new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 29

Hydra-NeXt: Robust Closed-Loop Driving with Open-Loop Training

End-to-end autonomous driving research currently faces a critical challenge in bridging the gap between open-loop training and closed-loop deployment. Current approaches are trained to predict trajectories in an open-loop environment, which struggle with quick reactions to other agents in closed-loop environments and risk generating kinematically infeasible plans due to the gap between open-loop training and closed-loop driving. In this paper, we introduce Hydra-NeXt, a novel multi-branch planning framework that unifies trajectory prediction, control prediction, and a trajectory refinement network in one model. Unlike current open-loop trajectory prediction models that only handle general-case planning, Hydra-NeXt further utilizes a control decoder to focus on short-term actions, which enables faster responses to dynamic situations and reactive agents. Moreover, we propose the Trajectory Refinement module to augment and refine the planning decisions by effectively adhering to kinematic constraints in closed-loop environments. This unified approach bridges the gap between open-loop training and closed-loop driving, demonstrating superior performance of 65.89 Driving Score (DS) and 48.20% Success Rate (SR) on the Bench2Drive dataset without relying on external experts for data collection. Hydra-NeXt surpasses the previous state-of-the-art by 22.98 DS and 17.49 SR, marking a significant advancement in autonomous driving. Code will be available at https://github.com/woxihuanjiangguo/Hydra-NeXt.

  • 6 authors
·
Mar 15

Enhancing Next Active Object-based Egocentric Action Anticipation with Guided Attention

Short-term action anticipation (STA) in first-person videos is a challenging task that involves understanding the next active object interactions and predicting future actions. Existing action anticipation methods have primarily focused on utilizing features extracted from video clips, but often overlooked the importance of objects and their interactions. To this end, we propose a novel approach that applies a guided attention mechanism between the objects, and the spatiotemporal features extracted from video clips, enhancing the motion and contextual information, and further decoding the object-centric and motion-centric information to address the problem of STA in egocentric videos. Our method, GANO (Guided Attention for Next active Objects) is a multi-modal, end-to-end, single transformer-based network. The experimental results performed on the largest egocentric dataset demonstrate that GANO outperforms the existing state-of-the-art methods for the prediction of the next active object label, its bounding box location, the corresponding future action, and the time to contact the object. The ablation study shows the positive contribution of the guided attention mechanism compared to other fusion methods. Moreover, it is possible to improve the next active object location and class label prediction results of GANO by just appending the learnable object tokens with the region of interest embeddings.

  • 5 authors
·
May 22, 2023

Offline Guarded Safe Reinforcement Learning for Medical Treatment Optimization Strategies

When applying offline reinforcement learning (RL) in healthcare scenarios, the out-of-distribution (OOD) issues pose significant risks, as inappropriate generalization beyond clinical expertise can result in potentially harmful recommendations. While existing methods like conservative Q-learning (CQL) attempt to address the OOD issue, their effectiveness is limited by only constraining action selection by suppressing uncertain actions. This action-only regularization imitates clinician actions that prioritize short-term rewards, but it fails to regulate downstream state trajectories, thereby limiting the discovery of improved long-term treatment strategies. To safely improve policy beyond clinician recommendations while ensuring that state-action trajectories remain in-distribution, we propose Offline Guarded Safe Reinforcement Learning (OGSRL), a theoretically grounded model-based offline RL framework. OGSRL introduces a novel dual constraint mechanism for improving policy with reliability and safety. First, the OOD guardian is established to specify clinically validated regions for safe policy exploration. By constraining optimization within these regions, it enables the reliable exploration of treatment strategies that outperform clinician behavior by leveraging the full patient state history, without drifting into unsupported state-action trajectories. Second, we introduce a safety cost constraint that encodes medical knowledge about physiological safety boundaries, providing domain-specific safeguards even in areas where training data might contain potentially unsafe interventions. Notably, we provide theoretical guarantees on safety and near-optimality: policies that satisfy these constraints remain in safe and reliable regions and achieve performance close to the best possible policy supported by the data.

  • 6 authors
·
May 22

Reason for Future, Act for Now: A Principled Framework for Autonomous LLM Agents with Provable Sample Efficiency

Large language models (LLMs) demonstrate impressive reasoning abilities, but translating reasoning into actions in the real world remains challenging. In particular, it remains unclear how to complete a given task provably within a minimum number of interactions with the external environment, e.g., through an internal mechanism of reasoning. To this end, we propose a principled framework with provable regret guarantees to orchestrate reasoning and acting, which we call "reason for future, act for now" (RAFA). Specifically, we design a prompt template for reasoning that learns from the memory buffer and plans a future trajectory over a long horizon ("reason for future"). At each step, the LLM agent takes the initial action of the planned trajectory ("act for now"), stores the collected feedback in the memory buffer, and reinvokes the reasoning routine to replan the future trajectory from the new state. The key idea is to cast reasoning in LLMs as learning and planning in Bayesian adaptive Markov decision processes (MDPs). Correspondingly, we prompt LLMs to form an updated posterior of the unknown environment from the memory buffer (learning) and generate an optimal trajectory for multiple future steps that maximizes a value function (planning). The learning and planning subroutines are performed in an "in-context" manner to emulate the actor-critic update for MDPs. Our theoretical analysis proves that the novel combination of long-term reasoning and short-term acting achieves a T regret. In particular, the regret bound highlights an intriguing interplay between the prior knowledge obtained through pretraining and the uncertainty reduction achieved by reasoning and acting. Our empirical validation shows that it outperforms various existing frameworks and achieves nearly perfect scores on a few benchmarks.

  • 7 authors
·
Sep 29, 2023 1

State-Change Learning for Prediction of Future Events in Endoscopic Videos

Surgical future prediction, driven by real-time AI analysis of surgical video, is critical for operating room safety and efficiency. It provides actionable insights into upcoming events, their timing, and risks-enabling better resource allocation, timely instrument readiness, and early warnings for complications (e.g., bleeding, bile duct injury). Despite this need, current surgical AI research focuses on understanding what is happening rather than predicting future events. Existing methods target specific tasks in isolation, lacking unified approaches that span both short-term (action triplets, events) and long-term horizons (remaining surgery duration, phase transitions). These methods rely on coarse-grained supervision while fine-grained surgical action triplets and steps remain underexplored. Furthermore, methods based only on future feature prediction struggle to generalize across different surgical contexts and procedures. We address these limits by reframing surgical future prediction as state-change learning. Rather than forecasting raw observations, our approach classifies state transitions between current and future timesteps. We introduce SurgFUTR, implementing this through a teacher-student architecture. Video clips are compressed into state representations via Sinkhorn-Knopp clustering; the teacher network learns from both current and future clips, while the student network predicts future states from current videos alone, guided by our Action Dynamics (ActDyn) module. We establish SFPBench with five prediction tasks spanning short-term (triplets, events) and long-term (remaining surgery duration, phase and step transitions) horizons. Experiments across four datasets and three procedures show consistent improvements. Cross-procedure transfer validates generalizability.

