Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRank-K: Test-Time Reasoning for Listwise Reranking
Retrieve-and-rerank is a popular retrieval pipeline because of its ability to make slow but effective rerankers efficient enough at query time by reducing the number of comparisons. Recent works in neural rerankers take advantage of large language models for their capability in reasoning between queries and passages and have achieved state-of-the-art retrieval effectiveness. However, such rerankers are resource-intensive, even after heavy optimization. In this work, we introduce Rank-K, a listwise passage reranking model that leverages the reasoning capability of the reasoning language model at query time that provides test time scalability to serve hard queries. We show that Rank-K improves retrieval effectiveness by 23\% over the RankZephyr, the state-of-the-art listwise reranker, when reranking a BM25 initial ranked list and 19\% when reranking strong retrieval results by SPLADE-v3. Since Rank-K is inherently a multilingual model, we found that it ranks passages based on queries in different languages as effectively as it does in monolingual retrieval.
Agentic Reasoning: Reasoning LLMs with Tools for the Deep Research
We introduce Agentic Reasoning, a framework that enhances large language model (LLM) reasoning by integrating external tool-using agents. Unlike conventional LLM-based reasoning approaches, which rely solely on internal inference, Agentic Reasoning dynamically engages web search, code execution, and structured reasoning-context memory to solve complex problems requiring deep research and multi-step logical deduction. Our framework introduces the Mind Map agent, which constructs a structured knowledge graph to track logical relationships, improving deductive reasoning. Additionally, the integration of web-search and coding agents enables real-time retrieval and computational analysis, enhancing reasoning accuracy and decision-making. Evaluations on PhD-level scientific reasoning (GPQA) and domain-specific deep research tasks demonstrate that our approach significantly outperforms existing models, including leading retrieval-augmented generation (RAG) systems and closed-source LLMs. Moreover, our results indicate that agentic reasoning improves expert-level knowledge synthesis, test-time scalability, and structured problem-solving. The code is at: https://github.com/theworldofagents/Agentic-Reasoning.
Mini-o3: Scaling Up Reasoning Patterns and Interaction Turns for Visual Search
Recent advances in large multimodal models have leveraged image-based tools with reinforcement learning to tackle visual problems. However, existing open-source approaches often exhibit monotonous reasoning patterns and allow only a limited number of interaction turns, making them inadequate for difficult tasks that require trial-and-error exploration. In this work, we address this limitation by scaling up tool-based interactions and introduce Mini-o3, a system that executes deep, multi-turn reasoning -- spanning tens of steps -- and achieves state-of-the-art performance on challenging visual search tasks. Our recipe for reproducing OpenAI o3-style behaviors comprises three key components. First, we construct the Visual Probe Dataset, a collection of thousands of challenging visual search problems designed for exploratory reasoning. Second, we develop an iterative data collection pipeline to obtain cold-start trajectories that exhibit diverse reasoning patterns, including depth-first search, trial-and-error, and goal maintenance. Third, we propose an over-turn masking strategy that prevents penalization of over-turn responses (those that hit the maximum number of turns) during reinforcement learning, thereby balancing training-time efficiency with test-time scalability. Despite training with an upper bound of only six interaction turns, our model generates trajectories that naturally scale to tens of turns at inference time, with accuracy improving as the number of turns increases. Extensive experiments demonstrate that Mini-o3 produces rich reasoning patterns and deep thinking paths, effectively solving challenging visual search problems.
AMix-1: A Pathway to Test-Time Scalable Protein Foundation Model
We introduce AMix-1, a powerful protein foundation model built on Bayesian Flow Networks and empowered by a systematic training methodology, encompassing pretraining scaling laws, emergent capability analysis, in-context learning mechanism, and test-time scaling algorithm. To guarantee robust scalability, we establish a predictive scaling law and reveal the progressive emergence of structural understanding via loss perspective, culminating in a strong 1.7-billion model. Building on this foundation, we devise a multiple sequence alignment (MSA)-based in-context learning strategy to unify protein design into a general framework, where AMix-1 recognizes deep evolutionary signals among MSAs and consistently generates structurally and functionally coherent proteins. This framework enables the successful design of a dramatically improved AmeR variant with an up to 50times activity increase over its wild type. Pushing the boundaries of protein engineering, we further empower AMix-1 with an evolutionary test-time scaling algorithm for in silico directed evolution that delivers substantial, scalable performance gains as verification budgets are intensified, laying the groundwork for next-generation lab-in-the-loop protein design.
