Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRationale-Augmented Ensembles in Language Models
Recent research has shown that rationales, or step-by-step chains of thought, can be used to improve performance in multi-step reasoning tasks. We reconsider rationale-augmented prompting for few-shot in-context learning, where (input -> output) prompts are expanded to (input, rationale -> output) prompts. For rationale-augmented prompting we demonstrate how existing approaches, which rely on manual prompt engineering, are subject to sub-optimal rationales that may harm performance. To mitigate this brittleness, we propose a unified framework of rationale-augmented ensembles, where we identify rationale sampling in the output space as the key component to robustly improve performance. This framework is general and can easily be extended to common natural language processing tasks, even those that do not traditionally leverage intermediate steps, such as question answering, word sense disambiguation, and sentiment analysis. We demonstrate that rationale-augmented ensembles achieve more accurate and interpretable results than existing prompting approaches--including standard prompting without rationales and rationale-based chain-of-thought prompting--while simultaneously improving interpretability of model predictions through the associated rationales.
What if you said that differently?: How Explanation Formats Affect Human Feedback Efficacy and User Perception
Eliciting feedback from end users of NLP models can be beneficial for improving models. However, how should we present model responses to users so they are most amenable to be corrected from user feedback? Further, what properties do users value to understand and trust responses? We answer these questions by analyzing the effect of rationales (or explanations) generated by QA models to support their answers. We specifically consider decomposed QA models that first extract an intermediate rationale based on a context and a question and then use solely this rationale to answer the question. A rationale outlines the approach followed by the model to answer the question. Our work considers various formats of these rationales that vary according to well-defined properties of interest. We sample rationales from language models using few-shot prompting for two datasets, and then perform two user studies. First, we present users with incorrect answers and corresponding rationales in various formats and ask them to provide natural language feedback to revise the rationale. We then measure the effectiveness of this feedback in patching these rationales through in-context learning. The second study evaluates how well different rationale formats enable users to understand and trust model answers, when they are correct. We find that rationale formats significantly affect how easy it is (1) for users to give feedback for rationales, and (2) for models to subsequently execute this feedback. In addition, formats with attributions to the context and in-depth reasoning significantly enhance user-reported understanding and trust of model outputs.
Paragraph-level Rationale Extraction through Regularization: A case study on European Court of Human Rights Cases
Interpretability or explainability is an emerging research field in NLP. From a user-centric point of view, the goal is to build models that provide proper justification for their decisions, similar to those of humans, by requiring the models to satisfy additional constraints. To this end, we introduce a new application on legal text where, contrary to mainstream literature targeting word-level rationales, we conceive rationales as selected paragraphs in multi-paragraph structured court cases. We also release a new dataset comprising European Court of Human Rights cases, including annotations for paragraph-level rationales. We use this dataset to study the effect of already proposed rationale constraints, i.e., sparsity, continuity, and comprehensiveness, formulated as regularizers. Our findings indicate that some of these constraints are not beneficial in paragraph-level rationale extraction, while others need re-formulation to better handle the multi-label nature of the task we consider. We also introduce a new constraint, singularity, which further improves the quality of rationales, even compared with noisy rationale supervision. Experimental results indicate that the newly introduced task is very challenging and there is a large scope for further research.
STaR: Bootstrapping Reasoning With Reasoning
Generating step-by-step "chain-of-thought" rationales improves language model performance on complex reasoning tasks like mathematics or commonsense question-answering. However, inducing language model rationale generation currently requires either constructing massive rationale datasets or sacrificing accuracy by using only few-shot inference. We propose a technique to iteratively leverage a small number of rationale examples and a large dataset without rationales, to bootstrap the ability to perform successively more complex reasoning. This technique, the "Self-Taught Reasoner" (STaR), relies on a simple loop: generate rationales to answer many questions, prompted with a few rationale examples; if the generated answers are wrong, try again to generate a rationale given the correct answer; fine-tune on all the rationales that ultimately yielded correct answers; repeat. We show that STaR significantly improves performance on multiple datasets compared to a model fine-tuned to directly predict final answers, and performs comparably to fine-tuning a 30times larger state-of-the-art language model on CommensenseQA. Thus, STaR lets a model improve itself by learning from its own generated reasoning.
REFER: An End-to-end Rationale Extraction Framework for Explanation Regularization
Human-annotated textual explanations are becoming increasingly important in Explainable Natural Language Processing. Rationale extraction aims to provide faithful (i.e., reflective of the behavior of the model) and plausible (i.e., convincing to humans) explanations by highlighting the inputs that had the largest impact on the prediction without compromising the performance of the task model. In recent works, the focus of training rationale extractors was primarily on optimizing for plausibility using human highlights, while the task model was trained on jointly optimizing for task predictive accuracy and faithfulness. We propose REFER, a framework that employs a differentiable rationale extractor that allows to back-propagate through the rationale extraction process. We analyze the impact of using human highlights during training by jointly training the task model and the rationale extractor. In our experiments, REFER yields significantly better results in terms of faithfulness, plausibility, and downstream task accuracy on both in-distribution and out-of-distribution data. On both e-SNLI and CoS-E, our best setting produces better results in terms of composite normalized relative gain than the previous baselines by 11% and 3%, respectively.
Rationales for Sequential Predictions
Sequence models are a critical component of modern NLP systems, but their predictions are difficult to explain. We consider model explanations though rationales, subsets of context that can explain individual model predictions. We find sequential rationales by solving a combinatorial optimization: the best rationale is the smallest subset of input tokens that would predict the same output as the full sequence. Enumerating all subsets is intractable, so we propose an efficient greedy algorithm to approximate this objective. The algorithm, which is called greedy rationalization, applies to any model. For this approach to be effective, the model should form compatible conditional distributions when making predictions on incomplete subsets of the context. This condition can be enforced with a short fine-tuning step. We study greedy rationalization on language modeling and machine translation. Compared to existing baselines, greedy rationalization is best at optimizing the combinatorial objective and provides the most faithful rationales. On a new dataset of annotated sequential rationales, greedy rationales are most similar to human rationales.
Rationales Are Not Silver Bullets: Measuring the Impact of Rationales on Model Performance and Reliability
Training language models with rationales augmentation has been shown to be beneficial in many existing works. In this paper, we identify that such a prevailing view does not hold consistently. We conduct comprehensive investigations to thoroughly inspect the impact of rationales on model performance as well as a novel perspective of model reliability. The results lead to several key findings that add new insights upon existing understandings: 1) Rationales can, at times, deteriorate model performance; 2) Rationales can, at times, improve model reliability, even outperforming their untrained counterparts; 3) A linear correspondence exists in between the performance and reliability improvements, while both are driven by the intrinsic difficulty of the task. These findings provide informative regulations on the broad utilization of rationales and raise critical implications on the procedure of explicitly aligning language models with implicit human thoughts. Codes can be found at https://github.com/Ignoramus0817/rationales.
Free-text Rationale Generation under Readability Level Control
Free-text rationales justify model decisions in natural language and thus become likable and accessible among approaches to explanation across many tasks. However, their effectiveness can be hindered by misinterpretation and hallucination. As a perturbation test, we investigate how large language models (LLMs) perform rationale generation under the effects of readability level control, i.e., being prompted for an explanation targeting a specific expertise level, such as sixth grade or college. We find that explanations are adaptable to such instruction, though the requested readability is often misaligned with the measured text complexity according to traditional readability metrics. Furthermore, the generated rationales tend to feature medium level complexity, which correlates with the measured quality using automatic metrics. Finally, our human annotators confirm a generally satisfactory impression on rationales at all readability levels, with high-school-level readability being most commonly perceived and favored.
WikiWhy: Answering and Explaining Cause-and-Effect Questions
As large language models (LLMs) grow larger and more sophisticated, assessing their "reasoning" capabilities in natural language grows more challenging. Recent question answering (QA) benchmarks that attempt to assess reasoning are often limited by a narrow scope of covered situations and subject matters. We introduce WikiWhy, a QA dataset built around a novel auxiliary task: explaining why an answer is true in natural language. WikiWhy contains over 9,000 "why" question-answer-rationale triples, grounded on Wikipedia facts across a diverse set of topics. Each rationale is a set of supporting statements connecting the question to the answer. WikiWhy serves as a benchmark for the reasoning capabilities of LLMs because it demands rigorous explicit rationales for each answer to demonstrate the acquisition of implicit commonsense knowledge, which is unlikely to be easily memorized. GPT-3 baselines achieve only 38.7% human-evaluated correctness in the end-to-end answer & explain condition, leaving significant room for future improvements.
Discourse-Aware Text Simplification: From Complex Sentences to Linked Propositions
Sentences that present a complex syntax act as a major stumbling block for downstream Natural Language Processing applications whose predictive quality deteriorates with sentence length and complexity. The task of Text Simplification (TS) may remedy this situation. It aims to modify sentences in order to make them easier to process, using a set of rewriting operations, such as reordering, deletion, or splitting. State-of-the-art syntactic TS approaches suffer from two major drawbacks: first, they follow a very conservative approach in that they tend to retain the input rather than transforming it, and second, they ignore the cohesive nature of texts, where context spread across clauses or sentences is needed to infer the true meaning of a statement. To address these problems, we present a discourse-aware TS approach that splits and rephrases complex English sentences within the semantic context in which they occur. Based on a linguistically grounded transformation stage that uses clausal and phrasal disembedding mechanisms, complex sentences are transformed into shorter utterances with a simple canonical structure that can be easily analyzed by downstream applications. With sentence splitting, we thus address a TS task that has hardly been explored so far. Moreover, we introduce the notion of minimality in this context, as we aim to decompose source sentences into a set of self-contained minimal semantic units. To avoid breaking down the input into a disjointed sequence of statements that is difficult to interpret because important contextual information is missing, we incorporate the semantic context between the split propositions in the form of hierarchical structures and semantic relationships. In that way, we generate a semantic hierarchy of minimal propositions that leads to a novel representation of complex assertions that puts a semantic layer on top of the simplified sentences.
PINTO: Faithful Language Reasoning Using Prompt-Generated Rationales
Neural language models (LMs) have achieved impressive results on various language-based reasoning tasks by utilizing latent knowledge encoded in their own pretrained parameters. To make this reasoning process more explicit, recent works retrieve a rationalizing LM's internal knowledge by training or prompting it to generate free-text rationales, which can be used to guide task predictions made by either the same LM or a separate reasoning LM. However, rationalizing LMs require expensive rationale annotation and/or computation, without any assurance that their generated rationales improve LM task performance or faithfully reflect LM decision-making. In this paper, we propose PINTO, an LM pipeline that rationalizes via prompt-based learning, and learns to faithfully reason over rationales via counterfactual regularization. First, PINTO maps out a suitable reasoning process for the task input by prompting a frozen rationalizing LM to generate a free-text rationale. Second, PINTO's reasoning LM is fine-tuned to solve the task using the generated rationale as context, while regularized to output less confident predictions when the rationale is perturbed. Across four datasets, we show that PINTO significantly improves the generalization ability of the reasoning LM, yielding higher performance on both in-distribution and out-of-distribution test sets. Also, we find that PINTO's rationales are more faithful to its task predictions than those generated by competitive baselines.
Bridging Relevance and Reasoning: Rationale Distillation in Retrieval-Augmented Generation
The reranker and generator are two critical components in the Retrieval-Augmented Generation (i.e., RAG) pipeline, responsible for ranking relevant documents and generating responses. However, due to differences in pre-training data and objectives, there is an inevitable gap between the documents ranked as relevant by the reranker and those required by the generator to support answering the query. To address this gap, we propose RADIO, a novel and practical preference alignment framework with RAtionale DIstillatiOn. Specifically, We first propose a rationale extraction method that leverages the reasoning capabilities of Large Language Models (LLMs) to extract the rationales necessary for answering the query. Subsequently, a rationale-based alignment process is designed to rerank the documents based on the extracted rationales, and fine-tune the reranker to align the preferences. We conduct extensive experiments on two tasks across three datasets to demonstrate the effectiveness of our approach compared to baseline methods. Our code is released online to ease reproduction.
Can Small Language Models Help Large Language Models Reason Better?: LM-Guided Chain-of-Thought
We introduce a novel framework, LM-Guided CoT, that leverages a lightweight (i.e., <1B) language model (LM) for guiding a black-box large (i.e., >10B) LM in reasoning tasks. Specifically, the lightweight LM first generates a rationale for each input instance. The Frozen large LM is then prompted to predict a task output based on the rationale generated by the lightweight LM. Our approach is resource-efficient in the sense that it only requires training the lightweight LM. We optimize the model through 1) knowledge distillation and 2) reinforcement learning from rationale-oriented and task-oriented reward signals. We assess our method with multi-hop extractive question answering (QA) benchmarks, HotpotQA, and 2WikiMultiHopQA. Experimental results show that our approach outperforms all baselines regarding answer prediction accuracy. We also find that reinforcement learning helps the model to produce higher-quality rationales with improved QA performance.
Post Hoc Explanations of Language Models Can Improve Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities in performing complex tasks. Moreover, recent research has shown that incorporating human-annotated rationales (e.g., Chain-of-Thought prompting) during in-context learning can significantly enhance the performance of these models, particularly on tasks that require reasoning capabilities. However, incorporating such rationales poses challenges in terms of scalability as this requires a high degree of human involvement. In this work, we present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY), which addresses the aforementioned challenges by automating the process of rationale generation. To this end, we leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions. More specifically, we construct automated natural language rationales that embed insights from post hoc explanations to provide corrective signals to LLMs. Extensive experimentation with real-world datasets demonstrates that our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks, including those where prior approaches which rely on human-annotated rationales such as Chain-of-Thought prompting fall short. Our work makes one of the first attempts at highlighting the potential of post hoc explanations as valuable tools for enhancing the effectiveness of LLMs. Furthermore, we conduct additional empirical analyses and ablation studies to demonstrate the impact of each of the components of AMPLIFY, which, in turn, leads to critical insights for refining in-context learning.
Efficient Reasoning Models: A Survey
Reasoning models have demonstrated remarkable progress in solving complex and logic-intensive tasks by generating extended Chain-of-Thoughts (CoTs) prior to arriving at a final answer. Yet, the emergence of this "slow-thinking" paradigm, with numerous tokens generated in sequence, inevitably introduces substantial computational overhead. To this end, it highlights an urgent need for effective acceleration. This survey aims to provide a comprehensive overview of recent advances in efficient reasoning. It categorizes existing works into three key directions: (1) shorter - compressing lengthy CoTs into concise yet effective reasoning chains; (2) smaller - developing compact language models with strong reasoning capabilities through techniques such as knowledge distillation, other model compression techniques, and reinforcement learning; and (3) faster - designing efficient decoding strategies to accelerate inference. A curated collection of papers discussed in this survey is available in our GitHub repository.
The Impact of Reasoning Step Length on Large Language Models
Chain of Thought (CoT) is significant in improving the reasoning abilities of large language models (LLMs). However, the correlation between the effectiveness of CoT and the length of reasoning steps in prompts remains largely unknown. To shed light on this, we have conducted several empirical experiments to explore the relations. Specifically, we design experiments that expand and compress the rationale reasoning steps within CoT demonstrations, while keeping all other factors constant. We have the following key findings. First, the results indicate that lengthening the reasoning steps in prompts, even without adding new information into the prompt, considerably enhances LLMs' reasoning abilities across multiple datasets. Alternatively, shortening the reasoning steps, even while preserving the key information, significantly diminishes the reasoning abilities of models. This finding highlights the importance of the number of steps in CoT prompts and provides practical guidance to make better use of LLMs' potential in complex problem-solving scenarios. Second, we also investigated the relationship between the performance of CoT and the rationales used in demonstrations. Surprisingly, the result shows that even incorrect rationales can yield favorable outcomes if they maintain the requisite length of inference. Third, we observed that the advantages of increasing reasoning steps are task-dependent: simpler tasks require fewer steps, whereas complex tasks gain significantly from longer inference sequences.
Calibrating LLMs with Preference Optimization on Thought Trees for Generating Rationale in Science Question Scoring
Generating rationales that justify scoring decisions has been a promising way to facilitate explainability in automated scoring systems. However, existing methods do not match the accuracy of classifier-based methods. Plus, the generated rationales often contain hallucinated information. To address these issues, we propose a novel framework capable of generating more faithful rationales and, more importantly, matching performance with classifier-based black-box scoring systems. We first mimic the human assessment process by querying Large Language Models (LLMs) to generate a thought tree. We then summarise intermediate assessment decisions from each thought tree path for creating synthetic rationale data and rationale preference data. Finally, we utilise the generated synthetic data to calibrate LLMs through a two-step training process: supervised fine-tuning and preference optimization. Extensive experimental results demonstrate that our framework achieves a 38% assessment performance improvement in the QWK score compared to prior work while producing higher-quality rationales, as recognised by human evaluators and LLMs. Our work sheds light on the effectiveness of performing preference optimization using synthetic preference data obtained from thought tree paths.
Unsupervised Selective Rationalization with Noise Injection
A major issue with using deep learning models in sensitive applications is that they provide no explanation for their output. To address this problem, unsupervised selective rationalization produces rationales alongside predictions by chaining two jointly-trained components, a rationale generator and a predictor. Although this architecture guarantees that the prediction relies solely on the rationale, it does not ensure that the rationale contains a plausible explanation for the prediction. We introduce a novel training technique that effectively limits generation of implausible rationales by injecting noise between the generator and the predictor. Furthermore, we propose a new benchmark for evaluating unsupervised selective rationalization models using movie reviews from existing datasets. We achieve sizeable improvements in rationale plausibility and task accuracy over the state-of-the-art across a variety of tasks, including our new benchmark, while maintaining or improving model faithfulness.
Quiet-STaR: Language Models Can Teach Themselves to Think Before Speaking
When writing and talking, people sometimes pause to think. Although reasoning-focused works have often framed reasoning as a method of answering questions or completing agentic tasks, reasoning is implicit in almost all written text. For example, this applies to the steps not stated between the lines of a proof or to the theory of mind underlying a conversation. In the Self-Taught Reasoner (STaR, Zelikman et al. 2022), useful thinking is learned by inferring rationales from few-shot examples in question-answering and learning from those that lead to a correct answer. This is a highly constrained setting -- ideally, a language model could instead learn to infer unstated rationales in arbitrary text. We present Quiet-STaR, a generalization of STaR in which LMs learn to generate rationales at each token to explain future text, improving their predictions. We address key challenges, including 1) the computational cost of generating continuations, 2) the fact that the LM does not initially know how to generate or use internal thoughts, and 3) the need to predict beyond individual next tokens. To resolve these, we propose a tokenwise parallel sampling algorithm, using learnable tokens indicating a thought's start and end, and an extended teacher-forcing technique. Encouragingly, generated rationales disproportionately help model difficult-to-predict tokens and improve the LM's ability to directly answer difficult questions. In particular, after continued pretraining of an LM on a corpus of internet text with Quiet-STaR, we find zero-shot improvements on GSM8K (5.9%rightarrow10.9%) and CommonsenseQA (36.3%rightarrow47.2%) and observe a perplexity improvement of difficult tokens in natural text. Crucially, these improvements require no fine-tuning on these tasks. Quiet-STaR marks a step towards LMs that can learn to reason in a more general and scalable way.
Answering Unseen Questions With Smaller Language Models Using Rationale Generation and Dense Retrieval
When provided with sufficient explanatory context, smaller Language Models have been shown to exhibit strong reasoning ability on challenging short-answer question-answering tasks where the questions are unseen in training. We evaluate two methods for further improvement in this setting. Both methods focus on combining rationales generated by a larger Language Model with longer contexts created from a multi-hop dense retrieval system. The first method (RR) involves training a Rationale Ranking model to score both generated rationales and retrieved contexts with respect to relevance and truthfulness. We then use the scores to derive combined contexts from both knowledge sources using a number of combinatory strategies. For the second method (RATD) we utilise retrieval-augmented training datasets developed by Hartill et al. 2023 to train a smaller Reasoning model such that it becomes proficient at utilising relevant information from longer text sequences that may be only partially evidential and frequently contain many irrelevant sentences. We find that both methods significantly improve results. Our single best Reasoning model materially improves upon strong comparable prior baselines for unseen evaluation datasets (StrategyQA 58.9 rightarrow 61.7 acc., CommonsenseQA 63.6 rightarrow 72.7 acc., ARC-DA 31.6 rightarrow 52.1 F1, IIRC 25.5 rightarrow 27.3 F1) and a version utilising our prior knowledge of each type of question in selecting a context combination strategy does even better. Our proposed models also generally outperform direct prompts against much larger models (BLOOM 175B and StableVicuna 13B) in both few-shot chain-of-thought and standard few-shot settings.
Automated Rationale Generation: A Technique for Explainable AI and its Effects on Human Perceptions
Automated rationale generation is an approach for real-time explanation generation whereby a computational model learns to translate an autonomous agent's internal state and action data representations into natural language. Training on human explanation data can enable agents to learn to generate human-like explanations for their behavior. In this paper, using the context of an agent that plays Frogger, we describe (a) how to collect a corpus of explanations, (b) how to train a neural rationale generator to produce different styles of rationales, and (c) how people perceive these rationales. We conducted two user studies. The first study establishes the plausibility of each type of generated rationale and situates their user perceptions along the dimensions of confidence, humanlike-ness, adequate justification, and understandability. The second study further explores user preferences between the generated rationales with regard to confidence in the autonomous agent, communicating failure and unexpected behavior. Overall, we find alignment between the intended differences in features of the generated rationales and the perceived differences by users. Moreover, context permitting, participants preferred detailed rationales to form a stable mental model of the agent's behavior.
Graph Rationalization with Environment-based Augmentations
Rationale is defined as a subset of input features that best explains or supports the prediction by machine learning models. Rationale identification has improved the generalizability and interpretability of neural networks on vision and language data. In graph applications such as molecule and polymer property prediction, identifying representative subgraph structures named as graph rationales plays an essential role in the performance of graph neural networks. Existing graph pooling and/or distribution intervention methods suffer from lack of examples to learn to identify optimal graph rationales. In this work, we introduce a new augmentation operation called environment replacement that automatically creates virtual data examples to improve rationale identification. We propose an efficient framework that performs rationale-environment separation and representation learning on the real and augmented examples in latent spaces to avoid the high complexity of explicit graph decoding and encoding. Comparing against recent techniques, experiments on seven molecular and four polymer real datasets demonstrate the effectiveness and efficiency of the proposed augmentation-based graph rationalization framework.
Boosting the Power of Small Multimodal Reasoning Models to Match Larger Models with Self-Consistency Training
Multimodal reasoning is a challenging task that requires models to reason across multiple modalities to answer questions. Existing approaches have made progress by incorporating language and visual modalities into a two-stage reasoning framework, separating rationale generation from answer inference. However, these approaches often fall short due to the inadequate quality of the generated rationales. In this work, we delve into the importance of rationales in model reasoning. We observe that when rationales are completely accurate, the model's accuracy significantly improves, highlighting the need for high-quality rationale generation. Motivated by this, we propose MC-CoT, a self-consistency training strategy that generates multiple rationales and answers, subsequently selecting the most accurate through a voting process. This approach not only enhances the quality of generated rationales but also leads to more accurate and robust answers. Through extensive experiments, we demonstrate that our approach significantly improves model performance across various benchmarks. Remarkably, we show that even smaller base models, when equipped with our proposed approach, can achieve results comparable to those of larger models, illustrating the potential of our approach in harnessing the power of rationales for improved multimodal reasoning. The code is available at https://github.com/chengtan9907/mc-cot.
