new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 5

Understanding GEMM Performance and Energy on NVIDIA Ada Lovelace: A Machine Learning-Based Analytical Approach

Analytical framework for predicting General Matrix Multiplication (GEMM) performance on modern GPUs, focusing on runtime, power consumption, and energy efficiency. Our study employs two approaches: a custom-implemented tiled matrix multiplication kernel for fundamental analysis, and NVIDIA's CUTLASS library for comprehensive performance data collection across advanced configurations. Using the NVIDIA RTX 4070 as our experimental platform, we developed a Random Forest-based prediction model with multi-output regression capability. Through analysis of both naive tiled matrix multiplication with varying tile sizes (1 to 32) and 16,128 CUTLASS GEMM operations across diverse configurations, we identified critical performance patterns related to matrix dimensions, thread block configurations, and memory access patterns. Our framework achieved exceptional accuracy with an R^2 score of 0.98 for runtime prediction (mean error 15.57%) and 0.78 for power prediction (median error 5.42%). The system successfully predicts performance across matrix sizes, demonstrating robust scaling behavior. Our results show that optimal tile size selection can improve performance by up to 3.2x while reducing power consumption by 22% compared to baseline configurations. Analysis of shared memory utilization and SM occupancy reveals that tile sizes of 16x16 achieve the best balance between parallelism and resource usage. The implementation of our framework, including prediction models and analysis tools, is available as an open-source project at GPPerf [https://github.com/pavlyhalim/GPPerf].

  • 3 authors
·
Nov 25, 2024

Failure Prediction at Runtime for Generative Robot Policies

Imitation learning (IL) with generative models, such as diffusion and flow matching, has enabled robots to perform complex, long-horizon tasks. However, distribution shifts from unseen environments or compounding action errors can still cause unpredictable and unsafe behavior, leading to task failure. Early failure prediction during runtime is therefore essential for deploying robots in human-centered and safety-critical environments. We propose FIPER, a general framework for Failure Prediction at Runtime for generative IL policies that does not require failure data. FIPER identifies two key indicators of impending failure: (i) out-of-distribution (OOD) observations detected via random network distillation in the policy's embedding space, and (ii) high uncertainty in generated actions measured by a novel action-chunk entropy score. Both failure prediction scores are calibrated using a small set of successful rollouts via conformal prediction. A failure alarm is triggered when both indicators, aggregated over short time windows, exceed their thresholds. We evaluate FIPER across five simulation and real-world environments involving diverse failure modes. Our results demonstrate that FIPER better distinguishes actual failures from benign OOD situations and predicts failures more accurately and earlier than existing methods. We thus consider this work an important step towards more interpretable and safer generative robot policies. Code, data and videos are available at https://tum-lsy.github.io/fiper_website.

  • 4 authors
·
Oct 10

TRACED: Execution-aware Pre-training for Source Code

Most existing pre-trained language models for source code focus on learning the static code text, typically augmented with static code structures (abstract syntax tree, dependency graphs, etc.). However, program semantics will not be fully exposed before the real execution. Without an understanding of the program execution, statically pre-trained models fail to comprehensively capture the dynamic code properties, such as the branch coverage and the runtime variable values, and they are consequently less effective at code understanding tasks, such as retrieving semantic clones and detecting software vulnerabilities. To close the gap between the static nature of language models and the dynamic characteristics of programs, we introduce TRACED, an execution-aware pre-training strategy for source code. Specifically, we pre-train code language models with a combination of source code, executable inputs, and corresponding execution traces. Our goal is to teach code models the complicated execution logic during the pre-training, enabling the model to statically estimate the dynamic code properties without repeatedly executing code during task-specific fine-tuning. To illustrate the effectiveness of our proposed approach, we fine-tune and evaluate TRACED on three downstream tasks: static execution estimation, clone retrieval, and vulnerability detection. The empirical results show that TRACED relatively improves the statically pre-trained code models by 12.4% for complete execution path prediction and by 25.2% for runtime variable value predictions. TRACED also significantly outperforms statically pre-trained models in clone retrieval and vulnerability detection across four public benchmarks.

  • 6 authors
·
Jun 12, 2023

ParaFold: Paralleling AlphaFold for Large-Scale Predictions

AlphaFold predicts protein structures from the amino acid sequence at or near experimental resolution, solving the 50-year-old protein folding challenge, leading to progress by transforming large-scale genomics data into protein structures. AlphaFold will also greatly change the scientific research model from low-throughput to high-throughput manner. The AlphaFold framework is a mixture of two types of workloads: MSA construction based on CPUs and model inference on GPUs. The first CPU stage dominates the overall runtime, taking hours for a single protein due to the large database sizes and I/O bottlenecks. However, GPUs in this CPU stage remain idle, resulting in low GPU utilization and restricting the capacity of large-scale structure predictions. Therefore, we proposed ParaFold, an open-source parallel version of AlphaFold for high throughput protein structure predictions. ParaFold separates the CPU and GPU parts to enable large-scale structure predictions. ParaFold also effectively reduces the CPU and GPU runtime with two optimizations without compromising the quality of prediction results: using multi-threaded parallelism on CPUs and using optimized JAX compilation on GPUs. We evaluated ParaFold with three datasets of different size and protein lengths. We evaluated the accuracy and efficiency of optimizations on CPUs and GPUs, and showed the large-scale prediction capability by running ParaFold inferences of 19,704 small proteins in five hours on one NVIDIA DGX-2. Using the JAX compile optimization, ParaFold attained a 13.8X average speedup over AlphaFold. ParaFold offers a rapid and effective approach for high-throughput structure predictions, leveraging the predictive power by running on supercomputers, with shorter time, and at a lower cost. The development of ParaFold will greatly speed up high-throughput studies and render the protein "structure-omics" feasible.

  • 6 authors
·
Nov 11, 2021

Reasoning Runtime Behavior of a Program with LLM: How Far Are We?

Large language models for code (i.e., code LLMs) have shown strong code understanding and generation capabilities. To evaluate the capabilities of code LLMs in various aspects, many benchmarks have been proposed (e.g., HumanEval and ClassEval). Code reasoning is one of the most essential abilities of code LLMs, but existing benchmarks for code reasoning are not sufficient. Typically, they focus on predicting the input and output of a program, ignoring the evaluation of the intermediate behavior during program execution, as well as the logical consistency (e.g., the model should not give the correct output if the prediction of execution path is wrong) when performing the reasoning. To address these problems, in this paper, we propose a framework, namely REval, for evaluating code reasoning abilities and consistency of code LLMs with program execution. We utilize existing code benchmarks and adapt them to new benchmarks within our framework. A large-scale empirical study is conducted and most LLMs show unsatisfactory performance on both Runtime Behavior Reasoning (i.e., an average accuracy of 44.4%) and Incremental Consistency Evaluation (i.e., an average IC score of 10.3). Evaluation results of current code LLMs reflect the urgent need for the community to strengthen the code reasoning capability of code LLMs. Our code, data, and \newname leaderboard are available at https://r-eval.github.io.

  • 6 authors
·
Mar 25, 2024

BRIDGES: Bridging Graph Modality and Large Language Models within EDA Tasks

While many EDA tasks already involve graph-based data, existing LLMs in EDA primarily either represent graphs as sequential text, or simply ignore graph-structured data that might be beneficial like dataflow graphs of RTL code. Recent studies have found that LLM performance suffers when graphs are represented as sequential text, and using additional graph information significantly boosts performance. To address these challenges, we introduce BRIDGES, a framework designed to incorporate graph modality into LLMs for EDA tasks. BRIDGES integrates an automated data generation workflow, a solution that combines graph modality with LLM, and a comprehensive evaluation suite. First, we establish an LLM-driven workflow to generate RTL and netlist-level data, converting them into dataflow and netlist graphs with function descriptions. This workflow yields a large-scale dataset comprising over 500,000 graph instances and more than 1.5 billion tokens. Second, we propose a lightweight cross-modal projector that encodes graph representations into text-compatible prompts, enabling LLMs to effectively utilize graph data without architectural modifications. Experimental results demonstrate 2x to 10x improvements across multiple tasks compared to text-only baselines, including accuracy in design retrieval, type prediction and perplexity in function description, with negligible computational overhead (<1% model weights increase and <30% additional runtime overhead). Even without additional LLM finetuning, our results outperform text-only by a large margin. We plan to release BRIDGES, including the dataset, models, and training flow.

