Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeKIC 4150611: A quadruply eclipsing heptuple star system with a g-mode period-spacing pattern Asteroseismic modelling of the g-mode period-spacing pattern
In this work, we aim to estimate the stellar parameters of the primary (Aa) by performing asteroseismic analysis on its period-spacing pattern. We use the C-3PO neural network to perform asteroseismic modelling of the g-mode period-spacing pattern of Aa, discussing the interplay of this information with external constraints from spectroscopy (T_{rm eff} and log(g)) and eclipse modelling (R). To estimate the level of uncertainty due to different frequency extraction and pattern identification processes, we consider four different variations on the period-spacing patterns. To better understand the correlations between and the uncertainty structure of our parameter estimates, we also employed a classical, parameter-based MCMC grid search on four different stellar grids. The best-fitting, externally constrained model to the period-spacing pattern arrives at estimates of the stellar properties for Aa of: M=1.51 pm 0.05 M_odot, X_c =0.43 pm 0.04, R=1.66 pm 0.1 R_odot, f_{rm ov}=0.010, Omega_c=1.58 pm 0.01 d^{-1} with rigid rotation to within the measurement errors, log(T_{rm eff})=3.856 pm 0.008 dex, log(g)=4.18 pm 0.04 dex, and log(L)=0.809 pm 0.005 dex, which agree well with previous measurements from eclipse modelling, spectroscopy, and the Gaia DR3 luminosity. We find that the near-core properties of the best-fitting asteroseismic models are consistent with external constraints from eclipse modelling and spectroscopy. Aa appears to be a typical example of a gamma Dor star, fitting well within existing populations. We find that Aa is quasi-rigidly rotating to within the uncertainties, and note that the asteroseismic age estimate for Aa (1100 pm 100 Myr) is considerably older than the young (35 Myr) age implied by previous isochrone fits to the B binary in the literature. Our MCMC parameter-based grid-search agrees well with our pattern-modelling approach.
Determination of Characteristics of Eclipsing Binaries with Spots: Phenomenological vs Physical Models
We discuss methods for modeling eclipsing binary stars using the "physical", "simplified" and "phenomenological" models. There are few realizations of the "physical" Wilson-Devinney (1971) code and its improvements, e.g. Binary Maker, Phoebe. A parameter search using the Monte-Carlo method was realized by Zola et al. (2010), which is efficient in expense of too many evaluations of the test function. We compare existing algorithms of minimization of multi-parametric functions and propose to use a "combined" algorithm, depending on if the Hessian matrix is positively determined. To study methods, a simply fast-computed function resembling the "complete" test function for the physical model. Also we adopt a simplified model of an eclipsing binary at a circular orbit assuming spherical components with an uniform brightness distribution. This model resembles more advanced models in a sense of correlated parameter estimates due to a similar topology of the test function. Such a model may be applied to detached Algol-type systems, where the tidal distortion of components is negligible.
A comprehensive grid of massive binary evolution models for the Galaxy - Surface properties of post-mass transfer stars
Massive stars often evolve in binary systems, in which binary interactions significantly affect their evolution. Massive stars in the Galaxy serve as valuable testbeds for this due to their proximity. We computed the evolution of more than 38000 galactic binary systems with initial primary star masses of 5...100 Msun. In this paper, we aim to investigate the surface properties of post-mass transfer mass donor and mass gainer stars through core hydrogen burning, core helium burning, and for the pre-supernova stage. The models are computed with MESA, incorporating detailed stellar and binary physics, including internal differential rotation, magnetic angular momentum transport, mass-dependent overshooting, stellar wind mass-loss, mass and angular momentum transfer and tidal interaction. They incorporate a new extensive nuclear network for hydrogen burning, which allows us to track the full range of hydrogen burning nucleosynthesis products, from the light elements to aluminum. The widest, non-interacting binary models in our grid effectively serve as single star models. We find that mass gainers and mass donors may evolve through long-lived blue and yellow supergiant stages during core helium burning where single stars of the same mass remain red supergiants. Furthermore, some of our gainers evolve into more luminous yellow and blue supergiants prior to core collapse than single stars, while some donors end their life as red or yellow supergiants, showing a rich diversity in supernova progenitors. We show that the surface elemental and isotopic abundances carry valuable information about a star's evolutionary history and can be used to distinguish binary interaction products from single stars. Our binary model grid may serve as a tool for identifying post-mass transfer stars and supernovae, and holds potential for population studies, supernova modeling, and guidance of future observations.
AstroM^3: A self-supervised multimodal model for astronomy
While machine-learned models are now routinely employed to facilitate astronomical inquiry, model inputs tend to be limited to a primary data source (namely images or time series) and, in the more advanced approaches, some metadata. Yet with the growing use of wide-field, multiplexed observational resources, individual sources of interest often have a broad range of observational modes available. Here we construct an astronomical multimodal dataset and propose AstroM^3, a self-supervised pre-training approach that enables a model to learn from multiple modalities simultaneously. Specifically, we extend the CLIP (Contrastive Language-Image Pretraining) model to a trimodal setting, allowing the integration of time-series photometry data, spectra, and astrophysical metadata. In a fine-tuning supervised setting, our results demonstrate that CLIP pre-training improves classification performance for time-series photometry, where accuracy increases from 84.6% to 91.5%. Furthermore, CLIP boosts classification accuracy by up to 12.6% when the availability of labeled data is limited, showing the effectiveness of leveraging larger corpora of unlabeled data. In addition to fine-tuned classification, we can use the trained model in other downstream tasks that are not explicitly contemplated during the construction of the self-supervised model. In particular we show the efficacy of using the learned embeddings for misclassifications identification, similarity search, and anomaly detection. One surprising highlight is the "rediscovery" of Mira subtypes and two Rotational variable subclasses using manifold learning and dimension reduction algorithm. To our knowledge this is the first construction of an n>2 mode model in astronomy. Extensions to n>3 modes is naturally anticipated with this approach.
Multi-mode Pulsations in AGB Stars: Insights from 3D RHD CO5BOLD Simulations
Stars on the AGB can exhibit acoustic pulsation modes of different radial orders, along with non-radial modes. These pulsations are essential to the mass-loss process and influence the evolutionary pathways of AGB stars. P-L relations serve as a valuable diagnostic for understanding stellar evolution along the AGB. 3D RHD simulations provide a powerful tool for investigating pulsation phenomena driven by convective processes and their non-linear coupling with stellar oscillations. We investigate multi-mode pulsations in AGB stars using advanced 3D 'star-in-a-box' simulations with the CO5BOLD code. Signatures of these multi-mode pulsations were weak in our previous 3D models. Our focus is on identifying and characterising the various pulsation modes, examining their persistence and transitions, and comparing the results with 1D model predictions and observational data where applicable. We produced a new model grid comprising AGB stars with current masses of 0.7, 0.8, and 1,M_{odot}. Fourier analysis was applied to dynamic, time-dependent quantities to extract dominant pulsation modes and their corresponding periods. Additionally, wavelet transforms were employed to identify mode-switching behaviour over time. The models successfully reproduce the P-L sequences found in AGB stars. Mode-switching phenomena are found in both the models and wavelet analyses of observational data, allowing us to infer similarities in the underlying pulsation dynamics. These 3D simulations highlight the natural emergence of multi-mode pulsations, including both radial and non-radial modes, driven by the self-consistent interplay of convection and oscillations. Our findings underscore the value of 3D RHD models in capturing the non-linear behaviour of AGB pulsations, providing insights into mode switching, envelope structures, and potential links to episodic mass-loss events.
Impulsive mixing of stellar populations in dwarf spheroidal galaxies
We study the response of mono-energetic stellar populations with initially isotropic kinematics to impulsive and adiabatic changes to an underlying dark matter potential. Half-light radii expand and velocity dispersions decrease as enclosed dark matter is removed. The details of this expansion and cooling depend on the time scale on which the underlying potential changes. In the adiabatic regime, the product of half-light radius and average velocity dispersion is conserved. We show that the stellar populations maintain centrally isotropic kinematics throughout their adiabatic evolution, and their densities can be approximated by a family of analytical radial profiles. Metallicity gradients within the galaxy flatten as dark matter is slowly removed. In the case of strong impulsive perturbations, stellar populations develop power-law-like density tails with radially biased kinematics. We show that the distribution of stellar binding energies within the dark matter halo substantially widens after an impulsive perturbation, no matter the sign of the perturbation. This allows initially energetically separated stellar populations to mix, to the extent that previously chemo-dynamically distinct populations may masquerade as a single population with large metallicity and energy spread. Finally, we show that in response to an impulsive perturbation, stellar populations that are deeply embedded in cored dark matter halos undergo a series of damped oscillations before reaching a virialised equilibrium state, driven by inefficient phase mixing in the harmonic potentials of cored halos. This slow return to equilibrium adds substantial systematic uncertainty to dynamical masses estimated from Jeans modeling or the virial theorem.
A Machine Learning Framework for Stellar Collision Transient Identification
Modern astronomical surveys, such as the Zwicky Transient Facility (ZTF), are capable of detecting thousands of transient events per year, necessitating the use of automated and scalable data analysis techniques. Recent advances in machine learning have enabled the efficient classification and characterization of these transient phenomena. We aim to develop a fully systematic pipeline to identify candidate stellar collision events in galactic nuclei, which may otherwise be identified as tidal disruption events or other transients. We also seek to validate our simulations by comparing key physical parameters derived from observations and used in modeling these events. We generate a comprehensive bank of simulated light curves spanning a range of physical parameters and employ an approximate nearest neighbor algorithm (via the annoy library) to match these with observed ZTF light curves. Our pipeline is successfully able to associate observed ZTF light curves with simulated events. The resulting estimated parameters, including supermassive black hole masses and ejecta mass, are presented and compared to known values when applicable. We demonstrate that a systematic, machine learning-based approach can effectively identify and characterize stellar collision candidate events from large-scale transient surveys. This methodology is especially promising for future surveys which will provide us with significantly high volumes of data, such as LSST, where automated, data-intensive analysis will be critical for advancing our understanding of transient astrophysical phenomena.
Photometric Data-driven Classification of Type Ia Supernovae in the Open Supernova Catalog
We propose a novel approach for a machine-learning-based detection of the type Ia supernovae using photometric information. Unlike other approaches, only real observation data is used during training. Despite being trained on a relatively small sample, the method shows good results on real data from the Open Supernovae Catalog. We also investigate model transfer from the PLAsTiCC simulations train dataset to real data application, and the reverse, and find the performance significantly decreases in both cases, highlighting the existing differences between simulated and real data.
Phemenological Modelling of a Group of Eclipsing Binary Stars
Phenomenological modeling of variable stars allows determination of a set of the parameters, which are needed for classification in the "General Catalogue of Variable Stars" and similar catalogs. We apply a recent method NAV ("New Algol Variable") to eclipsing binary stars of different types. Although all periodic functions may be represented as Fourier series with an infinite number of coefficients, this is impossible for a finite number of the observations. Thus one may use a restricted Fourier series, i.e. a trigonometric polynomial (TP) of order s either for fitting the light curve, or to make a periodogram analysis. However, the number of parameters needed drastically increases with decreasing width of minimum. In the NAV algorithm, the special shape of minimum is used, so the number of parameters is limited to 10 (if the period and initial epoch are fixed) or 12 (not fixed). We illustrate the NAV method by application to a recently discovered Algol-type eclipsing variable 2MASS J11080308-6145589 (in the field of previously known variable star RS Car) and compare results to that obtained using the TP fits. For this system, the statistically optimal number of parameters is 44, but the fit is still worse than that of the NAV fit. Application to the system GSC 3692-00624 argues that the NAV fit is better than the TP one even for the case of EW-type stars with much wider eclipses. Model parameters are listed.
AstroMLab 1: Who Wins Astronomy Jeopardy!?
We present a comprehensive evaluation of proprietary and open-weights large language models using the first astronomy-specific benchmarking dataset. This dataset comprises 4,425 multiple-choice questions curated from the Annual Review of Astronomy and Astrophysics, covering a broad range of astrophysical topics. Our analysis examines model performance across various astronomical subfields and assesses response calibration, crucial for potential deployment in research environments. Claude-3.5-Sonnet outperforms competitors by up to 4.6 percentage points, achieving 85.0% accuracy. For proprietary models, we observed a universal reduction in cost every 3-to-12 months to achieve similar score in this particular astronomy benchmark. Open-source models have rapidly improved, with LLaMA-3-70b (80.6%) and Qwen-2-72b (77.7%) now competing with some of the best proprietary models. We identify performance variations across topics, with non-English-focused models generally struggling more in exoplanet-related fields, stellar astrophysics, and instrumentation related questions. These challenges likely stem from less abundant training data, limited historical context, and rapid recent developments in these areas. This pattern is observed across both open-weights and proprietary models, with regional dependencies evident, highlighting the impact of training data diversity on model performance in specialized scientific domains. Top-performing models demonstrate well-calibrated confidence, with correlations above 0.9 between confidence and correctness, though they tend to be slightly underconfident. The development for fast, low-cost inference of open-weights models presents new opportunities for affordable deployment in astronomy. The rapid progress observed suggests that LLM-driven research in astronomy may become feasible in the near future.
Anisotropic Compact Star Model Satisfying Karmarkar Conditions
A new class of solutions describing the composition of compact stars has been proposed, assuming that the fluid distribution inside the star is anisotropic. This is achieved by assuming the appropriate metric potential and then solving Einstein's field equations using Karmarkar conditions [Karmarkar K. R., Proc. Indian Acad. Sci. 27 (1948) 56] to derive the expressions for star density, the radial and tangential pressures in terms of the constants A, B, a paramter `a' and the curvature parameter R. The equations thus obtained have been passed through rigorous conditional analysis. It is further shown that the model is physically viable and mathematically well-behaved, fulfilling the requisite conditions viz., regularity condition, strong energy condition, causality condition, etc. Observed star candidates including EXO 1785-248, SMC X-1, SAXJ1808.43658(SS2), HER X-1, 4U 1538-52, Cen X-3 and LMC X-4 were found to conform to a good approximation through the outcome of this model for a=0.5.
Metallicity and α-abundance for 48 million stars in low-extinction regions in the Milky Way
We estimate ([M/H], [alpha/M]) for 48 million giants and dwarfs in low-dust extinction regions from the Gaia DR3 XP spectra by using tree-based machine-learning models trained on APOGEE DR17 and metal-poor star sample from Li et al. The root mean square error of our estimation is 0.0890 dex for [M/H] and 0.0436 dex for [alpha/M], when we evaluate our models on the test data that are not used in training the models. Because the training data is dominated by giants, our estimation is most reliable for giants. The high-[alpha/M] stars and low-[alpha/M] stars selected by our ([M/H], [alpha/M]) show different kinematical properties for giants and low-temperature dwarfs. We further investigate how our machine-learning models extract information on ([M/H], [alpha/M]). Intriguingly, we find that our models seem to extract information on [alpha/M] from Na D lines (589 nm) and Mg I line (516 nm). This result is understandable given the observed correlation between Na and Mg abundances in the literature. The catalog of ([M/H], [alpha/M]) as well as their associated uncertainties are publicly available online.
High N/O ratio at high redshift as a result of a strong burst of star formation and differential galactic winds
Recent observations by JWST have revealed supersolar ^{14}N abundances in galaxies at very high redshift. On the other hand, these galaxies show subsolar metallicity. The observed N/O ratios are difficult to reproduce in the framework of chemical evolution models for the Milky Way. Our aim is to reproduce these high N/O ratios with chemical evolution models assuming different histories of star formation triggering galactic winds coupled with detailed nucleosynthesis prescriptions for ^{14}N, ^{12}C, ^{16}O and ^{56}Fe. We compute several models for small galaxies (10^{9} - 10^{10} M_{odot}) with high star formation efficiency and strong galactic winds. These winds are assumed to be differential, carrying out mainly the products of the explosion of core-collapse supernovae. We find that only models with high star formation rates, normal initial mass function, and differential galactic winds can reproduce the observed chemical abundances. We also find that with the same assumptions about star formation and galactic winds, but with a very rapid formation resulting from fast gas infall, we can also reproduce the estimated ages of these objects. We find no necessity to invoke peculiar nucleosynthesis from Population III stars, very massive stars and supermassive stars.
First Cosmology Results Using Type Ia Supernovae From the Dark Energy Survey: Photometric Pipeline and Light Curve Data Release
We present griz light curves of 251 Type Ia Supernovae (SNe Ia) from the first 3 years of the Dark Energy Survey Supernova Program's (DES-SN) spectroscopically classified sample. The photometric pipeline described in this paper produces the calibrated fluxes and associated uncertainties used in the cosmological parameter analysis (Brout et al. 2018-SYS, DES Collaboration et al. 2018) by employing a scene modeling approach that simultaneously forward models a variable transient flux and temporally constant host galaxy. We inject artificial point sources onto DECam images to test the accuracy of our photometric method. Upon comparison of input and measured artificial supernova fluxes, we find flux biases peak at 3 mmag. We require corrections to our photometric uncertainties as a function of host galaxy surface brightness at the transient location, similar to that seen by the DES Difference Imaging Pipeline used to discover transients. The public release of the light curves can be found at https://des.ncsa.illinois.edu/releases/sn.
Mantis Shrimp: Exploring Photometric Band Utilization in Computer Vision Networks for Photometric Redshift Estimation
We present Mantis Shrimp, a multi-survey deep learning model for photometric redshift estimation that fuses ultra-violet (GALEX), optical (PanSTARRS), and infrared (UnWISE) imagery. Machine learning is now an established approach for photometric redshift estimation, with generally acknowledged higher performance in areas with a high density of spectroscopically identified galaxies over template-based methods. Multiple works have shown that image-based convolutional neural networks can outperform tabular-based color/magnitude models. In comparison to tabular models, image models have additional design complexities: it is largely unknown how to fuse inputs from different instruments which have different resolutions or noise properties. The Mantis Shrimp model estimates the conditional density estimate of redshift using cutout images. The density estimates are well calibrated and the point estimates perform well in the distribution of available spectroscopically confirmed galaxies with (bias = 1e-2), scatter (NMAD = 2.44e-2) and catastrophic outlier rate (eta=17.53%). We find that early fusion approaches (e.g., resampling and stacking images from different instruments) match the performance of late fusion approaches (e.g., concatenating latent space representations), so that the design choice ultimately is left to the user. Finally, we study how the models learn to use information across bands, finding evidence that our models successfully incorporates information from all surveys. The applicability of our model to the analysis of large populations of galaxies is limited by the speed of downloading cutouts from external servers; however, our model could be useful in smaller studies such as generating priors over redshift for stellar population synthesis.
Structure and Dynamics of the Young Massive Star Cluster Westerlund 1
We present a structural analysis of the young massive star cluster Westerlund 1 (Wd 1). With multi-epoch Hubble Space Telescope (HST) observations, we measure the proper motions of 10346 stars and determine their kinematic memberships by fitting a Gaussian mixture model to their proper motions. After correcting for extinction and completeness, we model the stellar density distribution and confirm the presence of an elongation with an eccentricity of 0.71. The eccentricity decreases slightly with increasing mass. We fit the radial profile with the Elson, Fall, and Freeman model, observing a decrease in the core radius with increasing mass, indicative of weak but detectable mass segregation. This finding is further supported by a measured mass segregation ratio of Lambda_rm MSR=1.11pm0.11, only above 1 by 1sigma, and slightly shorter minimum spanning tree length for higher mass bins. The cluster has a 1D velocity dispersion of 3.42 pm 0.10~km,s^{-1}, suggesting it is subvirial. The subvirial state implies either exceptionally high star formation efficiency or inefficient stellar feedback caused by local gas expulsion before stars reach the cluster. The crossing time is 0.30 Myr and the relaxation time is 0.26 Gyr. Given the age of Wd 1 of 10.7 Myr, we expect evident mass segregation for stars more massive than 10~M_odot, which accounts for the minor mass segregation found in the mass range of 1.00x201312.14~M_odot in this work. This suggests the overall mass segregation in Wd 1 is not primordial.
FLARE: A Framework for Stellar Flare Forecasting using Stellar Physical Properties and Historical Records
Stellar flare events are critical observational samples for astronomical research; however, recorded flare events remain limited. Stellar flare forecasting can provide additional flare event samples to support research efforts. Despite this potential, no specialized models for stellar flare forecasting have been proposed to date. In this paper, we present extensive experimental evidence demonstrating that both stellar physical properties and historical flare records are valuable inputs for flare forecasting tasks. We then introduce FLARE (Forecasting Light-curve-based Astronomical Records via features Ensemble), the first-of-its-kind large model specifically designed for stellar flare forecasting. FLARE integrates stellar physical properties and historical flare records through a novel Soft Prompt Module and Residual Record Fusion Module. Our experiments on the publicly available Kepler light curve dataset demonstrate that FLARE achieves superior performance compared to other methods across all evaluation metrics. Finally, we validate the forecast capability of our model through a comprehensive case study.
