new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 25

Global Spatial-Temporal Information-based Residual ConvLSTM for Video Space-Time Super-Resolution

By converting low-frame-rate, low-resolution videos into high-frame-rate, high-resolution ones, space-time video super-resolution techniques can enhance visual experiences and facilitate more efficient information dissemination. We propose a convolutional neural network (CNN) for space-time video super-resolution, namely GIRNet. To generate highly accurate features and thus improve performance, the proposed network integrates a feature-level temporal interpolation module with deformable convolutions and a global spatial-temporal information-based residual convolutional long short-term memory (convLSTM) module. In the feature-level temporal interpolation module, we leverage deformable convolution, which adapts to deformations and scale variations of objects across different scene locations. This presents a more efficient solution than conventional convolution for extracting features from moving objects. Our network effectively uses forward and backward feature information to determine inter-frame offsets, leading to the direct generation of interpolated frame features. In the global spatial-temporal information-based residual convLSTM module, the first convLSTM is used to derive global spatial-temporal information from the input features, and the second convLSTM uses the previously computed global spatial-temporal information feature as its initial cell state. This second convLSTM adopts residual connections to preserve spatial information, thereby enhancing the output features. Experiments on the Vimeo90K dataset show that the proposed method outperforms state-of-the-art techniques in peak signal-to-noise-ratio (by 1.45 dB, 1.14 dB, and 0.02 dB over STARnet, TMNet, and 3DAttGAN, respectively), structural similarity index(by 0.027, 0.023, and 0.006 over STARnet, TMNet, and 3DAttGAN, respectively), and visually.

  • 6 authors
·
Jul 11, 2024

Long-term Recurrent Convolutional Networks for Visual Recognition and Description

Models based on deep convolutional networks have dominated recent image interpretation tasks; we investigate whether models which are also recurrent, or "temporally deep", are effective for tasks involving sequences, visual and otherwise. We develop a novel recurrent convolutional architecture suitable for large-scale visual learning which is end-to-end trainable, and demonstrate the value of these models on benchmark video recognition tasks, image description and retrieval problems, and video narration challenges. In contrast to current models which assume a fixed spatio-temporal receptive field or simple temporal averaging for sequential processing, recurrent convolutional models are "doubly deep"' in that they can be compositional in spatial and temporal "layers". Such models may have advantages when target concepts are complex and/or training data are limited. Learning long-term dependencies is possible when nonlinearities are incorporated into the network state updates. Long-term RNN models are appealing in that they directly can map variable-length inputs (e.g., video frames) to variable length outputs (e.g., natural language text) and can model complex temporal dynamics; yet they can be optimized with backpropagation. Our recurrent long-term models are directly connected to modern visual convnet models and can be jointly trained to simultaneously learn temporal dynamics and convolutional perceptual representations. Our results show such models have distinct advantages over state-of-the-art models for recognition or generation which are separately defined and/or optimized.

  • 7 authors
·
Nov 17, 2014

Augmenting Language Models with Long-Term Memory

Existing large language models (LLMs) can only afford fix-sized inputs due to the input length limit, preventing them from utilizing rich long-context information from past inputs. To address this, we propose a framework, Language Models Augmented with Long-Term Memory (LongMem), which enables LLMs to memorize long history. We design a novel decoupled network architecture with the original backbone LLM frozen as a memory encoder and an adaptive residual side-network as a memory retriever and reader. Such a decoupled memory design can easily cache and update long-term past contexts for memory retrieval without suffering from memory staleness. Enhanced with memory-augmented adaptation training, LongMem can thus memorize long past context and use long-term memory for language modeling. The proposed memory retrieval module can handle unlimited-length context in its memory bank to benefit various downstream tasks. Typically, LongMem can enlarge the long-form memory to 65k tokens and thus cache many-shot extra demonstration examples as long-form memory for in-context learning. Experiments show that our method outperforms strong long-context models on ChapterBreak, a challenging long-context modeling benchmark, and achieves remarkable improvements on memory-augmented in-context learning over LLMs. The results demonstrate that the proposed method is effective in helping language models to memorize and utilize long-form contents. Our code is open-sourced at https://aka.ms/LongMem.

  • 7 authors
·
Jun 12, 2023 5

Combining Recurrent, Convolutional, and Continuous-time Models with Linear State-Space Layers

Recurrent neural networks (RNNs), temporal convolutions, and neural differential equations (NDEs) are popular families of deep learning models for time-series data, each with unique strengths and tradeoffs in modeling power and computational efficiency. We introduce a simple sequence model inspired by control systems that generalizes these approaches while addressing their shortcomings. The Linear State-Space Layer (LSSL) maps a sequence u mapsto y by simply simulating a linear continuous-time state-space representation x = Ax + Bu, y = Cx + Du. Theoretically, we show that LSSL models are closely related to the three aforementioned families of models and inherit their strengths. For example, they generalize convolutions to continuous-time, explain common RNN heuristics, and share features of NDEs such as time-scale adaptation. We then incorporate and generalize recent theory on continuous-time memorization to introduce a trainable subset of structured matrices A that endow LSSLs with long-range memory. Empirically, stacking LSSL layers into a simple deep neural network obtains state-of-the-art results across time series benchmarks for long dependencies in sequential image classification, real-world healthcare regression tasks, and speech. On a difficult speech classification task with length-16000 sequences, LSSL outperforms prior approaches by 24 accuracy points, and even outperforms baselines that use hand-crafted features on 100x shorter sequences.

  • 7 authors
·
Oct 26, 2021

Titans: Learning to Memorize at Test Time

Over more than a decade there has been an extensive research effort on how to effectively utilize recurrent models and attention. While recurrent models aim to compress the data into a fixed-size memory (called hidden state), attention allows attending to the entire context window, capturing the direct dependencies of all tokens. This more accurate modeling of dependencies, however, comes with a quadratic cost, limiting the model to a fixed-length context. We present a new neural long-term memory module that learns to memorize historical context and helps attention to attend to the current context while utilizing long past information. We show that this neural memory has the advantage of fast parallelizable training while maintaining a fast inference. From a memory perspective, we argue that attention due to its limited context but accurate dependency modeling performs as a short-term memory, while neural memory due to its ability to memorize the data, acts as a long-term, more persistent, memory. Based on these two modules, we introduce a new family of architectures, called Titans, and present three variants to address how one can effectively incorporate memory into this architecture. Our experimental results on language modeling, common-sense reasoning, genomics, and time series tasks show that Titans are more effective than Transformers and recent modern linear recurrent models. They further can effectively scale to larger than 2M context window size with higher accuracy in needle-in-haystack tasks compared to baselines.

  • 3 authors
·
Dec 31, 2024 3

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

Very deep convolutional networks have been central to the largest advances in image recognition performance in recent years. One example is the Inception architecture that has been shown to achieve very good performance at relatively low computational cost. Recently, the introduction of residual connections in conjunction with a more traditional architecture has yielded state-of-the-art performance in the 2015 ILSVRC challenge; its performance was similar to the latest generation Inception-v3 network. This raises the question of whether there are any benefit in combining the Inception architecture with residual connections. Here we give clear empirical evidence that training with residual connections accelerates the training of Inception networks significantly. There is also some evidence of residual Inception networks outperforming similarly expensive Inception networks without residual connections by a thin margin. We also present several new streamlined architectures for both residual and non-residual Inception networks. These variations improve the single-frame recognition performance on the ILSVRC 2012 classification task significantly. We further demonstrate how proper activation scaling stabilizes the training of very wide residual Inception networks. With an ensemble of three residual and one Inception-v4, we achieve 3.08 percent top-5 error on the test set of the ImageNet classification (CLS) challenge

  • 4 authors
·
Feb 23, 2016

M2R2: Mixture of Multi-Rate Residuals for Efficient Transformer Inference

Residual transformations enhance the representational depth and expressive power of large language models (LLMs). However, applying static residual transformations across all tokens in auto-regressive generation leads to a suboptimal trade-off between inference efficiency and generation fidelity. Existing methods, including Early Exiting, Skip Decoding, and Mixture-of-Depth address this by modulating the residual transformation based on token-level complexity. Nevertheless, these approaches predominantly consider the distance traversed by tokens through the model layers, neglecting the underlying velocity of residual evolution. We introduce Mixture of Multi-rate Residuals (M2R2), a framework that dynamically modulates residual velocity to improve early alignment, enhancing inference efficiency. Evaluations on reasoning oriented tasks such as Koala, Self-Instruct, WizardLM, and MT-Bench show M2R2 surpasses state-of-the-art distance-based strategies, balancing generation quality and speedup. In self-speculative decoding setup, M2R2 achieves up to 2.8x speedups on MT-Bench, outperforming methods like 2-model speculative decoding, Medusa, LookAhead Decoding, and DEED. In Mixture-of-Experts (MoE) architectures, integrating early residual alignment with ahead-of-time expert loading into high-bandwidth memory (HBM) accelerates decoding, reduces expert-switching bottlenecks, and achieves a 2.9x speedup, making it highly effective in resource-constrained environments.

  • 4 authors
·
Feb 4

What Makes Convolutional Models Great on Long Sequence Modeling?

Convolutional models have been widely used in multiple domains. However, most existing models only use local convolution, making the model unable to handle long-range dependency efficiently. Attention overcomes this problem by aggregating global information but also makes the computational complexity quadratic to the sequence length. Recently, Gu et al. [2021] proposed a model called S4 inspired by the state space model. S4 can be efficiently implemented as a global convolutional model whose kernel size equals the input sequence length. S4 can model much longer sequences than Transformers and achieve significant gains over SoTA on several long-range tasks. Despite its empirical success, S4 is involved. It requires sophisticated parameterization and initialization schemes. As a result, S4 is less intuitive and hard to use. Here we aim to demystify S4 and extract basic principles that contribute to the success of S4 as a global convolutional model. We focus on the structure of the convolution kernel and identify two critical but intuitive principles enjoyed by S4 that are sufficient to make up an effective global convolutional model: 1) The parameterization of the convolutional kernel needs to be efficient in the sense that the number of parameters should scale sub-linearly with sequence length. 2) The kernel needs to satisfy a decaying structure that the weights for convolving with closer neighbors are larger than the more distant ones. Based on the two principles, we propose a simple yet effective convolutional model called Structured Global Convolution (SGConv). SGConv exhibits strong empirical performance over several tasks: 1) With faster speed, SGConv surpasses S4 on Long Range Arena and Speech Command datasets. 2) When plugging SGConv into standard language and vision models, it shows the potential to improve both efficiency and performance.