  • 6 authors
·
Apr 7

Dissecting the Runtime Performance of the Training, Fine-tuning, and Inference of Large Language Models

Large Language Models (LLMs) have seen great advance in both academia and industry, and their popularity results in numerous open-source frameworks and techniques in accelerating LLM pre-training, fine-tuning, and inference. Training and deploying LLMs are expensive as it requires considerable computing resources and memory, hence many efficient approaches have been developed for improving system pipelines as well as operators. However, the runtime performance can vary significantly across hardware and software stacks, which makes it difficult to choose the best configuration. In this work, we aim to benchmark the performance from both macro and micro perspectives. First, we benchmark the end-to-end performance of pre-training, fine-tuning, and serving LLMs in different sizes , i.e., 7, 13, and 70 billion parameters (7B, 13B, and 70B) on three 8-GPU platforms with and without individual optimization techniques, including ZeRO, quantization, recomputation, FlashAttention. Then, we dive deeper to provide a detailed runtime analysis of the sub-modules, including computing and communication operators in LLMs. For end users, our benchmark and findings help better understand different optimization techniques, training and inference frameworks, together with hardware platforms in choosing configurations for deploying LLMs. For researchers, our in-depth module-wise analyses discover potential opportunities for future work to further optimize the runtime performance of LLMs.

  • 11 authors
·
Nov 6, 2023

Cheaply Evaluating Inference Efficiency Metrics for Autoregressive Transformer APIs

Large language models (LLMs) power many state-of-the-art systems in natural language processing. However, these models are extremely computationally expensive, even at inference time, raising the natural question: when is the extra cost of deploying a larger model worth the anticipated boost in capabilities? Better understanding this tradeoff fundamentally could benefit from an inference efficiency metric that is both (i) easily comparable across models from different providers, and (ii) representative of the true cost of running queries in an isolated performance environment. Unfortunately, access to LLMs today is largely restricted to black-box text generation APIs and raw runtimes measured through this interface do not satisfy these desiderata: model providers can apply various software and hardware optimizations orthogonal to the model, and models served on shared infrastructure are susceptible to performance contention. To circumvent these problems, we propose a new metric for comparing inference efficiency across models. This metric puts models on equal footing as though they were served (i) on uniform hardware and software, and (ii) without performance contention. We call this metric the idealized runtime, and we propose a methodology to efficiently estimate this metric for autoregressive Transformer models. We also propose cost-aware variants that incorporate the number of accelerators needed to serve the model. Using these metrics, we compare ten state-of-the-art LLMs to provide the first analysis of inference efficiency-capability tradeoffs; we make several observations from this analysis, including the fact that the superior inference runtime performance of certain APIs is often a byproduct of optimizations within the API rather than the underlying model. Our methodology also facilitates the efficient comparison of different software and hardware stacks.

  • 6 authors
·
May 3, 2023

Sparse Linear Regression is Easy on Random Supports

Sparse linear regression is one of the most basic questions in machine learning and statistics. Here, we are given as input a design matrix X in R^{N times d} and measurements or labels {y} in R^N where {y} = {X} {w}^* + {xi}, and {xi} is the noise in the measurements. Importantly, we have the additional constraint that the unknown signal vector {w}^* is sparse: it has k non-zero entries where k is much smaller than the ambient dimension. Our goal is to output a prediction vector {w} that has small prediction error: 1{N}cdot |{X} {w}^* - {X} {w}|^2_2. Information-theoretically, we know what is best possible in terms of measurements: under most natural noise distributions, we can get prediction error at most epsilon with roughly N = O(k log d/epsilon) samples. Computationally, this currently needs d^{Omega(k)} run-time. Alternately, with N = O(d), we can get polynomial-time. Thus, there is an exponential gap (in the dependence on d) between the two and we do not know if it is possible to get d^{o(k)} run-time and o(d) samples. We give the first generic positive result for worst-case design matrices {X}: For any {X}, we show that if the support of {w}^* is chosen at random, we can get prediction error epsilon with N = poly(k, log d, 1/epsilon) samples and run-time poly(d,N). This run-time holds for any design matrix {X} with condition number up to 2^{poly(d)}. Previously, such results were known for worst-case {w}^*, but only for random design matrices from well-behaved families, matrices that have a very low condition number (poly(log d); e.g., as studied in compressed sensing), or those with special structural properties.

  • 3 authors
·
Nov 8

Accelerating Neural Architecture Search using Performance Prediction

Methods for neural network hyperparameter optimization and meta-modeling are computationally expensive due to the need to train a large number of model configurations. In this paper, we show that standard frequentist regression models can predict the final performance of partially trained model configurations using features based on network architectures, hyperparameters, and time-series validation performance data. We empirically show that our performance prediction models are much more effective than prominent Bayesian counterparts, are simpler to implement, and are faster to train. Our models can predict final performance in both visual classification and language modeling domains, are effective for predicting performance of drastically varying model architectures, and can even generalize between model classes. Using these prediction models, we also propose an early stopping method for hyperparameter optimization and meta-modeling, which obtains a speedup of a factor up to 6x in both hyperparameter optimization and meta-modeling. Finally, we empirically show that our early stopping method can be seamlessly incorporated into both reinforcement learning-based architecture selection algorithms and bandit based search methods. Through extensive experimentation, we empirically show our performance prediction models and early stopping algorithm are state-of-the-art in terms of prediction accuracy and speedup achieved while still identifying the optimal model configurations.

  • 4 authors
·
May 30, 2017

SpecEE: Accelerating Large Language Model Inference with Speculative Early Exiting

Early exiting has recently emerged as a promising technique for accelerating large language models (LLMs) by effectively reducing the hardware computation and memory access. In this paper, we present SpecEE, a fast LLM inference engine with speculative early exiting. (1) At the algorithm level, we propose the speculation-based lightweight predictor design by exploiting the probabilistic correlation between the speculative tokens and the correct results and high parallelism of GPUs. (2) At the system level, we point out that not all layers need a predictor and design the two-level heuristic predictor scheduling engine based on skewed distribution and contextual similarity. (3) At the mapping level, we point out that different decoding methods share the same essential characteristics, and propose the context-aware merged mapping for predictor with efficient GPU implementations to support speculative decoding, and form a framework for various existing orthogonal acceleration techniques (e.g., quantization and sparse activation) on cloud and personal computer (PC) scenarios, successfully pushing the Pareto frontier of accuracy and speedup. It is worth noting that SpecEE can be applied to any LLM by negligible training overhead in advance without affecting the model original parameters. Extensive experiments show that SpecEE achieves 2.25x and 2.43x speedup with Llama2-7B on cloud and PC scenarios respectively.

  • 8 authors
·
Apr 10

Program Synthesis with Large Language Models

This paper explores the limits of the current generation of large language models for program synthesis in general purpose programming languages. We evaluate a collection of such models (with between 244M and 137B parameters) on two new benchmarks, MBPP and MathQA-Python, in both the few-shot and fine-tuning regimes. Our benchmarks are designed to measure the ability of these models to synthesize short Python programs from natural language descriptions. The Mostly Basic Programming Problems (MBPP) dataset contains 974 programming tasks, designed to be solvable by entry-level programmers. The MathQA-Python dataset, a Python version of the MathQA benchmark, contains 23914 problems that evaluate the ability of the models to synthesize code from more complex text. On both datasets, we find that synthesis performance scales log-linearly with model size. Our largest models, even without finetuning on a code dataset, can synthesize solutions to 59.6 percent of the problems from MBPP using few-shot learning with a well-designed prompt. Fine-tuning on a held-out portion of the dataset improves performance by about 10 percentage points across most model sizes. On the MathQA-Python dataset, the largest fine-tuned model achieves 83.8 percent accuracy. Going further, we study the model's ability to engage in dialog about code, incorporating human feedback to improve its solutions. We find that natural language feedback from a human halves the error rate compared to the model's initial prediction. Additionally, we conduct an error analysis to shed light on where these models fall short and what types of programs are most difficult to generate. Finally, we explore the semantic grounding of these models by fine-tuning them to predict the results of program execution. We find that even our best models are generally unable to predict the output of a program given a specific input.

