new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 20

Relightful Harmonization: Lighting-aware Portrait Background Replacement

Portrait harmonization aims to composite a subject into a new background, adjusting its lighting and color to ensure harmony with the background scene. Existing harmonization techniques often only focus on adjusting the global color and brightness of the foreground and ignore crucial illumination cues from the background such as apparent lighting direction, leading to unrealistic compositions. We introduce Relightful Harmonization, a lighting-aware diffusion model designed to seamlessly harmonize sophisticated lighting effect for the foreground portrait using any background image. Our approach unfolds in three stages. First, we introduce a lighting representation module that allows our diffusion model to encode lighting information from target image background. Second, we introduce an alignment network that aligns lighting features learned from image background with lighting features learned from panorama environment maps, which is a complete representation for scene illumination. Last, to further boost the photorealism of the proposed method, we introduce a novel data simulation pipeline that generates synthetic training pairs from a diverse range of natural images, which are used to refine the model. Our method outperforms existing benchmarks in visual fidelity and lighting coherence, showing superior generalization in real-world testing scenarios, highlighting its versatility and practicality.

  • 8 authors
·
Dec 11, 2023

DiffRhythm: Blazingly Fast and Embarrassingly Simple End-to-End Full-Length Song Generation with Latent Diffusion

Recent advancements in music generation have garnered significant attention, yet existing approaches face critical limitations. Some current generative models can only synthesize either the vocal track or the accompaniment track. While some models can generate combined vocal and accompaniment, they typically rely on meticulously designed multi-stage cascading architectures and intricate data pipelines, hindering scalability. Additionally, most systems are restricted to generating short musical segments rather than full-length songs. Furthermore, widely used language model-based methods suffer from slow inference speeds. To address these challenges, we propose DiffRhythm, the first latent diffusion-based song generation model capable of synthesizing complete songs with both vocal and accompaniment for durations of up to 4m45s in only ten seconds, maintaining high musicality and intelligibility. Despite its remarkable capabilities, DiffRhythm is designed to be simple and elegant: it eliminates the need for complex data preparation, employs a straightforward model structure, and requires only lyrics and a style prompt during inference. Additionally, its non-autoregressive structure ensures fast inference speeds. This simplicity guarantees the scalability of DiffRhythm. Moreover, we release the complete training code along with the pre-trained model on large-scale data to promote reproducibility and further research.

ACE-Step: A Step Towards Music Generation Foundation Model

We introduce ACE-Step, a novel open-source foundation model for music generation that overcomes key limitations of existing approaches and achieves state-of-the-art performance through a holistic architectural design. Current methods face inherent trade-offs between generation speed, musical coherence, and controllability. For example, LLM-based models (e.g. Yue, SongGen) excel at lyric alignment but suffer from slow inference and structural artifacts. Diffusion models (e.g. DiffRhythm), on the other hand, enable faster synthesis but often lack long-range structural coherence. ACE-Step bridges this gap by integrating diffusion-based generation with Sana's Deep Compression AutoEncoder (DCAE) and a lightweight linear transformer. It also leverages MERT and m-hubert to align semantic representations (REPA) during training, allowing rapid convergence. As a result, our model synthesizes up to 4 minutes of music in just 20 seconds on an A100 GPU-15x faster than LLM-based baselines-while achieving superior musical coherence and lyric alignment across melody, harmony, and rhythm metrics. Moreover, ACE-Step preserves fine-grained acoustic details, enabling advanced control mechanisms such as voice cloning, lyric editing, remixing, and track generation (e.g. lyric2vocal, singing2accompaniment). Rather than building yet another end-to-end text-to-music pipeline, our vision is to establish a foundation model for music AI: a fast, general-purpose, efficient yet flexible architecture that makes it easy to train subtasks on top of it. This paves the way for the development of powerful tools that seamlessly integrate into the creative workflows of music artists, producers, and content creators. In short, our goal is to build a stable diffusion moment for music. The code, the model weights and the demo are available at: https://ace-step.github.io/.

  • 5 authors
·
May 28

Multi-Track MusicLDM: Towards Versatile Music Generation with Latent Diffusion Model

Diffusion models have shown promising results in cross-modal generation tasks involving audio and music, such as text-to-sound and text-to-music generation. These text-controlled music generation models typically focus on generating music by capturing global musical attributes like genre and mood. However, music composition is a complex, multilayered task that often involves musical arrangement as an integral part of the process. This process involves composing each instrument to align with existing ones in terms of beat, dynamics, harmony, and melody, requiring greater precision and control over tracks than text prompts usually provide. In this work, we address these challenges by extending the MusicLDM, a latent diffusion model for music, into a multi-track generative model. By learning the joint probability of tracks sharing a context, our model is capable of generating music across several tracks that correspond well to each other, either conditionally or unconditionally. Additionally, our model is capable of arrangement generation, where the model can generate any subset of tracks given the others (e.g., generating a piano track complementing given bass and drum tracks). We compared our model with an existing multi-track generative model and demonstrated that our model achieves considerable improvements across objective metrics for both total and arrangement generation tasks.

  • 5 authors
·
Sep 4, 2024

MusicLDM: Enhancing Novelty in Text-to-Music Generation Using Beat-Synchronous Mixup Strategies

Diffusion models have shown promising results in cross-modal generation tasks, including text-to-image and text-to-audio generation. However, generating music, as a special type of audio, presents unique challenges due to limited availability of music data and sensitive issues related to copyright and plagiarism. In this paper, to tackle these challenges, we first construct a state-of-the-art text-to-music model, MusicLDM, that adapts Stable Diffusion and AudioLDM architectures to the music domain. We achieve this by retraining the contrastive language-audio pretraining model (CLAP) and the Hifi-GAN vocoder, as components of MusicLDM, on a collection of music data samples. Then, to address the limitations of training data and to avoid plagiarism, we leverage a beat tracking model and propose two different mixup strategies for data augmentation: beat-synchronous audio mixup and beat-synchronous latent mixup, which recombine training audio directly or via a latent embeddings space, respectively. Such mixup strategies encourage the model to interpolate between musical training samples and generate new music within the convex hull of the training data, making the generated music more diverse while still staying faithful to the corresponding style. In addition to popular evaluation metrics, we design several new evaluation metrics based on CLAP score to demonstrate that our proposed MusicLDM and beat-synchronous mixup strategies improve both the quality and novelty of generated music, as well as the correspondence between input text and generated music.

  • 6 authors
·
Aug 3, 2023

ChoreoMuse: Robust Music-to-Dance Video Generation with Style Transfer and Beat-Adherent Motion

Modern artistic productions increasingly demand automated choreography generation that adapts to diverse musical styles and individual dancer characteristics. Existing approaches often fail to produce high-quality dance videos that harmonize with both musical rhythm and user-defined choreography styles, limiting their applicability in real-world creative contexts. To address this gap, we introduce ChoreoMuse, a diffusion-based framework that uses SMPL format parameters and their variation version as intermediaries between music and video generation, thereby overcoming the usual constraints imposed by video resolution. Critically, ChoreoMuse supports style-controllable, high-fidelity dance video generation across diverse musical genres and individual dancer characteristics, including the flexibility to handle any reference individual at any resolution. Our method employs a novel music encoder MotionTune to capture motion cues from audio, ensuring that the generated choreography closely follows the beat and expressive qualities of the input music. To quantitatively evaluate how well the generated dances match both musical and choreographic styles, we introduce two new metrics that measure alignment with the intended stylistic cues. Extensive experiments confirm that ChoreoMuse achieves state-of-the-art performance across multiple dimensions, including video quality, beat alignment, dance diversity, and style adherence, demonstrating its potential as a robust solution for a wide range of creative applications. Video results can be found on our project page: https://choreomuse.github.io.