Test-Time Training Done Right
Test-Time Training (TTT) models context dependencies by adapting part of the model's weights (referred to as fast weights) during inference. This fast weight, akin to recurrent states in RNNs, stores temporary memories of past tokens in the current sequence. Existing TTT methods struggled to show effectiveness in handling long-context data, due to their inefficiency on modern GPUs. The TTT layers in many of these approaches operate with extremely low FLOPs utilization (often <5%) because they deliberately apply small online minibatch sizes (e.g., updating fast weights every 16 or 64 tokens). Moreover, a small minibatch implies fine-grained block-wise causal dependencies in the data, unsuitable for data beyond 1D ordered sequences, like sets or N-dimensional grids such as images or videos. In contrast, we pursue the opposite direction by using an extremely large chunk update, ranging from 2K to 1M tokens across tasks of varying modalities, which we refer to as Large Chunk Test-Time Training (LaCT). It improves hardware utilization by orders of magnitude, and more importantly, facilitates scaling of nonlinear state size (up to 40% of model parameters), hence substantially improving state capacity, all without requiring cumbersome and error-prone kernel implementations. It also allows easy integration of sophisticated optimizers, e.g. Muon for online updates. We validate our approach across diverse modalities and tasks, including novel view synthesis with image set, language models, and auto-regressive video diffusion. Our approach can scale up to 14B-parameter AR video diffusion model on sequences up to 56K tokens. In our longest sequence experiment, we perform novel view synthesis with 1 million context length. We hope this work will inspire and accelerate new research in the field of long-context modeling and test-time training. Website: https://tianyuanzhang.com/projects/ttt-done-right
InternVL3: Exploring Advanced Training and Test-Time Recipes for Open-Source Multimodal Models
We introduce InternVL3, a significant advancement in the InternVL series featuring a native multimodal pre-training paradigm. Rather than adapting a text-only large language model (LLM) into a multimodal large language model (MLLM) that supports visual inputs, InternVL3 jointly acquires multimodal and linguistic capabilities from both diverse multimodal data and pure-text corpora during a single pre-training stage. This unified training paradigm effectively addresses the complexities and alignment challenges commonly encountered in conventional post-hoc training pipelines for MLLMs. To further improve performance and scalability, InternVL3 incorporates variable visual position encoding (V2PE) to support extended multimodal contexts, employs advanced post-training techniques such as supervised fine-tuning (SFT) and mixed preference optimization (MPO), and adopts test-time scaling strategies alongside an optimized training infrastructure. Extensive empirical evaluations demonstrate that InternVL3 delivers superior performance across a wide range of multi-modal tasks. In particular, InternVL3-78B achieves a score of 72.2 on the MMMU benchmark, setting a new state-of-the-art among open-source MLLMs. Its capabilities remain highly competitive with leading proprietary models, including ChatGPT-4o, Claude 3.5 Sonnet, and Gemini 2.5 Pro, while also maintaining strong pure-language proficiency. In pursuit of open-science principles, we will publicly release both the training data and model weights to foster further research and development in next-generation MLLMs.