  • 11 authors
·
Aug 15, 2021

Compliance Cards: Computational Artifacts for Automated AI Regulation Compliance

As the artificial intelligence (AI) supply chain grows more complex, AI systems and models are increasingly likely to incorporate externally-sourced ingredients such as datasets and other models. In such cases, determining whether or not an AI system or model complies with the EU AI Act will require gathering compliance-related metadata about both the AI system or model at-large as well as those externally-supplied ingredients. There must then be an analysis that looks across all of this metadata to render a prediction about the compliance of the overall AI system or model. Up until now, this process has not been automated. Thus, it has not been possible to make real-time compliance determinations in scenarios where doing so would be advantageous, such as the iterative workflows of today's AI developers, search and acquisition of AI ingredients on communities like Hugging Face, federated and continuous learning, and more. To address this shortcoming, we introduce a highly automated system for AI Act compliance analysis. This system has two key elements. First is an interlocking set of computational artifacts that capture compliance-related metadata about both: (1) the AI system or model at-large; (2) any constituent ingredients such as datasets and models. Second is an automated analysis algorithm that operates across those computational artifacts to render a run-time prediction about whether or not the overall AI system or model complies with the AI Act. Working together, these elements promise to enhance and accelerate AI Act compliance assessments.

  • 7 authors
·
Jun 20, 2024

PAC Prediction Sets for Large Language Models of Code

Prediction sets have recently been shown to be a promising strategy for quantifying the uncertainty of deep neural networks in a way that provides theoretical guarantees. However, existing techniques have largely targeted settings where the space of labels is simple, so prediction sets can be arbitrary subsets of labels. For structured prediction problems where the space of labels is exponential in size, even prediction sets containing a small fraction of all labels can be exponentially large. In the context of code generation, we propose a solution that considers a restricted set of prediction sets that can compactly be represented as partial programs, which are programs with portions replaced with holes. Given a trained code generation model, our algorithm leverages a programming language's abstract syntax tree to generate a set of programs such that the correct program is in the set with high-confidence. Valuable applications of our algorithm include a Codex-style code generator with holes in uncertain parts of the generated code, which provides a partial program with theoretical guarantees. We evaluate our approach on PICARD (a T5 model for SQL semantic parsing) and Codex (a GPT model for over a dozen programming languages, including Python), demonstrating that our approach generates compact PAC prediction sets. This is the first research contribution that generates PAC prediction sets for generative code models.

  • 3 authors
·
Feb 17, 2023

Skill Discovery for Software Scripting Automation via Offline Simulations with LLMs

Scripting interfaces enable users to automate tasks and customize software workflows, but creating scripts traditionally requires programming expertise and familiarity with specific APIs, posing barriers for many users. While Large Language Models (LLMs) can generate code from natural language queries, runtime code generation is severely limited due to unverified code, security risks, longer response times, and higher computational costs. To bridge the gap, we propose an offline simulation framework to curate a software-specific skillset, a collection of verified scripts, by exploiting LLMs and publicly available scripting guides. Our framework comprises two components: (1) task creation, using top-down functionality guidance and bottom-up API synergy exploration to generate helpful tasks; and (2) skill generation with trials, refining and validating scripts based on execution feedback. To efficiently navigate the extensive API landscape, we introduce a Graph Neural Network (GNN)-based link prediction model to capture API synergy, enabling the generation of skills involving underutilized APIs and expanding the skillset's diversity. Experiments with Adobe Illustrator demonstrate that our framework significantly improves automation success rates, reduces response time, and saves runtime token costs compared to traditional runtime code generation. This is the first attempt to use software scripting interfaces as a testbed for LLM-based systems, highlighting the advantages of leveraging execution feedback in a controlled environment and offering valuable insights into aligning AI capabilities with user needs in specialized software domains.

  • 9 authors
·
Apr 29 1

SURGE: On the Potential of Large Language Models as General-Purpose Surrogate Code Executors

Large language models (LLMs) have demonstrated remarkable capabilities in code-related tasks, such as code understanding and code generation. However, an equally important yet underexplored question is whether LLMs can serve as general-purpose surrogate code executors, to predict the output and behavior of a program without actually running it. To systematically investigate this capability, we introduce SURGE, a comprehensive benchmark covering eight key aspects: multi-language programming tasks, competition-level programming problems, repository-level code analysis, high-cost scientific computing, time-complexity-intensive algorithms, buggy code analysis, programs dependent on specific compilers or execution environments, and formal mathematical proof verification. We evaluate multiple open-source and proprietary LLMs on SURGE and conduct a scaling study to analyze the impact of model size and training data scale on surrogate execution accuracy. Additionally, we categorize model prediction errors and explore potential areas for improvement. Our findings indicate that while LLMs can predict code execution results in certain cases, they exhibit limitations in general-purpose surrogate execution. This study provides empirical insights into the feasibility of using LLMs as surrogate code executors. Code and dataset are released at https://github.com/Imbernoulli/SURGE.

  • 3 authors
·
Feb 16 2

ComPile: A Large IR Dataset from Production Sources

Code is increasingly becoming a core data modality of modern machine learning research impacting not only the way we write code with conversational agents like OpenAI's ChatGPT, Google's Bard, or Anthropic's Claude, the way we translate code from one language into another, but also the compiler infrastructure underlying the language. While modeling approaches may vary and representations differ, the targeted tasks often remain the same within the individual classes of models. Relying solely on the ability of modern models to extract information from unstructured code does not take advantage of 70 years of programming language and compiler development by not utilizing the structure inherent to programs in the data collection. This detracts from the performance of models working over a tokenized representation of input code and precludes the use of these models in the compiler itself. To work towards the first intermediate representation (IR) based models, we fully utilize the LLVM compiler infrastructure, shared by a number of languages, to generate a 182B token dataset of LLVM IR. We generated this dataset from programming languages built on the shared LLVM infrastructure, including Rust, Swift, Julia, and C/C++, by hooking into LLVM code generation either through the language's package manager or the compiler directly to extract the dataset of intermediate representations from production grade programs. Statistical analysis proves the utility of our dataset not only for large language model training, but also for the introspection into the code generation process itself with the dataset showing great promise for machine-learned compiler components.

  • 9 authors
·
Sep 27, 2023

Towards Robust Agentic CUDA Kernel Benchmarking, Verification, and Optimization

Recent advances in large language models (LLMs) demonstrate their effectiveness in scaling test-time compute for software engineering tasks. However, these approaches often focus on high-level solutions, with limited attention to optimizing low-level CUDA kernel implementations. Additionally, existing kernel generation benchmarks suffer from exploitable loopholes and insufficient diversity in testing conditions, hindering true generalization assessment. To address these limitations, we introduce robust-kbench, a new benchmark for rigorous evaluation of kernel performance and correctness across varied scenarios. Furthermore, we present a comprehensive agentic framework that automates CUDA kernel discovery, verification, and optimization. This pipeline enables frontier LLMs to translate torch code to CUDA kernels and iteratively improve their runtime within our robust evaluation setting. Our sequential workflow first translates PyTorch code into equivalent CUDA kernels. It then optimizes their runtime using a novel evolutionary meta-generation procedure tailored to the CUDA ecosystem, guided by LLM-based verifiers for correctness and efficient filtering. Evaluated on robust-kbench, our approach produces CUDA kernels outperforming torch implementations for practical applications, including forward and backward passes. It can fuse operations and deploy various runtime optimization strategies. The verifier workflow accurately classifies incorrect kernels, enhancing hardware verification efficiency.