  • 3 authors
·
Jul 26

Music Transformer

Music relies heavily on repetition to build structure and meaning. Self-reference occurs on multiple timescales, from motifs to phrases to reusing of entire sections of music, such as in pieces with ABA structure. The Transformer (Vaswani et al., 2017), a sequence model based on self-attention, has achieved compelling results in many generation tasks that require maintaining long-range coherence. This suggests that self-attention might also be well-suited to modeling music. In musical composition and performance, however, relative timing is critically important. Existing approaches for representing relative positional information in the Transformer modulate attention based on pairwise distance (Shaw et al., 2018). This is impractical for long sequences such as musical compositions since their memory complexity for intermediate relative information is quadratic in the sequence length. We propose an algorithm that reduces their intermediate memory requirement to linear in the sequence length. This enables us to demonstrate that a Transformer with our modified relative attention mechanism can generate minute-long compositions (thousands of steps, four times the length modeled in Oore et al., 2018) with compelling structure, generate continuations that coherently elaborate on a given motif, and in a seq2seq setup generate accompaniments conditioned on melodies. We evaluate the Transformer with our relative attention mechanism on two datasets, JSB Chorales and Piano-e-Competition, and obtain state-of-the-art results on the latter.

  • 10 authors
·
Sep 12, 2018

DiffRhythm 2: Efficient and High Fidelity Song Generation via Block Flow Matching

Generating full-length, high-quality songs is challenging, as it requires maintaining long-term coherence both across text and music modalities and within the music modality itself. Existing non-autoregressive (NAR) frameworks, while capable of producing high-quality songs, often struggle with the alignment between lyrics and vocal. Concurrently, catering to diverse musical preferences necessitates reinforcement learning from human feedback (RLHF). However, existing methods often rely on merging multiple models during multi-preference optimization, which results in significant performance degradation. To address these challenges, we introduce DiffRhythm 2, an end-to-end framework designed for high-fidelity, controllable song generation. To tackle the lyric alignment problem, DiffRhythm 2 employs a semi-autoregressive architecture based on block flow matching. This design enables faithful alignment of lyrics to singing vocals without relying on external labels and constraints, all while preserving the high generation quality and efficiency of NAR models. To make this framework computationally tractable for long sequences, we implement a music variational autoencoder (VAE) that achieves a low frame rate of 5 Hz while still enabling high-fidelity audio reconstruction. In addition, to overcome the limitations of multi-preference optimization in RLHF, we propose cross-pair preference optimization. This method effectively mitigates the performance drop typically associated with model merging, allowing for more robust optimization across diverse human preferences. We further enhance musicality and structural coherence by introducing stochastic block representation alignment loss.

  • 10 authors
·
Oct 26

Bidirectional Autoregressive Diffusion Model for Dance Generation

Dance serves as a powerful medium for expressing human emotions, but the lifelike generation of dance is still a considerable challenge. Recently, diffusion models have showcased remarkable generative abilities across various domains. They hold promise for human motion generation due to their adaptable many-to-many nature. Nonetheless, current diffusion-based motion generation models often create entire motion sequences directly and unidirectionally, lacking focus on the motion with local and bidirectional enhancement. When choreographing high-quality dance movements, people need to take into account not only the musical context but also the nearby music-aligned dance motions. To authentically capture human behavior, we propose a Bidirectional Autoregressive Diffusion Model (BADM) for music-to-dance generation, where a bidirectional encoder is built to enforce that the generated dance is harmonious in both the forward and backward directions. To make the generated dance motion smoother, a local information decoder is built for local motion enhancement. The proposed framework is able to generate new motions based on the input conditions and nearby motions, which foresees individual motion slices iteratively and consolidates all predictions. To further refine the synchronicity between the generated dance and the beat, the beat information is incorporated as an input to generate better music-aligned dance movements. Experimental results demonstrate that the proposed model achieves state-of-the-art performance compared to existing unidirectional approaches on the prominent benchmark for music-to-dance generation.

  • 7 authors
·
Feb 6, 2024

Harmonizing Visual Representations for Unified Multimodal Understanding and Generation

Unifying visual understanding and generation within a single multimodal framework remains a significant challenge, as the two inherently heterogeneous tasks require representations at different levels of granularity. Current approaches that utilize vector quantization (VQ) or variational autoencoders (VAE) for unified visual representation prioritize intrinsic imagery features over semantics, compromising understanding performance. In this work, we take inspiration from masked image modelling (MIM) that learns rich semantics via a mask-and-reconstruct pre-training and its successful extension to masked autoregressive (MAR) image generation. A preliminary study on the MAR encoder's representation reveals exceptional linear probing accuracy and precise feature response to visual concepts, which indicates MAR's potential for visual understanding tasks beyond its original generation role. Based on these insights, we present Harmon, a unified autoregressive framework that harmonizes understanding and generation tasks with a shared MAR encoder. Through a three-stage training procedure that progressively optimizes understanding and generation capabilities, Harmon achieves state-of-the-art image generation results on the GenEval, MJHQ30K and WISE benchmarks while matching the performance of methods with dedicated semantic encoders (e.g., Janus) on image understanding benchmarks. Our code and models will be available at https://github.com/wusize/Harmon.

  • 9 authors
·
Mar 27

ImprovNet -- Generating Controllable Musical Improvisations with Iterative Corruption Refinement

Despite deep learning's remarkable advances in style transfer across various domains, generating controllable performance-level musical style transfer for complete symbolically represented musical works remains a challenging area of research. Much of this is owed to limited datasets, especially for genres such as jazz, and the lack of unified models that can handle multiple music generation tasks. This paper presents ImprovNet, a transformer-based architecture that generates expressive and controllable musical improvisations through a self-supervised corruption-refinement training strategy. The improvisational style transfer is aimed at making meaningful modifications to one or more musical elements - melody, harmony or rhythm of the original composition with respect to the target genre. ImprovNet unifies multiple capabilities within a single model: it can perform cross-genre and intra-genre improvisations, harmonize melodies with genre-specific styles, and execute short prompt continuation and infilling tasks. The model's iterative generation framework allows users to control the degree of style transfer and structural similarity to the original composition. Objective and subjective evaluations demonstrate ImprovNet's effectiveness in generating musically coherent improvisations while maintaining structural relationships with the original pieces. The model outperforms Anticipatory Music Transformer in short continuation and infilling tasks and successfully achieves recognizable genre conversion, with 79\% of participants correctly identifying jazz-style improvisations of classical pieces. Our code and demo page can be found at https://github.com/keshavbhandari/improvnet.

  • 7 authors
·
Feb 6

MusicAgent: An AI Agent for Music Understanding and Generation with Large Language Models

AI-empowered music processing is a diverse field that encompasses dozens of tasks, ranging from generation tasks (e.g., timbre synthesis) to comprehension tasks (e.g., music classification). For developers and amateurs, it is very difficult to grasp all of these task to satisfy their requirements in music processing, especially considering the huge differences in the representations of music data and the model applicability across platforms among various tasks. Consequently, it is necessary to build a system to organize and integrate these tasks, and thus help practitioners to automatically analyze their demand and call suitable tools as solutions to fulfill their requirements. Inspired by the recent success of large language models (LLMs) in task automation, we develop a system, named MusicAgent, which integrates numerous music-related tools and an autonomous workflow to address user requirements. More specifically, we build 1) toolset that collects tools from diverse sources, including Hugging Face, GitHub, and Web API, etc. 2) an autonomous workflow empowered by LLMs (e.g., ChatGPT) to organize these tools and automatically decompose user requests into multiple sub-tasks and invoke corresponding music tools. The primary goal of this system is to free users from the intricacies of AI-music tools, enabling them to concentrate on the creative aspect. By granting users the freedom to effortlessly combine tools, the system offers a seamless and enriching music experience.

  • 8 authors
·
Oct 18, 2023 2

Pictures Of MIDI: Controlled Music Generation via Graphical Prompts for Image-Based Diffusion Inpainting

Recent years have witnessed significant progress in generative models for music, featuring diverse architectures that balance output quality, diversity, speed, and user control. This study explores a user-friendly graphical interface enabling the drawing of masked regions for inpainting by an Hourglass Diffusion Transformer (HDiT) model trained on MIDI piano roll images. To enhance note generation in specified areas, masked regions can be "repainted" with extra noise. The non-latent HDiTs linear scaling with pixel count allows efficient generation in pixel space, providing intuitive and interpretable controls such as masking throughout the network and removing the need to operate in compressed latent spaces such as those provided by pretrained autoencoders. We demonstrate that, in addition to inpainting of melodies, accompaniment, and continuations, the use of repainting can help increase note density yielding musical structures closely matching user specifications such as rising, falling, or diverging melody and/or accompaniment, even when these lie outside the typical training data distribution. We achieve performance on par with prior results while operating at longer context windows, with no autoencoder, and can enable complex geometries for inpainting masks, increasing the options for machine-assisted composers to control the generated music.