  • 5 authors
·
Oct 17, 2022

DeltaLLM: A Training-Free Framework Exploiting Temporal Sparsity for Efficient Edge LLM Inference

Deploying Large Language Models (LLMs) on edge devices remains challenging due to their quadratically increasing computations with the sequence length. Existing studies for dynamic attention pruning are designed for hardware with massively parallel computation capabilities, such as GPUs or TPUs, and aim at long context lengths (e.g., 64K), making them unsuitable for edge scenarios. We present DeltaLLM, a training-free framework that exploits temporal sparsity in attention patterns to enable efficient LLM inference across both the prefilling and decoding stages, on resource-constrained edge devices. DeltaLLM introduces an accuracy- and memory-aware delta matrix construction strategy that introduces temporal sparsity, and a context-aware hybrid attention mechanism that combines full attention in a local context window with delta approximation outside it to increase accuracy. We evaluate our framework on the edge-device-friendly BitNet-b1.58-2B-4T model and Llama3.2-1B-Instruct model across diverse language tasks. The results show that on BitNet, our framework increases the attention sparsity from 0% to 60% during the prefilling stage with slight accuracy improvement on the WG task, and 0% to 57% across both the prefilling and decoding stages, with even higher F1 score from 29.63 to 30.97 on SQuAD-v2 task. On the Llama model, it can also achieve up to 60% sparsity during the prefilling stage and around 57% across both stages with negligible accuracy drop. These results demonstrate that DeltaLLM offers a promising solution for efficient edge deployment, requiring no fine-tuning and seamlessly integrating with existing inference pipelines.

  • 4 authors
·
Jul 25

World Model on Million-Length Video And Language With RingAttention

Current language models fall short in understanding aspects of the world not easily described in words, and struggle with complex, long-form tasks. Video sequences offer valuable temporal information absent in language and static images, making them attractive for joint modeling with language. Such models could develop a understanding of both human textual knowledge and the physical world, enabling broader AI capabilities for assisting humans. However, learning from millions of tokens of video and language sequences poses challenges due to memory constraints, computational complexity, and limited datasets. To address these challenges, we curate a large dataset of diverse videos and books, utilize the RingAttention technique to scalably train on long sequences, and gradually increase context size from 4K to 1M tokens. This paper makes the following contributions: (a) Largest context size neural network: We train one of the largest context size transformers on long video and language sequences, setting new benchmarks in difficult retrieval tasks and long video understanding. (b) Solutions for overcoming vision-language training challenges, including using masked sequence packing for mixing different sequence lengths, loss weighting to balance language and vision, and model-generated QA dataset for long sequence chat. (c) A highly-optimized implementation with RingAttention, masked sequence packing, and other key features for training on millions-length multimodal sequences. (d) Fully open-sourced a family of 7B parameter models capable of processing long text documents (LWM-Text, LWM-Text-Chat) and videos (LWM, LWM-Chat) of over 1M tokens. This work paves the way for training on massive datasets of long video and language to develop understanding of both human knowledge and the multimodal world, and broader capabilities.

  • 4 authors
·
Feb 13, 2024 5

HyperZcdotZcdotW Operator Connects Slow-Fast Networks for Full Context Interaction

The self-attention mechanism utilizes large implicit weight matrices, programmed through dot product-based activations with very few trainable parameters, to enable long sequence modeling. In this paper, we investigate the possibility of discarding residual learning by employing large implicit kernels to achieve full context interaction at each layer of the network. To accomplish it, we introduce coordinate-based implicit MLPs as a slow network to generate hyper-kernels for another fast convolutional network. To get context-varying weights for fast dynamic encoding, we propose a HyperZ{cdotZ{cdot}W} operator that connects hyper-kernels (W) and hidden activations (Z) through simple elementwise multiplication, followed by convolution of Z using the context-dependent W. Based on this design, we present a novel Terminator architecture that integrates hyper-kernels of different sizes to produce multi-branch hidden representations for enhancing the feature extraction capability of each layer. Additionally, a bottleneck layer is employed to compress the concatenated channels, allowing only valuable information to propagate to the subsequent layers. Notably, our model incorporates several innovative components and exhibits excellent properties, such as introducing local feedback error for updating the slow network, stable zero-mean features, faster training convergence, and fewer model parameters. Extensive experimental results on pixel-level 1D and 2D image classification benchmarks demonstrate the superior performance of our architecture.

  • 1 authors
·
Jan 31, 2024 1

Yi: Open Foundation Models by 01.AI

We introduce the Yi model family, a series of language and multimodal models that demonstrate strong multi-dimensional capabilities. The Yi model family is based on 6B and 34B pretrained language models, then we extend them to chat models, 200K long context models, depth-upscaled models, and vision-language models. Our base models achieve strong performance on a wide range of benchmarks like MMLU, and our finetuned chat models deliver strong human preference rate on major evaluation platforms like AlpacaEval and Chatbot Arena. Building upon our scalable super-computing infrastructure and the classical transformer architecture, we attribute the performance of Yi models primarily to its data quality resulting from our data-engineering efforts. For pretraining, we construct 3.1 trillion tokens of English and Chinese corpora using a cascaded data deduplication and quality filtering pipeline. For finetuning, we polish a small scale (less than 10K) instruction dataset over multiple iterations such that every single instance has been verified directly by our machine learning engineers. For vision-language, we combine the chat language model with a vision transformer encoder and train the model to align visual representations to the semantic space of the language model. We further extend the context length to 200K through lightweight continual pretraining and demonstrate strong needle-in-a-haystack retrieval performance. We show that extending the depth of the pretrained checkpoint through continual pretraining further improves performance. We believe that given our current results, continuing to scale up model parameters using thoroughly optimized data will lead to even stronger frontier models.

  • 31 authors
·
Mar 7, 2024 3

LeMo: Enabling LEss Token Involvement for MOre Context Fine-tuning

The escalating demand for long-context applications has intensified the necessity of extending the LLM context windows. Despite recent fine-tuning approaches successfully expanding context lengths, their high memory footprints, especially for activations, present a critical practical limitation. Current parameter-efficient fine-tuning methods prioritize reducing parameter update overhead over addressing activation memory constraints. Similarly, existing sparsity mechanisms improve computational efficiency but overlook activation memory optimization due to the phenomenon of Shadowy Activation. In this paper, we propose LeMo, the first LLM fine-tuning system that explores and exploits a new token-level sparsity mechanism inherent in long-context scenarios, termed Contextual Token Sparsity. LeMo minimizes redundant token involvement by assessing the informativeness of token embeddings while preserving model accuracy. Specifically, LeMo introduces three key techniques: (1) Token Elimination, dynamically identifying and excluding redundant tokens across varying inputs and layers. (2) Pattern Prediction, utilizing well-trained predictors to approximate token sparsity patterns with minimal overhead. (3) Kernel Optimization, employing permutation-free and segment-based strategies to boost system performance. We implement LeMo as an end-to-end fine-tuning system compatible with various LLM architectures and other optimization techniques. Comprehensive evaluations demonstrate that LeMo reduces memory consumption by up to 1.93x and achieves up to 1.36x speedups, outperforming state-of-the-art fine-tuning systems.

  • 6 authors
·
Jan 15

EcoTTA: Memory-Efficient Continual Test-time Adaptation via Self-distilled Regularization

This paper presents a simple yet effective approach that improves continual test-time adaptation (TTA) in a memory-efficient manner. TTA may primarily be conducted on edge devices with limited memory, so reducing memory is crucial but has been overlooked in previous TTA studies. In addition, long-term adaptation often leads to catastrophic forgetting and error accumulation, which hinders applying TTA in real-world deployments. Our approach consists of two components to address these issues. First, we present lightweight meta networks that can adapt the frozen original networks to the target domain. This novel architecture minimizes memory consumption by decreasing the size of intermediate activations required for backpropagation. Second, our novel self-distilled regularization controls the output of the meta networks not to deviate significantly from the output of the frozen original networks, thereby preserving well-trained knowledge from the source domain. Without additional memory, this regularization prevents error accumulation and catastrophic forgetting, resulting in stable performance even in long-term test-time adaptation. We demonstrate that our simple yet effective strategy outperforms other state-of-the-art methods on various benchmarks for image classification and semantic segmentation tasks. Notably, our proposed method with ResNet-50 and WideResNet-40 takes 86% and 80% less memory than the recent state-of-the-art method, CoTTA.

  • 4 authors
·
Mar 3, 2023

LoCoCo: Dropping In Convolutions for Long Context Compression

This paper tackles the memory hurdle of processing long context sequences in Large Language Models (LLMs), by presenting a novel approach, Dropping In Convolutions for Long Context Compression (LoCoCo). LoCoCo employs only a fixed-size Key-Value (KV) cache, and can enhance efficiency in both inference and fine-tuning stages. Diverging from prior methods that selectively drop KV pairs based on heuristics, LoCoCo leverages a data-driven adaptive fusion technique, blending previous KV pairs with incoming tokens to minimize the loss of contextual information and ensure accurate attention modeling. This token integration is achieved through injecting one-dimensional convolutional kernels that dynamically calculate mixing weights for each KV cache slot. Designed for broad compatibility with existing LLM frameworks, LoCoCo allows for straightforward "drop-in" integration without needing architectural modifications, while incurring minimal tuning overhead. Experiments demonstrate that LoCoCo maintains consistently outstanding performance across various context lengths and can achieve a high context compression rate during both inference and fine-tuning phases. During inference, we successfully compressed up to 3482 tokens into a 128-size KV cache, while retaining comparable performance to the full sequence - an accuracy improvement of up to 0.2791 compared to baselines at the same cache size. During post-training tuning, we also effectively extended the context length from 4K to 32K using a KV cache of fixed size 512, achieving performance similar to fine-tuning with entire sequences.

  • 4 authors
·
Jun 7, 2024 2

Test-Time Training Done Right

Test-Time Training (TTT) models context dependencies by adapting part of the model's weights (referred to as fast weights) during inference. This fast weight, akin to recurrent states in RNNs, stores temporary memories of past tokens in the current sequence. Existing TTT methods struggled to show effectiveness in handling long-context data, due to their inefficiency on modern GPUs. The TTT layers in many of these approaches operate with extremely low FLOPs utilization (often <5%) because they deliberately apply small online minibatch sizes (e.g., updating fast weights every 16 or 64 tokens). Moreover, a small minibatch implies fine-grained block-wise causal dependencies in the data, unsuitable for data beyond 1D ordered sequences, like sets or N-dimensional grids such as images or videos. In contrast, we pursue the opposite direction by using an extremely large chunk update, ranging from 2K to 1M tokens across tasks of varying modalities, which we refer to as Large Chunk Test-Time Training (LaCT). It improves hardware utilization by orders of magnitude, and more importantly, facilitates scaling of nonlinear state size (up to 40% of model parameters), hence substantially improving state capacity, all without requiring cumbersome and error-prone kernel implementations. It also allows easy integration of sophisticated optimizers, e.g. Muon for online updates. We validate our approach across diverse modalities and tasks, including novel view synthesis with image set, language models, and auto-regressive video diffusion. Our approach can scale up to 14B-parameter AR video diffusion model on sequences up to 56K tokens. In our longest sequence experiment, we perform novel view synthesis with 1 million context length. We hope this work will inspire and accelerate new research in the field of long-context modeling and test-time training. Website: https://tianyuanzhang.com/projects/ttt-done-right

  • 9 authors
·
May 29

Convolutional State Space Models for Long-Range Spatiotemporal Modeling

Effectively modeling long spatiotemporal sequences is challenging due to the need to model complex spatial correlations and long-range temporal dependencies simultaneously. ConvLSTMs attempt to address this by updating tensor-valued states with recurrent neural networks, but their sequential computation makes them slow to train. In contrast, Transformers can process an entire spatiotemporal sequence, compressed into tokens, in parallel. However, the cost of attention scales quadratically in length, limiting their scalability to longer sequences. Here, we address the challenges of prior methods and introduce convolutional state space models (ConvSSM) that combine the tensor modeling ideas of ConvLSTM with the long sequence modeling approaches of state space methods such as S4 and S5. First, we demonstrate how parallel scans can be applied to convolutional recurrences to achieve subquadratic parallelization and fast autoregressive generation. We then establish an equivalence between the dynamics of ConvSSMs and SSMs, which motivates parameterization and initialization strategies for modeling long-range dependencies. The result is ConvS5, an efficient ConvSSM variant for long-range spatiotemporal modeling. ConvS5 significantly outperforms Transformers and ConvLSTM on a long horizon Moving-MNIST experiment while training 3X faster than ConvLSTM and generating samples 400X faster than Transformers. In addition, ConvS5 matches or exceeds the performance of state-of-the-art methods on challenging DMLab, Minecraft and Habitat prediction benchmarks and enables new directions for modeling long spatiotemporal sequences.