STAR: A Benchmark for Astronomical Star Fields Super-Resolution
Super-resolution (SR) advances astronomical imaging by enabling cost-effective high-resolution capture, crucial for detecting faraway celestial objects and precise structural analysis. However, existing datasets for astronomical SR (ASR) exhibit three critical limitations: flux inconsistency, object-crop setting, and insufficient data diversity, significantly impeding ASR development. We propose STAR, a large-scale astronomical SR dataset containing 54,738 flux-consistent star field image pairs covering wide celestial regions. These pairs combine Hubble Space Telescope high-resolution observations with physically faithful low-resolution counterparts generated through a flux-preserving data generation pipeline, enabling systematic development of field-level ASR models. To further empower the ASR community, STAR provides a novel Flux Error (FE) to evaluate SR models in physical view. Leveraging this benchmark, we propose a Flux-Invariant Super Resolution (FISR) model that could accurately infer the flux-consistent high-resolution images from input photometry, suppressing several SR state-of-the-art methods by 24.84% on a novel designed flux consistency metric, showing the priority of our method for astrophysics. Extensive experiments demonstrate the effectiveness of our proposed method and the value of our dataset. Code and models are available at https://github.com/GuoCheng12/STAR.
Cosmology with one galaxy?
Galaxies can be characterized by many internal properties such as stellar mass, gas metallicity, and star-formation rate. We quantify the amount of cosmological and astrophysical information that the internal properties of individual galaxies and their host dark matter halos contain. We train neural networks using hundreds of thousands of galaxies from 2,000 state-of-the-art hydrodynamic simulations with different cosmologies and astrophysical models of the CAMELS project to perform likelihood-free inference on the value of the cosmological and astrophysical parameters. We find that knowing the internal properties of a single galaxy allow our models to infer the value of Omega_{rm m}, at fixed Omega_{rm b}, with a sim10% precision, while no constraint can be placed on sigma_8. Our results hold for any type of galaxy, central or satellite, massive or dwarf, at all considered redshifts, zleq3, and they incorporate uncertainties in astrophysics as modeled in CAMELS. However, our models are not robust to changes in subgrid physics due to the large intrinsic differences the two considered models imprint on galaxy properties. We find that the stellar mass, stellar metallicity, and maximum circular velocity are among the most important galaxy properties to determine the value of Omega_{rm m}. We believe that our results can be explained taking into account that changes in the value of Omega_{rm m}, or potentially Omega_{rm b}/Omega_{rm m}, affect the dark matter content of galaxies. That effect leaves a distinct signature in galaxy properties to the one induced by galactic processes. Our results suggest that the low-dimensional manifold hosting galaxy properties provides a tight direct link between cosmology and astrophysics.
First Light and Reionisation Epoch Simulations (FLARES) XVII: Learning the galaxy-halo connection at high redshifts
Understanding the galaxy-halo relationship is not only key for elucidating the interplay between baryonic and dark matter, it is essential for creating large mock galaxy catalogues from N-body simulations. High-resolution hydrodynamical simulations are limited to small volumes by their large computational demands, hindering their use for comparisons with wide-field observational surveys. We overcome this limitation by using the First Light and Reionisation Epoch Simulations (FLARES), a suite of high-resolution (M_gas = 1.8 x 10^6 M_Sun) zoom simulations drawn from a large, (3.2 cGpc)^3 box. We use an extremely randomised trees machine learning approach to model the relationship between galaxies and their subhaloes in a wide range of environments. This allows us to build mock catalogues with dynamic ranges that surpass those obtainable through periodic simulations. The low cost of the zoom simulations facilitates multiple runs of the same regions, differing only in the random number seed of the subgrid models; changing this seed introduces a butterfly effect, leading to random differences in the properties of matching galaxies. This randomness cannot be learnt by a deterministic machine learning model, but by sampling the noise and adding it post-facto to our predictions, we are able to recover the distributions of the galaxy properties we predict (stellar mass, star formation rate, metallicity, and size) remarkably well. We also explore the resolution-dependence of our models' performances and find minimal depreciation down to particle resolutions of order M_DM ~ 10^8 M_Sun, enabling the future application of our models to large dark matter-only boxes.
Synthetic Light Curves and Spectra for the Photospheric Phase of a 3D Stripped-Envelope Supernova Explosion Model
We present synthetic light curves and spectra from three-dimensional (3D) Monte Carlo radiative transfer simulations based on a 3D core-collapse supernova explosion model of an ultra-stripped 3.5,M_{odot} progenitor. Our calculations predict a fast and faint transient with Delta m_{15} sim 1- 2,mag and peak bolometric luminosity between -15.3,mag and -16.4,mag. Due to a large-scale unipolar asymmetry in the distribution of ^{56}Ni, there is a pronounced viewing-angle dependence with about 1,mag difference between the directions of highest and lowest luminosity. The predicted spectra for this rare class of explosions do not yet match any observed counterpart. They are dominated by prominent Mg~II lines, but features from O, C, Si, and Ca are also found. In particular, the O~I line at 7{774} appears as a blended feature together with Mg~II emission. Our model is not only faster and fainter than the observed Ib/c supernova population, but also shows a correlation between higher peak luminosity and larger Delta m_{15} that is not present in observational samples. A possible explanation is that the unusually small ejecta mass of our model accentuates the viewing-angle dependence of the photometry. We suggest that the viewing-angle dependence of the photometry may be used to constrain asymmetries in explosion models of more typical stripped-envelope supernova progenitors in future.
Estimation of Classical Cepheid's Physical Parameters from NIR Light Curves
Recent space-borne and ground-based observations provide photometric measurements as time series. The effect of interstellar dust extinction in the near-infrared range is only 10% of that measured in the V band. However, the sensitivity of the light curve shape to the physical parameters in the near-infrared is much lower. So, interpreting these types of data sets requires new approaches like the different large-scale surveys, which create similar problems with big data. Using a selected data set, we provide a method for applying routines implemented in R to extract most information of measurements to determine physical parameters, which can also be used in automatic classification schemes and pipeline processing. We made a multivariate classification of 131 Cepheid light curves (LC) in J, H, and K colors, where all the LCs were represented in 20D parameter space in these colors separately. Performing a Principal Component Analysis (PCA), we got an orthogonal coordinate system and squared Euclidean distances between LCs, with 6 significant eigenvalues, reducing the 20-dimension to 6. We also estimated the optimal number of partitions of similar objects and found it to be equal to 7 in each color; their dependence on the period, absolute magnitude, amplitude, and metallicity are also discussed. We computed the Spearman rank correlations, showing that periods and absolute magnitudes correlate with the first three PCs significantly. The first two PC are also found to have a relationship with the amplitude, but the metallicity effects are only marginal. The method shown can be generalized and implemented in unsupervised classification schemes and analysis of mixed and biased samples. The analysis of our Classical Cepheid near-infrared LC sample showed that the J, H, K curves are insufficient for determination of stellar metallicity, with mass being the key factor shaping them.
Water Snowline in Young Stellar Objects with Various Density Structures Using Radiative Transfer Models
Tracing the water snowline in low-mass young stellar objects (YSOs) is important because dust grain growth is promoted and the chemical composition varies at the water snowline, which influences planet formation and its properties. In protostellar envelopes, the water snowline can be estimated as a function of luminosity using a relation derived from radiative transfer models, and these predictions are consistent with observations. However, accurately estimating the water snowline in protoplanetary disks requires new relations that account for the disk structure. We present the relations between luminosity and water snowline using the dust continuum radiative transfer models with various density structures. We adopt two-dimensional density structures for an envelope-only model (Model E), an envelope+disk+cavity model (Model E+D), and a protoplanetary disk model (Model PPD). The relations between the water snowline, where T_dust = 100 K, and the total luminosity, ranging 0.1-1,000 solar luminosity, are well fitted by a power-law relation, R_snow=a * (L/L_solar)^p au. The factor a decreases with increasing disk density, while the power index p has values around 0.5 in all models. As the disk becomes denser, the water snowline forms at smaller radii even at the same luminosity, since dense dust hinders photon propagation. We also explore the effect of viscous heating on the water snowline. In Model PPD with viscous heating, the water snowline shifts outward by a few au up to 15 au, increasing the factor a and decreasing the power index p. In Model E+D with lower disk mass, the effect of viscous heating is negligible, indicating that the disk mass controls the effect. The discrepancy between our models and direct observations provides insights into the recent outburst event and the presence of a disk structure in low-mass YSOs.
The challenge of simulating the star cluster population of dwarf galaxies with resolved interstellar medium
We present results on the star cluster properties from a series of high resolution smoothed particles hydrodynamics (SPH) simulations of isolated dwarf galaxies as part of the GRIFFIN project. The simulations at sub-parsec spatial resolution and a minimum particle mass of 4 M_odot incorporate non-equilibrium heating, cooling and chemistry processes, and realise individual massive stars. All the simulations follow feedback channels of massive stars that include the interstellar-radiation field, that is variable in space and time, the radiation input by photo-ionisation and supernova explosions. Varying the star formation efficiency per free-fall time in the range epsilon_ff = 0.2 - 50% neither changes the star formation rates nor the outflow rates. While the environmental densities at star formation change significantly with epsilon_ff, the ambient densities of supernovae are independent of epsilon_ff indicating a decoupling of the two processes. At low epsilon_ff, more massive, and increasingly more bound star clusters are formed, which are typically not destroyed. With increasing epsilon_ff there is a trend for shallower cluster mass functions and the cluster formation efficiency Gamma for young bound clusters decreases from 50 % to sim 1 % showing evidence for cluster disruption. However, none of our simulations form low mass (< 10^3 M_odot) clusters with structural properties in perfect agreement with observations. Traditional star formation models used in galaxy formation simulations based on local free-fall times might therefore not be able to capture low mass star cluster properties without significant fine-tuning.
Using angular momentum maps to detect kinematically distinct galactic components
In this work we introduce a physically motivated method of performing disc/spheroid decomposition of simulated galaxies, which we apply to the Eagle sample. We make use of the HEALPix package to create Mollweide projections of the angular momentum map of each galaxy's stellar particles. A number of features arise on the angular momentum space which allows us to decompose galaxies and classify them into different morphological types. We assign stellar particles with angular separation of less/greater than 30 degrees from the densest grid cell on the angular momentum sphere to the disc/spheroid components, respectively. We analyse the spatial distribution for a subsample of galaxies and show that the surface density profiles of the disc and spheroid closely follow an exponential and a Sersic profile, respectively. In addition discs rotate faster, have smaller velocity dispersions, are younger and are more metal rich than spheroids. Thus our morphological classification reproduces the observed properties of such systems. Finally, we demonstrate that our method is able to identify a significant population of galaxies with counter-rotating discs and provide a more realistic classification of such systems compared to previous methods.
A comparative study of NeuralODE and Universal ODE approaches to solving Chandrasekhar White Dwarf equation
In this study, we apply two pillars of Scientific Machine Learning: Neural Ordinary Differential Equations (Neural ODEs) and Universal Differential Equations (UDEs) to the Chandrasekhar White Dwarf Equation (CWDE). The CWDE is fundamental for understanding the life cycle of a star, and describes the relationship between the density of the white dwarf and its distance from the center. Despite the rise in Scientific Machine Learning frameworks, very less attention has been paid to the systematic applications of the above SciML pillars on astronomy based ODEs. Through robust modeling in the Julia programming language, we show that both Neural ODEs and UDEs can be used effectively for both prediction as well as forecasting of the CWDE. More importantly, we introduce the forecasting breakdown point - the time at which forecasting fails for both Neural ODEs and UDEs. Through a robust hyperparameter optimization testing, we provide insights on the neural network architecture, activation functions and optimizers which provide the best results. This study provides opens a door to investigate the applicability of Scientific Machine Learning frameworks in forecasting tasks for a wide range of scientific domains.
Lessons Learned from the 1st ARIEL Machine Learning Challenge: Correcting Transiting Exoplanet Light Curves for Stellar Spots
The last decade has witnessed a rapid growth of the field of exoplanet discovery and characterisation. However, several big challenges remain, many of which could be addressed using machine learning methodology. For instance, the most prolific method for detecting exoplanets and inferring several of their characteristics, transit photometry, is very sensitive to the presence of stellar spots. The current practice in the literature is to identify the effects of spots visually and correct for them manually or discard the affected data. This paper explores a first step towards fully automating the efficient and precise derivation of transit depths from transit light curves in the presence of stellar spots. The methods and results we present were obtained in the context of the 1st Machine Learning Challenge organized for the European Space Agency's upcoming Ariel mission. We first present the problem, the simulated Ariel-like data and outline the Challenge while identifying best practices for organizing similar challenges in the future. Finally, we present the solutions obtained by the top-5 winning teams, provide their code and discuss their implications. Successful solutions either construct highly non-linear (w.r.t. the raw data) models with minimal preprocessing -deep neural networks and ensemble methods- or amount to obtaining meaningful statistics from the light curves, constructing linear models on which yields comparably good predictive performance.
AstroCLIP: Cross-Modal Pre-Training for Astronomical Foundation Models
We present AstroCLIP, a strategy to facilitate the construction of astronomical foundation models that bridge the gap between diverse observational modalities. We demonstrate that a cross-modal contrastive learning approach between images and optical spectra of galaxies yields highly informative embeddings of both modalities. In particular, we apply our method on multi-band images and optical spectra from the Dark Energy Spectroscopic Instrument (DESI), and show that: (1) these embeddings are well-aligned between modalities and can be used for accurate cross-modal searches, and (2) these embeddings encode valuable physical information about the galaxies -- in particular redshift and stellar mass -- that can be used to achieve competitive zero- and few- shot predictions without further finetuning. Additionally, in the process of developing our approach, we also construct a novel, transformer-based model and pretraining approach for processing galaxy spectra.
Synthetic Modelling of Polarized Dust Emission in Intermediate-Mass YSOs: I: Constraining the Role of Iron Inclusions and Inelastic Relaxation on Grain Alignment with ALMA Polarization
Iron inclusions embedded inside dust grains play a crucial role in both internal alignment (IA) via Barnett relaxation and external alignment via the MAgnetically Enhanced RAdiative Torque (MRAT) mechanism. Moreover, inelastic relaxation is predicted to dominate over Barnett relaxation in driving the IA of micron-sized and very large grains above 10mu m (VLGs). Yet, a detailed modeling of polarized thermal dust emission from Class 0/I Young Stellar Objects (YSOs) taking into account these effects and their observational constraints is still lacking. In this paper, we update the POLARIS code and use it to perform synthetic dust polarization modeling for MHD simulations of an intermediate-mass YSO. Results will be post-processed with CASA to confront ALMA polarimetric observations. We found that to reproduce the high polarization degree of p sim 5-30% observed in protostellar envelopes by ALMA, micron-sized and VLGs must contain iron inclusions with N_{rm cl} sim 5 - 10^{3} iron atoms per cluster, assuming 30% of iron abundance locked inside dust grains under the cluster form. Inside the inner sim 500 au region, inelastic relaxation must participate in driving the grain internal alignment, and grains must contain larger iron inclusions of N_{rm cl} sim 10^{2}-10^{4} and grow beyond geq 10mu m to reproduce sim 3-10% of dust polarization observed by ALMA. But given such a combination, the internal alignment and MRAT efficiency acting on VLGs still decrease toward the center, inducing the decrease of p(%) with increasing gas density, reaching p sim 1% inside the disk.
AstronomicAL: An interactive dashboard for visualisation, integration and classification of data using Active Learning
AstronomicAL is a human-in-the-loop interactive labelling and training dashboard that allows users to create reliable datasets and robust classifiers using active learning. This technique prioritises data that offer high information gain, leading to improved performance using substantially less data. The system allows users to visualise and integrate data from different sources and deal with incorrect or missing labels and imbalanced class sizes. AstronomicAL enables experts to visualise domain-specific plots and key information relating both to broader context and details of a point of interest drawn from a variety of data sources, ensuring reliable labels. In addition, AstronomicAL provides functionality to explore all aspects of the training process, including custom models and query strategies. This makes the software a tool for experimenting with both domain-specific classifications and more general-purpose machine learning strategies. We illustrate using the system with an astronomical dataset due to the field's immediate need; however, AstronomicAL has been designed for datasets from any discipline. Finally, by exporting a simple configuration file, entire layouts, models, and assigned labels can be shared with the community. This allows for complete transparency and ensures that the process of reproducing results is effortless
First Light And Reionisation Epoch Simulations (FLARES) VI: The colour evolution of galaxies z=5-15
With its exquisite sensitivity, wavelength coverage, and spatial and spectral resolution, the James Webb Space Telescope is poised to revolutionise our view of the distant, high-redshift (z>5) Universe. While Webb's spectroscopic observations will be transformative for the field, photometric observations play a key role in identifying distant objects and providing more comprehensive samples than accessible to spectroscopy alone. In addition to identifying objects, photometric observations can also be used to infer physical properties and thus be used to constrain galaxy formation models. However, inferred physical properties from broadband photometric observations, particularly in the absence of spectroscopic redshifts, often have large uncertainties. With the development of new tools for forward modelling simulations it is now routinely possible to predict observational quantities, enabling a direct comparison with observations. With this in mind, in this work, we make predictions for the colour evolution of galaxies at z=5-15 using the FLARES: First Light And Reionisation Epoch Simulations cosmological hydrodynamical simulation suite. We predict a complex evolution, driven predominantly by strong nebular line emission passing through individual bands. These predictions are in good agreement with existing constraints from Hubble and Spitzer as well as some of the first results from Webb. We also contrast our predictions with other models in the literature: while the general trends are similar we find key differences, particularly in the strength of features associated with strong nebular line emission. This suggests photometric observations alone should provide useful discriminating power between different models.
Can AI Dream of Unseen Galaxies? Conditional Diffusion Model for Galaxy Morphology Augmentation
Observational astronomy relies on visual feature identification to detect critical astrophysical phenomena. While machine learning (ML) increasingly automates this process, models often struggle with generalization in large-scale surveys due to the limited representativeness of labeled datasets -- whether from simulations or human annotation -- a challenge pronounced for rare yet scientifically valuable objects. To address this, we propose a conditional diffusion model to synthesize realistic galaxy images for augmenting ML training data. Leveraging the Galaxy Zoo 2 dataset which contains visual feature -- galaxy image pairs from volunteer annotation, we demonstrate that our model generates diverse, high-fidelity galaxy images closely adhere to the specified morphological feature conditions. Moreover, this model enables generative extrapolation to project well-annotated data into unseen domains and advancing rare object detection. Integrating synthesized images into ML pipelines improves performance in standard morphology classification, boosting completeness and purity by up to 30\% across key metrics. For rare object detection, using early-type galaxies with prominent dust lane features ( sim0.1\% in GZ2 dataset) as a test case, our approach doubled the number of detected instances from 352 to 872, compared to previous studies based on visual inspection. This study highlights the power of generative models to bridge gaps between scarce labeled data and the vast, uncharted parameter space of observational astronomy and sheds insight for future astrophysical foundation model developments. Our project homepage is available at https://galaxysd-webpage.streamlit.app/.
Simulation-based Inference for Exoplanet Atmospheric Retrieval: Insights from winning the Ariel Data Challenge 2023 using Normalizing Flows
Advancements in space telescopes have opened new avenues for gathering vast amounts of data on exoplanet atmosphere spectra. However, accurately extracting chemical and physical properties from these spectra poses significant challenges due to the non-linear nature of the underlying physics. This paper presents novel machine learning models developed by the AstroAI team for the Ariel Data Challenge 2023, where one of the models secured the top position among 293 competitors. Leveraging Normalizing Flows, our models predict the posterior probability distribution of atmospheric parameters under different atmospheric assumptions. Moreover, we introduce an alternative model that exhibits higher performance potential than the winning model, despite scoring lower in the challenge. These findings highlight the need to reevaluate the evaluation metric and prompt further exploration of more efficient and accurate approaches for exoplanet atmosphere spectra analysis. Finally, we present recommendations to enhance the challenge and models, providing valuable insights for future applications on real observational data. These advancements pave the way for more effective and timely analysis of exoplanet atmospheric properties, advancing our understanding of these distant worlds.
Newly Discovered Eclipsing Binary 2MASS J18024395+4003309 (VSX J180243.9+400331):Two-Color Photometry vs Phenomenological Modeling
We report on analysis of the two-color VR CCD observations of the newly discovered variable 2MASS J18024395+4003309=VSX J180243.9+400331 obtained using the 1-m telescope of the Mt. Lemmon Observatory (LOAO) in the field of the intermediate polar V1323 Her. The extended version of this conference talk we published in 2015JASS...32..127A. The variability was reported in 2012OAP....25..150A, and the object was monitored. The two-color observations covered all phase interval. The object is classified as an Algol-type variable with tidally distorted components, and shows an asymmetry of the maxima (the O\'Connell effect). For phenomenological modeling, we used the trigonometric polynomial approximation of statistically optimal degree, and a recent method "NAV" (New Algol Variable) using local specific shapes for the eclipse. Methodological aspects are described, especially for the case of few color observations. Estimates of the physical parameters based on analysis of phenomenological parameters, are presented.
Overview of the SDSS-IV MaNGA Survey: Mapping Nearby Galaxies at Apache Point Observatory
We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12" (19 fibers) to 32" (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 A at R~2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (per A, per 2" fiber) at 23 AB mag per sq. arcsec, which is typical for the outskirts of MaNGA galaxies. Targets are selected with stellar mass greater than 1e9 Msun using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr.