  • 1 authors
·
Jul 1, 2024

UniFlow-Audio: Unified Flow Matching for Audio Generation from Omni-Modalities

Audio generation, including speech, music and sound effects, has advanced rapidly in recent years. These tasks can be divided into two categories: time-aligned (TA) tasks, where each input unit corresponds to a specific segment of the output audio (e.g., phonemes aligned with frames in speech synthesis); and non-time-aligned (NTA) tasks, where such alignment is not available. Since modeling paradigms for the two types are typically different, research on different audio generation tasks has traditionally followed separate trajectories. However, audio is not inherently divided into such categories, making a unified model a natural and necessary goal for general audio generation. Previous unified audio generation works have adopted autoregressive architectures, while unified non-autoregressive approaches remain largely unexplored. In this work, we propose UniFlow-Audio, a universal audio generation framework based on flow matching. We propose a dual-fusion mechanism that temporally aligns audio latents with TA features and integrates NTA features via cross-attention in each model block. Task-balanced data sampling is employed to maintain strong performance across both TA and NTA tasks. UniFlow-Audio supports omni-modalities, including text, audio, and video. By leveraging the advantage of multi-task learning and the generative modeling capabilities of flow matching, UniFlow-Audio achieves strong results across 7 tasks using fewer than 8K hours of public training data and under 1B trainable parameters. Even the small variant with only ~200M trainable parameters shows competitive performance, highlighting UniFlow-Audio as a potential non-auto-regressive foundation model for audio generation. Code and models will be available at https://wsntxxn.github.io/uniflow_audio.

  • 12 authors
·
Sep 29

DITTO-2: Distilled Diffusion Inference-Time T-Optimization for Music Generation

Controllable music generation methods are critical for human-centered AI-based music creation, but are currently limited by speed, quality, and control design trade-offs. Diffusion Inference-Time T-optimization (DITTO), in particular, offers state-of-the-art results, but is over 10x slower than real-time, limiting practical use. We propose Distilled Diffusion Inference-Time T -Optimization (or DITTO-2), a new method to speed up inference-time optimization-based control and unlock faster-than-real-time generation for a wide-variety of applications such as music inpainting, outpainting, intensity, melody, and musical structure control. Our method works by (1) distilling a pre-trained diffusion model for fast sampling via an efficient, modified consistency or consistency trajectory distillation process (2) performing inference-time optimization using our distilled model with one-step sampling as an efficient surrogate optimization task and (3) running a final multi-step sampling generation (decoding) using our estimated noise latents for best-quality, fast, controllable generation. Through thorough evaluation, we find our method not only speeds up generation over 10-20x, but simultaneously improves control adherence and generation quality all at once. Furthermore, we apply our approach to a new application of maximizing text adherence (CLAP score) and show we can convert an unconditional diffusion model without text inputs into a model that yields state-of-the-art text control. Sound examples can be found at https://ditto-music.github.io/ditto2/.

  • 4 authors
·
May 30, 2024

Learning Global-aware Kernel for Image Harmonization

Image harmonization aims to solve the visual inconsistency problem in composited images by adaptively adjusting the foreground pixels with the background as references. Existing methods employ local color transformation or region matching between foreground and background, which neglects powerful proximity prior and independently distinguishes fore-/back-ground as a whole part for harmonization. As a result, they still show a limited performance across varied foreground objects and scenes. To address this issue, we propose a novel Global-aware Kernel Network (GKNet) to harmonize local regions with comprehensive consideration of long-distance background references. Specifically, GKNet includes two parts, \ie, harmony kernel prediction and harmony kernel modulation branches. The former includes a Long-distance Reference Extractor (LRE) to obtain long-distance context and Kernel Prediction Blocks (KPB) to predict multi-level harmony kernels by fusing global information with local features. To achieve this goal, a novel Selective Correlation Fusion (SCF) module is proposed to better select relevant long-distance background references for local harmonization. The latter employs the predicted kernels to harmonize foreground regions with both local and global awareness. Abundant experiments demonstrate the superiority of our method for image harmonization over state-of-the-art methods, \eg, achieving 39.53dB PSNR that surpasses the best counterpart by +0.78dB uparrow; decreasing fMSE/MSE by 11.5\%downarrow/6.7\%downarrow compared with the SoTA method. Code will be available at https://github.com/XintianShen/GKNet{here}.

  • 8 authors
·
May 19, 2023

JEN-1 Composer: A Unified Framework for High-Fidelity Multi-Track Music Generation

With rapid advances in generative artificial intelligence, the text-to-music synthesis task has emerged as a promising direction for music generation from scratch. However, finer-grained control over multi-track generation remains an open challenge. Existing models exhibit strong raw generation capability but lack the flexibility to compose separate tracks and combine them in a controllable manner, differing from typical workflows of human composers. To address this issue, we propose JEN-1 Composer, a unified framework to efficiently model marginal, conditional, and joint distributions over multi-track music via a single model. JEN-1 Composer framework exhibits the capacity to seamlessly incorporate any diffusion-based music generation system, e.g. Jen-1, enhancing its capacity for versatile multi-track music generation. We introduce a curriculum training strategy aimed at incrementally instructing the model in the transition from single-track generation to the flexible generation of multi-track combinations. During the inference, users have the ability to iteratively produce and choose music tracks that meet their preferences, subsequently creating an entire musical composition incrementally following the proposed Human-AI co-composition workflow. Quantitative and qualitative assessments demonstrate state-of-the-art performance in controllable and high-fidelity multi-track music synthesis. The proposed JEN-1 Composer represents a significant advance toward interactive AI-facilitated music creation and composition. Demos will be available at https://jenmusic.ai/audio-demos.

  • 4 authors
·
Oct 29, 2023

Reconstructing the Charlie Parker Omnibook using an audio-to-score automatic transcription pipeline

The Charlie Parker Omnibook is a cornerstone of jazz music education, described by pianist Ethan Iverson as "the most important jazz education text ever published". In this work we propose a new transcription pipeline and explore the extent to which state of the art music technology is able to reconstruct these scores directly from the audio without human intervention. Our pipeline includes: a newly trained source separation model for saxophone, a new MIDI transcription model for solo saxophone and an adaptation of an existing MIDI-to-score method for monophonic instruments. To assess this pipeline we also provide an enhanced dataset of Charlie Parker transcriptions as score-audio pairs with accurate MIDI alignments and downbeat annotations. This represents a challenging new benchmark for automatic audio-to-score transcription that we hope will advance research into areas beyond transcribing audio-to-MIDI alone. Together, these form another step towards producing scores that musicians can use directly, without the need for onerous corrections or revisions. To facilitate future research, all model checkpoints and data are made available to download along with code for the transcription pipeline. Improvements in our modular pipeline could one day make the automatic transcription of complex jazz solos a routine possibility, thereby enriching the resources available for music education and preservation.

  • 2 authors
·
May 26, 2024

BandControlNet: Parallel Transformers-based Steerable Popular Music Generation with Fine-Grained Spatiotemporal Features

Controllable music generation promotes the interaction between humans and composition systems by projecting the users' intent on their desired music. The challenge of introducing controllability is an increasingly important issue in the symbolic music generation field. When building controllable generative popular multi-instrument music systems, two main challenges typically present themselves, namely weak controllability and poor music quality. To address these issues, we first propose spatiotemporal features as powerful and fine-grained controls to enhance the controllability of the generative model. In addition, an efficient music representation called REMI_Track is designed to convert multitrack music into multiple parallel music sequences and shorten the sequence length of each track with Byte Pair Encoding (BPE) techniques. Subsequently, we release BandControlNet, a conditional model based on parallel Transformers, to tackle the multiple music sequences and generate high-quality music samples that are conditioned to the given spatiotemporal control features. More concretely, the two specially designed modules of BandControlNet, namely structure-enhanced self-attention (SE-SA) and Cross-Track Transformer (CTT), are utilized to strengthen the resulting musical structure and inter-track harmony modeling respectively. Experimental results tested on two popular music datasets of different lengths demonstrate that the proposed BandControlNet outperforms other conditional music generation models on most objective metrics in terms of fidelity and inference speed and shows great robustness in generating long music samples. The subjective evaluations show BandControlNet trained on short datasets can generate music with comparable quality to state-of-the-art models, while outperforming them significantly using longer datasets.