  • 4 authors
·
Oct 14

Long-Term Ad Memorability: Understanding and Generating Memorable Ads

Marketers spend billions of dollars on advertisements, but to what end? At purchase time, if customers cannot recognize the brand for which they saw an ad, the money spent on the ad is essentially wasted. Despite its importance in marketing, until now, there has been no study on the memorability of ads in the ML literature. All previous memorability studies have been conducted on short-term recall on specific content types like object and action videos. On the other hand, the advertising industry only cares about long-term memorability, and ads are almost always highly multimodal. Therefore, we release the first memorability dataset, LAMDBA, consisting of 1749 participants and 2205 ads covering 276 brands. Running statistical tests over different participant subpopulations and ad types, we find many interesting insights into what makes an ad memorable, e.g., fast-moving ads are more memorable than those with slower scenes; people who use ad-blockers remember a lower number of ads than those who don't. Next, we present a novel model, Henry, to predict the memorability of a content which achieves state-of-the-art performance across all prominent literature memorability datasets. Henry shows strong generalization performance with better results in 0-shot on unseen datasets. Finally, with the intent of memorable ad generation, we present a scalable method to build a high-quality memorable ad generation model by leveraging automatically annotated data. Our approach, SEED (Self rEwarding mEmorability Modeling), starts with a language model trained on LAMBDA as seed data and progressively trains the LLM to generate more memorable ads. We show that the generated advertisements have 44\% higher memorability scores than the original ads. Further, we release a large-scale ad dataset, UltraLAMBDA, consisting of 5 million ads with their automatically-assigned memorability scores.

  • 8 authors
·
Sep 1, 2023 1

Collaborative Alerts Ranking for Anomaly Detection

Given a large number of low-level heterogeneous categorical alerts from an anomaly detection system, how to characterize complex relationships between different alerts, filter out false positives, and deliver trustworthy rankings and suggestions to end users? This problem is motivated by and generalized from applications in enterprise security and attack scenario reconstruction. While existing techniques focus on either reconstructing abnormal scenarios or filtering out false positive alerts, it can be more advantageous to consider the two perspectives simultaneously in order to improve detection accuracy and better understand anomaly behaviors. In this paper, we propose CAR, a collaborative alerts ranking framework that exploits both temporal and content correlations from heterogeneous categorical alerts. CAR first builds a tree-based model to capture both short-term correlations and long-term dependencies in each alert sequence, which identifies abnormal action sequences. Then, an embedding-based model is employed to learn the content correlations between alerts via their heterogeneous categorical attributes. Finally, by incorporating both temporal and content dependencies into one optimization framework, CAR ranks both alerts and their corresponding alert patterns. Our experiments, using real-world enterprise monitoring data and real attacks launched by professional hackers, show that CAR can accurately identify true positive alerts and successfully reconstruct attack scenarios at the same time.

  • 8 authors
·
Dec 22, 2016

Combating Partial Perception Deficit in Autonomous Driving with Multimodal LLM Commonsense

Partial perception deficits can compromise autonomous vehicle safety by disrupting environmental understanding. Current protocols typically respond with immediate stops or minimal-risk maneuvers, worsening traffic flow and lacking flexibility for rare driving scenarios. In this paper, we propose LLM-RCO, a framework leveraging large language models to integrate human-like driving commonsense into autonomous systems facing perception deficits. LLM-RCO features four key modules: hazard inference, short-term motion planner, action condition verifier, and safety constraint generator. These modules interact with the dynamic driving environment, enabling proactive and context-aware control actions to override the original control policy of autonomous agents. To improve safety in such challenging conditions, we construct DriveLM-Deficit, a dataset of 53,895 video clips featuring deficits of safety-critical objects, complete with annotations for LLM-based hazard inference and motion planning fine-tuning. Extensive experiments in adverse driving conditions with the CARLA simulator demonstrate that systems equipped with LLM-RCO significantly improve driving performance, highlighting its potential for enhancing autonomous driving resilience against adverse perception deficits. Our results also show that LLMs fine-tuned with DriveLM-Deficit can enable more proactive movements instead of conservative stops in the context of perception deficits.

  • 7 authors
·
Mar 10

Contextual Bandits in Payment Processing: Non-uniform Exploration and Supervised Learning at Adyen

Uniform random exploration in decision-making systems supports off-policy learning via supervision but incurs high regret, making it impractical for many applications. Conversely, non-uniform exploration offers better immediate performance but lacks support for off-policy learning. Recent research suggests that regression oracles can bridge this gap by combining non-uniform exploration with supervised learning. In this paper, we analyze these approaches within a real-world industrial context at Adyen, a large global payments processor characterized by batch logged delayed feedback, short-term memory, and dynamic action spaces under the Empirical Risk Minimization (ERM) framework. Our analysis reveals that while regression oracles significantly improve performance, they introduce challenges due to rigid algorithmic assumptions. Specifically, we observe that as a policy improves, subsequent generations may perform worse due to shifts in the reward distribution and increased class imbalance in the training data. This degradation occurs de spite improvements in other aspects of the training data, leading to decreased performance in successive policy iterations. We further explore the long-term impact of regression oracles, identifying a potential "oscillation effect." This effect arises when regression oracles influence probability estimates and the realizability of subsequent policy models, leading to fluctuations in performance across iterations. Our findings highlight the need for more adaptable algorithms that can leverage the benefits of regression oracles without introducing instability in policy performance over time.

  • 2 authors
·
Nov 30, 2024

MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action Models for Robotic Manipulation

Temporal context is essential for robotic manipulation because such tasks are inherently non-Markovian, yet mainstream VLA models typically overlook it and struggle with long-horizon, temporally dependent tasks. Cognitive science suggests that humans rely on working memory to buffer short-lived representations for immediate control, while the hippocampal system preserves verbatim episodic details and semantic gist of past experience for long-term memory. Inspired by these mechanisms, we propose MemoryVLA, a Cognition-Memory-Action framework for long-horizon robotic manipulation. A pretrained VLM encodes the observation into perceptual and cognitive tokens that form working memory, while a Perceptual-Cognitive Memory Bank stores low-level details and high-level semantics consolidated from it. Working memory retrieves decision-relevant entries from the bank, adaptively fuses them with current tokens, and updates the bank by merging redundancies. Using these tokens, a memory-conditioned diffusion action expert yields temporally aware action sequences. We evaluate MemoryVLA on 150+ simulation and real-world tasks across three robots. On SimplerEnv-Bridge, Fractal, and LIBERO-5 suites, it achieves 71.9%, 72.7%, and 96.5% success rates, respectively, all outperforming state-of-the-art baselines CogACT and pi-0, with a notable +14.6 gain on Bridge. On 12 real-world tasks spanning general skills and long-horizon temporal dependencies, MemoryVLA achieves 84.0% success rate, with long-horizon tasks showing a +26 improvement over state-of-the-art baseline. Project Page: https://shihao1895.github.io/MemoryVLA

  • 10 authors
·
Aug 26

Motion Tracks: A Unified Representation for Human-Robot Transfer in Few-Shot Imitation Learning

Teaching robots to autonomously complete everyday tasks remains a challenge. Imitation Learning (IL) is a powerful approach that imbues robots with skills via demonstrations, but is limited by the labor-intensive process of collecting teleoperated robot data. Human videos offer a scalable alternative, but it remains difficult to directly train IL policies from them due to the lack of robot action labels. To address this, we propose to represent actions as short-horizon 2D trajectories on an image. These actions, or motion tracks, capture the predicted direction of motion for either human hands or robot end-effectors. We instantiate an IL policy called Motion Track Policy (MT-pi) which receives image observations and outputs motion tracks as actions. By leveraging this unified, cross-embodiment action space, MT-pi completes tasks with high success given just minutes of human video and limited additional robot demonstrations. At test time, we predict motion tracks from two camera views, recovering 6DoF trajectories via multi-view synthesis. MT-pi achieves an average success rate of 86.5% across 4 real-world tasks, outperforming state-of-the-art IL baselines which do not leverage human data or our action space by 40%, and generalizes to scenarios seen only in human videos. Code and videos are available on our website https://portal-cornell.github.io/motion_track_policy/.