Tidal Suppression of Fuzzy Dark Matter Heating in Milky Way Satellite Galaxies
Many previous studies have imposed stringent constraints on the particle mass of fuzzy dark matter (FDM) by analyzing observations of Galactic satellite galaxies, which show no significant evidence of the heating effect predicted by FDM. However, these analyses have generally neglected the tidal influence of the Milky Way, which can substantially suppress the FDM-induced heating in satellites. This oversight arises from computational challenges of accurately capturing the tidal effects in FDM simulations. In this study, we present a novel simulation framework that, for the first time, enables the simulation of an FDM-stellar system within an observationally motivated gravitational potential of the Milky Way. This framework incorporates the diverse Galactic components, including the gravitational influence of the Large Magellanic Cloud. Using the Fornax dwarf galaxy as a case study, we demonstrate that tidal effects significantly alleviate the tension between observational data and the predicted heating effect for an FDM particle mass of m_asim 10^{-22} eV.
Parameter estimation from the core-bounce phase of rotating core collapse supernovae in real interferometer noise
In this work we propose an analytical model that reproduces the core-bounds phase of gravitational waves (GW) of Rapidly Rotating (RR) from Core Collapse Supernovae (CCSNe), as a function of three parameters, the arrival time tau, the ratio of the kinetic and potential energy beta and a phenomenological parameter alpha related to rotation and equation of state (EOS). To validate the model we use 126 waveforms from the Richers catalog Richers_2017 selected with the criteria of exploring a range of rotation profiles, and involving EOS. To quantify the degree of accuracy of the proposed model, with a particular focus on the rotation parameter beta, we show that the average Fitting Factor (FF) between the simulated waveforms with the templates is 94.4\%. In order to estimate the parameters we propose a frequentist matched filtering approach in real interferometric noise which does not require assigning any priors. We use the Matched Filter (MF) technique, where we inject a bank of templates considering simulated colored Gaussian noise and the real noise of O3L1. For example for A300w6.00\_BHBLP at 10Kpc we obtain a standar deviation of sigma = 3.34times 10^{-3} for simulated colored Gaussian noise and sigma= 1.46times 10^{-2} for real noise. On the other hand, from the asymptotic expansion of the variance we obtain the theoretical minimum error for beta at 10 kpc and optimal orientation. The estimation error in this case is from 10^{-2} to 10^{-3} as beta increases. We show that the results of the estimation error of beta for the 3-parameter space (3D) is consistent with the single-parameter space (1D), which allows us to conclude that beta is decoupled from the others two parameters.
The growth of intermediate mass black holes through tidal captures and tidal disruption events
We present N-body simulations, including post-Newtonian dynamics, of dense clusters of low-mass stars harbouring central black holes (BHs) with initial masses of 50, 300, and 2000 M_{odot}. The models are evolved with the N-body code bifrost to investigate the possible formation and growth of massive BHs by the tidal capture of stars and tidal disruption events (TDEs). We model star-BH tidal interactions using a velocity-dependent drag force, which causes orbital energy and angular momentum loss near the BH. About sim 20-30 per cent of the stars within the spheres of influence of the black holes form Bahcall-Wolf cusps and prevent the systems from core collapse. Within the first 40 Myr of evolution, the systems experience 500 up to 1300 TDEs, depending on the initial cluster structure. Most (> 95 per cent) of the TDEs originate from stars in the Bahcall-Wolf cusp. We derive an analytical formula for the TDE rate as a function of the central BH mass, density and velocity dispersion of the clusters (N_{TDE} propto M_{BH} rho sigma^{-3}). We find that TDEs can lead a 300 M_{odot} BH to reach sim 7000 M_{odot} within a Gyr. This indicates that TDEs can drive the formation and growth of massive BHs in sufficiently dense environments, which might be present in the central regions of nuclear star clusters.
Energy conservation in the thin layer approximation: VI. Bubbles and super-bubbles
We model the conservation of energy in the framework of the thin layer approximation for two types of interstellar medium (ISM). In particular, we analyse an ISM in the presence of self-gravity and a Gaussian ISM which produces an asymmetry in the advancing shell. The astrophysical targets to be simulated are the Fermi bubbles, the local bubble, and the W4 super-bubble. The theory of images is applied to a piriform curve, which allows deriving some analytical formulae for the observed intensity in the case of an optically thin medium.
First Light And Reionisation Epoch Simulations (FLARES) XII: The consequences of star-dust geometry on galaxies in the EoR
Using the First Light And Reionisation Epoch Simulations ({rm F{small LARES}}), a suite of hydrodynamical simulations we explore the consequences of a realistic model for star--dust geometry on the observed properties of galaxies. We find that the UV attenuation declines rapidly from the central regions of galaxies, and bright galaxies have spatially extended star formation that suffers less obscuration than their fainter counterparts, demonstrating a non-linear relationship between the UV luminosity and the UV attenuation, giving a double power-law shape to the UVLF. Spatially distinct stellar populations within galaxies experience a wide range of dust attenuation due to variations in the dust optical depth along their line-of-sight; which can range from completely dust obscured to being fully unobscured. The overall attenuation curve of a galaxy is then a complex combination of various lines-of-sight within the galaxy. We explore the manifestation of this effect to study the reliability of line ratios to infer galaxy properties, in particular the Balmer decrement and the BPT diagram. We find the Balmer decrement predicted Balmer line attenuation to be higher (factor of 1 to gtrsim10) than expected from commonly used attenuation curves. The observed BPT line ratios deviate from their intrinsic values (median difference of 0.08 (0.02) and standard deviation of 0.2 (0.05) for log_{10}([N{small II}]lambda 6585/H_{alpha}) (log_{10}([O{small III}]lambda 5008/H_{beta})). Finally, we explore the variation in observed properties (UV attenuation, UV slope and Balmer decrement) with viewing angle, finding average differences of sim0.3 magnitudes in the UV attenuation.
Exploring the Current Star Formation Rate and Nebula Ratio of Star-Formation Galaxies at z < 0.4 with FADO
The star formation rate is a crucial astrophysical tracer for understanding the formation and evolution of galaxies, determining the interaction between interstellar medium properties and star formation, thereby inferring the evolutionary laws of cosmic star formation history and cosmic energy density. The mainstream approach to studying the stellar property in galaxies relies on pure stellar population synthesis models. However, these methods fail to account for the contamination of SFR caused by nebular gas radiation. Recent studies have indicated that neglecting nebular radiation contamination appears non-negligible in galaxies with intense star-forming activities and at relatively high redshifts, potentially leading to overestimating stellar masses. However, there is currently limited targeted research, particularly regarding galaxies at redshifts (z < 0.4). In this work, 6,511 star-formation galaxies are selected from the SDSS-DR18, and FADO fits their spectra. This tool can exclude nebular radiation contributions in the spectral fitting. A tentative work is carried out to explore the SFR of these galaxies. The results indicate that the median \( H_{\alpha} \) flux obtained from FADO fitting differs from that obtained using the pure stellar population synthesis model {\it qsofitmore} by approximately 0.034 dex. Preliminary evidence suggests that the average nebula ratio increases with redshift. Additionally, we investigated the impact of stellar mass on the nebula ratio at low to moderate redshifts. By comparing two spectral fitting software packages, we found that although the contribution of nebular emission is minimal, it generally shows an increasing trend with redshift. We anticipate that by combining optical and near-infrared spectral data, the influence of nebulae may become more prominent in star-forming galaxies at higher redshifts (e.g., up to z sim 2).
Pixel-level modelling of group-scale strong lens CASSOWARY 19
We present the first high-precision model for the group-scale strong lensing system CASSOWARY 19 (CSWA19), utilising images from the Hubble Space Telescope (HST). Sixteen member galaxies identified via the red-sequence method, and the main halo, all modelled as the dual Pseudo Isothermal Elliptical profile (dPIE), are incorporated into a parametric lens model alongside an external shear field. To model the system, we adopt the PyAutoLens software package, employing a progressive search chain strategy for realizing the transition of source model from multiple S\'ersic profiles to a brightness-adaptive pixelization, which uses 1000 pixels in the source plane to reconstruct the background source corresponding to 177,144 image pixels in the image plane. Our results indicate that the total mass within the Einstein radius is M_{theta_E} approx 1.41times10^{13}M_{odot} and the average slope of the total mass density rho (r)propto r^{-gamma} is gamma=1.33 within the effective radius. This slope is shallower than those measured in galaxies and groups but is closer to those of galaxy clusters. In addition, our approach successfully resolves the two merging galaxies in the background source and yields a total magnification of mu=103.18^{+0.23}_{-0.19}, which is significantly higher than the outcomes from previous studies of CSWA19. In summary, our research demonstrates the effectiveness of the brightness-adaptive pixelization source reconstruction technique for modelling group-scale strong lensing systems. It can serve as a technical reference for future investigations into pixel-level modelling of the group- and cluster-scale strong lensing systems.
Exploring the limits of nucleonic metamodelling using different relativistic density functionals
In this work, we explore two classes of density dependent relativistic mean-field models, their predictions of proton fractions at high densities and neutron star structure. We have used a metamodelling approach to these relativistic density functionals. We have generated a large ensemble of models with these classes and then applied constraints from theoretical and experimental nuclear physics and astrophysical observations. We find that both models produce similar equations of state and neutron star mass-radius sequences. But, their underlying compositions, denoted by the proton fraction in this case, are vastly different. This reinstates previous findings that information on composition gets masqueraded in beta-equilibrium. Additional observations of non-equilibrium phenomena are necessary to pin it down.
The DESI PRObabilistic Value-Added Bright Galaxy Survey (PROVABGS) Mock Challenge
The PRObabilistic Value-Added Bright Galaxy Survey (PROVABGS) catalog will provide measurements of galaxy properties, such as stellar mass (M_*), star formation rate ({rm SFR}), stellar metallicity (Z_{rm MW}), and stellar age (t_{rm age, MW}), for >10 million galaxies of the DESI Bright Galaxy Survey. Full posterior distributions of the galaxy properties will be inferred using state-of-the-art Bayesian spectral energy distribution (SED) modeling of DESI spectroscopy and Legacy Surveys photometry. In this work, we present the SED model, Bayesian inference framework, and methodology of PROVABGS. Furthermore, we apply the PROVABGS SED modeling on realistic synthetic DESI spectra and photometry, constructed using the L-GALAXIES semi-analytic model. We compare the inferred galaxy properties to the true galaxy properties of the simulation using a hierarchical Bayesian framework to quantify accuracy and precision. Overall, we accurately infer the true M_*, {rm SFR}, Z_{rm MW}, and t_{rm age, MW} of the simulated galaxies. However, the priors on galaxy properties induced by the SED model have a significant impact on the posteriors. They impose a {rm SFR}{>}10^{-1} M_odot/{rm yr} lower bound on {rm SFR}, a {sim}0.3 dex bias on log Z_{rm MW} for galaxies with low spectral signal-to-noise, and t_{rm age, MW} < 8,{rm Gyr} upper bound on stellar age. This work also demonstrates that a joint analysis of spectra and photometry significantly improves the constraints on galaxy properties over photometry alone and is necessary to mitigate the impact of the priors. With the methodology presented and validated in this work, PROVABGS will maximize information extracted from DESI observations and provide a probabilistic value-added galaxy catalog that will extend current galaxy studies to new regimes and unlock cutting-edge probabilistic analyses.
Impact of QCD sum rules coupling constants on neutron stars structure
We present a detailed investigation on the structure of neutron stars, incorporating the presence of hyperons within a relativistic model under the mean-field approximation. Employing coupling constants derived from QCD sum rules, we explore the particle fraction in beta equilibrium and establish the mass-radius relationship for neutron stars with hyperonic matter. Additionally, we compute the stellar Love number (K_{2}) and the tidal deformability parameter (varLambda), providing valuable insights into the dynamical properties of these celestial objects. Through comparison with theoretical predictions and observational data, our results exhibit good agreement, affirming the validity of our approach. These findings contribute significantly to refining the understanding of neutron star physics, particularly in environments containing hyperons, and offer essential constraints on the equation of state governing such extreme astrophysical conditions.
Phemenological Modeling of Eclipsing Binary Stars
We review the method NAV (New Algol Variable) first introduced in 2012Ap.....55..536A, which uses the locally-dependent shapes of eclipses in an addition to the trigonometric polynomial of the second order (which typically describes the "out-of-eclipse" part of the light curve with effects of reflection, ellipticity and O'Connell). Eclipsing binary stars are believed to show distinct eclipses only if belonging to the EA type. With a decreasing eclipse width, the statistically optimal value of the trigonometric polynomial s (2003ASPC..292..391A) drastically increases from ~2 for elliptic (EL) variables without eclipses, ~6-8 for EW and up to ~30-50 for some EA with narrow eclipses. In this case of large number of parameters, the smoothing curve becomes very noisy and apparent waves (the Gibbs phenomenon) may be seen. The NAV set of the parameters may be used for classification in the GCVS, VSX and similar catalogs. The maximal number of parameters is m=12, which corresponds to s=5, if correcting both the period and the initial epoch. We have applied the method to few stars, also in a case of multi-color photometry (2015JASS...32..127A), when it is possible to use the phenomenological parameters from the NAV fit to estimate physical parameters using statistical dependencies. We conclude that the NAV approximation is better than the TP one even for the case of EW-type stars with much wider eclipses. It may also be used to determine timings (see 2005ASPC..335...37A for a review of methods) or to determine parameters in the case of variable period, using a complete light curve modeling the phase variations. The method is illustrated on 2MASS J11080447-6143290 (EA-type), USNO-B1.0 1265-0306001 and USNO-B1.0 1266-0313413 (EW-type) and compared to various other methods from the literature.
Fully Compressible Magnetohydrodynamic Simulations of Solar Convection Zones with CHORUS++
The objective of this study is to develop a fully compressible magnetohydrodynamic solver for fast simulations of the global dynamo of the Sun using unstructured grids and GPUs. Accurate modeling of the Sun's convective layers is vital to predicting the Sun's behavior, including the solar dynamo and sunspot cycles. Currently, there are many efficient codes capable of conducting these large simulations; however, many assume an anealastic density distribution. The anelastic assumption is capable of producing accurate results for low mach numbers; however, it fails in regions with a higher mach number and a fully compressible flow must be considered. To avoid these issues, Wang et al. [1] created a Compressible High-ORder Unstructured Spectral difference (CHORUS) code for simulating fluid dynamics inside stars and planets. CHORUS++ augmented the CHORUS code to adopt a higher degree of polynomials by using cubed-sphere meshing and transfinite mapping to perform simulations on unstructured grids [2]. Recently, CHORUS++ was further developed for parallel magnetohydrodynamic (MHD) solutions on GPUs at Clarkson University. In this study the solar benchmark problems presented by Chen et al. [2] are extended to unsteady solar dynamo problems, with two different density scale heights. The CHORUS-MHD code is further accelerated by multiple GPUs and used to successfully solve these solar dynamo benchmark problems. [1] Wang, J., Liang, C., and Miesch, M. S., "A Compressible High-Order Unstructured Spectral Difference Code for Stratified Convection in Rotating Spherical Shells," Journal of Computational Physics, Vol. 290, 2015, pp. 90-111. [2] Chen, K., Liang, C., and Wan, M., "Arbitrarily high-order accurate simulations of compressible rotationally constrained convection using a transfinite mapping on cubed-sphere grids," Physics of Fluids, Vol. 35, 2023, p. 086120.
Surrogate Modeling for Computationally Expensive Simulations of Supernovae in High-Resolution Galaxy Simulations
Some stars are known to explode at the end of their lives, called supernovae (SNe). The substantial amount of matter and energy that SNe release provides significant feedback to star formation and gas dynamics in a galaxy. SNe release a substantial amount of matter and energy to the interstellar medium, resulting in significant feedback to star formation and gas dynamics in a galaxy. While such feedback has a crucial role in galaxy formation and evolution, in simulations of galaxy formation, it has only been implemented using simple {\it sub-grid models} instead of numerically solving the evolution of gas elements around SNe in detail due to a lack of resolution. We develop a method combining machine learning and Gibbs sampling to predict how a supernova (SN) affects the surrounding gas. The fidelity of our model in the thermal energy and momentum distribution outperforms the low-resolution SN simulations. Our method can replace the SN sub-grid models and help properly simulate un-resolved SN feedback in galaxy formation simulations. We find that employing our new approach reduces the necessary computational cost to sim 1 percent compared to directly resolving SN feedback.
Euclid Quick Data Release (Q1). Active galactic nuclei identification using diffusion-based inpainting of Euclid VIS images
Light emission from galaxies exhibit diverse brightness profiles, influenced by factors such as galaxy type, structural features and interactions with other galaxies. Elliptical galaxies feature more uniform light distributions, while spiral and irregular galaxies have complex, varied light profiles due to their structural heterogeneity and star-forming activity. In addition, galaxies with an active galactic nucleus (AGN) feature intense, concentrated emission from gas accretion around supermassive black holes, superimposed on regular galactic light, while quasi-stellar objects (QSO) are the extreme case of the AGN emission dominating the galaxy. The challenge of identifying AGN and QSO has been discussed many times in the literature, often requiring multi-wavelength observations. This paper introduces a novel approach to identify AGN and QSO from a single image. Diffusion models have been recently developed in the machine-learning literature to generate realistic-looking images of everyday objects. Utilising the spatial resolving power of the Euclid VIS images, we created a diffusion model trained on one million sources, without using any source pre-selection or labels. The model learns to reconstruct light distributions of normal galaxies, since the population is dominated by them. We condition the prediction of the central light distribution by masking the central few pixels of each source and reconstruct the light according to the diffusion model. We further use this prediction to identify sources that deviate from this profile by examining the reconstruction error of the few central pixels regenerated in each source's core. Our approach, solely using VIS imaging, features high completeness compared to traditional methods of AGN and QSO selection, including optical, near-infrared, mid-infrared, and X-rays.
A new sample of massive B-type contact binary candidates from the OGLE survey of the Magellanic Clouds
Massive contact binaries (CBs) are key to understanding close-binary evolution and stellar mergers, yet their study has been limited by the scarcity of observed systems, particularly of B-type binaries expected to dominate this class. We bridge this gap by mining a large sample of massive CB candidates from the OGLE-IV database, increasing their known numbers in the Magellanic Clouds by nearly an order of magnitude. Using main-sequence colour-magnitude limits, an observationally informed period-luminosity-colour relation for CBs, and a high morph-parameter cut (cgeq0.7), we identified 68 O- and B-type binaries that exhibit smooth, sinusoidal light curves with nearly equal eclipse depths. We then isolated a bona fide sample of 37 CB candidates (28 in the LMC and 9 in the SMC) that match theoretical colour-magnitude and period distributions derived from an extensive grid of MESA binary models. The bona fide sample, dominated by B-type systems with Papprox0.6-1 d, agrees with the predicted population and may contain many qapprox1 binaries, as expected from models showing mass equalization preceding temperature equalization during nuclear-timescale contact. Synthetic PHOEBE light curves of contact and near-contact phases of MESA models reveal a degeneracy between these configurations, suggesting possible misidentifications among these systems. Spectroscopic follow-up is required to test these predictions and refine the evolutionary framework of massive CBs.
Revisiting the Classics: On the Optical Colours of Novae as Standard Crayons
We present a systematic study of the BVRI colours of novae over the course of their eruptions. Where possible, interstellar reddening was measured using the equivalent widths of Diffuse Interstellar Bands (DIBs). Some novae lack spectra with sufficient resolution and signal-to-noise ratios; therefore, we supplement as necessary with 3D and 2D dust maps. Utilising only novae with DIB- or 3D-map-based E(B-V), we find an average intrinsic (B-V)_0 colour of novae at V-band light curve peak of 0.18 with a standard deviation of 0.31, based on a sample of 23 novae. When the light curve has declined by 2 magnitudes (t_2), we find an average (B-V)_0 = -0.02 with a standard deviation of 0.19. These average colours are consistent with previous findings, although the spreads are larger than previously found due to more accurate reddening estimates. We also examined the intrinsic (R-I)_0 and (V-R)_0 colours across our sample. These colours behave similarly to (B-V)_0, except that the (V-R)_0 colour gets redder after peak, likely due to the contributions of emission line flux. We searched for correlations between nova colours and t_2, peak V-band absolute magnitude, and GeV gamma-ray luminosity, but find no statistically significant correlations. Nova colours can therefore be used as standard "crayons" to estimate interstellar reddening from photometry alone, with 0.2--0.3 mag uncertainty. We present a novel Bayesian strategy for estimating distances to Galactic novae based on these E(B-V) measurements, independent of assumptions about luminosity, built using 3D dust maps and a stellar mass model of the Milky Way.
Rotating neutron stars: anisotropy model comparison
We build slowly rotating anisotropic neutron stars using the Hartle-Thorne formalism, employing three distinct anisotropy models--Horvat, Bowers-Liang, and a covariant model--to characterize the relationship between radial and tangential pressure. We analyze how anisotropy influences stellar properties such as the mass-radius relation, angular momentum, moment of inertia, and binding energy. Our findings reveal that the maximum stable mass of non-rotating stars depends strongly on the anisotropy model, with some configurations supporting up to 60% more mass than their isotropic counterparts with the same central density. This mass increase is most pronounced in the models where the anisotropy grows toward the star's surface, as seen in the covariant model. Furthermore, slowly rotating anisotropic stars adhere to universal relations for the moment of inertia and binding energy, regardless of the chosen anisotropy model or equation of state.