  • 3 authors
·
Jul 15, 2024

Huxley-Gödel Machine: Human-Level Coding Agent Development by an Approximation of the Optimal Self-Improving Machine

Recent studies operationalize self-improvement through coding agents that edit their own codebases. They grow a tree of self-modifications through expansion strategies that favor higher software engineering benchmark performance, assuming that this implies more promising subsequent self-modifications. However, we identify a mismatch between the agent's self-improvement potential (metaproductivity) and its coding benchmark performance, namely the Metaproductivity-Performance Mismatch. Inspired by Huxley's concept of clade, we propose a metric (CMP) that aggregates the benchmark performances of the descendants of an agent as an indicator of its potential for self-improvement. We show that, in our self-improving coding agent development setting, access to the true CMP is sufficient to simulate how the G\"odel Machine would behave under certain assumptions. We introduce the Huxley-G\"odel Machine (HGM), which, by estimating CMP and using it as guidance, searches the tree of self-modifications. On SWE-bench Verified and Polyglot, HGM outperforms prior self-improving coding agent development methods while using less wall-clock time. Last but not least, HGM demonstrates strong transfer to other coding datasets and large language models. The agent optimized by HGM on SWE-bench Verified with GPT-5-mini and evaluated on SWE-bench Lite with GPT-5 achieves human-level performance, matching the best officially checked results of human-engineered coding agents. Our code is available at https://github.com/metauto-ai/HGM.

  • 8 authors
·
Oct 24

Auto-Regressive vs Flow-Matching: a Comparative Study of Modeling Paradigms for Text-to-Music Generation

Recent progress in text-to-music generation has enabled models to synthesize high-quality musical segments, full compositions, and even respond to fine-grained control signals, e.g. chord progressions. State-of-the-art (SOTA) systems differ significantly across many dimensions, such as training datasets, modeling paradigms, and architectural choices. This diversity complicates efforts to evaluate models fairly and pinpoint which design choices most influence performance. While factors like data and architecture are important, in this study we focus exclusively on the modeling paradigm. We conduct a systematic empirical analysis to isolate its effects, offering insights into associated trade-offs and emergent behaviors that can guide future text-to-music generation systems. Specifically, we compare the two arguably most common modeling paradigms: Auto-Regressive decoding and Conditional Flow-Matching. We conduct a controlled comparison by training all models from scratch using identical datasets, training configurations, and similar backbone architectures. Performance is evaluated across multiple axes, including generation quality, robustness to inference configurations, scalability, adherence to both textual and temporally aligned conditioning, and editing capabilities in the form of audio inpainting. This comparative study sheds light on distinct strengths and limitations of each paradigm, providing actionable insights that can inform future architectural and training decisions in the evolving landscape of text-to-music generation. Audio sampled examples are available at: https://huggingface.co/spaces/ortal1602/ARvsFM

  • 3 authors
·
Jun 10 2

SongGen: A Single Stage Auto-regressive Transformer for Text-to-Song Generation

Text-to-song generation, the task of creating vocals and accompaniment from textual inputs, poses significant challenges due to domain complexity and data scarcity. Existing approaches often employ multi-stage generation procedures, resulting in cumbersome training and inference pipelines. In this paper, we propose SongGen, a fully open-source, single-stage auto-regressive transformer designed for controllable song generation. The proposed model facilitates fine-grained control over diverse musical attributes, including lyrics and textual descriptions of instrumentation, genre, mood, and timbre, while also offering an optional three-second reference clip for voice cloning. Within a unified auto-regressive framework, SongGen supports two output modes: mixed mode, which generates a mixture of vocals and accompaniment directly, and dual-track mode, which synthesizes them separately for greater flexibility in downstream applications. We explore diverse token pattern strategies for each mode, leading to notable improvements and valuable insights. Furthermore, we design an automated data preprocessing pipeline with effective quality control. To foster community engagement and future research, we will release our model weights, training code, annotated data, and preprocessing pipeline. The generated samples are showcased on our project page at https://liuzh-19.github.io/SongGen/ , and the code will be available at https://github.com/LiuZH-19/SongGen .

  • 9 authors
·
Feb 18 2

UniVerse-1: Unified Audio-Video Generation via Stitching of Experts

We introduce UniVerse-1, a unified, Veo-3-like model capable of simultaneously generating coordinated audio and video. To enhance training efficiency, we bypass training from scratch and instead employ a stitching of experts (SoE) technique. This approach deeply fuses the corresponding blocks of pre-trained video and music generation experts models, thereby fully leveraging their foundational capabilities. To ensure accurate annotations and temporal alignment for both ambient sounds and speech with video content, we developed an online annotation pipeline that processes the required training data and generates labels during training process. This strategy circumvents the performance degradation often caused by misalignment text-based annotations. Through the synergy of these techniques, our model, after being finetuned on approximately 7,600 hours of audio-video data, produces results with well-coordinated audio-visuals for ambient sounds generation and strong alignment for speech generation. To systematically evaluate our proposed method, we introduce Verse-Bench, a new benchmark dataset. In an effort to advance research in audio-video generation and to close the performance gap with state-of-the-art models such as Veo3, we make our model and code publicly available. We hope this contribution will benefit the broader research community. Project page: https://dorniwang.github.io/UniVerse-1/.

Multi-Track Timeline Control for Text-Driven 3D Human Motion Generation

Recent advances in generative modeling have led to promising progress on synthesizing 3D human motion from text, with methods that can generate character animations from short prompts and specified durations. However, using a single text prompt as input lacks the fine-grained control needed by animators, such as composing multiple actions and defining precise durations for parts of the motion. To address this, we introduce the new problem of timeline control for text-driven motion synthesis, which provides an intuitive, yet fine-grained, input interface for users. Instead of a single prompt, users can specify a multi-track timeline of multiple prompts organized in temporal intervals that may overlap. This enables specifying the exact timings of each action and composing multiple actions in sequence or at overlapping intervals. To generate composite animations from a multi-track timeline, we propose a new test-time denoising method. This method can be integrated with any pre-trained motion diffusion model to synthesize realistic motions that accurately reflect the timeline. At every step of denoising, our method processes each timeline interval (text prompt) individually, subsequently aggregating the predictions with consideration for the specific body parts engaged in each action. Experimental comparisons and ablations validate that our method produces realistic motions that respect the semantics and timing of given text prompts. Our code and models are publicly available at https://mathis.petrovich.fr/stmc.

  • 7 authors
·
Jan 16, 2024

Small Tunes Transformer: Exploring Macro & Micro-Level Hierarchies for Skeleton-Conditioned Melody Generation

Recently, symbolic music generation has become a focus of numerous deep learning research. Structure as an important part of music, contributes to improving the quality of music, and an increasing number of works start to study the hierarchical structure. In this study, we delve into the multi-level structures within music from macro-level and micro-level hierarchies. At the macro-level hierarchy, we conduct phrase segmentation algorithm to explore how phrases influence the overall development of music, and at the micro-level hierarchy, we design skeleton notes extraction strategy to explore how skeleton notes within each phrase guide the melody generation. Furthermore, we propose a novel Phrase-level Cross-Attention mechanism to capture the intrinsic relationship between macro-level hierarchy and micro-level hierarchy. Moreover, in response to the current lack of research on Chinese-style music, we construct our Small Tunes Dataset: a substantial collection of MIDI files comprising 10088 Small Tunes, a category of traditional Chinese Folk Songs. This dataset serves as the focus of our study. We generate Small Tunes songs utilizing the extracted skeleton notes as conditions, and experiment results indicate that our proposed model, Small Tunes Transformer, outperforms other state-of-the-art models. Besides, we design three novel objective evaluation metrics to evaluate music from both rhythm and melody dimensions.

