficient Visual Question Answering using Small VLMs
Large Vision-Language Models (L-VLMs) have demonstrated remarkable performance in various vision and language tasks, including visual question answering (VQA). However, their high computational cost makes them impractical for resource-constrained settings and inference-heavy applications. In contrast, Small Vision-Language Models (S-VLMs) offer efficiency but suffer from a significant performance gap compared to their larger counterparts. In this work, we introduce the Model Parity Aligner (MPA), a novel framework designed to systematically improve S-VLMs by leveraging unlabeled images and effective knowledge transfer from L-VLMs. Instead of traditional knowledge distillation methods that rely on labeled training data, MPA employs a strategic parity-based approach that precisely identifies the knowledge disparities between S-VLMs and L-VLMs, and optimizes training by targeting only these disparities. We conduct extensive experiments on four diverse VQA benchmarks, namely TextVQA, ST-VQA, ChartQA, and OKVQA, each of which requires specialized reasoning capabilities such as text recognition, chart interpretation, and commonsense and factual understanding. Our results demonstrate that MPA consistently enhances the performance of S-VLMs on all benchmarks, reducing the performance gap while maintaining computational efficiency. We make our code publicly available.
Uncertainty as Feature Gaps: Epistemic Uncertainty Quantification of LLMs in Contextual Question-Answering
Uncertainty Quantification (UQ) research has primarily focused on closed-book factual question answering (QA), while contextual QA remains unexplored, despite its importance in real-world applications. In this work, we focus on UQ for the contextual QA task and propose a theoretically grounded approach to quantify epistemic uncertainty. We begin by introducing a task-agnostic, token-level uncertainty measure defined as the cross-entropy between the predictive distribution of the given model and the unknown true distribution. By decomposing this measure, we isolate the epistemic component and approximate the true distribution by a perfectly prompted, idealized model. We then derive an upper bound for epistemic uncertainty and show that it can be interpreted as semantic feature gaps in the given model's hidden representations relative to the ideal model. We further apply this generic framework to the contextual QA task and hypothesize that three features approximate this gap: context-reliance (using the provided context rather than parametric knowledge), context comprehension (extracting relevant information from context), and honesty (avoiding intentional lies). Using a top-down interpretability approach, we extract these features by using only a small number of labeled samples and ensemble them to form a robust uncertainty score. Experiments on multiple QA benchmarks in both in-distribution and out-of-distribution settings show that our method substantially outperforms state-of-the-art unsupervised (sampling-free and sampling-based) and supervised UQ methods, achieving up to a 13-point PRR improvement while incurring a negligible inference overhead.
FSM: A Finite State Machine Based Zero-Shot Prompting Paradigm for Multi-Hop Question Answering
Large Language Models (LLMs) with chain-of-thought (COT) prompting have demonstrated impressive abilities on simple nature language inference tasks. However, they tend to perform poorly on Multi-hop Question Answering (MHQA) tasks due to several challenges, including hallucination, error propagation and limited context length. We propose a prompting method, Finite State Machine (FSM) to enhance the reasoning capabilities of LLM for complex tasks in addition to improved effectiveness and trustworthiness. Different from COT methods, FSM addresses MHQA by iteratively decomposing a question into multi-turn sub-questions, and self-correcting in time, improving the accuracy of answers in each step. Specifically, FSM addresses one sub-question at a time and decides on the next step based on its current result and state, in an automaton-like format. Experiments on benchmarks show the effectiveness of our method. Although our method performs on par with the baseline on relatively simpler datasets, it excels on challenging datasets like Musique. Moreover, this approach mitigates the hallucination phenomenon, wherein the correct final answer can be recovered despite errors in intermediate reasoning. Furthermore, our method improves LLMs' ability to follow specified output format requirements, significantly reducing the difficulty of answer interpretation and the need for reformatting.
$Q^{2}$: Evaluating Factual Consistency in Knowledge-Grounded Dialogues via Question Generation and Question Answering
Neural knowledge-grounded generative models for dialogue often produce content that is factually inconsistent with the knowledge they rely on, making them unreliable and limiting their applicability. Inspired by recent work on evaluating factual consistency in abstractive summarization, we propose an automatic evaluation metric for factual consistency in knowledge-grounded dialogue using automatic question generation and question answering. Our metric, denoted Q^2, compares answer spans using natural language inference (NLI), instead of token-based matching as done in previous work. To foster proper evaluation, we curate a novel dataset of dialogue system outputs for the Wizard-of-Wikipedia dataset, manually annotated for factual consistency. We perform a thorough meta-evaluation of Q^2 against other metrics using this dataset and two others, where it consistently shows higher correlation with human judgements.
Is There No Such Thing as a Bad Question? H4R: HalluciBot For Ratiocination, Rewriting, Ranking, and Routing
Hallucination continues to be one of the most critical challenges in the institutional adoption journey of Large Language Models (LLMs). While prior studies have primarily focused on the post-generation analysis and refinement of outputs, this paper centers on the effectiveness of queries in eliciting accurate responses from LLMs. We present HalluciBot, a model that estimates the query's propensity to hallucinate before generation, without invoking any LLMs during inference. HalluciBot can serve as a proxy reward model for query rewriting, offering a general framework to estimate query quality based on accuracy and consensus. In essence, HalluciBot investigates how poorly constructed queries can lead to erroneous outputs - moreover, by employing query rewriting guided by HalluciBot's empirical estimates, we demonstrate that 95.7% output accuracy can be achieved for Multiple Choice questions. The training procedure for HalluciBot consists of perturbing 369,837 queries n times, employing n+1 independent LLM agents, sampling an output from each query, conducting a Multi-Agent Monte Carlo simulation on the sampled outputs, and training an encoder classifier. The idea of perturbation is the outcome of our ablation studies that measures the increase in output diversity (+12.5 agreement spread) by perturbing a query in lexically different but semantically similar ways. Therefore, HalluciBot paves the way to ratiocinate (76.0% test F1 score, 46.6% in saved computation on hallucinatory queries), rewrite (+30.2% positive class transition from hallucinatory to non-hallucinatory), rank (+50.6% positive class transition from hallucinatory to non-hallucinatory), and route queries to effective pipelines.
A Comprehensive Evaluation of GPT-4V on Knowledge-Intensive Visual Question Answering
The emergence of multimodal large models (MLMs) has significantly advanced the field of visual understanding, offering remarkable capabilities in the realm of visual question answering (VQA). Yet, the true challenge lies in the domain of knowledge-intensive VQA tasks, which necessitate not just recognition of visual elements, but also a deep comprehension of the visual information in conjunction with a vast repository of learned knowledge. To uncover such capabilities of MLMs, particularly the newly introduced GPT-4V and Gemini, we provide an in-depth evaluation from three perspectives: 1) Commonsense Knowledge, which assesses how well models can understand visual cues and connect to general knowledge; 2) Fine-grained World Knowledge, which tests the model's skill in reasoning out specific knowledge from images, showcasing their proficiency across various specialized fields; 3) Comprehensive Knowledge with Decision-making Rationales, which examines model's capability to provide logical explanations for its inference, facilitating a deeper analysis from the interpretability perspective. Additionally, we utilize a visual knowledge-enhanced training strategy and multimodal retrieval-augmented generation approach to enhance MLMs, highlighting the future need for advancements in this research direction. Extensive experiments indicate that: a) GPT-4V demonstrates enhanced explanation generation when using composite images as few-shots; b) GPT-4V and other MLMs produce severe hallucinations when dealing with world knowledge; c) Visual knowledge enhanced training and prompting technicals present potential to improve performance. Codes: https://github.com/HITsz-TMG/Cognitive-Visual-Language-Mapper
Multi-Frame, Lightweight & Efficient Vision-Language Models for Question Answering in Autonomous Driving
Vision-Language Models (VLMs) and Multi-Modal Language models (MMLMs) have become prominent in autonomous driving research, as these models can provide interpretable textual reasoning and responses for end-to-end autonomous driving safety tasks using traffic scene images and other data modalities. However, current approaches to these systems use expensive large language model (LLM) backbones and image encoders, making such systems unsuitable for real-time autonomous driving systems where tight memory constraints exist and fast inference time is necessary. To address these previous issues, we develop EM-VLM4AD, an efficient, lightweight, multi-frame vision language model which performs Visual Question Answering for autonomous driving. In comparison to previous approaches, EM-VLM4AD requires at least 10 times less memory and floating point operations, while also achieving higher CIDEr and ROUGE-L scores than the existing baseline on the DriveLM dataset. EM-VLM4AD also exhibits the ability to extract relevant information from traffic views related to prompts and can answer questions for various autonomous driving subtasks. We release our code to train and evaluate our model at https://github.com/akshaygopalkr/EM-VLM4AD.
RocketQA: An Optimized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering
In open-domain question answering, dense passage retrieval has become a new paradigm to retrieve relevant passages for finding answers. Typically, the dual-encoder architecture is adopted to learn dense representations of questions and passages for semantic matching. However, it is difficult to effectively train a dual-encoder due to the challenges including the discrepancy between training and inference, the existence of unlabeled positives and limited training data. To address these challenges, we propose an optimized training approach, called RocketQA, to improving dense passage retrieval. We make three major technical contributions in RocketQA, namely cross-batch negatives, denoised hard negatives and data augmentation. The experiment results show that RocketQA significantly outperforms previous state-of-the-art models on both MSMARCO and Natural Questions. We also conduct extensive experiments to examine the effectiveness of the three strategies in RocketQA. Besides, we demonstrate that the performance of end-to-end QA can be improved based on our RocketQA retriever.
Reasoning is All You Need for Video Generalization: A Counterfactual Benchmark with Sub-question Evaluation
Counterfactual reasoning is crucial for robust video understanding but remains underexplored in existing multimodal benchmarks. In this paper, we introduce COVER (\underline{CO}unterfactual \underline{V}id\underline{E}o \underline{R}easoning), a multidimensional multimodal benchmark that systematically evaluates MLLMs across the abstract-concrete and perception-cognition dimensions. Beyond prior multimodal benchmarks, COVER decomposes complex queries into structured sub-questions, enabling fine-grained reasoning analysis. Experiments on commercial and open-source models reveal a strong correlation between sub-question accuracy and counterfactual reasoning performance, highlighting the role of structured inference in video understanding. Furthermore, our results suggest a key insight: enhancing the reasoning capability of models is essential for improving the robustness of video understanding. COVER establishes a new standard for assessing MLLMs' logical reasoning abilities in dynamic environments. Our work is available at https://github.com/gongyifan-hash/COVER-Benchmark.
SG-FSM: A Self-Guiding Zero-Shot Prompting Paradigm for Multi-Hop Question Answering Based on Finite State Machine
Large Language Models with chain-of-thought prompting, such as OpenAI-o1, have shown impressive capabilities in natural language inference tasks. However, Multi-hop Question Answering (MHQA) remains challenging for many existing models due to issues like hallucination, error propagation, and limited context length. To address these challenges and enhance LLMs' performance on MHQA, we propose the Self-Guiding prompting Finite State Machine (SG-FSM), designed to strengthen multi-hop reasoning abilities. Unlike traditional chain-of-thought methods, SG-FSM tackles MHQA by iteratively breaking down complex questions into sub-questions, correcting itself to improve accuracy. It processes one sub-question at a time, dynamically deciding the next step based on the current context and results, functioning much like an automaton. Experiments across various benchmarks demonstrate the effectiveness of our approach, outperforming strong baselines on challenging datasets such as Musique. SG-FSM reduces hallucination, enabling recovery of the correct final answer despite intermediate errors. It also improves adherence to specified output formats, simplifying evaluation significantly.
Enhancing Large Language Models with Domain-specific Retrieval Augment Generation: A Case Study on Long-form Consumer Health Question Answering in Ophthalmology
Despite the potential of Large Language Models (LLMs) in medicine, they may generate responses lacking supporting evidence or based on hallucinated evidence. While Retrieval Augment Generation (RAG) is popular to address this issue, few studies implemented and evaluated RAG in downstream domain-specific applications. We developed a RAG pipeline with 70,000 ophthalmology-specific documents that retrieve relevant documents to augment LLMs during inference time. In a case study on long-form consumer health questions, we systematically evaluated the responses including over 500 references of LLMs with and without RAG on 100 questions with 10 healthcare professionals. The evaluation focuses on factuality of evidence, selection and ranking of evidence, attribution of evidence, and answer accuracy and completeness. LLMs without RAG provided 252 references in total. Of which, 45.3% hallucinated, 34.1% consisted of minor errors, and 20.6% were correct. In contrast, LLMs with RAG significantly improved accuracy (54.5% being correct) and reduced error rates (18.8% with minor hallucinations and 26.7% with errors). 62.5% of the top 10 documents retrieved by RAG were selected as the top references in the LLM response, with an average ranking of 4.9. The use of RAG also improved evidence attribution (increasing from 1.85 to 2.49 on a 5-point scale, P<0.001), albeit with slight decreases in accuracy (from 3.52 to 3.23, P=0.03) and completeness (from 3.47 to 3.27, P=0.17). The results demonstrate that LLMs frequently exhibited hallucinated and erroneous evidence in the responses, raising concerns for downstream applications in the medical domain. RAG substantially reduced the proportion of such evidence but encountered challenges.
VLAP: Efficient Video-Language Alignment via Frame Prompting and Distilling for Video Question Answering
In this work, we propose an efficient Video-Language Alignment via Frame-Prompting and Distilling (VLAP) network. Our VLAP model addresses both efficient frame sampling and effective cross-modal alignment in a unified way. In our VLAP network, we design a new learnable question-aware Frame-Prompter together with a new cross-modal distillation (QFormer-Distiller) module. Pre-trained large image-language models have shown promising results on problems such as visual question answering. However, how to efficiently and effectively sample image frames when adapting pre-trained large image-language model to video-language alignment is still the major challenge. Compared with prior work, our VLAP model demonstrates the capability of selecting key frames with critical contents, thus improving the video-language alignment accuracy while reducing the inference latency (+3.3% on NExT-QA Temporal with 3.0X speed up). Overall, our VLAP network outperforms (e.g. +4.6% on STAR Interaction and +2.2% on STAR average with 3.0X speed up, ours 2-frames out-perform SeViLA 4-frames on VLEP with 4.2X speed up) the state-of-the-art methods on the video question-answering benchmarks.
FiE: Building a Global Probability Space by Leveraging Early Fusion in Encoder for Open-Domain Question Answering
Generative models have recently started to outperform extractive models in Open Domain Question Answering, largely by leveraging their decoder to attend over multiple encoded passages and combining their information. However, generative models tend to be larger than extractive models due to the need for a decoder, run slower during inference due to auto-regressive decoder beam search, and their generated output often suffers from hallucinations. We propose to extend transformer encoders with the ability to fuse information from multiple passages, using global representation to provide cross-sample attention over all tokens across samples. Furthermore, we propose an alternative answer span probability calculation to better aggregate answer scores in the global space of all samples. Using our proposed method, we outperform the current state-of-the-art method by 2.5 Exact Match score on the Natural Question dataset while using only 25% of parameters and 35% of the latency during inference, and 4.4 Exact Match on WebQuestions dataset. When coupled with synthetic data augmentation, we outperform larger models on the TriviaQA dataset as well. The latency and parameter savings of our method make it particularly attractive for open-domain question answering, as these models are often compute-intensive.
Asking It All: Generating Contextualized Questions for any Semantic Role
Asking questions about a situation is an inherent step towards understanding it. To this end, we introduce the task of role question generation, which, given a predicate mention and a passage, requires producing a set of questions asking about all possible semantic roles of the predicate. We develop a two-stage model for this task, which first produces a context-independent question prototype for each role and then revises it to be contextually appropriate for the passage. Unlike most existing approaches to question generation, our approach does not require conditioning on existing answers in the text. Instead, we condition on the type of information to inquire about, regardless of whether the answer appears explicitly in the text, could be inferred from it, or should be sought elsewhere. Our evaluation demonstrates that we generate diverse and well-formed questions for a large, broad-coverage ontology of predicates and roles.
STOC-TOT: Stochastic Tree-of-Thought with Constrained Decoding for Complex Reasoning in Multi-Hop Question Answering
Multi-hop question answering (MHQA) requires a model to retrieve and integrate information from multiple passages to answer a complex question. Recent systems leverage the power of large language models and integrate evidence retrieval with reasoning prompts (e.g., chain-of-thought reasoning) for the MHQA task. However, the complexities in the question types (bridge v.s. comparison questions) and the reasoning types (sequential v.s. parallel reasonings) require more novel and fine-grained prompting methods to enhance the performance of MHQA under the zero-shot setting. In this paper, we propose STOC-TOT, a stochastic tree-of-thought reasoning prompting method with constrained decoding for MHQA and conduct a detailed comparison with other reasoning prompts on different question types and reasoning types. Specifically, we construct a tree-like reasoning structure by prompting the model to break down the original question into smaller sub-questions to form different reasoning paths. In addition, we prompt the model to provide a probability estimation for each reasoning path at each reasoning step. At answer time, we conduct constrained decoding on the model to generate more grounded answers and reduce hallucination. Experiments comparing STOC-TOT with two MHQA datasets and five large language models showed that our framework outperforms other reasoning prompts by a significant margin.
CREPE: Open-Domain Question Answering with False Presuppositions
Information seeking users often pose questions with false presuppositions, especially when asking about unfamiliar topics. Most existing question answering (QA) datasets, in contrast, assume all questions have well defined answers. We introduce CREPE, a QA dataset containing a natural distribution of presupposition failures from online information-seeking forums. We find that 25% of questions contain false presuppositions, and provide annotations for these presuppositions and their corrections. Through extensive baseline experiments, we show that adaptations of existing open-domain QA models can find presuppositions moderately well, but struggle when predicting whether a presupposition is factually correct. This is in large part due to difficulty in retrieving relevant evidence passages from a large text corpus. CREPE provides a benchmark to study question answering in the wild, and our analyses provide avenues for future work in better modeling and further studying the task.
How FaR Are Large Language Models From Agents with Theory-of-Mind?
"Thinking is for Doing." Humans can infer other people's mental states from observations--an ability called Theory-of-Mind (ToM)--and subsequently act pragmatically on those inferences. Existing question answering benchmarks such as ToMi ask models questions to make inferences about beliefs of characters in a story, but do not test whether models can then use these inferences to guide their actions. We propose a new evaluation paradigm for large language models (LLMs): Thinking for Doing (T4D), which requires models to connect inferences about others' mental states to actions in social scenarios. Experiments on T4D demonstrate that LLMs such as GPT-4 and PaLM 2 seemingly excel at tracking characters' beliefs in stories, but they struggle to translate this capability into strategic action. Our analysis reveals the core challenge for LLMs lies in identifying the implicit inferences about mental states without being explicitly asked about as in ToMi, that lead to choosing the correct action in T4D. To bridge this gap, we introduce a zero-shot prompting framework, Foresee and Reflect (FaR), which provides a reasoning structure that encourages LLMs to anticipate future challenges and reason about potential actions. FaR boosts GPT-4's performance from 50% to 71% on T4D, outperforming other prompting methods such as Chain-of-Thought and Self-Ask. Moreover, FaR generalizes to diverse out-of-distribution story structures and scenarios that also require ToM inferences to choose an action, consistently outperforming other methods including few-shot in-context learning.
Twitter Data Analysis: Izmir Earthquake Case
T\"urkiye is located on a fault line; earthquakes often occur on a large and small scale. There is a need for effective solutions for gathering current information during disasters. We can use social media to get insight into public opinion. This insight can be used in public relations and disaster management. In this study, Twitter posts on Izmir Earthquake that took place on October 2020 are analyzed. We question if this analysis can be used to make social inferences on time. Data mining and natural language processing (NLP) methods are used for this analysis. NLP is used for sentiment analysis and topic modelling. The latent Dirichlet Allocation (LDA) algorithm is used for topic modelling. We used the Bidirectional Encoder Representations from Transformers (BERT) model working with Transformers architecture for sentiment analysis. It is shown that the users shared their goodwill wishes and aimed to contribute to the initiated aid activities after the earthquake. The users desired to make their voices heard by competent institutions and organizations. The proposed methods work effectively. Future studies are also discussed.
Transforming Questions and Documents for Semantically Aligned Retrieval-Augmented Generation
We introduce a novel retrieval-augmented generation (RAG) framework tailored for multihop question answering. First, our system uses large language model (LLM) to decompose complex multihop questions into a sequence of single-hop subquestions that guide document retrieval. This decomposition mitigates the ambiguity inherent in multi-hop queries by clearly targeting distinct knowledge facets. Second, instead of embedding raw or chunked documents directly, we generate answerable questions from each document chunk using Qwen3-8B, embed these generated questions, and retrieve relevant chunks via question-question embedding similarity. During inference, the retrieved chunks are then fed along with the original question into the RAG pipeline. We evaluate on three multihop question datasets (MuSiQue, 2WikiMultiHopQa, HotpotQA) from LongBench. Our method improves RAG performacne compared to baseline systems. Our contributions highlight the benefits of using answerable-question embeddings for RAG, and the effectiveness of LLM-based query decomposition for multihop scenarios.
SLUE Phase-2: A Benchmark Suite of Diverse Spoken Language Understanding Tasks
Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In particular, there are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers. Recent work has begun to introduce such benchmark datasets for several tasks. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. We follow the blueprint of the Spoken Language Understanding Evaluation (SLUE) benchmark suite. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will be publishing for each task (i) annotations for a relatively small fine-tuning set, (ii) annotated development and test sets, and (iii) baseline models for easy reproducibility and comparisons. In this work, we present the details of data collection and annotation and the performance of the baseline models. We also perform sensitivity analysis of pipeline models' performance (speech recognizer + text model) to the speech recognition accuracy, using more than 20 state-of-the-art speech recognition models.
Constructing A Multi-hop QA Dataset for Comprehensive Evaluation of Reasoning Steps
A multi-hop question answering (QA) dataset aims to test reasoning and inference skills by requiring a model to read multiple paragraphs to answer a given question. However, current datasets do not provide a complete explanation for the reasoning process from the question to the answer. Further, previous studies revealed that many examples in existing multi-hop datasets do not require multi-hop reasoning to answer a question. In this study, we present a new multi-hop QA dataset, called 2WikiMultiHopQA, which uses structured and unstructured data. In our dataset, we introduce the evidence information containing a reasoning path for multi-hop questions. The evidence information has two benefits: (i) providing a comprehensive explanation for predictions and (ii) evaluating the reasoning skills of a model. We carefully design a pipeline and a set of templates when generating a question-answer pair that guarantees the multi-hop steps and the quality of the questions. We also exploit the structured format in Wikidata and use logical rules to create questions that are natural but still require multi-hop reasoning. Through experiments, we demonstrate that our dataset is challenging for multi-hop models and it ensures that multi-hop reasoning is required.
SCROLLS: Standardized CompaRison Over Long Language Sequences
NLP benchmarks have largely focused on short texts, such as sentences and paragraphs, even though long texts comprise a considerable amount of natural language in the wild. We introduce SCROLLS, a suite of tasks that require reasoning over long texts. We examine existing long-text datasets, and handpick ones where the text is naturally long, while prioritizing tasks that involve synthesizing information across the input. SCROLLS contains summarization, question answering, and natural language inference tasks, covering multiple domains, including literature, science, business, and entertainment. Initial baselines, including Longformer Encoder-Decoder, indicate that there is ample room for improvement on SCROLLS. We make all datasets available in a unified text-to-text format and host a live leaderboard to facilitate research on model architecture and pretraining methods.
"Give Me BF16 or Give Me Death"? Accuracy-Performance Trade-Offs in LLM Quantization
Despite the popularity of large language model (LLM) quantization for inference acceleration, significant uncertainty remains regarding the accuracy-performance trade-offs associated with various quantization formats. We present a comprehensive empirical study of quantized accuracy, evaluating popular quantization formats (FP8, INT8, INT4) across academic benchmarks and real-world tasks, on the entire Llama-3.1 model family. Additionally, our study examines the difference in text generated by quantized models versus their uncompressed counterparts. Beyond benchmarks, we also present a couple of quantization improvements which allowed us to obtain state-of-the-art accuracy recovery results. Our investigation, encompassing over 500,000 individual evaluations, yields several key findings: (1) FP8 weight and activation quantization (W8A8-FP) is lossless across all model scales, (2) INT8 weight and activation quantization (W8A8-INT), when properly tuned, incurs surprisingly low 1-3% accuracy degradation, and (3) INT4 weight-only quantization (W4A16-INT) is competitive with 8-bit integer weight and activation quantization. To address the question of the "best" format for a given deployment environment, we conduct inference performance analysis using the popular open-source vLLM framework on various GPU architectures. We find that W4A16 offers the best cost-efficiency for synchronous deployments, and for asynchronous deployment on mid-tier GPUs. At the same time, W8A8 formats excel in asynchronous "continuous batching" deployment of mid- and large-size models on high-end GPUs. Our results provide a set of practical guidelines for deploying quantized LLMs across scales and performance requirements.
First Try Matters: Revisiting the Role of Reflection in Reasoning Models
Large language models have recently demonstrated significant gains in reasoning ability, often attributed to their capacity to generate longer chains of thought and engage in reflective reasoning. However, the contribution of reflections to performance improvement remains unclear. In this paper, we systematically analyze the rollouts of eight reasoning models on five mathematical datasets. We focus on reflective behaviours where the model has already produced an answer but continues reflecting before finalizing its output. Our analysis reveals that reflections are predominantly confirmatory and rarely alter the model's initial answer, a pattern consistent across models and datasets. To understand the role of reflections in training, we construct supervised fine-tuning (SFT) datasets with varying amounts of reflection steps. We observe that training models on rollouts with more reflection steps primarily enhances first-answer correctness rather than the ability to correct initially wrong answers through reflections. This motivates us to propose a question-aware early-stopping method that enhances inference-time token efficiency by stopping the reasoning process once a few plausible candidate answers are generated, thereby reducing unnecessary reflection steps. Motivated by this, we further propose to dynamically truncate the reflections after a candidate answer has appeared during generation, which reduces reasoning tokens by 24.5% across five mathematical datasets, within a 2.9% drop in accuracy.
BiomedSQL: Text-to-SQL for Scientific Reasoning on Biomedical Knowledge Bases
Biomedical researchers increasingly rely on large-scale structured databases for complex analytical tasks. However, current text-to-SQL systems often struggle to map qualitative scientific questions into executable SQL, particularly when implicit domain reasoning is required. We introduce BiomedSQL, the first benchmark explicitly designed to evaluate scientific reasoning in text-to-SQL generation over a real-world biomedical knowledge base. BiomedSQL comprises 68,000 question/SQL query/answer triples grounded in a harmonized BigQuery knowledge base that integrates gene-disease associations, causal inference from omics data, and drug approval records. Each question requires models to infer domain-specific criteria, such as genome-wide significance thresholds, effect directionality, or trial phase filtering, rather than rely on syntactic translation alone. We evaluate a range of open- and closed-source LLMs across prompting strategies and interaction paradigms. Our results reveal a substantial performance gap: GPT-o3-mini achieves 59.0% execution accuracy, while our custom multi-step agent, BMSQL, reaches 62.6%, both well below the expert baseline of 90.0%. BiomedSQL provides a new foundation for advancing text-to-SQL systems capable of supporting scientific discovery through robust reasoning over structured biomedical knowledge bases. Our dataset is publicly available at https://huggingface.co/datasets/NIH-CARD/BiomedSQL, and our code is open-source at https://github.com/NIH-CARD/biomedsql.
RAG-R1 : Incentivize the Search and Reasoning Capabilities of LLMs through Multi-query Parallelism
Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, while LLMs remain prone to generating hallucinated or outdated responses due to their static internal knowledge. Recent advancements in Retrieval-Augmented Generation (RAG) methods have aimed to enhance models' search and reasoning capabilities through reinforcement learning (RL). Although these methods demonstrate promising results, they face challenges in training stability and encounter issues such as substantial inference time and restricted capabilities due to reliance on single-query mode. In this paper, we propose RAG-R1, a novel training framework designed to enable LLMs to adaptively leverage internal and external knowledge during the reasoning process. We further expand the generation and retrieval processes within the framework from single-query mode to multi-query parallelism, with the aim of reducing inference time and enhancing the model's capabilities. Extensive experiments on seven question-answering benchmarks demonstrate that our method outperforms the strongest baseline by up to 13.2% and decreases inference time by 11.1%.
Data Distribution Bottlenecks in Grounding Language Models to Knowledge Bases
Language models (LMs) have already demonstrated remarkable abilities in understanding and generating both natural and formal language. Despite these advances, their integration with real-world environments such as large-scale knowledge bases (KBs) remains an underdeveloped area, affecting applications such as semantic parsing and indulging in "hallucinated" information. This paper is an experimental investigation aimed at uncovering the robustness challenges that LMs encounter when tasked with knowledge base question answering (KBQA). The investigation covers scenarios with inconsistent data distribution between training and inference, such as generalization to unseen domains, adaptation to various language variations, and transferability across different datasets. Our comprehensive experiments reveal that even when employed with our proposed data augmentation techniques, advanced small and large language models exhibit poor performance in various dimensions. While the LM is a promising technology, the robustness of the current form in dealing with complex environments is fragile and of limited practicality because of the data distribution issue. This calls for future research on data collection and LM learning paradims.
Lifting the Curse of Multilinguality by Pre-training Modular Transformers
Multilingual pre-trained models are known to suffer from the curse of multilinguality, which causes per-language performance to drop as they cover more languages. We address this issue by introducing language-specific modules, which allows us to grow the total capacity of the model, while keeping the total number of trainable parameters per language constant. In contrast with prior work that learns language-specific components post-hoc, we pre-train the modules of our Cross-lingual Modular (X-Mod) models from the start. Our experiments on natural language inference, named entity recognition and question answering show that our approach not only mitigates the negative interference between languages, but also enables positive transfer, resulting in improved monolingual and cross-lingual performance. Furthermore, our approach enables adding languages post-hoc with no measurable drop in performance, no longer limiting the model usage to the set of pre-trained languages.
Tighter Variational Bounds are Not Necessarily Better
We provide theoretical and empirical evidence that using tighter evidence lower bounds (ELBOs) can be detrimental to the process of learning an inference network by reducing the signal-to-noise ratio of the gradient estimator. Our results call into question common implicit assumptions that tighter ELBOs are better variational objectives for simultaneous model learning and inference amortization schemes. Based on our insights, we introduce three new algorithms: the partially importance weighted auto-encoder (PIWAE), the multiply importance weighted auto-encoder (MIWAE), and the combination importance weighted auto-encoder (CIWAE), each of which includes the standard importance weighted auto-encoder (IWAE) as a special case. We show that each can deliver improvements over IWAE, even when performance is measured by the IWAE target itself. Furthermore, our results suggest that PIWAE may be able to deliver simultaneous improvements in the training of both the inference and generative networks.
Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters
Enabling LLMs to improve their outputs by using more test-time computation is a critical step towards building generally self-improving agents that can operate on open-ended natural language. In this paper, we study the scaling of inference-time computation in LLMs, with a focus on answering the question: if an LLM is allowed to use a fixed but non-trivial amount of inference-time compute, how much can it improve its performance on a challenging prompt? Answering this question has implications not only on the achievable performance of LLMs, but also on the future of LLM pretraining and how one should tradeoff inference-time and pre-training compute. Despite its importance, little research attempted to understand the scaling behaviors of various test-time inference methods. Moreover, current work largely provides negative results for a number of these strategies. In this work, we analyze two primary mechanisms to scale test-time computation: (1) searching against dense, process-based verifier reward models; and (2) updating the model's distribution over a response adaptively, given the prompt at test time. We find that in both cases, the effectiveness of different approaches to scaling test-time compute critically varies depending on the difficulty of the prompt. This observation motivates applying a "compute-optimal" scaling strategy, which acts to most effectively allocate test-time compute adaptively per prompt. Using this compute-optimal strategy, we can improve the efficiency of test-time compute scaling by more than 4x compared to a best-of-N baseline. Additionally, in a FLOPs-matched evaluation, we find that on problems where a smaller base model attains somewhat non-trivial success rates, test-time compute can be used to outperform a 14x larger model.
Hidden in Plain Sight: Probing Implicit Reasoning in Multimodal Language Models
Multimodal large language models (MLLMs) are increasingly deployed in open-ended, real-world environments where inputs are messy, underspecified, and not always trustworthy. Unlike curated benchmarks, these settings frequently involve instructions that refer to missing objects or contradictory facts, rely on ambiguous references, or request infeasible actions. In such cases, success hinges not on task execution alone, but on a model's ability to detect when something is silently wrong. This paper presents a systematic analysis of how current MLLMs handle such implicit reasoning scenarios: cases where the flaw is not explicitly stated but must be inferred from context. Using a curated diagnostic suite spanning four categories of real-world failure modes, we evaluate six MLLMs, including o3 and GPT-4o, and find that models frequently fail to surface hidden issues, even when they possess the necessary perceptual and reasoning skills. Explicit prompting reveals that the underlying capabilities exist but are often suppressed in favor of user compliance. We further show that simple inference-time interventions, such as cautious persona prompting and, in particular, requiring a clarifying question, can dramatically recover performance. Our findings highlight a persistent gap between reasoning competence and behavioral compliance in current MLLMs and suggest practical strategies for making these models more trustworthy in underconstrained environments.
Learning Dense Representations of Phrases at Scale
Open-domain question answering can be reformulated as a phrase retrieval problem, without the need for processing documents on-demand during inference (Seo et al., 2019). However, current phrase retrieval models heavily depend on sparse representations and still underperform retriever-reader approaches. In this work, we show for the first time that we can learn dense representations of phrases alone that achieve much stronger performance in open-domain QA. We present an effective method to learn phrase representations from the supervision of reading comprehension tasks, coupled with novel negative sampling methods. We also propose a query-side fine-tuning strategy, which can support transfer learning and reduce the discrepancy between training and inference. On five popular open-domain QA datasets, our model DensePhrases improves over previous phrase retrieval models by 15%-25% absolute accuracy and matches the performance of state-of-the-art retriever-reader models. Our model is easy to parallelize due to pure dense representations and processes more than 10 questions per second on CPUs. Finally, we directly use our pre-indexed dense phrase representations for two slot filling tasks, showing the promise of utilizing DensePhrases as a dense knowledge base for downstream tasks.
EL4NER: Ensemble Learning for Named Entity Recognition via Multiple Small-Parameter Large Language Models
In-Context Learning (ICL) technique based on Large Language Models (LLMs) has gained prominence in Named Entity Recognition (NER) tasks for its lower computing resource consumption, less manual labeling overhead, and stronger generalizability. Nevertheless, most ICL-based NER methods depend on large-parameter LLMs: the open-source models demand substantial computational resources for deployment and inference, while the closed-source ones incur high API costs, raise data-privacy concerns, and hinder community collaboration. To address this question, we propose an Ensemble Learning Method for Named Entity Recognition (EL4NER), which aims at aggregating the ICL outputs of multiple open-source, small-parameter LLMs to enhance overall performance in NER tasks at less deployment and inference cost. Specifically, our method comprises three key components. First, we design a task decomposition-based pipeline that facilitates deep, multi-stage ensemble learning. Second, we introduce a novel span-level sentence similarity algorithm to establish an ICL demonstration retrieval mechanism better suited for NER tasks. Third, we incorporate a self-validation mechanism to mitigate the noise introduced during the ensemble process. We evaluated EL4NER on multiple widely adopted NER datasets from diverse domains. Our experimental results indicate that EL4NER surpasses most closed-source, large-parameter LLM-based methods at a lower parameter cost and even attains state-of-the-art (SOTA) performance among ICL-based methods on certain datasets. These results show the parameter efficiency of EL4NER and underscore the feasibility of employing open-source, small-parameter LLMs within the ICL paradigm for NER tasks.
GMSA: Enhancing Context Compression via Group Merging and Layer Semantic Alignment
Large language models (LLMs) have achieved impressive performance in a variety of natural language processing (NLP) tasks. However, when applied to long-context scenarios, they face two challenges, i.e., low computational efficiency and much redundant information. This paper introduces GMSA, a context compression framework based on the encoder-decoder architecture, which addresses these challenges by reducing input sequence length and redundant information. Structurally, GMSA has two key components: Group Merging and Layer Semantic Alignment (LSA). Group merging is used to effectively and efficiently extract summary vectors from the original context. Layer semantic alignment, on the other hand, aligns the high-level summary vectors with the low-level primary input semantics, thus bridging the semantic gap between different layers. In the training process, GMSA first learns soft tokens that contain complete semantics through autoencoder training. To furtherly adapt GMSA to downstream tasks, we propose Knowledge Extraction Fine-tuning (KEFT) to extract knowledge from the soft tokens for downstream tasks. We train GMSA by randomly sampling the compression rate for each sample in the dataset. Under this condition, GMSA not only significantly outperforms the traditional compression paradigm in context restoration but also achieves stable and significantly faster convergence with only a few encoder layers. In downstream question-answering (QA) tasks, GMSA can achieve approximately a 2x speedup in end-to-end inference while outperforming both the original input prompts and various state-of-the-art (SOTA) methods by a large margin.
Probabilistic Emulation of a Global Climate Model with Spherical DYffusion
Data-driven deep learning models are transforming global weather forecasting. It is an open question if this success can extend to climate modeling, where the complexity of the data and long inference rollouts pose significant challenges. Here, we present the first conditional generative model that produces accurate and physically consistent global climate ensemble simulations by emulating a coarse version of the United States' primary operational global forecast model, FV3GFS. Our model integrates the dynamics-informed diffusion framework (DYffusion) with the Spherical Fourier Neural Operator (SFNO) architecture, enabling stable 100-year simulations at 6-hourly timesteps while maintaining low computational overhead compared to single-step deterministic baselines. The model achieves near gold-standard performance for climate model emulation, outperforming existing approaches and demonstrating promising ensemble skill. This work represents a significant advance towards efficient, data-driven climate simulations that can enhance our understanding of the climate system and inform adaptation strategies.
Towards General Natural Language Understanding with Probabilistic Worldbuilding
We introduce the Probabilistic Worldbuilding Model (PWM), a new fully-symbolic Bayesian model of semantic parsing and reasoning, as a first step in a research program toward more domain- and task-general NLU and AI. Humans create internal mental models of their observations which greatly aid in their ability to understand and reason about a large variety of problems. In PWM, the meanings of sentences, acquired facts about the world, and intermediate steps in reasoning are all expressed in a human-readable formal language, with the design goal of interpretability. PWM is Bayesian, designed specifically to be able to generalize to new domains and new tasks. We derive and implement an inference algorithm that reads sentences by parsing and abducing updates to its latent world model that capture the semantics of those sentences, and evaluate it on two out-of-domain question-answering datasets: (1) ProofWriter and (2) a new dataset we call FictionalGeoQA, designed to be more representative of real language but still simple enough to focus on evaluating reasoning ability, while being robust against heuristics. Our method outperforms baselines on both, thereby demonstrating its value as a proof-of-concept.
BERTs of a feather do not generalize together: Large variability in generalization across models with similar test set performance
If the same neural network architecture is trained multiple times on the same dataset, will it make similar linguistic generalizations across runs? To study this question, we fine-tuned 100 instances of BERT on the Multi-genre Natural Language Inference (MNLI) dataset and evaluated them on the HANS dataset, which evaluates syntactic generalization in natural language inference. On the MNLI development set, the behavior of all instances was remarkably consistent, with accuracy ranging between 83.6% and 84.8%. In stark contrast, the same models varied widely in their generalization performance. For example, on the simple case of subject-object swap (e.g., determining that "the doctor visited the lawyer" does not entail "the lawyer visited the doctor"), accuracy ranged from 0.00% to 66.2%. Such variation is likely due to the presence of many local minima that are equally attractive to a low-bias learner such as a neural network; decreasing the variability may therefore require models with stronger inductive biases.
The Unreliability of Explanations in Few-shot Prompting for Textual Reasoning
Does prompting a large language model (LLM) like GPT-3 with explanations improve in-context learning? We study this question on two NLP tasks that involve reasoning over text, namely question answering and natural language inference. We test the performance of four LLMs on three textual reasoning datasets using prompts that include explanations in multiple different styles. For these tasks, we find that including explanations in the prompts for OPT, GPT-3 (davinci), and InstructGPT (text-davinci-001) only yields small to moderate accuracy improvements over standard few-show learning. However, text-davinci-002 is able to benefit more substantially. We further show that explanations generated by the LLMs may not entail the models' predictions nor be factually grounded in the input, even on simple tasks with extractive explanations. However, these flawed explanations can still be useful as a way to verify LLMs' predictions post-hoc. Through analysis in our three settings, we show that explanations judged by humans to be good--logically consistent with the input and the prediction--more likely cooccur with accurate predictions. Following these observations, we train calibrators using automatically extracted scores that assess the reliability of explanations, allowing us to improve performance post-hoc across all of our datasets.
LM2: Large Memory Models
This paper introduces the Large Memory Model (LM2), a decoder-only Transformer architecture enhanced with an auxiliary memory module that aims to address the limitations of standard Transformers in multi-step reasoning, relational argumentation, and synthesizing information distributed over long contexts. The proposed LM2 incorporates a memory module that acts as a contextual representation repository, interacting with input tokens via cross attention and updating through gating mechanisms. To preserve the Transformers general-purpose capabilities, LM2 maintains the original information flow while integrating a complementary memory pathway. Experimental results on the BABILong benchmark demonstrate that the LM2model outperforms both the memory-augmented RMT model by 37.1% and the baseline Llama-3.2 model by 86.3% on average across tasks. LM2 exhibits exceptional capabilities in multi-hop inference, numerical reasoning, and large-context question-answering. On the MMLU dataset, it achieves a 5.0% improvement over a pre-trained vanilla model, demonstrating that its memory module does not degrade performance on general tasks. Further, in our analysis, we explore the memory interpretability, effectiveness of memory modules, and test-time behavior. Our findings emphasize the importance of explicit memory in enhancing Transformer architectures.
VITA-Audio: Fast Interleaved Cross-Modal Token Generation for Efficient Large Speech-Language Model
With the growing requirement for natural human-computer interaction, speech-based systems receive increasing attention as speech is one of the most common forms of daily communication. However, the existing speech models still experience high latency when generating the first audio token during streaming, which poses a significant bottleneck for deployment. To address this issue, we propose VITA-Audio, an end-to-end large speech model with fast audio-text token generation. Specifically, we introduce a lightweight Multiple Cross-modal Token Prediction (MCTP) module that efficiently generates multiple audio tokens within a single model forward pass, which not only accelerates the inference but also significantly reduces the latency for generating the first audio in streaming scenarios. In addition, a four-stage progressive training strategy is explored to achieve model acceleration with minimal loss of speech quality. To our knowledge, VITA-Audio is the first multi-modal large language model capable of generating audio output during the first forward pass, enabling real-time conversational capabilities with minimal latency. VITA-Audio is fully reproducible and is trained on open-source data only. Experimental results demonstrate that our model achieves an inference speedup of 3~5x at the 7B parameter scale, but also significantly outperforms open-source models of similar model size on multiple benchmarks for automatic speech recognition (ASR), text-to-speech (TTS), and spoken question answering (SQA) tasks.
Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation
Since the introduction of the transformer model by Vaswani et al. (2017), a fundamental question has yet to be answered: how does a model achieve extrapolation at inference time for sequences that are longer than it saw during training? We first show that extrapolation can be enabled by simply changing the position representation method, though we find that current methods do not allow for efficient extrapolation. We therefore introduce a simpler and more efficient position method, Attention with Linear Biases (ALiBi). ALiBi does not add positional embeddings to word embeddings; instead, it biases query-key attention scores with a penalty that is proportional to their distance. We show that this method trains a 1.3 billion parameter model on input sequences of length 1024 that extrapolates to input sequences of length 2048, achieving the same perplexity as a sinusoidal position embedding model trained on inputs of length 2048 but training 11% faster and using 11% less memory. ALiBi's inductive bias towards recency also leads it to outperform multiple strong position methods on the WikiText-103 benchmark.
Unleashing Hour-Scale Video Training for Long Video-Language Understanding
Recent long-form video-language understanding benchmarks have driven progress in video large multimodal models (Video-LMMs). However, the scarcity of well-annotated long videos has left the training of hour-long Video-LLMs underexplored. To close this gap, we present VideoMarathon, a large-scale hour-long video instruction-following dataset. This dataset includes around 9,700 hours of long videos sourced from diverse domains, ranging from 3 to 60 minutes per video. Specifically, it contains 3.3M high-quality QA pairs, spanning six fundamental topics: temporality, spatiality, object, action, scene, and event. Compared to existing video instruction datasets, VideoMarathon significantly extends training video durations up to 1 hour, and supports 22 diverse tasks requiring both short- and long-term video comprehension. Building on VideoMarathon, we propose Hour-LLaVA, a powerful and efficient Video-LMM for hour-scale video-language modeling. It enables hour-long video training and inference at 1-FPS sampling by leveraging a memory augmentation module, which adaptively integrates user question-relevant and spatiotemporal-informative semantics from a cached full video context. In our experiments, Hour-LLaVA achieves the best performance on multiple long video-language benchmarks, demonstrating the high quality of the VideoMarathon dataset and the superiority of the Hour-LLaVA model.
Markov Chain of Thought for Efficient Mathematical Reasoning
Chain of Thought (CoT) of multi-step benefits from the logical structure of the reasoning steps and task-specific actions, significantly enhancing the mathematical reasoning capabilities of large language models. As the prevalence of long CoT, the number of reasoning steps exceeds manageable token limits and leads to higher computational demands. Inspired by the fundamental logic of human cognition, ``derive, then reduce'', we conceptualize the standard multi-step CoT as a novel Markov Chain of Thought (MCoT). In this study, we consider the mathematical reasoning task, defining each reasoning step as text accompanied by a Python code snippet. To facilitate a longer reasoning path, self-correction is enabled through interactions with the code interpreter. Our MCoT aims to compress previous reasoning steps into a simplified question, enabling efficient next-step inference without relying on a lengthy KV cache. In our experiments, we curate the MCoTInstruct dataset, and the empirical results indicate that MCoT not only significantly enhances efficiency but also maintains comparable accuracy. While much remains to be explored, this work paves the way for exploring the long CoT reasoning abilities of LLMs.
Inferring Implicit Relations in Complex Questions with Language Models
A prominent challenge for modern language understanding systems is the ability to answer implicit reasoning questions, where the required reasoning steps for answering the question are not mentioned in the text explicitly. In this work, we investigate why current models struggle with implicit reasoning question answering (QA) tasks, by decoupling inference of reasoning steps from their execution. We define a new task of implicit relation inference and construct a benchmark, IMPLICITRELATIONS, where given a question, a model should output a list of concept-relation pairs, where the relations describe the implicit reasoning steps required for answering the question. Using IMPLICITRELATIONS, we evaluate models from the GPT-3 family and find that, while these models struggle on the implicit reasoning QA task, they often succeed at inferring implicit relations. This suggests that the challenge in implicit reasoning questions does not stem from the need to plan a reasoning strategy alone, but to do it while also retrieving and reasoning over relevant information.
Are Large Language Models Really Good Logical Reasoners? A Comprehensive Evaluation and Beyond
Logical reasoning consistently plays a fundamental and significant role in the domains of knowledge engineering and artificial intelligence. Recently, Large Language Models (LLMs) have emerged as a noteworthy innovation in natural language processing (NLP), exhibiting impressive achievements across various classic NLP tasks. However, the question of whether LLMs can effectively address the task of logical reasoning, which requires gradual cognitive inference similar to human intelligence, remains unanswered. To this end, we aim to bridge this gap and provide comprehensive evaluations in this paper. Firstly, to offer systematic evaluations, we select fifteen typical logical reasoning datasets and organize them into deductive, inductive, abductive and mixed-form reasoning settings. Considering the comprehensiveness of evaluations, we include three representative LLMs (i.e., text-davinci-003, ChatGPT and BARD) and evaluate them on all selected datasets under zero-shot, one-shot and three-shot settings. Secondly, different from previous evaluations relying only on simple metrics (e.g., accuracy), we propose fine-level evaluations from objective and subjective manners, covering both answers and explanations. Additionally, to uncover the logical flaws of LLMs, problematic cases will be attributed to five error types from two dimensions, i.e., evidence selection process and reasoning process. Thirdly, to avoid the influences of knowledge bias and purely focus on benchmarking the logical reasoning capability of LLMs, we propose a new dataset with neutral content. It contains 3,000 samples and covers deductive, inductive and abductive settings. Based on the in-depth evaluations, this paper finally forms a general evaluation scheme of logical reasoning capability from six dimensions. It reflects the pros and cons of LLMs and gives guiding directions for future works.
Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise
Standard diffusion models involve an image transform -- adding Gaussian noise -- and an image restoration operator that inverts this degradation. We observe that the generative behavior of diffusion models is not strongly dependent on the choice of image degradation, and in fact an entire family of generative models can be constructed by varying this choice. Even when using completely deterministic degradations (e.g., blur, masking, and more), the training and test-time update rules that underlie diffusion models can be easily generalized to create generative models. The success of these fully deterministic models calls into question the community's understanding of diffusion models, which relies on noise in either gradient Langevin dynamics or variational inference, and paves the way for generalized diffusion models that invert arbitrary processes. Our code is available at https://github.com/arpitbansal297/Cold-Diffusion-Models
Sci-CoT: Leveraging Large Language Models for Enhanced Knowledge Distillation in Small Models for Scientific QA
Large Language Models (LLMs) have shown outstanding performance across wide range of downstream tasks. This competency is attributed to their substantial parameter size and pre-training on extensive corpus. Moreover, LLMs have exhibited enhanced reasoning capabilities in tackling complex reasoning tasks, owing to the utilization of a method named ``Chain-of-Thought (CoT) prompting''. This method is designed to generate intermediate reasoning steps that guide the inference of the final answer. However, it is essential to highlight that these advanced reasoning abilities appear to emerge in models with a minimum of 10 billion parameters, thereby limiting its efficacy in situations where computational resources are constrained. In this paper, we investigate the possibility of transferring the reasoning capabilities of LLMs to smaller models via knowledge distillation. Specifically, we propose Sci-CoT, a two-stage framework that separates the processes of generating rationales and inferring answers. This method enables a more efficient use of rationales during the answer inference stage, leading to improved performance on scientific question-answering tasks. Utilizing Sci-CoT, our 80-million parameter model is able to exceed the performance of BLOOM-176B in the ARC-Easy dataset under the few shot setting.
Delta -- Contrastive Decoding Mitigates Text Hallucinations in Large Language Models
Large language models (LLMs) demonstrate strong capabilities in natural language processing but remain prone to hallucinations, generating factually incorrect or fabricated content. This issue undermines their reliability, particularly in high-stakes domains such as healthcare and legal advisory. To address this challenge, we propose Delta, an inference-time method that reduces hallucinations without requiring model retraining or additional data. Delta works by randomly masking parts of the input prompt and contrasting the output distributions for the original and masked inputs, effectively suppressing hallucinations through inference-only computations. We evaluate Delta on context-rich question-answering benchmarks, achieving absolute improvements of approximately 3 and 6 percentage points on SQuAD v1.1 and v2, respectively, and 7 and 2 percentage points on TriviaQA and Natural Questions under-sampling decoding. Delta also improves the no-answer exact match score on SQuAD v2 by over ten percentage points, demonstrating its effectiveness in mitigating hallucinations arising from contextual ambiguity. These results highlight Delta as a computationally efficient and scalable approach for improving the reliability of LLMs in real-world applications.
CUNI Submission to MRL 2023 Shared Task on Multi-lingual Multi-task Information Retrieval
We present the Charles University system for the MRL~2023 Shared Task on Multi-lingual Multi-task Information Retrieval. The goal of the shared task was to develop systems for named entity recognition and question answering in several under-represented languages. Our solutions to both subtasks rely on the translate-test approach. We first translate the unlabeled examples into English using a multilingual machine translation model. Then, we run inference on the translated data using a strong task-specific model. Finally, we project the labeled data back into the original language. To keep the inferred tags on the correct positions in the original language, we propose a method based on scoring the candidate positions using a label-sensitive translation model. In both settings, we experiment with finetuning the classification models on the translated data. However, due to a domain mismatch between the development data and the shared task validation and test sets, the finetuned models could not outperform our baselines.
PaLM-E: An Embodied Multimodal Language Model
Large language models excel at a wide range of complex tasks. However, enabling general inference in the real world, e.g., for robotics problems, raises the challenge of grounding. We propose embodied language models to directly incorporate real-world continuous sensor modalities into language models and thereby establish the link between words and percepts. Input to our embodied language model are multi-modal sentences that interleave visual, continuous state estimation, and textual input encodings. We train these encodings end-to-end, in conjunction with a pre-trained large language model, for multiple embodied tasks including sequential robotic manipulation planning, visual question answering, and captioning. Our evaluations show that PaLM-E, a single large embodied multimodal model, can address a variety of embodied reasoning tasks, from a variety of observation modalities, on multiple embodiments, and further, exhibits positive transfer: the model benefits from diverse joint training across internet-scale language, vision, and visual-language domains. Our largest model, PaLM-E-562B with 562B parameters, in addition to being trained on robotics tasks, is a visual-language generalist with state-of-the-art performance on OK-VQA, and retains generalist language capabilities with increasing scale.
Memory Networks
We describe a new class of learning models called memory networks. Memory networks reason with inference components combined with a long-term memory component; they learn how to use these jointly. The long-term memory can be read and written to, with the goal of using it for prediction. We investigate these models in the context of question answering (QA) where the long-term memory effectively acts as a (dynamic) knowledge base, and the output is a textual response. We evaluate them on a large-scale QA task, and a smaller, but more complex, toy task generated from a simulated world. In the latter, we show the reasoning power of such models by chaining multiple supporting sentences to answer questions that require understanding the intension of verbs.
LLoCO: Learning Long Contexts Offline
Processing long contexts remains a challenge for large language models (LLMs) due to the quadratic computational and memory overhead of the self-attention mechanism and the substantial KV cache sizes during generation. We propose a novel approach to address this problem by learning contexts offline through context compression and in-domain parameter-efficient finetuning. Our method enables an LLM to create a concise representation of the original context and efficiently retrieve relevant information to answer questions accurately. We introduce LLoCO, a technique that combines context compression, retrieval, and parameter-efficient finetuning using LoRA. Our approach extends the effective context window of a 4k token LLaMA2-7B model to handle up to 128k tokens. We evaluate our approach on several long-context question-answering datasets, demonstrating that LLoCO significantly outperforms in-context learning while using 30times fewer tokens during inference. LLoCO achieves up to 7.62times speed-up and substantially reduces the cost of long document question answering, making it a promising solution for efficient long context processing. Our code is publicly available at https://github.com/jeffreysijuntan/lloco.
Natural Answer Generation: From Factoid Answer to Full-length Answer using Grammar Correction
Question Answering systems these days typically use template-based language generation. Though adequate for a domain-specific task, these systems are too restrictive and predefined for domain-independent systems. This paper proposes a system that outputs a full-length answer given a question and the extracted factoid answer (short spans such as named entities) as the input. Our system uses constituency and dependency parse trees of questions. A transformer-based Grammar Error Correction model GECToR (2020), is used as a post-processing step for better fluency. We compare our system with (i) Modified Pointer Generator (SOTA) and (ii) Fine-tuned DialoGPT for factoid questions. We also test our approach on existential (yes-no) questions with better results. Our model generates accurate and fluent answers than the state-of-the-art (SOTA) approaches. The evaluation is done on NewsQA and SqUAD datasets with an increment of 0.4 and 0.9 percentage points in ROUGE-1 score respectively. Also the inference time is reduced by 85\% as compared to the SOTA. The improved datasets used for our evaluation will be released as part of the research contribution.
SSRL: Self-Search Reinforcement Learning
We investigate the potential of large language models (LLMs) to serve as efficient simulators for agentic search tasks in reinforcement learning (RL), thereby reducing dependence on costly interactions with external search engines. To this end, we first quantify the intrinsic search capability of LLMs via structured prompting and repeated sampling, which we term Self-Search. Our results reveal that LLMs exhibit strong scaling behavior with respect to the inference budget, achieving high pass@k on question-answering benchmarks, including the challenging BrowseComp task. Building on these observations, we introduce Self-Search RL (SSRL), which enhances LLMs' Self-Search capability through format-based and rule-based rewards. SSRL enables models to iteratively refine their knowledge utilization internally, without requiring access to external tools. Empirical evaluations demonstrate that SSRL-trained policy models provide a cost-effective and stable environment for search-driven RL training, reducing reliance on external search engines and facilitating robust sim-to-real transfer. We draw the following conclusions: 1) LLMs possess world knowledge that can be effectively elicited to achieve high performance; 2) SSRL demonstrates the potential of leveraging internal knowledge to reduce hallucination; 3) SSRL-trained models integrate seamlessly with external search engines without additional effort. Our findings highlight the potential of LLMs to support more scalable RL agent training.
OmniVideoBench: Towards Audio-Visual Understanding Evaluation for Omni MLLMs
Recent advances in multimodal large language models (MLLMs) have demonstrated substantial potential in video understanding. However, existing benchmarks fail to comprehensively evaluate synergistic reasoning capabilities across audio and visual modalities, often neglecting either one of the modalities or integrating them in a logically inconsistent manner. To bridge this gap, we introduce OmniVideoBench, a large-scale and rigorously designed benchmark dedicated to assessing synergistic audio-visual understanding, with a strong emphasis on modality complementarity and logical consistency. Specifically, OmniVideoBench comprises 1000 high-quality question-answer(QA) pairs, each annotated with step-by-step reasoning traces, derived from 628 diverse videos ranging from several seconds to 30 minutes, and manually verified to guarantee complete correctness and uniqueness. Moreover, OmniVideoBench encompasses 13 carefully designed question types, covering temporal reasoning, spatial localization, counting, causal inference, summarization, and beyond, thereby capturing the essential challenges of video understanding. Evaluation of multiple MLLMs on OmniVideoBench reveals a pronounced gap between model performance and human reasoning, with open-source models lagging significantly behind their closed-source counterparts, underscoring the inherent difficulty of genuine audio-visual reasoning. We will release OmniVideoBench to foster the development of MLLMs with stronger and more generalizable reasoning capabilities.
Reasoning with Sampling: Your Base Model is Smarter Than You Think
Frontier reasoning models have exhibited incredible capabilities across a wide array of disciplines, driven by posttraining large language models (LLMs) with reinforcement learning (RL). However, despite the widespread success of this paradigm, much of the literature has been devoted to disentangling truly novel behaviors that emerge during RL but are not present in the base models. In our work, we approach this question from a different angle, instead asking whether comparable reasoning capabilites can be elicited from base models at inference time by pure sampling, without any additional training. Inspired by Markov chain Monte Carlo (MCMC) techniques for sampling from sharpened distributions, we propose a simple iterative sampling algorithm leveraging the base models' own likelihoods. Over different base models, we show that our algorithm offers substantial boosts in reasoning that nearly match and even outperform those from RL on a wide variety of single-shot tasks, including MATH500, HumanEval, and GPQA. Moreover, our sampler avoids the collapse in diversity over multiple samples that is characteristic of RL-posttraining. Crucially, our method does not require training, curated datasets, or a verifier, suggesting broad applicability beyond easily verifiable domains.
The Hallucination Tax of Reinforcement Finetuning
Reinforcement finetuning (RFT) has become a standard approach for enhancing the reasoning capabilities of large language models (LLMs). However, its impact on model trustworthiness remains underexplored. In this work, we identify and systematically study a critical side effect of RFT, which we term the hallucination tax: a degradation in refusal behavior causing models to produce hallucinated answers to unanswerable questions confidently. To investigate this, we introduce SUM (Synthetic Unanswerable Math), a high-quality dataset of unanswerable math problems designed to probe models' ability to recognize an unanswerable question by reasoning from the insufficient or ambiguous information. Our results show that standard RFT training could reduce model refusal rates by more than 80%, which significantly increases model's tendency to hallucinate. We further demonstrate that incorporating just 10% SUM during RFT substantially restores appropriate refusal behavior, with minimal accuracy trade-offs on solvable tasks. Crucially, this approach enables LLMs to leverage inference-time compute to reason about their own uncertainty and knowledge boundaries, improving generalization not only to out-of-domain math problems but also to factual question answering tasks.
YourBench: Easy Custom Evaluation Sets for Everyone
Evaluating large language models (LLMs) effectively remains a critical bottleneck, as traditional static benchmarks suffer from saturation and contamination, while human evaluations are costly and slow. This hinders timely or domain-specific assessment, crucial for real-world applications. We introduce YourBench, a novel, open-source framework that addresses these limitations by enabling dynamic, automated generation of reliable, up-to-date, and domain-tailored benchmarks cheaply and without manual annotation, directly from user-provided documents. We demonstrate its efficacy by replicating 7 diverse MMLU subsets using minimal source text, achieving this for under 15 USD in total inference costs while perfectly preserving the relative model performance rankings (Spearman Rho = 1) observed on the original benchmark. To ensure that YourBench generates data grounded in provided input instead of relying on posterior parametric knowledge in models, we also introduce Tempora-0325, a novel dataset of over 7K diverse documents, published exclusively after March 2025. Our comprehensive analysis spans 26 SoTA models from 7 major families across varying scales (3-671B parameters) to validate the quality of generated evaluations through rigorous algorithmic checks (e.g., citation grounding) and human assessments. We release the YourBench library, the Tempora-0325 dataset, 150k+ question answer pairs based on Tempora and all evaluation and inference traces to facilitate reproducible research and empower the community to generate bespoke benchmarks on demand, fostering more relevant and trustworthy LLM evaluation.