Inferring the Equation of State from Neutron Star Observables via Machine Learning
We have conducted an extensive study using a diverse set of equations of state (EoSs) to uncover strong relationships between neutron star (NS) observables and the underlying EoS parameters using symbolic regression method. These EoS models, derived from a mix of agnostic and physics-based approaches, considered neutron stars composed of nucleons, hyperons, and other exotic degrees of freedom in beta equilibrium. The maximum mass of a NS is found to be strongly correlated with the pressure and baryon density at an energy density of approximately 800 MeV.fm^{-3}. We have also demonstrated that the EoS can be expressed as a function of radius and tidal deformability within the NS mass range 1-2M_odot. These insights offer a promising and efficient framework to decode the dense matter EoS directly from the accurate knowledge of NS observables.
Cosmological Distance Measurement of 12 Nearby Supernovae IIP with ROTSE-IIIB
We present cosmological analysis of 12 nearby (z<0.06) Type IIP supernovae (SNe IIP) observed with the ROTSE-IIIb telescope. To achieve precise photometry, we present a new image differencing technique that is implemented for the first time on the ROTSE SN photometry pipeline. With this method, we find up to a 20\% increase in the detection efficiency and significant reduction in residual RMS scatter of the SN lightcurves when compared to the previous pipeline performance. We use the published optical spectra and broadband photometry of well studied SNe IIP to establish temporal models for ejecta velocity and photospheric temperature evolution for our SNe IIP population. This study yields measurements that are competitive to other methods even when the data are limited to a single epoch during the photospheric phase of SNe IIP. Using the fully reduced ROTSE photometry and optical spectra, we apply these models to the respective photometric epochs for each SN in the ROTSE IIP sample. This facilitates the use of the Expanding Photosphere Method (EPM) to obtain distance estimates to their respective host galaxies. We then perform cosmological parameter fitting using these EPM distances from which we measure the Hubble constant to be 72.9^{+5.7}_{-4.3}~{rm kms^{-1}~Mpc^{-1}}, which is consistent with the standard Lambda CDM model values derived using other independent techniques.
Solaris: A Foundation Model of the Sun
Foundation models have demonstrated remarkable success across various scientific domains, motivating our exploration of their potential in solar physics. In this paper, we present Solaris, the first foundation model for forecasting the Sun's atmosphere. We leverage 13 years of full-disk, multi-wavelength solar imagery from the Solar Dynamics Observatory, spanning a complete solar cycle, to pre-train Solaris for 12-hour interval forecasting. Solaris is built on a large-scale 3D Swin Transformer architecture with 109 million parameters. We demonstrate Solaris' ability to generalize by fine-tuning on a low-data regime using a single wavelength (1700 {\AA}), that was not included in pre-training, outperforming models trained from scratch on this specific wavelength. Our results indicate that Solaris can effectively capture the complex dynamics of the solar atmosphere and transform solar forecasting.
AION-1: Omnimodal Foundation Model for Astronomical Sciences
While foundation models have shown promise across a variety of fields, astronomy still lacks a unified framework for joint modeling across its highly diverse data modalities. In this paper, we present AION-1, a family of large-scale multimodal foundation models for astronomy. AION-1 integrates heterogeneous imaging, spectroscopic, and scalar data using a two-stage architecture: modality-specific tokenization followed by transformer-based masked modeling of cross-modal token sequences. The model is pretrained on five large-scale surveys: Legacy Survey, Hyper Suprime-Cam (HSC), Sloan Digital Sky Survey (SDSS), Dark Energy Spectroscopic Instrument (DESI), and Gaia. These span more than 200 million observations of stars, galaxies, and quasars. With a single frozen encoder, AION-1 achieves strong results on a broad suite of downstream tasks, including galaxy and stellar property estimation, galaxy morphology classification, similarity-based retrieval, galaxy image segmentation, and spectral super-resolution. We release AION-1 model variants ranging from 300 M to 3.1 B parameters. Beyond astronomy, AION-1 provides a scalable blueprint for multimodal scientific foundation models that can seamlessly integrate noisy, instrument-specific observations. All code, tokenizers, pretrained weights, and a lightweight evaluation suite are released under an open-source license.
Adaptive Detection of Fast Moving Celestial Objects Using a Mixture of Experts and Physical-Inspired Neural Network
Fast moving celestial objects are characterized by velocities across the celestial sphere that significantly differ from the motions of background stars. In observational images, these objects exhibit distinct shapes, contrasting with the typical appearances of stars. Depending on the observational method employed, these celestial entities may be designated as near-Earth objects or asteroids. Historically, fast moving celestial objects have been observed using ground-based telescopes, where the relative stability of stars and Earth facilitated effective image differencing techniques alongside traditional fast moving celestial object detection and classification algorithms. However, the growing prevalence of space-based telescopes, along with their diverse observational modes, produces images with different properties, rendering conventional methods less effective. This paper presents a novel algorithm for detecting fast moving celestial objects within star fields. Our approach enhances state-of-the-art fast moving celestial object detection neural networks by transforming them into physical-inspired neural networks. These neural networks leverage the point spread function of the telescope and the specific observational mode as prior information; they can directly identify moving fast moving celestial objects within star fields without requiring additional training, thereby addressing the limitations of traditional techniques. Additionally, all neural networks are integrated using the mixture of experts technique, forming a comprehensive fast moving celestial object detection algorithm. We have evaluated our algorithm using simulated observational data that mimics various observations carried out by space based telescope scenarios and real observation images. Results demonstrate that our method effectively detects fast moving celestial objects across different observational modes.
The sharpness of the quark-hadron transition and the properties of hybrid stars
We investigate the effects of the sharpness of the phase transition between hadronic matter and quark matter on various properties of neutron stars. We construct hybrid equations of state by combining a hadronic model with a quark model using a Gaussian function. This approach introduces a smooth transition characterized by two parameters: one representing the overpressure relative to the first-order phase transition point, and the other related to the range over which the hybrid region extends in baryon chemical potential. We find that the sharpness of the phase transition significantly influences the equation of state, which can deviate by several tens of MeV fm^{-3} from the one with a sharp first-order transition. The speed of sound exhibits diverse behaviors, including drastic drops, pronounced peaks, and oscillatory patterns, depending on the sharpness parameters. In terms of stellar structure, while the maximum neutron star mass remains largely unaffected by the sharpness of the phase transition, the stellar radii can vary significantly. Smoother transitions lead to a leftward shift (up to 1 km) of the mass-radius curve segment corresponding to hybrid stars. The tidal deformability decreases with smoother transitions, especially for higher-mass stars. Our results are quite general and do not qualitatively depend on the specific hadronic and quark matter models employed. In fact, the hybrid equation of state and stellar properties derived from microscopic models of quark-hadron pasta phases display the same behavior as described above.
First Light And Reionisation Epoch Simulations (FLARES) I: Environmental Dependence of High-Redshift Galaxy Evolution
We introduce the First Light And Reionisation Epoch Simulations (FLARES), a suite of zoom simulations using the EAGLE model. We resimulate a range of overdensities during the Epoch of Reionisation (EoR) in order to build composite distribution functions, as well as explore the environmental dependence of galaxy formation and evolution during this critical period of galaxy assembly. The regions are selected from a large (3.2 ;cGpc)^{3} parent volume, based on their overdensity within a sphere of radius 14,h^{-1};cMpc. We then resimulate with full hydrodynamics, and employ a novel weighting scheme that allows the construction of composite distribution functions that are representative of the full parent volume. This significantly extends the dynamic range compared to smaller volume periodic simulations. We present an analysis of the galaxy stellar mass function (GSMF), the star formation rate distribution function (SFRF) and the star forming sequence (SFS) predicted by \flares, and compare to a number of observational and model constraints. We also analyse the environmental dependence over an unprecedented range of overdensity. Both the GSMF and the SFRF exhibit a clear double-Schechter form, up to the highest redshifts (z = 10). We also find no environmental dependence of the SFS normalisation. The increased dynamic range probed by FLARES will allow us to make predictions for a number of large area surveys that will probe the EoR in coming years, such as WFIRST and Euclid.
Multiscale Neural Operator: Learning Fast and Grid-independent PDE Solvers
Numerical simulations in climate, chemistry, or astrophysics are computationally too expensive for uncertainty quantification or parameter-exploration at high-resolution. Reduced-order or surrogate models are multiple orders of magnitude faster, but traditional surrogates are inflexible or inaccurate and pure machine learning (ML)-based surrogates too data-hungry. We propose a hybrid, flexible surrogate model that exploits known physics for simulating large-scale dynamics and limits learning to the hard-to-model term, which is called parametrization or closure and captures the effect of fine- onto large-scale dynamics. Leveraging neural operators, we are the first to learn grid-independent, non-local, and flexible parametrizations. Our multiscale neural operator is motivated by a rich literature in multiscale modeling, has quasilinear runtime complexity, is more accurate or flexible than state-of-the-art parametrizations and demonstrated on the chaotic equation multiscale Lorenz96.
Historical Astronomical Diagrams Decomposition in Geometric Primitives
Automatically extracting the geometric content from the hundreds of thousands of diagrams drawn in historical manuscripts would enable historians to study the diffusion of astronomical knowledge on a global scale. However, state-of-the-art vectorization methods, often designed to tackle modern data, are not adapted to the complexity and diversity of historical astronomical diagrams. Our contribution is thus twofold. First, we introduce a unique dataset of 303 astronomical diagrams from diverse traditions, ranging from the XIIth to the XVIIIth century, annotated with more than 3000 line segments, circles and arcs. Second, we develop a model that builds on DINO-DETR to enable the prediction of multiple geometric primitives. We show that it can be trained solely on synthetic data and accurately predict primitives on our challenging dataset. Our approach widely improves over the LETR baseline, which is restricted to lines, by introducing a meaningful parametrization for multiple primitives, jointly training for detection and parameter refinement, using deformable attention and training on rich synthetic data. Our dataset and code are available on our webpage.
Modelling the accretion and feedback of supermassive black hole binaries in gas-rich galaxy mergers
We introduce a new model for the accretion and feedback of supermassive black hole (SMBH) binaries to the KETJU code, which enables us to resolve the evolution of SMBH binaries down to separations of tens of Schwarzschild radii in gas-rich galaxy mergers. Our subgrid binary accretion model extends the widely used Bondi--Hoyle--Lyttleton accretion into the binary phase and incorporates preferential mass accretion onto the secondary SMBH, which is motivated by results from small-scale hydrodynamical circumbinary disc simulations. We perform idealised gas-rich disc galaxy merger simulations using pure thermal or pure kinetic active galactic nuclei (AGN) feedback. Our binary accretion model provides more physically motivated SMBH mass ratios, which are one of the key parameters for computing gravitational wave (GW) induced recoil velocities. The merger time-scales of our simulated SMBH binaries are in the range t_{rm merge}{sim} 10--400 Myr. Prograde in-plane equal-mass galaxy mergers lead to the shortest merger time-scales, as they experience the strongest starbursts, with the ensuing high stellar density resulting in a rapid SMBH coalescence. Compared to the thermal AGN feedback, the kinetic AGN feedback predicts longer merger time-scales and results in more core-like stellar profiles, as it is more effective in removing gas from the galaxy centre and quenching star formation. This suggests that the AGN feedback implementation plays a critical role in modelling SMBH coalescences. Our model will be useful for improving the modelling of SMBH mergers in gas-rich galaxies, the prime targets for the upcoming LISA GW observatory.
A Diagnostic Kit for Optical Emission Lines Shaped by Accretion Disc Winds
Blueshifted absorption is the classic spectroscopic signature of an accretion disc wind in X-ray binaries and cataclysmic variables (CVs). However, outflows can also create pure emission lines, especially at optical wavelengths. Therefore, developing other outflow diagnostics for these types of lines is worthwhile. With this in mind, we construct a systematic grid of 3645 synthetic wind-formed H-alpha line profiles for CVs with the radiative transfer code SIROCCO. Our grid yields a variety of line shapes: symmetric, asymmetric, single- to quadruple-peaked, and even P-Cygni profiles. About 20% of these lines -- our `Gold' sample -- have strengths and widths consistent with observations. We use this grid to test a recently proposed method for identifying wind-formed emission lines based on deviations in the wing profile shape: the `excess equivalent width diagnostic diagram'. We find that our `Gold' sample can preferentially populate the suggested `wind regions' of this diagram. However, the method is highly sensitive to the adopted definition of the line profile `wing'. Hence, we propose a refined definition based on the full-width at half maximum to improve the interpretability of the diagnostic diagram. Furthermore, we define an approximate scaling relation for the strengths of wind-formed CV emission lines in terms of the outflow parameters. This relation provides a fast way to assess whether -- and what kind of -- outflow can produce an observed emission line. All our wind-based models are open-source and we provide an easy-to-use web-based tool to browse our full set of H-alpha spectral profiles.
The effect of turbulence on the angular momentum of the solar wind
The transfer of a star's angular momentum to its atmosphere is a topic of considerable and wide-ranging interest in astrophysics. This letter considers the effect of kinetic and magnetic turbulence on the solar wind's angular momentum. The effects are quantified in a theoretical framework that employs Reynolds-averaged mean field magnetohydrodynamics, allowing for fluctuations of arbitrary amplitude. The model is restricted to the solar equatorial (\(r-\phi\)) plane with axial symmetry, which permits the effect of turbulence to be expressed in analytical form as a modification to the classic Weber & Davis (1967) theory, dependent on the \(r,\phi\) shear component of the Reynolds stress tensor. A solar wind simulation with turbulence transport modeling and Parker Solar Probe observations at the Alfv\'en surface are employed to quantify this turbulent modification to the solar wind's angular momentum, which is found to be ~ 3% - 10% and tends to be negative. Implications for solar and stellar rotational evolution are discussed.
Supernova Light Curves Approximation based on Neural Network Models
Photometric data-driven classification of supernovae becomes a challenge due to the appearance of real-time processing of big data in astronomy. Recent studies have demonstrated the superior quality of solutions based on various machine learning models. These models learn to classify supernova types using their light curves as inputs. Preprocessing these curves is a crucial step that significantly affects the final quality. In this talk, we study the application of multilayer perceptron (MLP), bayesian neural network (BNN), and normalizing flows (NF) to approximate observations for a single light curve. We use these approximations as inputs for supernovae classification models and demonstrate that the proposed methods outperform the state-of-the-art based on Gaussian processes applying to the Zwicky Transient Facility Bright Transient Survey light curves. MLP demonstrates similar quality as Gaussian processes and speed increase. Normalizing Flows exceeds Gaussian processes in terms of approximation quality as well.
Orbits and Dynamical Masses for Six Binary Systems in the Hyades Cluster
We report long baseline interferometric observations with the CHARA Array that resolve six previously known double-lined spectroscopic binary systems in the Hyades cluster, with orbital periods ranging from 3 to 358 days: HD 27483, HD 283882, HD 26874, HD 27149, HD 30676, and HD 28545. We combine those observations with new and existing radial-velocity measurements, to infer the dynamical masses for the components as well as the orbital parallaxes. For most stars the masses are determined to better than 1%. Our work significantly increases the number of systems with mass determinations in the cluster. We find that while current models of stellar evolution for the age and metallicity of the Hyades are able to reproduce the overall shape of the empirical mass-luminosity relation, they overestimate the V-band fluxes by about 0.1 mag between 0.5 and 1.4 M_{odot}. The disagreement is smaller in H, and near zero in K, and depends somewhat on the model. We also make use of the TESS light curves to estimate rotation periods for our targets, and detect numerous flares in one of them (HD 283882), estimating an average flaring rate of 0.44 events per day.
Formation of supermassive stars and dense star clusters in metal-poor clouds exposed to strong FUV radiation
The direct collapse scenario, which predicts the formation of supermassive stars (SMSs) as precursors to supermassive black holes (SMBHs), has been explored primarily under the assumption of metal-free conditions. However, environments exposed to strong far-ultraviolet (FUV) radiation, which is another requirement for the direct collapse, are often chemically enriched to varying degrees. In this study, we perform radiation hydrodynamic simulations of star-cluster formation in clouds with finite metallicities, Z=10^{-6} to 10^{-2} Z_{odot}, incorporating detailed thermal and chemical processes and radiative feedback from forming stars. Extending the simulations to approximately two million years, we demonstrate that SMSs with masses exceeding 10^4~M_odot can form even in metal-enriched clouds with Z lesssim 10^{-3} Z_{odot}. The accretion process in these cases, driven by "super-competitive accretion," preferentially channels gas into central massive stars in spite of small (sub-pc) scale fragmentation. At Z simeq 10^{-2} Z_{odot}, however, enhanced cooling leads to intense fragmentation on larger scales, resulting in the formation of dense star clusters dominated by very massive stars with 10^3 M_{odot} rather than SMSs. These clusters resemble young massive or globular clusters observed in the distant and local universe, exhibiting compact morphologies and high stellar surface densities. Our findings suggest that SMS formation is viable below a metallicity threshold of approximately 10^{-3} Z_{odot}, significantly increasing the number density of massive seed black holes to levels sufficient to account for the ubiquitous SMBHs observed in the local universe. Moreover, above this metallicity, this scenario naturally explains the transition from SMS formation to dense stellar cluster formation.
The dark side of early galaxies: geko uncovers dark-matter fractions at zsim4-6
JWST/NIRCam slitless spectroscopy enables dynamical mass measurements for typical star-forming galaxies only a billion years after the Big Bang. We model the Halpha morpho-kinematics of 163 galaxies at redshift zapprox4-6 from FRESCO and CONGRESS (with JADES imaging), using the geko code, and infer rotational velocities and dispersions within r_{rm e}. Our sample spans log M_{star}approx7-10 and log M_{rm dyn}approx9-11. Gas masses are estimated via scaling relations, yielding baryonic masses and dark-matter (DM) fractions f_{rm DM}(r<r_{rm e}) within the Halpha half-light radius. We find high median fractions of langle f_{rm gas}rangle=0.77 and langle f_{rm DM}rangle=0.73, where f_{rm gas} is measured with respect to the baryonic mass and f_{rm DM} with respect to the DM+baryonic mass. About two-thirds of systems are DM-dominated within r_{rm e}sim0.5-1 kpc. Both f_{rm gas} and f_{rm DM} decrease with stellar mass, consistent with simulations. The stellar Tully-Fisher relation shows a tentative offset to higher v_{rm circ} at fixed M_{star} and substantial intrinsic scatter, suggesting that the relation is only beginning to emerge at zsim5. We measure a negative correlation between f_{rm DM} and baryonic surface density Sigma_{rm bar}, weaker but broadly consistent with trends at cosmic noon and at zsim0. Qualitatively comparing with modified NFW profiles coupled to an empirical stellar-to-halo mass relation suggests that the lowest f_{rm DM} (lesssim0.4) require cored inner DM profiles, while the highest fractions favour cuspier profiles, potentially reflecting adiabatic contraction. Overall, the elevated f_{rm gas} and f_{rm DM} at zgtrsim4 are compatible with progenitors of baryon-dominated systems at zsim2 and naturally anticipate overmassive black holes at fixed M_{star}.
The Carnegie Supernova Project I: Third Photometry Data Release of Low-Redshift Type Ia Supernovae and Other White Dwarf Explosions
We present final natural system optical (ugriBV) and near-infrared (YJH) photometry of 134 supernovae (SNe) with probable white dwarf progenitors that were observed in 2004-2009 as part of the first stage of the Carnegie Supernova Project (CSP-I). The sample consists of 123 Type Ia SNe, 5 Type Iax SNe, 2 super-Chandrasekhar SN candidates, 2 Type Ia SNe interacting with circumstellar matter, and 2 SN 2006bt-like events. The redshifts of the objects range from z = 0.0037 to 0.0835; the median redshift is 0.0241. For 120 (90%) of these SNe, near-infrared photometry was obtained. Average optical extinction coefficients and color terms are derived and demonstrated to be stable during the five CSP-I observing campaigns. Measurements of the CSP-I near-infrared bandpasses are also described, and near-infrared color terms are estimated through synthetic photometry of stellar atmosphere models. Optical and near-infrared magnitudes of local sequences of tertiary standard stars for each supernova are given, and a new calibration of Y-band magnitudes of the Persson et al. (1998) standards in the CSP-I natural system is presented.
Morphological evolution and galactic sizes in the L-Galaxies SA model
In this work we update the L-Galaxies semi-analytic model (SAM) to better follow the physical processes responsible for the growth of bulges via disc instabilities (leading to pseudo-bulges) and mergers (leading to classical bulges). We address the former by considering the contribution of both stellar and gaseous discs in the stability of the galaxy, and we update the latter by including dissipation of energy in gas-rich mergers. Furthermore, we introduce angular momentum losses during cooling and find that an accurate match to the observed correlation between stellar disc scale length and mass at z ~ 0.0 requires that the gas loses 20% of its initial specific angular momentum to the corresponding dark matter halo during the formation of the cold gas disc. We reproduce the observed trends between the stellar mass and specific angular momentum for both disc- and bulge-dominated galaxies, with the former rotating faster than the latter of the same mass. We conclude that a two-component instability recipe provides a morphologically diverse galaxy sample which matches the observed fractional breakdown of galaxies into different morphological types. This recipe also enables us to obtain an excellent fit to the morphology-mass relation and stellar mass function of different galactic types. Finally, we find that energy dissipation during mergers reduces the merger remnant sizes and allows us to match the observed mass-size relation for bulge-dominated systems.