  • 4 authors
·
Oct 11, 2024

X-Dancer: Expressive Music to Human Dance Video Generation

We present X-Dancer, a novel zero-shot music-driven image animation pipeline that creates diverse and long-range lifelike human dance videos from a single static image. As its core, we introduce a unified transformer-diffusion framework, featuring an autoregressive transformer model that synthesize extended and music-synchronized token sequences for 2D body, head and hands poses, which then guide a diffusion model to produce coherent and realistic dance video frames. Unlike traditional methods that primarily generate human motion in 3D, X-Dancer addresses data limitations and enhances scalability by modeling a wide spectrum of 2D dance motions, capturing their nuanced alignment with musical beats through readily available monocular videos. To achieve this, we first build a spatially compositional token representation from 2D human pose labels associated with keypoint confidences, encoding both large articulated body movements (e.g., upper and lower body) and fine-grained motions (e.g., head and hands). We then design a music-to-motion transformer model that autoregressively generates music-aligned dance pose token sequences, incorporating global attention to both musical style and prior motion context. Finally we leverage a diffusion backbone to animate the reference image with these synthesized pose tokens through AdaIN, forming a fully differentiable end-to-end framework. Experimental results demonstrate that X-Dancer is able to produce both diverse and characterized dance videos, substantially outperforming state-of-the-art methods in term of diversity, expressiveness and realism. Code and model will be available for research purposes.

  • 9 authors
·
Feb 24 3

YuE: Scaling Open Foundation Models for Long-Form Music Generation

We tackle the task of long-form music generation--particularly the challenging lyrics-to-song problem--by introducing YuE, a family of open foundation models based on the LLaMA2 architecture. Specifically, YuE scales to trillions of tokens and generates up to five minutes of music while maintaining lyrical alignment, coherent musical structure, and engaging vocal melodies with appropriate accompaniment. It achieves this through (1) track-decoupled next-token prediction to overcome dense mixture signals, (2) structural progressive conditioning for long-context lyrical alignment, and (3) a multitask, multiphase pre-training recipe to converge and generalize. In addition, we redesign the in-context learning technique for music generation, enabling versatile style transfer (e.g., converting Japanese city pop into an English rap while preserving the original accompaniment) and bidirectional generation. Through extensive evaluation, we demonstrate that YuE matches or even surpasses some of the proprietary systems in musicality and vocal agility. In addition, fine-tuning YuE enables additional controls and enhanced support for tail languages. Furthermore, beyond generation, we show that YuE's learned representations can perform well on music understanding tasks, where the results of YuE match or exceed state-of-the-art methods on the MARBLE benchmark. Keywords: lyrics2song, song generation, long-form, foundation model, music generation

  • 57 authors
·
Mar 11 3

Hierarchical Recurrent Neural Networks for Conditional Melody Generation with Long-term Structure

The rise of deep learning technologies has quickly advanced many fields, including that of generative music systems. There exist a number of systems that allow for the generation of good sounding short snippets, yet, these generated snippets often lack an overarching, longer-term structure. In this work, we propose CM-HRNN: a conditional melody generation model based on a hierarchical recurrent neural network. This model allows us to generate melodies with long-term structures based on given chord accompaniments. We also propose a novel, concise event-based representation to encode musical lead sheets while retaining the notes' relative position within the bar with respect to the musical meter. With this new data representation, the proposed architecture can simultaneously model the rhythmic, as well as the pitch structures in an effective way. Melodies generated by the proposed model were extensively evaluated in quantitative experiments as well as a user study to ensure the musical quality of the output as well as to evaluate if they contain repeating patterns. We also compared the system with the state-of-the-art AttentionRNN. This comparison shows that melodies generated by CM-HRNN contain more repeated patterns (i.e., higher compression ratio) and a lower tonal tension (i.e., more tonally concise). Results from our listening test indicate that CM-HRNN outperforms AttentionRNN in terms of long-term structure and overall rating.

  • 3 authors
·
Feb 19, 2021

Analyzable Chain-of-Musical-Thought Prompting for High-Fidelity Music Generation

Autoregressive (AR) models have demonstrated impressive capabilities in generating high-fidelity music. However, the conventional next-token prediction paradigm in AR models does not align with the human creative process in music composition, potentially compromising the musicality of generated samples. To overcome this limitation, we introduce MusiCoT, a novel chain-of-thought (CoT) prompting technique tailored for music generation. MusiCoT empowers the AR model to first outline an overall music structure before generating audio tokens, thereby enhancing the coherence and creativity of the resulting compositions. By leveraging the contrastive language-audio pretraining (CLAP) model, we establish a chain of "musical thoughts", making MusiCoT scalable and independent of human-labeled data, in contrast to conventional CoT methods. Moreover, MusiCoT allows for in-depth analysis of music structure, such as instrumental arrangements, and supports music referencing -- accepting variable-length audio inputs as optional style references. This innovative approach effectively addresses copying issues, positioning MusiCoT as a vital practical method for music prompting. Our experimental results indicate that MusiCoT consistently achieves superior performance across both objective and subjective metrics, producing music quality that rivals state-of-the-art generation models. Our samples are available at https://MusiCoT.github.io/.

  • 17 authors
·
Mar 25

Internal Consistency and Self-Feedback in Large Language Models: A Survey

Large language models (LLMs) are expected to respond accurately but often exhibit deficient reasoning or generate hallucinatory content. To address these, studies prefixed with ``Self-'' such as Self-Consistency, Self-Improve, and Self-Refine have been initiated. They share a commonality: involving LLMs evaluating and updating itself to mitigate the issues. Nonetheless, these efforts lack a unified perspective on summarization, as existing surveys predominantly focus on categorization without examining the motivations behind these works. In this paper, we summarize a theoretical framework, termed Internal Consistency, which offers unified explanations for phenomena such as the lack of reasoning and the presence of hallucinations. Internal Consistency assesses the coherence among LLMs' latent layer, decoding layer, and response layer based on sampling methodologies. Expanding upon the Internal Consistency framework, we introduce a streamlined yet effective theoretical framework capable of mining Internal Consistency, named Self-Feedback. The Self-Feedback framework consists of two modules: Self-Evaluation and Self-Update. This framework has been employed in numerous studies. We systematically classify these studies by tasks and lines of work; summarize relevant evaluation methods and benchmarks; and delve into the concern, ``Does Self-Feedback Really Work?'' We propose several critical viewpoints, including the ``Hourglass Evolution of Internal Consistency'', ``Consistency Is (Almost) Correctness'' hypothesis, and ``The Paradox of Latent and Explicit Reasoning''. Furthermore, we outline promising directions for future research. We have open-sourced the experimental code, reference list, and statistical data, available at https://github.com/IAAR-Shanghai/ICSFSurvey.

  • 9 authors
·
Jul 19, 2024 9

Seamless: Multilingual Expressive and Streaming Speech Translation

Large-scale automatic speech translation systems today lack key features that help machine-mediated communication feel seamless when compared to human-to-human dialogue. In this work, we introduce a family of models that enable end-to-end expressive and multilingual translations in a streaming fashion. First, we contribute an improved version of the massively multilingual and multimodal SeamlessM4T model-SeamlessM4T v2. This newer model, incorporating an updated UnitY2 framework, was trained on more low-resource language data. SeamlessM4T v2 provides the foundation on which our next two models are initiated. SeamlessExpressive enables translation that preserves vocal styles and prosody. Compared to previous efforts in expressive speech research, our work addresses certain underexplored aspects of prosody, such as speech rate and pauses, while also preserving the style of one's voice. As for SeamlessStreaming, our model leverages the Efficient Monotonic Multihead Attention mechanism to generate low-latency target translations without waiting for complete source utterances. As the first of its kind, SeamlessStreaming enables simultaneous speech-to-speech/text translation for multiple source and target languages. To ensure that our models can be used safely and responsibly, we implemented the first known red-teaming effort for multimodal machine translation, a system for the detection and mitigation of added toxicity, a systematic evaluation of gender bias, and an inaudible localized watermarking mechanism designed to dampen the impact of deepfakes. Consequently, we bring major components from SeamlessExpressive and SeamlessStreaming together to form Seamless, the first publicly available system that unlocks expressive cross-lingual communication in real-time. The contributions to this work are publicly released and accessible at https://github.com/facebookresearch/seamless_communication

  • 65 authors
·
Dec 8, 2023 3

GestureLSM: Latent Shortcut based Co-Speech Gesture Generation with Spatial-Temporal Modeling