Talk Structurally, Act Hierarchically: A Collaborative Framework for LLM Multi-Agent Systems
Recent advancements in LLM-based multi-agent (LLM-MA) systems have shown promise, yet significant challenges remain in managing communication and refinement when agents collaborate on complex tasks. In this paper, we propose Talk Structurally, Act Hierarchically (TalkHier), a novel framework that introduces a structured communication protocol for context-rich exchanges and a hierarchical refinement system to address issues such as incorrect outputs, falsehoods, and biases. TalkHier surpasses various types of SoTA, including inference scaling model (OpenAI-o1), open-source multi-agent models (e.g., AgentVerse), and majority voting strategies on current LLM and single-agent baselines (e.g., ReAct, GPT4o), across diverse tasks, including open-domain question answering, domain-specific selective questioning, and practical advertisement text generation. These results highlight its potential to set a new standard for LLM-MA systems, paving the way for more effective, adaptable, and collaborative multi-agent frameworks. The code is available https://github.com/sony/talkhier.
Learning to Generate Instruction Tuning Datasets for Zero-Shot Task Adaptation
We introduce Bonito, an open-source model for conditional task generation: the task of converting unannotated text into task-specific training datasets for instruction tuning. Our goal is to enable zero-shot task adaptation of large language models on users' specialized, private data. We train Bonito on a new large-scale dataset with 1.65M examples created by remixing existing instruction tuning datasets into meta-templates. The meta-templates for a dataset produce training examples where the input is the unannotated text and the task attribute and the output consists of the instruction and the response. We use Bonito to generate synthetic tasks for seven datasets from specialized domains across three task types -- yes-no question answering, extractive question answering, and natural language inference -- and adapt language models. We show that Bonito significantly improves the average performance of pretrained and instruction tuned models over the de facto self supervised baseline. For example, adapting Mistral-Instruct-v2 and instruction tuned variants of Mistral and Llama2 with Bonito improves the strong zero-shot performance by 22.1 F1 points whereas the next word prediction objective undoes some of the benefits of instruction tuning and reduces the average performance by 0.8 F1 points. We conduct additional experiments with Bonito to understand the effects of the domain, the size of the training set, and the choice of alternative synthetic task generators. Overall, we show that learning with synthetic instruction tuning datasets is an effective way to adapt language models to new domains. The model, dataset, and code are available at https://github.com/BatsResearch/bonito.
Making Retrieval-Augmented Language Models Robust to Irrelevant Context
Retrieval-augmented language models (RALMs) hold promise to produce language understanding systems that are are factual, efficient, and up-to-date. An important desideratum of RALMs, is that retrieved information helps model performance when it is relevant, and does not harm performance when it is not. This is particularly important in multi-hop reasoning scenarios, where misuse of irrelevant evidence can lead to cascading errors. However, recent work has shown that retrieval augmentation can sometimes have a negative effect on performance. In this work, we present a thorough analysis on five open-domain question answering benchmarks, characterizing cases when retrieval reduces accuracy. We then propose two methods to mitigate this issue. First, a simple baseline that filters out retrieved passages that do not entail question-answer pairs according to a natural language inference (NLI) model. This is effective in preventing performance reduction, but at a cost of also discarding relevant passages. Thus, we propose a method for automatically generating data to fine-tune the language model to properly leverage retrieved passages, using a mix of relevant and irrelevant contexts at training time. We empirically show that even 1,000 examples suffice to train the model to be robust to irrelevant contexts while maintaining high performance on examples with relevant ones.
Experts Weights Averaging: A New General Training Scheme for Vision Transformers
Structural re-parameterization is a general training scheme for Convolutional Neural Networks (CNNs), which achieves performance improvement without increasing inference cost. As Vision Transformers (ViTs) are gradually surpassing CNNs in various visual tasks, one may question: if a training scheme specifically for ViTs exists that can also achieve performance improvement without increasing inference cost? Recently, Mixture-of-Experts (MoE) has attracted increasing attention, as it can efficiently scale up the capacity of Transformers at a fixed cost through sparsely activated experts. Considering that MoE can also be viewed as a multi-branch structure, can we utilize MoE to implement a ViT training scheme similar to structural re-parameterization? In this paper, we affirmatively answer these questions, with a new general training strategy for ViTs. Specifically, we decouple the training and inference phases of ViTs. During training, we replace some Feed-Forward Networks (FFNs) of the ViT with specially designed, more efficient MoEs that assign tokens to experts by random uniform partition, and perform Experts Weights Averaging (EWA) on these MoEs at the end of each iteration. After training, we convert each MoE into an FFN by averaging the experts, transforming the model back into original ViT for inference. We further provide a theoretical analysis to show why and how it works. Comprehensive experiments across various 2D and 3D visual tasks, ViT architectures, and datasets validate the effectiveness and generalizability of the proposed training scheme. Besides, our training scheme can also be applied to improve performance when fine-tuning ViTs. Lastly, but equally important, the proposed EWA technique can significantly improve the effectiveness of naive MoE in various 2D visual small datasets and 3D visual tasks.
Void in Language Models
Despite advances in transformer-based language models (LMs), a fundamental question remains largely unanswered: Are all layers activated during inference? We investigate this question by detecting unactivated layers (which we refer to as Voids) using a non-trainable and parameter-free adaptive computation method called L2 Adaptive Computation (LAC). We adapt LAC from its original efficiency-focused application to trace activated layers during inference. This method monitors changes in the L2-norm of activations to identify voids. We analyze layer activation in instruction-tuned LMs across two phases: Prompt Processing (PP), where we trace activated layers for each token in the input prompts, and Response Generation (RG), where we trace activated layers for each generated token. We further demonstrate that distinct layers are activated during these two phases. To show the effectiveness of our method, we evaluated three distinct instruction-tuned LMs from the Llama, Mistral, and Qwen families on three benchmarks: MMLU, GPQA Diamond, and BoolQ. For example, on MMLU with a zero-shot setting, skipping voids in Qwen2.5-7B-Instruct resulted in an improvement from 69.24 to 71.29 while the model uses only 30% of the layers. Similarly, Mistral-7B-Instruct-v0.3 on GPQA Diamond improved from 13.88 to 18.36 when using 70% of the layers during both the PP and RG phases. These results show that not all layers contribute equally during inference, and that selectively skipping most of them can improve the performance of models on certain tasks.
UniBERTs: Adversarial Training for Language-Universal Representations
This paper presents UniBERT, a compact multilingual language model that leverages an innovative training framework integrating three components: masked language modeling, adversarial training, and knowledge distillation. Pre-trained on a meticulously curated Wikipedia corpus spanning 107 languages, UniBERT is designed to reduce the computational demands of large-scale models while maintaining competitive performance across various natural language processing tasks. Comprehensive evaluations on four tasks -- named entity recognition, natural language inference, question answering, and semantic textual similarity -- demonstrate that our multilingual training strategy enhanced by an adversarial objective significantly improves cross-lingual generalization. Specifically, UniBERT models show an average relative improvement of 7.72% over traditional baselines, which achieved an average relative improvement of only 1.17%, with statistical analysis confirming the significance of these gains (p-value = 0.0181). This work highlights the benefits of combining adversarial training and knowledge distillation to build scalable and robust language models, thereby advancing the field of multilingual and cross-lingual natural language processing.
Recurrent Context Compression: Efficiently Expanding the Context Window of LLM
To extend the context length of Transformer-based large language models (LLMs) and improve comprehension capabilities, we often face limitations due to computational resources and bounded memory storage capacity. This work introduces a method called Recurrent Context Compression (RCC), designed to efficiently expand the context window length of LLMs within constrained storage space. We also investigate the issue of poor model responses when both instructions and context are compressed in downstream tasks, and propose an instruction reconstruction method to mitigate this problem. We validated the effectiveness of our approach on multiple tasks, achieving a compression rate of up to 32x on text reconstruction tasks with a BLEU4 score close to 0.95, and nearly 100\% accuracy on a passkey retrieval task with a sequence length of 1M. Finally, our method demonstrated competitive performance in long-text question-answering tasks compared to non-compressed methods, while significantly saving storage resources in long-text inference tasks. Our code, models, and demo are available at https://github.com/WUHU-G/RCC_Transformer
RuMedBench: A Russian Medical Language Understanding Benchmark
The paper describes the open Russian medical language understanding benchmark covering several task types (classification, question answering, natural language inference, named entity recognition) on a number of novel text sets. Given the sensitive nature of the data in healthcare, such a benchmark partially closes the problem of Russian medical dataset absence. We prepare the unified format labeling, data split, and evaluation metrics for new tasks. The remaining tasks are from existing datasets with a few modifications. A single-number metric expresses a model's ability to cope with the benchmark. Moreover, we implement several baseline models, from simple ones to neural networks with transformer architecture, and release the code. Expectedly, the more advanced models yield better performance, but even a simple model is enough for a decent result in some tasks. Furthermore, for all tasks, we provide a human evaluation. Interestingly the models outperform humans in the large-scale classification tasks. However, the advantage of natural intelligence remains in the tasks requiring more knowledge and reasoning.
Answer-Centric or Reasoning-Driven? Uncovering the Latent Memory Anchor in LLMs
While Large Language Models (LLMs) demonstrate impressive reasoning capabilities, growing evidence suggests much of their success stems from memorized answer-reasoning patterns rather than genuine inference. In this work, we investigate a central question: are LLMs primarily anchored to final answers or to the textual pattern of reasoning chains? We propose a five-level answer-visibility prompt framework that systematically manipulates answer cues and probes model behavior through indirect, behavioral analysis. Experiments across state-of-the-art LLMs reveal a strong and consistent reliance on explicit answers. The performance drops by 26.90\% when answer cues are masked, even with complete reasoning chains. These findings suggest that much of the reasoning exhibited by LLMs may reflect post-hoc rationalization rather than true inference, calling into question their inferential depth. Our study uncovers the answer-anchoring phenomenon with rigorous empirical validation and underscores the need for a more nuanced understanding of what constitutes reasoning in LLMs.
Language Fusion for Parameter-Efficient Cross-lingual Transfer
Limited availability of multilingual text corpora for training language models often leads to poor performance on downstream tasks due to undertrained representation spaces for languages other than English. This 'under-representation' has motivated recent cross-lingual transfer methods to leverage the English representation space by e.g. mixing English and 'non-English' tokens at the input level or extending model parameters to accommodate new languages. However, these approaches often come at the cost of increased computational complexity. We propose Fusion forLanguage Representations (FLARE) in adapters, a novel method that enhances representation quality and downstream performance for languages other than English while maintaining parameter efficiency. FLARE integrates source and target language representations within low-rank (LoRA) adapters using lightweight linear transformations, maintaining parameter efficiency while improving transfer performance. A series of experiments across representative cross-lingual natural language understanding tasks, including natural language inference, question-answering and sentiment analysis, demonstrate FLARE's effectiveness. FLARE achieves performance improvements of 4.9% for Llama 3.1 and 2.2% for Gemma~2 compared to standard LoRA fine-tuning on question-answering tasks, as measured by the exact match metric.
KeyVideoLLM: Towards Large-scale Video Keyframe Selection
Recently, with the rise of web videos, managing and understanding large-scale video datasets has become increasingly important. Video Large Language Models (VideoLLMs) have emerged in recent years due to their strong video understanding capabilities. However, training and inference processes for VideoLLMs demand vast amounts of data, presenting significant challenges to data management, particularly regarding efficiency, robustness, and effectiveness. In this work, we present KeyVideoLLM, a text-video frame similarity-based keyframe selection method designed to manage VideoLLM data efficiently, robustly, and effectively. Specifically, KeyVideoLLM achieves a remarkable data compression rate of up to 60.9 times, substantially lowering disk space requirements, which proves its high efficiency. Additionally, it maintains a 100% selection success rate across all video formats and scales, enhances processing speed by up to 200 times compared to existing keyframe selection methods, and does not require hyperparameter tuning. Beyond its outstanding efficiency and robustness, KeyVideoLLM further improves model performance in video question-answering tasks during both training and inference stages. Notably, it consistently achieved the state-of-the-art (SoTA) experimental results on diverse datasets.
Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs
The integration of large language models (LLMs) and search engines represents a significant evolution in knowledge acquisition methodologies. However, determining the knowledge that an LLM already possesses and the knowledge that requires the help of a search engine remains an unresolved issue. Most existing methods solve this problem through the results of preliminary answers or reasoning done by the LLM itself, but this incurs excessively high computational costs. This paper introduces a novel collaborative approach, namely SlimPLM, that detects missing knowledge in LLMs with a slim proxy model, to enhance the LLM's knowledge acquisition process. We employ a proxy model which has far fewer parameters, and take its answers as heuristic answers. Heuristic answers are then utilized to predict the knowledge required to answer the user question, as well as the known and unknown knowledge within the LLM. We only conduct retrieval for the missing knowledge in questions that the LLM does not know. Extensive experimental results on five datasets with two LLMs demonstrate a notable improvement in the end-to-end performance of LLMs in question-answering tasks, achieving or surpassing current state-of-the-art models with lower LLM inference costs.
bgGLUE: A Bulgarian General Language Understanding Evaluation Benchmark
We present bgGLUE(Bulgarian General Language Understanding Evaluation), a benchmark for evaluating language models on Natural Language Understanding (NLU) tasks in Bulgarian. Our benchmark includes NLU tasks targeting a variety of NLP problems (e.g., natural language inference, fact-checking, named entity recognition, sentiment analysis, question answering, etc.) and machine learning tasks (sequence labeling, document-level classification, and regression). We run the first systematic evaluation of pre-trained language models for Bulgarian, comparing and contrasting results across the nine tasks in the benchmark. The evaluation results show strong performance on sequence labeling tasks, but there is a lot of room for improvement for tasks that require more complex reasoning. We make bgGLUE publicly available together with the fine-tuning and the evaluation code, as well as a public leaderboard at https://bgglue.github.io/, and we hope that it will enable further advancements in developing NLU models for Bulgarian.
AlignScore: Evaluating Factual Consistency with a Unified Alignment Function
Many text generation applications require the generated text to be factually consistent with input information. Automatic evaluation of factual consistency is challenging. Previous work has developed various metrics that often depend on specific functions, such as natural language inference (NLI) or question answering (QA), trained on limited data. Those metrics thus can hardly assess diverse factual inconsistencies (e.g., contradictions, hallucinations) that occur in varying inputs/outputs (e.g., sentences, documents) from different tasks. In this paper, we propose AlignScore, a new holistic metric that applies to a variety of factual inconsistency scenarios as above. AlignScore is based on a general function of information alignment between two arbitrary text pieces. Crucially, we develop a unified training framework of the alignment function by integrating a large diversity of data sources, resulting in 4.7M training examples from 7 well-established tasks (NLI, QA, paraphrasing, fact verification, information retrieval, semantic similarity, and summarization). We conduct extensive experiments on large-scale benchmarks including 22 evaluation datasets, where 19 of the datasets were never seen in the alignment training. AlignScore achieves substantial improvement over a wide range of previous metrics. Moreover, AlignScore (355M parameters) matches or even outperforms metrics based on ChatGPT and GPT-4 that are orders of magnitude larger.
Automatic Evaluation of Attribution by Large Language Models
A recent focus of large language model (LLM) development, as exemplified by generative search engines, is to incorporate external references to generate and support their claims. However, evaluating the attribution, i.e., verifying whether the generated statement is indeed fully supported by the cited reference, remains an open problem. Although human evaluation is common practice, it is costly and time-consuming. In this paper, we investigate the automatic evaluation of attribution by LLMs. We begin by providing a definition of attribution and then explore two approaches for automatic evaluation: prompting LLMs and fine-tuning smaller LMs. The fine-tuning data is repurposed from related tasks, such as question answering, fact-checking, natural language inference, and summarization. To facilitate the evaluation, we manually curate a set of test examples covering 12 domains from a generative search engine, New Bing. Our results on the curated test set and simulated test examples from existing benchmark questions highlight both promising signals as well as remaining challenges for the automatic evaluation of attribution. We hope our testbed, modeling methodology, and insights will help lay the foundation for future studies on this important problem.
CKBP v2: Better Annotation and Reasoning for Commonsense Knowledge Base Population
Commonsense Knowledge Bases (CSKB) Population, which aims at automatically expanding knowledge in CSKBs with external resources, is an important yet hard task in NLP. Fang et al. (2021a) proposed a CSKB Population (CKBP) framework with an evaluation set CKBP v1. However, CKBP v1 relies on crowdsourced annotations that suffer from a considerable number of mislabeled answers, and the evaluationset lacks alignment with the external knowledge source due to random sampling. In this paper, we introduce CKBP v2, a new high-quality CSKB Population evaluation set that addresses the two aforementioned issues by employing domain experts as annotators and incorporating diversified adversarial samples to make the evaluation data more representative. We show that CKBP v2 serves as a challenging and representative evaluation dataset for the CSKB Population task, while its development set aids in selecting a population model that leads to improved knowledge acquisition for downstream commonsense reasoning. A better population model can also help acquire more informative commonsense knowledge as additional supervision signals for both generative commonsense inference and zero-shot commonsense question answering. Specifically, the question-answering model based on DeBERTa-v3-large (He et al., 2023b) even outperforms powerful large language models in a zero-shot setting, including ChatGPT and GPT-3.5.
Dialogue-Contextualized Re-ranking for Medical History-Taking
AI-driven medical history-taking is an important component in symptom checking, automated patient intake, triage, and other AI virtual care applications. As history-taking is extremely varied, machine learning models require a significant amount of data to train. To overcome this challenge, existing systems are developed using indirect data or expert knowledge. This leads to a training-inference gap as models are trained on different kinds of data than what they observe at inference time. In this work, we present a two-stage re-ranking approach that helps close the training-inference gap by re-ranking the first-stage question candidates using a dialogue-contextualized model. For this, we propose a new model, global re-ranker, which cross-encodes the dialogue with all questions simultaneously, and compare it with several existing neural baselines. We test both transformer and S4-based language model backbones. We find that relative to the expert system, the best performance is achieved by our proposed global re-ranker with a transformer backbone, resulting in a 30% higher normalized discount cumulative gain (nDCG) and a 77% higher mean average precision (mAP).
TVLT: Textless Vision-Language Transformer
In this work, we present the Textless Vision-Language Transformer (TVLT), where homogeneous transformer blocks take raw visual and audio inputs for vision-and-language representation learning with minimal modality-specific design, and do not use text-specific modules such as tokenization or automatic speech recognition (ASR). TVLT is trained by reconstructing masked patches of continuous video frames and audio spectrograms (masked autoencoding) and contrastive modeling to align video and audio. TVLT attains performance comparable to its text-based counterpart on various multimodal tasks, such as visual question answering, image retrieval, video retrieval, and multimodal sentiment analysis, with 28x faster inference speed and only 1/3 of the parameters. Our findings suggest the possibility of learning compact and efficient visual-linguistic representations from low-level visual and audio signals without assuming the prior existence of text. Our code and checkpoints are available at: https://github.com/zinengtang/TVLT
MetaICL: Learning to Learn In Context
We introduce MetaICL (Meta-training for In-Context Learning), a new meta-training framework for few-shot learning where a pretrained language model is tuned to do in-context learning on a large set of training tasks. This meta-training enables the model to more effectively learn a new task in context at test time, by simply conditioning on a few training examples with no parameter updates or task-specific templates. We experiment on a large, diverse collection of tasks consisting of 142 NLP datasets including classification, question answering, natural language inference, paraphrase detection and more, across seven different meta-training/target splits. MetaICL outperforms a range of baselines including in-context learning without meta-training and multi-task learning followed by zero-shot transfer. We find that the gains are particularly significant for target tasks that have domain shifts from the meta-training tasks, and that using a diverse set of the meta-training tasks is key to improvements. We also show that MetaICL approaches (and sometimes beats) the performance of models fully finetuned on the target task, and outperforms much bigger models with nearly 8x parameters. Finally, we show that MetaICL is complementary to human-written instructions, and the best performance can be achieved by combining both approaches.
TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection
We propose TANDA, an effective technique for fine-tuning pre-trained Transformer models for natural language tasks. Specifically, we first transfer a pre-trained model into a model for a general task by fine-tuning it with a large and high-quality dataset. We then perform a second fine-tuning step to adapt the transferred model to the target domain. We demonstrate the benefits of our approach for answer sentence selection, which is a well-known inference task in Question Answering. We built a large scale dataset to enable the transfer step, exploiting the Natural Questions dataset. Our approach establishes the state of the art on two well-known benchmarks, WikiQA and TREC-QA, achieving MAP scores of 92% and 94.3%, respectively, which largely outperform the previous highest scores of 83.4% and 87.5%, obtained in very recent work. We empirically show that TANDA generates more stable and robust models reducing the effort required for selecting optimal hyper-parameters. Additionally, we show that the transfer step of TANDA makes the adaptation step more robust to noise. This enables a more effective use of noisy datasets for fine-tuning. Finally, we also confirm the positive impact of TANDA in an industrial setting, using domain specific datasets subject to different types of noise.
Reasoning-Table: Exploring Reinforcement Learning for Table Reasoning
Table reasoning, encompassing tasks such as table question answering, fact verification, and text-to-SQL, requires precise understanding of structured tabular data, coupled with numerical computation and code manipulation for effective inference. Supervised fine-tuning (SFT) approaches have achieved notable success but often struggle with generalization and robustness due to biases inherent in imitative learning. We introduce Reasoning-Table, the first application of reinforcement learning (RL) to table reasoning, achieving state-of-the-art performance. Through rigorous data preprocessing, reward design, and tailored training strategies, our method leverages simple rule-based outcome rewards to outperform SFT across multiple benchmarks. Unified training across diverse tasks enables Reasoning-Table to emerge as a robust table reasoning large language model, surpassing larger proprietary models like Claude-3.7-Sonnet by 4.0% on table reasoning benchmarks. The approach also achieves excellent performance on text-to-SQL tasks, reaching 68.3% performance on the BIRD dev dataset with a 7B model. Further experiments demonstrate that Reasoning-Table enhances the model's generalization capabilities and robustness.
SUGAR: Leveraging Contextual Confidence for Smarter Retrieval
Bearing in mind the limited parametric knowledge of Large Language Models (LLMs), retrieval-augmented generation (RAG) which supplies them with the relevant external knowledge has served as an approach to mitigate the issue of hallucinations to a certain extent. However, uniformly retrieving supporting context makes response generation source-inefficient, as triggering the retriever is not always necessary, or even inaccurate, when a model gets distracted by noisy retrieved content and produces an unhelpful answer. Motivated by these issues, we introduce Semantic Uncertainty Guided Adaptive Retrieval (SUGAR), where we leverage context-based entropy to actively decide whether to retrieve and to further determine between single-step and multi-step retrieval. Our empirical results show that selective retrieval guided by semantic uncertainty estimation improves the performance across diverse question answering tasks, as well as achieves a more efficient inference.
VLSP 2021 - ViMRC Challenge: Vietnamese Machine Reading Comprehension
One of the emerging research trends in natural language understanding is machine reading comprehension (MRC) which is the task to find answers to human questions based on textual data. Existing Vietnamese datasets for MRC research concentrate solely on answerable questions. However, in reality, questions can be unanswerable for which the correct answer is not stated in the given textual data. To address the weakness, we provide the research community with a benchmark dataset named UIT-ViQuAD 2.0 for evaluating the MRC task and question answering systems for the Vietnamese language. We use UIT-ViQuAD 2.0 as a benchmark dataset for the challenge on Vietnamese MRC at the Eighth Workshop on Vietnamese Language and Speech Processing (VLSP 2021). This task attracted 77 participant teams from 34 universities and other organizations. In this article, we present details of the organization of the challenge, an overview of the methods employed by shared-task participants, and the results. The highest performances are 77.24% in F1-score and 67.43% in Exact Match on the private test set. The Vietnamese MRC systems proposed by the top 3 teams use XLM-RoBERTa, a powerful pre-trained language model based on the transformer architecture. The UIT-ViQuAD 2.0 dataset motivates researchers to further explore the Vietnamese machine reading comprehension task and related tasks such as question answering, question generation, and natural language inference.
Video-T1: Test-Time Scaling for Video Generation
With the scale capability of increasing training data, model size, and computational cost, video generation has achieved impressive results in digital creation, enabling users to express creativity across various domains. Recently, researchers in Large Language Models (LLMs) have expanded the scaling to test-time, which can significantly improve LLM performance by using more inference-time computation. Instead of scaling up video foundation models through expensive training costs, we explore the power of Test-Time Scaling (TTS) in video generation, aiming to answer the question: if a video generation model is allowed to use non-trivial amount of inference-time compute, how much can it improve generation quality given a challenging text prompt. In this work, we reinterpret the test-time scaling of video generation as a searching problem to sample better trajectories from Gaussian noise space to the target video distribution. Specifically, we build the search space with test-time verifiers to provide feedback and heuristic algorithms to guide searching process. Given a text prompt, we first explore an intuitive linear search strategy by increasing noise candidates at inference time. As full-step denoising all frames simultaneously requires heavy test-time computation costs, we further design a more efficient TTS method for video generation called Tree-of-Frames (ToF) that adaptively expands and prunes video branches in an autoregressive manner. Extensive experiments on text-conditioned video generation benchmarks demonstrate that increasing test-time compute consistently leads to significant improvements in the quality of videos. Project page: https://liuff19.github.io/Video-T1
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).
Natural Language Reasoning, A Survey
This survey paper proposes a clearer view of natural language reasoning in the field of Natural Language Processing (NLP), both conceptually and practically. Conceptually, we provide a distinct definition for natural language reasoning in NLP, based on both philosophy and NLP scenarios, discuss what types of tasks require reasoning, and introduce a taxonomy of reasoning. Practically, we conduct a comprehensive literature review on natural language reasoning in NLP, mainly covering classical logical reasoning, natural language inference, multi-hop question answering, and commonsense reasoning. The paper also identifies and views backward reasoning, a powerful paradigm for multi-step reasoning, and introduces defeasible reasoning as one of the most important future directions in natural language reasoning research. We focus on single-modality unstructured natural language text, excluding neuro-symbolic techniques and mathematical reasoning.
Compositional Exemplars for In-context Learning
Large pretrained language models (LMs) have shown impressive In-Context Learning (ICL) ability, where the model learns to do an unseen task via a prompt consisting of input-output examples as the demonstration, without any parameter updates. The performance of ICL is highly dominated by the quality of the selected in-context examples. However, previous selection methods are mostly based on simple heuristics, leading to sub-optimal performance. In this work, we formulate in-context example selection as a subset selection problem. We propose CEIL (Compositional Exemplars for In-context Learning), which is instantiated by Determinantal Point Processes (DPPs) to model the interaction between the given input and in-context examples, and optimized through a carefully-designed contrastive learning objective to obtain preference from LMs. We validate CEIL on 12 classification and generation datasets from 7 distinct NLP tasks, including sentiment analysis, paraphrase detection, natural language inference, commonsense reasoning, open-domain question answering, code generation, and semantic parsing. Extensive experiments demonstrate not only the state-of-the-art performance but also the transferability and compositionality of CEIL, shedding new light on effective and efficient in-context learning. Our code is released at https://github.com/HKUNLP/icl-ceil.
AdaThink-Med: Medical Adaptive Thinking with Uncertainty-Guided Length Calibration
Recent advances in inference time scaling with extended long chain-of thought have significantly improved the reasoning capabilities of both general and medical large language models (LLMs). However, these models tend to engage in lengthy reasoning processes regardless of the difficulty of the input question, leading to increased inference costs in real-world applications. Therefore, enabling adaptive thinking where models think less for simpler questions and think more for complex ones is critical for the effective use of medical LLMs in practice. Despite its importance, there is a lack of end-to-end approaches designed to enhance the adaptive thinking capabilities of medical LLMs while providing a comprehensive examination of the trade-off between performance and computational cost. To bridge this gap, we propose AdaThink-Med, the first end-to-end framework designed to enhance adaptive thinking ability in medical reasoning models with uncertainty-guided length calibration. AdaThink-Med first generates multiple candidate outputs for each question, evaluates the correctness and uncertainty of each candidate, and then estimates problem difficulty via an uncertainty-guided length calibration module. For outputs with low difficulty and correct answers, the framework penalizes longer reasoning paths; whereas for those with high difficulty and incorrect answers, it encourages extending the chain of thought to explore alternative solutions. On six public medical QA benchmarks, AdaThink-Med achieves up to 6.4x length reduction on average while retaining performance with only minimal degradation. Intriguingly, we observe that AdaThink-Med spontaneously develops two distinct reasoning modes, which we characterize as "non-thinking" and "thinking", demonstrating the model's ability to suppress redundant reasoning processes dynamically.
You Only Read Once (YORO): Learning to Internalize Database Knowledge for Text-to-SQL
While significant progress has been made on the text-to-SQL task, recent solutions repeatedly encode the same database schema for every question, resulting in unnecessary high inference cost and often overlooking crucial database knowledge. To address these issues, we propose You Only Read Once (YORO), a novel paradigm that directly internalizes database knowledge into the parametric knowledge of a text-to-SQL model during training and eliminates the need for schema encoding during inference. YORO significantly reduces the input token length by 66%-98%. Despite its shorter inputs, our empirical results demonstrate YORO's competitive performances with traditional systems on three benchmarks as well as its significant outperformance on large databases. Furthermore, YORO excels in handling questions with challenging value retrievals such as abbreviation.
ZeroGen: Efficient Zero-shot Learning via Dataset Generation
There is a growing interest in dataset generation recently due to the superior generative capacity of large pre-trained language models (PLMs). In this paper, we study a flexible and efficient zero-short learning method, ZeroGen. Given a zero-shot task, we first generate a dataset from scratch using PLMs in an unsupervised manner. Then, we train a tiny task model (e.g., LSTM) under the supervision of the synthesized dataset. This approach allows highly efficient inference as the final task model only has orders of magnitude fewer parameters comparing to PLMs (e.g., GPT2-XL). Apart from being annotation-free and efficient, we argue that ZeroGen can also provide useful insights from the perspective of data-free model-agnostic knowledge distillation, and unreferenced text generation evaluation. Experiments and analysis on different NLP tasks, namely, text classification, question answering, and natural language inference, show the effectiveness of ZeroGen.
XLNet: Generalized Autoregressive Pretraining for Language Understanding
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, under comparable experiment settings, XLNet outperforms BERT on 20 tasks, often by a large margin, including question answering, natural language inference, sentiment analysis, and document ranking.