Scaling Test-Time Inference with Policy-Optimized, Dynamic Retrieval-Augmented Generation via KV Caching and Decoding
We present a comprehensive framework for enhancing Retrieval-Augmented Generation (RAG) systems through dynamic retrieval strategies and reinforcement fine-tuning. This approach significantly improves large language models on knowledge-intensive tasks, including opendomain question answering and complex reasoning. Our framework integrates two complementary techniques: Policy-Optimized RetrievalAugmented Generation (PORAG), which optimizes the use of retrieved information, and Adaptive Token-Layer Attention Scoring (ATLAS), which dynamically determines retrieval timing and content based on contextual needs. Together, these techniques enhance both the utilization and relevance of retrieved content, improving factual accuracy and response quality. Designed as a lightweight solution compatible with any Transformer-based LLM without requiring additional training, our framework excels in knowledge-intensive tasks, boosting output accuracy in RAG settings. We further propose CRITIC, a novel method to selectively compress key-value caches by token importance, mitigating memory bottlenecks in long-context applications. The framework also incorporates test-time scaling techniques to dynamically balance reasoning depth and computational resources, alongside optimized decoding strategies for faster inference. Experiments on benchmark datasets show that our framework reduces hallucinations, strengthens domain-specific reasoning, and achieves significant efficiency and scalability gains over traditional RAG systems. This integrated approach advances the development of robust, efficient, and scalable RAG systems across diverse applications.
Reasoning on a Budget: A Survey of Adaptive and Controllable Test-Time Compute in LLMs
Large language models (LLMs) have rapidly progressed into general-purpose agents capable of solving a broad spectrum of tasks. However, current models remain inefficient at reasoning: they apply fixed inference-time compute regardless of task complexity, often overthinking simple problems while underthinking hard ones. This survey presents a comprehensive review of efficient test-time compute (TTC) strategies, which aim to improve the computational efficiency of LLM reasoning. We introduce a two-tiered taxonomy that distinguishes between L1-controllability, methods that operate under fixed compute budgets, and L2-adaptiveness, methods that dynamically scale inference based on input difficulty or model confidence. We benchmark leading proprietary LLMs across diverse datasets, highlighting critical trade-offs between reasoning performance and token usage. Compared to prior surveys on efficient reasoning, our review emphasizes the practical control, adaptability, and scalability of TTC methods. Finally, we discuss emerging trends such as hybrid thinking models and identify key challenges for future work towards making LLMs more computationally efficient, robust, and responsive to user constraints.
Scaling Image and Video Generation via Test-Time Evolutionary Search
As the marginal cost of scaling computation (data and parameters) during model pre-training continues to increase substantially, test-time scaling (TTS) has emerged as a promising direction for improving generative model performance by allocating additional computation at inference time. While TTS has demonstrated significant success across multiple language tasks, there remains a notable gap in understanding the test-time scaling behaviors of image and video generative models (diffusion-based or flow-based models). Although recent works have initiated exploration into inference-time strategies for vision tasks, these approaches face critical limitations: being constrained to task-specific domains, exhibiting poor scalability, or falling into reward over-optimization that sacrifices sample diversity. In this paper, we propose Evolutionary Search (EvoSearch), a novel, generalist, and efficient TTS method that effectively enhances the scalability of both image and video generation across diffusion and flow models, without requiring additional training or model expansion. EvoSearch reformulates test-time scaling for diffusion and flow models as an evolutionary search problem, leveraging principles from biological evolution to efficiently explore and refine the denoising trajectory. By incorporating carefully designed selection and mutation mechanisms tailored to the stochastic differential equation denoising process, EvoSearch iteratively generates higher-quality offspring while preserving population diversity. Through extensive evaluation across both diffusion and flow architectures for image and video generation tasks, we demonstrate that our method consistently outperforms existing approaches, achieves higher diversity, and shows strong generalizability to unseen evaluation metrics. Our project is available at the website https://tinnerhrhe.github.io/evosearch.