  • 5 authors
·
Oct 30, 2023

Long-Context Autoregressive Video Modeling with Next-Frame Prediction

Long-context autoregressive modeling has significantly advanced language generation, but video generation still struggles to fully utilize extended temporal contexts. To investigate long-context video modeling, we introduce Frame AutoRegressive (FAR), a strong baseline for video autoregressive modeling. Just as language models learn causal dependencies between tokens (i.e., Token AR), FAR models temporal causal dependencies between continuous frames, achieving better convergence than Token AR and video diffusion transformers. Building on FAR, we observe that long-context vision modeling faces challenges due to visual redundancy. Existing RoPE lacks effective temporal decay for remote context and fails to extrapolate well to long video sequences. Additionally, training on long videos is computationally expensive, as vision tokens grow much faster than language tokens. To tackle these issues, we propose balancing locality and long-range dependency. We introduce FlexRoPE, an test-time technique that adds flexible temporal decay to RoPE, enabling extrapolation to 16x longer vision contexts. Furthermore, we propose long short-term context modeling, where a high-resolution short-term context window ensures fine-grained temporal consistency, while an unlimited long-term context window encodes long-range information using fewer tokens. With this approach, we can train on long video sequences with a manageable token context length. We demonstrate that FAR achieves state-of-the-art performance in both short- and long-video generation, providing a simple yet effective baseline for video autoregressive modeling.

  • 3 authors
·
Mar 24 2

LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models

We present LongLoRA, an efficient fine-tuning approach that extends the context sizes of pre-trained large language models (LLMs), with limited computation cost. Typically, training LLMs with long context sizes is computationally expensive, requiring extensive training hours and GPU resources. For example, training on the context length of 8192 needs 16x computational costs in self-attention layers as that of 2048. In this paper, we speed up the context extension of LLMs in two aspects. On the one hand, although dense global attention is needed during inference, fine-tuning the model can be effectively and efficiently done by sparse local attention. The proposed shift short attention effectively enables context extension, leading to non-trivial computation saving with similar performance to fine-tuning with vanilla attention. Particularly, it can be implemented with only two lines of code in training, while being optional in inference. On the other hand, we revisit the parameter-efficient fine-tuning regime for context expansion. Notably, we find that LoRA for context extension works well under the premise of trainable embedding and normalization. LongLoRA demonstrates strong empirical results on various tasks on LLaMA2 models from 7B/13B to 70B. LongLoRA adopts LLaMA2 7B from 4k context to 100k, or LLaMA2 70B to 32k on a single 8x A100 machine. LongLoRA extends models' context while retaining their original architectures, and is compatible with most existing techniques, like FlashAttention-2. In addition, to make LongLoRA practical, we collect a dataset, LongQA, for supervised fine-tuning. It contains more than 3k long context question-answer pairs.

  • 7 authors
·
Sep 21, 2023 9

ATLAS: Learning to Optimally Memorize the Context at Test Time

Transformers have been established as the most popular backbones in sequence modeling, mainly due to their effectiveness in in-context retrieval tasks and the ability to learn at scale. Their quadratic memory and time complexity, however, bound their applicability in longer sequences and so has motivated researchers to explore effective alternative architectures such as modern recurrent neural networks (a.k.a long-term recurrent memory module). Despite their recent success in diverse downstream tasks, they struggle in tasks that requires long context understanding and extrapolation to longer sequences. We observe that these shortcomings come from three disjoint aspects in their design: (1) limited memory capacity that is bounded by the architecture of memory and feature mapping of the input; (2) online nature of update, i.e., optimizing the memory only with respect to the last input; and (3) less expressive management of their fixed-size memory. To enhance all these three aspects, we present ATLAS, a long-term memory module with high capacity that learns to memorize the context by optimizing the memory based on the current and past tokens, overcoming the online nature of long-term memory models. Building on this insight, we present a new family of Transformer-like architectures, called DeepTransformers, that are strict generalizations of the original Transformer architecture. Our experimental results on language modeling, common-sense reasoning, recall-intensive, and long-context understanding tasks show that ATLAS surpasses the performance of Transformers and recent linear recurrent models. ATLAS further improves the long context performance of Titans, achieving +80\% accuracy in 10M context length of BABILong benchmark.

  • 8 authors
·
May 29 2

A Critical Review of Recurrent Neural Networks for Sequence Learning

Countless learning tasks require dealing with sequential data. Image captioning, speech synthesis, and music generation all require that a model produce outputs that are sequences. In other domains, such as time series prediction, video analysis, and musical information retrieval, a model must learn from inputs that are sequences. Interactive tasks, such as translating natural language, engaging in dialogue, and controlling a robot, often demand both capabilities. Recurrent neural networks (RNNs) are connectionist models that capture the dynamics of sequences via cycles in the network of nodes. Unlike standard feedforward neural networks, recurrent networks retain a state that can represent information from an arbitrarily long context window. Although recurrent neural networks have traditionally been difficult to train, and often contain millions of parameters, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful large-scale learning with them. In recent years, systems based on long short-term memory (LSTM) and bidirectional (BRNN) architectures have demonstrated ground-breaking performance on tasks as varied as image captioning, language translation, and handwriting recognition. In this survey, we review and synthesize the research that over the past three decades first yielded and then made practical these powerful learning models. When appropriate, we reconcile conflicting notation and nomenclature. Our goal is to provide a self-contained explication of the state of the art together with a historical perspective and references to primary research.

  • 3 authors
·
May 29, 2015

Simple and Scalable Strategies to Continually Pre-train Large Language Models

Large language models (LLMs) are routinely pre-trained on billions of tokens, only to start the process over again once new data becomes available. A much more efficient solution is to continually pre-train these models, saving significant compute compared to re-training. However, the distribution shift induced by new data typically results in degraded performance on previous data or poor adaptation to the new data. In this work, we show that a simple and scalable combination of learning rate (LR) re-warming, LR re-decaying, and replay of previous data is sufficient to match the performance of fully re-training from scratch on all available data, as measured by final loss and language model (LM) evaluation benchmarks. Specifically, we show this for a weak but realistic distribution shift between two commonly used LLM pre-training datasets (EnglishrightarrowEnglish) and a stronger distribution shift (EnglishrightarrowGerman) at the 405M parameter model scale with large dataset sizes (hundreds of billions of tokens). Selecting the weak but realistic shift for larger-scale experiments, we also find that our continual learning strategies match the re-training baseline for a 10B parameter LLM. Our results demonstrate that LLMs can be successfully updated via simple and scalable continual learning strategies, matching the re-training baseline using only a fraction of the compute. Finally, inspired by previous work, we propose alternatives to the cosine learning rate schedule that help circumvent forgetting induced by LR re-warming and that are not bound to a fixed token budget.

  • 8 authors
·
Mar 13, 2024 1

LongVQ: Long Sequence Modeling with Vector Quantization on Structured Memory

Transformer models have been successful in various sequence processing tasks, but the self-attention mechanism's computational cost limits its practicality for long sequences. Although there are existing attention variants that improve computational efficiency, they have a limited ability to abstract global information effectively based on their hand-crafted mixing strategies. On the other hand, state-space models (SSMs) are tailored for long sequences but cannot capture complicated local information. Therefore, the combination of them as a unified token mixer is a trend in recent long-sequence models. However, the linearized attention degrades performance significantly even when equipped with SSMs. To address the issue, we propose a new method called LongVQ. LongVQ uses the vector quantization (VQ) technique to compress the global abstraction as a length-fixed codebook, enabling the linear-time computation of the attention matrix. This technique effectively maintains dynamic global and local patterns, which helps to complement the lack of long-range dependency issues. Our experiments on the Long Range Arena benchmark, autoregressive language modeling, and image and speech classification demonstrate the effectiveness of LongVQ. Our model achieves significant improvements over other sequence models, including variants of Transformers, Convolutions, and recent State Space Models.

  • 6 authors
·
Apr 17, 2024 2

TS-LSTM and Temporal-Inception: Exploiting Spatiotemporal Dynamics for Activity Recognition

Recent two-stream deep Convolutional Neural Networks (ConvNets) have made significant progress in recognizing human actions in videos. Despite their success, methods extending the basic two-stream ConvNet have not systematically explored possible network architectures to further exploit spatiotemporal dynamics within video sequences. Further, such networks often use different baseline two-stream networks. Therefore, the differences and the distinguishing factors between various methods using Recurrent Neural Networks (RNN) or convolutional networks on temporally-constructed feature vectors (Temporal-ConvNet) are unclear. In this work, we first demonstrate a strong baseline two-stream ConvNet using ResNet-101. We use this baseline to thoroughly examine the use of both RNNs and Temporal-ConvNets for extracting spatiotemporal information. Building upon our experimental results, we then propose and investigate two different networks to further integrate spatiotemporal information: 1) temporal segment RNN and 2) Inception-style Temporal-ConvNet. We demonstrate that using both RNNs (using LSTMs) and Temporal-ConvNets on spatiotemporal feature matrices are able to exploit spatiotemporal dynamics to improve the overall performance. However, each of these methods require proper care to achieve state-of-the-art performance; for example, LSTMs require pre-segmented data or else they cannot fully exploit temporal information. Our analysis identifies specific limitations for each method that could form the basis of future work. Our experimental results on UCF101 and HMDB51 datasets achieve state-of-the-art performances, 94.1% and 69.0%, respectively, without requiring extensive temporal augmentation.

  • 4 authors
·
Mar 30, 2017

The Hyperfitting Phenomenon: Sharpening and Stabilizing LLMs for Open-Ended Text Generation

This paper introduces the counter-intuitive generalization results of overfitting pre-trained large language models (LLMs) on very small datasets. In the setting of open-ended text generation, it is well-documented that LLMs tend to generate repetitive and dull sequences, a phenomenon that is especially apparent when generating using greedy decoding. This issue persists even with state-of-the-art LLMs containing billions of parameters, trained via next-token prediction on large datasets. We find that by further fine-tuning these models to achieve a near-zero training loss on a small set of samples -- a process we refer to as hyperfitting -- the long-sequence generative capabilities are greatly enhanced. Greedy decoding with these Hyperfitted models even outperform Top-P sampling over long-sequences, both in terms of diversity and human preferences. This phenomenon extends to LLMs of various sizes, different domains, and even autoregressive image generation. We further find this phenomena to be distinctly different from that of Grokking and double descent. Surprisingly, our experiments indicate that hyperfitted models rarely fall into repeating sequences they were trained on, and even explicitly blocking these sequences results in high-quality output. All hyperfitted models produce extremely low-entropy predictions, often allocating nearly all probability to a single token.