First Light And Reionisation Epoch Simulations (FLARES) VII: The Star Formation and Metal Enrichment Histories of Galaxies in the early Universe
The star formation and metal enrichment histories of galaxies - at any epoch - constitute one of the key properties of galaxies, and their measurement is a core aim of observational extragalactic astronomy. The lack of deep rest-frame optical coverage at high-redshift has made robust constraints elusive, but this is now changing thanks to the James Webb Space Telescope (JWST). In preparation for the constraints provided by JWST we explore the star formation and metal enrichment histories of galaxies at z=5-13 using the First Light And Reionisation Epoch Simulations (FLARES) suite. Built on the EAGLE model, the unique strategy of FLARES allows us to simulate a wide range of stellar masses (and luminosities) and environments. While we predict significant redshift evolution of average ages and specific star formation rates our core result is a mostly flat relationship of age and specific star formation rate with stellar mass. We also find that galaxies in this epoch predominantly have strongly rising star formation histories, albeit with the magnitude dropping with redshift and stellar mass. In terms of chemical enrichment we predict a strong stellar mass - metallicity relation present at z=10 and beyond alongside significant alpha-enhancement. Finally, we find no environmental dependence of the relationship between age, specific star formation rate, or metallicity with stellar mass.
Cosmic reflections I: the structural diversity of simulated and observed low-mass galaxy analogues
Dwarf galaxies serve as powerful laboratories for investigating the underlying physics of galaxy evolution including the impact of baryonic feedback processes and environmental influences. We compare the visual and structural properties of dwarf galaxies in ultra-deep HSC-SSP imaging of the COSMOS field with those measured from realistic HSC-like synthetic observations of dwarfs generated by the Illustris TNG50 and NewHorizon simulations. Using S\'ersic profile fitting and non-parametric morphological metrics (Gini, M_{20}, asymmetry, and concentration), we evaluate the diversity of structural properties in observed and simulated galaxies. Our analysis shows that NewHorizon and TNG50 galaxies lie at opposite extremes of observed structural trends: NewHorizon produces diffuse, extended galaxies with shallow S\'ersic indices, while TNG50 yields compact, concentrated systems with steep indices. Both simulations reproduce observed structural trends more closely at higher stellar masses (M_{star}sim10^{9.5} {rm M_{odot}}) but fail to capture the full diversity of COSMOS dwarfs at lower masses. Non-parametric metrics further show that NewHorizon galaxies exhibit more uneven, clumpy light distributions while TNG50 galaxies have smoother but excessively concentrated profiles. These structural differences reflect underlying differences in their physical prescriptions and are likely driven by differing approaches to ISM physics, supernova feedback and star formation in addition to differences in numerical resolution. Our findings highlight the unique power of low-mass galaxies to constrain differences in simulation physics, especially star formation and feedback. Upcoming surveys from facilities like the Vera C. Rubin Observatory and Euclid will enable more rigorous comparisons with simulations, offering deeper insights into the physical processes shaping galaxy evolution.
Spectrophotometry in the integrated light of multiple populations in globular clusters
There is vast evidence from observations of multiple stellar populations (MPs) in globular clusters (GCs). To explore the issue theoretically, this work considers two subsolar metallicities, two ages, and two initial abundance patterns: a first population of standard alpha-enhanced metal mixture stars and a second stellar population displaying C-N and Na-O anticorrelations chemical abundance patterns, along with an enhanced helium fraction. Analysing the predictions for these extreme compositions, we provide insights into the observability of not-resolved MPs into individual stars of GCs. We use colours and spectrophotometric indices measurable with modern facilities (e.g. Euclid, LSST, DES, JWST).
Star formation histories and gas content limits of three ultra-faint dwarfs on the periphery of M31
We present Hubble Space Telescope (HST) imaging of Pegasus V and Pisces VII, along with a re-analysis of the archival imaging of Pegasus W, and Jansky Very Large Array (VLA) neutral gas (HI) observations of all three. These three ultra-faint dwarfs (UFDs) are all within the Local Group in the approximate direction of M31. The VLA observations place stringent upper limits on their HI content, with all having M_HI < 10^4;M_odot. As the red giant branches of these UFDs are sparsely populated, we determined distances from the HST photometry of horizontal branch (HB) stars in comparison to a fiducial HB population (from M92), with all three falling in the range 0.7-1 Mpc. Using a new Python-based star formation history (SFH) fitting code (based on StarFISH), we derive SFHs of all three UFDs. As found previously, the best fit SFH for Pegasus W includes significant star formation well beyond the end of reionization, while the SFHs calculated for Pegasus V and Pisces VII are consistent with them having quenched shortly after reionization. These findings for the latter two objects indicate that, like those in the vicinity of the Milky Way, lower mass UFDs in the vicinity of M31 likely quenched at early times.
The Supernova Legacy Survey 3-year sample: Type Ia Supernovae photometric distances and cosmological constraints
We present photometric properties and distance measurements of 252 high redshift Type Ia supernovae (0.15 < z < 1.1) discovered during the first three years of the Supernova Legacy Survey (SNLS). These events were detected and their multi-colour light curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshifts. Systematic uncertainties arising from light curve modeling are studied, making use of two techniques to derive the peak magnitude, shape and colour of the supernovae, and taking advantage of a precise calibration of the SNLS fields. A flat LambdaCDM cosmological fit to 231 SNLS high redshift Type Ia supernovae alone gives Omega_M = 0.211 +/- 0.034(stat) +/- 0.069(sys). The dominant systematic uncertainty comes from uncertainties in the photometric calibration. Systematic uncertainties from light curve fitters come next with a total contribution of +/- 0.026 on Omega_M. No clear evidence is found for a possible evolution of the slope (beta) of the colour-luminosity relation with redshift.
Open-source Flux Transport (OFT). I. HipFT -- High-performance Flux Transport
Global solar photospheric magnetic maps play a critical role in solar and heliospheric physics research. Routine magnetograph measurements of the field occur only along the Sun-Earth line, leaving the far-side of the Sun unobserved. Surface Flux Transport (SFT) models attempt to mitigate this by modeling the surface evolution of the field. While such models have long been established in the community (with several releasing public full-Sun maps), none are open source. The Open Source Flux Transport (OFT) model seeks to fill this gap by providing an open and user-extensible SFT model that also builds on the knowledge of previous models with updated numerical and data acquisition/assimilation methods along with additional user-defined features. In this first of a series of papers on OFT, we introduce its computational core: the High-performance Flux Transport (HipFT) code (github.com/predsci/hipft). HipFT implements advection, diffusion, and data assimilation in a modular design that supports a variety of flow models and options. It can compute multiple realizations in a single run across model parameters to create ensembles of maps for uncertainty quantification and is high-performance through the use of multi-CPU and multi-GPU parallelism. HipFT is designed to enable users to easily write extensions, enhancing its flexibility and adaptability. We describe HipFT's model features, validations of its numerical methods, performance of its parallel and GPU-accelerated code implementation, analysis/post-processing options, and example use cases.
A Comprehensive Perturbative Formalism for Phase Mixing in Perturbed Disks. II. Phase Spirals in an Inhomogeneous Disk Galaxy with a Non-responsive Dark Matter Halo
We develop a linear perturbative formalism to compute the response of an inhomogeneous stellar disk embedded in a non-responsive dark matter halo to perturbations like bars, spiral arms and satellite galaxy encounters. Without self-gravity to reinforce it, the response of a Fourier mode phase mixes away due to an intrinsic spread in the vertical (Omega_z), radial (Omega_r) and azimuthal (Omega_phi) frequencies, giving rise to local phase-space spirals. Collisional diffusion due to scattering of stars by structures like giant molecular clouds causes super-exponential damping of the phase-spiral amplitude. The z-v_z phase-spiral is 1-armed (2-armed) for vertically anti-symmetric (symmetric) bending (breathing) modes. Only transient perturbations with timescales (tau_{P}) comparable to the vertical oscillation period (tau_z sim 1/Omega_z) trigger z-v_z phase-spirals. Each (n,l,m) mode of the response to impulsive (tau_{P}<tau=1/(nOmega_z+lOmega_r+mOmega_phi)) perturbations is power law (sim tau_{P}/tau) suppressed, but that to adiabatic (tau_{P}>tau) perturbations is exponentially weak (sim left[-left(tau_{mathrm{P}/tauright)^alpharight]}) except resonant (tauto infty) modes. Slower (tau_{P}>tau_z) perturbations, e.g., distant encounters with satellite galaxies, induce stronger bending modes. If the Gaia phase-spiral was triggered by a satellite, Sagittarius is the leading contender as it dominates the Solar neighborhood response of the Milky Way disk to satellite encounters. However, survival against collisional damping necessitates that the impact occurred within sim 0.6-0.7 Gyr ago. We discuss how the detailed galactic potential dictates the phase-spiral shape: phase mixing occurs slower and phase-spirals are less wound in the outer disk and in presence of an ambient halo.
Understanding of the properties of neural network approaches for transient light curve approximations
Modern-day time-domain photometric surveys collect a lot of observations of various astronomical objects and the coming era of large-scale surveys will provide even more information on their properties. Spectroscopic follow-ups are especially crucial for transients such as supernovae and most of these objects have not been subject to such studies. }{Flux time series are actively used as an affordable alternative for photometric classification and characterization, for instance, peak identifications and luminosity decline estimations. However, the collected time series are multidimensional and irregularly sampled, while also containing outliers and without any well-defined systematic uncertainties. This paper presents a search for the best-performing methods to approximate the observed light curves over time and wavelength for the purpose of generating time series with regular time steps in each passband.}{We examined several light curve approximation methods based on neural networks such as multilayer perceptrons, Bayesian neural networks, and normalizing flows to approximate observations of a single light curve. Test datasets include simulated PLAsTiCC and real Zwicky Transient Facility Bright Transient Survey light curves of transients.}{The tests demonstrate that even just a few observations are enough to fit the networks and improve the quality of approximation, compared to state-of-the-art models. The methods described in this work have a low computational complexity and are significantly faster than Gaussian processes. Additionally, we analyzed the performance of the approximation techniques from the perspective of further peak identification and transients classification. The study results have been released in an open and user-friendly Fulu Python library available on GitHub for the scientific community.
AutoKnots: Adaptive Knot Allocation for Spline Interpolation
In astrophysical and cosmological analyses, the increasing quality and volume of astronomical data demand efficient and precise computational tools. This work introduces a novel adaptive algorithm for automatic knots (AutoKnots) allocation in spline interpolation, designed to meet user-defined precision requirements. Unlike traditional methods that rely on manually configured knot distributions with numerous parameters, the proposed technique automatically determines the optimal number and placement of knots based on interpolation error criteria. This simplifies configuration, often requiring only a single parameter. The algorithm progressively improves the interpolation by adaptively sampling the function-to-be-approximated, f(x), in regions where the interpolation error exceeds the desired threshold. All function evaluations contribute directly to the final approximation, ensuring efficiency. While each resampling step involves recomputing the interpolation table, this process is highly optimized and usually computationally negligible compared to the cost of evaluating f(x). We show the algorithm's efficacy through a series of precision tests on different functions. However, the study underscores the necessity for caution when dealing with certain function types, notably those featuring plateaus. To address this challenge, a heuristic enhancement is incorporated, improving accuracy in flat regions. This algorithm has been extensively used and tested over the years. NumCosmo includes a comprehensive set of unit tests that rigorously evaluate the algorithm both directly and indirectly, underscoring its robustness and reliability. As a practical application, we compute the surface mass density Sigma(R) and the average surface mass density Sigma(<R) for Navarro-Frenk-White and Hernquist halo density profiles, which provide analytical benchmarks. (abridged)
A Dataset for Exploring Stellar Activity in Astrometric Measurements from SDO Images of the Sun
We present a dataset for investigating the impact of stellar activity on astrometric measurements using NASA's Solar Dynamics Observatory (SDO) images of the Sun. The sensitivity of astrometry for detecting exoplanets is limited by stellar activity (e.g. starspots), which causes the measured "center of flux" of the star to deviate from the true, geometric, center, producing false positive detections. We analyze Helioseismic and Magnetic Imager continuum image data obtained from SDO between July 2015 and December 2022 to examine this "astrometric jitter" phenomenon for the Sun. We employ data processing procedures to clean the images and compute the time series of the sunspot-induced shift between the center of flux and the geometric center. The resulting time series show quasiperiodic variations up to 0.05% of the Sun's radius at its rotation period.
AI Foundation Model for Heliophysics: Applications, Design, and Implementation
Deep learning-based methods have been widely researched in the areas of language and vision, demonstrating their capacity to understand long sequences of data and their usefulness in numerous helio-physics applications. Foundation models (FMs), which are pre-trained on a large-scale datasets, form the basis for a variety of downstream tasks. These models, especially those based on transformers in vision and language, show exceptional potential for adapting to a wide range of downstream applications. In this paper, we provide our perspective on the criteria for designing an FM for heliophysics and associated challenges and applications using the Solar Dynamics Observatory (SDO) dataset. We believe that this is the first study to design an FM in the domain of heliophysics.
IMF slope derived from a pure probabilistic model
The stellar initial mass function is of great significance for the study of star formation and galactic structure. Observations indicate that the IMF follows a power-law form. This work derived that when the expected number of stars formed from a spherical molecular cloud is much greater than 1, there is a relationship between the slope alpha of the IMF and r^n in the radius-density relation of spherically symmetric gas clouds, given by alpha = 3/(n+3) (Gamma_{IMF} = n/(n+3)). This conclusion is close to the results of numerical simulations and observations, but it is derived from a pure probabilistic model, which may have underlying reasons worth pondering.
Knowledge Graph in Astronomical Research with Large Language Models: Quantifying Driving Forces in Interdisciplinary Scientific Discovery
Identifying and predicting the factors that contribute to the success of interdisciplinary research is crucial for advancing scientific discovery. However, there is a lack of methods to quantify the integration of new ideas and technological advancements in astronomical research and how these new technologies drive further scientific breakthroughs. Large language models, with their ability to extract key concepts from vast literature beyond keyword searches, provide a new tool to quantify such processes. In this study, we extracted concepts in astronomical research from 297,807 publications between 1993 and 2024 using large language models, resulting in a set of 24,939 concepts. These concepts were then used to form a knowledge graph, where the link strength between any two concepts was determined by their relevance through the citation-reference relationships. By calculating this relevance across different time periods, we quantified the impact of numerical simulations and machine learning on astronomical research. The knowledge graph demonstrates two phases of development: a phase where the technology was integrated and another where the technology was explored in scientific discovery. The knowledge graph reveals that despite machine learning has made much inroad in astronomy, there is currently a lack of new concept development at the intersection of AI and Astronomy, which may be the current bottleneck preventing machine learning from further transforming the field of astronomy.
The Low Mass Ratio Overcontact Binary GV Leonis and Its Circumbinary Companion
Photometric and spectroscopic observations of GV Leo were performed from 2017 to 2024. The light curves show a flat bottom at the primary eclipse and the conventional O'Connell effect. The echelle spectra reveal that the effective temperature and rotation velocity of the more massive secondary are T_{rm eff,2} = 5220pm120 K and v_2 sin i = 223pm40 km s^{-1}, respectively. Our binary modeling indicates that the program target is a W-subclass contact binary with a mass ratio of q = 5.48, an inclination angle of i = 81^circ.68, a temperature difference of (T_{rm eff,1}-T_{rm eff,2}) = 154 K, and a filling factor of f = 36 \%. The light asymmetries were reasonably modeled by a dark starspot on the secondary's photosphere. Including our 26 minimum epochs, 84 times of minimum light were used to investigate the orbital period of the system. We found that the eclipse times of GV Leo have varied by a sinusoid with a period of 14.9 years and a semi-amplitude of 0.0076 days superimposed on a downward parabola. The periodic modulation is interpreted as a light time effect produced by an unseen outer tertiary with a minimum mass of 0.26 M_odot, while the parabolic component is thought to be a combination of mass transfer (secondary to primary) and angular momentum loss driven by magnetic braking. The circumbinary tertiary would have caused the eclipsing pair of GV Leo to evolve into its current short-period contact state by removing angular momentum from the primordial widish binary.
Identifying supermassive black hole recoil in elliptical galaxies
We study stellar core growth in simulations of merging massive (M_star>10^{11},M_odot) elliptical galaxies by a supermassive black hole (SMBH) displaced by gravitational wave induced recoil velocity. With controlled, dense sampling of the SMBH recoil velocity, we find the core radius originally formed by SMBH binary scouring can grow by a factor of 2-3 when the recoil velocity exceeds sim50 per cent of the central escape velocity, and the mass deficit grows by up to a factor of sim4. Using Bayesian inference we predict the distribution of stellar core sizes formed through this process to peak at sim1,kpc. An orbital decomposition of stellar particles within the core reveals that radial orbits dominate over tube orbits when the recoil velocity exceeds the velocity dispersion of the core, whereas tube orbits dominate for the lowest recoil kicks. A change in orbital structure is reflected in the anisotropy parameter, with a central tangential bias present only for recoil velocities less than the local stellar velocity dispersion. Emulating current integral field unit observations of the stellar line-of-sight velocity distribution, we uncover a distinct signature in the Gauss-Hermite symmetric deviation coefficient h_4 that uniquely constrains the core size due to binary scouring. This signature is insensitive to the later evolution of the stellar mass distribution due to SMBH recoil. Our results provide a novel method to estimate the SMBH recoil magnitude from observations of local elliptical galaxies, and implies these galaxies primarily experienced recoil velocities less than the stellar velocity dispersion of the core.
Unveiling two deeply embedded young protostars in the S68N Class 0 protostellar core with JWST/NIRSpec
The near-infrared (NIR) emission of the youngest protostars still needs to be characterized to better understand the evolution of their accretion and ejection activity. We analyze James Webb Space Telescope NIRSpec 1.7 -- 5.3 mum observations of two deeply embedded sources in the S68N protostellar core in Serpens. The North Central (NC) source exhibits a highly obscured spectrum (A_K ~ 4.8 mag) that is modeled with a pre-main-sequence photosphere and a hot disk component. The photospheric parameters are consistent with a young, low-mass photosphere, as suggested by the low surface gravity, log g of 1.95 pm 0.15 cm s^{-2}. The hot disk suggests that accretion onto the central protostellar embryo is ongoing, although prototypical accretion-tracing emission lines HI are not detected. The South Central (SC) source, which is even more embedded (A_K ~ 8 mag; no continuum is detected shortward of 3.6 mum) appears to be driving the large-scale S68N protostellar outflow, and launches a collimated hot molecular jet detected in \Ht and CO ro-vibrational lines. Shock modeling of the \Ht (ro)vibrational lines establishes that fast C-type shocks (geq 30 km s^{-1}), with high pre-shock density (geq 10^7 cm^{-3}), and strong magnetic field (b ~ 3--10, where B = b,times,textrm{n_{H} (cm^{-3})},muG) best match the data. The bright CO fundamental line forest suggests energetic excitation, with the contribution of non-LTE effects, ie irradiation pumping. Detected OH and CH^{+} ro-vibrational lines support this hypothesis. These two Class 0 protostars seem to be in very young evolutionary stages and still have to acquire the bulk of their final stellar masses. These results demonstrate that JWST enables unprecedented diagnostics of these first stages of the protostellar evolutionary phase.
Selection Function of Clusters in Dark Energy Survey Year 3 Data from Cross-Matching with South Pole Telescope Detections
Galaxy clusters selected based on overdensities of galaxies in photometric surveys provide the largest cluster samples. Yet modeling the selection function of such samples is complicated by non-cluster members projected along the line of sight (projection effects) and the potential detection of unvirialized objects (contamination). We empirically constrain the magnitude of these effects by cross-matching galaxy clusters selected in the Dark Energy survey data with the \rdmpr, algorithm with significant detections in three South Pole Telescope surveys (SZ, pol-ECS, pol-500d). For matched clusters, we augment the \rdmpr,catalog by the SPT detection significance. For unmatched objects we use the SPT detection threshold as an upper limit on the SZe signature. Using a Bayesian population model applied to the collected multi-wavelength data, we explore various physically motivated models to describe the relationship between observed richness and halo mass. Our analysis reveals the limitations of a simple lognormal scatter model in describing the data. We rule out significant contamination by unvirialized objects at the high-richness end of the sample. While dedicated simulations offer a well-fitting calibration of projection effects, our findings suggest the presence of redshift-dependent trends that these simulations may not have captured. Our findings highlight that modeling the selection function of optically detected clusters remains a complicated challenge, requiring a combination of simulation and data-driven approaches.
Probing the shape of the Milky Way dark matter halo with hypervelocity stars: a new method
We propose a new method to determine the shape of the gravitational potential of the dark matter (DM) halo of the Milky Way (MW) with the galactocentric tangential velocities of a sample of hypervelocity stars (HVSs). We compute the trajectories of different samples of HVSs in a MW where the baryon distribution is axisymmetric and the DM potential either is spherical or is spheroidal or triaxial with radial-dependent axis ratios. We determine the shape of the DM potential with the distribution of the latitudinal velocity |v_{vartheta}| in axisymmetric Galactic potentials, or with the distribution of |v_{vartheta}| and of a function bar v_{varphi} of the azimuthal velocity in non-axisymmetric Galactic potentials. We recover the correct shape of the DM potential by comparing the distribution of |v_{vartheta}| and bar v_{varphi} against the corresponding distributions of mock samples of HVSs that traveled in DM halos of different shapes. We use the largest possible sample of sim 800 HVSs of 4~M_odot ejected with the Hills mechanism at a rate sim 10^{-4} yr^{-1}, currently outgoing, and located at more than 10 kpc from the Galactic center. In our ideal case of galactocentric velocities with null uncertainties and no observational limitations, our method recovers the correct shape of the DM potential with a success rate Sgtrsim 89% in axisymmetric Galactic potentials, and S > 96% in the explored non-axisymmetric cases. The unsuccessful cases yield axis ratios of the DM potential that are off by pm 0.1. The success rate decreases with decreasing sample size: for example, for a spherical DM halo, S drops from sim 98% to sim 38% when the sample size decreases from sim 800 to sim 40 HVSs. A robust determination of the shape of the DM potential thus requires the measure of the galactocentric velocity of a few hundred genuine HVSs.