Guided Query Refinement: Multimodal Hybrid Retrieval with Test-Time Optimization
Multimodal encoders have pushed the boundaries of visual document retrieval, matching textual query tokens directly to image patches and achieving state-of-the-art performance on public benchmarks. Recent models relying on this paradigm have massively scaled the sizes of their query and document representations, presenting obstacles to deployment and scalability in real-world pipelines. Furthermore, purely vision-centric approaches may be constrained by the inherent modality gap still exhibited by modern vision-language models. In this work, we connect these challenges to the paradigm of hybrid retrieval, investigating whether a lightweight dense text retriever can enhance a stronger vision-centric model. Existing hybrid methods, which rely on coarse-grained fusion of ranks or scores, fail to exploit the rich interactions within each model's representation space. To address this, we introduce Guided Query Refinement (GQR), a novel test-time optimization method that refines a primary retriever's query embedding using guidance from a complementary retriever's scores. Through extensive experiments on visual document retrieval benchmarks, we demonstrate that GQR allows vision-centric models to match the performance of models with significantly larger representations, while being up to 14x faster and requiring 54x less memory. Our findings show that GQR effectively pushes the Pareto frontier for performance and efficiency in multimodal retrieval. We release our code at https://github.com/IBM/test-time-hybrid-retrieval
Local Linear Attention: An Optimal Interpolation of Linear and Softmax Attention For Test-Time Regression
Transformer architectures have achieved remarkable success in various domains. While efficient alternatives to Softmax Attention have been widely studied, the search for more expressive mechanisms grounded in theoretical insight-even at greater computational cost-has been relatively underexplored. In this work, we bridge this gap by proposing Local Linear Attention (LLA), a novel attention mechanism derived from nonparametric statistics through the lens of test-time regression. First, we show that LLA offers theoretical advantages over Linear and Softmax Attention for associative memory via a bias-variance trade-off analysis. Next, we address its computational challenges and propose two memory-efficient primitives to tackle the Theta(n^2 d) and Theta(n d^2) complexity. We then introduce FlashLLA, a hardware-efficient, blockwise algorithm that enables scalable and parallel computation on modern accelerators. In addition, we implement and profile a customized inference kernel that significantly reduces memory overheads. Finally, we empirically validate the advantages and limitations of LLA on test-time regression, in-context regression, associative recall and state tracking tasks. Experiment results demonstrate that LLA effectively adapts to non-stationarity, outperforming strong baselines in test-time training and in-context learning, and exhibiting promising evidence for its scalability and applicability in large-scale models. Code is available at https://github.com/Yifei-Zuo/Flash-LLA.
MFOS: Model-Free & One-Shot Object Pose Estimation
Existing learning-based methods for object pose estimation in RGB images are mostly model-specific or category based. They lack the capability to generalize to new object categories at test time, hence severely hindering their practicability and scalability. Notably, recent attempts have been made to solve this issue, but they still require accurate 3D data of the object surface at both train and test time. In this paper, we introduce a novel approach that can estimate in a single forward pass the pose of objects never seen during training, given minimum input. In contrast to existing state-of-the-art approaches, which rely on task-specific modules, our proposed model is entirely based on a transformer architecture, which can benefit from recently proposed 3D-geometry general pretraining. We conduct extensive experiments and report state-of-the-art one-shot performance on the challenging LINEMOD benchmark. Finally, extensive ablations allow us to determine good practices with this relatively new type of architecture in the field.
Latent Autoregressive Source Separation
Autoregressive models have achieved impressive results over a wide range of domains in terms of generation quality and downstream task performance. In the continuous domain, a key factor behind this success is the usage of quantized latent spaces (e.g., obtained via VQ-VAE autoencoders), which allow for dimensionality reduction and faster inference times. However, using existing pre-trained models to perform new non-trivial tasks is difficult since it requires additional fine-tuning or extensive training to elicit prompting. This paper introduces LASS as a way to perform vector-quantized Latent Autoregressive Source Separation (i.e., de-mixing an input signal into its constituent sources) without requiring additional gradient-based optimization or modifications of existing models. Our separation method relies on the Bayesian formulation in which the autoregressive models are the priors, and a discrete (non-parametric) likelihood function is constructed by performing frequency counts over latent sums of addend tokens. We test our method on images and audio with several sampling strategies (e.g., ancestral, beam search) showing competitive results with existing approaches in terms of separation quality while offering at the same time significant speedups in terms of inference time and scalability to higher dimensional data.