  • 6 authors
·
Sep 16

Leveraging Reinforcement Learning and Large Language Models for Code Optimization

Code optimization is a daunting task that requires a significant level of expertise from experienced programmers. This level of expertise is not sufficient when compared to the rapid development of new hardware architectures. Towards advancing the whole code optimization process, recent approaches rely on machine learning and artificial intelligence techniques. This paper introduces a new framework to decrease the complexity of code optimization. The proposed framework builds on large language models (LLMs) and reinforcement learning (RL) and enables LLMs to receive feedback from their environment (i.e., unit tests) during the fine-tuning process. We compare our framework with existing state-of-the-art models and show that it is more efficient with respect to speed and computational usage, as a result of the decrement in training steps and its applicability to models with fewer parameters. Additionally, our framework reduces the possibility of logical and syntactical errors. Toward evaluating our approach, we run several experiments on the PIE dataset using a CodeT5 language model and RRHF, a new reinforcement learning algorithm. We adopt a variety of evaluation metrics with regards to optimization quality, and speedup. The evaluation results demonstrate that the proposed framework has similar results in comparison with existing models using shorter training times and smaller pre-trained models. In particular, we accomplish an increase of 5.6% and 2.2 over the baseline models concerning the %OP T and SP metrics.

  • 11 authors
·
Dec 9, 2023

CYCLE: Learning to Self-Refine the Code Generation

Pre-trained code language models have achieved promising performance in code generation and improved the programming efficiency of human developers. However, their self-refinement capability is typically overlooked by the existing evaluations of code LMs, which focus only on the accuracy of the one-time prediction. For the cases when code LMs fail to implement the correct program, developers actually find it hard to debug and fix the faulty prediction since it is not written by the developers themselves. Unfortunately, our study reveals that code LMs cannot efficiently self-refine their faulty generations as well. In this paper, we propose CYCLE framework, learning to self-refine the faulty generation according to the available feedback, such as the execution results reported by the test suites. We evaluate CYCLE on three popular code generation benchmarks, HumanEval, MBPP, and APPS. The results reveal that CYCLE successfully maintains, sometimes improves, the quality of one-time code generation, while significantly improving the self-refinement capability of code LMs. We implement four variants of CYCLE with varied numbers of parameters across 350M, 1B, 2B, and 3B, and the experiments show that CYCLE consistently boosts the code generation performance, by up to 63.5%, across benchmarks and varied model sizes. We also notice that CYCLE outperforms code LMs that have 3times more parameters in self-refinement.

  • 4 authors
·
Mar 27, 2024

SysLLMatic: Large Language Models are Software System Optimizers

Automatic software system optimization can improve software speed, reduce operating costs, and save energy. Traditional approaches to optimization rely on manual tuning and compiler heuristics, limiting their ability to generalize across diverse codebases and system contexts. Recent methods using Large Language Models (LLMs) offer automation to address these limitations, but often fail to scale to the complexity of real-world software systems and applications. We present SysLLMatic, a system that integrates LLMs with profiling-guided feedback and system performance insights to automatically optimize software code. We evaluate it on three benchmark suites: HumanEval_CPP (competitive programming in C++), SciMark2 (scientific kernels in Java), and DaCapoBench (large-scale software systems in Java). Results show that SysLLMatic can improve system performance, including latency, throughput, energy efficiency, memory usage, and CPU utilization. It consistently outperforms state-of-the-art LLM baselines on microbenchmarks. On large-scale application codes, it surpasses traditional compiler optimizations, achieving average relative improvements of 1.85x in latency and 2.24x in throughput. Our findings demonstrate that LLMs, guided by principled systems thinking and appropriate performance diagnostics, can serve as viable software system optimizers. We further identify limitations of our approach and the challenges involved in handling complex applications. This work provides a foundation for generating optimized code across various languages, benchmarks, and program sizes in a principled manner.

  • 10 authors
·
Jun 1

Team-related Features in Code Review Prediction Models

Modern Code Review (MCR) is an informal tool-assisted quality assurance practice. It relies on the asynchronous communication among the authors of code changes and reviewers, who are developers that provide feedback. However, from candidate developers, some are able to provide better feedback than others given a particular context. The selection of reviewers is thus an important task, which can benefit from automated support. Many approaches have been proposed in this direction, using for example data from code review repositories to recommend reviewers. In this paper, we propose the use of team-related features to improve the performance of predictions that are helpful to build code reviewer recommenders, with our target predictions being the identification of reviewers that would participate in a review and the provided amount of feedback. We evaluate the prediction power of these features, which are related to code ownership, workload, and team relationship. This evaluation was done by carefully addressing challenges imposed by the MCR domain, such as temporal aspects of the dataset and unbalanced classes. Moreover, given that it is currently unknown how much past data is needed for building MCR prediction models with acceptable performance, we explore the amount of past data used to build prediction models. Our results show that, individually, features related to code ownership have the best prediction power. However, based on feature selection, we conclude that all proposed features together with lines of code can make the best predictions for both reviewer participation and amount of feedback. Regarding the amount of past data, the timeframes of 3, 6, 9, and 12 months of data produce similar results. Therefore, models can be trained considering short timeframes, thus reducing the computational costs with negligible impact in the prediction performance ...

  • 3 authors
·
Dec 11, 2023

ML-driven Hardware Cost Model for MLIR

During early optimization passes, compilers must make predictions for machine-dependent characteristics such as execution unit utilization, number of register spills, latency, throughput etc. to generate better code. Often a hand-written static/analytical hardware cost model is built into the compiler. However, the need for more sophisticated and varied predictions has become more pronounced with the development of deep learning compilers which need to optimize dataflow graphs. Such compilers usually employ a much higher level MLIR form as an IR representation before lowering to traditional LLVM-IR. A static/analytical cost model in such a scenario is cumbersome and error prone as the opcodes represent very high level algebraic/arithmetic operations. Hence, we develop a machine learning-based cost model for high-level MLIR which can predict different target variables of interest such as CPU/GPU/xPU utilization, instructions executed, register usage etc. By considering the incoming MLIR as a text input a la NLP models we can apply well-known techniques from modern NLP research to help predict hardware characteristics more accurately. We expect such precise ML-driven hardware cost models to guide our deep learning compiler in graph level optimizations around operator fusion, local memory allocation, kernel scheduling etc. as well as in many kernel-level optimizations such as loop interchange, LICM and unroll. We report early work-in -progress results of developing such models on high-level MLIR representing dataflow graphs emitted by Pytorch/Tensorflow-like frameworks as well as lower-level dialects like affine. We show that these models can provide reasonably good estimates with low error bounds for various hardware characteristics of interest and can be a go-to mechanism for hardware cost modelling in the future.

  • 2 authors
·
Feb 14, 2023

MRG-Bench: Evaluating and Exploring the Requirements of Context for Repository-Level Code Generation

Large Language Models (LLMs) have demonstrated impressive capabilities in code generation. However, current evaluation datasets suffer from issues such as the lack of runnable test cases, deviation from the distribution of real-world code, and the ability to evaluate only the Python language. These limitations undermine the credibility of the evaluation results. To address these limitations, we introduce MRG-Bench (Multi-language Repository-level Code Generation Benchmark), a novel dataset that provides a more accurate evaluation of LLMs in practical repository-level code generation tasks. MRG-Bench has three main features: (1) practical data sourced from real-world code repositories that align to the practical distribution, (2) multiple programming languages support, including Python, Java, and Go, and (3) project-level runnable test cases to assess the quality of the generated code. Based on MRG-Bench, we conducted extensive experiments including large language models, long-context models, and RAG-related methods. These evaluation results demonstrate that current repository-level code generation techniques suffer from significant performance deficiencies. To further investigate why models fail, we designed novel experiments to annotate the underlying causes of generation errors. The results explicitly show that the majority of methods suffer from "difficulty in understanding user requirements," failing to comprehend their assigned tasks accurately. Moreover, the impact of different repository-level contexts on this issue exhibits significant disparities across different programming languages, suggesting that, in practice, specialized contextual information needs to be designed for different languages.