  • 5 authors
·
Dec 5, 2024

Recycled Attention: Efficient inference for long-context language models

Generating long sequences of tokens given a long-context input imposes a heavy computational burden for large language models (LLMs). One of the computational bottleneck comes from computing attention over a long sequence of input at each generation step. In this paper, we propose Recycled Attention, an inference-time method which alternates between full context attention and attention over a subset of input tokens. When performing partial attention, we recycle the attention pattern of a previous token that has performed full attention and attend only to the top K most attended tokens, reducing the cost of data movement and attention computation. Compared to previously proposed inference-time acceleration method which attends only to local context or tokens with high accumulative attention scores, our approach flexibly chooses tokens that are relevant to the current decoding step. We evaluate our methods on RULER, a suite of tasks designed to comprehensively evaluate long-context abilities, and long-context language modeling tasks. Applying our method to off-the-shelf LLMs achieves comparable speedup to baselines which only consider local context while improving the performance by 2x. We further explore two ideas to improve performance-efficiency trade-offs: (1) dynamically decide when to perform recycled or full attention step based on the query similarities and (2) continued pre-training the model with Recycled Attention.

  • 3 authors
·
Nov 8, 2024

Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks

Convolutional Neural Networks (CNN) have been regarded as a powerful class of models for image recognition problems. Nevertheless, it is not trivial when utilizing a CNN for learning spatio-temporal video representation. A few studies have shown that performing 3D convolutions is a rewarding approach to capture both spatial and temporal dimensions in videos. However, the development of a very deep 3D CNN from scratch results in expensive computational cost and memory demand. A valid question is why not recycle off-the-shelf 2D networks for a 3D CNN. In this paper, we devise multiple variants of bottleneck building blocks in a residual learning framework by simulating 3times3times3 convolutions with 1times3times3 convolutional filters on spatial domain (equivalent to 2D CNN) plus 3times1times1 convolutions to construct temporal connections on adjacent feature maps in time. Furthermore, we propose a new architecture, named Pseudo-3D Residual Net (P3D ResNet), that exploits all the variants of blocks but composes each in different placement of ResNet, following the philosophy that enhancing structural diversity with going deep could improve the power of neural networks. Our P3D ResNet achieves clear improvements on Sports-1M video classification dataset against 3D CNN and frame-based 2D CNN by 5.3% and 1.8%, respectively. We further examine the generalization performance of video representation produced by our pre-trained P3D ResNet on five different benchmarks and three different tasks, demonstrating superior performances over several state-of-the-art techniques.

  • 3 authors
·
Nov 28, 2017

Combiner: Full Attention Transformer with Sparse Computation Cost

Transformers provide a class of expressive architectures that are extremely effective for sequence modeling. However, the key limitation of transformers is their quadratic memory and time complexity O(L^2) with respect to the sequence length in attention layers, which restricts application in extremely long sequences. Most existing approaches leverage sparsity or low-rank assumptions in the attention matrix to reduce cost, but sacrifice expressiveness. Instead, we propose Combiner, which provides full attention capability in each attention head while maintaining low computation and memory complexity. The key idea is to treat the self-attention mechanism as a conditional expectation over embeddings at each location, and approximate the conditional distribution with a structured factorization. Each location can attend to all other locations, either via direct attention, or through indirect attention to abstractions, which are again conditional expectations of embeddings from corresponding local regions. We show that most sparse attention patterns used in existing sparse transformers are able to inspire the design of such factorization for full attention, resulting in the same sub-quadratic cost (O(Llog(L)) or O(LL)). Combiner is a drop-in replacement for attention layers in existing transformers and can be easily implemented in common frameworks. An experimental evaluation on both autoregressive and bidirectional sequence tasks demonstrates the effectiveness of this approach, yielding state-of-the-art results on several image and text modeling tasks.

  • 7 authors
·
Jul 12, 2021

Finding Moments in Video Collections Using Natural Language

We introduce the task of retrieving relevant video moments from a large corpus of untrimmed, unsegmented videos given a natural language query. Our task poses unique challenges as a system must efficiently identify both the relevant videos and localize the relevant moments in the videos. To address these challenges, we propose SpatioTemporal Alignment with Language (STAL), a model that represents a video moment as a set of regions within a series of short video clips and aligns a natural language query to the moment's regions. Our alignment cost compares variable-length language and video features using symmetric squared Chamfer distance, which allows for efficient indexing and retrieval of the video moments. Moreover, aligning language features to regions within a video moment allows for finer alignment compared to methods that extract only an aggregate feature from the entire video moment. We evaluate our approach on two recently proposed datasets for temporal localization of moments in video with natural language (DiDeMo and Charades-STA) extended to our video corpus moment retrieval setting. We show that our STAL re-ranking model outperforms the recently proposed Moment Context Network on all criteria across all datasets on our proposed task, obtaining relative gains of 37% - 118% for average recall and up to 30% for median rank. Moreover, our approach achieves more than 130x faster retrieval and 8x smaller index size with a 1M video corpus in an approximate setting.

  • 5 authors
·
Jul 30, 2019

How to Train Long-Context Language Models (Effectively)

We study continued training and supervised fine-tuning (SFT) of a language model (LM) to make effective use of long-context information. We first establish a reliable evaluation protocol to guide model development -- Instead of perplexity or simple needle-in-a-haystack (NIAH) tests, we use a broad set of long-context tasks, and we evaluate models after SFT with instruction data as this better reveals long-context abilities. Supported by our robust evaluations, we run thorough experiments to decide the data mix for continued pre-training, the instruction tuning dataset, and many other design choices. We find that (1) code repositories and books are excellent sources of long data, but it is crucial to combine them with high-quality short data; (2) training with a sequence length beyond the evaluation length boosts long-context performance; (3) for SFT, using only short instruction datasets yields strong performance on long-context tasks. Our final model, ProLong-8B, which is initialized from Llama-3 and trained on 40B tokens, demonstrates state-of-the-art long-context performance among similarly sized models at a length of 128K. ProLong outperforms Llama-3.18B-Instruct on the majority of long-context tasks despite having seen only 5% as many tokens during long-context training. Additionally, ProLong can effectively process up to 512K tokens, one of the longest context windows of publicly available LMs.

  • 4 authors
·
Oct 3, 2024 1

Poincaré ResNet

This paper introduces an end-to-end residual network that operates entirely on the Poincar\'e ball model of hyperbolic space. Hyperbolic learning has recently shown great potential for visual understanding, but is currently only performed in the penultimate layer(s) of deep networks. All visual representations are still learned through standard Euclidean networks. In this paper we investigate how to learn hyperbolic representations of visual data directly from the pixel-level. We propose Poincar\'e ResNet, a hyperbolic counterpart of the celebrated residual network, starting from Poincar\'e 2D convolutions up to Poincar\'e residual connections. We identify three roadblocks for training convolutional networks entirely in hyperbolic space and propose a solution for each: (i) Current hyperbolic network initializations collapse to the origin, limiting their applicability in deeper networks. We provide an identity-based initialization that preserves norms over many layers. (ii) Residual networks rely heavily on batch normalization, which comes with expensive Fr\'echet mean calculations in hyperbolic space. We introduce Poincar\'e midpoint batch normalization as a faster and equally effective alternative. (iii) Due to the many intermediate operations in Poincar\'e layers, we lastly find that the computation graphs of deep learning libraries blow up, limiting our ability to train on deep hyperbolic networks. We provide manual backward derivations of core hyperbolic operations to maintain manageable computation graphs.

  • 3 authors
·
Mar 24, 2023

R-Sparse: Rank-Aware Activation Sparsity for Efficient LLM Inference

Large Language Models (LLMs), while demonstrating remarkable capabilities across various applications, present significant challenges during inference due to their substantial model size, especially when deployed on edge devices. Activation sparsity offers a promising solution to reduce computation and memory movement, enabling more efficient inference, particularly for small-batch on-device applications. However, current approaches face limitations with non-ReLU activation function, which are foundational to most advanced LLMs, or require heavy continual training. Additionally, the difficulty in predicting active channels and limited achievable sparsity ratios constrain the effectiveness of activation sparsity-based methods. In this paper, we introduce R-Sparse, a training-free activation sparsity approach capable of achieving high sparsity levels in advanced LLMs. We conducted two preliminary investigations into how different components contribute to the output within a single linear layer and found two key observations: (i) the non-sparse components of the input function can be regarded as a few bias terms, and (ii) The full computation can be effectively approximated by an appropriate combination of input channels and weight singular values. Building on this, we replace the linear layers in LLMs with a rank-aware sparse inference method that leverages the sparsity of input channels and singular value components, eliminating the need for active channel prediction like the output sparsity based approaches. Experiments on Llama-2/3 and Mistral models across ten diverse tasks demonstrate that R-Sparse achieves comparable performance at 50% model-level sparsity, resulting in a significant 43% end-to-end efficient improvements with customized kernels.

  • 6 authors
·
Apr 27

TCNCA: Temporal Convolution Network with Chunked Attention for Scalable Sequence Processing

MEGA is a recent transformer-based architecture, which utilizes a linear recurrent operator whose parallel computation, based on the FFT, scales as O(LlogL), with L being the sequence length. We build upon their approach by replacing the linear recurrence with a special temporal convolutional network which permits larger receptive field size with shallower networks, and reduces the computational complexity to O(L). The resulting model is called TCNCA, a Temporal Convolutional Network with Chunked Attention. We evaluate TCNCA on EnWik8 language modeling, long-range-arena (LRA) sequence classification, as well as a synthetic reasoning benchmark associative recall. On EnWik8, TCNCA outperforms MEGA, reaching a lower loss with 1.37times/1.24times faster forward/backward pass during training. The dilated convolutions used in TCNCA are consistently and significantly faster operations than the FFT-based parallelized recurrence in GPUs, making them a scalable candidate for handling very large sequence lengths: they are up to 7.07times/2.86times faster in the forward/backward pass for sequences up to 131k. Further on LRA, TCNCA achieves, on average, 1.28times speed-up during inference with similar accuracy to what MEGA achieves. On associative recall, we find that even a simplified version of TCNCA, without excessive multiplicative and additive interactions, remains superior or competitive to MEGA on a range of sequence lengths and vocabulary sizes.