Meteor: Mamba-based Traversal of Rationale for Large Language and Vision Models
The rapid development of large language and vision models (LLVMs) has been driven by advances in visual instruction tuning. Recently, open-source LLVMs have curated high-quality visual instruction tuning datasets and utilized additional vision encoders or multiple computer vision models in order to narrow the performance gap with powerful closed-source LLVMs. These advancements are attributed to multifaceted information required for diverse capabilities, including fundamental image understanding, real-world knowledge about common-sense and non-object concepts (e.g., charts, diagrams, symbols, signs, and math problems), and step-by-step procedures for solving complex questions. Drawing from the multifaceted information, we present a new efficient LLVM, Mamba-based traversal of rationales (Meteor), which leverages multifaceted rationale to enhance understanding and answering capabilities. To embed lengthy rationales containing abundant information, we employ the Mamba architecture, capable of processing sequential data with linear time complexity. We introduce a new concept of traversal of rationale that facilitates efficient embedding of rationale. Subsequently, the backbone multimodal language model (MLM) is trained to generate answers with the aid of rationale. Through these steps, Meteor achieves significant improvements in vision language performances across multiple evaluation benchmarks requiring diverse capabilities, without scaling up the model size or employing additional vision encoders and computer vision models.
Tailoring Self-Rationalizers with Multi-Reward Distillation
Large language models (LMs) are capable of generating free-text rationales to aid question answering. However, prior work 1) suggests that useful self-rationalization is emergent only at significant scales (e.g., 175B parameter GPT-3); and 2) focuses largely on downstream performance, ignoring the semantics of the rationales themselves, e.g., are they faithful, true, and helpful for humans? In this work, we enable small-scale LMs (approx. 200x smaller than GPT-3) to generate rationales that not only improve downstream task performance, but are also more plausible, consistent, and diverse, assessed both by automatic and human evaluation. Our method, MaRio (Multi-rewArd RatIOnalization), is a multi-reward conditioned self-rationalization algorithm that optimizes multiple distinct properties like plausibility, diversity and consistency. Results on five difficult question-answering datasets StrategyQA, QuaRel, OpenBookQA, NumerSense and QASC show that not only does MaRio improve task accuracy, but it also improves the self-rationalization quality of small LMs across the aforementioned axes better than a supervised fine-tuning (SFT) baseline. Extensive human evaluations confirm that MaRio rationales are preferred vs. SFT rationales, as well as qualitative improvements in plausibility and consistency.
Reconsidering Overthinking: Penalizing Internal and External Redundancy in CoT Reasoning
Large Reasoning Models (LRMs) often produce excessively verbose reasoning traces, a phenomenon known as overthinking, which hampers both efficiency and interpretability. Prior works primarily address this issue by reducing response length, without fully examining the underlying semantic structure of the reasoning process. In this paper, we revisit overthinking by decomposing it into two distinct forms: internal redundancy, which consists of low-contribution reasoning steps within the first correct solution (FCS), and external redundancy, which refers to unnecessary continuation after the FCS. To mitigate both forms, we propose a dual-penalty reinforcement learning framework. For internal redundancy, we adopt a sliding-window semantic analysis to penalize low-gain reasoning steps that contribute little toward reaching the correct answer. For external redundancy, we penalize its proportion beyond the FCS to encourage earlier termination. Our method significantly compresses reasoning traces with minimal accuracy loss, and generalizes effectively to out-of-domain tasks such as question answering and code generation. Crucially, we find that external redundancy can be safely removed without degrading performance, whereas internal redundancy must be reduced more cautiously to avoid impairing correctness. These findings suggest that our method not only improves reasoning efficiency but also enables implicit, semantic-aware control over Chain-of-Thought length, paving the way for more concise and interpretable LRMs.
MinWikiSplit: A Sentence Splitting Corpus with Minimal Propositions
We compiled a new sentence splitting corpus that is composed of 203K pairs of aligned complex source and simplified target sentences. Contrary to previously proposed text simplification corpora, which contain only a small number of split examples, we present a dataset where each input sentence is broken down into a set of minimal propositions, i.e. a sequence of sound, self-contained utterances with each of them presenting a minimal semantic unit that cannot be further decomposed into meaningful propositions. This corpus is useful for developing sentence splitting approaches that learn how to transform sentences with a complex linguistic structure into a fine-grained representation of short sentences that present a simple and more regular structure which is easier to process for downstream applications and thus facilitates and improves their performance.
Rationalization Models for Text-to-SQL
We introduce a framework for generating Chain-of-Thought (CoT) rationales to enhance text-to-SQL model fine-tuning. These rationales consist of intermediate SQL statements and explanations, serving as incremental steps toward constructing the final SQL query. The process begins with manually annotating a small set of examples, which are then used to prompt a large language model in an iterative, dynamic few-shot knowledge distillation procedure from a teacher model. A rationalization model is subsequently trained on the validated decomposed queries, enabling extensive synthetic CoT annotations for text-to-SQL datasets. To evaluate the approach, we fine-tune small language models with and without these rationales on the BIRD dataset. Results indicate that step-by-step query generation improves execution accuracy, especially for moderately and highly complex queries, while also enhancing explainability.
ReasonRank: Empowering Passage Ranking with Strong Reasoning Ability
Large Language Model (LLM) based listwise ranking has shown superior performance in many passage ranking tasks. With the development of Large Reasoning Models, many studies have demonstrated that step-by-step reasoning during test-time helps improve listwise ranking performance. However, due to the scarcity of reasoning-intensive training data, existing rerankers perform poorly in many complex ranking scenarios and the ranking ability of reasoning-intensive rerankers remains largely underdeveloped. In this paper, we first propose an automated reasoning-intensive training data synthesis framework, which sources training queries and passages from diverse domains and applies DeepSeek-R1 to generate high-quality training labels. A self-consistency data filtering mechanism is designed to ensure the data quality. To empower the listwise reranker with strong reasoning ability, we further propose a two-stage post-training approach, which includes a cold-start supervised fine-tuning (SFT) stage for reasoning pattern learning and a reinforcement learning (RL) stage for further ranking ability enhancement. During the RL stage, based on the nature of listwise ranking, we design a multi-view ranking reward, which is more effective than a ranking metric-based reward. Extensive experiments demonstrate that our trained reasoning-intensive reranker ReasonRank outperforms existing baselines significantly and also achieves much lower latency than pointwise reranker Rank1. Through further experiments, our ReasonRank has achieved state-of-the-art (SOTA) performance 40.6 on the BRIGHT leaderboard\footnote{https://brightbenchmark.github.io/.} Our codes are available at https://github.com/8421BCD/ReasonRank.
Can Language Models Perform Robust Reasoning in Chain-of-thought Prompting with Noisy Rationales?
This paper investigates an under-explored challenge in large language models (LLMs): chain-of-thought prompting with noisy rationales, which include irrelevant or inaccurate reasoning thoughts within examples used for in-context learning. We construct NoRa dataset that is tailored to evaluate the robustness of reasoning in the presence of noisy rationales. Our findings on NoRa dataset reveal a prevalent vulnerability to such noise among current LLMs, with existing robust methods like self-correction and self-consistency showing limited efficacy. Notably, compared to prompting with clean rationales, base LLM drops by 1.4%-19.8% in accuracy with irrelevant thoughts and more drastically by 2.2%-40.4% with inaccurate thoughts. Addressing this challenge necessitates external supervision that should be accessible in practice. Here, we propose the method of contrastive denoising with noisy chain-of-thought (CD-CoT). It enhances LLMs' denoising-reasoning capabilities by contrasting noisy rationales with only one clean rationale, which can be the minimal requirement for denoising-purpose prompting. This method follows a principle of exploration and exploitation: (1) rephrasing and selecting rationales in the input space to achieve explicit denoising and (2) exploring diverse reasoning paths and voting on answers in the output space. Empirically, CD-CoT demonstrates an average improvement of 17.8% in accuracy over the base model and shows significantly stronger denoising capabilities than baseline methods. The source code is publicly available at: https://github.com/tmlr-group/NoisyRationales.
Concise and Organized Perception Facilitates Large Language Models for Deductive Reasoning
Exploiting large language models (LLMs) to tackle deductive reasoning has garnered growing attention. It still remains highly challenging to achieve satisfactory results in complex deductive problems, characterized by plenty of premises (i.e., facts or rules) entailing intricate relationships among entities and requiring multi-hop reasoning. One intuitive solution is to decompose the original task into smaller sub-tasks, and then chain the multiple casual reasoning steps together in a forward (e.g., Selection-Inference) or backward (e.g., LAMBADA) direction. However, these techniques inevitably necessitate a large number of overall stages, leading to computationally expensive operations and a higher possibility of making misleading steps. In addition to stage-by-stage decomposition, we draw inspiration from another aspect of human problem-solving. Humans tend to distill the most relevant information and organize their thoughts systematically (e.g., creating mind maps), which assists them in answering questions or drawing conclusions precisely and quickly. In light of this, we propose a novel reasoning approach named Concise and Organized Perception (COP). COP carefully analyzes the given statements to efficiently identify the most pertinent information while eliminating redundancy. It then prompts the LLMs in a more organized form that adapts to the model's inference process. By perceiving concise and organized proofs, the deductive reasoning abilities of LLMs can be better elicited, and the risk of acquiring errors caused by excessive reasoning stages is mitigated. Furthermore, our approach can be combined with the aforementioned ones to further boost their performance. Extensive experimental results on three popular deductive benchmarks (i.e., ProofWriter, PrOntoQA and PrOntoQA-OOD) show that COP significantly outperforms previous state-of-the-art methods.
Towards Faithful Explanations: Boosting Rationalization with Shortcuts Discovery
The remarkable success in neural networks provokes the selective rationalization. It explains the prediction results by identifying a small subset of the inputs sufficient to support them. Since existing methods still suffer from adopting the shortcuts in data to compose rationales and limited large-scale annotated rationales by human, in this paper, we propose a Shortcuts-fused Selective Rationalization (SSR) method, which boosts the rationalization by discovering and exploiting potential shortcuts. Specifically, SSR first designs a shortcuts discovery approach to detect several potential shortcuts. Then, by introducing the identified shortcuts, we propose two strategies to mitigate the problem of utilizing shortcuts to compose rationales. Finally, we develop two data augmentations methods to close the gap in the number of annotated rationales. Extensive experimental results on real-world datasets clearly validate the effectiveness of our proposed method.
Invariant Graph Transformer
Rationale discovery is defined as finding a subset of the input data that maximally supports the prediction of downstream tasks. In graph machine learning context, graph rationale is defined to locate the critical subgraph in the given graph topology, which fundamentally determines the prediction results. In contrast to the rationale subgraph, the remaining subgraph is named the environment subgraph. Graph rationalization can enhance the model performance as the mapping between the graph rationale and prediction label is viewed as invariant, by assumption. To ensure the discriminative power of the extracted rationale subgraphs, a key technique named "intervention" is applied. The core idea of intervention is that given any changing environment subgraphs, the semantics from the rationale subgraph is invariant, which guarantees the correct prediction result. However, most, if not all, of the existing rationalization works on graph data develop their intervention strategies on the graph level, which is coarse-grained. In this paper, we propose well-tailored intervention strategies on graph data. Our idea is driven by the development of Transformer models, whose self-attention module provides rich interactions between input nodes. Based on the self-attention module, our proposed invariant graph Transformer (IGT) can achieve fine-grained, more specifically, node-level and virtual node-level intervention. Our comprehensive experiments involve 7 real-world datasets, and the proposed IGT shows significant performance advantages compared to 13 baseline methods.
Self-Explore to Avoid the Pit: Improving the Reasoning Capabilities of Language Models with Fine-grained Rewards
Training on large amounts of rationales (i.e., CoT Fine-tuning) is effective at improving the reasoning capabilities of large language models (LLMs). However, acquiring human-authored rationales or augmenting rationales from proprietary models is costly and not scalable. In this paper, we study the problem of whether LLMs could self-improve their reasoning capabilities. To this end, we propose Self-Explore, where the LLM is tasked to explore the first wrong step (i.e., the first pit) within the rationale and use such signals as fine-grained rewards for further improvement. On the GSM8K and MATH test set, Self-Explore achieves 11.57% and 2.89% improvement on average across three LLMs compared to supervised fine-tuning (SFT). Our code is available at https://github.com/hbin0701/Self-Explore.
System-1.5 Reasoning: Traversal in Language and Latent Spaces with Dynamic Shortcuts
Chain-of-thought (CoT) reasoning enables large language models (LLMs) to move beyond fast System-1 responses and engage in deliberative System-2 reasoning. However, this comes at the cost of significant inefficiency due to verbose intermediate output. Recent latent-space reasoning methods improve efficiency by operating on hidden states without decoding into language, yet they treat all steps uniformly, failing to distinguish critical deductions from auxiliary steps and resulting in suboptimal use of computational resources. In this paper, we propose System-1.5 Reasoning, an adaptive reasoning framework that dynamically allocates computation across reasoning steps through shortcut paths in latent space. Specifically, System-1.5 Reasoning introduces two types of dynamic shortcuts. The model depth shortcut (DS) adaptively reasons along the vertical depth by early exiting non-critical tokens through lightweight adapter branches, while allowing critical tokens to continue through deeper Transformer layers. The step shortcut (SS) reuses hidden states across the decoding steps to skip trivial steps and reason horizontally in latent space. Training System-1.5 Reasoning involves a two-stage self-distillation process: first distilling natural language CoT into latent-space continuous thought, and then distilling full-path System-2 latent reasoning into adaptive shortcut paths (System-1.5 Reasoning). Experiments on reasoning tasks demonstrate the superior performance of our method. For example, on GSM8K, System-1.5 Reasoning achieves reasoning performance comparable to traditional CoT fine-tuning methods while accelerating inference by over 20x and reducing token generation by 92.31% on average.
Don't "Overthink" Passage Reranking: Is Reasoning Truly Necessary?
With the growing success of reasoning models across complex natural language tasks, researchers in the Information Retrieval (IR) community have begun exploring how similar reasoning capabilities can be integrated into passage rerankers built on Large Language Models (LLMs). These methods typically employ an LLM to produce an explicit, step-by-step reasoning process before arriving at a final relevance prediction. But, does reasoning actually improve reranking accuracy? In this paper, we dive deeper into this question, studying the impact of the reasoning process by comparing reasoning-based pointwise rerankers (ReasonRR) to standard, non-reasoning pointwise rerankers (StandardRR) under identical training conditions, and observe that StandardRR generally outperforms ReasonRR. Building on this observation, we then study the importance of reasoning to ReasonRR by disabling its reasoning process (ReasonRR-NoReason), and find that ReasonRR-NoReason is surprisingly more effective than ReasonRR. Examining the cause of this result, our findings reveal that reasoning-based rerankers are limited by the LLM's reasoning process, which pushes it toward polarized relevance scores and thus fails to consider the partial relevance of passages, a key factor for the accuracy of pointwise rerankers.
ERASER: A Benchmark to Evaluate Rationalized NLP Models
State-of-the-art models in NLP are now predominantly based on deep neural networks that are opaque in terms of how they come to make predictions. This limitation has increased interest in designing more interpretable deep models for NLP that reveal the `reasoning' behind model outputs. But work in this direction has been conducted on different datasets and tasks with correspondingly unique aims and metrics; this makes it difficult to track progress. We propose the Evaluating Rationales And Simple English Reasoning (ERASER) benchmark to advance research on interpretable models in NLP. This benchmark comprises multiple datasets and tasks for which human annotations of "rationales" (supporting evidence) have been collected. We propose several metrics that aim to capture how well the rationales provided by models align with human rationales, and also how faithful these rationales are (i.e., the degree to which provided rationales influenced the corresponding predictions). Our hope is that releasing this benchmark facilitates progress on designing more interpretable NLP systems. The benchmark, code, and documentation are available at https://www.eraserbenchmark.com/
Training Language Models to Reason Efficiently
Scaling model size and training data has led to great advances in the performance of Large Language Models (LLMs). However, the diminishing returns of this approach necessitate alternative methods to improve model capabilities, particularly in tasks requiring advanced reasoning. Large reasoning models, which leverage long chain-of-thoughts, bring unprecedented breakthroughs in problem-solving capabilities but at a substantial deployment cost associated to longer generations. Reducing inference costs is crucial for the economic feasibility, user experience, and environmental sustainability of these models. In this work, we propose to train large reasoning models to reason efficiently. More precisely, we use reinforcement learning (RL) to train reasoning models to dynamically allocate inference-time compute based on task complexity. Our method incentivizes models to minimize unnecessary computational overhead while maintaining accuracy, thereby achieving substantial efficiency gains. It enables the derivation of a family of reasoning models with varying efficiency levels, controlled via a single hyperparameter. Experiments on two open-weight large reasoning models demonstrate significant reductions in inference cost while preserving most of the accuracy.
Answer Convergence as a Signal for Early Stopping in Reasoning
Chain-of-thought (CoT) prompting enhances reasoning in large language models (LLMs) but often leads to verbose and redundant outputs, thus increasing inference cost. We hypothesize that many reasoning steps are unnecessary for producing correct answers. To investigate this, we start with a systematic study to examine what is the minimum reasoning required for a model to reach a stable decision. We find that on math reasoning tasks like math, models typically converge to their final answers after 60\% of the reasoning steps, suggesting substantial redundancy in the remaining content. Based on these insights, we propose three inference-time strategies to improve efficiency: (1) early stopping via answer consistency, (2) boosting the probability of generating end-of-reasoning signals, and (3) a supervised method that learns when to stop based on internal activations. Experiments across five benchmarks and five open-weights LLMs show that our methods significantly reduce token usage with little or no accuracy drop. In particular, on NaturalQuestions, Answer Consistency reduces tokens by over 40\% while further improving accuracy. Our work underscores the importance of cost-effective reasoning methods that operate at inference time, offering practical benefits for real-world applications.
Learning Planning-based Reasoning by Trajectories Collection and Process Reward Synthesizing
Large Language Models (LLMs) have demonstrated significant potential in handling complex reasoning tasks through step-by-step rationale generation. However, recent studies have raised concerns regarding the hallucination and flaws in their reasoning process. Substantial efforts are being made to improve the reliability and faithfulness of the generated rationales. Some approaches model reasoning as planning, while others focus on annotating for process supervision. Nevertheless, the planning-based search process often results in high latency due to the frequent assessment of intermediate reasoning states and the extensive exploration space. Additionally, supervising the reasoning process with human annotation is costly and challenging to scale for LLM training. To address these issues, in this paper, we propose a framework to learn planning-based reasoning through direct preference optimization (DPO) on collected trajectories, which are ranked according to synthesized process rewards. Our results on challenging logical reasoning benchmarks demonstrate the effectiveness of our learning framework, showing that our 7B model can surpass the strong counterparts like GPT-3.5-Turbo.
Factoring Statutory Reasoning as Language Understanding Challenges
Statutory reasoning is the task of determining whether a legal statute, stated in natural language, applies to the text description of a case. Prior work introduced a resource that approached statutory reasoning as a monolithic textual entailment problem, with neural baselines performing nearly at-chance. To address this challenge, we decompose statutory reasoning into four types of language-understanding challenge problems, through the introduction of concepts and structure found in Prolog programs. Augmenting an existing benchmark, we provide annotations for the four tasks, and baselines for three of them. Models for statutory reasoning are shown to benefit from the additional structure, improving on prior baselines. Further, the decomposition into subtasks facilitates finer-grained model diagnostics and clearer incremental progress.
Program Induction by Rationale Generation : Learning to Solve and Explain Algebraic Word Problems
Solving algebraic word problems requires executing a series of arithmetic operations---a program---to obtain a final answer. However, since programs can be arbitrarily complicated, inducing them directly from question-answer pairs is a formidable challenge. To make this task more feasible, we solve these problems by generating answer rationales, sequences of natural language and human-readable mathematical expressions that derive the final answer through a series of small steps. Although rationales do not explicitly specify programs, they provide a scaffolding for their structure via intermediate milestones. To evaluate our approach, we have created a new 100,000-sample dataset of questions, answers and rationales. Experimental results show that indirect supervision of program learning via answer rationales is a promising strategy for inducing arithmetic programs.
Activation Steering for Chain-of-Thought Compression
Large language models (LLMs) excel at complex reasoning when they include intermediate steps, known as "chains of thought" (CoTs). However, these rationales are often overly verbose, even for simple problems, leading to wasted context, increased latency, and higher energy consumption. We observe that verbose, English-heavy CoTs and concise, math-centric CoTs occupy distinct regions in the model's residual-stream activation space. By extracting and injecting a "steering vector" to transition between these modes, we can reliably shift generation toward more concise reasoning, effectively compressing CoTs without retraining. We formalize this approach as Activation-Steered Compression (ASC), an inference-time technique that shortens reasoning traces by directly modifying hidden representations. In addition, we provide a theoretical analysis of the impact of ASC on the output distribution, derived from a closed-form KL-divergence-bounded constraint to regulate steering strength. Using only 100 paired verbose and concise examples, ASC achieves up to 67.43% reduction in CoT length on MATH500 and GSM8K datasets, while maintaining accuracy across 7B, 8B, and 32B parameter models. As a training-free method, ASC introduces negligible runtime overhead and, on MATH500, delivers an average 2.73x speedup in end-to-end reasoning wall-clock time on an 8B model. This makes ASC a practical and efficient tool for streamlining the deployment of reasoning-capable LLMs in latency- or cost-sensitive settings. The code is available at: https://github.com/ArminAzizi98/ASC
Teaching Algorithmic Reasoning via In-context Learning
Large language models (LLMs) have shown increasing in-context learning capabilities through scaling up model and data size. Despite this progress, LLMs are still unable to solve algorithmic reasoning problems. While providing a rationale with the final answer has led to further improvements in multi-step reasoning problems, Anil et al. 2022 showed that even simple algorithmic reasoning tasks such as parity are far from solved. In this work, we identify and study four key stages for successfully teaching algorithmic reasoning to LLMs: (1) formulating algorithms as skills, (2) teaching multiple skills simultaneously (skill accumulation), (3) teaching how to combine skills (skill composition) and (4) teaching how to use skills as tools. We show that it is possible to teach algorithmic reasoning to LLMs via in-context learning, which we refer to as algorithmic prompting. We evaluate our approach on a variety of arithmetic and quantitative reasoning tasks, and demonstrate significant boosts in performance over existing prompting techniques. In particular, for long parity, addition, multiplication and subtraction, we achieve an error reduction of approximately 10x, 9x, 5x and 2x respectively compared to the best available baselines.
Answer-Centric or Reasoning-Driven? Uncovering the Latent Memory Anchor in LLMs
While Large Language Models (LLMs) demonstrate impressive reasoning capabilities, growing evidence suggests much of their success stems from memorized answer-reasoning patterns rather than genuine inference. In this work, we investigate a central question: are LLMs primarily anchored to final answers or to the textual pattern of reasoning chains? We propose a five-level answer-visibility prompt framework that systematically manipulates answer cues and probes model behavior through indirect, behavioral analysis. Experiments across state-of-the-art LLMs reveal a strong and consistent reliance on explicit answers. The performance drops by 26.90\% when answer cues are masked, even with complete reasoning chains. These findings suggest that much of the reasoning exhibited by LLMs may reflect post-hoc rationalization rather than true inference, calling into question their inferential depth. Our study uncovers the answer-anchoring phenomenon with rigorous empirical validation and underscores the need for a more nuanced understanding of what constitutes reasoning in LLMs.