Fate and detectability of rare gas hydride ions in nova ejecta: A case study with nova templates
HeH^+ was the first heteronuclear molecule to form in the metal-free Universe after the Big Bang. The molecule gained significant attention following its first circumstellar detection in the young and dense planetary nebula NGC 7027. We target some hydride ions associated with the noble gases (HeH^+, ArH^+, and NeH^+) to investigate their formation in harsh environments like the nova outburst region. We use a photoionization modeling (based on previously published best-fit physical parameters) of the moderately fast ONe type nova, QU Vulpeculae 1984, and the CO type novae, RS Ophiuchi and V1716 Scorpii. Our steady-state modeling reveals a convincing amount of HeH^+, especially in the dense clump of RS Ophiuchi and V1716 Scorpii. The calculated upper limit on the surface brightness of HeH^+ transitions suggests that the James Webb Space Telescope (JWST) could detect some of them, particularly in sources like RS Ophiuchi and V1716 Scorpii, which have similar physical and chemical conditions and evolution. It must be clearly noted that the sources studied are used as templates, and not as targets for observations. The detection of these lines could be useful for determining the physical conditions in similar types of systems and for validating our predictions based on new electron-impact ro-vibrational collisional data at temperatures of up to 20,000 K.
Cosmic Evolution Early Release Science (CEERS) survey: The colour evolution of galaxies in the distant Universe
The wavelength-coverage and sensitivity of JWST now enables us to probe the rest-frame UV - optical spectral energy distributions (SEDs) of galaxies at high-redshift (z>4). From these SEDs it is, in principle, through SED fitting possible to infer key physical properties, including stellar masses, star formation rates, and dust attenuation. These in turn can be compared with the predictions of galaxy formation simulations allowing us to validate and refine the incorporated physics. However, the inference of physical properties, particularly from photometry alone, can lead to large uncertainties and potential biases. Instead, it is now possible, and common, for simulations to be forward-modelled to yield synthetic observations that can be compared directly to real observations. In this work, we measure the JWST broadband fluxes and colours of a robust sample of 5<z<10 galaxies using the Cosmic Evolution Early Release Science (CEERS) Survey. We then analyse predictions from a variety of models using the same methodology and compare the NIRCam/F277W magnitude distribution and NIRCam colours with observations. We find that the predicted and observed magnitude distributions are similar, at least at 5<z<8. At z>8 the distributions differ somewhat, though our observed sample size is small and thus susceptible to statistical fluctuations. Likewise, the predicted and observed colour evolution show broad agreement, at least at 5<z<8. There is however some disagreement between the observed and modelled strength of the strong line contribution. In particular all the models fails to reproduce the F410M-F444W colour at z>8, though, again, the sample size is small here.
WALLABY Pilot Survey & ASymba: Comparing HI Detection Asymmetries to the SIMBA Simulation
An avenue for understanding cosmological galaxy formation is to compare morphometric parameters in observations and simulations of galaxy assembly. In this second paper of the ASymba: Asymmetries of HI in SIMBA Galaxies series, we measure atomic gas HI asymmetries in spatially-resolved detections from the untargetted WALLABY survey, and compare them to realizations of WALLABY-like mock samples from the SIMBA cosmological simulations. We develop a Scanline Tracing method to create mock galaxy HI datacubes which minimizes shot noise along the spectral dimension compared to particle-based methods, and therefore spurious asymmetry contributions. We compute 1D and 3D asymmetries for spatially-resolved WALLABY Pilot Survey detections, and find that the highest 3D asymmetries A3D>0.5 stem from interacting systems or detections with strong bridges or tails. We then construct a series of WALLABY-like mock realizations drawn from the SIMBA 50 Mpc simulation volume, and compare their asymmetry distributions. We find that the incidence of high A3D detections is higher in WALLABY than in the SIMBA mocks, but that difference is not statistically significant (p-value = 0.05). The statistical power of quantitative comparisons of asymmetries such as the one presented here will improve as the WALLABY survey progresses, and as simulation volumes and resolutions increase.
Revision of the Phenomenological Characteristics of the Algol-Type Stars Using the NAV Algorithm
Phenomenological characteristics of the sample of the Algol-type stars are revised using a recently developed NAV ("New Algol Variable") algorithm (2012Ap.....55..536A, 2012arXiv 1212.6707A) and compared to that obtained using common methods of Trigonometric Polynomial Fit (TP) or local Algebraic Polynomial (A) fit of a fixed or (alternately) statistically optimal degree (1994OAP.....7...49A, 2003ASPC..292..391A). The computer program NAV is introduced, which allows to determine the best fit with 7 "linear" and 5 "non-linear" parameters and their error estimates. The number of parameters is much smaller than for the TP fit (typically 20-40, depending on the width of the eclipse, and is much smaller (5-20) for the W UMa and beta Lyrae - type stars. This causes more smooth approximation taking into account the reflection and ellipsoidal effects (TP2) and generally different shapes of the primary and secondary eclipses. An application of the method to two-color CCD photometry to the recently discovered eclipsing variable 2MASS J18024395 + 4003309 = VSX J180243.9 +400331 (2015JASS...32..101A) allowed to make estimates of the physical parameters of the binary system based on the phenomenological parameters of the light curve. The phenomenological parameters of the light curves were determined for the sample of newly discovered EA and EW - type stars (VSX J223429.3+552903, VSX J223421.4+553013, VSX J223416.2+553424, US-NO-B1.0 1347-0483658, UCAC3-191-085589, VSX J180755.6+074711= UCAC3 196-166827). Despite we have used original observations published by the discoverers, the accuracy estimates of the period using the NAV method are typically better than the original ones.
The CAMELS project: Cosmology and Astrophysics with MachinE Learning Simulations
We present the Cosmology and Astrophysics with MachinE Learning Simulations --CAMELS-- project. CAMELS is a suite of 4,233 cosmological simulations of (25~h^{-1}{rm Mpc})^3 volume each: 2,184 state-of-the-art (magneto-)hydrodynamic simulations run with the AREPO and GIZMO codes, employing the same baryonic subgrid physics as the IllustrisTNG and SIMBA simulations, and 2,049 N-body simulations. The goal of the CAMELS project is to provide theory predictions for different observables as a function of cosmology and astrophysics, and it is the largest suite of cosmological (magneto-)hydrodynamic simulations designed to train machine learning algorithms. CAMELS contains thousands of different cosmological and astrophysical models by way of varying Omega_m, sigma_8, and four parameters controlling stellar and AGN feedback, following the evolution of more than 100 billion particles and fluid elements over a combined volume of (400~h^{-1}{rm Mpc})^3. We describe the simulations in detail and characterize the large range of conditions represented in terms of the matter power spectrum, cosmic star formation rate density, galaxy stellar mass function, halo baryon fractions, and several galaxy scaling relations. We show that the IllustrisTNG and SIMBA suites produce roughly similar distributions of galaxy properties over the full parameter space but significantly different halo baryon fractions and baryonic effects on the matter power spectrum. This emphasizes the need for marginalizing over baryonic effects to extract the maximum amount of information from cosmological surveys. We illustrate the unique potential of CAMELS using several machine learning applications, including non-linear interpolation, parameter estimation, symbolic regression, data generation with Generative Adversarial Networks (GANs), dimensionality reduction, and anomaly detection.
A JWST Project on 47 Tucanae: Kinematics, energy equipartition and anisotropy of multiple populations
Recent work with JWST has demonstrated its capability to identify and chemically characterize multiple populations in globular clusters down to the H-burning limit. In this study, we explore the kinematics of multiple populations in the globular cluster 47 Tucanae by combining data from JWST, HST, and Gaia. We analyzed velocity dispersion and anisotropy profiles from the cluster center out to sim10R_h. Our findings indicate that while 1G stars are isotropic, 2G stars are significantly radially anisotropic. These results align with the predictions of simulations of the dynamical evolution of clusters where 2G stars are initially more centrally concentrated than 1G stars. Furthermore, we subdivided the 2G population into two subpopulations: 2G_A and 2G_B, with the latter being more chemically extreme. We compared their dynamical profiles and found no significant differences. For the first time, we measured the degree of energy equipartition among the multiple populations of 47 Tucanae. Overall, within the analyzed radial range (sim2-4R_h), both populations exhibit a low degree of energy equipartition. The most significant differences between 1G and 2G stars are observed in the tangential velocity component, where 2G stars are characterized by a stronger degree of energy equipartition than 1G stars. In the radial component, the behavior of 1G and 2G stars is more variable, with differences largely dependent on radius. Finally, our analysis reveals that the ratio of rotational velocity to velocity dispersion is larger for the 2G population, while 1G stars exhibit higher skewness in their tangential proper motions, providing further evidence of differences in the kinematic properties of the 1G and 2G populations.
A slowly pulsating run-away B star at high Galactic latitude ejected from a spiral arm
We report the discovery of the young B6V run-away star LAMOST J083323.18+430825.4, 2.5\,kpc above the Galactic plane. Its atmospheric parameters and chemical composition are determined from LAMOST spectra, indicating normal composition. Effective temperature (Teff=14,500) and gravity (log g=3.79) suggest that the star is close to terminating hydrogen burning. An analysis of the spectral energy distribution allowed us to determine the angular diameter as well as the interstellar reddening. Using evolutionary models from the MIST database we derived the stellar mass (4.75Msun) and age (104^+11_-13 Myr). The spectroscopic distance (4.17 kpc), the radius (4.5 Rsun), and the luminosity (log(L/Lsun)=2.89) then result from the atmospheric parameters. Using Gaia proper motions, the trajectory is traced back to the Galactic disk to identify the place of birth in a spiral arm. The ejection velocity of 92 km s^{-1} is typical for runaway stars in the halo. The age of the star is larger than its time of flight (78+-4 Myr), which favors a binary supernova event as the likely ejection mechanism. The TESS light curve shows variations with a period of 3.58 days from which we conclude that it is a slowly pulsating B-star, one of very few run-away B-stars known to pulsate.
Dynamics of the Beta Pictoris planetary system and possibility of an additional planet
The Beta Pictoris system is characterized by a dusty debris disk, in addition to the presence of two already known planets. This makes it a particularly interesting case for studying the formation and evolution of planetary systems at a stage where giant planets have already formed, most of the protoplanetary gas has dissipated, and terrestrial planets could emerge. Our goal here is to explore the possibility of additional planets orbiting beyond the outermost known one, beta Pic b. More specifically, we aim to assess whether additional planets in the system could explain the discrepancy between the predicted cutoff of the disk inner cavity at sim28 au with only two planets, and the observed one at sim50 au. We perform an exhaustive dynamical modeling of the debris disk and the carving of its inner edge, by introducing one or two additional planets beyond beta Pic b, coplanar with the disk. Guided by theoretical predictions for the parameter space - mass, semi-major axis, eccentricity - allowed for additional planets, we further carry out a set of N-body simulations, using the symplectic integrator RMVS3. Our simulations indicate that an additional planet with a low eccentricity of 0.05, a mass between 0.15 and 1 M_{Jup}, and a semi-major axis between 30 and 36 au, would be consistent with the observations of an inner debris disk edge at 50 au. We have also explored the hypotheses of a higher eccentricity and the presence of two additional lower mass planets instead of one, which could also account for these observations. While we have found that one or even two additional planets could explain the observed location of the disk inner edge, these hypothetical planets remain in most cases below the current observational limits of high contrast imaging. Future observational campaigns with improved sensitivity will help lowering these limits and perhaps detect that planet.
StarVector: Generating Scalable Vector Graphics Code from Images
Scalable Vector Graphics (SVGs) have become integral in modern image rendering applications due to their infinite scalability in resolution, versatile usability, and editing capabilities. SVGs are particularly popular in the fields of web development and graphic design. Existing approaches for SVG modeling using deep learning often struggle with generating complex SVGs and are restricted to simpler ones that require extensive processing and simplification. This paper introduces StarVector, a multimodal SVG generation model that effectively integrates Code Generation Large Language Models (CodeLLMs) and vision models. Our approach utilizes a CLIP image encoder to extract visual representations from pixel-based images, which are then transformed into visual tokens via an adapter module. These visual tokens are pre-pended to the SVG token embeddings, and the sequence is modeled by the StarCoder model using next-token prediction, effectively learning to align the visual and code tokens. This enables StarVector to generate unrestricted SVGs that accurately represent pixel images. To evaluate StarVector's performance, we present SVG-Bench, a comprehensive benchmark for evaluating SVG methods across multiple datasets and relevant metrics. Within this benchmark, we introduce novel datasets including SVG-Stack, a large-scale dataset of real-world SVG examples, and use it to pre-train StarVector as a large foundation model for SVGs. Our results demonstrate significant enhancements in visual quality and complexity handling over current methods, marking a notable advancement in SVG generation technology. Code and models: https://github.com/joanrod/star-vector
Dynamical evolution of massless particles in star clusters with NBODY6++GPU-MASSLESS: I. Free-floating MLPs
Context. Low-mass bodies, such as comets, asteroids, planetesimals, and free-floating planets, are continuously injected into the intra-cluster environment after expulsion from their host planetary systems. These can be modeled as massless particles (MLPs, hereafter). The dynamics of large populations of MLPs, however, has yet received little attention in literature. Aims. We investigate the dynamical evolution of MLP populations in star clusters, and characterize their kinematics and ejection rates. Methods. We present NBODY6++GPU-MASSLESS, a modified version of the N-body simulation code NBODY6++GPU, that allows fast integration of star clusters that contain large numbers of massless particles (MLPs). NBODY6++GPU-MASSLESS contains routines specifically directed at the dynamical evolution of low-mass bodies, such as planets. Results. Unlike stars, MLPs do not participate in the mass segregation process. Instead, MLPs mostly follow the gravitational potential of the star cluster, which gradually decreases over time due to stellar ejections and stellar evolution. The dynamical evolution of MLPs is primarily affected by the evolution of the core of the star cluster. This is most apparent in the outer regions for clusters with higher initial densities. High escape rates of MLPs are observed before the core-collapse, after which escape rates remain stable. Denser star clusters undergo a more intense core collapse, but this does not impact the dynamical evolution of MLPs. The speeds of escaping stars are similar to those of escaping MLPs, when disregarding the high-velocity ejections of neutron stars during the first 50 Myr.
Energy-dependent temporal study of GX 13+1 with AstroSat observation
In this work, we performed an energy-dependent study of low-frequency oscillations observed in GX 13+1 using AstroSat (Large Area X-ray Proportional Counter and Soft X-ray Telescope). The hardness-intensity diagram (HID) of the observation resembles a `nu'-shaped track, while the color-color diagram exhibits a `<'-shaped track, similar to the horizontal and normal branches of the Z source. We conducted flux-resolved temporal studies focusing on low-frequency variability and divided the HID into five regions: A, B, C, D, and E. Low-frequency quasi-periodic oscillations (QPOs) were detected in Regions A, B, and C. The QPO in Region A has a frequency of 5.06^{+0.54}_{-0.48} Hz with a quality factor (Q-factor) of 2.80. In Region B, the QPO was detected at 4.52^{+0.14}_{-0.13} Hz with a Q-factor of 5.79, while in Region C, it was observed at 4.70^{+0.62}_{-0.42} Hz with a Q-factor of 4.35. The QPO frequencies, Q-factors, and low root-mean-square (rms) values (1.32\%, 1.34\%, and 0.7\%) suggest that these oscillations are Normal Branch Oscillations, similar to those reported in GX 340+0. We modeled the rms and lag of the QPOs using a propagative model, considering variations in blackbody temperature, coronal heating rate, and optical depth. Our findings indicate that the observed QPOs are likely driven by interactions between the corona and variations in the blackbody temperature.
Surya: Foundation Model for Heliophysics
Heliophysics is central to understanding and forecasting space weather events and solar activity. Despite decades of high-resolution observations from the Solar Dynamics Observatory (SDO), most models remain task-specific and constrained by scarce labeled data, limiting their capacity to generalize across solar phenomena. We introduce Surya, a 366M parameter foundation model for heliophysics designed to learn general-purpose solar representations from multi-instrument SDO observations, including eight Atmospheric Imaging Assembly (AIA) channels and five Helioseismic and Magnetic Imager (HMI) products. Surya employs a spatiotemporal transformer architecture with spectral gating and long--short range attention, pretrained on high-resolution solar image forecasting tasks and further optimized through autoregressive rollout tuning. Zero-shot evaluations demonstrate its ability to forecast solar dynamics and flare events, while downstream fine-tuning with parameter-efficient Low-Rank Adaptation (LoRA) shows strong performance on solar wind forecasting, active region segmentation, solar flare forecasting, and EUV spectra. Surya is the first foundation model in heliophysics that uses time advancement as a pretext task on full-resolution SDO data. Its novel architecture and performance suggest that the model is able to learn the underlying physics behind solar evolution.
SuryaBench: Benchmark Dataset for Advancing Machine Learning in Heliophysics and Space Weather Prediction
This paper introduces a high resolution, machine learning-ready heliophysics dataset derived from NASA's Solar Dynamics Observatory (SDO), specifically designed to advance machine learning (ML) applications in solar physics and space weather forecasting. The dataset includes processed imagery from the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI), spanning a solar cycle from May 2010 to July 2024. To ensure suitability for ML tasks, the data has been preprocessed, including correction of spacecraft roll angles, orbital adjustments, exposure normalization, and degradation compensation. We also provide auxiliary application benchmark datasets complementing the core SDO dataset. These provide benchmark applications for central heliophysics and space weather tasks such as active region segmentation, active region emergence forecasting, coronal field extrapolation, solar flare prediction, solar EUV spectra prediction, and solar wind speed estimation. By establishing a unified, standardized data collection, this dataset aims to facilitate benchmarking, enhance reproducibility, and accelerate the development of AI-driven models for critical space weather prediction tasks, bridging gaps between solar physics, machine learning, and operational forecasting.
Addressing the core-cusp and diversity problem of dwarf and disk galaxies using cold collisionless DARKexp theory
Observed dwarf galaxies tend to have linearly rising rotation curves, which indicate flat density cores in their centers. Furthermore, disk galaxies show a wide range of rotation curves shapes. High resolution simulations of cold collisionless dark matter do not reproduce flat central profiles, or the observed diversity of rotation curve shapes; even hydrodynamic simulations incorporating baryonic feedback cannot do that robustly. However, numerical simulations are not the only way to make predictions about density profiles of equilibrium dark matter halos. A theoretical model based on statistical mechanics shows that maximum entropy solutions for cold collisionless self-gravitating dark matter halos can have a range of inner density profiles, including flat density cores. These theoretical profiles, called DARKexp, have only one shape parameter, and are able to fit the observed rotation curves of galaxies with last measured velocities in the range ~20-200 km/s. Here we present fits to 96 SPARC catalog galaxies, and the Milky Way. DARKexp also provides good fits to the projected stellar density distributions of ultrafaint dwarfs that show cores, suggesting that the dark matter halo hosts could have flat density cores. Thus, DARKexp appears to be able to address the core-cusp problem and the diversity of rotation curves with cold collisionless dark matter alone, without baryonic feedback.
An Updated Line List for Spectroscopic Investigation of G Stars II: Refined Solar Abundances via Extended Wavelength Coverage to 10 000 Å
This study introduces a line list for the abundance analysis of F and G type stars across the 4080-9675 A wavelength range. A systematic search employing lower excitation potentials, accurate log gf values, and an updated multiplet table led to the identification of 592 lines across 33 species (25 elements), including C, O, Mg (ionized), Al, P, S, Cu, Zr (neutral), and La. To determine the uncertainties in log gf values, we assessed solar abundance using a very high-resolution (R=1000000) disk-integrated solar spectrum. These lines were confirmed to be blend-free in the solar spectrum. The line list was further validated by analyzing the metal-poor star HD 218209 (G6V), which is notable for its well-documented and reliable abundance in literature. The abundances were obtained using the equivalent width (EW) method and further refined by applying the spectrum synthesis method. A comparative analysis with the Gaia ESO line list v.6, provided by the Gaia ESO collaboration, revealed additional neutral and ionized Fe lines. This extensively refined line list will facilitate precise stellar parameter determinations and accurate abundance analyses of spectra within the PolarBASE spectral library.
A Comparative Study on Generative Models for High Resolution Solar Observation Imaging
Solar activity is one of the main drivers of variability in our solar system and the key source of space weather phenomena that affect Earth and near Earth space. The extensive record of high resolution extreme ultraviolet (EUV) observations from the Solar Dynamics Observatory (SDO) offers an unprecedented, very large dataset of solar images. In this work, we make use of this comprehensive dataset to investigate capabilities of current state-of-the-art generative models to accurately capture the data distribution behind the observed solar activity states. Starting from StyleGAN-based methods, we uncover severe deficits of this model family in handling fine-scale details of solar images when training on high resolution samples, contrary to training on natural face images. When switching to the diffusion based generative model family, we observe strong improvements of fine-scale detail generation. For the GAN family, we are able to achieve similar improvements in fine-scale generation when turning to ProjectedGANs, which uses multi-scale discriminators with a pre-trained frozen feature extractor. We conduct ablation studies to clarify mechanisms responsible for proper fine-scale handling. Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts, as suggested by the evaluation we conduct. We make all code, models and workflows used in this study publicly available at https://github.com/SLAMPAI/generative-models-for-highres-solar-images.