  • 6 authors
·
Dec 9, 2023

LQ-LoRA: Low-rank Plus Quantized Matrix Decomposition for Efficient Language Model Finetuning

We propose a simple approach for memory-efficient adaptation of pretrained language models. Our approach uses an iterative algorithm to decompose each pretrained matrix into a high-precision low-rank component and a memory-efficient quantized component. During finetuning, the quantized component remains fixed and only the low-rank component is updated. We present an integer linear programming formulation of the quantization component which enables dynamic configuration of quantization parameters (e.g., bit-width, block size) for each matrix given an overall target memory budget. We further explore a data-aware version of the algorithm which uses an approximation of the Fisher information matrix to weight the reconstruction objective during matrix decomposition. Experiments on adapting RoBERTa and LLaMA-2 (7B and 70B) demonstrate that our low-rank plus quantized matrix decomposition approach (LQ-LoRA) outperforms strong QLoRA and GPTQ-LoRA baselines and moreover enables more aggressive quantization. For example, on the OpenAssistant benchmark LQ-LoRA is able to learn a 2.5-bit LLaMA-2 model that is competitive with a model finetuned with 4-bit QLoRA. When finetuned on a language modeling calibration dataset, LQ-LoRA can also be used for model compression; in this setting our 2.75-bit LLaMA-2-70B model (which has 2.85 bits on average when including the low-rank components and requires 27GB of GPU memory) is competitive with the original model in full precision.

  • 4 authors
·
Nov 20, 2023

Deep Learning Applied to Image and Text Matching

The ability to describe images with natural language sentences is the hallmark for image and language understanding. Such a system has wide ranging applications such as annotating images and using natural sentences to search for images.In this project we focus on the task of bidirectional image retrieval: such asystem is capable of retrieving an image based on a sentence (image search) andretrieve sentence based on an image query (image annotation). We present asystem based on a global ranking objective function which uses a combinationof convolutional neural networks (CNN) and multi layer perceptrons (MLP).It takes a pair of image and sentence and processes them in different channels,finally embedding it into a common multimodal vector space. These embeddingsencode abstract semantic information about the two inputs and can be comparedusing traditional information retrieval approaches. For each such pair, the modelreturns a score which is interpretted as a similarity metric. If this score is high,the image and sentence are likely to convey similar meaning, and if the score is low then they are likely not to. The visual input is modeled via deep convolutional neural network. On theother hand we explore three models for the textual module. The first one isbag of words with an MLP. The second one uses n-grams (bigram, trigrams,and a combination of trigram & skip-grams) with an MLP. The third is morespecialized deep network specific for modeling variable length sequences (SSE).We report comparable performance to recent work in the field, even though ouroverall model is simpler. We also show that the training time choice of how wecan generate our negative samples has a significant impact on performance, and can be used to specialize the bi-directional system in one particular task.

  • 1 authors
·
Sep 14, 2015

LMUFormer: Low Complexity Yet Powerful Spiking Model With Legendre Memory Units

Transformer models have demonstrated high accuracy in numerous applications but have high complexity and lack sequential processing capability making them ill-suited for many streaming applications at the edge where devices are heavily resource-constrained. Thus motivated, many researchers have proposed reformulating the transformer models as RNN modules which modify the self-attention computation with explicit states. However, these approaches often incur significant performance degradation. The ultimate goal is to develop a model that has the following properties: parallel training, streaming and low-cost inference, and SOTA performance. In this paper, we propose a new direction to achieve this goal. We show how architectural modifications to a recurrent model can help push its performance toward Transformer models while retaining its sequential processing capability. Specifically, inspired by the recent success of Legendre Memory Units (LMU) in sequence learning tasks, we propose LMUFormer, which augments the LMU with convolutional patch embedding and convolutional channel mixer. Moreover, we present a spiking version of this architecture, which introduces the benefit of states within the patch embedding and channel mixer modules while simultaneously reducing the computing complexity. We evaluated our architectures on multiple sequence datasets. In comparison to SOTA transformer-based models within the ANN domain on the SCv2 dataset, our LMUFormer demonstrates comparable performance while necessitating a remarkable 53 times reduction in parameters and a substantial 65 times decrement in FLOPs. Additionally, owing to our model's proficiency in real-time data processing, we can achieve a 32.03% reduction in sequence length, all while incurring an inconsequential decline in performance. Our code is publicly available at https://github.com/zeyuliu1037/LMUFormer.git.

  • 4 authors
·
Jan 19, 2024

Wings: Learning Multimodal LLMs without Text-only Forgetting

Multimodal large language models (MLLMs), initiated with a trained LLM, first align images with text and then fine-tune on multimodal mixed inputs. However, the MLLM catastrophically forgets the text-only instructions, which do not include images and can be addressed within the initial LLM. In this paper, we present Wings, a novel MLLM that excels in both text-only dialogues and multimodal comprehension. Analyzing MLLM attention in multimodal instructions reveals that text-only forgetting is related to the attention shifts from pre-image to post-image text. From that, we construct extra modules that act as the boosted learner to compensate for the attention shift. The complementary visual and textual learners, like "wings" on either side, are connected in parallel within each layer's attention block. Initially, image and text inputs are aligned with visual learners operating alongside the main attention, balancing focus on visual elements. Textual learners are later collaboratively integrated with attention-based routing to blend the outputs of the visual and textual learners. We design the Low-Rank Residual Attention (LoRRA) to guarantee high efficiency for learners. Our experimental results demonstrate that Wings outperforms equally-scaled MLLMs in both text-only and visual question-answering tasks. On a newly constructed Interleaved Image-Text (IIT) benchmark, Wings exhibits superior performance from text-only-rich to multimodal-rich question-answering tasks.

  • 10 authors
·
Jun 5, 2024

MobileTL: On-device Transfer Learning with Inverted Residual Blocks

Transfer learning on edge is challenging due to on-device limited resources. Existing work addresses this issue by training a subset of parameters or adding model patches. Developed with inference in mind, Inverted Residual Blocks (IRBs) split a convolutional layer into depthwise and pointwise convolutions, leading to more stacking layers, e.g., convolution, normalization, and activation layers. Though they are efficient for inference, IRBs require that additional activation maps are stored in memory for training weights for convolution layers and scales for normalization layers. As a result, their high memory cost prohibits training IRBs on resource-limited edge devices, and making them unsuitable in the context of transfer learning. To address this issue, we present MobileTL, a memory and computationally efficient on-device transfer learning method for models built with IRBs. MobileTL trains the shifts for internal normalization layers to avoid storing activation maps for the backward pass. Also, MobileTL approximates the backward computation of the activation layer (e.g., Hard-Swish and ReLU6) as a signed function which enables storing a binary mask instead of activation maps for the backward pass. MobileTL fine-tunes a few top blocks (close to output) rather than propagating the gradient through the whole network to reduce the computation cost. Our method reduces memory usage by 46% and 53% for MobileNetV2 and V3 IRBs, respectively. For MobileNetV3, we observe a 36% reduction in floating-point operations (FLOPs) when fine-tuning 5 blocks, while only incurring a 0.6% accuracy reduction on CIFAR10. Extensive experiments on multiple datasets demonstrate that our method is Pareto-optimal (best accuracy under given hardware constraints) compared to prior work in transfer learning for edge devices.

  • 4 authors
·
Dec 5, 2022

COSMO: COntrastive Streamlined MultimOdal Model with Interleaved Pre-Training

In the evolution of Vision-Language Pre-training, shifting from short-text comprehension to encompassing extended textual contexts is pivotal. Recent autoregressive vision-language models like flamingo, palme, leveraging the long-context capability of Large Language Models, have excelled in few-shot text generation tasks but face challenges in alignment tasks. Addressing this gap, we introduce the contrastive loss into text generation models, presenting the COntrastive-Streamlined MultimOdal framework (\ModelName), strategically partitioning the language model into dedicated unimodal text processing and adept multimodal data handling components. \ModelName, our unified framework, merges unimodal and multimodal elements, enhancing model performance for tasks involving textual and visual data while notably reducing learnable parameters. However, these models demand extensive long-text datasets, yet the availability of high-quality long-text video datasets remains limited. To bridge this gap, this work introduces \VideoDatasetName, an inaugural interleaved video-text dataset featuring comprehensive captions, marking a significant step forward. Demonstrating its impact, we illustrate how enhances model performance in image-text tasks. With 34% learnable parameters and utilizing 72\% of the available data, our model demonstrates significant superiority over OpenFlamingo~openflamingo. For instance, in the 4-shot flickr captioning task, performance notably improves from 57.2% to 65.\%. The contributions of and are underscored by notable performance gains across 14 diverse downstream datasets encompassing both image-text and video-text tasks.

  • 8 authors
·
Jan 1, 2024 2

Adding Gradient Noise Improves Learning for Very Deep Networks

Deep feedforward and recurrent networks have achieved impressive results in many perception and language processing applications. This success is partially attributed to architectural innovations such as convolutional and long short-term memory networks. The main motivation for these architectural innovations is that they capture better domain knowledge, and importantly are easier to optimize than more basic architectures. Recently, more complex architectures such as Neural Turing Machines and Memory Networks have been proposed for tasks including question answering and general computation, creating a new set of optimization challenges. In this paper, we discuss a low-overhead and easy-to-implement technique of adding gradient noise which we find to be surprisingly effective when training these very deep architectures. The technique not only helps to avoid overfitting, but also can result in lower training loss. This method alone allows a fully-connected 20-layer deep network to be trained with standard gradient descent, even starting from a poor initialization. We see consistent improvements for many complex models, including a 72% relative reduction in error rate over a carefully-tuned baseline on a challenging question-answering task, and a doubling of the number of accurate binary multiplication models learned across 7,000 random restarts. We encourage further application of this technique to additional complex modern architectures.

  • 7 authors
·
Nov 20, 2015

Scaling TransNormer to 175 Billion Parameters

We present TransNormerLLM, the first linear attention-based Large Language Model (LLM) that outperforms conventional softmax attention-based models in terms of both accuracy and efficiency. TransNormerLLM evolves from the previous linear attention architecture TransNormer by making advanced modifications that include positional embedding, linear attention acceleration, gating mechanism, tensor normalization, inference acceleration and stabilization. Specifically, we use LRPE together with an exponential decay to avoid attention dilution issues while allowing the model to retain global interactions between tokens. Additionally, we propose Lightning Attention, a cutting-edge technique that accelerates linear attention by more than twice in runtime and reduces memory usage by a remarkable four times. To further enhance the performance of TransNormer, we leverage a gating mechanism to smooth training and a new tensor normalization scheme to accelerate the model, resulting in an impressive acceleration of over 20%. Furthermore, we have developed a robust inference algorithm that ensures numerical stability and consistent inference speed, regardless of the sequence length, showcasing superior efficiency during both training and inference stages. Scalability is at the heart of our model's design, enabling seamless deployment on large-scale clusters and facilitating expansion to even more extensive models, all while maintaining outstanding performance metrics. Rigorous validation of our model design is achieved through a series of comprehensive experiments on our self-collected corpus, boasting a size exceeding 6TB and containing over 2 trillion tokens. To ensure data quality and relevance, we implement a new self-cleaning strategy to filter our collected data. Our pre-trained models will be released to foster community advancements in efficient LLMs.