Self-AMPLIFY: Improving Small Language Models with Self Post Hoc Explanations
Incorporating natural language rationales in the prompt and In-Context Learning (ICL) has led to a significant improvement of Large Language Models (LLMs) performance. However, rationales currently require human-annotation or the use of auxiliary proxy models to target promising samples or generate high-quality rationales. In this work, we propose Self-AMPLIFY to generate automatically rationales from post hoc explanation methods applied to Small Language Models (SLMs) to improve their own performance. Self-AMPLIFY is a 3-step method that targets samples, generates rationales and builds a final prompt to leverage ICL. Self-AMPLIFY performance is evaluated on two SLMs and two datasets requiring reasoning abilities: these experiments show that Self-AMPLIFY achieves good results against competitors. Self-AMPLIFY is the first method to apply post hoc explanation methods to SLM to generate rationales to improve their own performance in a fully automated manner.
Think Clearly: Improving Reasoning via Redundant Token Pruning
Recent large language models have shown promising capabilities in long-form reasoning, following structured chains of thought before arriving at a final answer. However, we observe that these reasoning paths tend to include substantial redundancy; analyzing attention patterns reveals that attention scores are widely scattered, particularly incorrect answers exhibit greater attention sparsity. In this paper, we demonstrate that deliberately removing this redundancy in the reasoning process significantly improves performance through clear thinking, i.e., removing distraction. Specifically, we systematically identify reasoning redundancy by measuring token-level attention scores to a special end-of-thinking token, which is appended to an explicit instruction inserted to conclude each intermediate reasoning step. Furthermore, we propose structure-aware pruning that prioritizes removing tokens in low-contributing reasoning chunks over individual tokens. After evicting redundant tokens, we remove the injected end-of-thinking instruction, then resume the reasoning generation. We demonstrate that our method significantly improves overall accuracy across reasoning-intensive benchmarks without any training involved. In particular, our method shows strong performance on challenging mathematical competition benchmarks such as AIME and AMC, where reasoning redundancy is more prevalent.
Inference Scaling vs Reasoning: An Empirical Analysis of Compute-Optimal LLM Problem-Solving
Recent advances in large language models (LLMs) have predominantly focused on maximizing accuracy and reasoning capabilities, often overlooking crucial computational efficiency considerations. While this approach has yielded impressive accuracy improvements, it has led to methods that may be impractical for real-world deployment due to computational overhead and latency constraints. This paper investigates the potential synergy between reasoning enhancement and computational efficiency by analyzing the integration of two contrasting approaches: Quiet-STaR (Self-Taught Reasoner) and REBASE (REward BAlanced SEarch). Through comprehensive empirical analysis using the Mistral-7B model on the GSM8K dataset, we demonstrate that while each method excels in its primary objective-Quiet-STaR achieving superior accuracy (32.03%) despite high computational cost (554.66s runtime, 12.73T FLOPs), and REBASE providing exceptional efficiency (8.47s runtime, 2.35T FLOPs) while maintaining baseline-comparable accuracy (10.94%)-their integration reveals fundamental challenges in reconciling reasoning depth with computational efficiency. The combined approach unexpectedly results in degraded performance (9.38% accuracy, 143.66s runtime), highlighting critical insights about the complex interplay between reasoning enhancement and efficiency optimization in LLMs. Our findings illuminate the need for novel architectures and algorithms specifically designed to bridge the gap between these competing objectives, while providing concrete directions for future research in compute-efficient reasoning methods.
Harnessing the Reasoning Economy: A Survey of Efficient Reasoning for Large Language Models
Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability to perform complex reasoning tasks, transitioning from fast and intuitive thinking (System 1) to slow and deep reasoning (System 2). While System 2 reasoning improves task accuracy, it often incurs substantial computational costs due to its slow thinking nature and inefficient or unnecessary reasoning behaviors. In contrast, System 1 reasoning is computationally efficient but leads to suboptimal performance. Consequently, it is critical to balance the trade-off between performance (benefits) and computational costs (budgets), giving rise to the concept of reasoning economy. In this survey, we provide a comprehensive analysis of reasoning economy in both the post-training and test-time inference stages of LLMs, encompassing i) the cause of reasoning inefficiency, ii) behavior analysis of different reasoning patterns, and iii) potential solutions to achieve reasoning economy. By offering actionable insights and highlighting open challenges, we aim to shed light on strategies for improving the reasoning economy of LLMs, thereby serving as a valuable resource for advancing research in this evolving area. We also provide a public repository to continually track developments in this fast-evolving field.
Properties and Challenges of LLM-Generated Explanations
The self-rationalising capabilities of large language models (LLMs) have been explored in restricted settings, using task/specific data sets. However, current LLMs do not (only) rely on specifically annotated data; nonetheless, they frequently explain their outputs. The properties of the generated explanations are influenced by the pre-training corpus and by the target data used for instruction fine-tuning. As the pre-training corpus includes a large amount of human-written explanations "in the wild", we hypothesise that LLMs adopt common properties of human explanations. By analysing the outputs for a multi-domain instruction fine-tuning data set, we find that generated explanations show selectivity and contain illustrative elements, but less frequently are subjective or misleading. We discuss reasons and consequences of the properties' presence or absence. In particular, we outline positive and negative implications depending on the goals and user groups of the self-rationalising system.
Data-Centric Human Preference Optimization with Rationales
Reinforcement learning from human feedback plays a crucial role in aligning language models towards human preferences, traditionally represented through comparisons between pairs or sets of responses within a given context. While many studies have enhanced algorithmic techniques to optimize learning from such data, this work shifts focus to improving preference learning through a data-centric approach. Specifically, we propose enriching existing preference datasets with machine-generated rationales that explain the reasons behind choices. We develop a simple and principled framework to augment current preference learning methods with rationale information. Our comprehensive analysis highlights how rationales enhance learning efficiency. Extensive experiments reveal that rationale-enriched preference learning offers multiple advantages: it improves data efficiency, accelerates convergence to higher-performing models, and reduces verbosity bias and hallucination. Furthermore, this framework is versatile enough to integrate with various preference optimization algorithms. Overall, our findings highlight the potential of re-imagining data design for preference learning, demonstrating that even freely available machine-generated rationales can significantly boost performance across multiple dimensions. The code repository is available at https: //github.com/reds-lab/preference-learning-with-rationales
Fast on the Easy, Deep on the Hard: Efficient Reasoning via Powered Length Penalty
Large language models (LLMs) have demonstrated significant advancements in reasoning capabilities, performing well on various challenging benchmarks. Techniques like Chain-of-Thought prompting have been introduced to further improve reasoning. However, these approaches frequently generate longer outputs, which in turn increase computational latency. Although some methods use reinforcement learning to shorten reasoning, they often apply uniform penalties without considering the problem's complexity, leading to suboptimal outcomes. In this study, we seek to enhance the efficiency of LLM reasoning by promoting conciseness for simpler problems while preserving sufficient reasoning for more complex ones for accuracy, thus improving the model's overall performance. Specifically, we manage the model's reasoning efficiency by dividing the reward function and including a novel penalty for output length. Our approach has yielded impressive outcomes in benchmark evaluations across three datasets: GSM8K, MATH500, and AIME2024. For the comparatively simpler datasets GSM8K and MATH500, our method has effectively shortened output lengths while preserving or enhancing accuracy. On the more demanding AIME2024 dataset, our approach has resulted in improved accuracy.
ALR^2: A Retrieve-then-Reason Framework for Long-context Question Answering
The context window of large language models (LLMs) has been extended significantly in recent years. However, while the context length that the LLM can process has grown, the capability of the model to accurately reason over that context degrades noticeably. This occurs because modern LLMs often become overwhelmed by the vast amount of information in the context; when answering questions, the model must identify and reason over relevant evidence sparsely distributed throughout the text. To alleviate the challenge of long-context reasoning, we develop a retrieve-then-reason framework, enabling LLMs to reason over relevant evidence collected during an intermediate retrieval step. We find that modern LLMs struggle to accurately retrieve relevant facts and instead, often hallucinate "retrieved facts", resulting in flawed reasoning and the production of incorrect answers. To address these issues, we introduce ALR^2, a method that augments the long-context reasoning capability of LLMs via an explicit two-stage procedure, i.e., aligning LLMs with the objectives of both retrieval and reasoning. We demonstrate the efficacy of ALR^2 for mitigating performance degradation in long-context reasoning tasks. Through extensive experiments on long-context QA benchmarks, we find our method to outperform competitive baselines by large margins, achieving at least 8.4 and 7.9 EM gains on the long-context versions of HotpotQA and SQuAD datasets, respectively.
Self-Training Meets Consistency: Improving LLMs' Reasoning With Consistency-Driven Rationale Evaluation
Self-training approach for large language models (LLMs) improves reasoning abilities by training the models on their self-generated rationales. Previous approaches have labeled rationales that produce correct answers for a given question as appropriate for training. However, a single measure risks misjudging rationale quality, leading the models to learn flawed reasoning patterns. To address this issue, we propose CREST (Consistency-driven Rationale Evaluation for Self-Training), a self-training framework that further evaluates each rationale through follow-up questions and leverages this evaluation to guide its training. Specifically, we introduce two methods: (1) filtering out rationales that frequently result in incorrect answers on follow-up questions and (2) preference learning based on mixed preferences from rationale evaluation results of both original and follow-up questions. Experiments on three question-answering datasets using open LLMs show that CREST not only improves the logical robustness and correctness of rationales but also improves reasoning abilities compared to previous self-training approaches.
When Thinking Fails: The Pitfalls of Reasoning for Instruction-Following in LLMs
Reasoning-enhanced large language models (RLLMs), whether explicitly trained for reasoning or prompted via chain-of-thought (CoT), have achieved state-of-the-art performance on many complex reasoning tasks. However, we uncover a surprising and previously overlooked phenomenon: explicit CoT reasoning can significantly degrade instruction-following accuracy. Evaluating 15 models on two benchmarks: IFEval (with simple, rule-verifiable constraints) and ComplexBench (with complex, compositional constraints), we consistently observe performance drops when CoT prompting is applied. Through large-scale case studies and an attention-based analysis, we identify common patterns where reasoning either helps (e.g., with formatting or lexical precision) or hurts (e.g., by neglecting simple constraints or introducing unnecessary content). We propose a metric, constraint attention, to quantify model focus during generation and show that CoT reasoning often diverts attention away from instruction-relevant tokens. To mitigate these effects, we introduce and evaluate four strategies: in-context learning, self-reflection, self-selective reasoning, and classifier-selective reasoning. Our results demonstrate that selective reasoning strategies, particularly classifier-selective reasoning, can substantially recover lost performance. To our knowledge, this is the first work to systematically expose reasoning-induced failures in instruction-following and offer practical mitigation strategies.
Patience Is The Key to Large Language Model Reasoning
Recent advancements in the field of large language models, particularly through the Chain of Thought (CoT) approach, have demonstrated significant improvements in solving complex problems. However, existing models either tend to sacrifice detailed reasoning for brevity due to user preferences, or require extensive and expensive training data to learn complicated reasoning ability, limiting their potential in solving complex tasks. To bridge this gap, following the concept of scaling test-time, we propose a simple method by encouraging models to adopt a more patient reasoning style without the need of introducing new knowledge or skills. To employ a preference optimization approach, we generate detailed reasoning processes as positive examples and simple answers as negative examples, thereby training the model to favor thoroughness in its responses. Our results demonstrate a performance increase of up to 6.7% on GSM8k with training just on a lightweight dataset.
Divide and Conquer for Large Language Models Reasoning
Large language models (LLMs) have shown impressive performance in various reasoning benchmarks with the emergence of Chain-of-Thought (CoT) and its derivative methods, particularly in tasks involving multi-choice questions (MCQs). However, current works all process data uniformly without considering the problem-solving difficulty, which means an excessive focus on simple questions while insufficient to intricate ones. To address this challenge, we inspired by humans using heuristic strategies to categorize tasks and handle them individually, propose to apply the Divide and Conquer to LLMs reasoning. First, we divide questions into different subsets based on the statistical confidence score (CS), then fix nearly resolved sets and conquer demanding nuanced process ones with elaborately designed methods, including Prior Knowledge based Reasoning (PKR) and Filter Choices based Reasoning (FCR), as well as their integration variants. Our experiments demonstrate that this proposed strategy significantly boosts the models' reasoning abilities across nine datasets involving arithmetic, commonsense, and logic tasks. For instance, compared to baseline, we make a striking improvement on low confidence subsets of 8.72\% for AQuA, 15.07\% for ARC Challenge and 7.71\% for RiddleSense. In addition, through extensive analysis on length of rationale and number of options, we verify that longer reasoning paths in PKR could prevent models from referring infer-harmful shortcuts, and also find that removing irrelevant choices in FCR would substantially avoid models' confusion. The code is at https://github.com/AiMijie/Divide-and-Conquer
Efficient Inference for Large Reasoning Models: A Survey
Large Reasoning Models (LRMs) significantly improve the reasoning ability of Large Language Models (LLMs) by learning to reason, exhibiting promising performance in complex task-solving. However, their deliberative reasoning process leads to inefficiencies in token usage, memory consumption, and inference time. Thus, this survey provides a review of efficient inference methods designed specifically for LRMs, focusing on mitigating token inefficiency while preserving the reasoning quality. First, we introduce a taxonomy to group the recent methods into two main categories: (a) explicit compact Chain-of-Thought (CoT), which reduces tokens while keeping the explicit reasoning structure, and (b) implicit latent CoT, which encodes reasoning steps within hidden representations instead of explicit tokens. Meanwhile, we discuss their strengths and weaknesses. Then, we conduct empirical analyses on existing methods from performance and efficiency aspects. Besides, we present open challenges in this field, including human-centric controllable reasoning, trade-off between interpretability and efficiency of reasoning, ensuring safety of efficient reasoning, and broader applications of efficient reasoning. In addition, we highlight key insights for enhancing LRMs' inference efficiency via techniques such as model merging, new architectures, and agent routers. We hope this work serves as a valuable guide, helping researchers overcome challenges in this vibrant fieldhttps://github.com/yueliu1999/Awesome-Efficient-Inference-for-LRMs.
Thought Anchors: Which LLM Reasoning Steps Matter?
Reasoning large language models have recently achieved state-of-the-art performance in many fields. However, their long-form chain-of-thought reasoning creates interpretability challenges as each generated token depends on all previous ones, making the computation harder to decompose. We argue that analyzing reasoning traces at the sentence level is a promising approach to understanding reasoning processes. We present three complementary attribution methods: (1) a black-box method measuring each sentence's counterfactual importance by comparing final answers across 100 rollouts conditioned on the model generating that sentence or one with a different meaning; (2) a white-box method of aggregating attention patterns between pairs of sentences, which identified ``broadcasting'' sentences that receive disproportionate attention from all future sentences via ``receiver'' attention heads; (3) a causal attribution method measuring logical connections between sentences by suppressing attention toward one sentence and measuring the effect on each future sentence's tokens. Each method provides evidence for the existence of thought anchors, reasoning steps that have outsized importance and that disproportionately influence the subsequent reasoning process. These thought anchors are typically planning or backtracking sentences. We provide an open-source tool (www.thought-anchors.com) for visualizing the outputs of our methods, and present a case study showing converging patterns across methods that map how a model performs multi-step reasoning. The consistency across methods demonstrates the potential of sentence-level analysis for a deeper understanding of reasoning models.
Reasoning Elicitation in Language Models via Counterfactual Feedback
Despite the increasing effectiveness of language models, their reasoning capabilities remain underdeveloped. In particular, causal reasoning through counterfactual question answering is lacking. This work aims to bridge this gap. We first derive novel metrics that balance accuracy in factual and counterfactual questions, capturing a more complete view of the reasoning abilities of language models than traditional factual-only based metrics. Second, we propose several fine-tuning approaches that aim to elicit better reasoning mechanisms, in the sense of the proposed metrics. Finally, we evaluate the performance of the fine-tuned language models in a variety of realistic scenarios. In particular, we investigate to what extent our fine-tuning approaches systemically achieve better generalization with respect to the base models in several problems that require, among others, inductive and deductive reasoning capabilities.
Improving Language Model Reasoning with Self-motivated Learning
Large-scale high-quality training data is important for improving the performance of models. After trained with data that has rationales (reasoning steps), models gain reasoning capability. However, the dataset with high-quality rationales is relatively scarce due to the high annotation cost. To address this issue, we propose Self-motivated Learning framework. The framework motivates the model itself to automatically generate rationales on existing datasets. Based on the inherent rank from correctness across multiple rationales, the model learns to generate better rationales, leading to higher reasoning capability. Specifically, we train a reward model with the rank to evaluate the quality of rationales, and improve the performance of reasoning through reinforcement learning. Experiment results of Llama2 7B on multiple reasoning datasets show that our method significantly improves the reasoning ability of models, even outperforming text-davinci-002 in some datasets.
Customizing Language Model Responses with Contrastive In-Context Learning
Large language models (LLMs) are becoming increasingly important for machine learning applications. However, it can be challenging to align LLMs with our intent, particularly when we want to generate content that is preferable over others or when we want the LLM to respond in a certain style or tone that is hard to describe. To address this challenge, we propose an approach that uses contrastive examples to better describe our intent. This involves providing positive examples that illustrate the true intent, along with negative examples that show what characteristics we want LLMs to avoid. The negative examples can be retrieved from labeled data, written by a human, or generated by the LLM itself. Before generating an answer, we ask the model to analyze the examples to teach itself what to avoid. This reasoning step provides the model with the appropriate articulation of the user's need and guides it towards generting a better answer. We tested our approach on both synthesized and real-world datasets, including StackExchange and Reddit, and found that it significantly improves performance compared to standard few-shot prompting
Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement
Recent research enhances language model reasoning by scaling test-time compute via longer chain-of-thought traces. This often improves accuracy but also introduces redundancy and high computational cost, especially for small language models distilled with supervised fine-tuning (SFT). In this work, we propose new algorithms to improve token-efficient reasoning with small-scale models by effectively trading off accuracy and computation. We first show that the post-SFT model fails to determine the optimal stopping point of the reasoning process, resulting in verbose and repetitive outputs. Verbosity also significantly varies across wrong vs correct responses. To address these issues, we propose two solutions: (1) Temperature scaling (TS) to control the stopping point for the thinking phase and thereby trace length, and (2) TLDR: a length-regularized reinforcement learning method based on GRPO that facilitates multi-level trace length control (e.g. short, medium, long reasoning). Experiments on four reasoning benchmarks, MATH500, AMC, AIME24 and OlympiadBench, demonstrate that TS is highly effective compared to s1's budget forcing approach and TLDR significantly improves token efficiency by about 50% with minimal to no accuracy loss over the SFT baseline. Moreover, TLDR also facilitates flexible control over the response length, offering a practical and effective solution for token-efficient reasoning in small models. Ultimately, our work reveals the importance of stopping time control, highlights shortcomings of pure SFT, and provides effective algorithmic recipes.
Towards Understanding Chain-of-Thought Prompting: An Empirical Study of What Matters
Chain-of-Thought (CoT) prompting can dramatically improve the multi-step reasoning abilities of large language models (LLMs). CoT explicitly encourages the LLM to generate intermediate rationales for solving a problem, by providing a series of reasoning steps in the demonstrations. Despite its success, there is still little understanding of what makes CoT prompting effective and which aspects of the demonstrated reasoning steps contribute to its performance. In this paper, we show that CoT reasoning is possible even with invalid demonstrations - prompting with invalid reasoning steps can achieve over 80-90% of the performance obtained using CoT under various metrics, while still generating coherent lines of reasoning during inference. Further experiments show that other aspects of the rationales, such as being relevant to the query and correctly ordering the reasoning steps, are much more important for effective CoT reasoning. Overall, these findings both deepen our understanding of CoT prompting, and open up new questions regarding LLMs' capability to learn to reason in context.
What is an "Abstract Reasoner"? Revisiting Experiments and Arguments about Large Language Models
Recent work has argued that large language models (LLMs) are not "abstract reasoners", citing their poor zero-shot performance on a variety of challenging tasks as evidence. We revisit these experiments in order to add nuance to the claim. First, we show that while LLMs indeed perform poorly in a zero-shot setting, even tuning a small subset of parameters for input encoding can enable near-perfect performance. However, we also show that this finetuning does not necessarily transfer across datasets. We take this collection of empirical results as an invitation to (re-)open the discussion of what it means to be an "abstract reasoner", and why it matters whether LLMs fit the bill.
Incentivizing Reasoning for Advanced Instruction-Following of Large Language Models
Existing large language models (LLMs) face challenges of following complex instructions, especially when multiple constraints are present and organized in paralleling, chaining, and branching structures. One intuitive solution, namely chain-of-thought (CoT), is expected to universally improve capabilities of LLMs. However, we find that the vanilla CoT exerts a negative impact on performance due to its superficial reasoning pattern of simply paraphrasing the instructions. It fails to peel back the compositions of constraints for identifying their relationship across hierarchies of types and dimensions. To this end, we propose a systematic method to boost LLMs in dealing with complex instructions via incentivizing reasoning for test-time compute scaling. First, we stem from the decomposition of complex instructions under existing taxonomies and propose a reproducible data acquisition method. Second, we exploit reinforcement learning (RL) with verifiable rule-centric reward signals to cultivate reasoning specifically for instruction following. We address the shallow, non-essential nature of reasoning under complex instructions via sample-wise contrast for superior CoT enforcement. We also exploit behavior cloning of experts to facilitate steady distribution shift from fast-thinking LLMs to skillful reasoners. Extensive evaluations on seven comprehensive benchmarks confirm the validity of the proposed method, where a 1.5B LLM achieves 11.74% gains with performance comparable to a 8B LLM. Codes and data are available at https://github.com/yuleiqin/RAIF.
Evaluating Step-by-step Reasoning Traces: A Survey
Step-by-step reasoning is widely used to enhance the reasoning ability of large language models (LLMs) in complex problems. Evaluating the quality of reasoning traces is crucial for understanding and improving LLM reasoning. However, the evaluation criteria remain highly unstandardized, leading to fragmented efforts in developing metrics and meta-evaluation benchmarks. To address this gap, this survey provides a comprehensive overview of step-by-step reasoning evaluation, proposing a taxonomy of evaluation criteria with four top-level categories (groundedness, validity, coherence, and utility). We then categorize metrics based on their implementations, survey which metrics are used for assessing each criterion, and explore whether evaluator models can transfer across different criteria. Finally, we identify key directions for future research.
SWI: Speaking with Intent in Large Language Models
Intent, typically clearly formulated and planned, functions as a cognitive framework for reasoning and problem-solving. This paper introduces the concept of Speaking with Intent (SWI) in large language models (LLMs), where the explicitly generated intent encapsulates the model's underlying intention and provides high-level planning to guide subsequent analysis and communication. By emulating deliberate and purposeful thoughts in the human mind, SWI is hypothesized to enhance the reasoning capabilities and generation quality of LLMs. Extensive experiments on mathematical reasoning benchmarks consistently demonstrate the superiority of Speaking with Intent over Baseline (i.e., generation without explicit intent). Moreover, SWI outperforms answer-trigger prompting methods Chain-of-Thought and Plan-and-Solve and maintains competitive performance with the strong method ARR (Analyzing, Retrieving, and Reasoning). Additionally, the effectiveness and generalizability of SWI are solidified on reasoning-intensive question answering (QA) and text summarization benchmarks, where SWI brings consistent improvement to the Baseline generation. In text summarization, SWI-generated summaries exhibit greater accuracy, conciseness, and factual correctness, with fewer hallucinations. Furthermore, human evaluations verify the coherence, effectiveness, and interpretability of the intent produced by SWI. This proof-of-concept study creates a novel avenue for enhancing LLMs' reasoning abilities with cognitive notions.