  • 5 authors
·
Jan 12

Mobile-Agent-E: Self-Evolving Mobile Assistant for Complex Tasks

Smartphones have become indispensable in modern life, yet navigating complex tasks on mobile devices often remains frustrating. Recent advancements in large multimodal model (LMM)-based mobile agents have demonstrated the ability to perceive and act in mobile environments. However, current approaches face significant limitations: they fall short in addressing real-world human needs, struggle with reasoning-intensive and long-horizon tasks, and lack mechanisms to learn and improve from prior experiences. To overcome these challenges, we introduce Mobile-Agent-E, a hierarchical multi-agent framework capable of self-evolution through past experience. By hierarchical, we mean an explicit separation of high-level planning and low-level action execution. The framework comprises a Manager, responsible for devising overall plans by breaking down complex tasks into subgoals, and four subordinate agents--Perceptor, Operator, Action Reflector, and Notetaker--which handle fine-grained visual perception, immediate action execution, error verification, and information aggregation, respectively. Mobile-Agent-E also features a novel self-evolution module which maintains a persistent long-term memory comprising Tips and Shortcuts. Tips are general guidance and lessons learned from prior tasks on how to effectively interact with the environment. Shortcuts are reusable, executable sequences of atomic operations tailored for specific subroutines. The inclusion of Tips and Shortcuts facilitates continuous refinement in performance and efficiency. Alongside this framework, we introduce Mobile-Eval-E, a new benchmark featuring complex mobile tasks requiring long-horizon, multi-app interactions. Empirical results show that Mobile-Agent-E achieves a 22% absolute improvement over previous state-of-the-art approaches across three foundation model backbones. Project page: https://x-plug.github.io/MobileAgent.

  • 8 authors
·
Jan 20 2

ACT-JEPA: Joint-Embedding Predictive Architecture Improves Policy Representation Learning

Learning efficient representations for decision-making policies is a challenge in imitation learning (IL). Current IL methods require expert demonstrations, which are expensive to collect. Consequently, they often have underdeveloped world models. Self-supervised learning (SSL) offers an alternative by allowing models to learn from diverse, unlabeled data, including failures. However, SSL methods often operate in raw input space, making them inefficient. In this work, we propose ACT-JEPA, a novel architecture that integrates IL and SSL to enhance policy representations. We train a policy to predict (1) action sequences and (2) abstract observation sequences. The first objective uses action chunking to improve action prediction and reduce compounding errors. The second objective extends this idea of chunking by predicting abstract observation sequences. We utilize Joint-Embedding Predictive Architecture to predict in abstract representation space, allowing the model to filter out irrelevant details, improve efficiency, and develop a robust world model. Our experiments show that ACT-JEPA improves the quality of representations by learning temporal environment dynamics. Additionally, the model's ability to predict abstract observation sequences results in representations that effectively generalize to action sequence prediction. ACT-JEPA performs on par with established baselines across a range of decision-making tasks.

  • 2 authors
·
Jan 24

DynaSaur: Large Language Agents Beyond Predefined Actions

Existing LLM agent systems typically select actions from a fixed and predefined set at every step. While this approach is effective in closed, narrowly-scoped environments, we argue that it presents two major challenges when deploying LLM agents in real-world scenarios: (1) selecting from a fixed set of actions significantly restricts the planning and acting capabilities of LLM agents, and (2) this approach requires substantial human effort to enumerate and implement all possible actions, which becomes impractical in complex environments with a vast number of potential actions. In this work, we propose an LLM agent framework that enables the dynamic creation and composition of actions in an online manner. In this framework, the agent interacts with the environment by generating and executing programs written in a general-purpose programming language at each step. Furthermore, generated actions are accumulated over time for future reuse. Our extensive experiments on the GAIA benchmark demonstrate that this framework offers significantly greater flexibility and outperforms previous methods. Notably, it allows an LLM agent to recover in scenarios where no relevant action exists in the predefined set or when existing actions fail due to unforeseen edge cases. At the time of writing, we hold the top position on the GAIA public leaderboard. Our code can be found in https://github.com/adobe-research/dynasaur{https://github.com/adobe-research/dynasaur}.

  • 12 authors
·
Nov 3, 2024 3

Test-Time Zero-Shot Temporal Action Localization

Zero-Shot Temporal Action Localization (ZS-TAL) seeks to identify and locate actions in untrimmed videos unseen during training. Existing ZS-TAL methods involve fine-tuning a model on a large amount of annotated training data. While effective, training-based ZS-TAL approaches assume the availability of labeled data for supervised learning, which can be impractical in some applications. Furthermore, the training process naturally induces a domain bias into the learned model, which may adversely affect the model's generalization ability to arbitrary videos. These considerations prompt us to approach the ZS-TAL problem from a radically novel perspective, relaxing the requirement for training data. To this aim, we introduce a novel method that performs Test-Time adaptation for Temporal Action Localization (T3AL). In a nutshell, T3AL adapts a pre-trained Vision and Language Model (VLM). T3AL operates in three steps. First, a video-level pseudo-label of the action category is computed by aggregating information from the entire video. Then, action localization is performed adopting a novel procedure inspired by self-supervised learning. Finally, frame-level textual descriptions extracted with a state-of-the-art captioning model are employed for refining the action region proposals. We validate the effectiveness of T3AL by conducting experiments on the THUMOS14 and the ActivityNet-v1.3 datasets. Our results demonstrate that T3AL significantly outperforms zero-shot baselines based on state-of-the-art VLMs, confirming the benefit of a test-time adaptation approach.

  • 5 authors
·
Apr 8, 2024

AntGPT: Can Large Language Models Help Long-term Action Anticipation from Videos?