LAD-RAG: Layout-aware Dynamic RAG for Visually-Rich Document Understanding
Question answering over visually rich documents (VRDs) requires reasoning not only over isolated content but also over documents' structural organization and cross-page dependencies. However, conventional retrieval-augmented generation (RAG) methods encode content in isolated chunks during ingestion, losing structural and cross-page dependencies, and retrieve a fixed number of pages at inference, regardless of the specific demands of the question or context. This often results in incomplete evidence retrieval and degraded answer quality for multi-page reasoning tasks. To address these limitations, we propose LAD-RAG, a novel Layout-Aware Dynamic RAG framework. During ingestion, LAD-RAG constructs a symbolic document graph that captures layout structure and cross-page dependencies, adding it alongside standard neural embeddings to yield a more holistic representation of the document. During inference, an LLM agent dynamically interacts with the neural and symbolic indices to adaptively retrieve the necessary evidence based on the query. Experiments on MMLongBench-Doc, LongDocURL, DUDE, and MP-DocVQA demonstrate that LAD-RAG improves retrieval, achieving over 90% perfect recall on average without any top-k tuning, and outperforming baseline retrievers by up to 20% in recall at comparable noise levels, yielding higher QA accuracy with minimal latency.
InterChart: Benchmarking Visual Reasoning Across Decomposed and Distributed Chart Information
We introduce InterChart, a diagnostic benchmark that evaluates how well vision-language models (VLMs) reason across multiple related charts, a task central to real-world applications such as scientific reporting, financial analysis, and public policy dashboards. Unlike prior benchmarks focusing on isolated, visually uniform charts, InterChart challenges models with diverse question types ranging from entity inference and trend correlation to numerical estimation and abstract multi-step reasoning grounded in 2-3 thematically or structurally related charts. We organize the benchmark into three tiers of increasing difficulty: (1) factual reasoning over individual charts, (2) integrative analysis across synthetically aligned chart sets, and (3) semantic inference over visually complex, real-world chart pairs. Our evaluation of state-of-the-art open and closed-source VLMs reveals consistent and steep accuracy declines as chart complexity increases. We find that models perform better when we decompose multi-entity charts into simpler visual units, underscoring their struggles with cross-chart integration. By exposing these systematic limitations, InterChart provides a rigorous framework for advancing multimodal reasoning in complex, multi-visual environments.
Learning to Focus: Causal Attention Distillation via Gradient-Guided Token Pruning
Large language models (LLMs) have demonstrated significant improvements in contextual understanding. However, their ability to attend to truly critical information during long-context reasoning and generation still falls behind the pace. Specifically, our preliminary experiments reveal that certain distracting patterns can misdirect the model's attention during inference, and removing these patterns substantially improves reasoning accuracy and generation quality. We attribute this phenomenon to spurious correlations in the training data, which obstruct the model's capacity to infer authentic causal instruction-response relationships. This phenomenon may induce redundant reasoning processes, potentially resulting in significant inference overhead and, more critically, the generation of erroneous or suboptimal responses. To mitigate this, we introduce a two-stage framework called Learning to Focus (LeaF) leveraging intervention-based inference to disentangle confounding factors. In the first stage, LeaF employs gradient-based comparisons with an advanced teacher to automatically identify confounding tokens based on causal relationships in the training corpus. Then, in the second stage, it prunes these tokens during distillation to enact intervention, aligning the student's attention with the teacher's focus distribution on truly critical context tokens. Experimental results demonstrate that LeaF not only achieves an absolute improvement in various mathematical reasoning, code generation and multi-hop question answering benchmarks but also effectively suppresses attention to confounding tokens during inference, yielding a more interpretable and reliable reasoning model.
You Only Fine-tune Once: Many-Shot In-Context Fine-Tuning for Large Language Model
Large language models (LLMs) possess a remarkable ability to perform in-context learning (ICL), which enables them to handle multiple downstream tasks simultaneously without requiring task-specific fine-tuning. Recent studies have shown that even moderately sized LLMs, such as Mistral 7B, Gemma 7B and Llama-3 8B, can achieve ICL through few-shot in-context fine-tuning of all tasks at once. However, this approach still lags behind dedicated fine-tuning, where a separate model is trained for each individual task. In this paper, we propose a novel approach, Many-Shot In-Context Fine-tuning (ManyICL), which significantly narrows this performance gap by extending the principles of ICL to a many-shot setting. To unlock the full potential of ManyICL and address the inherent inefficiency of processing long sequences with numerous in-context examples, we propose a novel training objective. Instead of solely predicting the final answer, our approach treats every answer within the context as a supervised training target. This effectively shifts the role of many-shot examples from prompts to targets for autoregressive learning. Through extensive experiments on diverse downstream tasks, including classification, summarization, question answering, natural language inference, and math, we demonstrate that ManyICL substantially outperforms zero/few-shot fine-tuning and approaches the performance of dedicated fine-tuning. Furthermore, ManyICL significantly mitigates catastrophic forgetting issues observed in zero/few-shot fine-tuning. The code will be made publicly available upon publication.
Beyond the Mean: Limit Theory and Tests for Infinite-Mean Autoregressive Conditional Durations
Integrated autoregressive conditional duration (ACD) models serve as natural counterparts to the well-known integrated GARCH models used for financial returns. However, despite their resemblance, asymptotic theory for ACD is challenging and also not complete, in particular for integrated ACD. Central challenges arise from the facts that (i) integrated ACD processes imply durations with infinite expectation, and (ii) even in the non-integrated case, conventional asymptotic approaches break down due to the randomness in the number of durations within a fixed observation period. Addressing these challenges, we provide here unified asymptotic theory for the (quasi-) maximum likelihood estimator for ACD models; a unified theory which includes integrated ACD models. Based on the new results, we also provide a novel framework for hypothesis testing in duration models, enabling inference on a key empirical question: whether durations possess a finite or infinite expectation. We apply our results to high-frequency cryptocurrency ETF trading data. Motivated by parameter estimates near the integrated ACD boundary, we assess whether durations between trades in these markets have finite expectation, an assumption often made implicitly in the literature on point process models. Our empirical findings indicate infinite-mean durations for all the five cryptocurrencies examined, with the integrated ACD hypothesis rejected -- against alternatives with tail index less than one -- for four out of the five cryptocurrencies considered.
HindiLLM: Large Language Model for Hindi
The advancements in the Large Language Model (LLM) have helped in solving several problems related to language processing. Most of the researches have focused on the English language only, because of its popularity and abundance on the internet. However, a high-performance language model for Hindi and other Indic languages is lacking in the literature. In this work, we have pre-trained two autoregressive LLM models for the Hindi language, namely HindiLLM-Small and HindiLLM-Medium. We use a two-step process comprising unsupervised pre-training and supervised fine-tuning. First, we create a large and high-quality text corpus for unsupervised pre-training. Next, we train a Byte-Pair Encoding, named HindiLLM tokenizer, using the pre-training text data. We then perform training on the unlabeled data, known as the pre-training step, to get the HindiLLM base models. Furthermore, we perform fine-tuning of the HindiLLM base models for different tasks like sentiment analysis, text classification, natural language inference, and multiple choice question-answer on popular labeled datasets to measure the real-world performance. The evaluation shows that the HindiLLM-based fine-tuned models outperform several models in most of the language related tasks.
COLD: Causal reasOning in cLosed Daily activities
Large Language Models (LLMs) have shown state-of-the-art performance in a variety of tasks, including arithmetic and reasoning; however, to gauge the intellectual capabilities of LLMs, causal reasoning has become a reliable proxy for validating a general understanding of the mechanics and intricacies of the world similar to humans. Previous works in natural language processing (NLP) have either focused on open-ended causal reasoning via causal commonsense reasoning (CCR) or framed a symbolic representation-based question answering for theoretically backed-up analysis via a causal inference engine. The former adds an advantage of real-world grounding but lacks theoretically backed-up analysis/validation, whereas the latter is far from real-world grounding. In this work, we bridge this gap by proposing the COLD (Causal reasOning in cLosed Daily activities) framework, which is built upon human understanding of daily real-world activities to reason about the causal nature of events. We show that the proposed framework facilitates the creation of enormous causal queries (~ 9 million) and comes close to the mini-turing test, simulating causal reasoning to evaluate the understanding of a daily real-world task. We evaluate multiple LLMs on the created causal queries and find that causal reasoning is challenging even for activities trivial to humans. We further explore (the causal reasoning abilities of LLMs) using the backdoor criterion to determine the causal strength between events.
DisGeM: Distractor Generation for Multiple Choice Questions with Span Masking
Recent advancements in Natural Language Processing (NLP) have impacted numerous sub-fields such as natural language generation, natural language inference, question answering, and more. However, in the field of question generation, the creation of distractors for multiple-choice questions (MCQ) remains a challenging task. In this work, we present a simple, generic framework for distractor generation using readily available Pre-trained Language Models (PLMs). Unlike previous methods, our framework relies solely on pre-trained language models and does not require additional training on specific datasets. Building upon previous research, we introduce a two-stage framework consisting of candidate generation and candidate selection. Our proposed distractor generation framework outperforms previous methods without the need for training or fine-tuning. Human evaluations confirm that our approach produces more effective and engaging distractors. The related codebase is publicly available at https://github.com/obss/disgem.
UDKAG: Augmenting Large Vision-Language Models with Up-to-Date Knowledge
Large vision-language models (LVLMs) are ignorant of the up-to-date knowledge, such as LLaVA series, because they cannot be updated frequently due to the large amount of resources required, and therefore fail in many cases. For example, if a LVLM was released on January 2024, and it wouldn't know the detailed plot of the new movie Dune 2, which wasn't released until February 2024. To solve the problem, a promising solution is to provide LVLMs with up-to-date knowledge via internet search during inference, i.e., internet-augmented generation (IAG), which is already integrated in some closed-source commercial LVLMs such as GPT-4V. However, the specific mechanics underpinning them remain a mystery. In this paper, we propose a plug-and-play framework, for augmenting existing LVLMs in handling visual question answering (VQA) about up-to-date knowledge, dubbed UDKAG. A hierarchical filtering model is trained to effectively and efficiently find the most helpful content from the websites returned by a search engine to prompt LVLMs with up-to-date knowledge. To train the model and evaluate our framework's performance, we propose a pipeline to automatically generate news-related VQA samples to construct a dataset, dubbed UDK-VQA. A multi-model voting mechanism is introduced to label the usefulness of website/content for VQA samples to construct the training set. Experimental results demonstrate the effectiveness of our framework, outperforming GPT-4V by about 25% in accuracy.
Benchmarking Retrieval-Augmented Large Language Models in Biomedical NLP: Application, Robustness, and Self-Awareness
Large language models (LLM) have demonstrated remarkable capabilities in various biomedical natural language processing (NLP) tasks, leveraging the demonstration within the input context to adapt to new tasks. However, LLM is sensitive to the selection of demonstrations. To address the hallucination issue inherent in LLM, retrieval-augmented LLM (RAL) offers a solution by retrieving pertinent information from an established database. Nonetheless, existing research work lacks rigorous evaluation of the impact of retrieval-augmented large language models on different biomedical NLP tasks. This deficiency makes it challenging to ascertain the capabilities of RAL within the biomedical domain. Moreover, the outputs from RAL are affected by retrieving the unlabeled, counterfactual, or diverse knowledge that is not well studied in the biomedical domain. However, such knowledge is common in the real world. Finally, exploring the self-awareness ability is also crucial for the RAL system. So, in this paper, we systematically investigate the impact of RALs on 5 different biomedical tasks (triple extraction, link prediction, classification, question answering, and natural language inference). We analyze the performance of RALs in four fundamental abilities, including unlabeled robustness, counterfactual robustness, diverse robustness, and negative awareness. To this end, we proposed an evaluation framework to assess the RALs' performance on different biomedical NLP tasks and establish four different testbeds based on the aforementioned fundamental abilities. Then, we evaluate 3 representative LLMs with 3 different retrievers on 5 tasks over 9 datasets.
FaBERT: Pre-training BERT on Persian Blogs
We introduce FaBERT, a Persian BERT-base model pre-trained on the HmBlogs corpus, encompassing both informal and formal Persian texts. FaBERT is designed to excel in traditional Natural Language Understanding (NLU) tasks, addressing the intricacies of diverse sentence structures and linguistic styles prevalent in the Persian language. In our comprehensive evaluation of FaBERT on 12 datasets in various downstream tasks, encompassing Sentiment Analysis (SA), Named Entity Recognition (NER), Natural Language Inference (NLI), Question Answering (QA), and Question Paraphrasing (QP), it consistently demonstrated improved performance, all achieved within a compact model size. The findings highlight the importance of utilizing diverse and cleaned corpora, such as HmBlogs, to enhance the performance of language models like BERT in Persian Natural Language Processing (NLP) applications. FaBERT is openly accessible at https://huggingface.co/sbunlp/fabert
Large language models in healthcare and medical domain: A review
The deployment of large language models (LLMs) within the healthcare sector has sparked both enthusiasm and apprehension. These models exhibit the remarkable capability to provide proficient responses to free-text queries, demonstrating a nuanced understanding of professional medical knowledge. This comprehensive survey delves into the functionalities of existing LLMs designed for healthcare applications, elucidating the trajectory of their development, starting from traditional Pretrained Language Models (PLMs) to the present state of LLMs in healthcare sector. First, we explore the potential of LLMs to amplify the efficiency and effectiveness of diverse healthcare applications, particularly focusing on clinical language understanding tasks. These tasks encompass a wide spectrum, ranging from named entity recognition and relation extraction to natural language inference, multi-modal medical applications, document classification, and question-answering. Additionally, we conduct an extensive comparison of the most recent state-of-the-art LLMs in the healthcare domain, while also assessing the utilization of various open-source LLMs and highlighting their significance in healthcare applications. Furthermore, we present the essential performance metrics employed to evaluate LLMs in the biomedical domain, shedding light on their effectiveness and limitations. Finally, we summarize the prominent challenges and constraints faced by large language models in the healthcare sector, offering a holistic perspective on their potential benefits and shortcomings. This review provides a comprehensive exploration of the current landscape of LLMs in healthcare, addressing their role in transforming medical applications and the areas that warrant further research and development.
Monotone deep Boltzmann machines
Deep Boltzmann machines (DBMs), one of the first ``deep'' learning methods ever studied, are multi-layered probabilistic models governed by a pairwise energy function that describes the likelihood of all variables/nodes in the network. In practice, DBMs are often constrained, i.e., via the restricted Boltzmann machine (RBM) architecture (which does not permit intra-layer connections), in order to allow for more efficient inference. In this work, we revisit the generic DBM approach, and ask the question: are there other possible restrictions to their design that would enable efficient (approximate) inference? In particular, we develop a new class of restricted model, the monotone DBM, which allows for arbitrary self-connection in each layer, but restricts the weights in a manner that guarantees the existence and global uniqueness of a mean-field fixed point. To do this, we leverage tools from the recently-proposed monotone Deep Equilibrium model and show that a particular choice of activation results in a fixed-point iteration that gives a variational mean-field solution. While this approach is still largely conceptual, it is the first architecture that allows for efficient approximate inference in fully-general weight structures for DBMs. We apply this approach to simple deep convolutional Boltzmann architectures and demonstrate that it allows for tasks such as the joint completion and classification of images, within a single deep probabilistic setting, while avoiding the pitfalls of mean-field inference in traditional RBMs.
ChatGPT as a Factual Inconsistency Evaluator for Text Summarization
The performance of text summarization has been greatly boosted by pre-trained language models. A main concern of existing methods is that most generated summaries are not factually inconsistent with their source documents. To alleviate the problem, many efforts have focused on developing effective factuality evaluation metrics based on natural language inference, question answering, and syntactic dependency et al. However, these approaches are limited by either their high computational complexity or the uncertainty introduced by multi-component pipelines, resulting in only partial agreement with human judgement. Most recently, large language models(LLMs) have shown excellent performance in not only text generation but also language comprehension. In this paper, we particularly explore ChatGPT's ability to evaluate factual inconsistency under a zero-shot setting by examining it on both coarse-grained and fine-grained evaluation tasks including binary entailment inference, summary ranking, and consistency rating. Experimental results indicate that ChatGPT generally outperforms previous evaluation metrics across the three tasks, indicating its great potential for factual inconsistency evaluation. However, a closer inspection of ChatGPT's output reveals certain limitations including its preference for more lexically similar candidates, false reasoning, and inadequate understanding of instructions.
WeCheck: Strong Factual Consistency Checker via Weakly Supervised Learning
A crucial issue of current text generation models is that they often uncontrollably generate factually inconsistent text with respective of their inputs. Limited by the lack of annotated data, existing works in evaluating factual consistency directly transfer the reasoning ability of models trained on other data-rich upstream tasks like question answering (QA) and natural language inference (NLI) without any further adaptation. As a result, they perform poorly on the real generated text and are biased heavily by their single-source upstream tasks. To alleviate this problem, we propose a weakly supervised framework that aggregates multiple resources to train a precise and efficient factual metric, namely WeCheck. WeCheck first utilizes a generative model to accurately label a real generated sample by aggregating its weak labels, which are inferred from multiple resources. Then, we train the target metric model with the weak supervision while taking noises into consideration. Comprehensive experiments on a variety of tasks demonstrate the strong performance of WeCheck, which achieves a 3.4\% absolute improvement over previous state-of-the-art methods on TRUE benchmark on average.
Toward Efficient Language Model Pretraining and Downstream Adaptation via Self-Evolution: A Case Study on SuperGLUE
This technical report briefly describes our JDExplore d-team's Vega v2 submission on the SuperGLUE leaderboard. SuperGLUE is more challenging than the widely used general language understanding evaluation (GLUE) benchmark, containing eight difficult language understanding tasks, including question answering, natural language inference, word sense disambiguation, coreference resolution, and reasoning. [Method] Instead of arbitrarily increasing the size of a pretrained language model (PLM), our aim is to 1) fully extract knowledge from the input pretraining data given a certain parameter budget, e.g., 6B, and 2) effectively transfer this knowledge to downstream tasks. To achieve goal 1), we propose self-evolution learning for PLMs to wisely predict the informative tokens that should be masked, and supervise the masked language modeling (MLM) process with rectified smooth labels. For goal 2), we leverage the prompt transfer technique to improve the low-resource tasks by transferring the knowledge from the foundation model and related downstream tasks to the target task. [Results] According to our submission record (Oct. 2022), with our optimized pretraining and fine-tuning strategies, our 6B Vega method achieved new state-of-the-art performance on 4/8 tasks, sitting atop the SuperGLUE leaderboard on Oct. 8, 2022, with an average score of 91.3.
RuBioRoBERTa: a pre-trained biomedical language model for Russian language biomedical text mining
This paper presents several BERT-based models for Russian language biomedical text mining (RuBioBERT, RuBioRoBERTa). The models are pre-trained on a corpus of freely available texts in the Russian biomedical domain. With this pre-training, our models demonstrate state-of-the-art results on RuMedBench - Russian medical language understanding benchmark that covers a diverse set of tasks, including text classification, question answering, natural language inference, and named entity recognition.
Distilled Dual-Encoder Model for Vision-Language Understanding
We propose a cross-modal attention distillation framework to train a dual-encoder model for vision-language understanding tasks, such as visual reasoning and visual question answering. Dual-encoder models have a faster inference speed than fusion-encoder models and enable the pre-computation of images and text during inference. However, the shallow interaction module used in dual-encoder models is insufficient to handle complex vision-language understanding tasks. In order to learn deep interactions of images and text, we introduce cross-modal attention distillation, which uses the image-to-text and text-to-image attention distributions of a fusion-encoder model to guide the training of our dual-encoder model. In addition, we show that applying the cross-modal attention distillation for both pre-training and fine-tuning stages achieves further improvements. Experimental results demonstrate that the distilled dual-encoder model achieves competitive performance for visual reasoning, visual entailment and visual question answering tasks while enjoying a much faster inference speed than fusion-encoder models. Our code and models will be publicly available at https://github.com/kugwzk/Distilled-DualEncoder.
SciFive: a text-to-text transformer model for biomedical literature
In this report, we introduce SciFive, a domain-specific T5 model that has been pre-trained on large biomedical corpora. Our model outperforms the current SOTA methods (i.e. BERT, BioBERT, Base T5) on tasks in named entity relation, relation extraction, natural language inference, and question-answering. We show that text-generation methods have significant potential in a broad array of biomedical NLP tasks, particularly those requiring longer, more complex outputs. Our results support the exploration of more difficult text generation tasks and the development of new methods in this area
HERO: Hierarchical Encoder for Video+Language Omni-representation Pre-training
We present HERO, a novel framework for large-scale video+language omni-representation learning. HERO encodes multimodal inputs in a hierarchical structure, where local context of a video frame is captured by a Cross-modal Transformer via multimodal fusion, and global video context is captured by a Temporal Transformer. In addition to standard Masked Language Modeling (MLM) and Masked Frame Modeling (MFM) objectives, we design two new pre-training tasks: (i) Video-Subtitle Matching (VSM), where the model predicts both global and local temporal alignment; and (ii) Frame Order Modeling (FOM), where the model predicts the right order of shuffled video frames. HERO is jointly trained on HowTo100M and large-scale TV datasets to gain deep understanding of complex social dynamics with multi-character interactions. Comprehensive experiments demonstrate that HERO achieves new state of the art on multiple benchmarks over Text-based Video/Video-moment Retrieval, Video Question Answering (QA), Video-and-language Inference and Video Captioning tasks across different domains. We also introduce two new challenging benchmarks How2QA and How2R for Video QA and Retrieval, collected from diverse video content over multimodalities.
EasyRAG: Efficient Retrieval-Augmented Generation Framework for Automated Network Operations
This paper presents EasyRAG, a simple, lightweight, and efficient retrieval-augmented generation framework for automated network operations. Our framework has three advantages. The first is accurate question answering. We designed a straightforward RAG scheme based on (1) a specific data processing workflow (2) dual-route sparse retrieval for coarse ranking (3) LLM Reranker for reranking (4) LLM answer generation and optimization. This approach achieved first place in the GLM4 track in the preliminary round and second place in the GLM4 track in the semifinals. The second is simple deployment. Our method primarily consists of BM25 retrieval and BGE-reranker reranking, requiring no fine-tuning of any models, occupying minimal VRAM, easy to deploy, and highly scalable; we provide a flexible code library with various search and generation strategies, facilitating custom process implementation. The last one is efficient inference. We designed an efficient inference acceleration scheme for the entire coarse ranking, reranking, and generation process that significantly reduces the inference latency of RAG while maintaining a good level of accuracy; each acceleration scheme can be plug-and-play into any component of the RAG process, consistently enhancing the efficiency of the RAG system. Our code and data are released at https://github.com/BUAADreamer/EasyRAG.
Does Your Vision-Language Model Get Lost in the Long Video Sampling Dilemma?
The rise of Large Vision-Language Models (LVLMs) has significantly advanced video understanding. However, efficiently processing long videos remains a challenge due to the ``Sampling Dilemma'': low-density sampling risks missing critical information, while high-density sampling introduces redundancy. To address this issue, we introduce LSDBench, the first benchmark designed to evaluate LVLMs on long-video tasks by constructing high Necessary Sampling Density (NSD) questions, where NSD represents the minimum sampling density required to accurately answer a given question. LSDBench focuses on dense, short-duration actions to rigorously assess the sampling strategies employed by LVLMs. To tackle the challenges posed by high-NSD questions, we propose a novel Reasoning-Driven Hierarchical Sampling (RHS) framework, which combines global localization of question-relevant cues with local dense sampling for precise inference. Additionally, we develop a lightweight Semantic-Guided Frame Selector to prioritize informative frames, enabling RHS to achieve comparable or superior performance with significantly fewer sampled frames. Together, our LSDBench and RHS framework address the unique challenges of high-NSD long-video tasks, setting a new standard for evaluating and improving LVLMs in this domain.
ChEF: A Comprehensive Evaluation Framework for Standardized Assessment of Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have shown impressive abilities in interacting with visual content with myriad potential downstream tasks. However, even though a list of benchmarks has been proposed, the capabilities and limitations of MLLMs are still not comprehensively understood, due to a lack of a standardized and holistic evaluation framework. To this end, we present the first Comprehensive Evaluation Framework (ChEF) that can holistically profile each MLLM and fairly compare different MLLMs. First, we structure ChEF as four modular components, i.e., Scenario as scalable multimodal datasets, Instruction as flexible instruction retrieving formulae, Inferencer as reliable question answering strategies, and Metric as indicative task-specific score functions. Based on them, ChEF facilitates versatile evaluations in a standardized framework, and new evaluations can be built by designing new Recipes (systematic selection of these four components). Notably, current MLLM benchmarks can be readily summarized as recipes of ChEF. Second, we introduce 6 new recipes to quantify competent MLLMs' desired capabilities (or called desiderata, i.e., calibration, in-context learning, instruction following, language performance, hallucination, and robustness) as reliable agents that can perform real-world multimodal interactions. Third, we conduct a large-scale evaluation of 9 prominent MLLMs on 9 scenarios and 6 desiderata. Our evaluation summarized over 20 valuable observations concerning the generalizability of MLLMs across various scenarios and the composite capability of MLLMs required for multimodal interactions. We will publicly release all the detailed implementations for further analysis, as well as an easy-to-use modular toolkit for the integration of new recipes and models, so that ChEF can be a growing evaluation framework for the MLLM community.
UAV-VL-R1: Generalizing Vision-Language Models via Supervised Fine-Tuning and Multi-Stage GRPO for UAV Visual Reasoning
Recent advances in vision-language models (VLMs) have demonstrated strong generalization in natural image tasks. However, their performance often degrades on unmanned aerial vehicle (UAV)-based aerial imagery, which features high resolution, complex spatial semantics, and strict real-time constraints. These challenges limit the applicability of general-purpose VLMs to structured aerial reasoning tasks. To address these challenges, we propose UAV-VL-R1, a lightweight VLM explicitly designed for aerial visual reasoning. It is trained using a hybrid method that combines supervised fine-tuning (SFT) and multi-stage reinforcement learning (RL). We leverage the group relative policy optimization (GRPO) algorithm to promote structured and interpretable reasoning through rule-guided rewards and intra-group policy alignment. To support model training and evaluation, we introduce a high-resolution visual question answering dataset named HRVQA-VL, which consists of 50,019 annotated samples covering eight UAV-relevant reasoning tasks, including object counting, transportation recognition, and spatial scene inference. Experimental results show that UAV-VL-R1 achieves a 48.17% higher zero-shot accuracy than the Qwen2-VL-2B-Instruct baseline and even outperforms its 72B-scale variant, which is 36x larger, on multiple tasks. Ablation studies reveal that while SFT improves semantic alignment, it may reduce reasoning diversity in mathematical tasks. GRPO-based RL compensates for this limitation by enhancing logical flexibility and the robustness of inference. Additionally, UAV-VL-R1 requires only 3.9GB of memory under FP16 inference and can be quantized to 2.5GB with INT8, supporting real-time deployment on resource-constrained UAV platforms.
MedHal: An Evaluation Dataset for Medical Hallucination Detection
We present MedHal, a novel large-scale dataset specifically designed to evaluate if models can detect hallucinations in medical texts. Current hallucination detection methods face significant limitations when applied to specialized domains like medicine, where they can have disastrous consequences. Existing medical datasets are either too small, containing only a few hundred samples, or focus on a single task like Question Answering or Natural Language Inference. MedHal addresses these gaps by: (1) incorporating diverse medical text sources and tasks; (2) providing a substantial volume of annotated samples suitable for training medical hallucination detection models; and (3) including explanations for factual inconsistencies to guide model learning. We demonstrate MedHal's utility by training and evaluating a baseline medical hallucination detection model, showing improvements over general-purpose hallucination detection approaches. This resource enables more efficient evaluation of medical text generation systems while reducing reliance on costly expert review, potentially accelerating the development of medical AI research.
Revisiting Parallel Context Windows: A Frustratingly Simple Alternative and Chain-of-Thought Deterioration
We identify two crucial limitations in the evaluation of recent parallel-integrated method Parallel Context Windows (PCW), which extends the maximum context lengths of language models, e.g., 2048 for LLaMA, by harnessing window-wise attention and positional embedding techniques. We first show that a simple yet strong baseline, weighted sum ensemble, is missing for the in-context few-shot classification. Moreover, on more challenging Chain-of-Thought (CoT) reasoning (e.g., HotpotQA), PCW would present unexpected deterioration regarding question miscomprehension and false inference. Based on our findings, we suggest that the existing PCW design may not guarantee sufficient improvement and practicality in handling lengthy documents in real-world applications. More community efforts on enabling language models' long context understanding ability should be paid.
BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions
In this paper we study yes/no questions that are naturally occurring --- meaning that they are generated in unprompted and unconstrained settings. We build a reading comprehension dataset, BoolQ, of such questions, and show that they are unexpectedly challenging. They often query for complex, non-factoid information, and require difficult entailment-like inference to solve. We also explore the effectiveness of a range of transfer learning baselines. We find that transferring from entailment data is more effective than transferring from paraphrase or extractive QA data, and that it, surprisingly, continues to be very beneficial even when starting from massive pre-trained language models such as BERT. Our best method trains BERT on MultiNLI and then re-trains it on our train set. It achieves 80.4% accuracy compared to 90% accuracy of human annotators (and 62% majority-baseline), leaving a significant gap for future work.
Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute
Recent advancements in software engineering agents have demonstrated promising capabilities in automating program improvements. However, their reliance on closed-source or resource-intensive models introduces significant deployment challenges in private environments, prompting a critical question: How can personally deployable open-source LLMs achieve comparable code reasoning performance? To this end, we propose a unified Test-Time Compute scaling framework that leverages increased inference-time computation instead of larger models. Our framework incorporates two complementary strategies: internal TTC and external TTC. Internally, we introduce a development-contextualized trajectory synthesis method leveraging real-world software repositories to bootstrap multi-stage reasoning processes, such as fault localization and patch generation. We further enhance trajectory quality through rejection sampling, rigorously evaluating trajectories along accuracy and complexity. Externally, we propose a novel development-process-based search strategy guided by reward models and execution verification. This approach enables targeted computational allocation at critical development decision points, overcoming limitations of existing "end-point only" verification methods. Evaluations on SWE-bench Verified demonstrate our 32B model achieves a 46\% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1. Additionally, we provide the empirical validation of the test-time scaling phenomenon within SWE agents, revealing that models dynamically allocate more tokens to increasingly challenging problems, effectively enhancing reasoning capabilities. We publicly release all training data, models, and code to facilitate future research. https://github.com/yingweima2022/SWE-Reasoner
Unifying Large Language Models and Knowledge Graphs: A Roadmap
Large language models (LLMs), such as ChatGPT and GPT4, are making new waves in the field of natural language processing and artificial intelligence, due to their emergent ability and generalizability. However, LLMs are black-box models, which often fall short of capturing and accessing factual knowledge. In contrast, Knowledge Graphs (KGs), Wikipedia and Huapu for example, are structured knowledge models that explicitly store rich factual knowledge. KGs can enhance LLMs by providing external knowledge for inference and interpretability. Meanwhile, KGs are difficult to construct and evolving by nature, which challenges the existing methods in KGs to generate new facts and represent unseen knowledge. Therefore, it is complementary to unify LLMs and KGs together and simultaneously leverage their advantages. In this article, we present a forward-looking roadmap for the unification of LLMs and KGs. Our roadmap consists of three general frameworks, namely, 1) KG-enhanced LLMs, which incorporate KGs during the pre-training and inference phases of LLMs, or for the purpose of enhancing understanding of the knowledge learned by LLMs; 2) LLM-augmented KGs, that leverage LLMs for different KG tasks such as embedding, completion, construction, graph-to-text generation, and question answering; and 3) Synergized LLMs + KGs, in which LLMs and KGs play equal roles and work in a mutually beneficial way to enhance both LLMs and KGs for bidirectional reasoning driven by both data and knowledge. We review and summarize existing efforts within these three frameworks in our roadmap and pinpoint their future research directions.