Knowledge-Augmented Reasoning Distillation for Small Language Models in Knowledge-Intensive Tasks
Large Language Models (LLMs) have shown promising performance in knowledge-intensive reasoning tasks that require a compound understanding of knowledge. However, deployment of the LLMs in real-world applications can be challenging due to their high computational requirements and concerns on data privacy. Previous studies have focused on building task-specific small language models (LMs) by fine-tuning them with labeled data or distilling LLMs. However, these approaches are ill-suited for knowledge-intensive reasoning tasks due to the limited capacity of small LMs in memorizing the knowledge required. Motivated by our theoretical analysis on memorization, we propose Knowledge-Augmented Reasoning Distillation (KARD), a novel method that fine-tunes small LMs to generate rationales with augmented knowledge retrieved from an external knowledge base. Moreover, we further propose a neural reranker to obtain documents relevant to rationale generation. We empirically show that KARD significantly improves the performance of small T5 and Flan-T5 models on the challenging knowledge-intensive reasoning datasets, namely MedQA-USMLE and StrategyQA. Notably, our method makes the 250M models achieve superior performance against the fine-tuned 3B models, having 12 times larger parameters, on both MedQA-USMLE and StrategyQA benchmarks.
Full Automation of Goal-driven LLM Dialog Threads with And-Or Recursors and Refiner Oracles
We automate deep step-by step reasoning in an LLM dialog thread by recursively exploring alternatives (OR-nodes) and expanding details (AND-nodes) up to a given depth. Starting from a single succinct task-specific initiator we steer the automated dialog thread to stay focussed on the task by synthesizing a prompt that summarizes the depth-first steps taken so far. Our algorithm is derived from a simple recursive descent implementation of a Horn Clause interpreter, except that we accommodate our logic engine to fit the natural language reasoning patterns LLMs have been trained on. Semantic similarity to ground-truth facts or oracle advice from another LLM instance is used to restrict the search space and validate the traces of justification steps returned as answers. At the end, the unique minimal model of a generated Horn Clause program collects the results of the reasoning process. As applications, we sketch implementations of consequence predictions, causal explanations, recommendation systems and topic-focussed exploration of scientific literature.
Rationale-Enhanced Language Models are Better Continual Relation Learners
Continual relation extraction (CRE) aims to solve the problem of catastrophic forgetting when learning a sequence of newly emerging relations. Recent CRE studies have found that catastrophic forgetting arises from the model's lack of robustness against future analogous relations. To address the issue, we introduce rationale, i.e., the explanations of relation classification results generated by large language models (LLM), into CRE task. Specifically, we design the multi-task rationale tuning strategy to help the model learn current relations robustly. We also conduct contrastive rationale replay to further distinguish analogous relations. Experimental results on two standard benchmarks demonstrate that our method outperforms the state-of-the-art CRE models.
Masked Thought: Simply Masking Partial Reasoning Steps Can Improve Mathematical Reasoning Learning of Language Models
In reasoning tasks, even a minor error can cascade into inaccurate results, leading to suboptimal performance of large language models in such domains. Earlier fine-tuning approaches sought to mitigate this by leveraging more precise supervisory signals from human labeling, larger models, or self-sampling, although at a high cost. Conversely, we develop a method that avoids external resources, relying instead on introducing perturbations to the input. Our training approach randomly masks certain tokens within the chain of thought, a technique we found to be particularly effective for reasoning tasks. When applied to fine-tuning with GSM8K, this method achieved a 5% improvement in accuracy over standard supervised fine-tuning with a few codes modified and no additional labeling effort. Furthermore, it is complementary to existing methods. When integrated with related data augmentation methods, it leads to an average improvement of 3% improvement in GSM8K accuracy and 1% improvement in MATH accuracy across five datasets of various quality and size, as well as two base models. We further investigate the mechanisms behind this improvement through case studies and quantitative analysis, suggesting that our approach may provide superior support for the model in capturing long-distance dependencies, especially those related to questions. This enhancement could deepen understanding of premises in questions and prior steps. Our code is available at Github.
Information-Preserving Reformulation of Reasoning Traces for Antidistillation
Recent advances in Large Language Models (LLMs) show that extending the length of reasoning chains significantly improves performance on complex tasks. While revealing these reasoning traces helps users better follow, verify, and learn from the model's problem-solving process, it also makes them highly vulnerable to unauthorized distillation. To mitigate this risk, proprietary model providers often adopt aggressive protection strategies, such as replacing detailed reasoning with brief summaries, which deprive users of valuable intermediate information. To address this trade-off, we propose PART, an information-preserving antidistillation reformulation of reasoning traces. Motivated by the difference between how humans understand reasoning traces and how LLMs exploit them for supervised fine-tuning, we design a simple but effective two-step reformulation: removing self-talk behaviors and reordering sub-conclusions. A small auxiliary model is trained to perform this reformulation, incurring minimal computational overhead. Extensive experiments demonstrate that PART consistently disrupts distillation across student models of different sizes and types on various reasoning benchmarks. For instance, when training on reformulated traces, even the performance of a large 32B student model decreases from 54.17 to 46.88 on AIME 2024, corresponding to a 13.5% degradation.
Rationalization: A Neural Machine Translation Approach to Generating Natural Language Explanations
We introduce AI rationalization, an approach for generating explanations of autonomous system behavior as if a human had performed the behavior. We describe a rationalization technique that uses neural machine translation to translate internal state-action representations of an autonomous agent into natural language. We evaluate our technique in the Frogger game environment, training an autonomous game playing agent to rationalize its action choices using natural language. A natural language training corpus is collected from human players thinking out loud as they play the game. We motivate the use of rationalization as an approach to explanation generation and show the results of two experiments evaluating the effectiveness of rationalization. Results of these evaluations show that neural machine translation is able to accurately generate rationalizations that describe agent behavior, and that rationalizations are more satisfying to humans than other alternative methods of explanation.
SSPO: Self-traced Step-wise Preference Optimization for Process Supervision and Reasoning Compression
Test-time scaling has proven effective in further enhancing the performance of pretrained Large Language Models (LLMs). However, mainstream post-training methods (i.e., reinforcement learning (RL) with chain-of-thought (CoT) reasoning) often incur substantial computational overhead due to auxiliary models and overthinking. In this paper, we empirically reveal that the incorrect answers partially stem from verbose reasoning processes lacking correct self-fix, where errors accumulate across multiple reasoning steps. To this end, we propose Self-traced Step-wise Preference Optimization (SSPO), a pluggable RL process supervision framework that enables fine-grained optimization of each reasoning step. Specifically, SSPO requires neither auxiliary models nor stepwise manual annotations. Instead, it leverages step-wise preference signals generated by the model itself to guide the optimization process for reasoning compression. Experiments demonstrate that the generated reasoning sequences from SSPO are both accurate and succinct, effectively mitigating overthinking behaviors without compromising model performance across diverse domains and languages.
Step Back to Leap Forward: Self-Backtracking for Boosting Reasoning of Language Models
The integration of slow-thinking mechanisms into large language models (LLMs) offers a promising way toward achieving Level 2 AGI Reasoners, as exemplified by systems like OpenAI's o1. However, several significant challenges remain, including inefficient overthinking and an overreliance on auxiliary reward models. We point out that these limitations stem from LLMs' inability to internalize the search process, a key component of effective reasoning. A critical step toward addressing this issue is enabling LLMs to autonomously determine when and where to backtrack, a fundamental operation in traditional search algorithms. To this end, we propose a self-backtracking mechanism that equips LLMs with the ability to backtrack during both training and inference. This mechanism not only enhances reasoning ability but also efficiency by transforming slow-thinking processes into fast-thinking through self-improvement. Empirical evaluations demonstrate that our proposal significantly enhances the reasoning capabilities of LLMs, achieving a performance gain of over 40 percent compared to the optimal-path supervised fine-tuning method. We believe this study introduces a novel and promising pathway for developing more advanced and robust Reasoners.
Reasoning Path Compression: Compressing Generation Trajectories for Efficient LLM Reasoning
Recent reasoning-focused language models achieve high accuracy by generating lengthy intermediate reasoning paths before producing final answers. While this approach is effective in solving problems that require logical thinking, long reasoning paths significantly increase memory usage and throughput of token generation, limiting the practical deployment of such models. We propose Reasoning Path Compression (RPC), a training-free method that accelerates inference by leveraging the semantic sparsity of reasoning paths. RPC periodically compresses the KV cache by retaining KV cache that receive high importance score, which are computed using a selector window composed of recently generated queries. Experiments show that RPC improves generation throughput of QwQ-32B by up to 1.60times compared to the inference with full KV cache, with an accuracy drop of 1.2% on the AIME 2024 benchmark. Our findings demonstrate that semantic sparsity in reasoning traces can be effectively exploited for compression, offering a practical path toward efficient deployment of reasoning LLMs. Our code is available at https://github.com/jiwonsong-dev/ReasoningPathCompression.
Vision-Language Models Can Self-Improve Reasoning via Reflection
Chain-of-thought (CoT) has proven to improve the reasoning capability of large language models (LLMs). However, due to the complexity of multimodal scenarios and the difficulty in collecting high-quality CoT data, CoT reasoning in multimodal LLMs has been largely overlooked. To this end, we propose a simple yet effective self-training framework, R3V, which iteratively enhances the model's Vision-language Reasoning by Reflecting on CoT Rationales. Our framework consists of two interleaved parts: (1) iteratively bootstrapping positive and negative solutions for reasoning datasets, and (2) reflection on rationale for learning from mistakes. Specifically, we introduce the self-refine and self-select losses, enabling the model to refine flawed rationale and derive the correct answer by comparing rationale candidates. Experiments on a wide range of vision-language tasks show that R3V consistently improves multimodal LLM reasoning, achieving a relative improvement of 23 to 60 percent over GPT-distilled baselines. Additionally, our approach supports self-reflection on generated solutions, further boosting performance through test-time computation.
Interactive Reasoning: Visualizing and Controlling Chain-of-Thought Reasoning in Large Language Models
The output quality of large language models (LLMs) can be improved via "reasoning": generating segments of chain-of-thought (CoT) content to further condition the model prior to producing user-facing output. While these chains contain valuable information, they are verbose and lack explicit organization, making them tedious to review. Moreover, they lack opportunities for user feedback, such as to remove unwanted considerations, add desired ones, or clarify unclear assumptions. We introduce Interactive Reasoning, an interaction design that visualizes chain-of-thought outputs as a hierarchy of topics and enables user review and modification. We implement interactive reasoning in Hippo, a prototype for AI-assisted decision making in the face of uncertain trade-offs. In a user study with 16 participants, we find that interactive reasoning in Hippo allows users to quickly identify and interrupt erroneous generations, efficiently steer the model towards customized responses, and better understand both model reasoning and model outputs. Our work contributes to a new paradigm that incorporates user oversight into LLM reasoning processes.
Enhancing the Reasoning Capabilities of Small Language Models via Solution Guidance Fine-Tuning
Large language models (LLMs) have demonstrated remarkable performance across a wide range of tasks. Advances in prompt engineering and fine-tuning techniques have further enhanced their ability to address complex reasoning challenges. However, these advanced capabilities are often exclusive to models exceeding 100 billion parameters. Although Chain-of-Thought (CoT) fine-tuning methods have been explored for smaller models (under 10 billion parameters), they typically depend on extensive CoT training data, which can introduce inconsistencies and limit effectiveness in low-data settings. To overcome these limitations, this paper introduce a new reasoning strategy Solution Guidance (SG) and a plug-and-play training paradigm Solution-Guidance Fine-Tuning (SGFT) for enhancing the reasoning capabilities of small language models. SG focuses on problem understanding and decomposition at the semantic and logical levels, rather than specific computations, which can effectively improve the SLMs' generalization and reasoning abilities. With only a small amount of SG training data, SGFT can fine-tune a SLM to produce accurate problem-solving guidances, which can then be flexibly fed to any SLM as prompts, enabling it to generate correct answers directly. Experimental results demonstrate that our method significantly improves the performance of SLMs on various reasoning tasks, enhancing both their practicality and efficiency within resource-constrained environments.
A Reasoning Paradigm for Named Entity Recognition
Generative LLMs typically improve Named Entity Recognition (NER) performance through instruction tuning. They excel at generating entities by semantic pattern matching but lack an explicit, verifiable reasoning mechanism. This "cognitive shortcutting" leads to suboptimal performance and brittle generalization, especially in zero-shot and lowresource scenarios where reasoning from limited contextual cues is crucial. To address this issue, a reasoning framework is proposed for NER, which shifts the extraction paradigm from implicit pattern matching to explicit reasoning. This framework consists of three stages: Chain of Thought (CoT) generation, CoT tuning, and reasoning enhancement. First, a dataset annotated with NER-oriented CoTs is generated, which contain task-relevant reasoning chains. Then, they are used to tune the NER model to generate coherent rationales before deriving the final answer. Finally, a reasoning enhancement stage is implemented to optimize the reasoning process using a comprehensive reward signal. This stage ensures explicit and verifiable extractions. Experiments show that ReasoningNER demonstrates impressive cognitive ability in the NER task, achieving competitive performance. In zero-shot settings, it achieves state-of-the-art (SOTA) performance, outperforming GPT-4 by 12.3 percentage points on the F1 score. Analytical results also demonstrate its great potential to advance research in reasoningoriented information extraction. Our codes are available at https://github.com/HuiResearch/ReasoningIE.
Thought-Path Contrastive Learning via Premise-Oriented Data Augmentation for Logical Reading Comprehension
Logical reading comprehension is a challenging task that entails grasping the underlying semantics of text and applying reasoning to deduce the correct answer. Prior researches have primarily focused on enhancing logical reasoning capabilities through Chain-of-Thought (CoT) or data augmentation. However, previous work constructing chain-of-thought rationales concentrates solely on analyzing correct options, neglecting the incorrect alternatives. Addtionally, earlier efforts on data augmentation by altering contexts rely on rule-based methods, which result in generated contexts that lack diversity and coherence. To address these issues, we propose a Premise-Oriented Data Augmentation (PODA) framework. This framework can generate CoT rationales including analyses for both correct and incorrect options, while constructing diverse and high-quality counterfactual contexts from incorrect candidate options. We integrate summarizing premises and identifying premises for each option into rationales. Subsequently, we employ multi-step prompts with identified premises to construct counterfactual context. To facilitate the model's capabilities to better differentiate the reasoning process associated with each option, we introduce a novel thought-path contrastive learning method that compares reasoning paths between the original and counterfactual samples. Experimental results on three representative LLMs demonstrate that our method can improve the baselines substantially across two challenging logical reasoning benchmarks (ReClor and LogiQA 2.0). The data and code are released at https://github.com/lalalamdbf/TPReasoner.
Enhance Reasoning by Learning from Mistakes: Peer-Review Knowledge Distillation from Multiple Large Language Models
Large language models (LLMs) have exhibited complex reasoning abilities by generating question rationales and demonstrated exceptional performance in natural language processing (NLP) tasks. However, these reasoning capabilities generally emerge in models with tens of billions of parameters, creating significant computational challenges for real-world deployment. Recent research has concentrated on improving open-source smaller models through knowledge distillation (KD) from commercial LLMs. Nevertheless, most of these studies rely solely on the responses from one single LLM as the gold rationale for training. In this paper, we introduce a novel Mistake-Aware Peer-Review Distillation (MAPD) approach: 1) Instead of merely obtaining gold rationales from teachers, our method asks teachers to identify and explain the student's mistakes, providing customized instruction learning data. 2) We design a simulated peer-review process between teacher LLMs, which selects only the generated rationales above the acceptance threshold. This reduces the chance of teachers guessing correctly with flawed rationale, improving instructional data quality. Comprehensive experiments and analysis on mathematical, commonsense, and logical reasoning tasks demonstrate the effectiveness of our method.
Context-Aware Document Simplification
To date, most work on text simplification has focused on sentence-level inputs. Early attempts at document simplification merely applied these approaches iteratively over the sentences of a document. However, this fails to coherently preserve the discourse structure, leading to suboptimal output quality. Recently, strategies from controllable simplification have been leveraged to achieve state-of-the-art results on document simplification by first generating a document-level plan (a sequence of sentence-level simplification operations) and using this plan to guide sentence-level simplification downstream. However, this is still limited in that the simplification model has no direct access to the local inter-sentence document context, likely having a negative impact on surface realisation. We explore various systems that use document context within the simplification process itself, either by iterating over larger text units or by extending the system architecture to attend over a high-level representation of document context. In doing so, we achieve state-of-the-art performance on the document simplification task, even when not relying on plan-guidance. Further, we investigate the performance and efficiency tradeoffs of system variants and make suggestions of when each should be preferred.
Agents Thinking Fast and Slow: A Talker-Reasoner Architecture
Large language models have enabled agents of all kinds to interact with users through natural conversation. Consequently, agents now have two jobs: conversing and planning/reasoning. Their conversational responses must be informed by all available information, and their actions must help to achieve goals. This dichotomy between conversing with the user and doing multi-step reasoning and planning can be seen as analogous to the human systems of "thinking fast and slow" as introduced by Kahneman. Our approach is comprised of a "Talker" agent (System 1) that is fast and intuitive, and tasked with synthesizing the conversational response; and a "Reasoner" agent (System 2) that is slower, more deliberative, and more logical, and is tasked with multi-step reasoning and planning, calling tools, performing actions in the world, and thereby producing the new agent state. We describe the new Talker-Reasoner architecture and discuss its advantages, including modularity and decreased latency. We ground the discussion in the context of a sleep coaching agent, in order to demonstrate real-world relevance.
LLM-based Rewriting of Inappropriate Argumentation using Reinforcement Learning from Machine Feedback
Ensuring that online discussions are civil and productive is a major challenge for social media platforms. Such platforms usually rely both on users and on automated detection tools to flag inappropriate arguments of other users, which moderators then review. However, this kind of post-hoc moderation is expensive and time-consuming, and moderators are often overwhelmed by the amount and severity of flagged content. Instead, a promising alternative is to prevent negative behavior during content creation. This paper studies how inappropriate language in arguments can be computationally mitigated. We propose a reinforcement learning-based rewriting approach that balances content preservation and appropriateness based on existing classifiers, prompting an instruction-finetuned large language model (LLM) as our initial policy. Unlike related style transfer tasks, rewriting inappropriate arguments allows deleting and adding content permanently. It is therefore tackled on document level rather than sentence level. We evaluate different weighting schemes for the reward function in both absolute and relative human assessment studies. Systematic experiments on non-parallel data provide evidence that our approach can mitigate the inappropriateness of arguments while largely preserving their content. It significantly outperforms competitive baselines, including few-shot learning, prompting, and humans.
ReCUT: Balancing Reasoning Length and Accuracy in LLMs via Stepwise Trails and Preference Optimization
Recent advances in Chain-of-Thought (CoT) prompting have substantially improved the reasoning capabilities of Large Language Models (LLMs). However, these methods often suffer from overthinking, leading to unnecessarily lengthy or redundant reasoning traces. Existing approaches attempt to mitigate this issue through curating multiple reasoning chains for training LLMs, but their effectiveness is often constrained by the quality of the generated data and prone to overfitting. To address the challenge, we propose Reasoning Compression ThroUgh Stepwise Trials (ReCUT), a novel method aimed at balancing the accuracy and length of reasoning trajectory. Specifically, ReCUT employs a stepwise exploration mechanism and a long-short switched sampling strategy, enabling LLMs to incrementally generate diverse reasoning paths. These paths are evaluated and used to construct preference pairs to train two specialized models (Gemini LLMs)-one optimized for reasoning accuracy, the other for shorter reasoning. A final integrated model is obtained by interpolating the parameters of these two models. Experimental results across multiple math reasoning datasets and backbone models demonstrate that ReCUT significantly reduces reasoning lengths by approximately 30-50%, while maintaining or improving reasoning accuracy compared to various baselines. All codes and data will be released via https://github.com/NEUIR/ReCUT.
AdaR1: From Long-CoT to Hybrid-CoT via Bi-Level Adaptive Reasoning Optimization
Recently, long-thought reasoning models achieve strong performance on complex reasoning tasks, but often incur substantial inference overhead, making efficiency a critical concern. Our empirical analysis reveals that the benefit of using Long-CoT varies across problems: while some problems require elaborate reasoning, others show no improvement, or even degraded accuracy. This motivates adaptive reasoning strategies that tailor reasoning depth to the input. However, prior work primarily reduces redundancy within long reasoning paths, limiting exploration of more efficient strategies beyond the Long-CoT paradigm. To address this, we propose a novel two-stage framework for adaptive and efficient reasoning. First, we construct a hybrid reasoning model by merging long and short CoT models to enable diverse reasoning styles. Second, we apply bi-level preference training to guide the model to select suitable reasoning styles (group-level), and prefer concise and correct reasoning within each style group (instance-level). Experiments demonstrate that our method significantly reduces inference costs compared to other baseline approaches, while maintaining performance. Notably, on five mathematical datasets, the average length of reasoning is reduced by more than 50%, highlighting the potential of adaptive strategies to optimize reasoning efficiency in large language models. Our code is coming soon at https://github.com/StarDewXXX/AdaR1
AutoReason: Automatic Few-Shot Reasoning Decomposition
Chain of Thought (CoT) was introduced in recent research as a method for improving step-by-step reasoning in Large Language Models. However, CoT has limited applications such as its need for hand-crafted few-shot exemplar prompts and no capability to adjust itself to different queries. In this work, we propose a system to automatically generate rationales using CoT. Our method improves multi-step implicit reasoning capabilities by decomposing the implicit query into several explicit questions. This provides interpretability for the model, improving reasoning in weaker LLMs. We test our approach with two Q\&A datasets: StrategyQA and HotpotQA. We show an increase in accuracy with both, especially on StrategyQA. To facilitate further research in this field, the complete source code for this study has been made publicly available on GitHub: https://github.com/miralab-ai/autoreason.
Self-Training Elicits Concise Reasoning in Large Language Models
Chain-of-thought (CoT) reasoning has enabled large language models (LLMs) to utilize additional computation through intermediate tokens to solve complex tasks. However, we posit that typical reasoning traces contain many redundant tokens, incurring extraneous inference costs. Upon examination of the output distribution of current LLMs, we find evidence on their latent ability to reason more concisely, relative to their default behavior. To elicit this capability, we propose simple fine-tuning methods which leverage self-generated concise reasoning paths obtained by best-of-N sampling and few-shot conditioning, in task-specific settings. Our combined method achieves a 30% reduction in output tokens on average, across five model families on GSM8K and MATH, while maintaining average accuracy. By exploiting the fundamental stochasticity and in-context learning capabilities of LLMs, our self-training approach robustly elicits concise reasoning on a wide range of models, including those with extensive post-training. Code is available at https://github.com/TergelMunkhbat/concise-reasoning
Implicit Chain of Thought Reasoning via Knowledge Distillation
To augment language models with the ability to reason, researchers usually prompt or finetune them to produce chain of thought reasoning steps before producing the final answer. However, although people use natural language to reason effectively, it may be that LMs could reason more effectively with some intermediate computation that is not in natural language. In this work, we explore an alternative reasoning approach: instead of explicitly producing the chain of thought reasoning steps, we use the language model's internal hidden states to perform implicit reasoning. The implicit reasoning steps are distilled from a teacher model trained on explicit chain-of-thought reasoning, and instead of doing reasoning "horizontally" by producing intermediate words one-by-one, we distill it such that the reasoning happens "vertically" among the hidden states in different layers. We conduct experiments on a multi-digit multiplication task and a grade school math problem dataset and find that this approach enables solving tasks previously not solvable without explicit chain-of-thought, at a speed comparable to no chain-of-thought.