Can we better anticipate an actor's future actions (e.g. mix eggs) by knowing what commonly happens after his/her current action (e.g. crack eggs)? What if we also know the longer-term goal of the actor (e.g. making egg fried rice)? The long-term action anticipation (LTA) task aims to predict an actor's future behavior from video observations in the form of verb and noun sequences, and it is crucial for human-machine interaction. We propose to formulate the LTA task from two perspectives: a bottom-up approach that predicts the next actions autoregressively by modeling temporal dynamics; and a top-down approach that infers the goal of the actor and plans the needed procedure to accomplish the goal. We hypothesize that large language models (LLMs), which have been pretrained on procedure text data (e.g. recipes, how-tos), have the potential to help LTA from both perspectives. It can help provide the prior knowledge on the possible next actions, and infer the goal given the observed part of a procedure, respectively. To leverage the LLMs, we propose a two-stage framework, AntGPT. It first recognizes the actions already performed in the observed videos and then asks an LLM to predict the future actions via conditioned generation, or to infer the goal and plan the whole procedure by chain-of-thought prompting. Empirical results on the Ego4D LTA v1 and v2 benchmarks, EPIC-Kitchens-55, as well as EGTEA GAZE+ demonstrate the effectiveness of our proposed approach. AntGPT achieves state-of-the-art performance on all above benchmarks, and can successfully infer the goal and thus perform goal-conditioned "counterfactual" prediction via qualitative analysis. Code and model will be released at https://brown-palm.github.io/AntGPT

  • 7 authors
·
Jul 30, 2023

Dynamical Linear Bandits

In many real-world sequential decision-making problems, an action does not immediately reflect on the feedback and spreads its effects over a long time frame. For instance, in online advertising, investing in a platform produces an instantaneous increase of awareness, but the actual reward, i.e., a conversion, might occur far in the future. Furthermore, whether a conversion takes place depends on: how fast the awareness grows, its vanishing effects, and the synergy or interference with other advertising platforms. Previous work has investigated the Multi-Armed Bandit framework with the possibility of delayed and aggregated feedback, without a particular structure on how an action propagates in the future, disregarding possible dynamical effects. In this paper, we introduce a novel setting, the Dynamical Linear Bandits (DLB), an extension of the linear bandits characterized by a hidden state. When an action is performed, the learner observes a noisy reward whose mean is a linear function of the hidden state and of the action. Then, the hidden state evolves according to linear dynamics, affected by the performed action too. We start by introducing the setting, discussing the notion of optimal policy, and deriving an expected regret lower bound. Then, we provide an optimistic regret minimization algorithm, Dynamical Linear Upper Confidence Bound (DynLin-UCB), that suffers an expected regret of order mathcal{O} Big( d sqrt{T}{(1-rho)^{3/2}} Big), where rho is a measure of the stability of the system, and d is the dimension of the action vector. Finally, we conduct a numerical validation on a synthetic environment and on real-world data to show the effectiveness of DynLin-UCB in comparison with several baselines.

  • 3 authors
·
Nov 16, 2022

SwitchVLA: Execution-Aware Task Switching for Vision-Language-Action Models

Robots deployed in dynamic environments must be able to not only follow diverse language instructions but flexibly adapt when user intent changes mid-execution. While recent Vision-Language-Action (VLA) models have advanced multi-task learning and instruction following, they typically assume static task intent, failing to respond when new instructions arrive during ongoing execution. This limitation hinders natural and robust interaction in dynamic settings, such as retail or household environments, where real-time intent changes are common. We propose SwitchVLA, a unified, execution-aware framework that enables smooth and reactive task switching without external planners or additional switch-specific data. We model task switching as a behavior modulation problem conditioned on execution state and instruction context. Expert demonstrations are segmented into temporally grounded contact phases, allowing the policy to infer task progress and adjust its behavior accordingly. A multi-behavior conditional policy is then trained to generate flexible action chunks under varying behavior modes through conditioned trajectory modeling. Experiments in both simulation and real-world robotic manipulation demonstrate that SwitchVLA enables robust instruction adherence, fluid task switching, and strong generalization-outperforming prior VLA baselines in both task success rate and interaction naturalness.

Recon-Act: A Self-Evolving Multi-Agent Browser-Use System via Web Reconnaissance, Tool Generation, and Task Execution

Recent years, multimodal models have made remarkable strides and pave the way for intelligent browser use agents. However, when solving tasks on real world webpages in multi-turn, long-horizon trajectories, current agents still suffer from disordered action sequencing and excessive trial and error during execution. This paper introduces Recon-Act, a self-evolving multi-agent framework grounded in Reconnaissance-Action behavioral paradigm. The system comprises a Reconnaissance Team and an Action Team: the former conducts comparative analysis and tool generation, while the latter handles intent decomposition, tool orchestration, and execution. By contrasting the erroneous trajectories with successful ones, the Reconnaissance Team infers remedies, and abstracts them into a unified notion of generalized tools, either expressed as hints or as rule-based codes, and register to the tool archive in real time. The Action Team reinference the process empowered with these targeting tools, thus establishing a closed-loop training pipeline of data-tools-action-feedback. Following the 6 level implementation roadmap proposed in this work, we have currently reached Level 3 (with limited human-in-the-loop intervention). Leveraging generalized tools obtained through reconnaissance, Recon-Act substantially improves adaptability to unseen websites and solvability on long-horizon tasks, and achieves state-of-the-art performance on the challenging VisualWebArena dataset.

  • 4 authors
·
Sep 25 2

Weighted Tallying Bandits: Overcoming Intractability via Repeated Exposure Optimality

In recommender system or crowdsourcing applications of online learning, a human's preferences or abilities are often a function of the algorithm's recent actions. Motivated by this, a significant line of work has formalized settings where an action's loss is a function of the number of times that action was recently played in the prior m timesteps, where m corresponds to a bound on human memory capacity. To more faithfully capture decay of human memory with time, we introduce the Weighted Tallying Bandit (WTB), which generalizes this setting by requiring that an action's loss is a function of a weighted summation of the number of times that arm was played in the last m timesteps. This WTB setting is intractable without further assumption. So we study it under Repeated Exposure Optimality (REO), a condition motivated by the literature on human physiology, which requires the existence of an action that when repetitively played will eventually yield smaller loss than any other sequence of actions. We study the minimization of the complete policy regret (CPR), which is the strongest notion of regret, in WTB under REO. Since m is typically unknown, we assume we only have access to an upper bound M on m. We show that for problems with K actions and horizon T, a simple modification of the successive elimination algorithm has O left( KT + (m+M)K right) CPR. Interestingly, upto an additive (in lieu of mutliplicative) factor in (m+M)K, this recovers the classical guarantee for the simpler stochastic multi-armed bandit with traditional regret. We additionally show that in our setting, any algorithm will suffer additive CPR of Omega left( mK + M right), demonstrating our result is nearly optimal. Our algorithm is computationally efficient, and we experimentally demonstrate its practicality and superiority over natural baselines.

  • 4 authors
·
May 4, 2023

KARMA: Augmenting Embodied AI Agents with Long-and-short Term Memory Systems

Embodied AI agents responsible for executing interconnected, long-sequence household tasks often face difficulties with in-context memory, leading to inefficiencies and errors in task execution. To address this issue, we introduce KARMA, an innovative memory system that integrates long-term and short-term memory modules, enhancing large language models (LLMs) for planning in embodied agents through memory-augmented prompting. KARMA distinguishes between long-term and short-term memory, with long-term memory capturing comprehensive 3D scene graphs as representations of the environment, while short-term memory dynamically records changes in objects' positions and states. This dual-memory structure allows agents to retrieve relevant past scene experiences, thereby improving the accuracy and efficiency of task planning. Short-term memory employs strategies for effective and adaptive memory replacement, ensuring the retention of critical information while discarding less pertinent data. Compared to state-of-the-art embodied agents enhanced with memory, our memory-augmented embodied AI agent improves success rates by 1.3x and 2.3x in Composite Tasks and Complex Tasks within the AI2-THOR simulator, respectively, and enhances task execution efficiency by 3.4x and 62.7x. Furthermore, we demonstrate that KARMA's plug-and-play capability allows for seamless deployment on real-world robotic systems, such as mobile manipulation platforms.Through this plug-and-play memory system, KARMA significantly enhances the ability of embodied agents to generate coherent and contextually appropriate plans, making the execution of complex household tasks more efficient. The experimental videos from the work can be found at https://youtu.be/4BT7fnw9ehs. Our code is available at https://github.com/WZX0Swarm0Robotics/KARMA/tree/master.