Efficient Transformer Knowledge Distillation: A Performance Review
As pretrained transformer language models continue to achieve state-of-the-art performance, the Natural Language Processing community has pushed for advances in model compression and efficient attention mechanisms to address high computational requirements and limited input sequence length. Despite these separate efforts, no investigation has been done into the intersection of these two fields. In this work, we provide an evaluation of model compression via knowledge distillation on efficient attention transformers. We provide cost-performance trade-offs for the compression of state-of-the-art efficient attention architectures and the gains made in performance in comparison to their full attention counterparts. Furthermore, we introduce a new long-context Named Entity Recognition dataset, GONERD, to train and test the performance of NER models on long sequences. We find that distilled efficient attention transformers can preserve a significant amount of original model performance, preserving up to 98.6% across short-context tasks (GLUE, SQUAD, CoNLL-2003), up to 94.6% across long-context Question-and-Answering tasks (HotpotQA, TriviaQA), and up to 98.8% on long-context Named Entity Recognition (GONERD), while decreasing inference times by up to 57.8%. We find that, for most models on most tasks, performing knowledge distillation is an effective method to yield high-performing efficient attention models with low costs.
Faithful Chain-of-Thought Reasoning
While Chain-of-Thought (CoT) prompting boosts Language Models' (LM) performance on a gamut of complex reasoning tasks, the generated reasoning chain does not necessarily reflect how the model arrives at the answer (aka. faithfulness). We propose Faithful CoT, a faithful-by-construction framework that decomposes a reasoning task into two stages: Translation (Natural Language query rightarrow symbolic reasoning chain) and Problem Solving (reasoning chain rightarrow answer), using an LM and a deterministic solver respectively. We demonstrate the efficacy of our approach on 10 reasoning datasets from 4 diverse domains. It outperforms traditional CoT prompting on 9 out of the 10 datasets, with an average accuracy gain of 4.4 on Math Word Problems, 1.9 on Planning, 4.0 on Multi-hop Question Answering (QA), and 18.1 on Logical Inference, under greedy decoding. Together with self-consistency decoding, we achieve new state-of-the-art few-shot performance on 7 out of the 10 datasets, showing a strong synergy between faithfulness and accuracy.
ERNIE: Enhanced Representation through Knowledge Integration
We present a novel language representation model enhanced by knowledge called ERNIE (Enhanced Representation through kNowledge IntEgration). Inspired by the masking strategy of BERT, ERNIE is designed to learn language representation enhanced by knowledge masking strategies, which includes entity-level masking and phrase-level masking. Entity-level strategy masks entities which are usually composed of multiple words.Phrase-level strategy masks the whole phrase which is composed of several words standing together as a conceptual unit.Experimental results show that ERNIE outperforms other baseline methods, achieving new state-of-the-art results on five Chinese natural language processing tasks including natural language inference, semantic similarity, named entity recognition, sentiment analysis and question answering. We also demonstrate that ERNIE has more powerful knowledge inference capacity on a cloze test.
MindGYM: Enhancing Vision-Language Models via Synthetic Self-Challenging Questions
Large vision-language models (VLMs) face challenges in achieving robust, transferable reasoning abilities due to reliance on labor-intensive manual instruction datasets or computationally expensive self-supervised methods. To address these issues, we introduce MindGYM, a framework that enhances VLMs through synthetic self-challenging questions, consisting of three stages: (1) Seed Single-Hop Question Synthesis, generating cognitive questions across textual (e.g., logical deduction) and multimodal contexts (e.g., diagram-based queries) spanning eight semantic areas like ethical analysis; (2) Challenging Multi-Hop Question Synthesis, combining seed questions via diverse principles like bridging, visual-textual alignment, to create multi-step problems demanding deeper reasoning; and (3) Thinking-Induced Curriculum Fine-Tuning, a structured pipeline that progressively trains the model from scaffolded reasoning to standalone inference. By leveraging the model's self-synthesis capability, MindGYM achieves high data efficiency (e.g., +16% gains on MathVision-Mini with only 400 samples), computational efficiency (reducing both training and inference costs), and robust generalization across tasks. Extensive evaluations on seven benchmarks demonstrate superior performance over strong baselines, with notable improvements (+15.77% win rates) in reasoning depth and breadth validated via GPT-based scoring. MindGYM underscores the viability of self-challenging for refining VLM capabilities while minimizing human intervention and resource demands. Code and data are released to advance multimodal reasoning research.
Vital Insight: Assisting Experts' Sensemaking Process of Multi-modal Personal Tracking Data Using Visualization and LLM
Researchers have long recognized the socio-technical gaps in personal tracking research, where machines can never fully model the complexity of human behavior, making it only able to produce basic rule-based outputs or "black-box" results that lack clear explanations. Real-world deployments rely on experts for this complex translation from sparse data to meaningful insights. In this study, we consider this translation process from data to insights by experts as "sensemaking" and explore how HCI researchers can support it through Vital Insight, an evidence-based 'sensemaking' system that combines direct representation and indirect inference through visualization and Large Language Models. We evaluate Vital Insight in user testing sessions with 14 experts in multi-modal tracking, synthesize design implications, and develop an expert sensemaking model where they iteratively move between direct data representations and AI-supported inferences to explore, retrieve, question, and validate insights.
Bag of Tricks for Effective Language Model Pretraining and Downstream Adaptation: A Case Study on GLUE
This technical report briefly describes our JDExplore d-team's submission Vega v1 on the General Language Understanding Evaluation (GLUE) leaderboard, where GLUE is a collection of nine natural language understanding tasks, including question answering, linguistic acceptability, sentiment analysis, text similarity, paraphrase detection, and natural language inference. [Method] We investigate several effective strategies and choose their best combination setting as the training recipes. As for model structure, we employ the vanilla Transformer with disentangled attention as the basic block encoder. For self-supervised training, we employ the representative denoising objective (i.e., replaced token detection) in phase 1 and combine the contrastive objective (i.e., sentence embedding contrastive learning) with it in phase 2. During fine-tuning, several advanced techniques such as transductive fine-tuning, self-calibrated fine-tuning, and adversarial fine-tuning are adopted. [Results] According to our submission record (Jan. 2022), with our optimized pretraining and fine-tuning strategies, our 1.3 billion model sets new state-of-the-art on 4/9 tasks, achieving the best average score of 91.3. Encouragingly, our Vega v1 is the first to exceed powerful human performance on the two challenging tasks, i.e., SST-2 and WNLI. We believe our empirically successful recipe with a bag of tricks could shed new light on developing efficient discriminative large language models.
GatorTron: A Large Clinical Language Model to Unlock Patient Information from Unstructured Electronic Health Records
There is an increasing interest in developing artificial intelligence (AI) systems to process and interpret electronic health records (EHRs). Natural language processing (NLP) powered by pretrained language models is the key technology for medical AI systems utilizing clinical narratives. However, there are few clinical language models, the largest of which trained in the clinical domain is comparatively small at 110 million parameters (compared with billions of parameters in the general domain). It is not clear how large clinical language models with billions of parameters can help medical AI systems utilize unstructured EHRs. In this study, we develop from scratch a large clinical language model - GatorTron - using >90 billion words of text (including >82 billion words of de-identified clinical text) and systematically evaluate it on 5 clinical NLP tasks including clinical concept extraction, medical relation extraction, semantic textual similarity, natural language inference (NLI), and medical question answering (MQA). We examine how (1) scaling up the number of parameters and (2) scaling up the size of the training data could benefit these NLP tasks. GatorTron models scale up the clinical language model from 110 million to 8.9 billion parameters and improve 5 clinical NLP tasks (e.g., 9.6% and 9.5% improvement in accuracy for NLI and MQA), which can be applied to medical AI systems to improve healthcare delivery. The GatorTron models are publicly available at: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/models/gatortron_og.
StructBERT: Incorporating Language Structures into Pre-training for Deep Language Understanding
Recently, the pre-trained language model, BERT (and its robustly optimized version RoBERTa), has attracted a lot of attention in natural language understanding (NLU), and achieved state-of-the-art accuracy in various NLU tasks, such as sentiment classification, natural language inference, semantic textual similarity and question answering. Inspired by the linearization exploration work of Elman [8], we extend BERT to a new model, StructBERT, by incorporating language structures into pre-training. Specifically, we pre-train StructBERT with two auxiliary tasks to make the most of the sequential order of words and sentences, which leverage language structures at the word and sentence levels, respectively. As a result, the new model is adapted to different levels of language understanding required by downstream tasks. The StructBERT with structural pre-training gives surprisingly good empirical results on a variety of downstream tasks, including pushing the state-of-the-art on the GLUE benchmark to 89.0 (outperforming all published models), the F1 score on SQuAD v1.1 question answering to 93.0, the accuracy on SNLI to 91.7.
Passage Re-ranking with BERT
Recently, neural models pretrained on a language modeling task, such as ELMo (Peters et al., 2017), OpenAI GPT (Radford et al., 2018), and BERT (Devlin et al., 2018), have achieved impressive results on various natural language processing tasks such as question-answering and natural language inference. In this paper, we describe a simple re-implementation of BERT for query-based passage re-ranking. Our system is the state of the art on the TREC-CAR dataset and the top entry in the leaderboard of the MS MARCO passage retrieval task, outperforming the previous state of the art by 27% (relative) in MRR@10. The code to reproduce our results is available at https://github.com/nyu-dl/dl4marco-bert
A Survey on Inference Engines for Large Language Models: Perspectives on Optimization and Efficiency
Large language models (LLMs) are widely applied in chatbots, code generators, and search engines. Workloads such as chain-of-thought, complex reasoning, and agent services significantly increase the inference cost by invoking the model repeatedly. Optimization methods such as parallelism, compression, and caching have been adopted to reduce costs, but the diverse service requirements make it hard to select the right method. Recently, specialized LLM inference engines have emerged as a key component for integrating the optimization methods into service-oriented infrastructures. However, a systematic study on inference engines is still lacking. This paper provides a comprehensive evaluation of 25 open-source and commercial inference engines. We examine each inference engine in terms of ease-of-use, ease-of-deployment, general-purpose support, scalability, and suitability for throughput- and latency-aware computation. Furthermore, we explore the design goals of each inference engine by investigating the optimization techniques it supports. In addition, we assess the ecosystem maturity of open source inference engines and handle the performance and cost policy of commercial solutions. We outline future research directions that include support for complex LLM-based services, support of various hardware, and enhanced security, offering practical guidance to researchers and developers in selecting and designing optimized LLM inference engines. We also provide a public repository to continually track developments in this fast-evolving field: https://github.com/sihyeong/Awesome-LLM-Inference-Engine
A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers
Readers of academic research papers often read with the goal of answering specific questions. Question Answering systems that can answer those questions can make consumption of the content much more efficient. However, building such tools requires data that reflect the difficulty of the task arising from complex reasoning about claims made in multiple parts of a paper. In contrast, existing information-seeking question answering datasets usually contain questions about generic factoid-type information. We therefore present QASPER, a dataset of 5,049 questions over 1,585 Natural Language Processing papers. Each question is written by an NLP practitioner who read only the title and abstract of the corresponding paper, and the question seeks information present in the full text. The questions are then answered by a separate set of NLP practitioners who also provide supporting evidence to answers. We find that existing models that do well on other QA tasks do not perform well on answering these questions, underperforming humans by at least 27 F1 points when answering them from entire papers, motivating further research in document-grounded, information-seeking QA, which our dataset is designed to facilitate.
Won't Get Fooled Again: Answering Questions with False Premises
Pre-trained language models (PLMs) have shown unprecedented potential in various fields, especially as the backbones for question-answering (QA) systems. However, they tend to be easily deceived by tricky questions such as "How many eyes does the sun have?". Such frailties of PLMs often allude to the lack of knowledge within them. In this paper, we find that the PLMs already possess the knowledge required to rebut such questions, and the key is how to activate the knowledge. To systematize this observation, we investigate the PLMs' responses to one kind of tricky questions, i.e., the false premises questions (FPQs). We annotate a FalseQA dataset containing 2365 human-written FPQs, with the corresponding explanations for the false premises and the revised true premise questions. Using FalseQA, we discover that PLMs are capable of discriminating FPQs by fine-tuning on moderate numbers (e.g., 256) of examples. PLMs also generate reasonable explanations for the false premise, which serve as rebuttals. Further replaying a few general questions during training allows PLMs to excel on FPQs and general questions simultaneously. Our work suggests that once the rebuttal ability is stimulated, knowledge inside the PLMs can be effectively utilized to handle FPQs, which incentivizes the research on PLM-based QA systems.
Probabilistic Tree-of-thought Reasoning for Answering Knowledge-intensive Complex Questions
Large language models (LLMs) are capable of answering knowledge-intensive complex questions with chain-of-thought (CoT) reasoning. However, they tend to generate factually incorrect reasoning steps when the required knowledge is not available or up-to-date in models' parameters. Recent works turn to retrieving external knowledge to augment CoT reasoning. Despite being promising, these chain-based methods suffer from: 1) Negative retrieval. Unnecessary or incorrect retrieval may mislead the reasoning; 2) Limited sight. Lacking the ability to look backward or forward, a local error in one step will propagate along the chain. In this paper, we propose a novel approach: Probabilistic Tree-of-thought Reasoning (ProbTree). First, LLMs translate a complex question into a query tree, in which each non-root node denotes a sub-question of its parent node. Then, probabilistic reasoning is conducted over the tree, by solving questions from leaf to root considering the confidence of both question decomposing and answering. During reasoning, for leaf nodes, LLMs choose a more confident answer from Closed-book QA that employs parametric knowledge and Open-book QA that employs retrieved external knowledge, thus eliminating the negative retrieval problem. For non-leaf nodes, with the hierarchical structure, LLMs have broader sights and are able to globally reason with the information from child nodes, thus recovering from local errors. The experiments on three Complex QA datasets under the open-domain setting show that our approach outperforms SOTA methods significantly, demonstrating the effect of probabilistic tree-of-thought reasoning.
RECKONING: Reasoning through Dynamic Knowledge Encoding
Recent studies on transformer-based language models show that they can answer questions by reasoning over knowledge provided as part of the context (i.e., in-context reasoning). However, since the available knowledge is often not filtered for a particular question, in-context reasoning can be sensitive to distractor facts, additional content that is irrelevant to a question but that may be relevant for a different question (i.e., not necessarily random noise). In these situations, the model fails to distinguish the knowledge that is necessary to answer the question, leading to spurious reasoning and degraded performance. This reasoning failure contrasts with the model's apparent ability to distinguish its contextual knowledge from all the knowledge it has memorized during pre-training. Following this observation, we propose teaching the model to reason more robustly by folding the provided contextual knowledge into the model's parameters before presenting it with a question. Our method, RECKONING, is a bi-level learning algorithm that teaches language models to reason by updating their parametric knowledge through back-propagation, allowing them to then answer questions using the updated parameters. During training, the inner loop rapidly adapts a copy of the model weights to encode contextual knowledge into its parameters. In the outer loop, the model learns to use the updated weights to reproduce and answer reasoning questions about the memorized knowledge. Our experiments on two multi-hop reasoning datasets show that RECKONING's performance improves over the in-context reasoning baseline (by up to 4.5%). We also find that compared to in-context reasoning, RECKONING generalizes better to longer reasoning chains unseen during training, is more robust to distractors in the context, and is more computationally efficient when multiple questions are asked about the same knowledge.
"I'd rather just go to bed": Understanding Indirect Answers
We revisit a pragmatic inference problem in dialog: understanding indirect responses to questions. Humans can interpret 'I'm starving.' in response to 'Hungry?', even without direct cue words such as 'yes' and 'no'. In dialog systems, allowing natural responses rather than closed vocabularies would be similarly beneficial. However, today's systems are only as sensitive to these pragmatic moves as their language model allows. We create and release the first large-scale English language corpus 'Circa' with 34,268 (polar question, indirect answer) pairs to enable progress on this task. The data was collected via elaborate crowdsourcing, and contains utterances with yes/no meaning, as well as uncertain, middle-ground, and conditional responses. We also present BERT-based neural models to predict such categories for a question-answer pair. We find that while transfer learning from entailment works reasonably, performance is not yet sufficient for robust dialog. Our models reach 82-88% accuracy for a 4-class distinction, and 74-85% for 6 classes.
PROST: Physical Reasoning of Objects through Space and Time
We present a new probing dataset named PROST: Physical Reasoning about Objects Through Space and Time. This dataset contains 18,736 multiple-choice questions made from 14 manually curated templates, covering 10 physical reasoning concepts. All questions are designed to probe both causal and masked language models in a zero-shot setting. We conduct an extensive analysis which demonstrates that state-of-the-art pretrained models are inadequate at physical reasoning: they are influenced by the order in which answer options are presented to them, they struggle when the superlative in a question is inverted (e.g., most <-> least), and increasing the amount of pretraining data and parameters only yields minimal improvements. These results provide support for the hypothesis that current pretrained models' ability to reason about physical interactions is inherently limited by a lack of real world experience. By highlighting these limitations, we hope to motivate the development of models with a human-like understanding of the physical world.
Hybrid LLM: Cost-Efficient and Quality-Aware Query Routing
Large language models (LLMs) excel in most NLP tasks but also require expensive cloud servers for deployment due to their size, while smaller models that can be deployed on lower cost (e.g., edge) devices, tend to lag behind in terms of response quality. Therefore in this work we propose a hybrid inference approach which combines their respective strengths to save cost and maintain quality. Our approach uses a router that assigns queries to the small or large model based on the predicted query difficulty and the desired quality level. The desired quality level can be tuned dynamically at test time to seamlessly trade quality for cost as per the scenario requirements. In experiments our approach allows us to make up to 40% fewer calls to the large model, with no drop in response quality.
Asking Questions the Human Way: Scalable Question-Answer Generation from Text Corpus
The ability to ask questions is important in both human and machine intelligence. Learning to ask questions helps knowledge acquisition, improves question-answering and machine reading comprehension tasks, and helps a chatbot to keep the conversation flowing with a human. Existing question generation models are ineffective at generating a large amount of high-quality question-answer pairs from unstructured text, since given an answer and an input passage, question generation is inherently a one-to-many mapping. In this paper, we propose Answer-Clue-Style-aware Question Generation (ACS-QG), which aims at automatically generating high-quality and diverse question-answer pairs from unlabeled text corpus at scale by imitating the way a human asks questions. Our system consists of: i) an information extractor, which samples from the text multiple types of assistive information to guide question generation; ii) neural question generators, which generate diverse and controllable questions, leveraging the extracted assistive information; and iii) a neural quality controller, which removes low-quality generated data based on text entailment. We compare our question generation models with existing approaches and resort to voluntary human evaluation to assess the quality of the generated question-answer pairs. The evaluation results suggest that our system dramatically outperforms state-of-the-art neural question generation models in terms of the generation quality, while being scalable in the meantime. With models trained on a relatively smaller amount of data, we can generate 2.8 million quality-assured question-answer pairs from a million sentences found in Wikipedia.
ProcBench: Benchmark for Multi-Step Reasoning and Following Procedure
Reasoning is central to a wide range of intellectual activities, and while the capabilities of large language models (LLMs) continue to advance, their performance in reasoning tasks remains limited. The processes and mechanisms underlying reasoning are not yet fully understood, but key elements include path exploration, selection of relevant knowledge, and multi-step inference. Problems are solved through the synthesis of these components. In this paper, we propose a benchmark that focuses on a specific aspect of reasoning ability: the direct evaluation of multi-step inference. To this end, we design a special reasoning task where multi-step inference is specifically focused by largely eliminating path exploration and implicit knowledge utilization. Our dataset comprises pairs of explicit instructions and corresponding questions, where the procedures necessary for solving the questions are entirely detailed within the instructions. This setup allows models to solve problems solely by following the provided directives. By constructing problems that require varying numbers of steps to solve and evaluating responses at each step, we enable a thorough assessment of state-of-the-art LLMs' ability to follow instructions. To ensure the robustness of our evaluation, we include multiple distinct tasks. Furthermore, by comparing accuracy across tasks, utilizing step-aware metrics, and applying separately defined measures of complexity, we conduct experiments that offer insights into the capabilities and limitations of LLMs in reasoning tasks. Our findings have significant implications for the development of LLMs and highlight areas for future research in advancing their reasoning abilities. Our dataset is available at https://huggingface.co/datasets/ifujisawa/procbench and code at https://github.com/ifujisawa/proc-bench.
Language Model Uncertainty Quantification with Attention Chain
Accurately quantifying a large language model's (LLM) predictive uncertainty is crucial for judging the reliability of its answers. While most existing research focuses on short, directly answerable questions with closed-form outputs (e.g., multiple-choice), involving intermediate reasoning steps in LLM responses is increasingly important. This added complexity complicates uncertainty quantification (UQ) because the probabilities assigned to answer tokens are conditioned on a vast space of preceding reasoning tokens. Direct marginalization is infeasible, and the dependency inflates probability estimates, causing overconfidence in UQ. To address this, we propose UQAC, an efficient method that narrows the reasoning space to a tractable size for marginalization. UQAC iteratively constructs an "attention chain" of tokens deemed "semantically crucial" to the final answer via a backtracking procedure. Starting from the answer tokens, it uses attention weights to identify the most influential predecessors, then iterates this process until reaching the input tokens. Similarity filtering and probability thresholding further refine the resulting chain, allowing us to approximate the marginal probabilities of the answer tokens, which serve as the LLM's confidence. We validate UQAC on multiple reasoning benchmarks with advanced open-source LLMs, demonstrating that it consistently delivers reliable UQ estimates with high computational efficiency.
Teaching Broad Reasoning Skills for Multi-Step QA by Generating Hard Contexts
Question-answering datasets require a broad set of reasoning skills. We show how to use question decompositions to teach language models these broad reasoning skills in a robust fashion. Specifically, we use widely available QDMR representations to programmatically create hard-to-cheat synthetic contexts for real questions in six multi-step reasoning datasets. These contexts are carefully designed to avoid reasoning shortcuts prevalent in real contexts that prevent models from learning the right skills. This results in a pretraining dataset, named TeaBReaC, containing 525K multi-step questions (with associated formal programs) covering about 900 reasoning patterns. We show that pretraining standard language models (LMs) on TeaBReaC before fine-tuning them on target datasets improves their performance by up to 13 F1 points across 4 multi-step QA datasets, with up to 21 point gain on more complex questions. The resulting models also demonstrate higher robustness, with a 5-8 F1 point improvement on two contrast sets. Furthermore, TeaBReaC pretraining substantially improves model performance and robustness even when starting with numerate LMs pretrained using recent methods (e.g., PReasM, POET). Our work thus shows how to effectively use decomposition-guided contexts to robustly teach multi-step reasoning.
Re-Reading Improves Reasoning in Language Models
Reasoning presents a significant and challenging issue for Large Language Models (LLMs). The predominant focus of research has revolved around developing diverse prompting strategies to guide and structure the reasoning processes of LLMs. However, these approaches based on decoder-only causal language models often operate the input question in a single forward pass, potentially missing the rich, back-and-forth interactions inherent in human reasoning. Scant attention has been paid to a critical dimension, i.e., the input question itself embedded within the prompts. In response, we introduce a deceptively simple yet highly effective prompting strategy, termed question "re-reading". Drawing inspiration from human learning and problem-solving, re-reading entails revisiting the question information embedded within input prompts. This approach aligns seamlessly with the cognitive principle of reinforcement, enabling LLMs to extract deeper insights, identify intricate patterns, establish more nuanced connections, and ultimately enhance their reasoning capabilities across various tasks. Experiments conducted on a series of reasoning benchmarks serve to underscore the effectiveness and generality of our method. Moreover, our findings demonstrate that our approach seamlessly integrates with various language models, though-eliciting prompting methods, and ensemble techniques, further underscoring its versatility and compatibility in the realm of LLMs.
Are Natural Language Inference Models IMPPRESsive? Learning IMPlicature and PRESupposition
Natural language inference (NLI) is an increasingly important task for natural language understanding, which requires one to infer whether a sentence entails another. However, the ability of NLI models to make pragmatic inferences remains understudied. We create an IMPlicature and PRESupposition diagnostic dataset (IMPPRES), consisting of >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. We use IMPPRES to evaluate whether BERT, InferSent, and BOW NLI models trained on MultiNLI (Williams et al., 2018) learn to make pragmatic inferences. Although MultiNLI appears to contain very few pairs illustrating these inference types, we find that BERT learns to draw pragmatic inferences. It reliably treats scalar implicatures triggered by "some" as entailments. For some presupposition triggers like "only", BERT reliably recognizes the presupposition as an entailment, even when the trigger is embedded under an entailment canceling operator like negation. BOW and InferSent show weaker evidence of pragmatic reasoning. We conclude that NLI training encourages models to learn some, but not all, pragmatic inferences.
A Survey of Efficient Reasoning for Large Reasoning Models: Language, Multimodality, and Beyond
Recent Large Reasoning Models (LRMs), such as DeepSeek-R1 and OpenAI o1, have demonstrated strong performance gains by scaling up the length of Chain-of-Thought (CoT) reasoning during inference. However, a growing concern lies in their tendency to produce excessively long reasoning traces, which are often filled with redundant content (e.g., repeated definitions), over-analysis of simple problems, and superficial exploration of multiple reasoning paths for harder tasks. This inefficiency introduces significant challenges for training, inference, and real-world deployment (e.g., in agent-based systems), where token economy is critical. In this survey, we provide a comprehensive overview of recent efforts aimed at improving reasoning efficiency in LRMs, with a particular focus on the unique challenges that arise in this new paradigm. We identify common patterns of inefficiency, examine methods proposed across the LRM lifecycle, i.e., from pretraining to inference, and discuss promising future directions for research. To support ongoing development, we also maintain a real-time GitHub repository tracking recent progress in the field. We hope this survey serves as a foundation for further exploration and inspires innovation in this rapidly evolving area.
To Retrieve or Not to Retrieve? Uncertainty Detection for Dynamic Retrieval Augmented Generation
Retrieval-Augmented Generation equips large language models with the capability to retrieve external knowledge, thereby mitigating hallucinations by incorporating information beyond the model's intrinsic abilities. However, most prior works have focused on invoking retrieval deterministically, which makes it unsuitable for tasks such as long-form question answering. Instead, dynamically performing retrieval by invoking it only when the underlying LLM lacks the required knowledge can be more efficient. In this context, we delve deeper into the question, "To Retrieve or Not to Retrieve?" by exploring multiple uncertainty detection methods. We evaluate these methods for the task of long-form question answering, employing dynamic retrieval, and present our comparisons. Our findings suggest that uncertainty detection metrics, such as Degree Matrix Jaccard and Eccentricity, can reduce the number of retrieval calls by almost half, with only a slight reduction in question-answering accuracy.
Did Aristotle Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies
A key limitation in current datasets for multi-hop reasoning is that the required steps for answering the question are mentioned in it explicitly. In this work, we introduce StrategyQA, a question answering (QA) benchmark where the required reasoning steps are implicit in the question, and should be inferred using a strategy. A fundamental challenge in this setup is how to elicit such creative questions from crowdsourcing workers, while covering a broad range of potential strategies. We propose a data collection procedure that combines term-based priming to inspire annotators, careful control over the annotator population, and adversarial filtering for eliminating reasoning shortcuts. Moreover, we annotate each question with (1) a decomposition into reasoning steps for answering it, and (2) Wikipedia paragraphs that contain the answers to each step. Overall, StrategyQA includes 2,780 examples, each consisting of a strategy question, its decomposition, and evidence paragraphs. Analysis shows that questions in StrategyQA are short, topic-diverse, and cover a wide range of strategies. Empirically, we show that humans perform well (87%) on this task, while our best baseline reaches an accuracy of sim66%.
Question Generation for Reading Comprehension Assessment by Modeling How and What to Ask
Reading is integral to everyday life, and yet learning to read is a struggle for many young learners. During lessons, teachers can use comprehension questions to increase engagement, test reading skills, and improve retention. Historically such questions were written by skilled teachers, but recently language models have been used to generate comprehension questions. However, many existing Question Generation (QG) systems focus on generating literal questions from the text, and have no way to control the type of the generated question. In this paper, we study QG for reading comprehension where inferential questions are critical and extractive techniques cannot be used. We propose a two-step model (HTA-WTA) that takes advantage of previous datasets, and can generate questions for a specific targeted comprehension skill. We propose a new reading comprehension dataset that contains questions annotated with story-based reading comprehension skills (SBRCS), allowing for a more complete reader assessment. Across several experiments, our results show that HTA-WTA outperforms multiple strong baselines on this new dataset. We show that the HTA-WTA model tests for strong SCRS by asking deep inferential questions.
Teaching language models to support answers with verified quotes
Recent large language models often answer factual questions correctly. But users can't trust any given claim a model makes without fact-checking, because language models can hallucinate convincing nonsense. In this work we use reinforcement learning from human preferences (RLHP) to train "open-book" QA models that generate answers whilst also citing specific evidence for their claims, which aids in the appraisal of correctness. Supporting evidence is drawn from multiple documents found via a search engine, or from a single user-provided document. Our 280 billion parameter model, GopherCite, is able to produce answers with high quality supporting evidence and abstain from answering when unsure. We measure the performance of GopherCite by conducting human evaluation of answers to questions in a subset of the NaturalQuestions and ELI5 datasets. The model's response is found to be high-quality 80\% of the time on this Natural Questions subset, and 67\% of the time on the ELI5 subset. Abstaining from the third of questions for which it is most unsure improves performance to 90\% and 80\% respectively, approaching human baselines. However, analysis on the adversarial TruthfulQA dataset shows why citation is only one part of an overall strategy for safety and trustworthiness: not all claims supported by evidence are true.