What the HellaSwag? On the Validity of Common-Sense Reasoning Benchmarks
Common-sense reasoning is a key language model capability because it encapsulates not just specific factual knowledge but rather general language and world understanding. Measuring common-sense reasoning, therefore, is crucial for language models of different sizes and applications. One of the most widely used benchmarks for evaluating such capabilities is HellaSwag; however, in this paper, we show that it has severe construct validity issues. These issues range from basic ungrammaticality and numerous typos to misleading prompts or equally correct options. Furthermore, we show that if models are evaluated only on answer texts, or with "Lorem ipsum dolor..." instead of the question, more than 65% of model predictions remain the same, and this cannot be attributed merely to contamination. Since benchmark scores are an essential part of model selection in both research and commercial applications, these validity issues can have severe consequences. In particular, knowing that taking benchmark scores at face value is ubiquitous, inadequate evaluation leads to ill-informed decisions about models. In this paper, we thoroughly investigate critical validity issues posed by HellaSwag and illustrate them with various evaluations using generative language models of different sizes. We argue that this benchmark does not accurately measure common-sense reasoning and, therefore, should not be used for evaluation in its current state. Based on the results of our study, we propose requirements that should be met by future common-sense reasoning benchmarks. In addition, we release GoldenSwag, a corrected subset of HellaSwag, which, to our belief, facilitates acceptable common-sense reasoning evaluation.
Adaptive Deep Reasoning: Triggering Deep Thinking When Needed
Large language models (LLMs) have shown impressive capabilities in handling complex tasks through long-chain reasoning. However, the extensive reasoning steps involved can significantly increase computational costs, posing challenges for real-world deployment. Recent efforts have focused on optimizing reasoning efficiency by shortening the Chain-of-Thought (CoT) reasoning processes through various approaches, such as length-aware prompt engineering, supervised fine-tuning on CoT data with variable lengths, and reinforcement learning with length penalties. Although these methods effectively reduce reasoning length, they still necessitate an initial reasoning phase. More recent approaches have attempted to integrate long-chain and short-chain reasoning abilities into a single model, yet they still rely on manual control to toggle between short and long CoT. In this work, we propose a novel approach that autonomously switches between short and long reasoning chains based on problem complexity. Our method begins with supervised fine-tuning of the base model to equip both long-chain and short-chain reasoning abilities. We then employ reinforcement learning to further balance short and long CoT generation while maintaining accuracy through two key strategies: first, integrating reinforcement learning with a long-short adaptive group-wise reward strategy to assess prompt complexity and provide corresponding rewards; second, implementing a logit-based reasoning mode switching loss to optimize the model's initial token choice, thereby guiding the selection of the reasoning type. Evaluations on mathematical datasets demonstrate that our model can dynamically switch between long-chain and short-chain reasoning modes without substantially sacrificing performance. This advancement enhances the practicality of reasoning in large language models for real-world applications.
Route to Reason: Adaptive Routing for LLM and Reasoning Strategy Selection
The inherent capabilities of a language model (LM) and the reasoning strategies it employs jointly determine its performance in reasoning tasks. While test-time scaling is regarded as an effective approach to tackling complex reasoning tasks, it incurs substantial computational costs and often leads to "overthinking", where models become trapped in "thought pitfalls". To address this challenge, we propose Route-To-Reason (RTR), a novel unified routing framework that dynamically allocates both LMs and reasoning strategies according to task difficulty under budget constraints. RTR learns compressed representations of both expert models and reasoning strategies, enabling their joint and adaptive selection at inference time. This method is low-cost, highly flexible, and can be seamlessly extended to arbitrary black-box or white-box models and strategies, achieving true plug-and-play functionality. Extensive experiments across seven open source models and four reasoning strategies demonstrate that RTR achieves an optimal trade-off between accuracy and computational efficiency among all baselines, achieving higher accuracy than the best single model while reducing token usage by over 60%.
Large Language Models are Versatile Decomposers: Decompose Evidence and Questions for Table-based Reasoning
Table-based reasoning has shown remarkable progress in combining deep models with discrete reasoning, which requires reasoning over both free-form natural language (NL) questions and structured tabular data. However, previous table-based reasoning solutions usually suffer from significant performance degradation on huge evidence (tables). In addition, most existing methods struggle to reason over complex questions since the required information is scattered in different places. To alleviate the above challenges, we exploit large language models (LLMs) as decomposers for effective table-based reasoning, which (i) decompose huge evidence (a huge table) into sub-evidence (a small table) to mitigate the interference of useless information for table reasoning; and (ii) decompose complex questions into simpler sub-questions for text reasoning. Specifically, we first use the LLMs to break down the evidence (tables) involved in the current question, retaining the relevant evidence and excluding the remaining irrelevant evidence from the huge table. In addition, we propose a "parsing-execution-filling" strategy to alleviate the hallucination dilemma of the chain of thought by decoupling logic and numerical computation in each step. Extensive experiments show that our method can effectively leverage decomposed evidence and questions and outperforms the strong baselines on TabFact, WikiTableQuestion, and FetaQA datasets. Notably, our model outperforms human performance for the first time on the TabFact dataset.
Shop-R1: Rewarding LLMs to Simulate Human Behavior in Online Shopping via Reinforcement Learning
Large Language Models (LLMs) have recently demonstrated strong potential in generating 'believable human-like' behavior in web environments. Prior work has explored augmenting training data with LLM-synthesized rationales and applying supervised fine-tuning (SFT) to enhance reasoning ability, which in turn can improve downstream action prediction. However, the performance of such approaches remains inherently bounded by the reasoning capabilities of the model used to generate the rationales. In this paper, we introduce Shop-R1, a novel reinforcement learning (RL) framework aimed at enhancing the reasoning ability of LLMs for simulation of real human behavior in online shopping environments Specifically, Shop-R1 decomposes the human behavior simulation task into two stages: rationale generation and action prediction, each guided by distinct reward signals. For rationale generation, we leverage internal model signals (e.g., logit distributions) to guide the reasoning process in a self-supervised manner. For action prediction, we propose a hierarchical reward structure with difficulty-aware scaling to prevent reward hacking and enable fine-grained reward assignment. This design evaluates both high-level action types and the correctness of fine-grained sub-action details (attributes and values), rewarding outputs proportionally to their difficulty. Experimental results show that our method achieves a relative improvement of over 65% compared to the baseline.
Fact :Teaching MLLMs with Faithful, Concise and Transferable Rationales
The remarkable performance of Multimodal Large Language Models (MLLMs) has unequivocally demonstrated their proficient understanding capabilities in handling a wide array of visual tasks. Nevertheless, the opaque nature of their black-box reasoning processes persists as an enigma, rendering them uninterpretable and struggling with hallucination. Their ability to execute intricate compositional reasoning tasks is also constrained, culminating in a stagnation of learning progression for these models. In this work, we introduce Fact, a novel paradigm designed to generate multimodal rationales that are faithful, concise, and transferable for teaching MLLMs. This paradigm utilizes verifiable visual programming to generate executable code guaranteeing faithfulness and precision. Subsequently, through a series of operations including pruning, merging, and bridging, the rationale enhances its conciseness. Furthermore, we filter rationales that can be transferred to end-to-end paradigms from programming paradigms to guarantee transferability. Empirical evidence from experiments demonstrates the superiority of our method across models of varying parameter sizes, significantly enhancing their compositional reasoning and generalization ability. Our approach also reduces hallucinations owing to its high correlation between images and text.
Premise Order Matters in Reasoning with Large Language Models
Large language models (LLMs) have accomplished remarkable reasoning performance in various domains. However, in the domain of reasoning tasks, we discover a frailty: LLMs are surprisingly brittle to the ordering of the premises, despite the fact that such ordering does not alter the underlying task. In particular, we observe that LLMs achieve the best performance when the premise order aligns with the context required in intermediate reasoning steps. For example, in deductive reasoning tasks, presenting the premises in the same order as the ground truth proof in the prompt (as opposed to random ordering) drastically increases the model's accuracy. We first examine the effect of premise ordering on deductive reasoning on a variety of LLMs, and our evaluation shows that permuting the premise order can cause a performance drop of over 30%. In addition, we release the benchmark R-GSM, based on GSM8K, to examine the ordering effect for mathematical problem-solving, and we again observe a significant drop in accuracy, relative to the original GSM8K benchmark.
Domain Generalization via Rationale Invariance
This paper offers a new perspective to ease the challenge of domain generalization, which involves maintaining robust results even in unseen environments. Our design focuses on the decision-making process in the final classifier layer. Specifically, we propose treating the element-wise contributions to the final results as the rationale for making a decision and representing the rationale for each sample as a matrix. For a well-generalized model, we suggest the rationale matrices for samples belonging to the same category should be similar, indicating the model relies on domain-invariant clues to make decisions, thereby ensuring robust results. To implement this idea, we introduce a rationale invariance loss as a simple regularization technique, requiring only a few lines of code. Our experiments demonstrate that the proposed approach achieves competitive results across various datasets, despite its simplicity. Code is available at https://github.com/liangchen527/RIDG.
ProTrix: Building Models for Planning and Reasoning over Tables with Sentence Context
Tables play a crucial role in conveying information in various domains. We propose a Plan-then-Reason framework to answer different types of user queries over tables with sentence context. The framework first plans the reasoning paths over the context, then assigns each step to program-based or textual reasoning to reach the final answer. This framework enhances the table reasoning abilities for both in-context learning and fine-tuning methods. GPT-3.5-Turbo following Plan-then-Reason framework surpasses other prompting baselines without self-consistency while using less API calls and in-context demonstrations. We also construct an instruction tuning set TrixInstruct to evaluate the effectiveness of fine-tuning with this framework. We present ProTrix model family by finetuning models on TrixInstruct. Our experiments show that ProTrix family generalizes to diverse unseen tabular tasks with only 6k training instances. We further demonstrate that ProTrix can generate accurate and faithful explanations to answer complex free-form questions. Our work underscores the importance of the planning and reasoning abilities towards a model over tabular tasks with generalizability and interpretability. We open-source our dataset and models at https://github.com/WilliamZR/ProTrix.
Why think step by step? Reasoning emerges from the locality of experience
Humans have a powerful and mysterious capacity to reason. By working through a series of purely mental steps, we can make inferences we would not be capable of making directly -- despite the fact that we get no additional data from the world. Similarly, when large language models generate a series of intermediate steps (a chain of thought) before answering a question, they often produce better answers than they otherwise would. We investigate why and how chain-of-thought reasoning is useful in language models, testing the hypothesis that reasoning is effective when training data consists of local clusters of variables that influence each other strongly. These training conditions enable the chaining of accurate local inferences in order to estimate relationships between variables that were not seen together in training. We prove that there will exist a "reasoning gap", where reasoning through intermediate variables improves inference, for the simple case of an autoregressive density estimator trained on local samples from a chain-structured probabilistic model. We then test our hypothesis empirically in more complex models, training an autoregressive language model on samples from Bayes nets but only including a subset of variables in each sample. We test language models' ability to match conditional probabilities with and without intermediate reasoning steps, finding that intermediate steps are only helpful when the training data is locally structured with respect to dependencies between variables and that the combination of locally-structured observations and reasoning is much more data-efficient than training on all variables. Our results illustrate how the effectiveness of reasoning step by step is rooted in the local statistical structure of the training data.
Measuring Reasoning Utility in LLMs via Conditional Entropy Reduction
Recent advancements in large language models (LLMs) often rely on generating intermediate reasoning steps to enhance accuracy. However, little work has examined how reasoning utility contributes to the final answer's correctness. Due to the stochastic nature of autoregressive generation, generating more context does not guarantee increased confidence in the answer. If we could predict, during generation, whether a reasoning step will be useful, we could stop early or prune ineffective steps, avoiding distractions in the final decision. We present an oracle study on MATH dataset, using Qwen2.5-32B and GPT-4o to generate reasoning chains, and then employing a separate model (Qwen3-8B) to quantify the utility of these chains for final accuracy. Specifically, we measure the model's uncertainty on the answer span Y at each reasoning step using conditional entropy (expected negative log-likelihood over the vocabulary) with context expanding step by step. Our results show a clear pattern: conditional entropy that decreases over steps is strongly associated with correct answers, whereas flat or increasing entropy often results in wrong answers. We also corroborate that incorrect reasoning paths tend to be longer than correct ones, suggesting that longer reasoning does not necessarily yield better outcomes. These findings serve as a foundation to inspire future work on designing efficient reasoning pipelines that detect and avoid unproductive reasoning early.
Causal Evaluation of Language Models
Causal reasoning is viewed as crucial for achieving human-level machine intelligence. Recent advances in language models have expanded the horizons of artificial intelligence across various domains, sparking inquiries into their potential for causal reasoning. In this work, we introduce Causal evaluation of Language Models (CaLM), which, to the best of our knowledge, is the first comprehensive benchmark for evaluating the causal reasoning capabilities of language models. First, we propose the CaLM framework, which establishes a foundational taxonomy consisting of four modules: causal target (i.e., what to evaluate), adaptation (i.e., how to obtain the results), metric (i.e., how to measure the results), and error (i.e., how to analyze the bad results). This taxonomy defines a broad evaluation design space while systematically selecting criteria and priorities. Second, we compose the CaLM dataset, comprising 126,334 data samples, to provide curated sets of causal targets, adaptations, metrics, and errors, offering extensive coverage for diverse research pursuits. Third, we conduct an extensive evaluation of 28 leading language models on a core set of 92 causal targets, 9 adaptations, 7 metrics, and 12 error types. Fourth, we perform detailed analyses of the evaluation results across various dimensions (e.g., adaptation, scale). Fifth, we present 50 high-level empirical findings across 9 dimensions (e.g., model), providing valuable guidance for future language model development. Finally, we develop a multifaceted platform, including a website, leaderboards, datasets, and toolkits, to support scalable and adaptable assessments. We envision CaLM as an ever-evolving benchmark for the community, systematically updated with new causal targets, adaptations, models, metrics, and error types to reflect ongoing research advancements. Project website is at https://opencausalab.github.io/CaLM.
Making Reasoning Matter: Measuring and Improving Faithfulness of Chain-of-Thought Reasoning
Large language models (LLMs) have been shown to perform better when asked to reason step-by-step before answering a question. However, it is unclear to what degree the model's final answer is faithful to the stated reasoning steps. In this paper, we perform a causal mediation analysis on twelve LLMs to examine how intermediate reasoning steps generated by the LLM influence the final outcome and find that LLMs do not reliably use their intermediate reasoning steps when generating an answer. To address this issue, we introduce FRODO, a framework to tailor small-sized LMs to generate correct reasoning steps and robustly reason over these steps. FRODO consists of an inference module that learns to generate correct reasoning steps using an implicit causal reward function and a reasoning module that learns to faithfully reason over these intermediate inferences using a counterfactual and causal preference objective. Our experiments show that FRODO significantly outperforms four competitive baselines. Furthermore, FRODO improves the robustness and generalization ability of the reasoning LM, yielding higher performance on out-of-distribution test sets. Finally, we find that FRODO's rationales are more faithful to its final answer predictions than standard supervised fine-tuning.
Small Language Models Fine-tuned to Coordinate Larger Language Models improve Complex Reasoning
Large Language Models (LLMs) prompted to generate chain-of-thought (CoT) exhibit impressive reasoning capabilities. Recent attempts at prompt decomposition toward solving complex, multi-step reasoning problems depend on the ability of the LLM to simultaneously decompose and solve the problem. A significant disadvantage is that foundational LLMs are typically not available for fine-tuning, making adaptation computationally prohibitive. We believe (and demonstrate) that problem decomposition and solution generation are distinct capabilites, better addressed in separate modules, than by one monolithic LLM. We introduce DaSLaM, which uses a decomposition generator to decompose complex problems into subproblems that require fewer reasoning steps. These subproblems are answered by a solver. We use a relatively small (13B parameters) LM as the decomposition generator, which we train using policy gradient optimization to interact with a solver LM (regarded as black-box) and guide it through subproblems, thereby rendering our method solver-agnostic. Evaluation on multiple different reasoning datasets reveal that with our method, a 175 billion parameter LM (text-davinci-003) can produce competitive or even better performance, compared to its orders-of-magnitude larger successor, GPT-4. Additionally, we show that DaSLaM is not limited by the solver's capabilities as a function of scale; e.g., solver LMs with diverse sizes give significant performance improvement with our solver-agnostic decomposition technique. Exhaustive ablation studies evince the superiority of our modular finetuning technique over exorbitantly large decomposer LLMs, based on prompting alone.
Crosslingual Reasoning through Test-Time Scaling
Reasoning capabilities of large language models are primarily studied for English, even when pretrained models are multilingual. In this work, we investigate to what extent English reasoning finetuning with long chain-of-thoughts (CoTs) can generalize across languages. First, we find that scaling up inference compute for English-centric reasoning language models (RLMs) improves multilingual mathematical reasoning across many languages including low-resource languages, to an extent where they outperform models twice their size. Second, we reveal that while English-centric RLM's CoTs are naturally predominantly English, they consistently follow a quote-and-think pattern to reason about quoted non-English inputs. Third, we discover an effective strategy to control the language of long CoT reasoning, and we observe that models reason better and more efficiently in high-resource languages. Finally, we observe poor out-of-domain reasoning generalization, in particular from STEM to cultural commonsense knowledge, even for English. Overall, we demonstrate the potentials, study the mechanisms and outline the limitations of crosslingual generalization of English reasoning test-time scaling. We conclude that practitioners should let English-centric RLMs reason in high-resource languages, while further work is needed to improve reasoning in low-resource languages and out-of-domain contexts.
Metacognitive Reuse: Turning Recurring LLM Reasoning Into Concise Behaviors
Large language models (LLMs) now solve multi-step problems by emitting extended chains of thought. During the process, they often re-derive the same intermediate steps across problems, inflating token usage and latency. This saturation of the context window leaves less capacity for exploration. We study a simple mechanism that converts recurring reasoning fragments into concise, reusable "behaviors" (name + instruction) via the model's own metacognitive analysis of prior traces. These behaviors are stored in a "behavior handbook" which supplies them to the model in-context at inference or distills them into parameters via supervised fine-tuning. This approach achieves improved test-time reasoning across three different settings - 1) Behavior-conditioned inference: Providing the LLM relevant behaviors in-context during reasoning reduces number of reasoning tokens by up to 46% while matching or improving baseline accuracy; 2) Behavior-guided self-improvement: Without any parameter updates, the model improves its own future reasoning by leveraging behaviors from its own past problem solving attempts. This yields up to 10% higher accuracy than a naive critique-and-revise baseline; and 3) Behavior-conditioned SFT: SFT on behavior-conditioned reasoning traces is more effective at converting non-reasoning models into reasoning models as compared to vanilla SFT. Together, these results indicate that turning slow derivations into fast procedural hints enables LLMs to remember how to reason, not just what to conclude.
Chain of Thoughtlessness: An Analysis of CoT in Planning
Large language model (LLM) performance on reasoning problems typically does not generalize out of distribution. Previous work has claimed that this can be mitigated by modifying prompts to include examples with chains of thought--demonstrations of solution procedures--with the intuition that it is possible to in-context teach an LLM an algorithm for solving the problem. This paper presents a case study of chain of thought on problems from Blocksworld, a classical planning domain, and examine the performance of two state-of-the-art LLMs across two axes: generality of examples given in prompt, and complexity of problems queried with each prompt. While our problems are very simple, we only find meaningful performance improvements from chain of thought prompts when those prompts are exceedingly specific to their problem class, and that those improvements quickly deteriorate as the size n of the query-specified stack grows past the size of stacks shown in the examples. Our results hint that, contrary to previous claims in the literature, CoT's performance improvements do not stem from the model learning general algorithmic procedures via demonstrations and depend on carefully engineering highly problem specific prompts. This spotlights drawbacks of chain of thought, especially because of the sharp tradeoff between possible performance gains and the amount of human labor necessary to generate examples with correct reasoning traces.
MR-UIE: Multi-Perspective Reasoning with Reinforcement Learning for Universal Information Extraction
Large language models (LLMs) demonstrate robust capabilities across diverse research domains. However, their performance in universal information extraction (UIE) remains insufficient, especially when tackling structured output scenarios that involve complex schema descriptions and require multi-step reasoning. While existing approaches enhance the performance of LLMs through in-context learning and instruction tuning, significant limitations nonetheless persist. To enhance the model's generalization ability, we propose integrating reinforcement learning (RL) with multi-perspective reasoning for information extraction (IE) tasks. Our work transitions LLMs from passive extractors to active reasoners, enabling them to understand not only what to extract but also how to reason. Experiments conducted on multiple IE benchmarks demonstrate that MR-UIE consistently elevates extraction accuracy across domains and surpasses state-of-the-art methods on several datasets. Furthermore, incorporating multi-perspective reasoning into RL notably enhances generalization in complex IE tasks, underscoring the critical role of reasoning in challenging scenarios.
R-Capsule: Compressing High-Level Plans for Efficient Large Language Model Reasoning
Chain-of-Thought (CoT) prompting helps Large Language Models (LLMs) tackle complex reasoning by eliciting explicit step-by-step rationales. However, CoT's verbosity increases latency and memory usage and may propagate early errors across long chains. We propose the Reasoning Capsule (R-Capsule), a framework that aims to combine the efficiency of latent reasoning with the transparency of explicit CoT. The core idea is to compress the high-level plan into a small set of learned latent tokens (a Reasoning Capsule) while keeping execution steps lightweight or explicit. This hybrid approach is inspired by the Information Bottleneck (IB) principle, where we encourage the capsule to be approximately minimal yet sufficient for the task. Minimality is encouraged via a low-capacity bottleneck, which helps improve efficiency. Sufficiency is encouraged via a dual objective: a primary task loss for answer accuracy and an auxiliary plan-reconstruction loss that encourages the capsule to faithfully represent the original textual plan. The reconstruction objective helps ground the latent space, thereby improving interpretability and reducing the use of uninformative shortcuts. Our framework strikes a balance between efficiency, accuracy, and interpretability, thereby reducing the visible token footprint of reasoning while maintaining or improving accuracy on complex benchmarks. Our codes are available at: https://anonymous.4open.science/r/Reasoning-Capsule-7BE0
Faithful Reasoning Using Large Language Models
Although contemporary large language models (LMs) demonstrate impressive question-answering capabilities, their answers are typically the product of a single call to the model. This entails an unwelcome degree of opacity and compromises performance, especially on problems that are inherently multi-step. To address these limitations, we show how LMs can be made to perform faithful multi-step reasoning via a process whose causal structure mirrors the underlying logical structure of the problem. Our approach works by chaining together reasoning steps, where each step results from calls to two fine-tuned LMs, one for selection and one for inference, to produce a valid reasoning trace. Our method carries out a beam search through the space of reasoning traces to improve reasoning quality. We demonstrate the effectiveness of our model on multi-step logical deduction and scientific question-answering, showing that it outperforms baselines on final answer accuracy, and generates humanly interpretable reasoning traces whose validity can be checked by the user.