  • 9 authors
·
Sep 23, 2024

Reinforcing Language Agents via Policy Optimization with Action Decomposition

Language models as intelligent agents push the boundaries of sequential decision-making agents but struggle with limited knowledge of environmental dynamics and exponentially huge action space. Recent efforts like GLAM and TWOSOME manually constrain the action space to a restricted subset and employ reinforcement learning to align agents' knowledge with specific environments. However, they overlook fine-grained credit assignments for intra-action tokens, which is essential for efficient language agent optimization, and rely on human's prior knowledge to restrict action space. This paper proposes decomposing language agent optimization from the action level to the token level, offering finer supervision for each intra-action token and manageable optimization complexity in environments with unrestricted action spaces. Beginning with the simplification of flattening all actions, we theoretically explore the discrepancies between action-level optimization and this naive token-level optimization. We then derive the Bellman backup with Action Decomposition (BAD) to integrate credit assignments for both intra-action and inter-action tokens, effectively eliminating the discrepancies. Implementing BAD within the PPO algorithm, we introduce Policy Optimization with Action Decomposition (POAD). POAD benefits from a finer-grained credit assignment process and lower optimization complexity, leading to enhanced learning efficiency and generalization abilities in aligning language agents with interactive environments. We validate POAD across diverse testbeds, with results affirming the advantages of our approach and the correctness of our theoretical analysis.

  • 5 authors
·
May 23, 2024

UniVLA: Learning to Act Anywhere with Task-centric Latent Actions

A generalist robot should perform effectively across various environments. However, most existing approaches heavily rely on scaling action-annotated data to enhance their capabilities. Consequently, they are often limited to single physical specification and struggle to learn transferable knowledge across different embodiments and environments. To confront these limitations, we propose UniVLA, a new framework for learning cross-embodiment vision-language-action (VLA) policies. Our key innovation is to derive task-centric action representations from videos with a latent action model. This enables us to exploit extensive data across a wide spectrum of embodiments and perspectives. To mitigate the effect of task-irrelevant dynamics, we incorporate language instructions and establish a latent action model within the DINO feature space. Learned from internet-scale videos, the generalist policy can be deployed to various robots through efficient latent action decoding. We obtain state-of-the-art results across multiple manipulation and navigation benchmarks, as well as real-robot deployments. UniVLA achieves superior performance over OpenVLA with less than 1/20 of pretraining compute and 1/10 of downstream data. Continuous performance improvements are observed as heterogeneous data, even including human videos, are incorporated into the training pipeline. The results underscore UniVLA's potential to facilitate scalable and efficient robot policy learning.

  • 8 authors
·
May 9 2

VQ-VLA: Improving Vision-Language-Action Models via Scaling Vector-Quantized Action Tokenizers

In this paper, we introduce an innovative vector quantization based action tokenizer built upon the largest-scale action trajectory dataset to date, leveraging over 100 times more data than previous approaches. This extensive dataset enables our tokenizer to capture rich spatiotemporal dynamics, resulting in a model that not only accelerates inference but also generates smoother and more coherent action outputs. Once trained, the tokenizer can be seamlessly adapted to a wide range of downstream tasks in a zero-shot manner, from short-horizon reactive behaviors to long-horizon planning. A key finding of our work is that the domain gap between synthetic and real action trajectories is marginal, allowing us to effectively utilize a vast amount of synthetic data during training without compromising real-world performance. To validate our approach, we conducted extensive experiments in both simulated environments and on real robotic platforms. The results demonstrate that as the volume of synthetic trajectory data increases, the performance of our tokenizer on downstream tasks improves significantly-most notably, achieving up to a 30% higher success rate on two real-world tasks in long-horizon scenarios. These findings highlight the potential of our action tokenizer as a robust and scalable solution for real-time embodied intelligence systems, paving the way for more efficient and reliable robotic control in diverse application domains.Project website: https://xiaoxiao0406.github.io/vqvla.github.io

  • 6 authors
·
Jul 1

Behavior Retrieval: Few-Shot Imitation Learning by Querying Unlabeled Datasets

Enabling robots to learn novel visuomotor skills in a data-efficient manner remains an unsolved problem with myriad challenges. A popular paradigm for tackling this problem is through leveraging large unlabeled datasets that have many behaviors in them and then adapting a policy to a specific task using a small amount of task-specific human supervision (i.e. interventions or demonstrations). However, how best to leverage the narrow task-specific supervision and balance it with offline data remains an open question. Our key insight in this work is that task-specific data not only provides new data for an agent to train on but can also inform the type of prior data the agent should use for learning. Concretely, we propose a simple approach that uses a small amount of downstream expert data to selectively query relevant behaviors from an offline, unlabeled dataset (including many sub-optimal behaviors). The agent is then jointly trained on the expert and queried data. We observe that our method learns to query only the relevant transitions to the task, filtering out sub-optimal or task-irrelevant data. By doing so, it is able to learn more effectively from the mix of task-specific and offline data compared to naively mixing the data or only using the task-specific data. Furthermore, we find that our simple querying approach outperforms more complex goal-conditioned methods by 20% across simulated and real robotic manipulation tasks from images. See https://sites.google.com/view/behaviorretrieval for videos and code.

  • 4 authors
·
Apr 18, 2023

AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions

This paper introduces a video dataset of spatio-temporally localized Atomic Visual Actions (AVA). The AVA dataset densely annotates 80 atomic visual actions in 430 15-minute video clips, where actions are localized in space and time, resulting in 1.58M action labels with multiple labels per person occurring frequently. The key characteristics of our dataset are: (1) the definition of atomic visual actions, rather than composite actions; (2) precise spatio-temporal annotations with possibly multiple annotations for each person; (3) exhaustive annotation of these atomic actions over 15-minute video clips; (4) people temporally linked across consecutive segments; and (5) using movies to gather a varied set of action representations. This departs from existing datasets for spatio-temporal action recognition, which typically provide sparse annotations for composite actions in short video clips. We will release the dataset publicly. AVA, with its realistic scene and action complexity, exposes the intrinsic difficulty of action recognition. To benchmark this, we present a novel approach for action localization that builds upon the current state-of-the-art methods, and demonstrates better performance on JHMDB and UCF101-24 categories. While setting a new state of the art on existing datasets, the overall results on AVA are low at 15.6% mAP, underscoring the need for developing new approaches for video understanding.