  • 12 authors
·
Jul 27, 2023 4

In-Context Language Learning: Architectures and Algorithms

Large-scale neural language models exhibit a remarkable capacity for in-context learning (ICL): they can infer novel functions from datasets provided as input. Most of our current understanding of when and how ICL arises comes from LMs trained on extremely simple learning problems like linear regression and associative recall. There remains a significant gap between these model problems and the "real" ICL exhibited by LMs trained on large text corpora, which involves not just retrieval and function approximation but free-form generation of language and other structured outputs. In this paper, we study ICL through the lens of a new family of model problems we term in context language learning (ICLL). In ICLL, LMs are presented with a set of strings from a formal language, and must generate additional strings from the same language. We focus on in-context learning of regular languages generated by random finite automata. We evaluate a diverse set of neural sequence models (including several RNNs, Transformers, and state-space model variants) on regular ICLL tasks, aiming to answer three questions: (1) Which model classes are empirically capable of ICLL? (2) What algorithmic solutions do successful models implement to perform ICLL? (3) What architectural changes can improve ICLL in less performant models? We first show that Transformers significantly outperform neural sequence models with recurrent or convolutional representations on ICLL tasks. Next, we provide evidence that their ability to do so relies on specialized "n-gram heads" (higher-order variants of induction heads) that compute input-conditional next-token distributions. Finally, we show that hard-wiring these heads into neural models improves performance not just on ICLL, but natural language modeling -- improving the perplexity of 340M-parameter models by up to 1.14 points (6.7%) on the SlimPajama dataset.

  • 4 authors
·
Jan 23, 2024

Selective Structured State-Spaces for Long-Form Video Understanding

Effective modeling of complex spatiotemporal dependencies in long-form videos remains an open problem. The recently proposed Structured State-Space Sequence (S4) model with its linear complexity offers a promising direction in this space. However, we demonstrate that treating all image-tokens equally as done by S4 model can adversely affect its efficiency and accuracy. To address this limitation, we present a novel Selective S4 (i.e., S5) model that employs a lightweight mask generator to adaptively select informative image tokens resulting in more efficient and accurate modeling of long-term spatiotemporal dependencies in videos. Unlike previous mask-based token reduction methods used in transformers, our S5 model avoids the dense self-attention calculation by making use of the guidance of the momentum-updated S4 model. This enables our model to efficiently discard less informative tokens and adapt to various long-form video understanding tasks more effectively. However, as is the case for most token reduction methods, the informative image tokens could be dropped incorrectly. To improve the robustness and the temporal horizon of our model, we propose a novel long-short masked contrastive learning (LSMCL) approach that enables our model to predict longer temporal context using shorter input videos. We present extensive comparative results using three challenging long-form video understanding datasets (LVU, COIN and Breakfast), demonstrating that our approach consistently outperforms the previous state-of-the-art S4 model by up to 9.6% accuracy while reducing its memory footprint by 23%.

  • 7 authors
·
Mar 25, 2023

Fast-dLLM v2: Efficient Block-Diffusion LLM

Autoregressive (AR) large language models (LLMs) have achieved remarkable performance across a wide range of natural language tasks, yet their inherent sequential decoding limits inference efficiency. In this work, we propose Fast-dLLM v2, a carefully designed block diffusion language model (dLLM) that efficiently adapts pretrained AR models into dLLMs for parallel text generation, requiring only approximately 1B tokens of fine-tuning. This represents a 500x reduction in training data compared to full-attention diffusion LLMs such as Dream (580B tokens), while preserving the original model's performance. Our approach introduces a novel training recipe that combines a block diffusion mechanism with a complementary attention mask, enabling blockwise bidirectional context modeling without sacrificing AR training objectives. To further accelerate decoding, we design a hierarchical caching mechanism: a block-level cache that stores historical context representations across blocks, and a sub-block cache that enables efficient parallel generation within partially decoded blocks. Coupled with our parallel decoding pipeline, Fast-dLLM v2 achieves up to 2.5x speedup over standard AR decoding without compromising generation quality. Extensive experiments across diverse benchmarks demonstrate that Fast-dLLM v2 matches or surpasses AR baselines in accuracy, while delivering state-of-the-art efficiency among dLLMs - marking a significant step toward the practical deployment of fast and accurate LLMs. Code and model will be publicly released.

nvidia NVIDIA
·
Sep 30 7

The Sparse Frontier: Sparse Attention Trade-offs in Transformer LLMs

Sparse attention offers a promising strategy to extend long-context capabilities in Transformer LLMs, yet its viability, its efficiency-accuracy trade-offs, and systematic scaling studies remain unexplored. To address this gap, we perform a careful comparison of training-free sparse attention methods at varying model scales, sequence lengths, and sparsity levels on a diverse collection of long-sequence tasks-including novel ones that rely on natural language while remaining controllable and easy to evaluate. Based on our experiments, we report a series of key findings: 1) an isoFLOPS analysis reveals that for very long sequences, larger and highly sparse models are preferable to smaller and dense ones. 2) The level of sparsity attainable while statistically guaranteeing accuracy preservation is higher during decoding than prefilling, and correlates with model size in the former. 3) There is no clear strategy that performs best across tasks and phases, with different units of sparsification or budget adaptivity needed for different scenarios. Even moderate sparsity levels often result in significant performance degradation on at least one task, highlighting that sparse attention is not a universal solution. 4) We introduce and validate novel scaling laws specifically tailored for sparse attention, providing evidence that our findings are likely to hold true beyond our range of experiments. Through these insights, we demonstrate that sparse attention is a key tool to enhance the capabilities of Transformer LLMs for processing longer sequences, but requires careful evaluation of trade-offs for performance-sensitive applications.

  • 6 authors
·
Apr 24 3

Matryoshka Representation Learning

Learned representations are a central component in modern ML systems, serving a multitude of downstream tasks. When training such representations, it is often the case that computational and statistical constraints for each downstream task are unknown. In this context rigid, fixed capacity representations can be either over or under-accommodating to the task at hand. This leads us to ask: can we design a flexible representation that can adapt to multiple downstream tasks with varying computational resources? Our main contribution is Matryoshka Representation Learning (MRL) which encodes information at different granularities and allows a single embedding to adapt to the computational constraints of downstream tasks. MRL minimally modifies existing representation learning pipelines and imposes no additional cost during inference and deployment. MRL learns coarse-to-fine representations that are at least as accurate and rich as independently trained low-dimensional representations. The flexibility within the learned Matryoshka Representations offer: (a) up to 14x smaller embedding size for ImageNet-1K classification at the same level of accuracy; (b) up to 14x real-world speed-ups for large-scale retrieval on ImageNet-1K and 4K; and (c) up to 2% accuracy improvements for long-tail few-shot classification, all while being as robust as the original representations. Finally, we show that MRL extends seamlessly to web-scale datasets (ImageNet, JFT) across various modalities -- vision (ViT, ResNet), vision + language (ALIGN) and language (BERT). MRL code and pretrained models are open-sourced at https://github.com/RAIVNLab/MRL.

  • 11 authors
·
May 26, 2022

Unleashing the Potential of Large Language Models for Text-to-Image Generation through Autoregressive Representation Alignment

We present Autoregressive Representation Alignment (ARRA), a new training framework that unlocks global-coherent text-to-image generation in autoregressive LLMs without architectural changes. Unlike prior work that requires complex architectural redesigns, ARRA aligns LLM hidden states with visual representations from external visual foundational models via a global visual alignment loss and a hybrid token, <HYBNEXT>. This token enforces dual constraints: local next-token prediction and global semantic distillation, enabling LLMs to implicitly learn spatial and contextual coherence while retaining their original autoregressive paradigm. Extensive experiments validate ARRA's plug-and-play versatility. When training from text-generation-only LLMs or random initialization, ARRA reduces FID by 25.5% (MIMIC-CXR), 8.8% (DeepEyeNet), and 7.5% (ImageNet) for advanced autoregressive LLMs like Chameleon and LlamaGen, all without framework modifications. For domain adaption, ARRA aligns general-purpose LLMs with specialized models (e.g., BioMedCLIP), achieving an 18.6% FID reduction over direct fine-tuning on medical imaging (MIMIC-CXR). By demonstrating that training objective redesign -- not just architectural innovation -- can resolve cross-modal global coherence challenges, ARRA offers a complementary paradigm for advancing autoregressive models. Code and models will be released to advance autoregressive image generation.

  • 7 authors
·
Mar 10 1

Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG

Retrieval-augmented generation (RAG) empowers large language models (LLMs) to utilize external knowledge sources. The increasing capacity of LLMs to process longer input sequences opens up avenues for providing more retrieved information, to potentially enhance the quality of generated outputs. It is plausible to assume that a larger retrieval set would contain more relevant information (higher recall), that might result in improved performance. However, our empirical findings demonstrate that for many long-context LLMs, the quality of generated output initially improves first, but then subsequently declines as the number of retrieved passages increases. This paper investigates this phenomenon, identifying the detrimental impact of retrieved "hard negatives" as a key contributor. To mitigate this and enhance the robustness of long-context LLM-based RAG, we propose both training-free and training-based approaches. We first showcase the effectiveness of retrieval reordering as a simple yet powerful training-free optimization. Furthermore, we explore training-based methods, specifically RAG-specific implicit LLM fine-tuning and RAG-oriented fine-tuning with intermediate reasoning, demonstrating their capacity for substantial performance gains. Finally, we conduct a systematic analysis of design choices for these training-based methods, including data distribution, retriever selection, and training context length.

  • 4 authors
·
Oct 8, 2024

SpaRTAN: Spatial Reinforcement Token-based Aggregation Network for Visual Recognition

The resurgence of convolutional neural networks (CNNs) in visual recognition tasks, exemplified by ConvNeXt, has demonstrated their capability to rival transformer-based architectures through advanced training methodologies and ViT-inspired design principles. However, both CNNs and transformers exhibit a simplicity bias, favoring straightforward features over complex structural representations. Furthermore, modern CNNs often integrate MLP-like blocks akin to those in transformers, but these blocks suffer from significant information redundancies, necessitating high expansion ratios to sustain competitive performance. To address these limitations, we propose SpaRTAN, a lightweight architectural design that enhances spatial and channel-wise information processing. SpaRTAN employs kernels with varying receptive fields, controlled by kernel size and dilation factor, to capture discriminative multi-order spatial features effectively. A wave-based channel aggregation module further modulates and reinforces pixel interactions, mitigating channel-wise redundancies. Combining the two modules, the proposed network can efficiently gather and dynamically contextualize discriminative features. Experimental results in ImageNet and COCO demonstrate that SpaRTAN achieves remarkable parameter efficiency while maintaining competitive performance. In particular, on the ImageNet-1k benchmark, SpaRTAN achieves 77. 7% accuracy with only 3.8M parameters and approximately 1.0 GFLOPs, demonstrating its ability to deliver strong performance through an efficient design. On the COCO benchmark, it achieves 50.0% AP, surpassing the previous benchmark by 1.2% with only 21.5M parameters. The code is publicly available at [https://github.com/henry-pay/SpaRTAN].