MilkQA: a Dataset of Consumer Questions for the Task of Answer Selection
We introduce MilkQA, a question answering dataset from the dairy domain dedicated to the study of consumer questions. The dataset contains 2,657 pairs of questions and answers, written in the Portuguese language and originally collected by the Brazilian Agricultural Research Corporation (Embrapa). All questions were motivated by real situations and written by thousands of authors with very different backgrounds and levels of literacy, while answers were elaborated by specialists from Embrapa's customer service. Our dataset was filtered and anonymized by three human annotators. Consumer questions are a challenging kind of question that is usually employed as a form of seeking information. Although several question answering datasets are available, most of such resources are not suitable for research on answer selection models for consumer questions. We aim to fill this gap by making MilkQA publicly available. We study the behavior of four answer selection models on MilkQA: two baseline models and two convolutional neural network archictetures. Our results show that MilkQA poses real challenges to computational models, particularly due to linguistic characteristics of its questions and to their unusually longer lengths. Only one of the experimented models gives reasonable results, at the cost of high computational requirements.
Answer Convergence as a Signal for Early Stopping in Reasoning
Chain-of-thought (CoT) prompting enhances reasoning in large language models (LLMs) but often leads to verbose and redundant outputs, thus increasing inference cost. We hypothesize that many reasoning steps are unnecessary for producing correct answers. To investigate this, we start with a systematic study to examine what is the minimum reasoning required for a model to reach a stable decision. We find that on math reasoning tasks like math, models typically converge to their final answers after 60\% of the reasoning steps, suggesting substantial redundancy in the remaining content. Based on these insights, we propose three inference-time strategies to improve efficiency: (1) early stopping via answer consistency, (2) boosting the probability of generating end-of-reasoning signals, and (3) a supervised method that learns when to stop based on internal activations. Experiments across five benchmarks and five open-weights LLMs show that our methods significantly reduce token usage with little or no accuracy drop. In particular, on NaturalQuestions, Answer Consistency reduces tokens by over 40\% while further improving accuracy. Our work underscores the importance of cost-effective reasoning methods that operate at inference time, offering practical benefits for real-world applications.
Minds versus Machines: Rethinking Entailment Verification with Language Models
Humans make numerous inferences in text comprehension to understand discourse. This paper aims to understand the commonalities and disparities in the inference judgments between humans and state-of-the-art Large Language Models (LLMs). Leveraging a comprehensively curated entailment verification benchmark, we evaluate both human and LLM performance across various reasoning categories. Our benchmark includes datasets from three categories (NLI, contextual QA, and rationales) that include multi-sentence premises and different knowledge types, thereby evaluating the inference capabilities in complex reasoning instances. Notably, our findings reveal LLMs' superiority in multi-hop reasoning across extended contexts, while humans excel in tasks necessitating simple deductive reasoning. Leveraging these insights, we introduce a fine-tuned Flan-T5 model that outperforms GPT-3.5 and rivals with GPT-4, offering a robust open-source solution for entailment verification. As a practical application, we showcase the efficacy of our finetuned model in enhancing self-consistency in model-generated explanations, resulting in a 6% performance boost on average across three multiple-choice question-answering datasets.
Diverse and Faithful Knowledge-Grounded Dialogue Generation via Sequential Posterior Inference
The capability to generate responses with diversity and faithfulness using factual knowledge is paramount for creating a human-like, trustworthy dialogue system. Common strategies either adopt a two-step paradigm, which optimizes knowledge selection and response generation separately, and may overlook the inherent correlation between these two tasks, or leverage conditional variational method to jointly optimize knowledge selection and response generation by employing an inference network. In this paper, we present an end-to-end learning framework, termed Sequential Posterior Inference (SPI), capable of selecting knowledge and generating dialogues by approximately sampling from the posterior distribution. Unlike other methods, SPI does not require the inference network or assume a simple geometry of the posterior distribution. This straightforward and intuitive inference procedure of SPI directly queries the response generation model, allowing for accurate knowledge selection and generation of faithful responses. In addition to modeling contributions, our experimental results on two common dialogue datasets (Wizard of Wikipedia and Holl-E) demonstrate that SPI outperforms previous strong baselines according to both automatic and human evaluation metrics.
MoreHopQA: More Than Multi-hop Reasoning
Most existing multi-hop datasets are extractive answer datasets, where the answers to the questions can be extracted directly from the provided context. This often leads models to use heuristics or shortcuts instead of performing true multi-hop reasoning. In this paper, we propose a new multi-hop dataset, MoreHopQA, which shifts from extractive to generative answers. Our dataset is created by utilizing three existing multi-hop datasets: HotpotQA, 2WikiMultihopQA, and MuSiQue. Instead of relying solely on factual reasoning, we enhance the existing multi-hop questions by adding another layer of questioning that involves one, two, or all three of the following types of reasoning: commonsense, arithmetic, and symbolic. Our dataset is created through a semi-automated process, resulting in a dataset with 1,118 samples that have undergone human verification. We then use our dataset to evaluate five different large language models: Mistral 7B, Gemma 7B, Llama 3 (8B and 70B), and GPT-4. We also design various cases to analyze the reasoning steps in the question-answering process. Our results show that models perform well on initial multi-hop questions but struggle with our extended questions, indicating that our dataset is more challenging than previous ones. Our analysis of question decomposition reveals that although models can correctly answer questions, only a portion - 38.7% for GPT-4 and 33.4% for Llama3-70B - achieve perfect reasoning, where all corresponding sub-questions are answered correctly. Evaluation code and data are available at https://github.com/Alab-NII/morehopqa
SearchQA: A New Q&A Dataset Augmented with Context from a Search Engine
We publicly release a new large-scale dataset, called SearchQA, for machine comprehension, or question-answering. Unlike recently released datasets, such as DeepMind CNN/DailyMail and SQuAD, the proposed SearchQA was constructed to reflect a full pipeline of general question-answering. That is, we start not from an existing article and generate a question-answer pair, but start from an existing question-answer pair, crawled from J! Archive, and augment it with text snippets retrieved by Google. Following this approach, we built SearchQA, which consists of more than 140k question-answer pairs with each pair having 49.6 snippets on average. Each question-answer-context tuple of the SearchQA comes with additional meta-data such as the snippet's URL, which we believe will be valuable resources for future research. We conduct human evaluation as well as test two baseline methods, one simple word selection and the other deep learning based, on the SearchQA. We show that there is a meaningful gap between the human and machine performances. This suggests that the proposed dataset could well serve as a benchmark for question-answering.
WebQuest: A Benchmark for Multimodal QA on Web Page Sequences
The rise of powerful multimodal LLMs has enhanced the viability of building web agents which can, with increasing levels of autonomy, assist users to retrieve information and complete tasks on various human-computer interfaces. It is hence necessary to build challenging benchmarks that span a wide-variety of use cases reflecting real-world usage. In this work, we present WebQuest, a multi-page question-answering dataset that requires reasoning across multiple related web pages. In contrast to existing UI benchmarks that focus on multi-step web navigation and task completion, our dataset evaluates information extraction, multimodal retrieval and composition of information from many web pages. WebQuest includes three question categories: single-screen QA, multi-screen QA, and QA based on navigation traces. We evaluate leading proprietary multimodal models like GPT-4V, Gemini Flash, Claude 3, and open source models like InstructBLIP, PaliGemma on our dataset, revealing a significant gap between single-screen and multi-screen reasoning. Finally, we investigate inference time techniques like Chain-of-Thought prompting to improve model capabilities on multi-screen reasoning.
Simple Entity-Centric Questions Challenge Dense Retrievers
Open-domain question answering has exploded in popularity recently due to the success of dense retrieval models, which have surpassed sparse models using only a few supervised training examples. However, in this paper, we demonstrate current dense models are not yet the holy grail of retrieval. We first construct EntityQuestions, a set of simple, entity-rich questions based on facts from Wikidata (e.g., "Where was Arve Furset born?"), and observe that dense retrievers drastically underperform sparse methods. We investigate this issue and uncover that dense retrievers can only generalize to common entities unless the question pattern is explicitly observed during training. We discuss two simple solutions towards addressing this critical problem. First, we demonstrate that data augmentation is unable to fix the generalization problem. Second, we argue a more robust passage encoder helps facilitate better question adaptation using specialized question encoders. We hope our work can shed light on the challenges in creating a robust, universal dense retriever that works well across different input distributions.
Hint Marginalization for Improved Reasoning in Large Language Models
Large Language Models (LLMs) have exhibited an impressive capability to perform reasoning tasks, especially if they are encouraged to generate a sequence of intermediate steps. Reasoning performance can be improved by suitably combining multiple LLM responses, generated either in parallel in a single query, or via sequential interactions with LLMs throughout the reasoning process. Existing strategies for combination, such as self-consistency and progressive-hint-prompting, make inefficient usage of the LLM responses. We present Hint Marginalization, a novel and principled algorithmic framework to enhance the reasoning capabilities of LLMs. Our approach can be viewed as an iterative sampling strategy for forming a Monte Carlo approximation of an underlying distribution of answers, with the goal of identifying the mode the most likely answer. Empirical evaluation on several benchmark datasets for arithmetic reasoning demonstrates the superiority of the proposed approach.
Large Language Model Programs
In recent years, large pre-trained language models (LLMs) have demonstrated the ability to follow instructions and perform novel tasks from a few examples. The possibility to parameterise an LLM through such in-context examples widens their capability at a much lower cost than finetuning. We extend this line of reasoning and present a method which further expands the capabilities of an LLM by embedding it within an algorithm or program. To demonstrate the benefits of this approach, we present an illustrative example of evidence-supported question-answering. We obtain a 6.4\% improvement over the chain of thought baseline through a more algorithmic approach without any finetuning. Furthermore, we highlight recent work from this perspective and discuss the advantages and disadvantages in comparison to the standard approaches.
Advancing Large Multi-modal Models with Explicit Chain-of-Reasoning and Visual Question Generation
The increasing demand for intelligent systems capable of interpreting and reasoning about visual content requires the development of Large Multi-Modal Models (LMMs) that are not only accurate but also have explicit reasoning capabilities. This paper presents a novel approach to imbue an LMM with the ability to conduct explicit reasoning based on visual content and textual instructions. We introduce a system that can ask a question to acquire necessary knowledge, thereby enhancing the robustness and explicability of the reasoning process. Our method comprises the development of a novel dataset generated by a Large Language Model (LLM), designed to promote chain-of-thought reasoning combined with a question-asking mechanism. We designed an LMM, which has high capabilities on region awareness to address the intricate requirements of image-text alignment. The model undergoes a three-stage training phase, starting with large-scale image-text alignment using a large-scale datasets, followed by instruction tuning, and fine-tuning with a focus on chain-of-thought reasoning. The results demonstrate a stride toward a more robust, accurate, and interpretable LMM, capable of reasoning explicitly and seeking information proactively when confronted with ambiguous visual input.
NewsQA: A Machine Comprehension Dataset
We present NewsQA, a challenging machine comprehension dataset of over 100,000 human-generated question-answer pairs. Crowdworkers supply questions and answers based on a set of over 10,000 news articles from CNN, with answers consisting of spans of text from the corresponding articles. We collect this dataset through a four-stage process designed to solicit exploratory questions that require reasoning. A thorough analysis confirms that NewsQA demands abilities beyond simple word matching and recognizing textual entailment. We measure human performance on the dataset and compare it to several strong neural models. The performance gap between humans and machines (0.198 in F1) indicates that significant progress can be made on NewsQA through future research. The dataset is freely available at https://datasets.maluuba.com/NewsQA.
Measuring Compositional Consistency for Video Question Answering
Recent video question answering benchmarks indicate that state-of-the-art models struggle to answer compositional questions. However, it remains unclear which types of compositional reasoning cause models to mispredict. Furthermore, it is difficult to discern whether models arrive at answers using compositional reasoning or by leveraging data biases. In this paper, we develop a question decomposition engine that programmatically deconstructs a compositional question into a directed acyclic graph of sub-questions. The graph is designed such that each parent question is a composition of its children. We present AGQA-Decomp, a benchmark containing 2.3M question graphs, with an average of 11.49 sub-questions per graph, and 4.55M total new sub-questions. Using question graphs, we evaluate three state-of-the-art models with a suite of novel compositional consistency metrics. We find that models either cannot reason correctly through most compositions or are reliant on incorrect reasoning to reach answers, frequently contradicting themselves or achieving high accuracies when failing at intermediate reasoning steps.
Likelihood as a Performance Gauge for Retrieval-Augmented Generation
Recent work finds that retrieval-augmented generation with large language models is prone to be influenced by the order of retrieved documents in the context. However, the lack of in-depth analysis limits the use of this phenomenon for prompt engineering in practice. In this study, we posit that likelihoods serve as an effective gauge for language model performance. Through experiments on two question-answering datasets with a variety of state-of-the-art language models, we reveal correlations between answer accuracy and the likelihood of the question at both the corpus level and the instance level. In addition, we find that question likelihood can also indicate the position of the task-relevant information in the context. Based on these findings, we propose two methods that use question likelihood as a gauge for selecting and constructing prompts that lead to better performance. We demonstrate their effectiveness with experiments. In addition, our likelihood-based methods are efficient, as they only need to compute the likelihood of the input, requiring much fewer language model passes than heuristic prompt engineering methods that require generating responses. Our analysis deepens our understanding of how input prompts affect model performance and provides a promising direction for efficient prompt optimization.
The Web as a Knowledge-base for Answering Complex Questions
Answering complex questions is a time-consuming activity for humans that requires reasoning and integration of information. Recent work on reading comprehension made headway in answering simple questions, but tackling complex questions is still an ongoing research challenge. Conversely, semantic parsers have been successful at handling compositionality, but only when the information resides in a target knowledge-base. In this paper, we present a novel framework for answering broad and complex questions, assuming answering simple questions is possible using a search engine and a reading comprehension model. We propose to decompose complex questions into a sequence of simple questions, and compute the final answer from the sequence of answers. To illustrate the viability of our approach, we create a new dataset of complex questions, ComplexWebQuestions, and present a model that decomposes questions and interacts with the web to compute an answer. We empirically demonstrate that question decomposition improves performance from 20.8 precision@1 to 27.5 precision@1 on this new dataset.
Multiple Choice Questions: Reasoning Makes Large Language Models (LLMs) More Self-Confident Even When They Are Wrong
One of the most widely used methods to evaluate LLMs are Multiple Choice Question (MCQ) tests. MCQ benchmarks enable the testing of LLM knowledge on almost any topic at scale as the results can be processed automatically. To help the LLM answer, a few examples called few shots can be included in the prompt. Moreover, the LLM can be asked to answer the question directly with the selected option or to first provide the reasoning and then the selected answer, which is known as chain of thought. In addition to checking whether the selected answer is correct, the evaluation can look at the LLM-estimated probability of its response as an indication of the confidence of the LLM in the response. In this paper, we study how the LLM confidence in its answer depends on whether the model has been asked to answer directly or to provide the reasoning before answering. The results of the evaluation of questions on a wide range of topics in seven different models show that LLMs are more confident in their answers when they provide reasoning before the answer. This occurs regardless of whether the selected answer is correct. Our hypothesis is that this behavior is due to the reasoning that modifies the probability of the selected answer, as the LLM predicts the answer based on the input question and the reasoning that supports the selection made. Therefore, LLM estimated probabilities seem to have intrinsic limitations that should be understood in order to use them in evaluation procedures. Interestingly, the same behavior has been observed in humans, for whom explaining an answer increases confidence in its correctness.
Researchy Questions: A Dataset of Multi-Perspective, Decompositional Questions for LLM Web Agents
Existing question answering (QA) datasets are no longer challenging to most powerful Large Language Models (LLMs). Traditional QA benchmarks like TriviaQA, NaturalQuestions, ELI5 and HotpotQA mainly study ``known unknowns'' with clear indications of both what information is missing, and how to find it to answer the question. Hence, good performance on these benchmarks provides a false sense of security. A yet unmet need of the NLP community is a bank of non-factoid, multi-perspective questions involving a great deal of unclear information needs, i.e. ``unknown uknowns''. We claim we can find such questions in search engine logs, which is surprising because most question-intent queries are indeed factoid. We present Researchy Questions, a dataset of search engine queries tediously filtered to be non-factoid, ``decompositional'' and multi-perspective. We show that users spend a lot of ``effort'' on these questions in terms of signals like clicks and session length, and that they are also challenging for GPT-4. We also show that ``slow thinking'' answering techniques, like decomposition into sub-questions shows benefit over answering directly. We release sim 100k Researchy Questions, along with the Clueweb22 URLs that were clicked.
CoQA: A Conversational Question Answering Challenge
Humans gather information by engaging in conversations involving a series of interconnected questions and answers. For machines to assist in information gathering, it is therefore essential to enable them to answer conversational questions. We introduce CoQA, a novel dataset for building Conversational Question Answering systems. Our dataset contains 127k questions with answers, obtained from 8k conversations about text passages from seven diverse domains. The questions are conversational, and the answers are free-form text with their corresponding evidence highlighted in the passage. We analyze CoQA in depth and show that conversational questions have challenging phenomena not present in existing reading comprehension datasets, e.g., coreference and pragmatic reasoning. We evaluate strong conversational and reading comprehension models on CoQA. The best system obtains an F1 score of 65.4%, which is 23.4 points behind human performance (88.8%), indicating there is ample room for improvement. We launch CoQA as a challenge to the community at http://stanfordnlp.github.io/coqa/
QASC: A Dataset for Question Answering via Sentence Composition
Composing knowledge from multiple pieces of texts is a key challenge in multi-hop question answering. We present a multi-hop reasoning dataset, Question Answering via Sentence Composition(QASC), that requires retrieving facts from a large corpus and composing them to answer a multiple-choice question. QASC is the first dataset to offer two desirable properties: (a) the facts to be composed are annotated in a large corpus, and (b) the decomposition into these facts is not evident from the question itself. The latter makes retrieval challenging as the system must introduce new concepts or relations in order to discover potential decompositions. Further, the reasoning model must then learn to identify valid compositions of these retrieved facts using common-sense reasoning. To help address these challenges, we provide annotation for supporting facts as well as their composition. Guided by these annotations, we present a two-step approach to mitigate the retrieval challenges. We use other multiple-choice datasets as additional training data to strengthen the reasoning model. Our proposed approach improves over current state-of-the-art language models by 11% (absolute). The reasoning and retrieval problems, however, remain unsolved as this model still lags by 20% behind human performance.
Physics of Language Models: Part 3.2, Knowledge Manipulation
Language models can store vast amounts of factual knowledge, but their ability to use this knowledge for logical reasoning remains questionable. This paper explores a language model's ability to manipulate its stored knowledge during inference. We focus on four manipulation types: retrieval (e.g., "What is person A's attribute X"), classification (e.g., "Is A's attribute X even or odd?"), comparison (e.g., "Is A greater than B in attribute X?") and inverse search (e.g., "Which person's attribute X equals T?") We observe that pre-trained language models like GPT2/3/4 excel in knowledge retrieval but struggle with simple classification or comparison tasks unless Chain of Thoughts (CoTs) are employed during both training and inference. They also perform poorly in inverse knowledge search, irrespective of the prompts. Our primary contribution is a synthetic dataset for a controlled experiment that confirms these inherent weaknesses: a language model cannot efficiently manipulate knowledge from pre-training data, even when such knowledge is perfectly stored and fully extractable in the models, and despite adequate instruct fine-tuning.
CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge
When answering a question, people often draw upon their rich world knowledge in addition to the particular context. Recent work has focused primarily on answering questions given some relevant document or context, and required very little general background. To investigate question answering with prior knowledge, we present CommonsenseQA: a challenging new dataset for commonsense question answering. To capture common sense beyond associations, we extract from ConceptNet (Speer et al., 2017) multiple target concepts that have the same semantic relation to a single source concept. Crowd-workers are asked to author multiple-choice questions that mention the source concept and discriminate in turn between each of the target concepts. This encourages workers to create questions with complex semantics that often require prior knowledge. We create 12,247 questions through this procedure and demonstrate the difficulty of our task with a large number of strong baselines. Our best baseline is based on BERT-large (Devlin et al., 2018) and obtains 56% accuracy, well below human performance, which is 89%.
Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations
Despite their impressive capabilities, large pre-trained language models (LMs) struggle with consistent reasoning; recently, prompting LMs to generate explanations that self-guide the inference has emerged as a promising direction to amend this. However, these approaches are fundamentally bounded by the correctness of explanations, which themselves are often noisy and inconsistent. In this work, we develop Maieutic Prompting, which infers a correct answer to a question even from the noisy and inconsistent generations of LM. Maieutic Prompting induces a tree of explanations abductively (e.g. X is true, because ...) and recursively, then frames the inference as a satisfiability problem over these explanations and their logical relations. We test Maieutic Prompting for true/false QA on three challenging benchmarks that require complex commonsense reasoning. Maieutic Prompting achieves up to 20% better accuracy than state-of-the-art prompting methods, and as a fully unsupervised approach, performs competitively with supervised models. We also show that Maieutic Prompting improves robustness in inference while providing interpretable rationales.
Know the Unknown: An Uncertainty-Sensitive Method for LLM Instruction Tuning
Large language models (LLMs) have demonstrated remarkable capabilities across various tasks but still face challenges such as hallucinations. One potential reason for hallucinations is the lack of relevant knowledge or context. Thus, a promising solution to mitigate this issue involves instructing LLMs to respond with "I do not know" when a question falls outside their knowledge domain or the provided context. However, in this work, we observed that LLMs struggle to admit their lack of knowledge, primarily due to existing instruction datasets designed to encourage specific answers. To improve large language models' capability to recognize the boundaries of their knowledge, we propose a novel approach called uncertainty-sensitive tuning. This method involves two-stage training designed for uncertainty recognition and prompt-sensitive activation. In the first stage, we guide the LLM to reject unknown questions. In the second stage, we recover the decreased performance in QA tasks by incorporating designed causal instructions. By leveraging this method, we aim to enhance the model's ability to identify areas of uncertainty. The experimental results demonstrate that our proposed uncertainty-sensitive tuning method significantly improves the performance of the Llama2-chat-7B model. Specifically, it achieves a substantial 34.7% improvement in handling questions involving knowledge gaps compared to the original model. Moreover, our approach outperforms GPT-4, exhibiting a 9.4% increase in overall performance. We open-source the model and code on GitHub.
Consecutive Question Generation via Dynamic Multitask Learning
In this paper, we propose the task of consecutive question generation (CQG), which generates a set of logically related question-answer pairs to understand a whole passage, with a comprehensive consideration of the aspects including accuracy, coverage, and informativeness. To achieve this, we first examine the four key elements of CQG, i.e., question, answer, rationale, and context history, and propose a novel dynamic multitask framework with one main task generating a question-answer pair, and four auxiliary tasks generating other elements. It directly helps the model generate good questions through both joint training and self-reranking. At the same time, to fully explore the worth-asking information in a given passage, we make use of the reranking losses to sample the rationales and search for the best question series globally. Finally, we measure our strategy by QA data augmentation and manual evaluation, as well as a novel application of generated question-answer pairs on DocNLI. We prove that our strategy can improve question generation significantly and benefit multiple related NLP tasks.
To Believe or Not to Believe Your LLM
We explore uncertainty quantification in large language models (LLMs), with the goal to identify when uncertainty in responses given a query is large. We simultaneously consider both epistemic and aleatoric uncertainties, where the former comes from the lack of knowledge about the ground truth (such as about facts or the language), and the latter comes from irreducible randomness (such as multiple possible answers). In particular, we derive an information-theoretic metric that allows to reliably detect when only epistemic uncertainty is large, in which case the output of the model is unreliable. This condition can be computed based solely on the output of the model obtained simply by some special iterative prompting based on the previous responses. Such quantification, for instance, allows to detect hallucinations (cases when epistemic uncertainty is high) in both single- and multi-answer responses. This is in contrast to many standard uncertainty quantification strategies (such as thresholding the log-likelihood of a response) where hallucinations in the multi-answer case cannot be detected. We conduct a series of experiments which demonstrate the advantage of our formulation. Further, our investigations shed some light on how the probabilities assigned to a given output by an LLM can be amplified by iterative prompting, which might be of independent interest.
STaR-GATE: Teaching Language Models to Ask Clarifying Questions
When prompting language models to complete a task, users often leave important aspects unsaid. While asking questions could resolve this ambiguity (GATE; Li et al., 2023), models often struggle to ask good questions. We explore a language model's ability to self-improve (STaR; Zelikman et al., 2022) by rewarding the model for generating useful questions-a simple method we dub STaR-GATE. We generate a synthetic dataset of 25,500 unique persona-task prompts to simulate conversations between a pretrained language model-the Questioner-and a Roleplayer whose preferences are unknown to the Questioner. By asking questions, the Questioner elicits preferences from the Roleplayer. The Questioner is iteratively finetuned on questions that increase the probability of high-quality responses to the task, which are generated by an Oracle with access to the Roleplayer's latent preferences. After two iterations of self-improvement, the Questioner asks better questions, allowing it to generate responses that are preferred over responses from the initial model on 72% of tasks. Our results indicate that teaching a language model to ask better questions leads to better personalized responses.
Leveraging Reasoning Model Answers to Enhance Non-Reasoning Model Capability
Recent advancements in large language models (LLMs), such as DeepSeek-R1 and OpenAI-o1, have demonstrated the significant effectiveness of test-time scaling, achieving substantial performance gains across various benchmarks. These advanced models utilize deliberate "thinking" steps to systematically enhance answer quality. In this paper, we propose leveraging these high-quality outputs generated by reasoning-intensive models to improve less computationally demanding, non-reasoning models. We explore and compare methodologies for utilizing the answers produced by reasoning models to train and improve non-reasoning models. Through straightforward Supervised Fine-Tuning (SFT) experiments on established benchmarks, we demonstrate consistent improvements across various benchmarks, underscoring the potential of this approach for advancing the ability of models to answer questions directly.
Question Answering Survey: Directions, Challenges, Datasets, Evaluation Matrices
The usage and amount of information available on the internet increase over the past decade. This digitization leads to the need for automated answering system to extract fruitful information from redundant and transitional knowledge sources. Such systems are designed to cater the most prominent answer from this giant knowledge source to the user query using natural language understanding (NLU) and thus eminently depends on the Question-answering(QA) field. Question answering involves but not limited to the steps like mapping of user question to pertinent query, retrieval of relevant information, finding the best suitable answer from the retrieved information etc. The current improvement of deep learning models evince compelling performance improvement in all these tasks. In this review work, the research directions of QA field are analyzed based on the type of question, answer type, source of evidence-answer, and modeling approach. This detailing followed by open challenges of the field like automatic question generation, similarity detection and, low resource availability for a language. In the end, a survey of available datasets and evaluation measures is presented.
Enhanced LSTM for Natural Language Inference
Reasoning and inference are central to human and artificial intelligence. Modeling inference in human language is very challenging. With the availability of large annotated data (Bowman et al., 2015), it has recently become feasible to train neural network based inference models, which have shown to be very effective. In this paper, we present a new state-of-the-art result, achieving the accuracy of 88.6% on the Stanford Natural Language Inference Dataset. Unlike the previous top models that use very complicated network architectures, we first demonstrate that carefully designing sequential inference models based on chain LSTMs can outperform all previous models. Based on this, we further show that by explicitly considering recursive architectures in both local inference modeling and inference composition, we achieve additional improvement. Particularly, incorporating syntactic parsing information contributes to our best result---it further improves the performance even when added to the already very strong model.
LAG: Logic-Augmented Generation from a Cartesian Perspective
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks, yet exhibit critical limitations in knowledge-intensive tasks, often generating hallucinations when faced with questions requiring specialized expertise. While retrieval-augmented generation (RAG) mitigates this by integrating external knowledge, it struggles with complex reasoning scenarios due to its reliance on direct semantic retrieval and lack of structured logical organization. Inspired by Cartesian principles from Discours de la m\'ethode, this paper introduces Logic-Augmented Generation (LAG), a novel paradigm that reframes knowledge augmentation through systematic question decomposition and dependency-aware reasoning. Specifically, LAG first decomposes complex questions into atomic sub-questions ordered by logical dependencies. It then resolves these sequentially, using prior answers to guide context retrieval for subsequent sub-questions, ensuring stepwise grounding in logical chain. To prevent error propagation, LAG incorporates a logical termination mechanism that halts inference upon encountering unanswerable sub-questions and reduces wasted computation on excessive reasoning. Finally, it synthesizes all sub-resolutions to generate verified responses. Experiments on four benchmark datasets demonstrate that LAG significantly enhances reasoning robustness, reduces hallucination, and aligns LLM problem-solving with human cognition, offering a principled alternative to existing RAG systems.
Contrastive Learning for Inference in Dialogue
Inference, especially those derived from inductive processes, is a crucial component in our conversation to complement the information implicitly or explicitly conveyed by a speaker. While recent large language models show remarkable advances in inference tasks, their performance in inductive reasoning, where not all information is present in the context, is far behind deductive reasoning. In this paper, we analyze the behavior of the models based on the task difficulty defined by the semantic information gap -- which distinguishes inductive and deductive reasoning (Johnson-Laird, 1988, 1993). Our analysis reveals that the disparity in information between dialogue contexts and desired inferences poses a significant challenge to the inductive inference process. To mitigate this information gap, we investigate a contrastive learning approach by feeding negative samples. Our experiments suggest negative samples help models understand what is wrong and improve their inference generations.
Joint Learning of Sentence Embeddings for Relevance and Entailment
We consider the problem of Recognizing Textual Entailment within an Information Retrieval context, where we must simultaneously determine the relevancy as well as degree of entailment for individual pieces of evidence to determine a yes/no answer to a binary natural language question. We compare several variants of neural networks for sentence embeddings in a setting of decision-making based on evidence of varying relevance. We propose a basic model to integrate evidence for entailment, show that joint training of the sentence embeddings to model relevance and entailment is feasible even with no explicit per-evidence supervision, and show the importance of evaluating strong baselines. We also demonstrate the benefit of carrying over text comprehension model trained on an unrelated task for our small datasets. Our research is motivated primarily by a new open dataset we introduce, consisting of binary questions and news-based evidence snippets. We also apply the proposed relevance-entailment model on a similar task of ranking multiple-choice test answers, evaluating it on a preliminary dataset of school test questions as well as the standard MCTest dataset, where we improve the neural model state-of-art.