  • 12 authors
·
May 23, 2017

OpenHA: A Series of Open-Source Hierarchical Agentic Models in Minecraft

The choice of action spaces is a critical yet unresolved challenge in developing capable, end-to-end trainable agents. This paper first presents a large-scale, systematic comparison of prominent abstracted action spaces and tokenizers for Vision-Language-Action (VLA) or hierarchical agent models in the open-ended Minecraft. Our analysis reveals that no single action space is universally optimal; instead, the most effective abstraction is highly task-dependent, creating a dilemma for building generalist agents. To resolve this, we introduce Chain of Action (CoA), a novel framework that unifies high-level planning and low-level control within a single, monolithic VLA model. CoA treats an abstracted action not as a command for a separate policy, but as an intermediate reasoning step--akin to a chain of thought--that guides the generation of the final, executable action. Furthermore, we demonstrate that an All-in-One agent trained on a diverse mixture of action spaces using the CoA paradigm learns a more robust and generalizable policy. This unified agent achieves a new state-of-the-art, improving the overall task success rate over strong, specialized baselines. To foster reproducible research, we release the OpenHA (Open Hierarchical Agents) suite, which includes our comprehensive benchmark of over 800 distinct tasks, curated datasets, source code, and all pretrained model checkpoints at https://github.com/CraftJarvis/OpenHA

  • 7 authors
·
Sep 12 1

Learning Generalizable Skills from Offline Multi-Task Data for Multi-Agent Cooperation

Learning cooperative multi-agent policy from offline multi-task data that can generalize to unseen tasks with varying numbers of agents and targets is an attractive problem in many scenarios. Although aggregating general behavior patterns among multiple tasks as skills to improve policy transfer is a promising approach, two primary challenges hinder the further advancement of skill learning in offline multi-task MARL. Firstly, extracting general cooperative behaviors from various action sequences as common skills lacks bringing cooperative temporal knowledge into them. Secondly, existing works only involve common skills and can not adaptively choose independent knowledge as task-specific skills in each task for fine-grained action execution. To tackle these challenges, we propose Hierarchical and Separate Skill Discovery (HiSSD), a novel approach for generalizable offline multi-task MARL through skill learning. HiSSD leverages a hierarchical framework that jointly learns common and task-specific skills. The common skills learn cooperative temporal knowledge and enable in-sample exploitation for offline multi-task MARL. The task-specific skills represent the priors of each task and achieve a task-guided fine-grained action execution. To verify the advancement of our method, we conduct experiments on multi-agent MuJoCo and SMAC benchmarks. After training the policy using HiSSD on offline multi-task data, the empirical results show that HiSSD assigns effective cooperative behaviors and obtains superior performance in unseen tasks.

  • 4 authors
·
Mar 27

UltraCUA: A Foundation Model for Computer Use Agents with Hybrid Action

Multimodal agents for computer use rely exclusively on primitive actions (click, type, scroll) that require accurate visual grounding and lengthy execution chains, leading to cascading failures and performance bottlenecks. While other agents leverage rich programmatic interfaces (APIs, MCP servers, tools), computer-use agents (CUAs) remain isolated from these capabilities. We present UltraCUA, a foundation model that bridges this gap through hybrid action -- seamlessly integrating GUI primitives with high-level programmatic tool calls. To achieve this, our approach comprises four key components: (1) an automated pipeline that scales programmatic tools from software documentation, open-source repositories, and code generation; (2) a synthetic data engine producing over 17,000 verifiable tasks spanning real-world computer-use scenarios; (3) a large-scale high-quality hybrid action trajectory collection with both low-level GUI actions and high-level programmatic tool calls; and (4) a two-stage training pipeline combining supervised fine-tuning with online reinforcement learning, enabling strategic alternation between low-level and high-level actions. Experiments with our 7B and 32B models demonstrate substantial improvements over state-of-the-art agents. On OSWorld, UltraCUA models achieve an average 22% relative improvement over base models, while being 11% faster in terms of steps. Out-of-domain evaluation on WindowsAgentArena shows our model reaches 21.7% success rate, outperforming baselines trained on Windows data. The hybrid action mechanism proves critical, reducing error propagation while maintaining execution efficiency.

apple Apple
·
Oct 20 2

HAMLET: Switch your Vision-Language-Action Model into a History-Aware Policy

Inherently, robotic manipulation tasks are history-dependent: leveraging past context could be beneficial. However, most existing Vision-Language-Action models (VLAs) have been designed without considering this aspect, i.e., they rely solely on the current observation, ignoring preceding context. In this paper, we propose HAMLET, a scalable framework to adapt VLAs to attend to the historical context during action prediction. Specifically, we introduce moment tokens that compactly encode perceptual information at each timestep. Their representations are initialized with time-contrastive learning, allowing them to better capture temporally distinctive aspects. Next, we employ a lightweight memory module that integrates the moment tokens across past timesteps into memory features, which are then leveraged for action prediction. Through empirical evaluation, we show that HAMLET successfully transforms a state-of-the-art VLA into a history-aware policy, especially demonstrating significant improvements on long-horizon tasks that require historical context. In particular, on top of GR00T N1.5, HAMLET achieves an average success rate of 76.4% on history-dependent real-world tasks, surpassing the baseline performance by 47.2%. Furthermore, HAMLET pushes prior art performance from 64.1% to 66.4% on RoboCasa Kitchen (100-demo setup) and from 95.6% to 97.7% on LIBERO, highlighting its effectiveness even under generic robot-manipulation benchmarks.

  • 7 authors
·
Oct 1

Enhancing Decision-Making for LLM Agents via Step-Level Q-Value Models

Agents significantly enhance the capabilities of standalone Large Language Models (LLMs) by perceiving environments, making decisions, and executing actions. However, LLM agents still face challenges in tasks that require multiple decision-making steps. Estimating the value of actions in specific tasks is difficult when intermediate actions are neither appropriately rewarded nor penalized. In this paper, we propose leveraging a task-relevant Q-value model to guide action selection. Specifically, we first collect decision-making trajectories annotated with step-level Q values via Monte Carlo Tree Search (MCTS) and construct preference data. We then use another LLM to fit these preferences through step-level Direct Policy Optimization (DPO), which serves as the Q-value model. During inference, at each decision-making step, LLM agents select the action with the highest Q value before interacting with the environment. We apply our method to various open-source and API-based LLM agents, demonstrating that Q-value models significantly improve their performance. Notably, the performance of the agent built with Phi-3-mini-4k-instruct improved by 103% on WebShop and 75% on HotPotQA when enhanced with Q-value models, even surpassing GPT-4o-mini. Additionally, Q-value models offer several advantages, such as generalization to different LLM agents and seamless integration with existing prompting strategies.

  • 7 authors
·
Sep 14, 2024

Learning Synergies between Pushing and Grasping with Self-supervised Deep Reinforcement Learning

Skilled robotic manipulation benefits from complex synergies between non-prehensile (e.g. pushing) and prehensile (e.g. grasping) actions: pushing can help rearrange cluttered objects to make space for arms and fingers; likewise, grasping can help displace objects to make pushing movements more precise and collision-free. In this work, we demonstrate that it is possible to discover and learn these synergies from scratch through model-free deep reinforcement learning. Our method involves training two fully convolutional networks that map from visual observations to actions: one infers the utility of pushes for a dense pixel-wise sampling of end effector orientations and locations, while the other does the same for grasping. Both networks are trained jointly in a Q-learning framework and are entirely self-supervised by trial and error, where rewards are provided from successful grasps. In this way, our policy learns pushing motions that enable future grasps, while learning grasps that can leverage past pushes. During picking experiments in both simulation and real-world scenarios, we find that our system quickly learns complex behaviors amid challenging cases of clutter, and achieves better grasping success rates and picking efficiencies than baseline alternatives after only a few hours of training. We further demonstrate that our method is capable of generalizing to novel objects. Qualitative results (videos), code, pre-trained models, and simulation environments are available at http://vpg.cs.princeton.edu