Generating full-body human gestures based on speech signals remains challenges on quality and speed. Existing approaches model different body regions such as body, legs and hands separately, which fail to capture the spatial interactions between them and result in unnatural and disjointed movements. Additionally, their autoregressive/diffusion-based pipelines show slow generation speed due to dozens of inference steps. To address these two challenges, we propose GestureLSM, a flow-matching-based approach for Co-Speech Gesture Generation with spatial-temporal modeling. Our method i) explicitly model the interaction of tokenized body regions through spatial and temporal attention, for generating coherent full-body gestures. ii) introduce the flow matching to enable more efficient sampling by explicitly modeling the latent velocity space. To overcome the suboptimal performance of flow matching baseline, we propose latent shortcut learning and beta distribution time stamp sampling during training to enhance gesture synthesis quality and accelerate inference. Combining the spatial-temporal modeling and improved flow matching-based framework, GestureLSM achieves state-of-the-art performance on BEAT2 while significantly reducing inference time compared to existing methods, highlighting its potential for enhancing digital humans and embodied agents in real-world applications. Project Page: https://andypinxinliu.github.io/GestureLSM

  • 5 authors
·
Jan 31

MERT: Acoustic Music Understanding Model with Large-Scale Self-supervised Training

Self-supervised learning (SSL) has recently emerged as a promising paradigm for training generalisable models on large-scale data in the fields of vision, text, and speech. Although SSL has been proven effective in speech and audio, its application to music audio has yet to be thoroughly explored. This is primarily due to the distinctive challenges associated with modelling musical knowledge, particularly its tonal and pitched characteristics of music. To address this research gap, we propose an acoustic Music undERstanding model with large-scale self-supervised Training (MERT), which incorporates teacher models to provide pseudo labels in the masked language modelling (MLM) style acoustic pre-training. In our exploration, we identified a superior combination of teacher models, which outperforms conventional speech and audio approaches in terms of performance. This combination includes an acoustic teacher based on Residual Vector Quantization - Variational AutoEncoder (RVQ-VAE) and a musical teacher based on the Constant-Q Transform (CQT). These teachers effectively guide our student model, a BERT-style transformer encoder, to better model music audio. In addition, we introduce an in-batch noise mixture augmentation to enhance the representation robustness. Furthermore, we explore a wide range of settings to overcome the instability in acoustic language model pre-training, which allows our designed paradigm to scale from 95M to 330M parameters. Experimental results indicate that our model can generalise and perform well on 14 music understanding tasks and attains state-of-the-art (SOTA) overall scores. The code and models are online: https://github.com/yizhilll/MERT.

  • 18 authors
·
May 31, 2023

Human Motion Diffusion as a Generative Prior

Recent work has demonstrated the significant potential of denoising diffusion models for generating human motion, including text-to-motion capabilities. However, these methods are restricted by the paucity of annotated motion data, a focus on single-person motions, and a lack of detailed control. In this paper, we introduce three forms of composition based on diffusion priors: sequential, parallel, and model composition. Using sequential composition, we tackle the challenge of long sequence generation. We introduce DoubleTake, an inference-time method with which we generate long animations consisting of sequences of prompted intervals and their transitions, using a prior trained only for short clips. Using parallel composition, we show promising steps toward two-person generation. Beginning with two fixed priors as well as a few two-person training examples, we learn a slim communication block, ComMDM, to coordinate interaction between the two resulting motions. Lastly, using model composition, we first train individual priors to complete motions that realize a prescribed motion for a given joint. We then introduce DiffusionBlending, an interpolation mechanism to effectively blend several such models to enable flexible and efficient fine-grained joint and trajectory-level control and editing. We evaluate the composition methods using an off-the-shelf motion diffusion model, and further compare the results to dedicated models trained for these specific tasks.

  • 4 authors
·
Mar 2, 2023

Audiobox: Unified Audio Generation with Natural Language Prompts

Audio is an essential part of our life, but creating it often requires expertise and is time-consuming. Research communities have made great progress over the past year advancing the performance of large scale audio generative models for a single modality (speech, sound, or music) through adopting more powerful generative models and scaling data. However, these models lack controllability in several aspects: speech generation models cannot synthesize novel styles based on text description and are limited on domain coverage such as outdoor environments; sound generation models only provide coarse-grained control based on descriptions like "a person speaking" and would only generate mumbling human voices. This paper presents Audiobox, a unified model based on flow-matching that is capable of generating various audio modalities. We design description-based and example-based prompting to enhance controllability and unify speech and sound generation paradigms. We allow transcript, vocal, and other audio styles to be controlled independently when generating speech. To improve model generalization with limited labels, we adapt a self-supervised infilling objective to pre-train on large quantities of unlabeled audio. Audiobox sets new benchmarks on speech and sound generation (0.745 similarity on Librispeech for zero-shot TTS; 0.77 FAD on AudioCaps for text-to-sound) and unlocks new methods for generating audio with novel vocal and acoustic styles. We further integrate Bespoke Solvers, which speeds up generation by over 25 times compared to the default ODE solver for flow-matching, without loss of performance on several tasks. Our demo is available at https://audiobox.metademolab.com/

  • 24 authors
·
Dec 25, 2023 4

GTSinger: A Global Multi-Technique Singing Corpus with Realistic Music Scores for All Singing Tasks

The scarcity of high-quality and multi-task singing datasets significantly hinders the development of diverse controllable and personalized singing tasks, as existing singing datasets suffer from low quality, limited diversity of languages and singers, absence of multi-technique information and realistic music scores, and poor task suitability. To tackle these problems, we present GTSinger, a large Global, multi-Technique, free-to-use, high-quality singing corpus with realistic music scores, designed for all singing tasks, along with its benchmarks. Particularly, (1) we collect 80.59 hours of high-quality singing voices, forming the largest recorded singing dataset; (2) 20 professional singers across nine widely spoken languages offer diverse timbres and styles; (3) we provide controlled comparison and phoneme-level annotations of six commonly used singing techniques, helping technique modeling and control; (4) GTSinger offers realistic music scores, assisting real-world musical composition; (5) singing voices are accompanied by manual phoneme-to-audio alignments, global style labels, and 16.16 hours of paired speech for various singing tasks. Moreover, to facilitate the use of GTSinger, we conduct four benchmark experiments: technique-controllable singing voice synthesis, technique recognition, style transfer, and speech-to-singing conversion. The corpus and demos can be found at http://gtsinger.github.io. We provide the dataset and the code for processing data and conducting benchmarks at https://huggingface.co/datasets/GTSinger/GTSinger and https://github.com/GTSinger/GTSinger.

  • 18 authors
·
Sep 20, 2024

MixerMDM: Learnable Composition of Human Motion Diffusion Models

Generating human motion guided by conditions such as textual descriptions is challenging due to the need for datasets with pairs of high-quality motion and their corresponding conditions. The difficulty increases when aiming for finer control in the generation. To that end, prior works have proposed to combine several motion diffusion models pre-trained on datasets with different types of conditions, thus allowing control with multiple conditions. However, the proposed merging strategies overlook that the optimal way to combine the generation processes might depend on the particularities of each pre-trained generative model and also the specific textual descriptions. In this context, we introduce MixerMDM, the first learnable model composition technique for combining pre-trained text-conditioned human motion diffusion models. Unlike previous approaches, MixerMDM provides a dynamic mixing strategy that is trained in an adversarial fashion to learn to combine the denoising process of each model depending on the set of conditions driving the generation. By using MixerMDM to combine single- and multi-person motion diffusion models, we achieve fine-grained control on the dynamics of every person individually, and also on the overall interaction. Furthermore, we propose a new evaluation technique that, for the first time in this task, measures the interaction and individual quality by computing the alignment between the mixed generated motions and their conditions as well as the capabilities of MixerMDM to adapt the mixing throughout the denoising process depending on the motions to mix.