  • 1 authors
·
Aug 4

Towards CPU Performance Prediction: New Challenge Benchmark Dataset and Novel Approach

CPU performance prediction, which involves forecasting the performance scores of a CPU based on its hardware characteristics during its operation, is a critical technology for computational system design and resource management in the big data era. However, this research field currently faces two significant challenges. First, collecting real-world data is challenging due to the wide variety of CPU products on the market and the highly specialized nature of relevant hardware characteristics. In the research process, this field lacks a standard dataset with unified hardware characteristics, wide data coverage, and comprehensive benchmarks. Second, existing methods based on hardware simulation models or machine learning exhibit notable shortcomings, such as lengthy simulation test cycles and low prediction accuracy. To bridge these gaps, we first collect, preprocess, and standardize historical data from the 4th Generation Intel Xeon Scalable Processors across multiple benchmark suites to create a new dataset, named PerfCastDB. Subsequently, we design a deep learning based model called Nova CPU Performance Predictor (NCPP) as the baseline for this new dataset. The NCPP network is designed based on group attention mechanism. It effectively quantifies the implicit relationships between hardware characteristics within and across groups and comprehensively models the impact of various hardware characteristics on CPU performance prediction. We conduct comparative experiments using the proposed PerfCastDB dataset. Compared to existing approaches, NCPP achieves superior evaluation results, demonstrating its effectiveness. Furthermore, we have open-sourced part of the dataset and the NCPP network code to facilitate subsequent research. The resources can be accessed at https://github.com/xiaoman-liu/NCPP.

  • 1 authors
·
Jul 2, 2024

Identifying and Exploiting Sparse Branch Correlations for Optimizing Branch Prediction

Branch prediction is arguably one of the most important speculative mechanisms within a high-performance processor architecture. A common approach to improve branch prediction accuracy is to employ lengthy history records of previously seen branch directions to capture distant correlations between branches. The larger the history, the richer the information that the predictor can exploit for discovering predictive patterns. However, without appropriate filtering, such an approach may also heavily disorganize the predictor's internal mechanisms, leading to diminishing returns. This paper studies a fundamental control-flow property: the sparsity in the correlation between branches and recent history. First, we show that sparse branch correlations exist in standard applications and, more importantly, such correlations can be computed efficiently using sparse modeling methods. Second, we introduce a sparsity-aware branch prediction mechanism that can compactly encode and store sparse models to unlock essential performance opportunities. We evaluated our approach for various design parameters demonstrating MPKI improvements of up to 42% (2.3% on average) with 2KB of additional storage overhead. Our circuit-level evaluation of the design showed that it can operate within accepted branch prediction latencies, and under reasonable power and area limitations.

Learning Performance-Improving Code Edits

The waning of Moore's Law has shifted the focus of the tech industry towards alternative methods for continued performance gains. While optimizing compilers are a standard tool to help increase program efficiency, programmers continue to shoulder much responsibility in crafting and refactoring code with better performance characteristics. In this paper, we investigate the ability of large language models (LLMs) to suggest functionally correct, performance improving code edits. We hypothesize that language models can suggest such edits in ways that would be impractical for static analysis alone. We investigate these questions by curating a large-scale dataset of Performance-Improving Edits, PIE. PIE contains trajectories of programs, where a programmer begins with an initial, slower version and iteratively makes changes to improve the program's performance. We use PIE to evaluate and improve the capacity of large language models. Specifically, use examples from PIE to fine-tune multiple variants of CODEGEN, a billion-scale Transformer-decoder model. Additionally, we use examples from PIE to prompt OpenAI's CODEX using a few-shot prompting. By leveraging PIE, we find that both CODEX and CODEGEN can generate performance-improving edits, with speedups of more than 2.5x for over 25% of the programs, for C++ and Python, even after the C++ programs were compiled using the O3 optimization level. Crucially, we show that PIE allows CODEGEN, an open-sourced and 10x smaller model than CODEX, to match the performance of CODEX on this challenging task. Overall, this work opens new doors for creating systems and methods that can help programmers write efficient code.

  • 8 authors
·
Feb 15, 2023

Root Cause Analysis In Microservice Using Neural Granger Causal Discovery

In recent years, microservices have gained widespread adoption in IT operations due to their scalability, maintenance, and flexibility. However, it becomes challenging for site reliability engineers (SREs) to pinpoint the root cause due to the complex relationships in microservices when facing system malfunctions. Previous research employed structured learning methods (e.g., PC-algorithm) to establish causal relationships and derive root causes from causal graphs. Nevertheless, they ignored the temporal order of time series data and failed to leverage the rich information inherent in the temporal relationships. For instance, in cases where there is a sudden spike in CPU utilization, it can lead to an increase in latency for other microservices. However, in this scenario, the anomaly in CPU utilization occurs before the latency increase, rather than simultaneously. As a result, the PC-algorithm fails to capture such characteristics. To address these challenges, we propose RUN, a novel approach for root cause analysis using neural Granger causal discovery with contrastive learning. RUN enhances the backbone encoder by integrating contextual information from time series, and leverages a time series forecasting model to conduct neural Granger causal discovery. In addition, RUN incorporates Pagerank with a personalization vector to efficiently recommend the top-k root causes. Extensive experiments conducted on the synthetic and real-world microservice-based datasets demonstrate that RUN noticeably outperforms the state-of-the-art root cause analysis methods. Moreover, we provide an analysis scenario for the sock-shop case to showcase the practicality and efficacy of RUN in microservice-based applications. Our code is publicly available at https://github.com/zmlin1998/RUN.

  • 5 authors
·
Feb 1, 2024

AutoTimes: Autoregressive Time Series Forecasters via Large Language Models

Foundation models of time series have not been fully developed due to the limited availability of time series corpora and the underexploration of scalable pre-training. Based on the similar sequential formulation of time series and natural language, increasing research demonstrates the feasibility of leveraging large language models (LLM) for time series. Nevertheless, the inherent autoregressive property and decoder-only architecture of LLMs have not been fully considered, resulting in insufficient utilization of LLM abilities. To fully revitalize the general-purpose token transition and multi-step generation capability of large language models, we propose AutoTimes to repurpose LLMs as autoregressive time series forecasters, which projects time series into the embedding space of language tokens and autoregressively generates future predictions with arbitrary lengths. Compatible with any decoder-only LLMs, the consequent forecaster exhibits the flexibility of the lookback length and scalability with larger LLMs. Further, we formulate time series as prompts, extending the context for prediction beyond the lookback window, termed in-context forecasting. By introducing LLM-embedded textual timestamps, AutoTimes can utilize chronological information to align multivariate time series. Empirically, AutoTimes achieves state-of-the-art with 0.1% trainable parameters and over 5times training/inference speedup compared to advanced LLM-based forecasters. Code is available at this repository: https://github.com/thuml/AutoTimes.

  • 5 authors
·
Feb 4, 2024

How Well Do LLMs Generate Code for Different Application Domains? Benchmark and Evaluation

Recently, an increasing number of AI-driven programming assistants powered by code LLMs have been integrated into various real-world software development environments, significantly boosting developer productivity. However, existing code generation benchmarks primarily focus on general-purpose scenarios, leaving the code generation performance of LLMs for specific application domains largely unknown. In this paper, we introduce a new benchmark, MultiCodeBench, to fill this gap. MultiCodeBench comprises 2,400 programming tasks, covering 12 popular software development domains and 15 programming languages. Specifically, we perform in-depth research to identify these 12 application domains. Given that each domain may involve multiple technical frameworks, and that different frameworks present distinct challenges in the coding process, we categorize the commonly used frameworks and platforms within each domain. We then sample programming problems from GitHub repositories related to these subdomains. To ensure the quality of the tasks and mitigate data leakage issues, we invite annotators to rewrite the docstrings for each task in MultiCodeBench. Additionally, we build a static analysis-based dependency parsing tool to extract the dependencies in the ground truth for each task, enabling deeper performance analysis. Through extensive experiments on MultiCodeBench with eleven representative mainstream LLMs, we reveal the code generation performance of the LLMs across different application domains, providing practical insights for developers in downstream fields when selecting LLMs. Furthermore, we analyze the reasons behind the models' failures in completing software application development tasks, offering guidance for model developers to enhance domain-specific code generation capabilities.