  • 6 authors
·
Mar 27, 2018

TransRAC: Encoding Multi-scale Temporal Correlation with Transformers for Repetitive Action Counting

Counting repetitive actions are widely seen in human activities such as physical exercise. Existing methods focus on performing repetitive action counting in short videos, which is tough for dealing with longer videos in more realistic scenarios. In the data-driven era, the degradation of such generalization capability is mainly attributed to the lack of long video datasets. To complement this margin, we introduce a new large-scale repetitive action counting dataset covering a wide variety of video lengths, along with more realistic situations where action interruption or action inconsistencies occur in the video. Besides, we also provide a fine-grained annotation of the action cycles instead of just counting annotation along with a numerical value. Such a dataset contains 1,451 videos with about 20,000 annotations, which is more challenging. For repetitive action counting towards more realistic scenarios, we further propose encoding multi-scale temporal correlation with transformers that can take into account both performance and efficiency. Furthermore, with the help of fine-grained annotation of action cycles, we propose a density map regression-based method to predict the action period, which yields better performance with sufficient interpretability. Our proposed method outperforms state-of-the-art methods on all datasets and also achieves better performance on the unseen dataset without fine-tuning. The dataset and code are available.

  • 6 authors
·
Apr 3, 2022

Last Switch Dependent Bandits with Monotone Payoff Functions

In a recent work, Laforgue et al. introduce the model of last switch dependent (LSD) bandits, in an attempt to capture nonstationary phenomena induced by the interaction between the player and the environment. Examples include satiation, where consecutive plays of the same action lead to decreased performance, or deprivation, where the payoff of an action increases after an interval of inactivity. In this work, we take a step towards understanding the approximability of planning LSD bandits, namely, the (NP-hard) problem of computing an optimal arm-pulling strategy under complete knowledge of the model. In particular, we design the first efficient constant approximation algorithm for the problem and show that, under a natural monotonicity assumption on the payoffs, its approximation guarantee (almost) matches the state-of-the-art for the special and well-studied class of recharging bandits (also known as delay-dependent). In this attempt, we develop new tools and insights for this class of problems, including a novel higher-dimensional relaxation and the technique of mirroring the evolution of virtual states. We believe that these novel elements could potentially be used for approaching richer classes of action-induced nonstationary bandits (e.g., special instances of restless bandits). In the case where the model parameters are initially unknown, we develop an online learning adaptation of our algorithm for which we provide sublinear regret guarantees against its full-information counterpart.

  • 4 authors
·
Jun 1, 2023

Masked Diffusion with Task-awareness for Procedure Planning in Instructional Videos

A key challenge with procedure planning in instructional videos lies in how to handle a large decision space consisting of a multitude of action types that belong to various tasks. To understand real-world video content, an AI agent must proficiently discern these action types (e.g., pour milk, pour water, open lid, close lid, etc.) based on brief visual observation. Moreover, it must adeptly capture the intricate semantic relation of the action types and task goals, along with the variable action sequences. Recently, notable progress has been made via the integration of diffusion models and visual representation learning to address the challenge. However, existing models employ rudimentary mechanisms to utilize task information to manage the decision space. To overcome this limitation, we introduce a simple yet effective enhancement - a masked diffusion model. The introduced mask acts akin to a task-oriented attention filter, enabling the diffusion/denoising process to concentrate on a subset of action types. Furthermore, to bolster the accuracy of task classification, we harness more potent visual representation learning techniques. In particular, we learn a joint visual-text embedding, where a text embedding is generated by prompting a pre-trained vision-language model to focus on human actions. We evaluate the method on three public datasets and achieve state-of-the-art performance on multiple metrics. Code is available at https://github.com/ffzzy840304/Masked-PDPP.

  • 5 authors
·
Sep 13, 2023

ShortcutsBench: A Large-Scale Real-world Benchmark for API-based Agents

Recent advancements in integrating large language models (LLMs) with application programming interfaces (APIs) have gained significant interest in both academia and industry. These API-based agents, leveraging the strong autonomy and planning capabilities of LLMs, can efficiently solve problems requiring multi-step actions. However, their ability to handle multi-dimensional difficulty levels, diverse task types, and real-world demands through APIs remains unknown. In this paper, we introduce ShortcutsBench, a large-scale benchmark for the comprehensive evaluation of API-based agents in solving tasks with varying levels of difficulty, diverse task types, and real-world demands. ShortcutsBench includes a wealth of real APIs from Apple Inc.'s operating systems, refined user queries from shortcuts, human-annotated high-quality action sequences from shortcut developers, and accurate parameter filling values about primitive parameter types, enum parameter types, outputs from previous actions, and parameters that need to request necessary information from the system or user. Our extensive evaluation of agents built with 5 leading open-source (size >= 57B) and 4 closed-source LLMs (e.g. Gemini-1.5-Pro and GPT-3.5) reveals significant limitations in handling complex queries related to API selection, parameter filling, and requesting necessary information from systems and users. These findings highlight the challenges that API-based agents face in effectively fulfilling real and complex user queries. All datasets, code, and experimental results will be available at https://github.com/eachsheep/shortcutsbench.

  • 8 authors
·
Jun 28, 2024

VITA-VLA: Efficiently Teaching Vision-Language Models to Act via Action Expert Distillation

Vision-Language Action (VLA) models significantly advance robotic manipulation by leveraging the strong perception capabilities of pretrained vision-language models (VLMs). By integrating action modules into these pretrained models, VLA methods exhibit improved generalization. However, training them from scratch is costly. In this work, we propose a simple yet effective distillation-based framework that equips VLMs with action-execution capability by transferring knowledge from pretrained small action models. Our architecture retains the original VLM structure, adding only an action token and a state encoder to incorporate physical inputs. To distill action knowledge, we adopt a two-stage training strategy. First, we perform lightweight alignment by mapping VLM hidden states into the action space of the small action model, enabling effective reuse of its pretrained action decoder and avoiding expensive pretraining. Second, we selectively fine-tune the language model, state encoder, and action modules, enabling the system to integrate multimodal inputs with precise action generation. Specifically, the action token provides the VLM with a direct handle for predicting future actions, while the state encoder allows the model to incorporate robot dynamics not captured by vision alone. This design yields substantial efficiency gains over training large VLA models from scratch. Compared with previous state-of-the-art methods, our method achieves 97.3% average success rate on LIBERO (11.8% improvement) and 93.5% on LIBERO-LONG (24.5% improvement). In real-world experiments across five manipulation tasks, our method consistently outperforms the teacher model, achieving 82.0% success rate (17% improvement), which demonstrate that action distillation effectively enables VLMs to generate precise actions while substantially reducing training costs.

  • 15 authors
·
Oct 10

Two-Stage Constrained Actor-Critic for Short Video Recommendation

The wide popularity of short videos on social media poses new opportunities and challenges to optimize recommender systems on the video-sharing platforms. Users sequentially interact with the system and provide complex and multi-faceted responses, including watch time and various types of interactions with multiple videos. One the one hand, the platforms aims at optimizing the users' cumulative watch time (main goal) in long term, which can be effectively optimized by Reinforcement Learning. On the other hand, the platforms also needs to satisfy the constraint of accommodating the responses of multiple user interactions (auxiliary goals) such like, follow, share etc. In this paper, we formulate the problem of short video recommendation as a Constrained Markov Decision Process (CMDP). We find that traditional constrained reinforcement learning algorithms can not work well in this setting. We propose a novel two-stage constrained actor-critic method: At stage one, we learn individual policies to optimize each auxiliary signal. At stage two, we learn a policy to (i) optimize the main signal and (ii) stay close to policies learned at the first stage, which effectively guarantees the performance of this main policy on the auxiliaries. Through extensive offline evaluations, we demonstrate effectiveness of our method over alternatives in both optimizing the main goal as well as balancing the others. We further show the advantage of our method in live experiments of short video recommendations, where it significantly outperforms other baselines in terms of both watch time and interactions. Our approach has been fully launched in the production system to optimize user experiences on the platform.