A large annotated corpus for learning natural language inference
Understanding entailment and contradiction is fundamental to understanding natural language, and inference about entailment and contradiction is a valuable testing ground for the development of semantic representations. However, machine learning research in this area has been dramatically limited by the lack of large-scale resources. To address this, we introduce the Stanford Natural Language Inference corpus, a new, freely available collection of labeled sentence pairs, written by humans doing a novel grounded task based on image captioning. At 570K pairs, it is two orders of magnitude larger than all other resources of its type. This increase in scale allows lexicalized classifiers to outperform some sophisticated existing entailment models, and it allows a neural network-based model to perform competitively on natural language inference benchmarks for the first time.
A Feasibility Study of Answer-Agnostic Question Generation for Education
We conduct a feasibility study into the applicability of answer-agnostic question generation models to textbook passages. We show that a significant portion of errors in such systems arise from asking irrelevant or uninterpretable questions and that such errors can be ameliorated by providing summarized input. We find that giving these models human-written summaries instead of the original text results in a significant increase in acceptability of generated questions (33% rightarrow 83%) as determined by expert annotators. We also find that, in the absence of human-written summaries, automatic summarization can serve as a good middle ground.
FrugalGPT: How to Use Large Language Models While Reducing Cost and Improving Performance
There is a rapidly growing number of large language models (LLMs) that users can query for a fee. We review the cost associated with querying popular LLM APIs, e.g. GPT-4, ChatGPT, J1-Jumbo, and find that these models have heterogeneous pricing structures, with fees that can differ by two orders of magnitude. In particular, using LLMs on large collections of queries and text can be expensive. Motivated by this, we outline and discuss three types of strategies that users can exploit to reduce the inference cost associated with using LLMs: 1) prompt adaptation, 2) LLM approximation, and 3) LLM cascade. As an example, we propose FrugalGPT, a simple yet flexible instantiation of LLM cascade which learns which combinations of LLMs to use for different queries in order to reduce cost and improve accuracy. Our experiments show that FrugalGPT can match the performance of the best individual LLM (e.g. GPT-4) with up to 98% cost reduction or improve the accuracy over GPT-4 by 4% with the same cost. The ideas and findings presented here lay a foundation for using LLMs sustainably and efficiently.
Language Models Benefit from Preparation with Elicited Knowledge
The zero-shot chain of thought (CoT) approach is often used in question answering (QA) by language models (LMs) for tasks that require multiple reasoning steps, typically enhanced by the prompt "Let's think step by step." However, some QA tasks hinge more on accessing relevant knowledge than on chaining reasoning steps. We introduce a simple general prompting technique, called PREP, that involves using two instances of LMs: the first (LM1) generates relevant information, and the second (LM2) answers the question based on this information. PREP is designed to be general and independent of the user's domain knowledge, making it applicable across various QA tasks without the need for specialized prompt engineering. To evaluate the effectiveness of our prompting method, we create a dataset of 100 binary-choice questions, derived from an extensive schematic dataset on artifact parts and material composition. These questions ask which of two artifacts is less likely to share materials with another artifact. Such questions probe the LM's knowledge of shared materials in the part structure of different artifacts. We test our method on our dataset and three published commonsense reasoning datasets. The average accuracy of our method is consistently higher than that of all the other tested methods across all the tested datasets.
MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time
Although Large Language Models (LLMs) achieve remarkable performance across various tasks, they often struggle with complex reasoning tasks, such as answering mathematical questions. Recent efforts to address this issue have primarily focused on leveraging mathematical datasets through supervised fine-tuning or self-improvement techniques. However, these methods often depend on high-quality datasets that are difficult to prepare, or they require substantial computational resources for fine-tuning. Inspired by findings that LLMs know how to produce the right answer but struggle to select the correct reasoning path, we propose a purely inference-based searching method -- MindStar (M*). This method formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths. We evaluate the M* framework on both the GSM8K and MATH datasets, comparing its performance with existing open and closed-source LLMs. Our results demonstrate that M* significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1, but with substantially reduced model size and computational costs.
Early Stopping Chain-of-thoughts in Large Language Models
Reasoning large language models (LLMs) have demonstrated superior capacities in solving complicated problems by generating long chain-of-thoughts (CoT), but such a lengthy CoT incurs high inference costs. In this study, we introduce ES-CoT, an inference-time method that shortens CoT generation by detecting answer convergence and stopping early with minimal performance loss. At the end of each reasoning step, we prompt the LLM to output its current final answer, denoted as a step answer. We then track the run length of consecutive identical step answers as a measure of answer convergence. Once the run length exhibits a sharp increase and exceeds a minimum threshold, the generation is terminated. We provide both empirical and theoretical support for this heuristic: step answers steadily converge to the final answer, and large run-length jumps reliably mark this convergence. Experiments on five reasoning datasets across three LLMs show that ES-CoT reduces the number of inference tokens by about 41\% on average while maintaining accuracy comparable to standard CoT. Further, ES-CoT integrates seamlessly with self-consistency prompting and remains robust across hyperparameter choices, highlighting it as a practical and effective approach for efficient reasoning.
ProtoQA: A Question Answering Dataset for Prototypical Common-Sense Reasoning
Given questions regarding some prototypical situation such as Name something that people usually do before they leave the house for work? a human can easily answer them via acquired experiences. There can be multiple right answers for such questions, with some more common for a situation than others. This paper introduces a new question answering dataset for training and evaluating common sense reasoning capabilities of artificial intelligence systems in such prototypical situations. The training set is gathered from an existing set of questions played in a long-running international game show FAMILY- FEUD. The hidden evaluation set is created by gathering answers for each question from 100 crowd-workers. We also propose a generative evaluation task where a model has to output a ranked list of answers, ideally covering all prototypical answers for a question. After presenting multiple competitive baseline models, we find that human performance still exceeds model scores on all evaluation metrics with a meaningful gap, supporting the challenging nature of the task.
Are LLMs Aware that Some Questions are not Open-ended?
Large Language Models (LLMs) have shown the impressive capability of answering questions in a wide range of scenarios. However, when LLMs face different types of questions, it is worth exploring whether LLMs are aware that some questions have limited answers and need to respond more deterministically but some do not. We refer to this as question awareness of LLMs. The lack of question awareness in LLMs leads to two phenomena that LLMs are: (1) too casual to answer non-open-ended questions or (2) too boring to answer open-ended questions. In this paper, we first evaluate the question awareness in LLMs. The experimental results show that LLMs have the issues of lacking awareness of questions in certain domains, e.g. factual knowledge, resulting in hallucinations during the generation. To mitigate these, we propose a method called Question Awareness Temperature Sampling (QuATS). This method enhances the question awareness of LLMs by adaptively adjusting the output distributions based on question features. The automatic adjustment in QuATS eliminates the need for manual temperature tuning in text generation and consistently improves model performance in various benchmarks.
Model Analysis & Evaluation for Ambiguous Question Answering
Ambiguous questions are a challenge for Question Answering models, as they require answers that cover multiple interpretations of the original query. To this end, these models are required to generate long-form answers that often combine conflicting pieces of information. Although recent advances in the field have shown strong capabilities in generating fluent responses, certain research questions remain unanswered. Does model/data scaling improve the answers' quality? Do automated metrics align with human judgment? To what extent do these models ground their answers in evidence? In this study, we aim to thoroughly investigate these aspects, and provide valuable insights into the limitations of the current approaches. To aid in reproducibility and further extension of our work, we open-source our code at https://github.com/din0s/ambig_lfqa.
Explaining Answers with Entailment Trees
Our goal, in the context of open-domain textual question-answering (QA), is to explain answers by showing the line of reasoning from what is known to the answer, rather than simply showing a fragment of textual evidence (a "rationale'"). If this could be done, new opportunities for understanding and debugging the system's reasoning become possible. Our approach is to generate explanations in the form of entailment trees, namely a tree of multipremise entailment steps from facts that are known, through intermediate conclusions, to the hypothesis of interest (namely the question + answer). To train a model with this skill, we created ENTAILMENTBANK, the first dataset to contain multistep entailment trees. Given a hypothesis (question + answer), we define three increasingly difficult explanation tasks: generate a valid entailment tree given (a) all relevant sentences (b) all relevant and some irrelevant sentences, or (c) a corpus. We show that a strong language model can partially solve these tasks, in particular when the relevant sentences are included in the input (e.g., 35% of trees for (a) are perfect), and with indications of generalization to other domains. This work is significant as it provides a new type of dataset (multistep entailments) and baselines, offering a new avenue for the community to generate richer, more systematic explanations.
Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering
Generative models for open domain question answering have proven to be competitive, without resorting to external knowledge. While promising, this approach requires to use models with billions of parameters, which are expensive to train and query. In this paper, we investigate how much these models can benefit from retrieving text passages, potentially containing evidence. We obtain state-of-the-art results on the Natural Questions and TriviaQA open benchmarks. Interestingly, we observe that the performance of this method significantly improves when increasing the number of retrieved passages. This is evidence that generative models are good at aggregating and combining evidence from multiple passages.
SQuARE: Sequential Question Answering Reasoning Engine for Enhanced Chain-of-Thought in Large Language Models
In the rapidly evolving field of Natural Language Processing, Large Language Models (LLMs) are tasked with increasingly complex reasoning challenges. Traditional methods like chain-of-thought prompting have shown promise but often fall short in fully leveraging a model's reasoning capabilities. This paper introduces SQuARE (Sequential Question Answering Reasoning Engine), a novel prompting technique designed to improve reasoning through a self-interrogation paradigm. Building upon CoT frameworks, SQuARE prompts models to generate and resolve multiple auxiliary questions before tackling the main query, promoting a more thorough exploration of various aspects of a topic. Our expansive evaluations, conducted with Llama 3 and GPT-4o models across multiple question-answering datasets, demonstrate that SQuARE significantly surpasses traditional CoT prompts and existing rephrase-and-respond methods. By systematically decomposing queries, SQuARE advances LLM capabilities in reasoning tasks. The code is publicly available at https://github.com/IntelLabs/RAG-FiT/tree/square.
CoQAR: Question Rewriting on CoQA
Questions asked by humans during a conversation often contain contextual dependencies, i.e., explicit or implicit references to previous dialogue turns. These dependencies take the form of coreferences (e.g., via pronoun use) or ellipses, and can make the understanding difficult for automated systems. One way to facilitate the understanding and subsequent treatments of a question is to rewrite it into an out-of-context form, i.e., a form that can be understood without the conversational context. We propose CoQAR, a corpus containing 4.5K conversations from the Conversational Question-Answering dataset CoQA, for a total of 53K follow-up question-answer pairs. Each original question was manually annotated with at least 2 at most 3 out-of-context rewritings. CoQAR can be used in the supervised learning of three tasks: question paraphrasing, question rewriting and conversational question answering. In order to assess the quality of CoQAR's rewritings, we conduct several experiments consisting in training and evaluating models for these three tasks. Our results support the idea that question rewriting can be used as a preprocessing step for question answering models, thereby increasing their performances.
PCoQA: Persian Conversational Question Answering Dataset
Humans seek information regarding a specific topic through performing a conversation containing a series of questions and answers. In the pursuit of conversational question answering research, we introduce the PCoQA, the first Persian Conversational Question Answering dataset, a resource comprising information-seeking dialogs encompassing a total of 9,026 contextually-driven questions. Each dialog involves a questioner, a responder, and a document from the Wikipedia; The questioner asks several inter-connected questions from the text and the responder provides a span of the document as the answer for each question. PCoQA is designed to present novel challenges compared to previous question answering datasets including having more open-ended non-factual answers, longer answers, and fewer lexical overlaps. This paper not only presents the comprehensive PCoQA dataset but also reports the performance of various benchmark models. Our models include baseline models and pre-trained models, which are leveraged to boost the performance of the model. The dataset and benchmarks are available at our Github page.
Chain-of-Action: Faithful and Multimodal Question Answering through Large Language Models
We present a Chain-of-Action (CoA) framework for multimodal and retrieval-augmented Question-Answering (QA). Compared to the literature, CoA overcomes two major challenges of current QA applications: (i) unfaithful hallucination that is inconsistent with real-time or domain facts and (ii) weak reasoning performance over compositional information. Our key contribution is a novel reasoning-retrieval mechanism that decomposes a complex question into a reasoning chain via systematic prompting and pre-designed actions. Methodologically, we propose three types of domain-adaptable `Plug-and-Play' actions for retrieving real-time information from heterogeneous sources. We also propose a multi-reference faith score (MRFS) to verify and resolve conflicts in the answers. Empirically, we exploit both public benchmarks and a Web3 case study to demonstrate the capability of CoA over other methods.
Prompting Large Language Models with Chain-of-Thought for Few-Shot Knowledge Base Question Generation
The task of Question Generation over Knowledge Bases (KBQG) aims to convert a logical form into a natural language question. For the sake of expensive cost of large-scale question annotation, the methods of KBQG under low-resource scenarios urgently need to be developed. However, current methods heavily rely on annotated data for fine-tuning, which is not well-suited for few-shot question generation. The emergence of Large Language Models (LLMs) has shown their impressive generalization ability in few-shot tasks. Inspired by Chain-of-Thought (CoT) prompting, which is an in-context learning strategy for reasoning, we formulate KBQG task as a reasoning problem, where the generation of a complete question is splitted into a series of sub-question generation. Our proposed prompting method KQG-CoT first retrieves supportive logical forms from the unlabeled data pool taking account of the characteristics of the logical form. Then, we write a prompt to explicit the reasoning chain of generating complicated questions based on the selected demonstrations. To further ensure prompt quality, we extend KQG-CoT into KQG-CoT+ via sorting the logical forms by their complexity. We conduct extensive experiments over three public KBQG datasets. The results demonstrate that our prompting method consistently outperforms other prompting baselines on the evaluated datasets. Remarkably, our KQG-CoT+ method could surpass existing few-shot SoTA results of the PathQuestions dataset by 18.25, 10.72, and 10.18 absolute points on BLEU-4, METEOR, and ROUGE-L, respectively.
Principled Instructions Are All You Need for Questioning LLaMA-1/2, GPT-3.5/4
This paper introduces 26 guiding principles designed to streamline the process of querying and prompting large language models. Our goal is to simplify the underlying concepts of formulating questions for various scales of large language models, examining their abilities, and enhancing user comprehension on the behaviors of different scales of large language models when feeding into different prompts. Extensive experiments are conducted on LLaMA-1/2 (7B, 13B and 70B), GPT-3.5/4 to verify the effectiveness of the proposed principles on instructions and prompts design. We hope that this work can provide a better guide for researchers working on the prompting of large language models. Project page is available at https://github.com/VILA-Lab/ATLAS.
MAQA: Evaluating Uncertainty Quantification in LLMs Regarding Data Uncertainty
Although large language models (LLMs) are capable of performing various tasks, they still suffer from producing plausible but incorrect responses. To improve the reliability of LLMs, recent research has focused on uncertainty quantification to predict whether a response is correct or not. However, most uncertainty quantification methods have been evaluated on questions requiring a single clear answer, ignoring the existence of data uncertainty that arises from irreducible randomness. Instead, these methods only consider model uncertainty, which arises from a lack of knowledge. In this paper, we investigate previous uncertainty quantification methods under the presence of data uncertainty. Our contributions are two-fold: 1) proposing a new Multi-Answer Question Answering dataset, MAQA, consisting of world knowledge, mathematical reasoning, and commonsense reasoning tasks to evaluate uncertainty quantification regarding data uncertainty, and 2) assessing 5 uncertainty quantification methods of diverse white- and black-box LLMs. Our findings show that entropy and consistency-based methods estimate the model uncertainty well even under data uncertainty, while other methods for white- and black-box LLMs struggle depending on the tasks. Additionally, methods designed for white-box LLMs suffer from overconfidence in reasoning tasks compared to simple knowledge queries. We believe our observations will pave the way for future work on uncertainty quantification in realistic setting.
AbstentionBench: Reasoning LLMs Fail on Unanswerable Questions
For Large Language Models (LLMs) to be reliably deployed in both everyday and high-stakes domains, knowing when not to answer is equally critical as answering correctly. Real-world user queries, which can be underspecified, ill-posed, or fundamentally unanswerable, require LLMs to reason about uncertainty and selectively abstain -- i.e., refuse to answer definitively. However, abstention remains understudied, without a systematic evaluation framework for modern LLMs. In this work, we introduce AbstentionBench, a large-scale benchmark for holistically evaluating abstention across 20 diverse datasets, including questions with unknown answers, underspecification, false premises, subjective interpretations, and outdated information. Evaluating 20 frontier LLMs reveals abstention is an unsolved problem, and one where scaling models is of little use. While recent reasoning LLMs have shown impressive results in complex problem solving, surprisingly, we find that reasoning fine-tuning degrades abstention (by 24% on average), even for math and science domains on which reasoning models are explicitly trained. We find that while a carefully crafted system prompt can boost abstention in practice, it does not resolve models' fundamental inability to reason about uncertainty. We release AbstentionBench to foster research into advancing LLM reliability.
Efficient Reasoning Models: A Survey
Reasoning models have demonstrated remarkable progress in solving complex and logic-intensive tasks by generating extended Chain-of-Thoughts (CoTs) prior to arriving at a final answer. Yet, the emergence of this "slow-thinking" paradigm, with numerous tokens generated in sequence, inevitably introduces substantial computational overhead. To this end, it highlights an urgent need for effective acceleration. This survey aims to provide a comprehensive overview of recent advances in efficient reasoning. It categorizes existing works into three key directions: (1) shorter - compressing lengthy CoTs into concise yet effective reasoning chains; (2) smaller - developing compact language models with strong reasoning capabilities through techniques such as knowledge distillation, other model compression techniques, and reinforcement learning; and (3) faster - designing efficient decoding strategies to accelerate inference. A curated collection of papers discussed in this survey is available in our GitHub repository.
Answering Unseen Questions With Smaller Language Models Using Rationale Generation and Dense Retrieval
When provided with sufficient explanatory context, smaller Language Models have been shown to exhibit strong reasoning ability on challenging short-answer question-answering tasks where the questions are unseen in training. We evaluate two methods for further improvement in this setting. Both methods focus on combining rationales generated by a larger Language Model with longer contexts created from a multi-hop dense retrieval system. The first method (RR) involves training a Rationale Ranking model to score both generated rationales and retrieved contexts with respect to relevance and truthfulness. We then use the scores to derive combined contexts from both knowledge sources using a number of combinatory strategies. For the second method (RATD) we utilise retrieval-augmented training datasets developed by Hartill et al. 2023 to train a smaller Reasoning model such that it becomes proficient at utilising relevant information from longer text sequences that may be only partially evidential and frequently contain many irrelevant sentences. We find that both methods significantly improve results. Our single best Reasoning model materially improves upon strong comparable prior baselines for unseen evaluation datasets (StrategyQA 58.9 rightarrow 61.7 acc., CommonsenseQA 63.6 rightarrow 72.7 acc., ARC-DA 31.6 rightarrow 52.1 F1, IIRC 25.5 rightarrow 27.3 F1) and a version utilising our prior knowledge of each type of question in selecting a context combination strategy does even better. Our proposed models also generally outperform direct prompts against much larger models (BLOOM 175B and StableVicuna 13B) in both few-shot chain-of-thought and standard few-shot settings.
Measuring and Narrowing the Compositionality Gap in Language Models
We investigate the ability of language models to perform compositional reasoning tasks where the overall solution depends on correctly composing the answers to sub-problems. We measure how often models can correctly answer all sub-problems but not generate the overall solution, a ratio we call the compositionality gap. We evaluate this ratio by asking multi-hop questions with answers that require composing multiple facts unlikely to have been observed together during pretraining. In the GPT-3 family of models, as model size increases we show that the single-hop question answering performance improves faster than the multi-hop performance does, therefore the compositionality gap does not decrease. This surprising result suggests that while more powerful models memorize and recall more factual knowledge, they show no corresponding improvement in their ability to perform this kind of compositional reasoning. We then demonstrate how elicitive prompting (such as chain of thought) narrows the compositionality gap by reasoning explicitly instead of implicitly. We present a new method, self-ask, that further improves on chain of thought. In our method, the model explicitly asks itself (and then answers) follow-up questions before answering the initial question. We finally show that self-ask's structured prompting lets us easily plug in a search engine to answer the follow-up questions, which additionally improves accuracy.
Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models
Large language models can perform various reasoning tasks by using chain-of-thought prompting, which guides them to find answers through step-by-step demonstrations. However, the quality of the prompts depends on the demonstrations given to the models, and creating many of them by hand is costly. We introduce Synthetic prompting, a method that leverages a few handcrafted examples to prompt the model to generate more examples by itself, and selects effective demonstrations to elicit better reasoning. Our method alternates between a backward and forward process to generate new examples. The backward process generates a question that match a sampled reasoning chain, so that the question is solvable and clear. The forward process produces a more detailed reasoning chain for the question, improving the quality of the example. We evaluate our method on numerical, symbolic, and algorithmic reasoning tasks, and show that it outperforms existing prompting techniques.
Learning to Ask: Neural Question Generation for Reading Comprehension
We study automatic question generation for sentences from text passages in reading comprehension. We introduce an attention-based sequence learning model for the task and investigate the effect of encoding sentence- vs. paragraph-level information. In contrast to all previous work, our model does not rely on hand-crafted rules or a sophisticated NLP pipeline; it is instead trainable end-to-end via sequence-to-sequence learning. Automatic evaluation results show that our system significantly outperforms the state-of-the-art rule-based system. In human evaluations, questions generated by our system are also rated as being more natural (i.e., grammaticality, fluency) and as more difficult to answer (in terms of syntactic and lexical divergence from the original text and reasoning needed to answer).
Disentangling Memory and Reasoning Ability in Large Language Models
Large Language Models (LLMs) have demonstrated strong performance in handling complex tasks requiring both extensive knowledge and reasoning abilities. However, the existing LLM inference pipeline operates as an opaque process without explicit separation between knowledge retrieval and reasoning steps, making the model's decision-making process unclear and disorganized. This ambiguity can lead to issues such as hallucinations and knowledge forgetting, which significantly impact the reliability of LLMs in high-stakes domains. In this paper, we propose a new inference paradigm that decomposes the complex inference process into two distinct and clear actions: (1) memory recall: which retrieves relevant knowledge, and (2) reasoning: which performs logical steps based on the recalled knowledge. To facilitate this decomposition, we introduce two special tokens memory and reason, guiding the model to distinguish between steps that require knowledge retrieval and those that involve reasoning. Our experiment results show that this decomposition not only improves model performance but also enhances the interpretability of the inference process, enabling users to identify sources of error and refine model responses effectively. The code is available at https://github.com/MingyuJ666/Disentangling-Memory-and-Reasoning.
Look before you Hop: Conversational Question Answering over Knowledge Graphs Using Judicious Context Expansion
Fact-centric information needs are rarely one-shot; users typically ask follow-up questions to explore a topic. In such a conversational setting, the user's inputs are often incomplete, with entities or predicates left out, and ungrammatical phrases. This poses a huge challenge to question answering (QA) systems that typically rely on cues in full-fledged interrogative sentences. As a solution, we develop CONVEX: an unsupervised method that can answer incomplete questions over a knowledge graph (KG) by maintaining conversation context using entities and predicates seen so far and automatically inferring missing or ambiguous pieces for follow-up questions. The core of our method is a graph exploration algorithm that judiciously expands a frontier to find candidate answers for the current question. To evaluate CONVEX, we release ConvQuestions, a crowdsourced benchmark with 11,200 distinct conversations from five different domains. We show that CONVEX: (i) adds conversational support to any stand-alone QA system, and (ii) outperforms state-of-the-art baselines and question completion strategies.
Language Models with Rationality
While large language models (LLMs) are proficient at question-answering (QA), it is not always clear how (or even if) an answer follows from their latent "beliefs". This lack of interpretability is a growing impediment to widespread use of LLMs. To address this, our goals are to make model beliefs and their inferential relationships explicit, and to resolve inconsistencies that may exist, so that answers are supported by interpretable chains of reasoning drawn from a consistent network of beliefs. Our approach, which we call REFLEX, is to add a rational, self-reflecting layer on top of the LLM. First, given a question, we construct a belief graph using a backward-chaining process to materialize relevant model beliefs (including beliefs about answer candidates) and their inferential relationships. Second, we identify and minimize contradictions in that graph using a formal constraint reasoner. We find that REFLEX significantly improves consistency (by 8%-11% absolute) without harming overall answer accuracy, resulting in answers supported by faithful chains of reasoning drawn from a more consistent belief system. This suggests a new style of system architecture in which an LLM extended with a rational layer can provide an interpretable window into system beliefs, add a systematic reasoning capability, and repair latent inconsistencies present in the LLM.
Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves
Misunderstandings arise not only in interpersonal communication but also between humans and Large Language Models (LLMs). Such discrepancies can make LLMs interpret seemingly unambiguous questions in unexpected ways, yielding incorrect responses. While it is widely acknowledged that the quality of a prompt, such as a question, significantly impacts the quality of the response provided by LLMs, a systematic method for crafting questions that LLMs can better comprehend is still underdeveloped. In this paper, we present a method named `Rephrase and Respond' (RaR), which allows LLMs to rephrase and expand questions posed by humans and provide responses in a single prompt. This approach serves as a simple yet effective prompting method for improving performance. We also introduce a two-step variant of RaR, where a rephrasing LLM first rephrases the question and then passes the original and rephrased questions together to a different responding LLM. This facilitates the effective utilization of rephrased questions generated by one LLM with another. Our experiments demonstrate that our methods significantly improve the performance of different models across a wide range to tasks. We further provide a comprehensive comparison between RaR and the popular Chain-of-Thought (CoT) methods, both theoretically and empirically. We show that RaR is complementary to CoT and can be combined with CoT to achieve even better performance. Our work not only contributes to enhancing LLM performance efficiently and effectively but also sheds light on a fair evaluation of LLM capabilities. Data and codes are available at https://github.com/uclaml/Rephrase-and-Respond.
Shifting Attention to Relevance: Towards the Uncertainty Estimation of Large Language Models
While Large Language Models (LLMs) have demonstrated remarkable potential in natural language generation and instruction following, a persistent challenge lies in their susceptibility to "hallucinations", which erodes trust in their outputs. Although Uncertainty Quantification (UQ) presents a promising solution, its accurate implementation within the context of LLMs remains a significant hurdle. To address this critical roadblock, our research originates from a fundamental heuristic insight: tokens within auto-regressive LLM-generated text do not equally reflect the underlying meaning. Some tokens carry greater relevance and representativeness than others, owing to the phenomenon of "linguistic redundancy", wherein a select few keywords suffice to convey the essence of lengthy sentences. Regrettably, existing methodologies treat all tokens with equal importance when estimating uncertainty, disregarding these inherent generative inequalities. Our analysis reveals a significant issue with state-of-the-art: numerous tokens (and sentences) of limited semantic significance receive equal or even excessive weighting during uncertainty estimation. To rectify this bias, we propose to jointly Shifting Attention to more Relevant (SAR) components, at both the token- and the sentence-levels for accurate uncertainty estimation. We conduct extensive experiments involving a range of popular "off-the-shelf" LLMs, including instruction-tuned LLMs such as Vicuna, WizardLM, and LLaMA-2-chat, as well as pretrained LLMs like OPT and LLaMA, with model sizes extending up to 33B parameters. We carry out evaluation across various free-form question-answering tasks, encompassing domains such as reading comprehension, science Q&A, and medical Q&A. Our experimental results demonstrate the superior performance of SAR in addressing the challenges of uncertainty estimation within the realm of LLMs.
Beyond I.I.D.: Three Levels of Generalization for Question Answering on Knowledge Bases
Existing studies on question answering on knowledge bases (KBQA) mainly operate with the standard i.i.d assumption, i.e., training distribution over questions is the same as the test distribution. However, i.i.d may be neither reasonably achievable nor desirable on large-scale KBs because 1) true user distribution is hard to capture and 2) randomly sample training examples from the enormous space would be highly data-inefficient. Instead, we suggest that KBQA models should have three levels of built-in generalization: i.i.d, compositional, and zero-shot. To facilitate the development of KBQA models with stronger generalization, we construct and release a new large-scale, high-quality dataset with 64,331 questions, GrailQA, and provide evaluation settings for all three levels of generalization. In addition, we propose a novel BERT-based KBQA model. The combination of our dataset and model enables us to thoroughly examine and demonstrate, for the first time, the key role of pre-trained contextual embeddings like BERT in the generalization of KBQA.
Questions Are All You Need to Train a Dense Passage Retriever
We introduce ART, a new corpus-level autoencoding approach for training dense retrieval models that does not require any labeled training data. Dense retrieval is a central challenge for open-domain tasks, such as Open QA, where state-of-the-art methods typically require large supervised datasets with custom hard-negative mining and denoising of positive examples. ART, in contrast, only requires access to unpaired inputs and outputs (e.g. questions and potential answer documents). It uses a new document-retrieval autoencoding scheme, where (1) an input question is used to retrieve a set of evidence documents, and (2) the documents are then used to compute the probability of reconstructing the original question. Training for retrieval based on question reconstruction enables effective unsupervised learning of both document and question encoders, which can be later incorporated into complete Open QA systems without any further finetuning. Extensive experiments demonstrate that ART obtains state-of-the-art results on multiple QA retrieval benchmarks with only generic initialization from a pre-trained language model, removing the need for labeled data and task-specific losses.
Retrieval-Generation Synergy Augmented Large Language Models
Large language models augmented with task-relevant documents have demonstrated impressive performance on knowledge-intensive tasks. However, regarding how to obtain effective documents, the existing methods are mainly divided into two categories. One is to retrieve from an external knowledge base, and the other is to utilize large language models to generate documents. We propose an iterative retrieval-generation collaborative framework. It is not only able to leverage both parametric and non-parametric knowledge, but also helps to find the correct reasoning path through retrieval-generation interactions, which is very important for tasks that require multi-step reasoning. We conduct experiments on four question answering datasets, including single-hop QA and multi-hop QA tasks. Empirical results show that our method significantly improves the reasoning ability of large language models and outperforms previous baselines.
GRS-QA -- Graph Reasoning-Structured Question Answering Dataset
Large Language Models (LLMs) have excelled in multi-hop question-answering (M-QA) due to their advanced reasoning abilities. However, the impact of the inherent reasoning structures on LLM M-QA performance remains unclear, largely due to the absence of QA datasets that provide fine-grained reasoning structures. To address this gap, we introduce the Graph Reasoning-Structured Question Answering Dataset (GRS-QA), which includes both semantic contexts and reasoning structures for QA pairs. Unlike existing M-QA datasets, where different reasoning structures are entangled together, GRS-QA explicitly captures intricate reasoning pathways by constructing reasoning graphs, where nodes represent textual contexts and edges denote logical flows. These reasoning graphs of different structures enable a fine-grained evaluation of LLM reasoning capabilities across various reasoning structures. Our empirical analysis reveals that LLMs perform differently when handling questions with varying reasoning structures. This finding facilitates the exploration of textual structures as compared with semantics.