  • 5 authors
·
Jul 15

Universal Transformers

Recurrent neural networks (RNNs) sequentially process data by updating their state with each new data point, and have long been the de facto choice for sequence modeling tasks. However, their inherently sequential computation makes them slow to train. Feed-forward and convolutional architectures have recently been shown to achieve superior results on some sequence modeling tasks such as machine translation, with the added advantage that they concurrently process all inputs in the sequence, leading to easy parallelization and faster training times. Despite these successes, however, popular feed-forward sequence models like the Transformer fail to generalize in many simple tasks that recurrent models handle with ease, e.g. copying strings or even simple logical inference when the string or formula lengths exceed those observed at training time. We propose the Universal Transformer (UT), a parallel-in-time self-attentive recurrent sequence model which can be cast as a generalization of the Transformer model and which addresses these issues. UTs combine the parallelizability and global receptive field of feed-forward sequence models like the Transformer with the recurrent inductive bias of RNNs. We also add a dynamic per-position halting mechanism and find that it improves accuracy on several tasks. In contrast to the standard Transformer, under certain assumptions, UTs can be shown to be Turing-complete. Our experiments show that UTs outperform standard Transformers on a wide range of algorithmic and language understanding tasks, including the challenging LAMBADA language modeling task where UTs achieve a new state of the art, and machine translation where UTs achieve a 0.9 BLEU improvement over Transformers on the WMT14 En-De dataset.

  • 5 authors
·
Jul 10, 2018

GIST: Generating Image-Specific Text for Fine-grained Object Classification

Recent vision-language models outperform vision-only models on many image classification tasks. However, because of the absence of paired text/image descriptions, it remains difficult to fine-tune these models for fine-grained image classification. In this work, we propose a method, GIST, for generating image-specific fine-grained text descriptions from image-only datasets, and show that these text descriptions can be used to improve classification. Key parts of our method include 1. prompting a pretrained large language model with domain-specific prompts to generate diverse fine-grained text descriptions for each class and 2. using a pretrained vision-language model to match each image to label-preserving text descriptions that capture relevant visual features in the image. We demonstrate the utility of GIST by fine-tuning vision-language models on the image-and-generated-text pairs to learn an aligned vision-language representation space for improved classification. We evaluate our learned representation space in full-shot and few-shot scenarios across four diverse fine-grained classification datasets, each from a different domain. Our method achieves an average improvement of 4.1% in accuracy over CLIP linear probes and an average of 1.1% improvement in accuracy over the previous state-of-the-art image-text classification method on the full-shot datasets. Our method achieves similar improvements across few-shot regimes. Code is available at https://github.com/emu1729/GIST.

  • 4 authors
·
Jul 20, 2023

Effective Long-Context Scaling of Foundation Models

We present a series of long-context LLMs that support effective context windows of up to 32,768 tokens. Our model series are built through continual pretraining from Llama 2 with longer training sequences and on a dataset where long texts are upsampled. We perform extensive evaluation on language modeling, synthetic context probing tasks, and a wide range of research benchmarks. On research benchmarks, our models achieve consistent improvements on most regular tasks and significant improvements on long-context tasks over Llama 2. Notably, with a cost-effective instruction tuning procedure that does not require human-annotated long instruction data, the 70B variant can already surpass gpt-3.5-turbo-16k's overall performance on a suite of long-context tasks. Alongside these results, we provide an in-depth analysis on the individual components of our method. We delve into Llama's position encodings and discuss its limitation in modeling long dependencies. We also examine the impact of various design choices in the pretraining process, including the data mix and the training curriculum of sequence lengths -- our ablation experiments suggest that having abundant long texts in the pretrain dataset is not the key to achieving strong performance, and we empirically verify that long context continual pretraining is more efficient and similarly effective compared to pretraining from scratch with long sequences.

  • 21 authors
·
Sep 27, 2023 3

REFRAG: Rethinking RAG based Decoding

Large Language Models (LLMs) have demonstrated remarkable capabilities in leveraging extensive external knowledge to enhance responses in multi-turn and agentic applications, such as retrieval-augmented generation (RAG). However, processing long-context inputs introduces significant system latency and demands substantial memory for the key-value cache, resulting in reduced throughput and a fundamental trade-off between knowledge enrichment and system efficiency. While minimizing latency for long-context inputs is a primary objective for LLMs, we contend that RAG require specialized consideration. In RAG, much of the LLM context consists of concatenated passages from retrieval, with only a small subset directly relevant to the query. These passages often exhibit low semantic similarity due to diversity or deduplication during re-ranking, leading to block-diagonal attention patterns that differ from those in standard LLM generation tasks. Based on this observation, we argue that most computations over the RAG context during decoding are unnecessary and can be eliminated with minimal impact on performance. To this end, we propose REFRAG, an efficient decoding framework that compresses, senses, and expands to improve latency in RAG applications. By exploiting the sparsity structure, we demonstrate a 30.85 the time-to-first-token acceleration (3.75 improvement to previous work) without loss in perplexity. In addition, our optimization framework for large context enables REFRAG to extend the context size of LLMs by 16. We provide rigorous validation of REFRAG across diverse long-context tasks, including RAG, multi-turn conversations, and long document summarization, spanning a wide range of datasets. Experimental results confirm that REFRAG delivers substantial speedup with no loss in accuracy compared to LLaMA models and other state-of-the-art baselines across various context sizes.

  • 5 authors
·
Aug 31

LSNet: See Large, Focus Small

Vision network designs, including Convolutional Neural Networks and Vision Transformers, have significantly advanced the field of computer vision. Yet, their complex computations pose challenges for practical deployments, particularly in real-time applications. To tackle this issue, researchers have explored various lightweight and efficient network designs. However, existing lightweight models predominantly leverage self-attention mechanisms and convolutions for token mixing. This dependence brings limitations in effectiveness and efficiency in the perception and aggregation processes of lightweight networks, hindering the balance between performance and efficiency under limited computational budgets. In this paper, we draw inspiration from the dynamic heteroscale vision ability inherent in the efficient human vision system and propose a ``See Large, Focus Small'' strategy for lightweight vision network design. We introduce LS (Large-Small) convolution, which combines large-kernel perception and small-kernel aggregation. It can efficiently capture a wide range of perceptual information and achieve precise feature aggregation for dynamic and complex visual representations, thus enabling proficient processing of visual information. Based on LS convolution, we present LSNet, a new family of lightweight models. Extensive experiments demonstrate that LSNet achieves superior performance and efficiency over existing lightweight networks in various vision tasks. Codes and models are available at https://github.com/jameslahm/lsnet.

  • 5 authors
·
Mar 29 3

Just read twice: closing the recall gap for recurrent language models

Recurrent large language models that compete with Transformers in language modeling perplexity are emerging at a rapid rate (e.g., Mamba, RWKV). Excitingly, these architectures use a constant amount of memory during inference. However, due to the limited memory, recurrent LMs cannot recall and use all the information in long contexts leading to brittle in-context learning (ICL) quality. A key challenge for efficient LMs is selecting what information to store versus discard. In this work, we observe the order in which information is shown to the LM impacts the selection difficulty. To formalize this, we show that the hardness of information recall reduces to the hardness of a problem called set disjointness (SD), a quintessential problem in communication complexity that requires a streaming algorithm (e.g., recurrent model) to decide whether inputted sets are disjoint. We empirically and theoretically show that the recurrent memory required to solve SD changes with set order, i.e., whether the smaller set appears first in-context. Our analysis suggests, to mitigate the reliance on data order, we can put information in the right order in-context or process prompts non-causally. Towards that end, we propose: (1) JRT-Prompt, where context gets repeated multiple times in the prompt, effectively showing the model all data orders. This gives 11.0 pm 1.3 points of improvement, averaged across 16 recurrent LMs and the 6 ICL tasks, with 11.9times higher throughput than FlashAttention-2 for generation prefill (length 32k, batch size 16, NVidia H100). We then propose (2) JRT-RNN, which uses non-causal prefix-linear-attention to process prompts and provides 99% of Transformer quality at 360M params., 30B tokens and 96% at 1.3B params., 50B tokens on average across the tasks, with 19.2times higher throughput for prefill than FA2.

  • 9 authors
·
Jul 7, 2024

InfLLM: Unveiling the Intrinsic Capacity of LLMs for Understanding Extremely Long Sequences with Training-Free Memory

Large language models (LLMs) have emerged as a cornerstone in real-world applications with lengthy streaming inputs, such as LLM-driven agents. However, existing LLMs, pre-trained on sequences with restricted maximum length, cannot generalize to longer sequences due to the out-of-domain and distraction issues. To alleviate these issues, existing efforts employ sliding attention windows and discard distant tokens to achieve the processing of extremely long sequences. Unfortunately, these approaches inevitably fail to capture long-distance dependencies within sequences to deeply understand semantics. This paper introduces a training-free memory-based method, InfLLM, to unveil the intrinsic ability of LLMs to process streaming long sequences. Specifically, InfLLM stores distant contexts into additional memory units and employs an efficient mechanism to lookup token-relevant units for attention computation. Thereby, InfLLM allows LLMs to efficiently process long sequences while maintaining the ability to capture long-distance dependencies. Without any training, InfLLM enables LLMs pre-trained on sequences of a few thousand tokens to achieve superior performance than competitive baselines continually training these LLMs on long sequences. Even when the sequence length is scaled to 1,024K, InfLLM still effectively captures long-distance dependencies.

  • 9 authors
·
Feb 7, 2024 3

Efficiently Modeling Long Sequences with Structured State Spaces

A central goal of sequence modeling is designing a single principled model that can address sequence data across a range of modalities and tasks, particularly on long-range dependencies. Although conventional models including RNNs, CNNs, and Transformers have specialized variants for capturing long dependencies, they still struggle to scale to very long sequences of 10000 or more steps. A promising recent approach proposed modeling sequences by simulating the fundamental state space model (SSM) \( x'(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) \), and showed that for appropriate choices of the state matrix \( A \), this system could handle long-range dependencies mathematically and empirically. However, this method has prohibitive computation and memory requirements, rendering it infeasible as a general sequence modeling solution. We propose the Structured State Space sequence model (S4) based on a new parameterization for the SSM, and show that it can be computed much more efficiently than prior approaches while preserving their theoretical strengths. Our technique involves conditioning \( A \) with a low-rank correction, allowing it to be diagonalized stably and reducing the SSM to the well-studied computation of a Cauchy kernel. S4 achieves strong empirical results across a diverse range of established benchmarks, including (i) 91\% accuracy on sequential CIFAR-10 with no data augmentation or auxiliary losses, on par with a larger 2-D ResNet, (ii) substantially closing the gap to Transformers on image and language modeling tasks, while performing generation 60times faster (iii) SoTA on every task from the Long Range Arena benchmark, including solving the challenging Path-X task of length 16k that all prior work fails on, while being as efficient as all competitors.

  • 3 authors
·
Oct 30, 2021

Slow-Fast Architecture for Video Multi-Modal Large Language Models

Balancing temporal resolution and spatial detail under limited compute budget remains a key challenge for video-based multi-modal large language models (MLLMs). Existing methods typically compress video representations using predefined rules before feeding them into the LLM, resulting in irreversible information loss and often ignoring input instructions. To address this, we propose a novel slow-fast architecture that naturally circumvents this trade-off, enabling the use of more input frames while preserving spatial details. Inspired by how humans first skim a video before focusing on relevant parts, our slow-fast design employs a dual-token strategy: 1) "fast" visual tokens -- a compact set of compressed video features -- are fed into the LLM alongside text embeddings to provide a quick overview; 2) "slow" visual tokens -- uncompressed video features -- are cross-attended by text embeddings through specially designed hybrid decoder layers, enabling instruction-aware extraction of relevant visual details with linear complexity. We conduct systematic exploration to optimize both the overall architecture and key components. Experiments show that our model significantly outperforms self-attention-only baselines, extending the input capacity from 16 to 128 frames with just a 3% increase in computation, and achieving a 16% average performance improvement across five video understanding benchmarks. Our 7B model achieves state-of-the-art performance among models of similar size. Furthermore, our slow-fast architecture is a plug-and-play design that can be integrated into other video MLLMs to improve efficiency and scalability.