Astronomaly at scale: searching for anomalies amongst 4 million galaxies
Modern astronomical surveys are producing datasets of unprecedented size and richness, increasing the potential for high-impact scientific discovery. This possibility, coupled with the challenge of exploring a large number of sources, has led to the development of novel machine-learning-based anomaly detection approaches, such as Astronomaly. For the first time, we test the scalability of Astronomaly by applying it to almost 4 million images of galaxies from the Dark Energy Camera Legacy Survey. We use a trained deep learning algorithm to learn useful representations of the images and pass these to the anomaly detection algorithm isolation forest, coupled with Astronomaly's active learning method, to discover interesting sources. We find that data selection criteria have a significant impact on the trade-off between finding rare sources such as strong lenses and introducing artefacts into the dataset. We demonstrate that active learning is required to identify the most interesting sources and reduce artefacts, while anomaly detection methods alone are insufficient. Using Astronomaly, we find 1635 anomalies among the top 2000 sources in the dataset after applying active learning, including eight strong gravitational lens candidates, 1609 galaxy merger candidates, and 18 previously unidentified sources exhibiting highly unusual morphology. Our results show that by leveraging the human-machine interface, Astronomaly is able to rapidly identify sources of scientific interest even in large datasets.
MVDiffusion++: A Dense High-resolution Multi-view Diffusion Model for Single or Sparse-view 3D Object Reconstruction
This paper presents a neural architecture MVDiffusion++ for 3D object reconstruction that synthesizes dense and high-resolution views of an object given one or a few images without camera poses. MVDiffusion++ achieves superior flexibility and scalability with two surprisingly simple ideas: 1) A ``pose-free architecture'' where standard self-attention among 2D latent features learns 3D consistency across an arbitrary number of conditional and generation views without explicitly using camera pose information; and 2) A ``view dropout strategy'' that discards a substantial number of output views during training, which reduces the training-time memory footprint and enables dense and high-resolution view synthesis at test time. We use the Objaverse for training and the Google Scanned Objects for evaluation with standard novel view synthesis and 3D reconstruction metrics, where MVDiffusion++ significantly outperforms the current state of the arts. We also demonstrate a text-to-3D application example by combining MVDiffusion++ with a text-to-image generative model.
Scaling over Scaling: Exploring Test-Time Scaling Pareto in Large Reasoning Models
Large reasoning models (LRMs) have exhibited the capacity of enhancing reasoning performance via internal test-time scaling. Building upon this, a promising direction is to further scale test-time compute to unlock even greater reasoning capabilities. However, as we push these scaling boundaries, systematically understanding the practical limits and achieving optimal resource allocation becomes a critical challenge. In this paper, we investigate the scaling Pareto of test-time scaling and introduce the Test-Time Scaling Performance Model (TTSPM). We theoretically analyze two fundamental paradigms for such extended scaling, parallel scaling and sequential scaling, from a probabilistic modeling perspective. Our primary contribution is the derivation of the saturation point on the scaling budget for both strategies, identifying thresholds beyond which additional computation yields diminishing returns. Remarkably, despite their distinct mechanisms, both paradigms converge to a unified mathematical structure in their upper bounds. We empirically validate our theoretical findings on challenging reasoning benchmarks, including AIME, MATH-500, and GPQA, demonstrating the practical utility of these bounds for test-time resource allocation. We hope that this work provides insights into the cost-benefit trade-offs of test-time scaling, guiding the development of more resource-efficient inference strategies for large reasoning models.
What, How, Where, and How Well? A Survey on Test-Time Scaling in Large Language Models
As enthusiasm for scaling computation (data and parameters) in the pretraining era gradually diminished, test-time scaling (TTS), also referred to as ``test-time computing'' has emerged as a prominent research focus. Recent studies demonstrate that TTS can further elicit the problem-solving capabilities of large language models (LLMs), enabling significant breakthroughs not only in specialized reasoning tasks, such as mathematics and coding, but also in general tasks like open-ended Q&A. However, despite the explosion of recent efforts in this area, there remains an urgent need for a comprehensive survey offering a systemic understanding. To fill this gap, we propose a unified, multidimensional framework structured along four core dimensions of TTS research: what to scale, how to scale, where to scale, and how well to scale. Building upon this taxonomy, we conduct an extensive review of methods, application scenarios, and assessment aspects, and present an organized decomposition that highlights the unique functional roles of individual techniques within the broader TTS landscape. From this analysis, we distill the major developmental trajectories of TTS to date and offer hands-on guidelines for practical deployment. Furthermore, we identify several open challenges and offer insights into promising future directions, including further scaling, clarifying the functional essence of techniques, generalizing to more tasks, and more attributions.