DCR-Consistency: Divide-Conquer-Reasoning for Consistency Evaluation and Improvement of Large Language Models
Evaluating the quality and variability of text generated by Large Language Models (LLMs) poses a significant, yet unresolved research challenge. Traditional evaluation methods, such as ROUGE and BERTScore, which measure token similarity, often fail to capture the holistic semantic equivalence. This results in a low correlation with human judgments and intuition, which is especially problematic in high-stakes applications like healthcare and finance where reliability, safety, and robust decision-making are highly critical. This work proposes DCR, an automated framework for evaluating and improving the consistency of LLM-generated texts using a divide-conquer-reasoning approach. Unlike existing LLM-based evaluators that operate at the paragraph level, our method employs a divide-and-conquer evaluator (DCE) that breaks down the paragraph-to-paragraph comparison between two generated responses into individual sentence-to-paragraph comparisons, each evaluated based on predefined criteria. To facilitate this approach, we introduce an automatic metric converter (AMC) that translates the output from DCE into an interpretable numeric score. Beyond the consistency evaluation, we further present a reason-assisted improver (RAI) that leverages the analytical reasons with explanations identified by DCE to generate new responses aimed at reducing these inconsistencies. Through comprehensive and systematic empirical analysis, we show that our approach outperforms state-of-the-art methods by a large margin (e.g., +19.3% and +24.3% on the SummEval dataset) in evaluating the consistency of LLM generation across multiple benchmarks in semantic, factual, and summarization consistency tasks. Our approach also substantially reduces nearly 90% of output inconsistencies, showing promise for effective hallucination mitigation.
Beyond the Last Answer: Your Reasoning Trace Uncovers More than You Think
Large Language Models (LLMs) leverage step-by-step reasoning to solve complex problems. Standard evaluation practice involves generating a complete reasoning trace and assessing the correctness of the final answer presented at its conclusion. In this paper, we challenge the reliance on the final answer by posing the following two questions: Does the final answer reliably represent the model's optimal conclusion? Can alternative reasoning paths yield different results? To answer these questions, we analyze intermediate reasoning steps, termed subthoughts, and propose a method based on our findings. Our approach involves segmenting a reasoning trace into sequential subthoughts based on linguistic cues. We start by prompting the model to generate continuations from the end-point of each intermediate subthought. We extract a potential answer from every completed continuation originating from different subthoughts. We find that aggregating these answers by selecting the most frequent one (the mode) often yields significantly higher accuracy compared to relying solely on the answer derived from the original complete trace. Analyzing the consistency among the answers derived from different subthoughts reveals characteristics that correlate with the model's confidence and correctness, suggesting potential for identifying less reliable answers. Our experiments across various LLMs and challenging mathematical reasoning datasets (AIME2024 and AIME2025) show consistent accuracy improvements, with gains reaching up to 13\% and 10\% respectively. Implementation is available at: https://github.com/hammoudhasan/SubthoughtReasoner.
Towards Reasoning in Large Language Models: A Survey
Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.
RATIONALYST: Pre-training Process-Supervision for Improving Reasoning
The reasoning steps generated by LLMs might be incomplete, as they mimic logical leaps common in everyday communication found in their pre-training data: underlying rationales are frequently left implicit (unstated). To address this challenge, we introduce RATIONALYST, a model for process-supervision of reasoning based on pre-training on a vast collection of rationale annotations extracted from unlabeled data. We extract 79k rationales from web-scale unlabelled dataset (the Pile) and a combination of reasoning datasets with minimal human intervention. This web-scale pre-training for reasoning allows RATIONALYST to consistently generalize across diverse reasoning tasks, including mathematical, commonsense, scientific, and logical reasoning. Fine-tuned from LLaMa-3-8B, RATIONALYST improves the accuracy of reasoning by an average of 3.9% on 7 representative reasoning benchmarks. It also demonstrates superior performance compared to significantly larger verifiers like GPT-4 and similarly sized models fine-tuned on matching training sets.
Divide-or-Conquer? Which Part Should You Distill Your LLM?
Recent methods have demonstrated that Large Language Models (LLMs) can solve reasoning tasks better when they are encouraged to solve subtasks of the main task first. In this paper we devise a similar strategy that breaks down reasoning tasks into a problem decomposition phase and a problem solving phase and show that the strategy is able to outperform a single stage solution. Further, we hypothesize that the decomposition should be easier to distill into a smaller model compared to the problem solving because the latter requires large amounts of domain knowledge while the former only requires learning general problem solving strategies. We propose methods to distill these two capabilities and evaluate their impact on reasoning outcomes and inference cost. We find that we can distill the problem decomposition phase and at the same time achieve good generalization across tasks, datasets, and models. However, it is harder to distill the problem solving capability without losing performance and the resulting distilled model struggles with generalization. These results indicate that by using smaller, distilled problem decomposition models in combination with problem solving LLMs we can achieve reasoning with cost-efficient inference and local adaptation.
Between Underthinking and Overthinking: An Empirical Study of Reasoning Length and correctness in LLMs
Large language models (LLMs) are increasingly optimized for long reasoning, under the assumption that more reasoning leads to better performance. However, emerging evidence suggests that longer responses can sometimes degrade accuracy rather than improve it. In this paper, we conduct a systematic empirical study of the relationship between reasoning length and answer correctness. We find that LLMs tend to overthink simple problems, generating unnecessarily long outputs, and underthink harder ones, failing to extend their reasoning when it is most needed. This indicates that models might misjudge problem difficulty and fail to calibrate their response length appropriately. Furthermore, we investigate the effects of length reduction with a preference optimization algorithm when simply preferring the shorter responses regardless of answer correctness. Experiments show that the generation length can be significantly reduced while maintaining acceptable accuracy. Our findings highlight generation length as a meaningful signal for reasoning behavior and motivate further exploration into LLMs' self-awareness in reasoning length adaptation.
Self-rationalization improves LLM as a fine-grained judge
LLM-as-a-judge models have been used for evaluating both human and AI generated content, specifically by providing scores and rationales. Rationales, in addition to increasing transparency, help models learn to calibrate its judgments. Enhancing a model's rationale can therefore improve its calibration abilities and ultimately the ability to score content. We introduce Self-Rationalization, an iterative process of improving the rationales for the judge models, which consequently improves the score for fine-grained customizable scoring criteria (i.e., likert-scale scoring with arbitrary evaluation criteria). Self-rationalization works by having the model generate multiple judgments with rationales for the same input, curating a preference pair dataset from its own judgements, and iteratively fine-tuning the judge via DPO. Intuitively, this approach allows the judge model to self-improve by learning from its own rationales, leading to better alignment and evaluation accuracy. After just two iterations -- while only relying on examples in the training set -- human evaluation shows that our judge model learns to produce higher quality rationales, with a win rate of 62% on average compared to models just trained via SFT on rationale . This judge model also achieves high scoring accuracy on BigGen Bench and Reward Bench, outperforming even bigger sized models trained using SFT with rationale, self-consistency or best-of-N sampling by 3% to 9%.
InterroLang: Exploring NLP Models and Datasets through Dialogue-based Explanations
While recently developed NLP explainability methods let us open the black box in various ways (Madsen et al., 2022), a missing ingredient in this endeavor is an interactive tool offering a conversational interface. Such a dialogue system can help users explore datasets and models with explanations in a contextualized manner, e.g. via clarification or follow-up questions, and through a natural language interface. We adapt the conversational explanation framework TalkToModel (Slack et al., 2022) to the NLP domain, add new NLP-specific operations such as free-text rationalization, and illustrate its generalizability on three NLP tasks (dialogue act classification, question answering, hate speech detection). To recognize user queries for explanations, we evaluate fine-tuned and few-shot prompting models and implement a novel Adapter-based approach. We then conduct two user studies on (1) the perceived correctness and helpfulness of the dialogues, and (2) the simulatability, i.e. how objectively helpful dialogical explanations are for humans in figuring out the model's predicted label when it's not shown. We found rationalization and feature attribution were helpful in explaining the model behavior. Moreover, users could more reliably predict the model outcome based on an explanation dialogue rather than one-off explanations.
Learning From Correctness Without Prompting Makes LLM Efficient Reasoner
Large language models (LLMs) have demonstrated outstanding performance across various tasks, yet they still exhibit limitations such as hallucination, unfaithful reasoning, and toxic content. One potential approach to mitigate these issues is learning from human or external feedback (e.g. tools). In this paper, we introduce an intrinsic self-correct reasoning framework for LLMs that eliminates the need for human feedback, external tools, and handcraft prompts. The proposed framework, based on a multi-step reasoning paradigm Learning from Correctness (LeCo), improves reasoning performance without needing to learn from errors. This paradigm prioritizes learning from correct reasoning steps, and a unique method to measure confidence for each reasoning step based on generation logits. Experimental results across various multi-step reasoning tasks demonstrate the effectiveness of the framework in improving reasoning performance with reduced token consumption.
Semantic Exploration with Adaptive Gating for Efficient Problem Solving with Language Models
Recent advancements in large language models (LLMs) have shown remarkable potential in various complex tasks requiring multi-step reasoning methods like tree search to explore diverse reasoning paths. However, existing methods often suffer from computational inefficiency and redundancy. First, they overlook the diversity of task difficulties, leading to unnecessarily extensive searches even for easy tasks. Second, they neglect the semantics of reasoning paths, resulting in redundant exploration of semantically identical paths. To address these limitations, we propose Semantic Exploration with Adaptive Gating (SEAG), a computationally efficient method. SEAG employs an adaptive gating mechanism that dynamically decides whether to conduct a tree search, based on the confidence level of answers from a preceding simple reasoning method. Furthermore, its tree-based exploration consolidates semantically identical reasoning steps, reducing redundant explorations while maintaining or even improving accuracy. Our extensive experiments demonstrate that SEAG significantly improves accuracy by 4.3% on average while requiring only 31% of computational costs compared to existing tree search-based methods on complex reasoning benchmarks including GSM8K and ARC with diverse language models such as Llama2, Llama3, and Mistral.
QCRD: Quality-guided Contrastive Rationale Distillation for Large Language Models
The deployment of large language models (LLMs) faces considerable challenges concerning resource constraints and inference efficiency. Recent research has increasingly focused on smaller, task-specific models enhanced by distilling knowledge from LLMs. However, prior studies have often overlooked the diversity and quality of knowledge, especially the untapped potential of negative knowledge. Constructing effective negative knowledge remains severely understudied. In this paper, we introduce a novel framework called quality-guided contrastive rationale distillation aimed at enhancing reasoning capabilities through contrastive knowledge learning. For positive knowledge, we enrich its diversity through temperature sampling and employ self-consistency for further denoising and refinement. For negative knowledge, we propose an innovative self-adversarial approach that generates low-quality rationales by sampling previous iterations of smaller language models, embracing the idea that one can learn from one's own weaknesses. A contrastive loss is developed to distill both positive and negative knowledge into smaller language models, where an online-updating discriminator is integrated to assess qualities of rationales and assign them appropriate weights, optimizing the training process. Through extensive experiments across multiple reasoning tasks, we demonstrate that our method consistently outperforms existing distillation techniques, yielding higher-quality rationales.
Thinking Fast and Right: Balancing Accuracy and Reasoning Length with Adaptive Rewards
Large language models (LLMs) have demonstrated strong reasoning abilities in mathematical tasks, often enhanced through reinforcement learning (RL). However, RL-trained models frequently produce unnecessarily long reasoning traces -- even for simple queries -- leading to increased inference costs and latency. While recent approaches attempt to control verbosity by adding length penalties to the reward function, these methods rely on fixed penalty terms that are hard to tune and cannot adapt as the model's reasoning capability evolves, limiting their effectiveness. In this work, we propose an adaptive reward-shaping method that enables LLMs to "think fast and right" -- producing concise outputs without sacrificing correctness. Our method dynamically adjusts the reward trade-off between accuracy and response length based on model performance: when accuracy is high, the length penalty increases to encourage faster length reduction; when accuracy drops, the penalty is relaxed to preserve correctness. This adaptive reward accelerates early-stage length reduction while avoiding over-compression in later stages. Experiments across multiple datasets show that our approach consistently and dramatically reduces reasoning length while largely maintaining accuracy, offering a new direction for cost-efficient adaptive reasoning in large-scale language models.
FAC^2E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks. However, such a paradigm fails to comprehensively differentiate the fine-grained language and cognitive skills, rendering the lack of sufficient interpretation to LLMs' capabilities. In this paper, we present FAC^2E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation. Specifically, we formulate LLMs' evaluation in a multi-dimensional and explainable manner by dissociating the language-related capabilities and the cognition-related ones. Besides, through extracting the intermediate reasoning from LLMs, we further break down the process of applying a specific capability into three sub-steps: recalling relevant knowledge, utilizing knowledge, and solving problems. Finally, FAC^2E evaluates each sub-step of each fine-grained capability, providing a two-faceted diagnosis for LLMs. Utilizing FAC^2E, we identify a common shortfall in knowledge utilization among models and propose a straightforward, knowledge-enhanced method to mitigate this issue. Our results not only showcase promising performance enhancements but also highlight a direction for future LLM advancements.
Comparing Inferential Strategies of Humans and Large Language Models in Deductive Reasoning
Deductive reasoning plays a pivotal role in the formulation of sound and cohesive arguments. It allows individuals to draw conclusions that logically follow, given the truth value of the information provided. Recent progress in the domain of large language models (LLMs) has showcased their capability in executing deductive reasoning tasks. Nonetheless, a significant portion of research primarily assesses the accuracy of LLMs in solving such tasks, often overlooking a deeper analysis of their reasoning behavior. In this study, we draw upon principles from cognitive psychology to examine inferential strategies employed by LLMs, through a detailed evaluation of their responses to propositional logic problems. Our findings indicate that LLMs display reasoning patterns akin to those observed in humans, including strategies like supposition following or chain construction. Moreover, our research demonstrates that the architecture and scale of the model significantly affect its preferred method of reasoning, with more advanced models tending to adopt strategies more frequently than less sophisticated ones. Importantly, we assert that a model's accuracy, that is the correctness of its final conclusion, does not necessarily reflect the validity of its reasoning process. This distinction underscores the necessity for more nuanced evaluation procedures in the field.
REFINER: Reasoning Feedback on Intermediate Representations
Language models (LMs) have recently shown remarkable performance on reasoning tasks by explicitly generating intermediate inferences, e.g., chain-of-thought prompting. However, these intermediate inference steps may be inappropriate deductions from the initial context and lead to incorrect final predictions. Here we introduce REFINER, a framework for finetuning LMs to explicitly generate intermediate reasoning steps while interacting with a critic model that provides automated feedback on the reasoning. Specifically, the critic provides structured feedback that the reasoning LM uses to iteratively improve its intermediate arguments. Empirical evaluations of REFINER on three diverse reasoning tasks show significant improvements over baseline LMs of comparable scale. Furthermore, when using GPT-3.5 or ChatGPT as the reasoner, the trained critic significantly improves reasoning without finetuning the reasoner. Finally, our critic model is trained without expensive human-in-the-loop data but can be substituted with humans at inference time.
ASSET: A Dataset for Tuning and Evaluation of Sentence Simplification Models with Multiple Rewriting Transformations
In order to simplify a sentence, human editors perform multiple rewriting transformations: they split it into several shorter sentences, paraphrase words (i.e. replacing complex words or phrases by simpler synonyms), reorder components, and/or delete information deemed unnecessary. Despite these varied range of possible text alterations, current models for automatic sentence simplification are evaluated using datasets that are focused on a single transformation, such as lexical paraphrasing or splitting. This makes it impossible to understand the ability of simplification models in more realistic settings. To alleviate this limitation, this paper introduces ASSET, a new dataset for assessing sentence simplification in English. ASSET is a crowdsourced multi-reference corpus where each simplification was produced by executing several rewriting transformations. Through quantitative and qualitative experiments, we show that simplifications in ASSET are better at capturing characteristics of simplicity when compared to other standard evaluation datasets for the task. Furthermore, we motivate the need for developing better methods for automatic evaluation using ASSET, since we show that current popular metrics may not be suitable when multiple simplification transformations are performed.
Deductive Verification of Chain-of-Thought Reasoning
Large Language Models (LLMs) significantly benefit from Chain-of-Thought (CoT) prompting in performing various reasoning tasks. While CoT allows models to produce more comprehensive reasoning processes, its emphasis on intermediate reasoning steps can inadvertently introduce hallucinations and accumulated errors, thereby limiting models' ability to solve complex reasoning tasks. Inspired by how humans engage in careful and meticulous deductive logical reasoning processes to solve tasks, we seek to enable language models to perform explicit and rigorous deductive reasoning, and also ensure the trustworthiness of their reasoning process through self-verification. However, directly verifying the validity of an entire deductive reasoning process is challenging, even with advanced models like ChatGPT. In light of this, we propose to decompose a reasoning verification process into a series of step-by-step subprocesses, each only receiving their necessary context and premises. To facilitate this procedure, we propose Natural Program, a natural language-based deductive reasoning format. Our approach enables models to generate precise reasoning steps where subsequent steps are more rigorously grounded on prior steps. It also empowers language models to carry out reasoning self-verification in a step-by-step manner. By integrating this verification process into each deductive reasoning stage, we significantly enhance the rigor and trustfulness of generated reasoning steps. Along this process, we also improve the answer correctness on complex reasoning tasks. Code will be released at https://github.com/lz1oceani/verify_cot.
C3oT: Generating Shorter Chain-of-Thought without Compromising Effectiveness
Generating Chain-of-Thought (CoT) before deriving the answer can effectively improve the reasoning capabilities of large language models (LLMs) and significantly improve the accuracy of the generated answer. However, in most cases, the length of the generated CoT is much longer than the desired final answer, which results in additional decoding costs. Furthermore, existing research has discovered that shortening the reasoning steps in CoT, even while preserving the key information, diminishes LLMs' abilities. These phenomena make it difficult to use LLMs and CoT in many real-world applications that only require the final answer and are sensitive to latency, such as search and recommendation. To reduce the costs of model decoding and shorten the length of the generated CoT, this paper presents Conditioned Compressed Chain-of-Thought (C3oT), a CoT compression framework that involves a compressor to compress an original longer CoT into a shorter CoT while maintaining key information and interpretability, a conditioned training method to train LLMs with both longer CoT and shorter CoT simultaneously to learn the corresponding relationships between them, and a conditioned inference method to gain the reasoning ability learned from longer CoT by generating shorter CoT. We conduct experiments over four datasets from arithmetic and commonsense scenarios, showing that the proposed method is capable of compressing the length of generated CoT by up to more than 50% without compromising its effectiveness.
Short-Path Prompting in LLMs: Analyzing Reasoning Instability and Solutions for Robust Performance
Recent years have witnessed significant progress in large language models' (LLMs) reasoning, which is largely due to the chain-of-thought (CoT) approaches, allowing models to generate intermediate reasoning steps before reaching the final answer. Building on these advances, state-of-the-art LLMs are instruction-tuned to provide long and detailed CoT pathways when responding to reasoning-related questions. However, human beings are naturally cognitive misers and will prompt language models to give rather short responses, thus raising a significant conflict with CoT reasoning. In this paper, we delve into how LLMs' reasoning performance changes when users provide short-path prompts. The results and analysis reveal that language models can reason effectively and robustly without explicit CoT prompts, while under short-path prompting, LLMs' reasoning ability drops significantly and becomes unstable, even on grade-school problems. To address this issue, we propose two approaches: an instruction-guided approach and a fine-tuning approach, both designed to effectively manage the conflict. Experimental results show that both methods achieve high accuracy, providing insights into the trade-off between instruction adherence and reasoning accuracy in current models.
Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization
We present Klear-Reasoner, a model with long reasoning capabilities that demonstrates careful deliberation during problem solving, achieving outstanding performance across multiple benchmarks. Although there are already many excellent works related to inference models in the current community, there are still many problems with reproducing high-performance inference models due to incomplete disclosure of training details. This report provides an in-depth analysis of the reasoning model, covering the entire post-training workflow from data preparation and long Chain-of-Thought supervised fine-tuning (long CoT SFT) to reinforcement learning (RL), along with detailed ablation studies for each experimental component. For SFT data, our experiments show that a small number of high-quality data sources are more effective than a large number of diverse data sources, and that difficult samples can achieve better results without accuracy filtering. In addition, we investigate two key issues with current clipping mechanisms in RL: Clipping suppresses critical exploration signals and ignores suboptimal trajectories. To address these challenges, we propose Gradient-Preserving clipping Policy Optimization (GPPO) that gently backpropagates gradients from clipped tokens. GPPO not only enhances the model's exploration capacity but also improves its efficiency in learning from negative samples. Klear-Reasoner exhibits exceptional reasoning abilities in mathematics and programming, scoring 90.5\% on AIME 2024, 83.2\% on AIME 2025, 66.0\% on LiveCodeBench V5 and 58.1\% on LiveCodeBench V6.
JustLogic: A Comprehensive Benchmark for Evaluating Deductive Reasoning in Large Language Models
Logical reasoning is a critical component of Large Language Models (LLMs), and substantial research efforts in recent years have aimed to enhance their deductive reasoning capabilities. However, existing deductive reasoning benchmarks, which are crucial for evaluating and advancing LLMs, are inadequate due to their lack of task complexity, presence of prior knowledge as a confounder, and superficial error analysis. To address these deficiencies, we introduce JustLogic, a synthetically generated deductive reasoning benchmark designed for rigorous evaluation of LLMs. JustLogic is (i) highly complex, capable of generating a diverse range of linguistic patterns, vocabulary, and argument structures; (ii) prior knowledge independent, eliminating the advantage of models possessing prior knowledge and ensuring that only deductive reasoning is used to answer questions; and (iii) capable of in-depth error analysis on the heterogeneous effects of reasoning depth and argument form on model accuracy. Our experimental results on JustLogic reveal that most state-of-the-art (SOTA) LLMs perform significantly worse than the human average, demonstrating substantial room for model improvement. All code and data are available at https://github.com/michaelchen-lab/JustLogic
Lost at the Beginning of Reasoning
Recent advancements in large language models (LLMs) have significantly advanced complex reasoning capabilities, particularly through extended chain-of-thought (CoT) reasoning that incorporates mechanisms such as backtracking, self-reflection and self-correction. Despite these developments, the self-correction abilities of LLMs during long CoT reasoning remain underexplored. And recent findings on overthinking suggest that such models often engage in unnecessarily redundant reasoning. In this work, we empirically show that the first reasoning step exerts a disproportionately large influence on the final prediction - errors introduced at this stage can substantially degrade subsequent reasoning quality. This phenomenon is consistently observed across two state-of-the-art open-source reasoning model families: DeepSeek-R1 and Qwen3. To address this, we propose an efficient sampling strategy that leverages a reward model to identify and retain high-quality first reasoning steps while discarding suboptimal ones, achieving up to a 70% reduction in inference cost without sacrificing accuracy. Finally, we introduce a new benchmark specifically constructed with deliberately flawed first reasoning steps to systematically evaluate model self-correction capabilities, offering a foundation for future research on robust reasoning in LLMs.