  • 5 authors
·
Apr 1 3

Emotional Speech-driven 3D Body Animation via Disentangled Latent Diffusion

Existing methods for synthesizing 3D human gestures from speech have shown promising results, but they do not explicitly model the impact of emotions on the generated gestures. Instead, these methods directly output animations from speech without control over the expressed emotion. To address this limitation, we present AMUSE, an emotional speech-driven body animation model based on latent diffusion. Our observation is that content (i.e., gestures related to speech rhythm and word utterances), emotion, and personal style are separable. To account for this, AMUSE maps the driving audio to three disentangled latent vectors: one for content, one for emotion, and one for personal style. A latent diffusion model, trained to generate gesture motion sequences, is then conditioned on these latent vectors. Once trained, AMUSE synthesizes 3D human gestures directly from speech with control over the expressed emotions and style by combining the content from the driving speech with the emotion and style of another speech sequence. Randomly sampling the noise of the diffusion model further generates variations of the gesture with the same emotional expressivity. Qualitative, quantitative, and perceptual evaluations demonstrate that AMUSE outputs realistic gesture sequences. Compared to the state of the art, the generated gestures are better synchronized with the speech content and better represent the emotion expressed by the input speech. Our project website is amuse.is.tue.mpg.de.

  • 7 authors
·
Dec 7, 2023

FilmComposer: LLM-Driven Music Production for Silent Film Clips

In this work, we implement music production for silent film clips using LLM-driven method. Given the strong professional demands of film music production, we propose the FilmComposer, simulating the actual workflows of professional musicians. FilmComposer is the first to combine large generative models with a multi-agent approach, leveraging the advantages of both waveform music and symbolic music generation. Additionally, FilmComposer is the first to focus on the three core elements of music production for film-audio quality, musicality, and musical development-and introduces various controls, such as rhythm, semantics, and visuals, to enhance these key aspects. Specifically, FilmComposer consists of the visual processing module, rhythm-controllable MusicGen, and multi-agent assessment, arrangement and mix. In addition, our framework can seamlessly integrate into the actual music production pipeline and allows user intervention in every step, providing strong interactivity and a high degree of creative freedom. Furthermore, we propose MusicPro-7k which includes 7,418 film clips, music, description, rhythm spots and main melody, considering the lack of a professional and high-quality film music dataset. Finally, both the standard metrics and the new specialized metrics we propose demonstrate that the music generated by our model achieves state-of-the-art performance in terms of quality, consistency with video, diversity, musicality, and musical development. Project page: https://apple-jun.github.io/FilmComposer.github.io/

  • 5 authors
·
Mar 11

Learn to Sing by Listening: Building Controllable Virtual Singer by Unsupervised Learning from Voice Recordings

The virtual world is being established in which digital humans are created indistinguishable from real humans. Producing their audio-related capabilities is crucial since voice conveys extensive personal characteristics. We aim to create a controllable audio-form virtual singer; however, supervised modeling and controlling all different factors of the singing voice, such as timbre, tempo, pitch, and lyrics, is extremely difficult since accurately labeling all such information needs enormous labor work. In this paper, we propose a framework that could digitize a person's voice by simply "listening" to the clean voice recordings of any content in a fully unsupervised manner and predict singing voices even only using speaking recordings. A variational auto-encoder (VAE) based framework is developed, which leverages a set of pre-trained models to encode the audio as various hidden embeddings representing different factors of the singing voice, and further decodes the embeddings into raw audio. By manipulating the hidden embeddings for different factors, the resulting singing voices can be controlled, and new virtual singers can also be further generated by interpolating between timbres. Evaluations of different types of experiments demonstrate the proposed method's effectiveness. The proposed method is the critical technique for producing the AI choir, which empowered the human-AI symbiotic orchestra in Hong Kong in July 2022.

  • 4 authors
·
May 9, 2023

Music-Driven Group Choreography

Music-driven choreography is a challenging problem with a wide variety of industrial applications. Recently, many methods have been proposed to synthesize dance motions from music for a single dancer. However, generating dance motion for a group remains an open problem. In this paper, we present rm AIOZ-GDANCE, a new large-scale dataset for music-driven group dance generation. Unlike existing datasets that only support single dance, our new dataset contains group dance videos, hence supporting the study of group choreography. We propose a semi-autonomous labeling method with humans in the loop to obtain the 3D ground truth for our dataset. The proposed dataset consists of 16.7 hours of paired music and 3D motion from in-the-wild videos, covering 7 dance styles and 16 music genres. We show that naively applying single dance generation technique to creating group dance motion may lead to unsatisfactory results, such as inconsistent movements and collisions between dancers. Based on our new dataset, we propose a new method that takes an input music sequence and a set of 3D positions of dancers to efficiently produce multiple group-coherent choreographies. We propose new evaluation metrics for measuring group dance quality and perform intensive experiments to demonstrate the effectiveness of our method. Our project facilitates future research on group dance generation and is available at: https://aioz-ai.github.io/AIOZ-GDANCE/

  • 6 authors
·
Mar 22, 2023

Diff-V2M: A Hierarchical Conditional Diffusion Model with Explicit Rhythmic Modeling for Video-to-Music Generation

Video-to-music (V2M) generation aims to create music that aligns with visual content. However, two main challenges persist in existing methods: (1) the lack of explicit rhythm modeling hinders audiovisual temporal alignments; (2) effectively integrating various visual features to condition music generation remains non-trivial. To address these issues, we propose Diff-V2M, a general V2M framework based on a hierarchical conditional diffusion model, comprising two core components: visual feature extraction and conditional music generation. For rhythm modeling, we begin by evaluating several rhythmic representations, including low-resolution mel-spectrograms, tempograms, and onset detection functions (ODF), and devise a rhythmic predictor to infer them directly from videos. To ensure contextual and affective coherence, we also extract semantic and emotional features. All features are incorporated into the generator via a hierarchical cross-attention mechanism, where emotional features shape the affective tone via the first layer, while semantic and rhythmic features are fused in the second cross-attention layer. To enhance feature integration, we introduce timestep-aware fusion strategies, including feature-wise linear modulation (FiLM) and weighted fusion, allowing the model to adaptively balance semantic and rhythmic cues throughout the diffusion process. Extensive experiments identify low-resolution ODF as a more effective signal for modeling musical rhythm and demonstrate that Diff-V2M outperforms existing models on both in-domain and out-of-domain datasets, achieving state-of-the-art performance in terms of objective metrics and subjective comparisons. Demo and code are available at https://Tayjsl97.github.io/Diff-V2M-Demo/.

  • 7 authors
·
Nov 12

UniMoE-Audio: Unified Speech and Music Generation with Dynamic-Capacity MoE

Recent advances in unified multimodal models indicate a clear trend towards comprehensive content generation. However, the auditory domain remains a significant challenge, with music and speech often developed in isolation, hindering progress towards universal audio synthesis. This separation stems from inherent task conflicts and severe data imbalances, which impede the development of a truly unified audio generation model. To address this challenge, we propose UniMoE-Audio, a unified speech and music generation model within a novel Dynamic-Capacity Mixture-of-Experts (MoE) framework. Architecturally, UniMoE-Audio introduces a Top-P routing strategy for dynamic expert number allocation, and a hybrid expert design comprising routed experts for domain-specific knowledge, shared experts for domain-agnostic features, and null experts for adaptive computation skipping. To tackle data imbalance, we introduce a three-stage training curriculum: 1) Independent Specialist Training leverages original datasets to instill domain-specific knowledge into each "proto-expert" without interference; 2) MoE Integration and Warmup incorporates these specialists into the UniMoE-Audio architecture, warming up the gate module and shared expert using a subset of balanced dataset; and 3) Synergistic Joint Training trains the entire model end-to-end on the fully balanced dataset, fostering enhanced cross-domain synergy. Extensive experiments show that UniMoE-Audio not only achieves state-of-the-art performance on major speech and music generation benchmarks, but also demonstrates superior synergistic learning, mitigating the performance degradation typically seen in naive joint training. Our findings highlight the substantial potential of specialized MoE architecture and curated training strategies in advancing the field of universal audio generation. Homepage: https://mukioxun.github.io/Uni-MoE-site/home.html

HIT-TMG Lychee Team
·
Oct 15 3

Constructing a Singing Style Caption Dataset

Singing voice synthesis and conversion have emerged as significant subdomains of voice generation, leading to much demands on prompt-conditioned generation. Unlike common voice data, generating a singing voice requires an understanding of various associated vocal and musical characteristics, such as the vocal tone of the singer or emotional expressions. However, existing open-source audio-text datasets for voice generation tend to capture only a very limited range of attributes, often missing musical characteristics of the audio. To fill this gap, we introduce S2Cap, an audio-text pair dataset with a diverse set of attributes. S2Cap consists of pairs of textual prompts and music audio samples with a wide range of vocal and musical attributes, including pitch, volume, tempo, mood, singer's gender and age, and musical genre and emotional expression. Utilizing S2Cap, we suggest an effective novel baseline algorithm for singing style captioning. Singing style captioning is a relative task to voice generation that generates text descriptions of vocal characteristics, which we first suggested. First, to mitigate the misalignment between the audio encoder and the text decoder, we present a novel mechanism called CRESCENDO, which utilizes positive-pair similarity learning to synchronize the embedding spaces of a pretrained audio encoder to get similar embeddings with a text encoder. We additionally supervise the model using the singer's voice, which is demixed by the accompaniment. This supervision allows the model to more accurately capture vocal characteristics, leading to improved singing style captions that better reflect the style of the singer. The dataset and the codes are available at https://github.com/HJ-Ok/S2cap.