Scaling Test-time Compute for LLM Agents
Scaling test time compute has shown remarkable success in improving the reasoning abilities of large language models (LLMs). In this work, we conduct the first systematic exploration of applying test-time scaling methods to language agents and investigate the extent to which it improves their effectiveness. Specifically, we explore different test-time scaling strategies, including: (1) parallel sampling algorithms; (2) sequential revision strategies; (3) verifiers and merging methods; (4)strategies for diversifying rollouts.We carefully analyze and ablate the impact of different design strategies on applying test-time scaling on language agents, and have follow findings: 1. Scaling test time compute could improve the performance of agents. 2. Knowing when to reflect is important for agents. 3. Among different verification and result merging approaches, the list-wise method performs best. 4. Increasing diversified rollouts exerts a positive effect on the agent's task performance.
s1: Simple test-time scaling
Test-time scaling is a promising new approach to language modeling that uses extra test-time compute to improve performance. Recently, OpenAI's o1 model showed this capability but did not publicly share its methodology, leading to many replication efforts. We seek the simplest approach to achieve test-time scaling and strong reasoning performance. First, we curate a small dataset s1K of 1,000 questions paired with reasoning traces relying on three criteria we validate through ablations: difficulty, diversity, and quality. Second, we develop budget forcing to control test-time compute by forcefully terminating the model's thinking process or lengthening it by appending "Wait" multiple times to the model's generation when it tries to end. This can lead the model to double-check its answer, often fixing incorrect reasoning steps. After supervised finetuning the Qwen2.5-32B-Instruct language model on s1K and equipping it with budget forcing, our model s1 exceeds o1-preview on competition math questions by up to 27% (MATH and AIME24). Further, scaling s1 with budget forcing allows extrapolating beyond its performance without test-time intervention: from 50% to 57% on AIME24. Our model, data, and code are open-source at https://github.com/simplescaling/s1.
CodeMonkeys: Scaling Test-Time Compute for Software Engineering
Scaling test-time compute is a promising axis for improving LLM capabilities. However, test-time compute can be scaled in a variety of ways, and effectively combining different approaches remains an active area of research. Here, we explore this problem in the context of solving real-world GitHub issues from the SWE-bench dataset. Our system, named CodeMonkeys, allows models to iteratively edit a codebase by jointly generating and running a testing script alongside their draft edit. We sample many of these multi-turn trajectories for every issue to generate a collection of candidate edits. This approach lets us scale "serial" test-time compute by increasing the number of iterations per trajectory and "parallel" test-time compute by increasing the number of trajectories per problem. With parallel scaling, we can amortize up-front costs across multiple downstream samples, allowing us to identify relevant codebase context using the simple method of letting an LLM read every file. In order to select between candidate edits, we combine voting using model-generated tests with a final multi-turn trajectory dedicated to selection. Overall, CodeMonkeys resolves 57.4% of issues from SWE-bench Verified using a budget of approximately 2300 USD. Our selection method can also be used to combine candidates from different sources. Selecting over an ensemble of edits from existing top SWE-bench Verified submissions obtains a score of 66.2% and outperforms the best member of the ensemble on its own. We fully release our code and data at https://scalingintelligence.stanford.edu/pubs/codemonkeys.