Simple Applications of BERT for Ad Hoc Document Retrieval
Following recent successes in applying BERT to question answering, we explore simple applications to ad hoc document retrieval. This required confronting the challenge posed by documents that are typically longer than the length of input BERT was designed to handle. We address this issue by applying inference on sentences individually, and then aggregating sentence scores to produce document scores. Experiments on TREC microblog and newswire test collections show that our approach is simple yet effective, as we report the highest average precision on these datasets by neural approaches that we are aware of.
Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions
Prompting-based large language models (LLMs) are surprisingly powerful at generating natural language reasoning steps or Chains-of-Thoughts (CoT) for multi-step question answering (QA). They struggle, however, when the necessary knowledge is either unavailable to the LLM or not up-to-date within its parameters. While using the question to retrieve relevant text from an external knowledge source helps LLMs, we observe that this one-step retrieve-and-read approach is insufficient for multi-step QA. Here, what to retrieve depends on what has already been derived, which in turn may depend on what was previously retrieved. To address this, we propose IRCoT, a new approach for multi-step QA that interleaves retrieval with steps (sentences) in a CoT, guiding the retrieval with CoT and in turn using retrieved results to improve CoT. Using IRCoT with GPT3 substantially improves retrieval (up to 21 points) as well as downstream QA (up to 15 points) on four datasets: HotpotQA, 2WikiMultihopQA, MuSiQue, and IIRC. We observe similar substantial gains in out-of-distribution (OOD) settings as well as with much smaller models such as Flan-T5-large without additional training. IRCoT reduces model hallucination, resulting in factually more accurate CoT reasoning. Code, data, and prompts are available at https://github.com/stonybrooknlp/ircot
Deciphering Trajectory-Aided LLM Reasoning: An Optimization Perspective
We propose a novel framework for comprehending the reasoning capabilities of large language models (LLMs) through the perspective of meta-learning. By conceptualizing reasoning trajectories as pseudo-gradient descent updates to the LLM's parameters, we identify parallels between LLM reasoning and various meta-learning paradigms. We formalize the training process for reasoning tasks as a meta-learning setup, with each question treated as an individual task, and reasoning trajectories serving as the inner loop optimization for adapting model parameters. Once trained on a diverse set of questions, the LLM develops fundamental reasoning capabilities that can generalize to previously unseen questions. Extensive empirical evaluations substantiate the strong connection between LLM reasoning and meta-learning, exploring several issues of significant interest from a meta-learning standpoint. Our work not only enhances the understanding of LLM reasoning but also provides practical insights for improving these models through established meta-learning techniques.
Annotation Artifacts in Natural Language Inference Data
Large-scale datasets for natural language inference are created by presenting crowd workers with a sentence (premise), and asking them to generate three new sentences (hypotheses) that it entails, contradicts, or is logically neutral with respect to. We show that, in a significant portion of such data, this protocol leaves clues that make it possible to identify the label by looking only at the hypothesis, without observing the premise. Specifically, we show that a simple text categorization model can correctly classify the hypothesis alone in about 67% of SNLI (Bowman et. al, 2015) and 53% of MultiNLI (Williams et. al, 2017). Our analysis reveals that specific linguistic phenomena such as negation and vagueness are highly correlated with certain inference classes. Our findings suggest that the success of natural language inference models to date has been overestimated, and that the task remains a hard open problem.
QuestA: Expanding Reasoning Capacity in LLMs via Question Augmentation
Reinforcement learning (RL) has become a key component in training large language reasoning models (LLMs). However, recent studies questions its effectiveness in improving multi-step reasoning-particularly on hard problems. To address this challenge, we propose a simple yet effective strategy via Question Augmentation: introduce partial solutions during training to reduce problem difficulty and provide more informative learning signals. Our method, QuestA, when applied during RL training on math reasoning tasks, not only improves pass@1 but also pass@k-particularly on problems where standard RL struggles to make progress. This enables continual improvement over strong open-source models such as DeepScaleR and OpenMath Nemotron, further enhancing their reasoning capabilities. We achieve new state-of-the-art results on math benchmarks using 1.5B-parameter models: 67.1% (+5.3%) on AIME24, 59.5% (+10.0%) on AIME25, and 35.5% (+4.0%) on HMMT25. Further, we provide theoretical explanations that QuestA improves sample efficiency, offering a practical and generalizable pathway for expanding reasoning capability through RL.
How Much Knowledge Can You Pack Into the Parameters of a Language Model?
It has recently been observed that neural language models trained on unstructured text can implicitly store and retrieve knowledge using natural language queries. In this short paper, we measure the practical utility of this approach by fine-tuning pre-trained models to answer questions without access to any external context or knowledge. We show that this approach scales with model size and performs competitively with open-domain systems that explicitly retrieve answers from an external knowledge source when answering questions. To facilitate reproducibility and future work, we release our code and trained models at https://goo.gle/t5-cbqa.
Sampling-Based Accuracy Testing of Posterior Estimators for General Inference
Parameter inference, i.e. inferring the posterior distribution of the parameters of a statistical model given some data, is a central problem to many scientific disciplines. Generative models can be used as an alternative to Markov Chain Monte Carlo methods for conducting posterior inference, both in likelihood-based and simulation-based problems. However, assessing the accuracy of posteriors encoded in generative models is not straightforward. In this paper, we introduce `Tests of Accuracy with Random Points' (TARP) coverage testing as a method to estimate coverage probabilities of generative posterior estimators. Our method differs from previously-existing coverage-based methods, which require posterior evaluations. We prove that our approach is necessary and sufficient to show that a posterior estimator is accurate. We demonstrate the method on a variety of synthetic examples, and show that TARP can be used to test the results of posterior inference analyses in high-dimensional spaces. We also show that our method can detect inaccurate inferences in cases where existing methods fail.
PaRaDe: Passage Ranking using Demonstrations with Large Language Models
Recent studies show that large language models (LLMs) can be instructed to effectively perform zero-shot passage re-ranking, in which the results of a first stage retrieval method, such as BM25, are rated and reordered to improve relevance. In this work, we improve LLM-based re-ranking by algorithmically selecting few-shot demonstrations to include in the prompt. Our analysis investigates the conditions where demonstrations are most helpful, and shows that adding even one demonstration is significantly beneficial. We propose a novel demonstration selection strategy based on difficulty rather than the commonly used semantic similarity. Furthermore, we find that demonstrations helpful for ranking are also effective at question generation. We hope our work will spur more principled research into question generation and passage ranking.
Hop, Skip, and Overthink: Diagnosing Why Reasoning Models Fumble during Multi-Hop Analysis
The emergence of reasoning models and their integration into practical AI chat bots has led to breakthroughs in solving advanced math, deep search, and extractive question answering problems that requires a complex and multi-step thought process. Yet, a complete understanding of why these models hallucinate more than general purpose language models is missing. In this investigative study, we systematicallyexplore reasoning failures of contemporary language models on multi-hop question answering tasks. We introduce a novel, nuanced error categorization framework that examines failures across three critical dimensions: the diversity and uniqueness of source documents involved ("hops"), completeness in capturing relevant information ("coverage"), and cognitive inefficiency ("overthinking"). Through rigorous hu-man annotation, supported by complementary automated metrics, our exploration uncovers intricate error patterns often hidden by accuracy-centric evaluations. This investigative approach provides deeper insights into the cognitive limitations of current models and offers actionable guidance toward enhancing reasoning fidelity, transparency, and robustness in future language modeling efforts.
Neural Question Generation from Text: A Preliminary Study
Automatic question generation aims to generate questions from a text passage where the generated questions can be answered by certain sub-spans of the given passage. Traditional methods mainly use rigid heuristic rules to transform a sentence into related questions. In this work, we propose to apply the neural encoder-decoder model to generate meaningful and diverse questions from natural language sentences. The encoder reads the input text and the answer position, to produce an answer-aware input representation, which is fed to the decoder to generate an answer focused question. We conduct a preliminary study on neural question generation from text with the SQuAD dataset, and the experiment results show that our method can produce fluent and diverse questions.
Paragraph-based Transformer Pre-training for Multi-Sentence Inference
Inference tasks such as answer sentence selection (AS2) or fact verification are typically solved by fine-tuning transformer-based models as individual sentence-pair classifiers. Recent studies show that these tasks benefit from modeling dependencies across multiple candidate sentences jointly. In this paper, we first show that popular pre-trained transformers perform poorly when used for fine-tuning on multi-candidate inference tasks. We then propose a new pre-training objective that models the paragraph-level semantics across multiple input sentences. Our evaluation on three AS2 and one fact verification datasets demonstrates the superiority of our pre-training technique over the traditional ones for transformers used as joint models for multi-candidate inference tasks, as well as when used as cross-encoders for sentence-pair formulations of these tasks. Our code and pre-trained models are released at https://github.com/amazon-research/wqa-multi-sentence-inference .
TruthfulQA: Measuring How Models Mimic Human Falsehoods
We propose a benchmark to measure whether a language model is truthful in generating answers to questions. The benchmark comprises 817 questions that span 38 categories, including health, law, finance and politics. We crafted questions that some humans would answer falsely due to a false belief or misconception. To perform well, models must avoid generating false answers learned from imitating human texts. We tested GPT-3, GPT-Neo/J, GPT-2 and a T5-based model. The best model was truthful on 58% of questions, while human performance was 94%. Models generated many false answers that mimic popular misconceptions and have the potential to deceive humans. The largest models were generally the least truthful. This contrasts with other NLP tasks, where performance improves with model size. However, this result is expected if false answers are learned from the training distribution. We suggest that scaling up models alone is less promising for improving truthfulness than fine-tuning using training objectives other than imitation of text from the web.
RISE: Reasoning Enhancement via Iterative Self-Exploration in Multi-hop Question Answering
Large Language Models (LLMs) excel in many areas but continue to face challenges with complex reasoning tasks, such as Multi-Hop Question Answering (MHQA). MHQA requires integrating evidence from diverse sources while managing intricate logical dependencies, often leads to errors in reasoning. Retrieval-Augmented Generation (RAG), widely employed in MHQA tasks, faces challenges in effectively filtering noisy data and retrieving all necessary evidence, thereby limiting its effectiveness in addressing MHQA challenges. To address these challenges, we propose RISE:Reasoning Enhancement via Iterative Self-Exploration, a novel framework designed to enhance models' reasoning capability through iterative self-exploration. Specifically, RISE involves three key steps in addressing MHQA tasks: question decomposition, retrieve-then-read, and self-critique. By leveraging continuous self-exploration, RISE identifies accurate reasoning paths, iteratively self-improving the model's capability to integrate evidence, maintain logical consistency, and enhance performance in MHQA tasks. Extensive experiments on multiple MHQA benchmarks demonstrate that RISE significantly improves reasoning accuracy and task performance.
Batch Prompting: Efficient Inference with Large Language Model APIs
Performing inference on hundreds of thousands of samples with large language models (LLMs) can be computationally and financially costly. We propose batch prompting, a simple alternative prompting approach that enables the LLM to run inference in batches, instead of one sample at a time. Our method reduces both token and time costs while retaining downstream performance. We theoretically demonstrate that under a few-shot in-context learning setting, the inference costs decrease almost inverse linearly with the number of samples in each batch. We extensively validate the effectiveness of batch prompting on ten datasets across commonsense QA, arithmetic reasoning, and NLI/NLU: batch prompting significantly~(up to 5times with six samples in batch) reduces the LLM (Codex) inference token and time costs while achieving better or comparable performance. Our analysis shows that the number of samples in each batch and the complexity of tasks affect its performance. Further, batch prompting can be applied across different LLMs and reasoning methods.
PRISM: Agentic Retrieval with LLMs for Multi-Hop Question Answering
Retrieval plays a central role in multi-hop question answering (QA), where answering complex questions requires gathering multiple pieces of evidence. We introduce an Agentic Retrieval System that leverages large language models (LLMs) in a structured loop to retrieve relevant evidence with high precision and recall. Our framework consists of three specialized agents: a Question Analyzer that decomposes a multi-hop question into sub-questions, a Selector that identifies the most relevant context for each sub-question (focusing on precision), and an Adder that brings in any missing evidence (focusing on recall). The iterative interaction between Selector and Adder yields a compact yet comprehensive set of supporting passages. In particular, it achieves higher retrieval accuracy while filtering out distracting content, enabling downstream QA models to surpass full-context answer accuracy while relying on significantly less irrelevant information. Experiments on four multi-hop QA benchmarks -- HotpotQA, 2WikiMultiHopQA, MuSiQue, and MultiHopRAG -- demonstrates that our approach consistently outperforms strong baselines.
Query-Level Uncertainty in Large Language Models
It is important for Large Language Models to be aware of the boundary of their knowledge, the mechanism of identifying known and unknown queries. This type of awareness can help models perform adaptive inference, such as invoking RAG, engaging in slow and deep thinking, or adopting the abstention mechanism, which is beneficial to the development of efficient and trustworthy AI. In this work, we propose a method to detect knowledge boundaries via Query-Level Uncertainty, which aims to determine if the model is able to address a given query without generating any tokens. To this end, we introduce a novel and training-free method called Internal Confidence, which leverages self-evaluations across layers and tokens. Empirical results on both factual QA and mathematical reasoning tasks demonstrate that our internal confidence can outperform several baselines. Furthermore, we showcase that our proposed method can be used for efficient RAG and model cascading, which is able to reduce inference costs while maintaining performance.
Atom of Thoughts for Markov LLM Test-Time Scaling
Large Language Models (LLMs) achieve superior performance through training-time scaling, and test-time scaling further enhances their capabilities by conducting effective reasoning during inference. However, as the scale of reasoning increases, existing test-time scaling methods suffer from accumulated historical information, which not only wastes computational resources but also interferes with effective reasoning. To address this issue, we observe that complex reasoning progress is often achieved by solving a sequence of independent subquestions, each being self-contained and verifiable. These subquestions are essentially atomic questions, relying primarily on their current state rather than accumulated history, similar to the memoryless transitions in a Markov process. Based on this observation, we propose Atom of Thoughts (AoT), where each state transition in the reasoning process consists of decomposing the current question into a dependency-based directed acyclic graph and contracting its subquestions, forming a new atomic question state. This iterative decomposition-contraction process continues until reaching directly solvable atomic questions, naturally realizing Markov transitions between question states. Furthermore, these atomic questions can be seamlessly integrated into existing test-time scaling methods, enabling AoT to serve as a plug-in enhancement for improving reasoning capabilities. Experiments across six benchmarks demonstrate the effectiveness of AoT both as a standalone framework and a plug-in enhancement. Notably, on HotpotQA, when applied to gpt-4o-mini, AoT achieves an 80.6% F1 score, surpassing o3-mini by 3.4% and DeepSeek-R1 by 10.6%. The code will be available at https://github.com/qixucen/atom.
Knowledge of Knowledge: Exploring Known-Unknowns Uncertainty with Large Language Models
This paper investigates the capabilities of Large Language Models (LLMs) in the context of understanding their own knowledge and measuring their uncertainty. We argue this is an important feature for mitigating hallucinations. Specifically, we focus on addressing known-unknown questions, characterized by high uncertainty due to the absence of definitive answers. To facilitate our study, we collect a dataset with new Known-Unknown Questions (KUQ) and propose a novel categorization scheme to elucidate the sources of uncertainty. Subsequently, we assess the LLMs' ability to differentiate between known and unknown questions and classify them accordingly. Moreover, we evaluate the quality of their answers in an Open-Ended QA setting. To quantify the uncertainty expressed in the answers, we create a semantic evaluation method that measures the model's accuracy in expressing uncertainty between known vs unknown questions.
Ask Again, Then Fail: Large Language Models' Vacillations in Judgement
With the emergence of generative conversational large language models (LLMs) like ChatGPT, serving as virtual assistants in various fields, the stability and reliability of their responses have become crucial. However, during usage, it has been observed that these models tend to waver in their judgements when confronted with follow-up questions from users expressing skepticism or disagreement. In this work, we draw inspiration from questioning strategies in education and propose a Follow-up Questioning Mechanism along with two evaluation metrics to assess the judgement consistency of LLMs before and after exposure to disturbances. We evaluate the judgement consistency of ChatGPT, PaLM2-Bison, and Vicuna-13B under this mechanism across eight reasoning benchmarks. Empirical results show that even when the initial answers are correct, judgement consistency sharply decreases when LLMs face disturbances such as questioning, negation, or misleading. Additionally, we study these models' judgement consistency under various settings (sampling temperature and prompts) to validate this issue further, observing the impact of prompt tone and conducting an in-depth error analysis for deeper behavioral insights. Furthermore, we also explore several prompting methods to mitigate this issue and demonstrate their effectiveness\url{https://github.com/NUSTM/LLMs-Waver-In-Judgements}.
SPARKLE: Enhancing SPARQL Generation with Direct KG Integration in Decoding
Existing KBQA methods have traditionally relied on multi-stage methodologies, involving tasks such as entity linking, subgraph retrieval and query structure generation. However, multi-stage approaches are dependent on the accuracy of preceding steps, leading to cascading errors and increased inference time. Although a few studies have explored the use of end-to-end models, they often suffer from lower accuracy and generate inoperative query that is not supported by the underlying data. Furthermore, most prior approaches are limited to the static training data, potentially overlooking the evolving nature of knowledge bases over time. To address these challenges, we present a novel end-to-end natural language to SPARQL framework, SPARKLE. Notably SPARKLE leverages the structure of knowledge base directly during the decoding, effectively integrating knowledge into the query generation. Our study reveals that simply referencing knowledge base during inference significantly reduces the occurrence of inexecutable query generations. SPARKLE achieves new state-of-the-art results on SimpleQuestions-Wiki and highest F1 score on LCQuAD 1.0 (among models not using gold entities), while getting slightly lower result on the WebQSP dataset. Finally, we demonstrate SPARKLE's fast inference speed and its ability to adapt when the knowledge base differs between the training and inference stages.
QuickLLaMA: Query-aware Inference Acceleration for Large Language Models
The capacity of Large Language Models (LLMs) to comprehend and reason over long contexts is pivotal for advancements in diverse fields. Yet, they still stuggle with capturing long-distance dependencies within sequences to deeply understand semantics. To address this issue, we introduce Query-aware Inference for LLMs (Q-LLM), a system designed to process extensive sequences akin to human cognition. By focusing on memory data relevant to a given query, Q-LLM can accurately capture pertinent information within a fixed window size and provide precise answers to queries. It doesn't require extra training and can be seamlessly integrated with any LLMs. Q-LLM using LLaMA3 (QuickLLaMA) can read Harry Potter within 30s and accurately answer the questions. Q-LLM improved by 7.17% compared to the current state-of-the-art on LLaMA3, and by 3.26% on Mistral on the infty-bench. In the Needle-in-a-Haystack task, On widely recognized benchmarks, Q-LLM improved upon the current SOTA by 7.0% on Mistral and achieves 100% on LLaMA3. Our code can be found in https://github.com/dvlab-research/Q-LLM.
EviNote-RAG: Enhancing RAG Models via Answer-Supportive Evidence Notes
Large Language Models (LLMs) empowered with retrieval mechanisms have achieved strong progress in open-domain question answering (QA). Yet, the conventional retrieve--then--answer paradigm often suffers from two key limitations: (1) low signal-to-noise ratio in retrieved evidence, where useful information is buried under irrelevant content, and (2) error accumulation in multi-hop reasoning when incomplete or noisy passages are involved. To address these challenges, we present EviNote-RAG, an agentic RAG framework that introduces a structured retrieve--note--answer pipeline. Instead of directly reasoning over raw retrievals, the model is trained to compose Supportive-Evidence Notes (SENs), concise, human-like notes that preserve only answer-relevant information, highlight uncertainty, and explicitly state when no useful evidence exists. This distillation process is further reinforced by the Evidence Quality Reward (EQR), an entailment-based signal that evaluates whether SENs logically support the final answer. Together, SENs and EQR guide the model toward faithful and robust reasoning, while reducing the impact of noise. Experiments on in-domain and out-of-domain QA benchmarks show that EviNote-RAG consistently outperforms strong baselines in accuracy, generalization, and training stability. In particular, it achieves state-of-the-art results while enhancing robustness and efficiency, yielding relative F1 gains of 20\% on HotpotQA (+0.093), 40\% on Bamboogle (+0.151), and 91\% on 2Wiki (+0.256) via denser rewards and reduced verbosity.
NeoQA: Evidence-based Question Answering with Generated News Events
Evaluating Retrieval-Augmented Generation (RAG) in large language models (LLMs) is challenging because benchmarks can quickly become stale. Questions initially requiring retrieval may become answerable from pretraining knowledge as newer models incorporate more recent information during pretraining, making it difficult to distinguish evidence-based reasoning from recall. We introduce NeoQA (News Events for Out-of-training Question Answering), a benchmark designed to address this issue. To construct NeoQA, we generated timelines and knowledge bases of fictional news events and entities along with news articles and Q\&A pairs to prevent LLMs from leveraging pretraining knowledge, ensuring that no prior evidence exists in their training data. We propose our dataset as a new platform for evaluating evidence-based question answering, as it requires LLMs to generate responses exclusively from retrieved evidence and only when sufficient evidence is available. NeoQA enables controlled evaluation across various evidence scenarios, including cases with missing or misleading details. Our findings indicate that LLMs struggle to distinguish subtle mismatches between questions and evidence, and suffer from short-cut reasoning when key information required to answer a question is missing from the evidence, underscoring key limitations in evidence-based reasoning.
PAQ: 65 Million Probably-Asked Questions and What You Can Do With Them
Open-domain Question Answering models which directly leverage question-answer (QA) pairs, such as closed-book QA (CBQA) models and QA-pair retrievers, show promise in terms of speed and memory compared to conventional models which retrieve and read from text corpora. QA-pair retrievers also offer interpretable answers, a high degree of control, and are trivial to update at test time with new knowledge. However, these models lack the accuracy of retrieve-and-read systems, as substantially less knowledge is covered by the available QA-pairs relative to text corpora like Wikipedia. To facilitate improved QA-pair models, we introduce Probably Asked Questions (PAQ), a very large resource of 65M automatically-generated QA-pairs. We introduce a new QA-pair retriever, RePAQ, to complement PAQ. We find that PAQ preempts and caches test questions, enabling RePAQ to match the accuracy of recent retrieve-and-read models, whilst being significantly faster. Using PAQ, we train CBQA models which outperform comparable baselines by 5%, but trail RePAQ by over 15%, indicating the effectiveness of explicit retrieval. RePAQ can be configured for size (under 500MB) or speed (over 1K questions per second) whilst retaining high accuracy. Lastly, we demonstrate RePAQ's strength at selective QA, abstaining from answering when it is likely to be incorrect. This enables RePAQ to ``back-off" to a more expensive state-of-the-art model, leading to a combined system which is both more accurate and 2x faster than the state-of-the-art model alone.
Can Small Language Models Help Large Language Models Reason Better?: LM-Guided Chain-of-Thought
We introduce a novel framework, LM-Guided CoT, that leverages a lightweight (i.e., <1B) language model (LM) for guiding a black-box large (i.e., >10B) LM in reasoning tasks. Specifically, the lightweight LM first generates a rationale for each input instance. The Frozen large LM is then prompted to predict a task output based on the rationale generated by the lightweight LM. Our approach is resource-efficient in the sense that it only requires training the lightweight LM. We optimize the model through 1) knowledge distillation and 2) reinforcement learning from rationale-oriented and task-oriented reward signals. We assess our method with multi-hop extractive question answering (QA) benchmarks, HotpotQA, and 2WikiMultiHopQA. Experimental results show that our approach outperforms all baselines regarding answer prediction accuracy. We also find that reinforcement learning helps the model to produce higher-quality rationales with improved QA performance.
SATQuest: A Verifier for Logical Reasoning Evaluation and Reinforcement Fine-Tuning of LLMs
Recent advances in Large Language Models (LLMs) have demonstrated remarkable general reasoning capabilities. However, systematically evaluating and enhancing these reasoning capabilities is challenging due to the lack of controllable and scalable tools for fine-grained analysis. Existing benchmarks and datasets often lack the necessary variable control for multi-dimensional, systematic analysis and training, or have narrow problem types and formats. To address these limitations, we introduce SATQuest, a systematic verifier designed to evaluate and enhance logical reasoning in LLMs by generating diverse, Satisfiability-based logical reasoning problems directly from Conjunctive Normal Form (CNF) instances. SATQuest structures these problems along three orthogonal dimensions: instance scale, problem type, and question format, employing randomized, SAT-based problem generation and objective answer verification via PySAT. This design mitigates memorization issues, allows for nuanced insights into reasoning performance, and enables effective reinforcement fine-tuning. Our extensive evaluation of various LLMs using SATQuest identified significant limitations in their logical reasoning, particularly in generalizing beyond familiar mathematical formats. Furthermore, we show that reinforcement fine-tuning with SATQuest rewards substantially improves targeted task performance and generalizes to more complex instances, while highlighting remaining challenges in cross-format adaptation. Through these demonstrations, we showcase SATQuest's potential as a foundational tool and a valuable starting point for advancing LLM logical reasoning.
Successive Prompting for Decomposing Complex Questions
Answering complex questions that require making latent decisions is a challenging task, especially when limited supervision is available. Recent works leverage the capabilities of large language models (LMs) to perform complex question answering in a few-shot setting by demonstrating how to output intermediate rationalizations while solving the complex question in a single pass. We introduce ``Successive Prompting'', where we iteratively break down a complex task into a simple task, solve it, and then repeat the process until we get the final solution. Successive prompting decouples the supervision for decomposing complex questions from the supervision for answering simple questions, allowing us to (1) have multiple opportunities to query in-context examples at each reasoning step (2) learn question decomposition separately from question answering, including using synthetic data, and (3) use bespoke (fine-tuned) components for reasoning steps where a large LM does not perform well. The intermediate supervision is typically manually written, which can be expensive to collect. We introduce a way to generate a synthetic dataset which can be used to bootstrap a model's ability to decompose and answer intermediate questions. Our best model (with successive prompting) achieves an improvement of ~5% absolute F1 on a few-shot version of the DROP dataset when compared with a state-of-the-art model with the same supervision.
Hogwild! Inference: Parallel LLM Generation via Concurrent Attention
Large Language Models (LLMs) have demonstrated the ability to tackle increasingly complex tasks through advanced reasoning, long-form content generation, and tool use. Solving these tasks often involves long inference-time computations. In human problem solving, a common strategy to expedite work is collaboration: by dividing the problem into sub-tasks, exploring different strategies concurrently, etc. Recent research has shown that LLMs can also operate in parallel by implementing explicit cooperation frameworks, such as voting mechanisms or the explicit creation of independent sub-tasks that can be executed in parallel. However, each of these frameworks may not be suitable for all types of tasks, which can hinder their applicability. In this work, we propose a different design approach: we run LLM "workers" in parallel , allowing them to synchronize via a concurrently-updated attention cache and prompt these workers to decide how best to collaborate. Our approach allows the instances to come up with their own collaboration strategy for the problem at hand, all the while "seeing" each other's partial progress in the concurrent cache. We implement this approach via Hogwild! Inference: a parallel LLM inference engine where multiple instances of the same LLM run in parallel with the same attention cache, with "instant" access to each other's generated tokens. Hogwild! inference takes advantage of Rotary Position Embeddings (RoPE) to avoid recomputation while improving parallel hardware utilization. We find that modern reasoning-capable LLMs can perform inference with shared Key-Value cache out of the box, without additional fine-tuning.
CONFLARE: CONFormal LArge language model REtrieval
Retrieval-augmented generation (RAG) frameworks enable large language models (LLMs) to retrieve relevant information from a knowledge base and incorporate it into the context for generating responses. This mitigates hallucinations and allows for the updating of knowledge without retraining the LLM. However, RAG does not guarantee valid responses if retrieval fails to identify the necessary information as the context for response generation. Also, if there is contradictory content, the RAG response will likely reflect only one of the two possible responses. Therefore, quantifying uncertainty in the retrieval process is crucial for ensuring RAG trustworthiness. In this report, we introduce a four-step framework for applying conformal prediction to quantify retrieval uncertainty in RAG frameworks. First, a calibration set of questions answerable from the knowledge base is constructed. Each question's embedding is compared against document embeddings to identify the most relevant document chunks containing the answer and record their similarity scores. Given a user-specified error rate ({\alpha}), these similarity scores are then analyzed to determine a similarity score cutoff threshold. During inference, all chunks with similarity exceeding this threshold are retrieved to provide context to the LLM, ensuring the true answer is captured in the context with a (1-{\alpha}) confidence level. We provide a Python package that enables users to implement the entire workflow proposed in our work, only using LLMs and without human intervention.
Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering
When answering a question, humans utilize the information available across different modalities to synthesize a consistent and complete chain of thought (CoT). This process is normally a black box in the case of deep learning models like large-scale language models. Recently, science question benchmarks have been used to diagnose the multi-hop reasoning ability and interpretability of an AI system. However, existing datasets fail to provide annotations for the answers, or are restricted to the textual-only modality, small scales, and limited domain diversity. To this end, we present Science Question Answering (ScienceQA), a new benchmark that consists of ~21k multimodal multiple choice questions with a diverse set of science topics and annotations of their answers with corresponding lectures and explanations. We further design language models to learn to generate lectures and explanations as the chain of thought (CoT) to mimic the multi-hop reasoning process when answering ScienceQA questions. ScienceQA demonstrates the utility of CoT in language models, as CoT improves the question answering performance by 1.20% in few-shot GPT-3 and 3.99% in fine-tuned UnifiedQA. We also explore the upper bound for models to leverage explanations by feeding those in the input; we observe that it improves the few-shot performance of GPT-3 by 18.96%. Our analysis further shows that language models, similar to humans, benefit from explanations to learn from fewer data and achieve the same performance with just 40% of the data. The data and code are available at https://scienceqa.github.io.
ELOQ: Resources for Enhancing LLM Detection of Out-of-Scope Questions
Retrieval-augmented generation (RAG) has become integral to large language models (LLMs), particularly for conversational AI systems where user questions may reference knowledge beyond the LLMs' training cutoff. However, many natural user questions lack well-defined answers, either due to limited domain knowledge or because the retrieval system returns documents that are relevant in appearance but uninformative in content. In such cases, LLMs often produce hallucinated answers without flagging them. While recent work has largely focused on questions with false premises, we study out-of-scope questions, where the retrieved document appears semantically similar to the question but lacks the necessary information to answer it. In this paper, we propose a guided hallucination-based approach ELOQ to automatically generate a diverse set of out-of-scope questions from post-cutoff documents, followed by human verification to ensure quality. We use this dataset to evaluate several LLMs on their ability to detect out-of-scope questions and generate appropriate responses. Finally, we introduce an improved detection method that enhances the reliability of LLM-based question-answering systems in handling out-of-scope questions.