  • 2 authors
·
Sep 15, 2024

Making Images Real Again: A Comprehensive Survey on Deep Image Composition

As a common image editing operation, image composition (object insertion) aims to combine the foreground from one image and another background image, resulting in a composite image. However, there are many issues that could make the composite images unrealistic. These issues can be summarized as the inconsistency between foreground and background, which includes appearance inconsistency (e.g., incompatible illumination), geometry inconsistency (e.g., unreasonable size), and semantic inconsistency (e.g., mismatched semantic context). Image composition task could be decomposed into multiple sub-tasks, in which each sub-task targets at one or more issues. Specifically, object placement aims to find reasonable scale, location, and shape for the foreground. Image blending aims to address the unnatural boundary between foreground and background. Image harmonization aims to adjust the illumination statistics of foreground. Shadow (resp., reflection) generation aims to generate plausible shadow (resp., reflection) for the foreground. These sub-tasks can be executed sequentially or parallelly to acquire realistic composite images. To the best of our knowledge, there is no previous survey on image composition (object insertion). In this paper, we conduct comprehensive survey over the sub-tasks and combinatorial task of image composition (object insertion). For each one, we summarize the existing methods, available datasets, and common evaluation metrics. We have also contributed the first image composition toolbox libcom, which assembles 10+ image composition related functions (e.g., image blending, image harmonization, object placement, shadow generation, generative composition). The ultimate goal of this toolbox is solving all the problems related to image composition with simple `import libcom'.

  • 7 authors
·
Jun 28, 2021 1

Generating Lead Sheets with Affect: A Novel Conditional seq2seq Framework

The field of automatic music composition has seen great progress in the last few years, much of which can be attributed to advances in deep neural networks. There are numerous studies that present different strategies for generating sheet music from scratch. The inclusion of high-level musical characteristics (e.g., perceived emotional qualities), however, as conditions for controlling the generation output remains a challenge. In this paper, we present a novel approach for calculating the valence (the positivity or negativity of the perceived emotion) of a chord progression within a lead sheet, using pre-defined mood tags proposed by music experts. Based on this approach, we propose a novel strategy for conditional lead sheet generation that allows us to steer the music generation in terms of valence, phrasing, and time signature. Our approach is similar to a Neural Machine Translation (NMT) problem, as we include high-level conditions in the encoder part of the sequence-to-sequence architectures used (i.e., long-short term memory networks, and a Transformer network). We conducted experiments to thoroughly analyze these two architectures. The results show that the proposed strategy is able to generate lead sheets in a controllable manner, resulting in distributions of musical attributes similar to those of the training dataset. We also verified through a subjective listening test that our approach is effective in controlling the valence of a generated chord progression.

  • 3 authors
·
Apr 27, 2021

Vevo2: Bridging Controllable Speech and Singing Voice Generation via Unified Prosody Learning

Controllable human voice generation, particularly for expressive domains like singing, remains a significant challenge. This paper introduces Vevo2, a unified framework for controllable speech and singing voice generation. To tackle issues like the scarcity of annotated singing data and to enable flexible controllability, Vevo2 introduces two audio tokenizers: (1) a music-notation-free prosody tokenizer that captures prosody and melody from speech, singing, and even instrumental sounds, and (2) a low-frame-rate (12.5 Hz) content-style tokenizer that encodes linguistic content, prosody, and style for both speech and singing, while enabling timbre disentanglement. Vevo2 consists of an auto-regressive (AR) content-style modeling stage, which aims to enable controllability over text, prosody, and style, as well as a flow-matching acoustic modeling stage that allows for timbre control. Particularly, during pre-training of the AR model, we propose both explicit and implicit prosody learning strategies to bridge speech and singing voice. Moreover, to further enhance the AR model's ability to follow text and prosody, we design a multi-objective post-training task that integrates both intelligibility and prosody similarity alignment. Experimental results show that the unified modeling in Vevo2 brings mutual benefits to both speech and singing voice generation. Additionally, Vevo2's effectiveness across a wide range of synthesis, conversion, and editing tasks for both speech and singing further demonstrates its strong generalization ability and versatility. Audio samples are are available at https://versasinger.github.io/.

  • 8 authors
·
Aug 22

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism

Singing voice synthesis (SVS) systems are built to synthesize high-quality and expressive singing voice, in which the acoustic model generates the acoustic features (e.g., mel-spectrogram) given a music score. Previous singing acoustic models adopt a simple loss (e.g., L1 and L2) or generative adversarial network (GAN) to reconstruct the acoustic features, while they suffer from over-smoothing and unstable training issues respectively, which hinder the naturalness of synthesized singing. In this work, we propose DiffSinger, an acoustic model for SVS based on the diffusion probabilistic model. DiffSinger is a parameterized Markov chain that iteratively converts the noise into mel-spectrogram conditioned on the music score. By implicitly optimizing variational bound, DiffSinger can be stably trained and generate realistic outputs. To further improve the voice quality and speed up inference, we introduce a shallow diffusion mechanism to make better use of the prior knowledge learned by the simple loss. Specifically, DiffSinger starts generation at a shallow step smaller than the total number of diffusion steps, according to the intersection of the diffusion trajectories of the ground-truth mel-spectrogram and the one predicted by a simple mel-spectrogram decoder. Besides, we propose boundary prediction methods to locate the intersection and determine the shallow step adaptively. The evaluations conducted on a Chinese singing dataset demonstrate that DiffSinger outperforms state-of-the-art SVS work. Extensional experiments also prove the generalization of our methods on text-to-speech task (DiffSpeech). Audio samples: https://diffsinger.github.io. Codes: https://github.com/MoonInTheRiver/DiffSinger. The old title of this work: "Diffsinger: Diffusion acoustic model for singing voice synthesis".

  • 5 authors
·
May 6, 2021

STARS: A Unified Framework for Singing Transcription, Alignment, and Refined Style Annotation

Recent breakthroughs in singing voice synthesis (SVS) have heightened the demand for high-quality annotated datasets, yet manual annotation remains prohibitively labor-intensive and resource-intensive. Existing automatic singing annotation (ASA) methods, however, primarily tackle isolated aspects of the annotation pipeline. To address this fundamental challenge, we present STARS, which is, to our knowledge, the first unified framework that simultaneously addresses singing transcription, alignment, and refined style annotation. Our framework delivers comprehensive multi-level annotations encompassing: (1) precise phoneme-audio alignment, (2) robust note transcription and temporal localization, (3) expressive vocal technique identification, and (4) global stylistic characterization including emotion and pace. The proposed architecture employs hierarchical acoustic feature processing across frame, word, phoneme, note, and sentence levels. The novel non-autoregressive local acoustic encoders enable structured hierarchical representation learning. Experimental validation confirms the framework's superior performance across multiple evaluation dimensions compared to existing annotation approaches. Furthermore, applications in SVS training demonstrate that models utilizing STARS-annotated data achieve significantly enhanced perceptual naturalness and precise style control. This work not only overcomes critical scalability challenges in the creation of singing datasets but also pioneers new methodologies for controllable singing voice synthesis. Audio samples are available at https://gwx314.github.io/stars-demo/.

  • 9 authors
·
Jul 9