Chain of Draft: Thinking Faster by Writing Less
Large Language Models (LLMs) have demonstrated remarkable performance in solving complex reasoning tasks through mechanisms like Chain-of-Thought (CoT) prompting, which emphasizes verbose, step-by-step reasoning. However, humans typically employ a more efficient strategy: drafting concise intermediate thoughts that capture only essential information. In this work, we propose Chain of Draft (CoD), a novel paradigm inspired by human cognitive processes, where LLMs generate minimalistic yet informative intermediate reasoning outputs while solving tasks. By reducing verbosity and focusing on critical insights, CoD matches or surpasses CoT in accuracy while using as little as only 7.6% of the tokens, significantly reducing cost and latency across various reasoning tasks.
Think Silently, Think Fast: Dynamic Latent Compression of LLM Reasoning Chains
Large Language Models (LLMs) achieve superior performance through Chain-of-Thought (CoT) reasoning, but these token-level reasoning chains are computationally expensive and inefficient. In this paper, we introduce Compressed Latent Reasoning (CoLaR), a novel framework that dynamically compresses reasoning processes in latent space through a two-stage training approach. First, during supervised fine-tuning, CoLaR extends beyond next-token prediction by incorporating an auxiliary next compressed embedding prediction objective. This process merges embeddings of consecutive tokens using a compression factor randomly sampled from a predefined range, and trains a specialized latent head to predict distributions of subsequent compressed embeddings. Second, we enhance CoLaR through reinforcement learning (RL) that leverages the latent head's non-deterministic nature to explore diverse reasoning paths and exploit more compact ones. This approach enables CoLaR to: i) perform reasoning at a dense latent level (i.e., silently), substantially reducing reasoning chain length, and ii) dynamically adjust reasoning speed at inference time by simply prompting the desired compression factor. Extensive experiments across four mathematical reasoning datasets demonstrate that CoLaR achieves 14.1% higher accuracy than latent-based baseline methods at comparable compression ratios, and reduces reasoning chain length by 53.3% with only 4.8% performance degradation compared to explicit CoT method. Moreover, when applied to more challenging mathematical reasoning tasks, our RL-enhanced CoLaR demonstrates performance gains of up to 5.4% while dramatically reducing latent reasoning chain length by 82.8%. The code and models will be released upon acceptance.
"Well, Keep Thinking": Enhancing LLM Reasoning with Adaptive Injection Decoding
Large language models (LLMs) exhibit strong reasoning abilities, often attributed to few-shot or zero-shot chain-of-thought (CoT) prompting. While effective, these methods require labor-intensive prompt engineering, raising the question of whether reasoning can be induced without reliance on explicit prompts. In this work, we unlock the reasoning capabilities of LLMs without explicit prompting. Inspired by zero-shot CoT and CoT-decoding, we propose a novel decoding strategy that systematically nudges LLMs to continue reasoning, thereby preventing immature reasoning processes. Specifically, we monitor the model's generation and inject a designated phrase whenever it is likely to conclude its response prematurely, before completing the reasoning process. Our experimental evaluations on diverse reasoning benchmarks demonstrate that our proposed strategy substantially improves LLM reasoning capabilities, highlighting the potential of decoding-based interventions as an alternative to traditional prompting techniques.
Beyond Chains of Thought: Benchmarking Latent-Space Reasoning Abilities in Large Language Models
Large language models (LLMs) can perform reasoning computations both internally within their latent space and externally by generating explicit token sequences like chains of thought. Significant progress in enhancing reasoning abilities has been made by scaling test-time compute. However, understanding and quantifying model-internal reasoning abilities - the inferential "leaps" models make between individual token predictions - remains crucial. This study introduces a benchmark (n = 4,000 items) designed to quantify model-internal reasoning in different domains. We achieve this by having LLMs indicate the correct solution to reasoning problems not through descriptive text, but by selecting a specific language of their initial response token that is different from English, the benchmark language. This not only requires models to reason beyond their context window, but also to overrise their default tendency to respond in the same language as the prompt, thereby posing an additional cognitive strain. We evaluate a set of 18 LLMs, showing significant performance variations, with GPT-4.5 achieving the highest accuracy (74.7%), outperforming models like Grok-2 (67.2%), and Llama 3.1 405B (65.6%). Control experiments and difficulty scaling analyses suggest that while LLMs engage in internal reasoning, we cannot rule out heuristic exploitations under certain conditions, marking an area for future investigation. Our experiments demonstrate that LLMs can "think" via latent-space computations, revealing model-internal inference strategies that need further understanding, especially regarding safety-related concerns such as covert planning, goal-seeking, or deception emerging without explicit token traces.
Towards Rationality in Language and Multimodal Agents: A Survey
Rationality is the quality of being guided by reason, characterized by decision-making that aligns with evidence and logical principles. It plays a crucial role in reliable problem-solving by ensuring well-grounded and consistent solutions. While large language models (LLMs) have made significant progress in generating human-like text, they still exhibit limitations such as bounded knowledge space and inconsistent outputs. In response, recent efforts have shifted toward developing multimodal and multi-agent systems, as well as integrating modules like external tools, programming codes, symbolic reasoners, utility function, and conformal risk controls rather than relying solely on a single LLM for decision-making. This paper surveys the state-of-the-art advancements in language and multimodal agents, evaluates how they contribute to make intelligent agents more rational, and identifies open challenges and future research directions. We maintain an open repository at https://github.com/bowen-upenn/Agent_Rationality.
Beyond Token Length: Step Pruner for Efficient and Accurate Reasoning in Large Language Models
Large Reasoning Models (LRMs) demonstrate strong performance on complex tasks but often suffer from excessive verbosity, known as "overthinking." Existing solutions via reinforcement learning (RL) typically penalize generated tokens to promote conciseness. However, these methods encounter two challenges: responses with fewer tokens do not always correspond to fewer reasoning steps, and models may develop hacking behavior in later stages of training by discarding reasoning steps to minimize token usage. In this work, we introduce Step Pruner (SP), an RL framework that steers LRMs toward more efficient reasoning by favoring compact reasoning steps. Our step-aware reward function prioritizes correctness while imposing penalties for redundant steps, and withholds rewards for incorrect responses to prevent the reinforcement of erroneous reasoning. Moreover, we propose a dynamic stopping mechanism: when the length of any output step exceeds the upper limit, we halt updates to prevent hacking behavior caused by merging steps. Extensive experiments across four reasoning benchmarks demonstrate that SP achieves state-of-the-art accuracy while significantly reducing response length. For instance, on AIME24, SP reduces token usage by 69.7\%.
A Technical Study into Small Reasoning Language Models
The ongoing evolution of language models has led to the development of large-scale architectures that demonstrate exceptional performance across a wide range of tasks. However, these models come with significant computational and energy demands, as well as potential privacy implications. In this context, Small Reasoning Language Models (SRLMs) with approximately 0.5 billion parameters present a compelling alternative due to their remarkable computational efficiency and cost effectiveness, particularly in resource-constrained environments. Despite these advantages, the limited capacity of 0.5 billion parameter models poses challenges in handling complex tasks such as mathematical reasoning and code generation. This research investigates various training strategies, including supervised fine-tuning (SFT), knowledge distillation (KD), and reinforcement learning (RL), as well as their hybrid implementations, to enhance the performance of 0.5B SRLMs. We analyze effective methodologies to bridge the performance gap between SRLMS and larger models and present insights into optimal training pipelines tailored for these smaller architectures. Through extensive experimental validation and analysis, our work aims to provide actionable recommendations for maximizing the reasoning capabilities of 0.5B models.
Reasoning Vectors: Transferring Chain-of-Thought Capabilities via Task Arithmetic
Large language models often require costly optimization, such as reinforcement learning, to master complex reasoning tasks. This work demonstrates that reasoning ability, once learned, can be extracted and transferred between models as a compact task vector. We source two publicly available, identically initialized Qwen2.5 models, one fine-tuned with supervised fine-tuning (SFT) and the other with group relative policy optimization (GRPO) on the same dataset. From these, we extract a reasoning vector: v_{reason} = theta_{GRPO} - theta_{SFT}. We hypothesize that this vector captures the reasoning capability instilled by reinforcement learning while factoring out shared knowledge from the SFT process. When added to compatible instruction-tuned models through simple arithmetic, this vector consistently improves performance across diverse reasoning benchmarks: GSM8K (+4.9%), HumanEval (+4.3%), SciQ (+1.7%), and BigBenchHard (+12.3% for the 1.5B model). The performance improvements persist under adversarial conditions. Conversely, subtracting the vector causes significant performance degradation (-11.8% on GSM8K), demonstrating the vector's strong contribution to the model's reasoning abilities. This work shows how reasoning capabilities, typically developed through expensive training, can be extracted from existing open-source models and reused through simple tensor arithmetic, offering a practical way to enhance models by recycling prior computational investments.
Markov Chain of Thought for Efficient Mathematical Reasoning
Chain of Thought (CoT) of multi-step benefits from the logical structure of the reasoning steps and task-specific actions, significantly enhancing the mathematical reasoning capabilities of large language models. As the prevalence of long CoT, the number of reasoning steps exceeds manageable token limits and leads to higher computational demands. Inspired by the fundamental logic of human cognition, ``derive, then reduce'', we conceptualize the standard multi-step CoT as a novel Markov Chain of Thought (MCoT). In this study, we consider the mathematical reasoning task, defining each reasoning step as text accompanied by a Python code snippet. To facilitate a longer reasoning path, self-correction is enabled through interactions with the code interpreter. Our MCoT aims to compress previous reasoning steps into a simplified question, enabling efficient next-step inference without relying on a lengthy KV cache. In our experiments, we curate the MCoTInstruct dataset, and the empirical results indicate that MCoT not only significantly enhances efficiency but also maintains comparable accuracy. While much remains to be explored, this work paves the way for exploring the long CoT reasoning abilities of LLMs.
On the Bias of Next-Token Predictors Toward Systematically Inefficient Reasoning: A Shortest-Path Case Study
Recent advances in natural language processing highlight two key factors for improving reasoning in large language models (LLMs): (i) allocating more test-time compute tends to help on harder problems but often introduces redundancy in the reasoning trace, and (ii) compute is most effective when reasoning is systematic and incremental, forming structured chains of thought (CoTs) akin to human problem-solving. To study these factors in isolation, we introduce a controlled setting based on shortest-path tasks in layered graphs. We train decoder-only transformers on question-trace-answer triples using a custom tokenizer, comparing models trained on optimal bottom-up dynamic programming traces with those trained on longer, valid traces involving backtracking. Surprisingly, with the same training-token budget, models trained on inefficient traces generalize better to unseen graphs. This benefit is not due to length alone-injecting arbitrary redundancy into reasoning traces fails to help and can even hurt performance. Instead, we find that generalization correlates with the model's confidence in next-token prediction, suggesting that long, coherent, and locally incremental traces make the training signal easier to optimize.
Efficient Reasoning via Thought-Training and Thought-Free Inference
Recent advances in large language models (LLMs) have leveraged explicit Chain-of-Thought (CoT) prompting to improve reasoning accuracy. However, most existing methods primarily compress verbose reasoning outputs. These Long-to-Short transformations aim to improve efficiency, but still rely on explicit reasoning during inference. In this work, we introduce 3TF (Thought-Training and Thought-Free inference), a framework for efficient reasoning that takes a Short-to-Long perspective. We first train a hybrid model that can operate in both reasoning and non-reasoning modes, and then further train it on CoT-annotated data to internalize structured reasoning, while enforcing concise, thought-free outputs at inference time using the no-reasoning mode. Unlike compression-based approaches, 3TF improves the reasoning quality of non-reasoning outputs, enabling models to perform rich internal reasoning implicitly while keeping external outputs short. Empirically, 3TF-trained models obtain large improvements on reasoning benchmarks under thought-free inference, demonstrating that high quality reasoning can be learned and executed implicitly without explicit step-by-step generation.
Implicit Reasoning in Large Language Models: A Comprehensive Survey
Large Language Models (LLMs) have demonstrated strong generalization across a wide range of tasks. Reasoning with LLMs is central to solving multi-step problems and complex decision-making. To support efficient reasoning, recent studies have shifted attention from explicit chain-of-thought prompting toward implicit reasoning, where reasoning occurs silently via latent structures without emitting intermediate textual steps. Implicit reasoning brings advantages such as lower generation cost, faster inference, and better alignment with internal computation. Although prior surveys have discussed latent representations in the context of reasoning, a dedicated and mechanism-level examination of how reasoning unfolds internally within LLMs remains absent. This survey fills that gap by introducing a taxonomy centered on execution paradigms, shifting the focus from representational forms to computational strategies. We organize existing methods into three execution paradigms based on \textit{how and where internal computation unfolds}: latent optimization, signal-guided control, and layer-recurrent execution. We also review structural, behavioral and representation-based evidence that supports the presence of implicit reasoning in LLMs. We further provide a structured overview of the evaluation metrics and benchmarks used in existing works to assess the effectiveness and reliability of implicit reasoning. We maintain a continuously updated project at: https://github.com/digailab/awesome-llm-implicit-reasoning.
ConCISE: Confidence-guided Compression in Step-by-step Efficient Reasoning
Large Reasoning Models (LRMs) perform strongly in complex reasoning tasks via Chain-of-Thought (CoT) prompting, but often suffer from verbose outputs caused by redundant content, increasing computational overhead, and degrading user experience. Existing compression methods either operate post-hoc pruning, risking disruption to reasoning coherence, or rely on sampling-based selection, which fails to intervene effectively during generation. In this work, we introduce a confidence-guided perspective to explain the emergence of redundant reflection in LRMs, identifying two key patterns: Confidence Deficit, where the model reconsiders correct steps due to low internal confidence, and Termination Delay, where reasoning continues even after reaching a confident answer. Based on this analysis, we propose ConCISE (Confidence-guided Compression In Step-by-step Efficient Reasoning), a framework that simplifies reasoning chains by reinforcing the model's confidence during inference, thus preventing the generation of redundant reflection steps. It integrates Confidence Injection to stabilize intermediate steps and Early Stopping to terminate reasoning when confidence is sufficient. Extensive experiments demonstrate that fine-tuning LRMs on ConCISE-generated data yields significantly shorter outputs, reducing length by up to approximately 50% under SimPO, while maintaining high task accuracy. ConCISE consistently outperforms existing baselines across multiple reasoning benchmarks.
Unlocking the Capabilities of Thought: A Reasoning Boundary Framework to Quantify and Optimize Chain-of-Thought
Chain-of-Thought (CoT) reasoning has emerged as a promising approach for enhancing the performance of large language models (LLMs) on complex reasoning tasks. Recently, a series of studies attempt to explain the mechanisms underlying CoT, aiming to deepen the understanding of its efficacy. Nevertheless, the existing research faces two major challenges: (1) a lack of quantitative metrics to assess CoT capabilities and (2) a dearth of guidance on optimizing CoT performance. Motivated by this, in this work, we introduce a novel reasoning boundary framework (RBF) to address these challenges. To solve the lack of quantification, we first define a reasoning boundary (RB) to quantify the upper-bound of CoT and establish a combination law for RB, enabling a practical quantitative approach applicable to various real-world CoT tasks. To address the lack of optimization, we propose three categories of RBs. We further optimize these categories with combination laws focused on RB promotion and reasoning path optimization for CoT improvement. Through extensive experiments on 27 models and 5 tasks, the study validates the existence and rationality of the proposed framework. Furthermore, it explains the effectiveness of 10 CoT strategies and guides optimization from two perspectives. We hope this work can provide a comprehensive understanding of the boundaries and optimization strategies for reasoning in LLMs. Our code and data are available at https://github.com/LightChen233/reasoning-boundary.
Scaling Synthetic Logical Reasoning Datasets with Context-Sensitive Declarative Grammars
Logical reasoning remains a challenge for natural language processing, but it can be improved by training language models to mimic theorem provers on procedurally generated problems. Previous work used domain-specific proof generation algorithms, which biases reasoning toward specific proof traces and limits auditability and extensibility. We present a simpler and more general declarative framework with flexible context-sensitive rules binding multiple languages (specifically, simplified English and the TPTP theorem-proving language). We construct first-order logic problems by selecting up to 32 premises and one hypothesis. We demonstrate that using semantic constraints during generation and careful English verbalization of predicates enhances logical reasoning without hurting natural English tasks. We use relatively small DeBERTa-v3 models to achieve state-of-the-art accuracy on the FOLIO human-authored logic dataset, surpassing GPT-4 in accuracy with or without an external solver by 12%.
ProcBench: Benchmark for Multi-Step Reasoning and Following Procedure
Reasoning is central to a wide range of intellectual activities, and while the capabilities of large language models (LLMs) continue to advance, their performance in reasoning tasks remains limited. The processes and mechanisms underlying reasoning are not yet fully understood, but key elements include path exploration, selection of relevant knowledge, and multi-step inference. Problems are solved through the synthesis of these components. In this paper, we propose a benchmark that focuses on a specific aspect of reasoning ability: the direct evaluation of multi-step inference. To this end, we design a special reasoning task where multi-step inference is specifically focused by largely eliminating path exploration and implicit knowledge utilization. Our dataset comprises pairs of explicit instructions and corresponding questions, where the procedures necessary for solving the questions are entirely detailed within the instructions. This setup allows models to solve problems solely by following the provided directives. By constructing problems that require varying numbers of steps to solve and evaluating responses at each step, we enable a thorough assessment of state-of-the-art LLMs' ability to follow instructions. To ensure the robustness of our evaluation, we include multiple distinct tasks. Furthermore, by comparing accuracy across tasks, utilizing step-aware metrics, and applying separately defined measures of complexity, we conduct experiments that offer insights into the capabilities and limitations of LLMs in reasoning tasks. Our findings have significant implications for the development of LLMs and highlight areas for future research in advancing their reasoning abilities. Our dataset is available at https://huggingface.co/datasets/ifujisawa/procbench and code at https://github.com/ifujisawa/proc-bench.
ThinkLess: A Training-Free Inference-Efficient Method for Reducing Reasoning Redundancy
While Chain-of-Thought (CoT) prompting improves reasoning in large language models (LLMs), the excessive length of reasoning tokens increases latency and KV cache memory usage, and may even truncate final answers under context limits. We propose ThinkLess, an inference-efficient framework that terminates reasoning generation early and maintains output quality without modifying the model. Atttention analysis reveals that answer tokens focus minimally on earlier reasoning steps and primarily attend to the reasoning terminator token, due to information migration under causal masking. Building on this insight, ThinkLess inserts the terminator token at earlier positions to skip redundant reasoning while preserving the underlying knowledge transfer. To prevent format discruption casued by early termination, ThinkLess employs a lightweight post-regulation mechanism, relying on the model's natural instruction-following ability to produce well-structured answers. Without fine-tuning or auxiliary data, ThinkLess achieves comparable accuracy to full-length CoT decoding while greatly reducing decoding time and memory consumption.
Critical-Questions-of-Thought: Steering LLM reasoning with Argumentative Querying
Studies have underscored how, regardless of the recent breakthrough and swift advances in AI research, even state-of-the-art Large Language models (LLMs) continue to struggle when performing logical and mathematical reasoning. The results seem to suggest that LLMs still work as (highly advanced) data pattern identifiers, scoring poorly when attempting to generalise and solve reasoning problems the models have never previously seen or that are not close to samples presented in their training data. To address this compelling concern, this paper makes use of the notion of critical questions from the literature on argumentation theory, focusing in particular on Toulmin's model of argumentation. We show that employing these critical questions can improve the reasoning capabilities of LLMs. By probing the rationale behind the models' reasoning process, the LLM can assess whether some logical mistake is occurring and correct it before providing the final reply to the user prompt. The underlying idea is drawn from the gold standard of any valid argumentative procedure: the conclusion is valid if it is entailed by accepted premises. Or, to paraphrase such Aristotelian principle in a real-world approximation, characterised by incomplete information and presumptive logic, the conclusion is valid if not proved otherwise. This approach successfully steers the models' output through a reasoning pipeline, resulting in better performance against the baseline and its Chain-of-Thought (CoT) implementation. To this end, an extensive evaluation of the proposed approach on the MT-Bench Reasoning and Math tasks across a range of LLMs is provided.
Reasoning LLMs are Wandering Solution Explorers
Large Language Models (LLMs) have demonstrated impressive reasoning abilities through test-time computation (TTC) techniques such as chain-of-thought prompting and tree-based reasoning. However, we argue that current reasoning LLMs (RLLMs) lack the ability to systematically explore the solution space. This paper formalizes what constitutes systematic problem solving and identifies common failure modes that reveal reasoning LLMs to be wanderers rather than systematic explorers. Through qualitative and quantitative analysis across multiple state-of-the-art LLMs, we uncover persistent issues: invalid reasoning steps, redundant explorations, hallucinated or unfaithful conclusions, and so on. Our findings suggest that current models' performance can appear to be competent on simple tasks yet degrade sharply as complexity increases. Based on the findings, we advocate for new metrics and tools that evaluate not just final outputs but the structure of the reasoning process itself.
Calibrating Reasoning in Language Models with Internal Consistency
Large language models (LLMs) have demonstrated impressive capabilities in various reasoning tasks, aided by techniques like chain-of-thought (CoT) prompting that elicits verbalized reasoning. However, LLMs often generate text with obvious mistakes and contradictions, raising doubts about their ability to robustly process and utilize generated rationales. In this work, we investigate CoT reasoning in LLMs through the lens of internal representations, focusing on how these representations are influenced by generated rationales. Our preliminary analysis reveals that while generated rationales improve answer accuracy, inconsistencies emerge between the model's internal representations in middle layers and those in final layers, potentially undermining the reliability of their reasoning processes. To address this, we propose internal consistency as a measure of the model's confidence by examining the agreement of latent predictions decoded from intermediate layers. Extensive empirical studies across different models and datasets demonstrate that internal consistency effectively distinguishes between correct and incorrect reasoning paths. Motivated by this, we propose a new approach to calibrate CoT reasoning by up-weighting reasoning paths with high internal consistency, resulting in a significant boost in reasoning performance. Further analysis uncovers distinct patterns in attention and feed-forward modules across layers, providing insights into the emergence of internal inconsistency. In summary, our results demonstrate the potential of using internal representations for self-evaluation of LLMs.
Hint Marginalization for Improved Reasoning in Large Language Models
Large Language Models (LLMs) have exhibited an impressive capability to perform reasoning tasks, especially if they are encouraged to generate a sequence of intermediate steps. Reasoning performance can be improved by suitably combining multiple LLM responses, generated either in parallel in a single query, or via sequential interactions with LLMs throughout the reasoning process. Existing strategies for combination, such as self-consistency and progressive-hint-prompting, make inefficient usage of the LLM responses. We present Hint Marginalization, a novel and principled algorithmic framework to enhance the reasoning capabilities of LLMs. Our approach can be viewed as an iterative sampling strategy for forming a Monte Carlo approximation of an underlying distribution of answers, with the goal of identifying the mode the most likely answer. Empirical evaluation on several benchmark datasets for arithmetic reasoning demonstrates the superiority of the proposed approach.