Causal evidence for the primordiality of colours in trans-Neptunian objects
The origins of the colours of Trans-Neptunian Objects (TNOs) represent a crucial unresolved question, central to understanding the history of our Solar System. Recent observational surveys revealed correlations between the eccentricity and inclination of TNOs, and their colours. This rekindled the long-standing debate on whether these colours reflect the conditions of TNO formation or their subsequent evolution. We address this question using a model-agnostic, data-driven approach that unanimously converges to a common causal graph from the analysis of two different datasets, each from two different conditional independence test methods. For evaluation, we demonstrate how our model is consistent with the currently-accepted paradigms of TNOs' dynamical histories, without involving any orbital modelling or physics-based assumptions. Our causal model (with no knowledge of the existence of Neptune) predicts the need for an unknown confounding variable, consistent with Neptune's effects. The model predicts that the colour of TNOs is the root cause of their inclination distribution, rather than the other way around. This strongly suggests that the colours of TNOs reflect an underlying dynamical property, most likely their formation location. Our model excludes formation scenarios that invoke substantial colour modification by subsequent evolution. We conclude that the colours of TNOs are predominantly primordial.
The ALPINE-CRISTAL-JWST Survey: The Fast Metal Enrichment of Massive Galaxies at z~5
We present the stellar mass-metallicity relation (MZR) and mass-metallicity-star formation relation ("fundamental metallicity relation"; FMR) of 18 massive (log(M/M_odot) = 9.5-11) main-sequence galaxies at z~5 from the ALPINE-CRISTAL-JWST sample. This sample complements recent studies by JWST at up to two orders of magnitude lower stellar masses. The metallicities are derived using strong optical lines, and verified by temperature-based oxygen abundance measurements for five galaxies for which faint auroral lines are detected. We find little evolution at the massive end of the MZR between z~5 and cosmic noon at z~2, suggesting a fast metal enrichment at early times. The FMR at z=5 exhibits a 5x larger scatter (preferentially to lower metallicities) compared the local FMR relation. This scatter can be explained by a bursty star formation and the direct build-up of metals in early galaxies as well as differences in age and outflow efficiencies. Capitalizing on all available samples, we find that the observed MZR and FMR over three orders of stellar mass is generally in good agreement with results from cosmological simulation, although some underestimate the metal enrichment at low stellar masses. This may be due to too efficient metal-rich outflows. We show that the ALPINE-CRISTAL-JWST galaxies likely joined the current FMR at z~10 and will evolve into massive (log(M/M_odot)~11.4) galaxies with super-solar metallicities by z=0.
Causal Evidence for the Primordiality of Colors in Trans-Neptunian Objects
The origins of the colors of Trans-Neptunian Objects (TNOs) represent a crucial unresolved question, central to understanding the history of our Solar System. Recent observational surveys have revealed correlations between the eccentricity and inclination of TNOs and their colors. This has rekindled the long-standing debate on whether these colors reflect the conditions of TNO formation or their subsequent collisional evolution. In this study, we address this question with 98.7% certainty, using a model-agnostic, data-driven approach based on causal graphs. First, as a sanity check, we demonstrate how our model can replicate the currently accepted paradigms of TNOs' dynamical history, blindly and without any orbital modeling or physics-based assumptions. In fact, our causal model (with no knowledge of the existence of Neptune) predicts the existence of an unknown perturbing body, i.e., Neptune. We then show how this model predicts, with high certainty, that the color of TNOs is the root cause of their inclination distribution, rather than the other way around. This strongly suggests that the colors of TNOs reflect an underlying dynamical property, most likely their formation location. Moreover, our causal model excludes formation scenarios that invoke substantial color modification by subsequent irradiation. We therefore conclude that the colors of TNOs are predominantly primordial.
Robust Binding Energy Distribution Sampling on Amorphous Solid Water Models. Method testing and validation with NH3, CO and CH4
This work aims to develop a method based on a structurally reliable ice model and a statistically and physico-chemically robust approach for BE distribution inference, with the aim to be applicable to various relevant interstellar species. A multiscale computational approach is presented, with a Molecular Dynamics (MD) Heat & Quench protocol for the amorphous water ice model, and an ONIOM(B3LYP-D3(BJ)/6-311+G**:GFN2-xtb) scheme for the BE inference, with a prime emphasis onto the BE/real system size convergence. The sampling of the binding configurations is twofold, exploring both regularly spaced binding sites, as well as various adsorbate-to-substrate orientations on each locally distinct site. This second source of BE diversity accounts for the local roughness of the potential energy landscape of the substrate. Three different adsorbate test cases are considered, i.e. NH3, CO and CH4, owing to their significance in dust icy mantles, and their distinct binding behavior with water ices. The BE distributions for NH3, CO and CH4 have been inferred, with converged statistics. The distribution for NH3 is better represented by a double Gaussian component profile. Three starting adsorbate orientations per site are required to reach convergence for both Gaussian components of NH3, while 2 orientations are sufficient for CO, and one unique for CH4 (symmetric). Further geometrical and molecular surrounding insights have been provided. These results encompass previously reported results.
Machine Learning Global Simulation of Nonlocal Gravity Wave Propagation
Global climate models typically operate at a grid resolution of hundreds of kilometers and fail to resolve atmospheric mesoscale processes, e.g., clouds, precipitation, and gravity waves (GWs). Model representation of these processes and their sources is essential to the global circulation and planetary energy budget, but subgrid scale contributions from these processes are often only approximately represented in models using parameterizations. These parameterizations are subject to approximations and idealizations, which limit their capability and accuracy. The most drastic of these approximations is the "single-column approximation" which completely neglects the horizontal evolution of these processes, resulting in key biases in current climate models. With a focus on atmospheric GWs, we present the first-ever global simulation of atmospheric GW fluxes using machine learning (ML) models trained on the WINDSET dataset to emulate global GW emulation in the atmosphere, as an alternative to traditional single-column parameterizations. Using an Attention U-Net-based architecture trained on globally resolved GW momentum fluxes, we illustrate the importance and effectiveness of global nonlocality, when simulating GWs using data-driven schemes.
Probing solar modulation of AMS-02 time-dependent D, ^3He and ^4He fluxes with modified force field approximation
The AMS-02 experiment recently published time-dependent fluxes of deuterons (D) from May 2011 to April 2021, divided into 33 periods of four Bartels rotations each. These temporal structures are associated with solar modulation. In this study, three modified force-field approximation are employed to examine the long-term behavior of cosmic-ray (CR) isotopes such as D, ^3He, and ^4He, as well as the ratios D/^3He and ^3He/^4He. The solar modulation potential is rigidity-dependent for these modified force-field approximation models. Due to the unknown local interstellar spectrum (LIS) for these isotopes, we utilize the Non-LIS method for solar modulation. By fitting to the AMS-02 time-dependent fluxes, we derive the solar modulation parameters. Our findings prove the assumption in literature that all isotopes can be fitted using the same solar modulation parameters and it shown that the modified FFA models are validated parametrization for solar modulation. Based on these, we forecast the daily fluxes of D, ^3He and ^4He from 2011 to 2020.
Learning Null Geodesics for Gravitational Lensing Rendering in General Relativity
We present GravLensX, an innovative method for rendering black holes with gravitational lensing effects using neural networks. The methodology involves training neural networks to fit the spacetime around black holes and then employing these trained models to generate the path of light rays affected by gravitational lensing. This enables efficient and scalable simulations of black holes with optically thin accretion disks, significantly decreasing the time required for rendering compared to traditional methods. We validate our approach through extensive rendering of multiple black hole systems with superposed Kerr metric, demonstrating its capability to produce accurate visualizations with significantly 15times reduced computational time. Our findings suggest that neural networks offer a promising alternative for rendering complex astrophysical phenomena, potentially paving a new path to astronomical visualization.
The Binary Fraction of Red Supergiants in the Magellanic Clouds
Red supergiants (RSGs), as the descendants of OB-type stars and the progenitors of supernovae, provide crucial insights into the evolution of massive stars, particularly in binary systems. Previous studies show that the binary fraction of RSGs (approx 15% - 40%) is significantly lower than that of their predecessors (approx 50% - 70%). In this work, we investigate the binary fraction of RSGs with the recently selected largest samples of 4695 and 2097 RSGs in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC), respectively. The binary system with a hot companion (O-, B- and A-type star) is identified by detecting the ultraviolet (UV) excess in the observed spectral energy distribution (SED) ranging from ultraviolet to mid-infrared after subtracting the model SED of RSG since RSGs are very weak in the UV band. It is found that the lower limit of binarity is 30.2% pm 0.7% and 32.2% pm 1% in the LMC and SMC, respectively. If the sample is limited to luminous RSGs with log L/L_{odot} > 4.0, the binary fraction becomes 26.6% pm 1.1% and 26.4% pm 1.7% in the LMC and SMC, respectively. The derived binary fraction is valid in the range of sim 2.3 < log P / [d] < sim 8. Our study suggests that roughly one-third of massive stars host a third companion within sim 30,000 AU. In addition, 15 RSGs are also identified as binary via HST/STIS spectra, and a handful of the binaries identified by the SED fitting are confirmed by their light curve and radial velocity dispersion. The stellar parameters of the companions, i.e. T_{eff}, R, L and log g, are calculated by model fitting.
Tides on Lava Worlds: Application to Close-in Exoplanets and the Early Earth-Moon System
Understanding the physics of planetary magma oceans has been the subject of growing efforts, in light of the increasing abundance of Solar system samples and extrasolar surveys. A rocky planet harboring such an ocean is likely to interact tidally with its host star, planetary companions, or satellites. To date, however, models of the tidal response and heat generation of magma oceans have been restricted to the framework of weakly viscous solids, ignoring the dynamical fluid behavior of the ocean beyond a critical melt fraction. Here we provide a handy analytical model that accommodates this phase transition, allowing for a physical estimation of the tidal response of lava worlds. We apply the model in two settings: The tidal history of the early Earth-Moon system in the aftermath of the giant impact; and the tidal interplay between short-period exoplanets and their host stars. For the former, we show that the fluid behavior of the Earth's molten surface drives efficient early Lunar recession to {sim} 25 Earth radii within 10^4{-} 10^5 years, in contrast with earlier predictions. For close-in exoplanets, we report on how their molten surfaces significantly change their spin-orbit dynamics, allowing them to evade spin-orbit resonances and accelerating their track towards tidal synchronization from a Gyr to Myr timescale. Moreover, we re-evaluate the energy budgets of detected close-in exoplanets, highlighting how the surface thermodynamics of these planets are likely controlled by enhanced, fluid-driven tidal heating, rather than vigorous insolation, and how this regime change substantially alters predictions for their surface temperatures.
The emergence of the Star Formation Main Sequence with redshift unfolded by JWST
We investigate the correlation between stellar mass (M*) and star formation rate (SFR) across the stellar mass range log10(M*/Msun)~6-11. We consider almost 50,000 star-forming galaxies at z~3-7, leveraging data from COSMOS/SMUVS, JADES/GOODS-SOUTH, and MIDIS/XDF. This is the first study spanning such a wide stellar mass range without relying on gravitational lensing effects. We locate our galaxies on the SFR-M* plane to assess how the location of galaxies in the star-formation main sequence (MS) and starburst (SB) region evolves with stellar mass and redshift. We find that the two star-forming modes tend to converge at log10(M*/Msun) < 7, with all galaxies found in the SB mode. However, deeper observations will be instrumental for reaching lower SFRs and Msun to further validate this scenario. By dissecting our galaxy sample in stellar mass and redshift, we show that the emergence of the star-formation MS is stellar-mass dependent: while in galaxies with log10(M*/Msun) > 9 the MS is already well in place at z = 5-7, for galaxies with log10(M*/Msun)~7-8 it only becomes significant at z<4. Overall, our results are in line with previous findings that the SB mode dominates amongst low stellar-mass galaxies. The earlier emergence of the MS for massive galaxies is consistent with galaxy downsizing.
Reinforcement Learning for Adaptive Time-Stepping in the Chaotic Gravitational Three-Body Problem
Many problems in astrophysics cover multiple orders of magnitude in spatial and temporal scales. While simulating systems that experience rapid changes in these conditions, it is essential to adapt the (time-) step size to capture the behavior of the system during those rapid changes and use a less accurate time step at other, less demanding, moments. We encounter three problems with traditional methods. Firstly, making such changes requires expert knowledge of the astrophysics as well as of the details of the numerical implementation. Secondly, some parameters that determine the time-step size are fixed throughout the simulation, which means that they do not adapt to the rapidly changing conditions of the problem. Lastly, we would like the choice of time-step size to balance accuracy and computation effort. We address these challenges with Reinforcement Learning by training it to select the time-step size dynamically. We use the integration of a system of three equal-mass bodies that move due to their mutual gravity as an example of its application. With our method, the selected integration parameter adapts to the specific requirements of the problem, both in terms of computation time and accuracy while eliminating the expert knowledge needed to set up these simulations. Our method produces results competitive to existing methods and improve the results found with the most commonly-used values of time-step parameter. This method can be applied to other integrators without further retraining. We show that this extrapolation works for variable time-step integrators but does not perform to the desired accuracy for fixed time-step integrators.
Physical properties of circumnuclear ionising clusters. III. Kinematics of gas and stars in NGC 7742
In this third paper of a series, we study the kinematics of the ionised gas and stars, calculating the dynamical masses of the circumnuclear star-forming regions in the ring of of the face-on spiral NGC 7742. We have used high spectral resolution data from the MEGARA instrument attached to the Gran Telescopio Canarias (GTC) to measure the kinematical components of the nebular emission lines of selected HII regions and the stellar velocity dispersions from the CaT absorption lines that allow the derivation of the associated cluster virialized masses. The emission line profiles show two different kinematical components: a narrow one with velocity dispersion sim 10 km/s and a broad one with velocity dispersion similar to those found for the stellar absorption lines. The derived star cluster dynamical masses range from 2.5 times 10^6 to 10.0 times 10^7 M_odot. The comparison of gas and stellar velocity dispersions suggests a scenario where the clusters have formed simultaneously in a first star formation episode with a fraction of the stellar evolution feedback remaining trapped in the cluster, subject to the same gravitational potential as the cluster stars. Between 0.15 and 7.07 % of the total dynamical mass of the cluster would have cooled down and formed a new, younger, population of stars, responsible for the ionisation of the gas currently observed.
The dark matter wake of a galactic bar revealed by multichannel Singular Spectral Analysis
The Milky Way is known to contain a stellar bar, as are a significant fraction of disc galaxies across the universe. Our understanding of bar evolution, both theoretically and through analysis of simulations indicates that bars both grow in amplitude and slow down over time through interaction and angular momentum exchange with the galaxy's dark matter halo. Understanding the physical mechanisms underlying this coupling requires modelling of the structural deformations to the potential that are mutually induced between components. In this work we use Basis Function Expansion (BFE) in combination with multichannel Singular Spectral Analysis (mSSA) as a non-parametric analysis tool to illustrate the coupling between the bar and the dark halo in a single high-resolution isolated barred disc galaxy simulation. We demonstrate the power of mSSA to extract and quantify explicitly coupled dynamical modes, determining growth rates, pattern speeds and phase lags for different stages of evolution of the stellar bar and the dark matter response. BFE & mSSA together grant us the ability to explore the importance and physical mechanisms of bar-halo coupling, and other dynamically coupled structures across a wide range of dynamical environments.
Solar System Experiments in the Search for Dark Energy and Dark Matter
We reassess the realistic discovery reach of Solar-System experiments for dark energy (DE) and dark matter (DM), making explicit the bridge from cosmology-level linear responses to local, screened residuals. In scalar-tensor frameworks with a universal conformal coupling A(phi) and chameleon/Vainshtein screening, we map cosmological responses {mu(z,k),Sigma(z,k)} inferred by DESI and Euclid to thin-shell or Vainshtein residuals in deep Solar potentials Phi_N. We emphasize a two-branch strategy. In a detection-first branch, a verified local anomaly -- an Einstein equivalence principle (EEP) violation, a Shapiro-delay signal with |gamma-1|simfewtimes 10^{-6}, an AU-scale Yukawa tail, or a ultralight DM (ULDM) line in clocks/atom interferometers in space (AIS) -- triggers a joint refit of cosmology and Solar-System data under a common microphysical parameterization {V(phi),A(phi)}. In a guardrail branch, Solar-System tests enforce constraints (EEP; PPN parameters gamma,beta; and dot G/G) and close unscreened or weakly screened corners indicated by cosmology. We forecast, per conjunction, |gamma-1|lesssim (2-5)times 10^{-6} (Ka-/X-band or optical Shapiro), eta_{EEP}sim (1--10)times 10^{-17} (drag-free AIS), |dot G/G|sim(3-5)times10^{-15},yr^{-1} (sub-mm-class LLR), a uniform ~2x tightening of AU-scale Yukawa/DM-density bounds, and (3-10)times improved ULDM-coupling reach from clocks. For a conformal benchmark, mu_{ lin,0}=0.10 implies chisimeq mu_{lin,0/2} and a Sun thin shell Delta R/Rlesssim (1/3chi)|gamma-1|/2=2.4times 10^{-3} at |gamma-1|=5times 10^{-6}; Vainshtein screening at 1 AU yields |gamma-1|lesssim 10^{-11}, naturally below near-term reach. We recommend a cost-effective guardrail+discovery portfolio with explicit triggers for escalation to dedicated missions.
ASPCAP: The Apogee Stellar Parameter and Chemical Abundances Pipeline
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has built the largest moderately high-resolution (R=22, 500) spectroscopic map of the stars across the Milky Way, and including dust-obscured areas. The APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) is the software developed for the automated analysis of these spectra. ASPCAP determines atmospheric parameters and chemical abundances from observed spectra by comparing observed spectra to libraries of theoretical spectra, using chi-2 minimization in a multidimensional parameter space. The package consists of a fortran90 code that does the actual minimization, and a wrapper IDL code for book-keeping and data handling. This paper explains in detail the ASPCAP components and functionality, and presents results from a number of tests designed to check its performance. ASPCAP provides stellar effective temperatures, surface gravities, and metallicities precise to 2%, 0.1 dex, and 0.05 dex, respectively, for most APOGEE stars, which are predominantly giants. It also provides abundances for up to 15 chemical elements with various levels of precision, typically under 0.1 dex. The final data release (DR12) of the Sloan Digital Sky Survey III contains an APOGEE database of more than 150,000 stars. ASPCAP development continues in the SDSS-IV APOGEE-2 survey.
A Deep Learning Powered Numerical Relativity Surrogate for Binary Black Hole Waveforms
Gravitational-wave approximants are essential for gravitational-wave astronomy, allowing the coverage binary black hole parameter space for inference or match filtering without costly numerical relativity (NR) simulations, but generally trading some accuracy for computational efficiency. To reduce this trade-off, NR surrogate models can be constructed using interpolation within NR waveform space. We present a 2-stage training approach for neural network-based NR surrogate models. Initially trained on approximant-generated waveforms and then fine-tuned with NR data, these dual-stage artificial neural surrogate (DANSur) models offer rapid and competitively accurate waveform generation, generating millions in under 20ms on a GPU while keeping mean mismatches with NR around 10^{-4}. Implemented in the bilby framework, we show they can be used for parameter estimation tasks.
Heating and scattering of stellar distributions by ultralight dark matter
Due to wave interference, an ultralight light dark matter halo has stochastic, granular substructures which can scatter stars, leading to the heating of stellar distributions. Studies of this phenomenon have placed lower bounds on the ultralight dark matter mass. In this paper we investigate a number of relevant systematic effects, including: (1) the heating by the central soliton, (2) the self-gravity of the stars, (3) the suppression of heating in a tidally stripped halo, and (4) the tidal field suppression of heating when the stellar cluster is much smaller than the de Broglie wavelength. The first three effects are quantified by studying the dynamics of stellar particles in Schrodinger-Poisson simulations of ultralight dark matter halos, while the last effect is studied using analytic approximations.
Physics-Based Forecasting of Tomorrow's Solar Wind at 1 AU
A faster than real time forecast system for solar wind and interplanetary magnetic field transients that is driven by hourly updated solar magnetograms is proposed to provide a continuous nowcast of the solar corona (<0.1AU) and 24-hours forecast of the solar wind at 1 AU by solving a full 3-D MHD model. This new model has been inspired by the concept of relativity of simultaneity used in the theory of special relativity. It is based on time transformation between two coordinate systems: the solar rest frame and a boosted system in which the current observations of the solar magnetic field and tomorrow's measurement of the solar wind at 1 AU are simultaneous. In this paper we derive the modified governing equations for both hydrodynamics (HD) and magnetohydrodynamics (MHD) and present a new numerical algorithm that only modifies the conserved quantities but preserves the original HD/MHD numerical flux. The proposed method enables an efficient numerical implementation, and thus a significantly longer forecast time than the traditional method.