  • 5 authors
·
Dec 24, 2024

Why Personalizing Deep Learning-Based Code Completion Tools Matters

Deep learning (DL)-based code completion tools have transformed software development by enabling advanced code generation. These tools leverage models trained on vast amounts of code from numerous repositories, capturing general coding patterns. However, the impact of fine-tuning these models for specific organizations or developers to boost their performance on such subjects remains unexplored. In this work, we fill this gap by presenting solid empirical evidence answering this question. More specifically, we consider 136 developers from two organizations (Apache and Spring), two model architectures (T5 and Code Llama), and three model sizes (60M, 750M, and 7B trainable parameters). T5 models (60M, 750M) were pre-trained and fine-tuned on over 2,000 open-source projects, excluding the subject organizations' data, and compared against versions fine-tuned on organization- and developer-specific datasets. For the Code Llama model (7B), we compared the performance of the already pre-trained model publicly available online with the same model fine-tuned via parameter-efficient fine-tuning on organization- and developer-specific datasets. Our results show that there is a boost in prediction capabilities provided by both an organization-specific and a developer-specific additional fine-tuning, with the former being particularly performant. Such a finding generalizes across (i) the two subject organizations (i.e., Apache and Spring) and (ii) models of completely different magnitude (from 60M to 7B trainable parameters). Finally, we show that DL models fine-tuned on an organization-specific dataset achieve the same completion performance of pre-trained code models used out of the box and being sim10times larger, with consequent savings in terms of deployment and inference cost (e.g., smaller GPUs needed).

  • 3 authors
·
Mar 18 2

On the Usage of Continual Learning for Out-of-Distribution Generalization in Pre-trained Language Models of Code

Pre-trained language models (PLMs) have become a prevalent technique in deep learning for code, utilizing a two-stage pre-training and fine-tuning procedure to acquire general knowledge about code and specialize in a variety of downstream tasks. However, the dynamic nature of software codebases poses a challenge to the effectiveness and robustness of PLMs. In particular, world-realistic scenarios potentially lead to significant differences between the distribution of the pre-training and test data, i.e., distribution shift, resulting in a degradation of the PLM's performance on downstream tasks. In this paper, we stress the need for adapting PLMs of code to software data whose distribution changes over time, a crucial problem that has been overlooked in previous works. The motivation of this work is to consider the PLM in a non-stationary environment, where fine-tuning data evolves over time according to a software evolution scenario. Specifically, we design a scenario where the model needs to learn from a stream of programs containing new, unseen APIs over time. We study two widely used PLM architectures, i.e., a GPT2 decoder and a RoBERTa encoder, on two downstream tasks, API call and API usage prediction. We demonstrate that the most commonly used fine-tuning technique from prior work is not robust enough to handle the dynamic nature of APIs, leading to the loss of previously acquired knowledge i.e., catastrophic forgetting. To address these issues, we implement five continual learning approaches, including replay-based and regularization-based methods. Our findings demonstrate that utilizing these straightforward methods effectively mitigates catastrophic forgetting in PLMs across both downstream tasks while achieving comparable or superior performance.

  • 5 authors
·
May 6, 2023

Evaluation of OpenAI Codex for HPC Parallel Programming Models Kernel Generation

We evaluate AI-assisted generative capabilities on fundamental numerical kernels in high-performance computing (HPC), including AXPY, GEMV, GEMM, SpMV, Jacobi Stencil, and CG. We test the generated kernel codes for a variety of language-supported programming models, including (1) C++ (e.g., OpenMP [including offload], OpenACC, Kokkos, SyCL, CUDA, and HIP), (2) Fortran (e.g., OpenMP [including offload] and OpenACC), (3) Python (e.g., numba, Numba, cuPy, and pyCUDA), and (4) Julia (e.g., Threads, CUDA.jl, AMDGPU.jl, and KernelAbstractions.jl). We use the GitHub Copilot capabilities powered by OpenAI Codex available in Visual Studio Code as of April 2023 to generate a vast amount of implementations given simple <kernel> + <programming model> + <optional hints> prompt variants. To quantify and compare the results, we propose a proficiency metric around the initial 10 suggestions given for each prompt. Results suggest that the OpenAI Codex outputs for C++ correlate with the adoption and maturity of programming models. For example, OpenMP and CUDA score really high, whereas HIP is still lacking. We found that prompts from either a targeted language such as Fortran or the more general-purpose Python can benefit from adding code keywords, while Julia prompts perform acceptably well for its mature programming models (e.g., Threads and CUDA.jl). We expect for these benchmarks to provide a point of reference for each programming model's community. Overall, understanding the convergence of large language models, AI, and HPC is crucial due to its rapidly evolving nature and how it is redefining human-computer interactions.

  • 5 authors
·
Jun 26, 2023

PYInfer: Deep Learning Semantic Type Inference for Python Variables

Python type inference is challenging in practice. Due to its dynamic properties and extensive dependencies on third-party libraries without type annotations, the performance of traditional static analysis techniques is limited. Although semantics in source code can help manifest intended usage for variables (thus help infer types), they are usually ignored by existing tools. In this paper, we propose PYInfer, an end-to-end learning-based type inference tool that automatically generates type annotations for Python variables. The key insight is that contextual code semantics is critical in inferring the type for a variable. For each use of a variable, we collect a few tokens within its contextual scope, and design a neural network to predict its type. One challenge is that it is difficult to collect a high-quality human-labeled training dataset for this purpose. To address this issue, we apply an existing static analyzer to generate the ground truth for variables in source code. Our main contribution is a novel approach to statically infer variable types effectively and efficiently. Formulating the type inference as a classification problem, we can handle user-defined types and predict type probabilities for each variable. Our model achieves 91.2% accuracy on classifying 11 basic types in Python and 81.2% accuracy on classifying 500 most common types. Our results substantially outperform the state-of-the-art type annotators. Moreover, PYInfer achieves 5.2X more code coverage and is 187X faster than a state-of-the-art learning-based tool. With similar time consumption, our model annotates 5X more variables than a state-of-the-art static analysis tool. Our model also outperforms a learning-based function-level annotator on annotating types for variables and function arguments. All our tools and datasets are publicly available to facilitate future research in this direction.

  • 6 authors
·
Jun 27, 2021

Enhancing Code Generation for Low-Resource Languages: No Silver Bullet

The advent of Large Language Models (LLMs) has significantly advanced the field of automated code generation. LLMs rely on large and diverse datasets to learn syntax, semantics, and usage patterns of programming languages. For low-resource languages (i.e., niche programming languages characterized by the scarcity of training data), the limited availability of such data hampers the models' ability to generalize effectively, resulting in poorer code generation performance as compared to high-resource languages. For this reason, there is a quest for techniques able to close this performance gap. We present an empirical study investigating the effectiveness of several approaches for boosting LLMs' performance on low-resource languages, namely: (i) a classic fine-tuning, which is however capped in size by the scarcity of training data; (ii) three variants of in-context learning, with prompts crafted to provide the LLM with additional information about the low-resource language (e.g., few-shot examples showcasing features of the targeted language); and (iii) a pre-training objective teaching the model how to translate between high- and low-resource languages. The context of our study are two low-resource languages (R and Racket) and six LLMs having different architectures and sizes. Our findings reveal that a fine-tuning is usually the best choice for smaller LLMs, possibly due to the fact that even a small dataset is sufficient to train their limited number of parameters. With the increase in size of the models, in-context learning becomes more and more effective, representing a safe and cheap bet (i.e., it always helps, but with different magnitudes). Differently, very large LLMs may deteriorate their performance on low-resource languages when fine-tuning is performed, possibly due to the lack of enough data needed to effectively update their weights.

  • 3 authors
·
Jan 31 4

CoderUJB: An Executable and Unified Java Benchmark for Practical Programming Scenarios

In the evolving landscape of large language models (LLMs) tailored for software engineering, the need for benchmarks that accurately reflect real-world development scenarios is paramount. Current benchmarks are either too simplistic or fail to capture the multi-tasking nature of software development. To address this, we introduce CoderUJB, a new benchmark designed to evaluate LLMs across diverse Java programming tasks that are executable and reflective of actual development scenarios, acknowledging Java's prevalence in real-world software production. CoderUJB comprises 2,239 programming questions derived from 17 real open-source Java projects and spans five practical programming tasks. Our empirical study on this benchmark investigates the coding abilities of various open-source and closed-source LLMs, examining the effects of continued pre-training in specific programming languages code and instruction fine-tuning on their performance. The findings indicate that while LLMs exhibit strong potential, challenges remain, particularly in non-functional code generation (e.g., test generation and defect detection). Importantly, our results advise caution in the specific programming languages continued pre-training and instruction fine-tuning, as these techniques could hinder model performance on certain tasks, suggesting the need for more nuanced strategies. CoderUJB thus marks a significant step towards more realistic evaluations of programming capabilities in LLMs, and our study provides valuable insights for the future development of these models in software engineering.