Critique Before Thinking: Mitigating Hallucination through Rationale-Augmented Instruction Tuning
Despite significant advancements in multimodal reasoning tasks, existing Large Vision-Language Models (LVLMs) are prone to producing visually ungrounded responses when interpreting associated images. In contrast, when humans embark on learning new knowledge, they often rely on a set of fundamental pre-study principles: reviewing outlines to grasp core concepts, summarizing key points to guide their focus and enhance understanding. However, such preparatory actions are notably absent in the current instruction tuning processes. This paper presents Re-Critic, an easily scalable rationale-augmented framework designed to incorporate fundamental rules and chain-of-thought (CoT) as a bridge to enhance reasoning abilities. Specifically, Re-Critic develops a visual rationale synthesizer that scalably augments raw instructions with rationale explanation. To probe more contextually grounded responses, Re-Critic employs an in-context self-critic mechanism to select response pairs for preference tuning. Experiments demonstrate that models fine-tuned with our rationale-augmented dataset yield gains that extend beyond hallucination-specific tasks to broader multimodal reasoning tasks.
Disentangling Memory and Reasoning Ability in Large Language Models
Large Language Models (LLMs) have demonstrated strong performance in handling complex tasks requiring both extensive knowledge and reasoning abilities. However, the existing LLM inference pipeline operates as an opaque process without explicit separation between knowledge retrieval and reasoning steps, making the model's decision-making process unclear and disorganized. This ambiguity can lead to issues such as hallucinations and knowledge forgetting, which significantly impact the reliability of LLMs in high-stakes domains. In this paper, we propose a new inference paradigm that decomposes the complex inference process into two distinct and clear actions: (1) memory recall: which retrieves relevant knowledge, and (2) reasoning: which performs logical steps based on the recalled knowledge. To facilitate this decomposition, we introduce two special tokens memory and reason, guiding the model to distinguish between steps that require knowledge retrieval and those that involve reasoning. Our experiment results show that this decomposition not only improves model performance but also enhances the interpretability of the inference process, enabling users to identify sources of error and refine model responses effectively. The code is available at https://github.com/MingyuJ666/Disentangling-Memory-and-Reasoning.
T-SciQ: Teaching Multimodal Chain-of-Thought Reasoning via Large Language Model Signals for Science Question Answering
Large Language Models (LLMs) have recently demonstrated exceptional performance in various Natural Language Processing (NLP) tasks. They have also shown the ability to perform chain-of-thought (CoT) reasoning to solve complex problems. Recent studies have explored CoT reasoning in complex multimodal scenarios, such as the science question answering task, by fine-tuning multimodal models with high-quality human-annotated CoT rationales. However, collecting high-quality COT rationales is usually time-consuming and costly. Besides, the annotated rationales are hardly accurate due to the external essential information missed. To address these issues, we propose a novel method termed T-SciQ that aims at teaching science question answering with LLM signals. The T-SciQ approach generates high-quality CoT rationales as teaching signals and is advanced to train much smaller models to perform CoT reasoning in complex modalities. Additionally, we introduce a novel data mixing strategy to produce more effective teaching data samples by policy for simple and complex science question answer problems. Extensive experimental results show that our T-SciQ method achieves a new state-of-the-art performance on the ScienceQA benchmark, with an accuracy of 96.18\%. Moreover, our approach outperforms the most powerful fine-tuned baseline by 4.5\%.
Selection-Inference: Exploiting Large Language Models for Interpretable Logical Reasoning
Large language models (LLMs) have been shown to be capable of impressive few-shot generalisation to new tasks. However, they still tend to perform poorly on multi-step logical reasoning problems. Here we carry out a comprehensive evaluation of LLMs on 50 tasks that probe different aspects of logical reasoning. We show that language models tend to perform fairly well at single step inference or entailment tasks, but struggle to chain together multiple reasoning steps to solve more complex problems. In light of this, we propose a Selection-Inference (SI) framework that exploits pre-trained LLMs as general processing modules, and alternates between selection and inference to generate a series of interpretable, casual reasoning steps leading to the final answer. We show that a 7B parameter LLM used within the SI framework in a 5-shot generalisation setting, with no fine-tuning, yields a performance improvement of over 100% compared to an equivalent vanilla baseline on a suite of 10 logical reasoning tasks. The same model in the same setting even outperforms a significantly larger 280B parameter baseline on the same suite of tasks. Moreover, answers produced by the SI framework are accompanied by a causal natural-language-based reasoning trace, which has important implications for the safety and trustworthiness of the system.
From System 1 to System 2: A Survey of Reasoning Large Language Models
Achieving human-level intelligence requires refining the transition from the fast, intuitive System 1 to the slower, more deliberate System 2 reasoning. While System 1 excels in quick, heuristic decisions, System 2 relies on logical reasoning for more accurate judgments and reduced biases. Foundational Large Language Models (LLMs) excel at fast decision-making but lack the depth for complex reasoning, as they have not yet fully embraced the step-by-step analysis characteristic of true System 2 thinking. Recently, reasoning LLMs like OpenAI's o1/o3 and DeepSeek's R1 have demonstrated expert-level performance in fields such as mathematics and coding, closely mimicking the deliberate reasoning of System 2 and showcasing human-like cognitive abilities. This survey begins with a brief overview of the progress in foundational LLMs and the early development of System 2 technologies, exploring how their combination has paved the way for reasoning LLMs. Next, we discuss how to construct reasoning LLMs, analyzing their features, the core methods enabling advanced reasoning, and the evolution of various reasoning LLMs. Additionally, we provide an overview of reasoning benchmarks, offering an in-depth comparison of the performance of representative reasoning LLMs. Finally, we explore promising directions for advancing reasoning LLMs and maintain a real-time https://github.com/zzli2022/Awesome-Slow-Reason-System{GitHub Repository} to track the latest developments. We hope this survey will serve as a valuable resource to inspire innovation and drive progress in this rapidly evolving field.
ThinkEdit: Interpretable Weight Editing to Mitigate Overly Short Thinking in Reasoning Models
Recent studies have shown that Large Language Models (LLMs) augmented with chain-of-thought (CoT) reasoning demonstrate impressive problem-solving abilities. However, in this work, we identify a recurring issue where these models occasionally generate overly short reasoning, leading to degraded performance on even simple mathematical problems. Specifically, we investigate how reasoning length is embedded in the hidden representations of reasoning models and its impact on accuracy. Our analysis reveals that reasoning length is governed by a linear direction in the representation space, allowing us to induce overly short reasoning by steering the model along this direction. Building on this insight, we introduce ThinkEdit, a simple yet effective weight-editing approach to mitigate the issue of overly short reasoning. We first identify a small subset of attention heads (approximately 2%) that predominantly drive short reasoning behavior. We then edit the output projection weights of these heads to suppress the short reasoning direction. With changes to only 0.1% of the model's parameters, ThinkEdit effectively reduces overly short reasoning and yields notable accuracy gains for short reasoning outputs (+5.44%), along with an overall improvement across multiple math benchmarks (+2.43%). Our findings provide new mechanistic insights into how reasoning length is controlled within LLMs and highlight the potential of fine-grained model interventions to improve reasoning quality. Our code is available at https://github.com/Trustworthy-ML-Lab/ThinkEdit
LIMOPro: Reasoning Refinement for Efficient and Effective Test-time Scaling
Large language models (LLMs) have demonstrated remarkable reasoning capabilities through test-time scaling approaches, particularly when fine-tuned with chain-of-thought (CoT) data distilled from more powerful large reasoning models (LRMs). However, these reasoning chains often contain verbose elements that mirror human problem-solving, categorized as progressive reasoning (the essential solution development path) and functional elements (verification processes, alternative solution approaches, and error corrections). While progressive reasoning is crucial, the functional elements significantly increase computational demands during test-time inference. We introduce PIR (Perplexity-based Importance Refinement), a principled framework that quantitatively evaluates the importance of each reasoning step based on its impact on answer prediction confidence. PIR systematically identifies and selectively prunes only low-importance functional steps while preserving progressive reasoning components, creating optimized training data that maintains the integrity of the core solution path while reducing verbosity. Models fine-tuned on PIR-optimized data exhibit superior test-time scaling properties, generating more concise reasoning chains while achieving improved accuracy (+0.9\% to +6.6\%) with significantly reduced token usage (-3\% to -41\%) across challenging reasoning benchmarks (AIME, AMC, and GPQA Diamond). Our approach demonstrates strong generalizability across different model sizes, data sources, and token budgets, offering a practical solution for deploying reasoning-capable LLMs in scenarios where efficient test-time scaling, response time, and computational efficiency are valuable constraints.
Imitate, Explore, and Self-Improve: A Reproduction Report on Slow-thinking Reasoning Systems
Recently, slow-thinking reasoning systems, such as o1, have demonstrated remarkable capabilities in solving complex reasoning tasks. These systems typically engage in an extended thinking process before responding to a query, allowing them to generate more thorough, accurate, and well-reasoned solutions. These systems are primarily developed and maintained by industry, with their core techniques not publicly disclosed. In response, an increasing number of studies from the research community aim to explore the technical foundations underlying these powerful reasoning systems. Building on these prior efforts, this paper presents a reproduction report on implementing o1-like reasoning systems. We introduce an "imitate, explore, and self-improve" framework as our primary technical approach to train the reasoning model. In the initial phase, we use distilled long-form thought data to fine-tune the reasoning model, enabling it to invoke a slow-thinking mode. The model is then encouraged to explore challenging problems by generating multiple rollouts, which can result in increasingly more high-quality trajectories that lead to correct answers. Furthermore, the model undergoes self-improvement by iteratively refining its training dataset. To verify the effectiveness of this approach, we conduct extensive experiments on three challenging benchmarks. The experimental results demonstrate that our approach achieves competitive performance compared to industry-level reasoning systems on these benchmarks.
Exploring the Potential of Offline RL for Reasoning in LLMs: A Preliminary Study
Despite significant advances in long-context reasoning by large language models (LLMs), primarily through Online Reinforcement Learning (RL) methods, these approaches incur substantial computational costs and complexity. In contrast, simpler and more economical Offline RL methods remain underexplored. To address this gap, we investigate the effectiveness of Offline RL methods, specifically Direct Preference Optimization (DPO) and its length-desensitized variant LD-DPO, in enhancing the reasoning capabilities of LLMs. Extensive experiments across multiple reasoning benchmarks demonstrate that these simpler Offline RL methods substantially improve model performance, achieving an average enhancement of 3.3\%, with a particularly notable increase of 10.1\% on the challenging Arena-Hard benchmark. Furthermore, we analyze DPO's sensitivity to output length, emphasizing that increasing reasoning length should align with semantic richness, as indiscriminate lengthening may adversely affect model performance. We provide comprehensive descriptions of our data processing and training methodologies, offering empirical evidence and practical insights for developing more cost-effective Offline RL approaches.
Automatic Prompt Augmentation and Selection with Chain-of-Thought from Labeled Data
Chain-of-thought prompting (CoT) advances the reasoning abilities of large language models (LLMs) and achieves superior performance in arithmetic, commonsense, and symbolic reasoning tasks. However, most CoT studies rely on carefully designed human-annotated rational chains to prompt the language model, which poses challenges for real-world applications where labeled training data is available without human-annotated rational chains. This creates barriers to applications of CoT prompting to these general tasks. This paper proposes a new strategy, Automate-CoT (Automatic Prompt Augmentation and Selection with Chain-of-Thought), that can bypass human engineering of CoTs by automatically augmenting rational chains from a small labeled dataset, and then pruning low-quality chains to construct a candidate pool of machine-generated rationale chains based on the labels. Finally, it selects the optimal combination of several rationale chains from the pool for CoT prompting by employing a variance-reduced policy gradient strategy to estimate the significance of each example in a black-box language model. Automate-CoT enables a quick adaptation of the CoT technique to different tasks. Experimental results demonstrate the effectiveness of our method, where state-of-the-art results are achieved on arithmetic reasoning (+2.7\%), commonsense reasoning (+3.4\%), symbolic reasoning (+3.2\%), and non-reasoning tasks (+2.5\%). Our code will be available at https://github.com/shizhediao/automate-cot.
SR-FoT: A Syllogistic-Reasoning Framework of Thought for Large Language Models Tackling Knowledge-based Reasoning Tasks
Deductive reasoning is a crucial logical capability that assists us in solving complex problems based on existing knowledge. Although augmented by Chain-of-Thought prompts, Large Language Models (LLMs) might not follow the correct reasoning paths. Enhancing the deductive reasoning abilities of LLMs, and leveraging their extensive built-in knowledge for various reasoning tasks, remains an open question. Attempting to mimic the human deductive reasoning paradigm, we propose a multi-stage Syllogistic-Reasoning Framework of Thought (SR-FoT) that enables LLMs to perform syllogistic deductive reasoning to handle complex knowledge-based reasoning tasks. Our SR-FoT begins by interpreting the question and then uses the interpretation and the original question to propose a suitable major premise. It proceeds by generating and answering minor premise questions in two stages to match the minor premises. Finally, it guides LLMs to use the previously generated major and minor premises to perform syllogistic deductive reasoning to derive the answer to the original question. Extensive and thorough experiments on knowledge-based reasoning tasks have demonstrated the effectiveness and advantages of our SR-FoT.
Pragmatic Reasoning improves LLM Code Generation
Large Language Models (LLMs) have demonstrated impressive potential in translating natural language (NL) instructions into program code. However, user instructions often contain inherent ambiguities, making it challenging for LLMs to generate code that accurately reflects the user's true intent. To address this challenge, researchers have proposed to produce multiple candidates of the program code and then rerank them to identify the best solution. In this paper, we propose CodeRSA, a novel code candidate reranking mechanism built upon the Rational Speech Act (RSA) framework, designed to guide LLMs toward more comprehensive pragmatic reasoning about user intent. We evaluate CodeRSA using one of the latest LLMs on a popular code generation dataset. Our experiment results show that CodeRSA consistently outperforms common baselines, surpasses the state-of-the-art approach in most cases, and demonstrates robust overall performance. These findings underscore the effectiveness of integrating pragmatic reasoning into code candidate reranking, offering a promising direction for enhancing code generation quality in LLMs.
AudioGenie-Reasoner: A Training-Free Multi-Agent Framework for Coarse-to-Fine Audio Deep Reasoning
Audio deep reasoning is a challenging task that requires expert-level perception, multi-step logical inference, and the integration of contextual knowledge. However, existing models suffer from a gap between audio perception and reasoning abilities due to the lack of training data with explicit reasoning chains and the absence of mechanisms for active exploration and iterative refinement. To address these challenges, we propose AudioGenie-Reasoner (AGR), the first unified training-free multi-agent system that coordinates perception and reasoning over an evolving chain of textual evidence. Our key idea is a paradigm shift that transforms audio deep reasoning into complex text understanding task from a new perspective, thereby unlocking the full potential of large language models. Specifically, the design of AGR mimics the human coarse-to-fine cognitive process. It first transforms the input audio into a coarse text-based document. Then, we design a novel proactive iterative document refinement loop, featuring tool-augmented routes and specialized agents, to continuously search for missing information and augment the evidence chain in a coarse-to-fine manner until sufficient question-related information is gathered for making final predictions. Experimental results show that AGR achieves state-of-the-art (SOTA) performance over existing open-source audio deep reasoning models across various benchmarks. The code will be available at https://github.com/ryysayhi/AudioGenie-Reasoner.
Igniting Language Intelligence: The Hitchhiker's Guide From Chain-of-Thought Reasoning to Language Agents
Large language models (LLMs) have dramatically enhanced the field of language intelligence, as demonstrably evidenced by their formidable empirical performance across a spectrum of complex reasoning tasks. Additionally, theoretical proofs have illuminated their emergent reasoning capabilities, providing a compelling showcase of their advanced cognitive abilities in linguistic contexts. Critical to their remarkable efficacy in handling complex reasoning tasks, LLMs leverage the intriguing chain-of-thought (CoT) reasoning techniques, obliging them to formulate intermediate steps en route to deriving an answer. The CoT reasoning approach has not only exhibited proficiency in amplifying reasoning performance but also in enhancing interpretability, controllability, and flexibility. In light of these merits, recent research endeavors have extended CoT reasoning methodologies to nurture the development of autonomous language agents, which adeptly adhere to language instructions and execute actions within varied environments. This survey paper orchestrates a thorough discourse, penetrating vital research dimensions, encompassing: (i) the foundational mechanics of CoT techniques, with a focus on elucidating the circumstances and justification behind its efficacy; (ii) the paradigm shift in CoT; and (iii) the burgeoning of language agents fortified by CoT approaches. Prospective research avenues envelop explorations into generalization, efficiency, customization, scaling, and safety. This paper caters to a wide audience, including beginners seeking comprehensive knowledge of CoT reasoning and language agents, as well as experienced researchers interested in foundational mechanics and engaging in cutting-edge discussions on these topics. A repository for the related papers is available at https://github.com/Zoeyyao27/CoT-Igniting-Agent.
Leveraging Machine-Generated Rationales to Facilitate Social Meaning Detection in Conversations
We present a generalizable classification approach that leverages Large Language Models (LLMs) to facilitate the detection of implicitly encoded social meaning in conversations. We design a multi-faceted prompt to extract a textual explanation of the reasoning that connects visible cues to underlying social meanings. These extracted explanations or rationales serve as augmentations to the conversational text to facilitate dialogue understanding and transfer. Our empirical results over 2,340 experimental settings demonstrate the significant positive impact of adding these rationales. Our findings hold true for in-domain classification, zero-shot, and few-shot domain transfer for two different social meaning detection tasks, each spanning two different corpora.
Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models
Recent advancements in Chain-of-Thought prompting have facilitated significant breakthroughs for Large Language Models (LLMs) in complex reasoning tasks. Current research enhances the reasoning performance of LLMs by sampling multiple reasoning chains and ensembling based on the answer frequency. However, this approach fails in scenarios where the correct answers are in the minority. We identify this as a primary factor constraining the reasoning capabilities of LLMs, a limitation that cannot be resolved solely based on the predicted answers. To address this shortcoming, we introduce a hierarchical reasoning aggregation framework AoR (Aggregation of Reasoning), which selects answers based on the evaluation of reasoning chains. Additionally, AoR incorporates dynamic sampling, adjusting the number of reasoning chains in accordance with the complexity of the task. Experimental results on a series of complex reasoning tasks show that AoR outperforms prominent ensemble methods. Further analysis reveals that AoR not only adapts various LLMs but also achieves a superior performance ceiling when compared to current methods.
Dialogue Chain-of-Thought Distillation for Commonsense-aware Conversational Agents
Human-like chatbots necessitate the use of commonsense reasoning in order to effectively comprehend and respond to implicit information present within conversations. Achieving such coherence and informativeness in responses, however, is a non-trivial task. Even for large language models (LLMs), the task of identifying and aggregating key evidence within a single hop presents a substantial challenge. This complexity arises because such evidence is scattered across multiple turns in a conversation, thus necessitating integration over multiple hops. Hence, our focus is to facilitate such multi-hop reasoning over a dialogue context, namely dialogue chain-of-thought (CoT) reasoning. To this end, we propose a knowledge distillation framework that leverages LLMs as unreliable teachers and selectively distills consistent and helpful rationales via alignment filters. We further present DOCTOR, a DialOgue Chain-of-ThOught Reasoner that provides reliable CoT rationales for response generation. We conduct extensive experiments to show that enhancing dialogue agents with high-quality rationales from DOCTOR significantly improves the quality of their responses.
Reasoning Models Can be Accurately Pruned Via Chain-of-Thought Reconstruction
Reasoning language models such as DeepSeek-R1 produce long chain-of-thought traces during inference time which make them costly to deploy at scale. We show that using compression techniques such as neural network pruning produces greater performance loss than in typical language modeling tasks, and in some cases can make the model slower since they cause the model to produce more thinking tokens but with worse performance. We show that this is partly due to the fact that standard LLM pruning methods often focus on input reconstruction, whereas reasoning is a decode-dominated task. We introduce a simple, drop-in fix: during pruning we jointly reconstruct activations from the input and the model's on-policy chain-of-thought traces. This "Reasoning-Aware Compression" (RAC) integrates seamlessly into existing pruning workflows such as SparseGPT, and boosts their performance significantly. Code reproducing the results in the paper can be found at: https://github.com/RyanLucas3/RAC
A Sober Look at Progress in Language Model Reasoning: Pitfalls and Paths to Reproducibility
Reasoning has emerged as the next major frontier for language models (LMs), with rapid advances from both academic and industrial labs. However, this progress often outpaces methodological rigor, with many evaluations relying on benchmarking practices that lack transparency, robustness, or statistical grounding. In this work, we conduct a comprehensive empirical study and find that current mathematical reasoning benchmarks are highly sensitive to subtle implementation choices - including decoding parameters, random seeds, prompt formatting, and even hardware and software-framework configurations. Performance gains reported in recent studies frequently hinge on unclear comparisons or unreported sources of variance. To address these issues, we propose a standardized evaluation framework with clearly defined best practices and reporting standards. Using this framework, we reassess recent methods and find that reinforcement learning (RL) approaches yield only modest improvements - far below prior claims - and are prone to overfitting, especially on small-scale benchmarks like AIME24. In contrast, supervised finetuning (SFT) methods show consistently stronger generalization. To foster reproducibility, we release all code, prompts, and model outputs, for reasoning benchmarks, establishing more rigorous foundations for future work.
Embarrassingly Simple Performance Prediction for Abductive Natural Language Inference
The task of abductive natural language inference (nli), to decide which hypothesis is the more likely explanation for a set of observations, is a particularly difficult type of NLI. Instead of just determining a causal relationship, it requires common sense to also evaluate how reasonable an explanation is. All recent competitive systems build on top of contextualized representations and make use of transformer architectures for learning an NLI model. When somebody is faced with a particular NLI task, they need to select the best model that is available. This is a time-consuming and resource-intense endeavour. To solve this practical problem, we propose a simple method for predicting the performance without actually fine-tuning the model. We do this by testing how well the pre-trained models perform on the nli task when just comparing sentence embeddings with cosine similarity to what the performance that is achieved when training a classifier on top of these embeddings. We show that the accuracy of the cosine similarity approach correlates strongly with the accuracy of the classification approach with a Pearson correlation coefficient of 0.65. Since the similarity computation is orders of magnitude faster to compute on a given dataset (less than a minute vs. hours), our method can lead to significant time savings in the process of model selection.
Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models
Logical reasoning is fundamental for humans yet presents a substantial challenge in the domain of Artificial Intelligence. Initially, researchers used Knowledge Representation and Reasoning (KR) systems that did not scale and required non trivial manual effort. Recently, the emergence of large language models (LLMs) has demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems. Consequently, there is a growing interest in using LLMs for logical reasoning via natural language. This work strives to understand the proficiency of LLMs in logical reasoning by offering a brief review of the latest progress in this area; with a focus on the logical reasoning datasets, tasks, and the methods adopted to utilize LLMs for reasoning. To offer a thorough analysis, we have compiled a benchmark titled LogiGLUE. This includes 24 varied datasets encompassing deductive, abductive, and inductive reasoning. We have standardized these datasets into Seq2Seq tasks to facilitate straightforward training and evaluation for future research. Utilizing LogiGLUE as a foundation, we have trained an instruction fine tuned language model, resulting in LogiT5. We study single task training, multi task training, and a chain of thought knowledge distillation fine tuning technique to assess the performance of model across the different logical reasoning categories. By this comprehensive process, we aim to shed light on the capabilities and potential pathways for enhancing logical reasoning proficiency in LLMs, paving the way for more advanced and nuanced developments in this critical field.