It's All Connected: A Journey Through Test-Time Memorization, Attentional Bias, Retention, and Online Optimization

Designing efficient and effective architectural backbones has been in the core of research efforts to enhance the capability of foundation models. Inspired by the human cognitive phenomenon of attentional bias-the natural tendency to prioritize certain events or stimuli-we reconceptualize neural architectures, including Transformers, Titans, and modern linear recurrent neural networks as associative memory modules that learn a mapping of keys and values using an internal objective, referred to as attentional bias. Surprisingly, we observed that most existing sequence models leverage either (1) dot-product similarity, or (2) L2 regression objectives as their attentional bias. Going beyond these objectives, we present a set of alternative attentional bias configurations along with their effective approximations to stabilize their training procedure. We then reinterpret forgetting mechanisms in modern deep learning architectures as a form of retention regularization, providing a novel set of forget gates for sequence models. Building upon these insights, we present Miras, a general framework to design deep learning architectures based on four choices of: (i) associative memory architecture, (ii) attentional bias objective, (iii) retention gate, and (iv) memory learning algorithm. We present three novel sequence models-Moneta, Yaad, and Memora-that go beyond the power of existing linear RNNs while maintaining a fast parallelizable training process. Our experiments show different design choices in Miras yield models with varying strengths. For example, certain instances of Miras achieve exceptional performance in special tasks such as language modeling, commonsense reasoning, and recall intensive tasks, even outperforming Transformers and other modern linear recurrent models.

  • 4 authors
·
Apr 17 4

Prioritizing Image-Related Tokens Enhances Vision-Language Pre-Training

In standard large vision-language models (LVLMs) pre-training, the model typically maximizes the joint probability of the caption conditioned on the image via next-token prediction (NTP); however, since only a small subset of caption tokens directly relates to the visual content, this naive NTP unintentionally fits the model to noise and increases the risk of hallucination. We present PRIOR, a simple vision-language pre-training approach that addresses this issue by prioritizing image-related tokens through differential weighting in the NTP loss, drawing from the importance sampling framework. PRIOR introduces a reference model-a text-only large language model (LLM) trained on the captions without image inputs, to weight each token based on its probability for LVLMs training. Intuitively, tokens that are directly related to the visual inputs are harder to predict without the image and thus receive lower probabilities from the text-only reference LLM. During training, we implement a token-specific re-weighting term based on the importance scores to adjust each token's loss. We implement PRIOR in two distinct settings: LVLMs with visual encoders and LVLMs without visual encoders. We observe 19% and 8% average relative improvement, respectively, on several vision-language benchmarks compared to NTP. In addition, PRIOR exhibits superior scaling properties, as demonstrated by significantly higher scaling coefficients, indicating greater potential for performance gains compared to NTP given increasing compute and data.

  • 4 authors
·
May 13

LongVLM: Efficient Long Video Understanding via Large Language Models

Empowered by Large Language Models (LLMs), recent advancements in Video-based LLMs (VideoLLMs) have driven progress in various video understanding tasks. These models encode video representations through pooling or query aggregation over a vast number of visual tokens, making computational and memory costs affordable. Despite successfully providing an overall comprehension of video content, existing VideoLLMs still face challenges in achieving detailed understanding due to overlooking local information in long-term videos. To tackle this challenge, we introduce LongVLM, a simple yet powerful VideoLLM for long video understanding, building upon the observation that long videos often consist of sequential key events, complex actions, and camera movements. Our approach proposes to decompose long videos into multiple short-term segments and encode local features for each segment via a hierarchical token merging module. These features are concatenated in temporal order to maintain the storyline across sequential short-term segments. Additionally, we propose to integrate global semantics into each local feature to enhance context understanding. In this way, we encode video representations that incorporate both local and global information, enabling the LLM to generate comprehensive responses for long-term videos. Experimental results on the VideoChatGPT benchmark and zero-shot video question-answering datasets demonstrate the superior capabilities of our model over the previous state-of-the-art methods. Qualitative examples show that our model produces more precise responses for long video understanding. Code is available at https://github.com/ziplab/LongVLM.

  • 5 authors
·
Apr 4, 2024

Sculpting Subspaces: Constrained Full Fine-Tuning in LLMs for Continual Learning

Continual learning in large language models (LLMs) is prone to catastrophic forgetting, where adapting to new tasks significantly degrades performance on previously learned ones. Existing methods typically rely on low-rank, parameter-efficient updates that limit the model's expressivity and introduce additional parameters per task, leading to scalability issues. To address these limitations, we propose a novel continual full fine-tuning approach leveraging adaptive singular value decomposition (SVD). Our method dynamically identifies task-specific low-rank parameter subspaces and constrains updates to be orthogonal to critical directions associated with prior tasks, thus effectively minimizing interference without additional parameter overhead or storing previous task gradients. We evaluate our approach extensively on standard continual learning benchmarks using both encoder-decoder (T5-Large) and decoder-only (LLaMA-2 7B) models, spanning diverse tasks including classification, generation, and reasoning. Empirically, our method achieves state-of-the-art results, up to 7% higher average accuracy than recent baselines like O-LoRA, and notably maintains the model's general linguistic capabilities, instruction-following accuracy, and safety throughout the continual learning process by reducing forgetting to near-negligible levels. Our adaptive SVD framework effectively balances model plasticity and knowledge retention, providing a practical, theoretically grounded, and computationally scalable solution for continual learning scenarios in large language models.

  • 11 authors
·
Apr 9

Vision Remember: Alleviating Visual Forgetting in Efficient MLLM with Vision Feature Resample

In this work, we study the Efficient Multimodal Large Language Model. Redundant vision tokens consume a significant amount of computational memory and resources. Therefore, many previous works compress them in the Vision Projector to reduce the number of vision tokens. However, simply compressing in the Vision Projector can lead to the loss of visual information, especially for tasks that rely on fine-grained spatial relationships, such as OCR and Chart \& Table Understanding. To address this problem, we propose Vision Remember, which is inserted between the LLM decoder layers to allow vision tokens to re-memorize vision features. Specifically, we retain multi-level vision features and resample them with the vision tokens that have interacted with the text token. During the resampling process, each vision token only attends to a local region in vision features, which is referred to as saliency-enhancing local attention. Saliency-enhancing local attention not only improves computational efficiency but also captures more fine-grained contextual information and spatial relationships within the region. Comprehensive experiments on multiple visual understanding benchmarks validate the effectiveness of our method when combined with various Efficient Vision Projectors, showing performance gains without sacrificing efficiency. Based on Vision Remember, LLaVA-VR with only 2B parameters is also superior to previous representative MLLMs such as Tokenpacker-HD-7B and DeepSeek-VL-7B.

  • 7 authors
·
Jun 4

PyramidDrop: Accelerating Your Large Vision-Language Models via Pyramid Visual Redundancy Reduction

In large vision-language models (LVLMs), images serve as inputs that carry a wealth of information. As the idiom "A picture is worth a thousand words" implies, representing a single image in current LVLMs can require hundreds or even thousands of tokens. This results in significant computational costs, which grow quadratically as input image resolution increases, thereby severely impacting the efficiency of both training and inference. Previous approaches have attempted to reduce the number of image tokens either before or within the early layers of LVLMs. However, these strategies inevitably result in the loss of crucial image information, ultimately diminishing model performance. To address this challenge, we conduct an empirical study revealing that all visual tokens are necessary for LVLMs in the shallow layers, and token redundancy progressively increases in the deeper layers of the model. To this end, we propose PyramidDrop, a visual redundancy reduction strategy for LVLMs to boost their efficiency in both training and inference with neglectable performance loss. Specifically, we partition the LVLM into several stages and drop part of the image tokens at the end of each stage with a pre-defined ratio, creating pyramid-like visual tokens across model layers. The dropping is based on a lightweight similarity calculation with a negligible time overhead. Extensive experiments demonstrate that PyramidDrop can achieve a 40% training time and 55% inference FLOPs acceleration of LLaVA-NeXT with comparable performance. Besides, the PyramidDrop could also serve as a plug-and-play strategy for inference acceleration without training, with better performance and lower inference cost than counterparts. We hope that the insights and approach introduced by PyramidDrop will inspire future research to further investigate the role of image tokens in LVLMs.

  • 11 authors
·
Oct 22, 2024 3

MMLongBench: Benchmarking Long-Context Vision-Language Models Effectively and Thoroughly

The rapid extension of context windows in large vision-language models has given rise to long-context vision-language models (LCVLMs), which are capable of handling hundreds of images with interleaved text tokens in a single forward pass. In this work, we introduce MMLongBench, the first benchmark covering a diverse set of long-context vision-language tasks, to evaluate LCVLMs effectively and thoroughly. MMLongBench is composed of 13,331 examples spanning five different categories of downstream tasks, such as Visual RAG and Many-Shot ICL. It also provides broad coverage of image types, including various natural and synthetic images. To assess the robustness of the models to different input lengths, all examples are delivered at five standardized input lengths (8K-128K tokens) via a cross-modal tokenization scheme that combines vision patches and text tokens. Through a thorough benchmarking of 46 closed-source and open-source LCVLMs, we provide a comprehensive analysis of the current models' vision-language long-context ability. Our results show that: i) performance on a single task is a weak proxy for overall long-context capability; ii) both closed-source and open-source models face challenges in long-context vision-language tasks, indicating substantial room for future improvement; iii) models with stronger reasoning ability tend to exhibit better long-context performance. By offering wide task coverage, various image types, and rigorous length control, MMLongBench provides the missing foundation for diagnosing and advancing the next generation of LCVLMs.

  • 12 authors
·
May 15 3

ThinK: Thinner Key Cache by Query-Driven Pruning

Large Language Models (LLMs) have revolutionized the field of natural language processing, achieving unprecedented performance across a variety of applications by leveraging increased model sizes and sequence lengths. However, the associated rise in computational and memory costs poses significant challenges, particularly in managing long sequences due to the quadratic complexity of the transformer attention mechanism. This paper focuses on the long-context scenario, addressing the inefficiencies in KV cache memory consumption during inference. Unlike existing approaches that optimize the memory based on the sequence lengths, we uncover that the channel dimension of the KV cache exhibits significant redundancy, characterized by unbalanced magnitude distribution and low-rank structure in attention weights. Based on these observations, we propose ThinK, a novel query-dependent KV cache pruning method designed to minimize attention weight loss while selectively pruning the least significant channels. Our approach not only maintains or enhances model accuracy but also achieves a reduction in memory costs by over 20% compared with vanilla KV cache eviction methods. Extensive evaluations on the LLaMA3 and Mistral models across various long-sequence datasets confirm the efficacy of ThinK, setting a new precedent for efficient LLM deployment without compromising performance. We also outline the potential of extending our method to value cache pruning, demonstrating ThinK's versatility and broad applicability in reducing both memory and computational overheads.

  • 9 authors
·
Jul 30, 2024 2