  • 5 authors
·
Mar 28, 2024

LLM Interactive Optimization of Open Source Python Libraries -- Case Studies and Generalization

With the advent of large language models (LLMs) like GPT-3, a natural question is the extent to which these models can be utilized for source code optimization. This paper presents methodologically stringent case studies applied to well-known open source python libraries pillow and numpy. We find that contemporary LLM ChatGPT-4 (state September and October 2023) is surprisingly adept at optimizing energy and compute efficiency. However, this is only the case in interactive use, with a human expert in the loop. Aware of experimenter bias, we document our qualitative approach in detail, and provide transcript and source code. We start by providing a detailed description of our approach in conversing with the LLM to optimize the _getextrema function in the pillow library, and a quantitative evaluation of the performance improvement. To demonstrate qualitative replicability, we report further attempts on another locus in the pillow library, and one code locus in the numpy library, to demonstrate generalization within and beyond a library. In all attempts, the performance improvement is significant (factor up to 38). We have also not omitted reporting of failed attempts (there were none). We conclude that LLMs are a promising tool for code optimization in open source libraries, but that the human expert in the loop is essential for success. Nonetheless, we were surprised by how few iterations were required to achieve substantial performance improvements that were not obvious to the expert in the loop. We would like bring attention to the qualitative nature of this study, more robust quantitative studies would need to introduce a layer of selecting experts in a representative sample -- we invite the community to collaborate.

  • 1 authors
·
Dec 8, 2023

LDB: A Large Language Model Debugger via Verifying Runtime Execution Step-by-step

Large language models (LLMs) are leading significant progress in code generation. Beyond one-pass code generation, recent works further integrate unit tests and program verifiers into LLMs to iteratively refine the generated programs. However, these works consider the generated programs as an indivisible entity, which falls short for LLMs in debugging the programs, especially when the programs contain complex logic flows and data operations. In contrast, when human developers debug programs, they typically set breakpoints and selectively examine runtime execution information. The execution flow and the intermediate variables play a crucial role in the debugging process, yet they are underutilized in the existing literature on code generation. In this study, we introduce Large Language Model Debugger (LDB), a novel debugging framework that enables LLMs to refine their generated programs with the runtime execution information. Specifically, LDB segments the programs into basic blocks and tracks the values of intermediate variables after each block throughout the runtime execution. This allows LLMs to concentrate on simpler code units within the overall execution flow, verify their correctness against the task description block by block, and efficiently pinpoint any potential errors. Experiments demonstrate that LDB consistently enhances the baseline performance by up to 9.8% across the HumanEval, MBPP, and TransCoder benchmarks, archiving new state-of-the-art performance in code debugging for various LLM selections.

  • 3 authors
·
Feb 24, 2024

Class-Level Code Generation from Natural Language Using Iterative, Tool-Enhanced Reasoning over Repository

LLMs have demonstrated significant potential in code generation tasks, achieving promising results at the function or statement level across various benchmarks. However, the complexities associated with creating code artifacts like classes, particularly within the context of real-world software repositories, remain underexplored. Prior research treats class-level generation as an isolated task, neglecting the intricate dependencies & interactions that characterize real-world software environments. To address this gap, we introduce RepoClassBench, a comprehensive benchmark designed to rigorously evaluate LLMs in generating complex, class-level code within real-world repositories. RepoClassBench includes "Natural Language to Class generation" tasks across Java, Python & C# from a selection of repositories. We ensure that each class in our dataset not only has cross-file dependencies within the repository but also includes corresponding test cases to verify its functionality. We find that current models struggle with the realistic challenges posed by our benchmark, primarily due to their limited exposure to relevant repository contexts. To address this shortcoming, we introduce Retrieve-Repotools-Reflect (RRR), a novel approach that equips LLMs with static analysis tools to iteratively navigate & reason about repository-level context in an agent-based framework. Our experiments demonstrate that RRR significantly outperforms existing baselines on RepoClassBench, showcasing its effectiveness across programming languages & under various settings. Our findings emphasize the critical need for code-generation benchmarks to incorporate repo-level dependencies to more accurately reflect the complexities of software development. Our work shows the benefits of leveraging specialized tools to enhance LLMs' understanding of repository context. We plan to make our dataset & evaluation harness public.

  • 7 authors
·
Apr 21, 2024

Unveiling Downstream Performance Scaling of LLMs: A Clustering-Based Perspective

The rapid advancements in computing dramatically increase the scale and cost of training Large Language Models (LLMs). Accurately predicting downstream task performance prior to model training is crucial for efficient resource allocation, yet remains challenging due to two primary constraints: (1) the "emergence phenomenon", wherein downstream performance metrics become meaningful only after extensive training, which limits the ability to use smaller models for prediction; (2) Uneven task difficulty distributions and the absence of consistent scaling laws, resulting in substantial metric variability. Existing performance prediction methods suffer from limited accuracy and reliability, thereby impeding the assessment of potential LLM capabilities. To address these challenges, we propose a Clustering-On-Difficulty (COD) downstream performance prediction framework. COD first constructs a predictable support subset by clustering tasks based on difficulty features, strategically excluding non-emergent and non-scalable clusters. The scores on the selected subset serve as effective intermediate predictors of downstream performance on the full evaluation set. With theoretical support, we derive a mapping function that transforms performance metrics from the predictable subset to the full evaluation set, thereby ensuring accurate extrapolation of LLM downstream performance. The proposed method has been applied to predict performance scaling for a 70B LLM, providing actionable insights for training resource allocation and assisting in monitoring the training process. Notably, COD achieves remarkable predictive accuracy on the 70B LLM by leveraging an ensemble of small models, demonstrating an absolute mean deviation of 1.36% across eight important LLM evaluation benchmarks.

  • 5 authors
·
Feb 24 2

ATTS: Asynchronous Test-Time Scaling via Conformal Prediction

Large language models (LLMs) benefit from test-time scaling but are often hampered by high inference latency. Speculative decoding is a natural way to accelerate the scaling process; however, scaling along both the parallel and sequential dimensions poses significant challenges, including substantial memory-bound execution and synchronization overhead. We introduce ATTS (Asynchronous Test-Time Scaling), a statistically guaranteed adaptive scaling framework that follows the hypothesis testing process to address these challenges. By revisiting arithmetic intensity, ATTS identifies synchronization as the primary bottleneck. It enables asynchronous inference through online calibration and proposes an ordinal classification algorithm that supports a three-stage rejection sampling pipeline, scaling along both the sequential and parallel axes. Across experiments on the MATH, AMC23, AIME24, and AIME25 datasets and across multiple draft-target model families, we show that ATTS delivers up to 56.7x speedup in test-time scaling and a 4.14x throughput improvement, while maintaining accurate control of the rejection rate, reducing latency and memory overhead, and incurring no accuracy loss. By scaling both in parallel and sequential dimensions, we enable the 1.5B/70B draft/target model combination to achieve the performance of the state-of-the-art reasoning model o3-mini (high) on the AIME dataset. We have released the code at https://github.com/menik1126/asynchronous-test-time-scaling.

  • 14 authors
·
Sep 18

Sleep-time Compute: Beyond Inference Scaling at Test-time

Scaling test-time compute has emerged as a key ingredient for enabling large language models (LLMs) to solve difficult problems, but comes with high latency and inference cost. We introduce sleep-time compute, which allows models to "think" offline about contexts before queries are presented: by anticipating what queries users might ask and pre-computing useful quantities, we can significantly reduce the compute requirements at test-time. To demonstrate the efficacy of our method, we create modified versions of two reasoning tasks - Stateful GSM-Symbolic and Stateful AIME. We find that sleep-time compute can reduce the amount of test-time compute needed to achieve the same accuracy by ~ 5x on Stateful GSM-Symbolic and Stateful AIME and that by scaling sleep-time compute we can further increase accuracy by up to 13% on Stateful GSM-Symbolic and 18% on Stateful AIME. Furthermore, we introduce Multi-Query GSM-Symbolic, which extends GSM-Symbolic by including multiple related queries per context. By amortizing sleep-time compute across related queries about the same context using Multi-Query GSM-Symbolic, we can decrease the average cost per query by 2.5x. We then conduct additional analysis to understand when sleep-time compute is most effective, finding the predictability of the user query to be well correlated with the efficacy of sleep-time compute. Finally, we conduct a case-study of applying sleep-time compute to a realistic agentic SWE task.