A Novel Approach to Identifying Open Star Cluster Members in {\it Gaia} DR3: Integrating MST and GMM Techniques
We present a novel approach for identifying members of open star clusters using Gaia DR3 data by combining Minimum Spanning Tree (MST) and Gaussian Mixture Model (GMM) techniques. Our method employs a three-step process: initial filtering based on astrometric parameters, MST analysis for spatial distribution filtering, and GMM for final membership probability determination. We tested this methodology on 12+1 open clusters of varying ages, distances, and richness. The method demonstrates superior performance in distinguishing cluster members from field stars, particularly in regions with overlapping populations, as evidenced by its application to clusters like NGC 7790. By effectively reducing the number of probable field stars through MST analysis before applying GMM, our approach enhances both computational efficiency and membership determination accuracy. The results show strong agreement with previous studies while offering improved precision in member identification. This method provides a robust framework for analyzing the extensive datasets provided by Gaia DR3, addressing the challenges of processing large-scale astronomical data while maintaining high accuracy in cluster membership determination.
The impact of stellar winds and tidal locking effects on the habitability of Earth-like exoplanets around M dwarf stars
We present an assessment of the effects of stellar wind magnetic and mechanical components on the habitability of Earth-like exoplanets orbiting the inner and outer radii of the habitable zone (HZ) of M dwarfs. We consider stars with masses in the range of 0.09 - 0.75 M_odot and planets with a surface dipolar magnetic field of 0.5 G. We estimate the size of the magnetospheres of such exoplanets using the pressure balance equation including the contribution of magnetic and ram pressures from stellar winds. We explore different scenarios, including fast and slow stellar winds, to assess the relevance of kinetic contribution. Furthermore, the effect of tidal locking and potential deviations from the Parker spiral, typically used to describe the interplanetary magnetic field, are analyzed. We show that for low mass stars (M < 0.15 M_odot), the ram pressure exerted by stellar winds affects the size of the magnetosphere more than the stellar wind magnetic pressure. Interestingly, when the ram pressure is not much stronger than the magnetic pressure, typically for higher mass stars, the inclusion of ram pressure can be beneficial to the magnetosphere due to the magnetopause currents. A magnetosphere with the size of that of modern Earth is difficult to achieve with the current assumptions. However, an early Earth magnetosphere is achieved by roughly half of our hypothetical planets orbiting the outer radius of the HZ in most of the considered cases. We find that deviations from the Parker spiral can affect the results significantly, reducing the magnetosphere by 56% in extreme cases. Most of the hypothetical planets are most likely (or might be) tidally locked, with the notable exception of those orbiting the outer HZ of GJ 846 and V1005 Ori.
Interpretable structural model error discovery from sparse assimilation increments using spectral bias-reduced neural networks: A quasi-geostrophic turbulence test case
Earth system models suffer from various structural and parametric errors in their representation of nonlinear, multi-scale processes, leading to uncertainties in their long-term projections. The effects of many of these errors (particularly those due to fast physics) can be quantified in short-term simulations, e.g., as differences between the predicted and observed states (analysis increments). With the increase in the availability of high-quality observations and simulations, learning nudging from these increments to correct model errors has become an active research area. However, most studies focus on using neural networks, which while powerful, are hard to interpret, are data-hungry, and poorly generalize out-of-distribution. Here, we show the capabilities of Model Error Discovery with Interpretability and Data Assimilation (MEDIDA), a general, data-efficient framework that uses sparsity-promoting equation-discovery techniques to learn model errors from analysis increments. Using two-layer quasi-geostrophic turbulence as the test case, MEDIDA is shown to successfully discover various linear and nonlinear structural/parametric errors when full observations are available. Discovery from spatially sparse observations is found to require highly accurate interpolation schemes. While NNs have shown success as interpolators in recent studies, here, they are found inadequate due to their inability to accurately represent small scales, a phenomenon known as spectral bias. We show that a general remedy, adding a random Fourier feature layer to the NN, resolves this issue enabling MEDIDA to successfully discover model errors from sparse observations. These promising results suggest that with further development, MEDIDA could be scaled up to models of the Earth system and real observations.
SOUSA: the Swift Optical/Ultraviolet Supernova Archive
The Ultra-Violet Optical Telescope on the Swift spacecraft has observed hundreds of supernovae, covering all major types and most subtypes. Here we introduce the Swift Optical/Ultraviolet Supernova Archive (SOUSA), which will contain all of the supernova images and photometry. We describe the observation and reduction procedures and how they impact the final data. We show photometry from well-observed examples of most supernova classes, whose absolute magnitudes and colors may be used to infer supernova types in the absence of a spectrum. A full understanding of the variety within classes and a robust photometric separation of the groups requires a larger sample, which will be provided by the final archive. The data from the existing Swift supernovae are also useful for planning future observations with Swift as well as future UV observatories.
Interpreting the extremely diffuse stellar distribution of Nube galaxy through fuzzy dark matter
Recent observations have revealed an unusual stellar distribution within the almost dark dwarf galaxy Nube. The galaxy exhibits a remarkably flat stellar distribution, with an effective radius of approximately 6.9 kpc, exceeding the typical size of dwarf galaxies and even surpassing that of ultra-diffuse galaxies (UDGs) with similar stellar masses. The dynamical heating effect of fuzzy dark matter (FDM) may offer an explanation for this extremely diffuse stellar distribution in Nube. In this research, we utilize simulation techniques to investigate this issue and find that a particle mass O (1)times 10^{-23} eV offers a plausible explanation for this peculiar stellar distribution anomaly.
Flat-sky Angular Power Spectra Revisited
We revisit the flat-sky approximation for evaluating the angular power spectra of projected random fields by retaining information about the correlations along the line of sight. With broad, overlapping radial window functions, these line-of-sight correlations are suppressed and are ignored in the Limber approximation. However, retaining the correlations is important for narrow window functions or unequal-time spectra but introduces significant computational difficulties due to the highly oscillatory nature of the integrands involved. We deal with the integral over line-of-sight wave-modes in the flat-sky approximation analytically, using the FFTlog expansion of the 3D power spectrum. This results in an efficient computational method, which is a substantial improvement compared to any full-sky approaches. We apply our results to galaxy clustering (with and without redshift-space distortions), CMB lensing and galaxy lensing observables. For clustering, we find excellent agreement with the full-sky results on large (percent-level agreement) and intermediate or small (subpercent agreement) scales, dramatically out-performing the Limber approximation for both wide and narrow window functions, and in equal- and unequal-time cases. In the case of lensing, we show on the full sky that the angular power spectrum of the convergence can be very well approximated by projecting the 3D Laplacian (rather than the correct angular Laplacian) of the gravitational potential, even on large scales. Combining this approximation with our flat-sky techniques provides an efficient and accurate evaluation of the CMB lensing angular power spectrum on all scales.
Stellar evolution and axion-like particles: new constraints and hints from globular clusters in the GAIA DR3 data
Axion-like particles (ALPs) are hypothetical pseudoscalar bosons, natural in extensions of the Standard Model. Their interactions with ordinary matter and radiation are suppressed, making it challenging to detect them in laboratory experiments. However, these particles, produced within stellar interiors, can provide an additional mechanism for energy loss, potentially influencing stellar evolution. Prominent methods for searching for such effects involve measuring the properties of red giants and helium-burning stars in globular clusters (GCs). Here we use published catalogs of stars selected as members of seven GCs on the basis of parallaxes and proper motions measured by Gaia (Data Realease 3). Making use of previously derived theoretical relations and the new data, we find the upper limit on the ALP-electron coupling, g_{ae}<5.2*10^{-14} (95% CL), and an indication (3.3 sigma) to nonzero ALP-photon coupling, g_{a\gamma}=(6.5+1.1-1.3)*10^{-11} GeV^{-1}. Given the precision of contemporary observational data, it is imperative to refine ALP constraints through more sophisticated analyses, which will be explored in detail elsewhere.
Comparative Analysis of Phenomenological Approximations of the Light Curves of Eclipsing Binary Stars with Additional Parameters
A comparative analysis of the special shapes (patterns, profiles) of the eclipses applied for the phenomenological modeling of the light curves of eclipsing binary stars is conducted. Families of functions are considered, generalizing local approximations (Andronov, 2010, 2012) and the functions theoretically unlimited in a width, based on a Gaussian (Mikulasek, 2015). For an analysis, the light curve of the star V0882 Car = 2MASS J11080308 - 6145589 of the classic Algol - subtype (\beta Persei) is used. By analyzing dozens of modified functions with additional parameters, it was chosen the 14 best ones according to the criterion of the least sum of squares of deviations. The best are the functions with an additional parameter, describing profiles, which are limited in phase.
Towards Realistic Example-based Modeling via 3D Gaussian Stitching
Using parts of existing models to rebuild new models, commonly termed as example-based modeling, is a classical methodology in the realm of computer graphics. Previous works mostly focus on shape composition, making them very hard to use for realistic composition of 3D objects captured from real-world scenes. This leads to combining multiple NeRFs into a single 3D scene to achieve seamless appearance blending. However, the current SeamlessNeRF method struggles to achieve interactive editing and harmonious stitching for real-world scenes due to its gradient-based strategy and grid-based representation. To this end, we present an example-based modeling method that combines multiple Gaussian fields in a point-based representation using sample-guided synthesis. Specifically, as for composition, we create a GUI to segment and transform multiple fields in real time, easily obtaining a semantically meaningful composition of models represented by 3D Gaussian Splatting (3DGS). For texture blending, due to the discrete and irregular nature of 3DGS, straightforwardly applying gradient propagation as SeamlssNeRF is not supported. Thus, a novel sampling-based cloning method is proposed to harmonize the blending while preserving the original rich texture and content. Our workflow consists of three steps: 1) real-time segmentation and transformation of a Gaussian model using a well-tailored GUI, 2) KNN analysis to identify boundary points in the intersecting area between the source and target models, and 3) two-phase optimization of the target model using sampling-based cloning and gradient constraints. Extensive experimental results validate that our approach significantly outperforms previous works in terms of realistic synthesis, demonstrating its practicality. More demos are available at https://ingra14m.github.io/gs_stitching_website.
Observational Signatures of Galactic Turbulent Dynamos
We analyse the observational signatures of galactic magnetic fields that are self-consistently generated in magnetohydrodynamic simulations of the interstellar medium through turbulence driven by supernova (SN) explosions and differential rotation. In particular, we study the time evolution of the Faraday rotation measure (RM), synchrotron radiation, and Stokes parameters by characterising the typical structures formed in the plane of observation. We do this by defining two distinct models for both thermal and cosmic ray (CR) electron distributions. Our results indicate that the maps of RM have structures which are sheared and rendered anisotropically by differential rotation and that they depend on the choice of thermal electrons model as well as the SN rate. Synchrotron maps are qualitatively similar to the maps of the mean magnetic field along the line of sight and structures are only marginally affected by the CR model. Stokes parameters and related quantities, such as the degree of linear polarisation, are highly dependent on both frequency and resolution of the observation.
The complex evolution of supermassive black holes in cosmological simulations
We present here self-consistent zoom-in simulations of massive galaxies forming in a full cosmological setting. The simulations are run with an updated version of the KETJU code, which is able to resolve the gravitational dynamics of their supermassive black holes, while simultaneously modelling the large-scale astrophysical processes in the surrounding galaxies, such as gas cooling, star formation and stellar and AGN feedback. The KETJU code is able to accurately model the complex behaviour of multiple SMBHs, including dynamical friction, stellar scattering and gravitational wave emission, and also to resolve Lidov-Kozai oscillations that naturally occur in hierarchical triplet SMBH systems. In general most of the SMBH binaries form at moderately high eccentricities, with typical values in the range of e =0.6-0.95, meaning that the circular binary models that are commonly used in the literature are insufficient for capturing the typical binary evolution.
MSA-3D: Metallicity Gradients in Galaxies at zsim1 with JWST/NIRSpec Slit-stepping Spectroscopy
The radial gradient of gas-phase metallicity is a powerful probe of the chemical and structural evolution of star-forming galaxies, closely tied to disk formation and gas kinematics in the early universe. We present spatially resolved chemical and dynamical properties for a sample of 25 galaxies at 0.5 lesssim z lesssim 1.7 from the \msasd survey. These innovative observations provide 3D spectroscopy of galaxies at a spatial resolution approaching JWST's diffraction limit and a high spectral resolution of Rsimeq2700. The metallicity gradients measured in our galaxy sample range from -0.03 to 0.02 dex~kpc^{-1}. Most galaxies exhibit negative or flat radial gradients, indicating lower metallicity in the outskirts or uniform metallicity throughout the entire galaxy. We confirm a tight relationship between stellar mass and metallicity gradient at zsim1 with small intrinsic scatter of 0.02 dex~kpc^{-1}. Our results indicate that metallicity gradients become increasingly negative as stellar mass increases, likely because the more massive galaxies tend to be more ``disky". This relationship is consistent with the predictions from cosmological hydrodynamic zoom-in simulations with strong stellar feedback. This work presents the effort to harness the multiplexing capability of JWST NIRSpec/MSA in slit-stepping mode to map the chemical and kinematic profiles of high-redshift galaxies in large samples and at high spatial and spectral resolution.
Rapidly rotating hot nuclear and hypernuclear compact stars: integral parameters and universal relations
In this work, we investigate hot, isentropic compact stars in the limiting cases of static and maximally rotating configurations, focusing on how variations in the symmetry energy of the equation of state derived from covariant density functional theory affect stellar properties. We consider both nucleonic and hyperonic matter with systematically varied symmetry energy slopes, fixed entropies per baryon s / k_B=1 and 3, and electron fractions Y_e=0.1 and Y_e=0.4, representative of conditions in binary neutron star mergers and proto-neutron stars. We compute and analyze mass--radius and moment--of--inertia--mass relations, as well as the dependence of the Keplerian (mass-shedding) frequency on mass, angular momentum, and the ratio of kinetic to gravitational energy. Furthermore, we show that several universal relations between global properties remain valid across both nucleonic and hyperonic equations of state with varying symmetry energy, both in the static and Keplerian limit, and for various combinations of the fixed entropy and electron fraction.
On What Depends the Robustness of Multi-source Models to Missing Data in Earth Observation?
In recent years, the development of robust multi-source models has emerged in the Earth Observation (EO) field. These are models that leverage data from diverse sources to improve predictive accuracy when there is missing data. Despite these advancements, the factors influencing the varying effectiveness of such models remain poorly understood. In this study, we evaluate the predictive performance of six state-of-the-art multi-source models in predicting scenarios where either a single data source is missing or only a single source is available. Our analysis reveals that the efficacy of these models is intricately tied to the nature of the task, the complementarity among data sources, and the model design. Surprisingly, we observe instances where the removal of certain data sources leads to improved predictive performance, challenging the assumption that incorporating all available data is always beneficial. These findings prompt critical reflections on model complexity and the necessity of all collected data sources, potentially shaping the way for more streamlined approaches in EO applications.
Neural network emulator to constrain the high-z IGM thermal state from Lyman-α forest flux auto-correlation function
We present a neural network emulator to constrain the thermal parameters of the intergalactic medium (IGM) at 5.4z6.0 using the Lyman-displaystylealpha (Lydisplaystylealpha) forest flux auto-correlation function. Our auto-differentiable JAX-based framework accelerates the surrogate model generation process using approximately 100 sparsely sampled Nyx hydrodynamical simulations with varying combinations of thermal parameters, i.e., the temperature at mean density T_{{0}}, the slope of the temperaturedisplaystyle-density relation displaystylegamma, and the mean transmission flux langle{F}{rangle}. We show that this emulator has a typical accuracy of 1.0% across the specified redshift range. Bayesian inference of the IGM thermal parameters, incorporating emulator uncertainty propagation, is further expedited using NumPyro Hamiltonian Monte Carlo. We compare both the inference results and computational cost of our framework with the traditional nearest-neighbor interpolation approach applied to the same set of mock Lyalpha flux. By examining the credibility contours of the marginalized posteriors for T_{{0}},gamma,and{langle}{F}{rangle} obtained using the emulator, the statistical reliability of measurements is established through inference on 100 realistic mock data sets of the auto-correlation function.
The Well: a Large-Scale Collection of Diverse Physics Simulations for Machine Learning
Machine learning based surrogate models offer researchers powerful tools for accelerating simulation-based workflows. However, as standard datasets in this space often cover small classes of physical behavior, it can be difficult to evaluate the efficacy of new approaches. To address this gap, we introduce the Well: a large-scale collection of datasets containing numerical simulations of a wide variety of spatiotemporal physical systems. The Well draws from domain experts and numerical software developers to provide 15TB of data across 16 datasets covering diverse domains such as biological systems, fluid dynamics, acoustic scattering, as well as magneto-hydrodynamic simulations of extra-galactic fluids or supernova explosions. These datasets can be used individually or as part of a broader benchmark suite. To facilitate usage of the Well, we provide a unified PyTorch interface for training and evaluating models. We demonstrate the function of this library by introducing example baselines that highlight the new challenges posed by the complex dynamics of the Well. The code and data is available at https://github.com/PolymathicAI/the_well.
Detecting eclipsing double white dwarfs with electromagnetic and gravitational waves
Galactic double white dwarfs are predominant sources of gravitational waves in the millihertz frequencies accessible to space-borne gravitational wave detectors. With advances in multi-messenger astronomy, an increasing number of double white dwarf systems will be discovered through both electromagnetic and gravitational wave observations. In this paper, we simulated two populations of double white dwarfs originating from different star formation histories (hereafter referred to as Model 1 and Model 2) using the binary population synthesis method. We predicted the number of double white dwarfs in our Galaxy detectable by TianQin and Laser Interferometer Space Antenna (LISA) individually, as well as through their joint observation. In addition, we performed an analysis to evaluate the accuracy of the parameter estimation using the Fisher information matrix. Furthermore, we predicted the number of detached eclipsing double white dwarfs detectable by Gaia and the Vera C. Rubin Observatory (VRO). Our study found that over the nominal mission durations, TianQin, LISA, and their joint observation can detect at least five thousand and potentially several tens of thousands of double white dwarfs with signal-to-noise ratios greater than 7. Gaia and VRO are expected to detect at least several dozen and up to several hundred eclipsing double white dwarfs with orbital periods less than 30 hours. We also found that several dozen eclipsing double white dwarfs can be detected jointly through electromagnetic and gravitational wave observations.
Conditions for radiative zones in the molecular hydrogen envelope of Jupiter and Saturn: The role of alkali metals
Interior models of gas giants in the Solar System traditionally assume a fully convective molecular hydrogen envelope. However, recent observations from the Juno mission suggest a possible depletion of alkali metals in Jupiter's molecular hydrogen envelope, indicating that a stable radiative layer could exist at the kilobar level. Recent studies propose that deep stable layers help reconcile various Jupiter observations, including its atmospheric water and CO abundances and the depth of its zonal winds. However, opacity tables used to infer stable layers are often outdated and incomplete, leaving the precise molecular hydrogen envelope composition required for a deep radiative zone uncertain. In this paper, we determine atmospheric compositions that can lead to the formation of a radiative zone at the kilobar level in Jupiter and Saturn today. We computed radiative opacity tables covering pressures up to 10^5 bar, including the most abundant molecules present in the gas giants of the Solar System, as well as contributions from free electrons, metal hydrides, oxides, and atomic species, using the most up-to-date line lists published in the literature. These tables were used to calculate Rosseland-mean opacities for the molecular hydrogen envelopes of Jupiter and Saturn, which were then compared to the critical mean opacity required to maintain convection. We find that the presence of a radiative zone is controlled by the existence of K, Na, and NaH in the atmosphere of Jupiter and Saturn. For Jupiter, the elemental abundance of K and Na must be less than sim 10^{-3} times solar to form a radiative zone. In contrast, for Saturn, the required abundance for K and Na is below sim 10^{-4} times solar.
The High-resolution Accretion Disks of Embedded protoStars (HADES) simulations. I. Impact of Protostellar Magnetic Fields on the Accretion Modes
How embedded, actively accreting low-mass protostars accrete their mass is still greatly debated. Observations are now piecing together the puzzle of embedded protostellar accretion, in particular with new facilities in the near-infrared. However, high-resolution theoretical models are still lacking, with a stark paucity of detailed simulations of these early phases. Here we present high-resolution non-ideal magneto-hydrodynamic simulations of a Solar mass protostar accreting at rates exceeding 10^{-6} M_{odot} yr^{-1}. We show the results of the accretion flow for four different protostellar magnetic fields, 10 G, 500 G, 1 kG, and 2 kG, combined with a disk magnetic field. For weaker (10 G and 500 G) protostar magnetic fields, accretion occurs via a turbulent boundary layer mode, with disk material impacting across the protostellar surface. In the 500 G model, the presence of a magnetically dominated outflow focuses the accretion towards the equator, slightly enhancing and ordering the accretion. For kG magnetic fields, the disk becomes truncated due to the protostellar dipole and exhibits magnetospheric accretion, with the 2 kG model having accretion bursts induced by the interchange instability. We present bolometric light curves for the models and find that they reproduce observations of Class I protostars from YSOVAR, with high bursts followed by an exponential decay possibly being a signature of instability-driven accretion. Finally, we present the filling fractions of accretion and find that 90\% of the mass is accreted in a surface area fraction of 10-20\%. These simulations will be extended in future work for a broader parameter space, with their high resolution and high temporal spacing able to explore a wide range of interesting protostellar physics.

 
			 
			 
			 
			 
			 
			 
			 
			 
	 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			