  • 12 authors
·
Feb 3, 2023

CO-RFT: Efficient Fine-Tuning of Vision-Language-Action Models through Chunked Offline Reinforcement Learning

Vision-Language-Action (VLA) models demonstrate significant potential for developing generalized policies in real-world robotic control. This progress inspires researchers to explore fine-tuning these models with Reinforcement Learning (RL). However, fine-tuning VLA models with RL still faces challenges related to sample efficiency, compatibility with action chunking, and training stability. To address these challenges, we explore the fine-tuning of VLA models through offline reinforcement learning incorporating action chunking. In this work, we propose Chunked RL, a novel reinforcement learning framework specifically designed for VLA models. Within this framework, we extend temporal difference (TD) learning to incorporate action chunking, a prominent characteristic of VLA models. Building upon this framework, we propose CO-RFT, an algorithm aimed at fine-tuning VLA models using a limited set of demonstrations (30 to 60 samples). Specifically, we first conduct imitation learning (IL) with full parameter fine-tuning to initialize both the backbone and the policy. Subsequently, we implement offline RL with action chunking to optimize the pretrained policy. Our empirical results in real-world environments demonstrate that CO-RFT outperforms previous supervised methods, achieving a 57% improvement in success rate and a 22.3% reduction in cycle time. Moreover, our method exhibits robust positional generalization capabilities, attaining a success rate of 44.3% in previously unseen positions.

  • 6 authors
·
Aug 4

You Only Look at Screens: Multimodal Chain-of-Action Agents

Autonomous user interface (UI) agents aim to facilitate task automation by interacting with the user interface without manual intervention. Recent studies have investigated eliciting the capabilities of large language models (LLMs) for effective engagement in diverse environments. To align with the input-output requirement of LLMs, existing approaches are developed under a sandbox setting where they rely on external tools and application-specific APIs to parse the environment into textual elements and interpret the predicted actions. Consequently, those approaches often grapple with inference inefficiency and error propagation risks. To mitigate the challenges, we introduce Auto-UI, a multimodal solution that directly interacts with the interface, bypassing the need for environment parsing or reliance on application-dependent APIs. Moreover, we propose a chain-of-action technique -- leveraging a series of intermediate previous action histories and future action plans -- to help the agent decide what action to execute. We evaluate our approach on a new device-control benchmark AITW with 30K unique instructions, spanning multi-step tasks such as application operation, web searching, and web shopping. Experimental results show that Auto-UI achieves state-of-the-art performance with an action type prediction accuracy of 90% and an overall action success rate of 74%. Code is publicly available at https://github.com/cooelf/Auto-UI.

  • 2 authors
·
Sep 20, 2023

You Only Teach Once: Learn One-Shot Bimanual Robotic Manipulation from Video Demonstrations

Bimanual robotic manipulation is a long-standing challenge of embodied intelligence due to its characteristics of dual-arm spatial-temporal coordination and high-dimensional action spaces. Previous studies rely on pre-defined action taxonomies or direct teleoperation to alleviate or circumvent these issues, often making them lack simplicity, versatility and scalability. Differently, we believe that the most effective and efficient way for teaching bimanual manipulation is learning from human demonstrated videos, where rich features such as spatial-temporal positions, dynamic postures, interaction states and dexterous transitions are available almost for free. In this work, we propose the YOTO (You Only Teach Once), which can extract and then inject patterns of bimanual actions from as few as a single binocular observation of hand movements, and teach dual robot arms various complex tasks. Furthermore, based on keyframes-based motion trajectories, we devise a subtle solution for rapidly generating training demonstrations with diverse variations of manipulated objects and their locations. These data can then be used to learn a customized bimanual diffusion policy (BiDP) across diverse scenes. In experiments, YOTO achieves impressive performance in mimicking 5 intricate long-horizon bimanual tasks, possesses strong generalization under different visual and spatial conditions, and outperforms existing visuomotor imitation learning methods in accuracy and efficiency. Our project link is https://hnuzhy.github.io/projects/YOTO.

  • 6 authors
·
Jan 23

Discovering and Exploiting Sparse Rewards in a Learned Behavior Space

Learning optimal policies in sparse rewards settings is difficult as the learning agent has little to no feedback on the quality of its actions. In these situations, a good strategy is to focus on exploration, hopefully leading to the discovery of a reward signal to improve on. A learning algorithm capable of dealing with this kind of settings has to be able to (1) explore possible agent behaviors and (2) exploit any possible discovered reward. Efficient exploration algorithms have been proposed that require to define a behavior space, that associates to an agent its resulting behavior in a space that is known to be worth exploring. The need to define this space is a limitation of these algorithms. In this work, we introduce STAX, an algorithm designed to learn a behavior space on-the-fly and to explore it while efficiently optimizing any reward discovered. It does so by separating the exploration and learning of the behavior space from the exploitation of the reward through an alternating two-steps process. In the first step, STAX builds a repertoire of diverse policies while learning a low-dimensional representation of the high-dimensional observations generated during the policies evaluation. In the exploitation step, emitters are used to optimize the performance of the discovered rewarding solutions. Experiments conducted on three different sparse reward environments show that STAX performs comparably to existing baselines while requiring much less prior information about the task as it autonomously builds the behavior space.

  • 4 authors
·
Nov 2, 2021

ReAct: Synergizing Reasoning and Acting in Language Models

While large language models (LLMs) have demonstrated impressive capabilities across tasks in language understanding and interactive decision making, their abilities for reasoning (e.g. chain-of-thought prompting) and acting (e.g. action plan generation) have primarily been studied as separate topics. In this paper, we explore the use of LLMs to generate both reasoning traces and task-specific actions in an interleaved manner, allowing for greater synergy between the two: reasoning traces help the model induce, track, and update action plans as well as handle exceptions, while actions allow it to interface with external sources, such as knowledge bases or environments, to gather additional information. We apply our approach, named ReAct, to a diverse set of language and decision making tasks and demonstrate its effectiveness over state-of-the-art baselines, as well as improved human interpretability and trustworthiness over methods without reasoning or acting components. Concretely, on question answering (HotpotQA) and fact verification (Fever), ReAct overcomes issues of hallucination and error propagation prevalent in chain-of-thought reasoning by interacting with a simple Wikipedia API, and generates human-like task-solving trajectories that are more interpretable than baselines without reasoning traces. On two interactive decision making benchmarks (ALFWorld and WebShop), ReAct outperforms imitation and reinforcement learning methods by an absolute success rate of 34% and 10% respectively, while being prompted with only one or two in-context examples. Project site with code: https://react-lm.github.io

  • 7 authors
·
Oct 5, 2022 1