  • 7 authors
·
Apr 17 3

A Lightweight Framework for High-Quality Code Generation

In recent years, the use of automated source code generation utilizing transformer-based generative models has expanded, and these models can generate functional code according to the requirements of the developers. However, recent research revealed that these automatically generated source codes can contain vulnerabilities and other quality issues. Despite researchers' and practitioners' attempts to enhance code generation models, retraining and fine-tuning large language models is time-consuming and resource-intensive. Thus, we describe FRANC, a lightweight framework for recommending more secure and high-quality source code derived from transformer-based code generation models. FRANC includes a static filter to make the generated code compilable with heuristics and a quality-aware ranker to sort the code snippets based on a quality score. Moreover, the framework uses prompt engineering to fix persistent quality issues. We evaluated the framework with five Python and Java code generation models and six prompt datasets, including a newly created one in this work (SOEval). The static filter improves 9% to 46% Java suggestions and 10% to 43% Python suggestions regarding compilability. The average improvement over the NDCG@10 score for the ranking system is 0.0763, and the repairing techniques repair the highest 80% of prompts. FRANC takes, on average, 1.98 seconds for Java; for Python, it takes 0.08 seconds.

  • 3 authors
·
Jul 16, 2023

ReCatcher: Towards LLMs Regression Testing for Code Generation

Large Language Models (LLMs) for code generation evolve rapidly through fine-tuning, merging, or new model releases. However, such updates can introduce regressions, not only in correctness but also in code quality and performance. To address this, we present ReCatcher, a regression testing framework for Python code generation. ReCatcher systematically compares two LLMs, typically a current model and a candidate update, across three dimensions: logical correctness, static code quality, and execution performance. We apply ReCatcher to assess regressions across three update scenarios, fine-tuning, merging, and model release, using CodeLlama, DeepSeek-Coder, and GPT-4o. Our evaluation shows that fine-tuning with cross-language datasets increases syntax errors by up to 12%. Merging with general-purpose models like Llama2 leads to regressions in correctness by up to 18%. GPT-4o introduces regressions of up to 50% in handling missing imports compared to GPT-3.5-turbo, while GPT-4o-mini suffers up to 80% performance degradation in execution time versus GPT-4o. Overall, logical correctness, performance, and error handling (e.g., syntax errors and missing imports) are the most regression-prone areas. Comparing ReCatcher with baseline solutions, it presents better and consistent accuracy across logical and performance aspects. ReCatcher highlights the importance of systematic regression evaluation before adopting new models, while assisting researchers and practitioners in making more informed update decisions.

  • 4 authors
·
Jul 25

Effi-Code: Unleashing Code Efficiency in Language Models

As the use of large language models (LLMs) for code generation becomes more prevalent in software development, it is critical to enhance both the efficiency and correctness of the generated code. Existing methods and models primarily focus on the correctness of LLM-generated code, ignoring efficiency. In this work, we present Effi-Code, an approach to enhancing code generation in LLMs that can improve both efficiency and correctness. We introduce a Self-Optimization process based on Overhead Profiling that leverages open-source LLMs to generate a high-quality dataset of correct and efficient code samples. This dataset is then used to fine-tune various LLMs. Our method involves the iterative refinement of generated code, guided by runtime performance metrics and correctness checks. Extensive experiments demonstrate that models fine-tuned on the Effi-Code show significant improvements in both code correctness and efficiency across task types. For example, the pass@1 of DeepSeek-Coder-6.7B-Instruct generated code increases from 43.3\% to 76.8\%, and the average execution time for the same correct tasks decreases by 30.5\%. Effi-Code offers a scalable and generalizable approach to improving code generation in AI systems, with potential applications in software development, algorithm design, and computational problem-solving. The source code of Effi-Code was released in https://github.com/huangd1999/Effi-Code.

  • 9 authors
·
Oct 14, 2024

Look Before you Leap: Estimating LLM Benchmark Scores from Descriptions

Progress in large language models is constrained by an evaluation bottleneck: build a benchmark, evaluate models and settings, then iterate. We therefore ask a simple question: can we forecast outcomes before running any experiments? We study text-only performance forecasting: estimating a model's score from a redacted task description and intended configuration, with no access to dataset instances. To support systematic study, we curate PRECOG, a corpus of redacted description-performance pairs spanning diverse tasks, domains, and metrics. Experiments show the task is challenging but feasible: models equipped with a retrieval module that excludes source papers achieve moderate prediction performance with well-calibrated uncertainty, reaching mean absolute error as low as 8.7 on the Accuracy subset at high-confidence thresholds. Our analysis indicates that stronger reasoning models engage in diverse, iterative querying, whereas current open-source models lag and often skip retrieval or gather evidence with limited diversity. We further test a zero-leakage setting, forecasting on newly released datasets or experiments before their papers are indexed, where GPT-5 with built-in web search still attains nontrivial prediction accuracy. Overall, our corpus and analyses offer an initial step toward open-ended anticipatory evaluation, supporting difficulty estimation and smarter experiment prioritization.

  • 4 authors
·
Sep 24

Beyond Context Limits: Subconscious Threads for Long-Horizon Reasoning

To break the context limits of large language models (LLMs) that bottleneck reasoning accuracy and efficiency, we propose the Thread Inference Model (TIM), a family of LLMs trained for recursive and decompositional problem solving, and TIMRUN, an inference runtime enabling long-horizon structured reasoning beyond context limits. Together, TIM hosted on TIMRUN supports virtually unlimited working memory and multi-hop tool calls within a single language model inference, overcoming output limits, positional-embedding constraints, and GPU-memory bottlenecks. Performance is achieved by modeling natural language as reasoning trees measured by both length and depth instead of linear sequences. The reasoning trees consist of tasks with thoughts, recursive subtasks, and conclusions based on the concept we proposed in Schroeder et al, 2025. During generation, we maintain a working memory that retains only the key-value states of the most relevant context tokens, selected by a rule-based subtask-pruning mechanism, enabling reuse of positional embeddings and GPU memory pages throughout reasoning. Experimental results show that our system sustains high inference throughput, even when manipulating up to 90% of the KV cache in GPU memory. It also delivers accurate reasoning on mathematical tasks and handles information retrieval challenges that require long-horizon reasoning and multi-hop tool use.

  • 10 authors
·
Jul 22 11

wa-hls4ml: A Benchmark and Surrogate Models for hls4ml Resource and Latency Estimation

As machine learning (ML) is increasingly implemented in hardware to address real-time challenges in scientific applications, the development of advanced toolchains has significantly reduced the time required to iterate on various designs. These advancements have solved major obstacles, but also exposed new challenges. For example, processes that were not previously considered bottlenecks, such as hardware synthesis, are becoming limiting factors in the rapid iteration of designs. To mitigate these emerging constraints, multiple efforts have been undertaken to develop an ML-based surrogate model that estimates resource usage of ML accelerator architectures. We introduce wa-hls4ml, a benchmark for ML accelerator resource and latency estimation, and its corresponding initial dataset of over 680,000 fully connected and convolutional neural networks, all synthesized using hls4ml and targeting Xilinx FPGAs. The benchmark evaluates the performance of resource and latency predictors against several common ML model architectures, primarily originating from scientific domains, as exemplar models, and the average performance across a subset of the dataset. Additionally, we introduce GNN- and transformer-based surrogate models that predict latency and resources for ML accelerators. We present the architecture and performance of the models and find that the models generally predict latency and resources for the 75% percentile within several percent of the synthesized resources on the synthetic test dataset.

  • 16 authors
·
Nov 6