ATTS: Asynchronous Test-Time Scaling via Conformal Prediction
Large language models (LLMs) benefit from test-time scaling but are often hampered by high inference latency. Speculative decoding is a natural way to accelerate the scaling process; however, scaling along both the parallel and sequential dimensions poses significant challenges, including substantial memory-bound execution and synchronization overhead. We introduce ATTS (Asynchronous Test-Time Scaling), a statistically guaranteed adaptive scaling framework that follows the hypothesis testing process to address these challenges. By revisiting arithmetic intensity, ATTS identifies synchronization as the primary bottleneck. It enables asynchronous inference through online calibration and proposes an ordinal classification algorithm that supports a three-stage rejection sampling pipeline, scaling along both the sequential and parallel axes. Across experiments on the MATH, AMC23, AIME24, and AIME25 datasets and across multiple draft-target model families, we show that ATTS delivers up to 56.7x speedup in test-time scaling and a 4.14x throughput improvement, while maintaining accurate control of the rejection rate, reducing latency and memory overhead, and incurring no accuracy loss. By scaling both in parallel and sequential dimensions, we enable the 1.5B/70B draft/target model combination to achieve the performance of the state-of-the-art reasoning model o3-mini (high) on the AIME dataset. We have released the code at https://github.com/menik1126/asynchronous-test-time-scaling.
ARISE: An Adaptive Resolution-Aware Metric for Test-Time Scaling Evaluation in Large Reasoning Models
Test-time scaling has emerged as a transformative paradigm for enhancing the performance of large reasoning models, enabling dynamic allocation of computational resources during inference. However, as the landscape of reasoning models rapidly expands, a critical question remains: how can we systematically compare and evaluate the test-time scaling capabilities across different models? In this paper, we introduce ARISE (Adaptive Resolution-aware Scaling Evaluation), a novel metric specifically designed to assess the test-time scaling effectiveness of large reasoning models. Unlike existing evaluation approaches, ARISE incorporates two key innovations: (1) sample-level awareness that effectively penalizes negative scaling behaviors where increased computation leads to performance degradation, and (2) a dynamic sampling mechanism that mitigates the impact of accuracy fluctuations and token count instability on the final assessment. We conduct comprehensive experiments evaluating state-of-the-art reasoning models across diverse domains including mathematical reasoning, code generation, and agentic tasks. Our results demonstrate that ARISE provides a reliable and fine-grained measurement of test-time scaling capabilities, revealing significant variations in scaling efficiency across models. Notably, our evaluation identifies Claude Opus as exhibiting superior scaling characteristics compared to other contemporary reasoning models.
S*: Test Time Scaling for Code Generation
Increasing test-time compute for LLMs shows promise across domains but remains underexplored in code generation, despite extensive study in math. In this paper, we propose S*, the first hybrid test-time scaling framework that substantially improves the coverage and selection accuracy of generated code. S* extends the existing parallel scaling paradigm with sequential scaling to push performance boundaries. It further leverages a novel selection mechanism that adaptively generates distinguishing inputs for pairwise comparison, combined with execution-grounded information to robustly identify correct solutions. We evaluate across 12 Large Language Models and Large Reasoning Model and show: (1) S* consistently improves performance across model families and sizes, enabling a 3B model to outperform GPT-4o-mini; (2) S* enables non-reasoning models to surpass reasoning models - GPT-4o-mini with S* outperforms o1-preview by 3.7% on LiveCodeBench; (3) S* further boosts state-of-the-art reasoning models - DeepSeek-R1-Distill-Qwen-32B with S* achieves 85.7% on LiveCodeBench, approaching o1 (high) at 88.5%. Code will be available under https://github.com/NovaSky-AI/SkyThought.
R2E-Gym: Procedural Environments and Hybrid Verifiers for Scaling Open-Weights SWE Agents
Improving open-source models on real-world SWE tasks (solving GITHUB issues) faces two key challenges: 1) scalable curation of execution environments to train these models, and, 2) optimal scaling of test-time compute. We introduce AgentGym, the largest procedurally-curated executable gym environment for training real-world SWE-agents, consisting of more than 8.7K tasks. AgentGym is powered by two main contributions: 1) SYNGEN: a synthetic data curation recipe that enables scalable curation of executable environments using test-generation and back-translation directly from commits, thereby reducing reliance on human-written issues or unit tests. We show that this enables more scalable training leading to pass@1 performance of 34.4% on SWE-Bench Verified benchmark with our 32B model. 2) Hybrid Test-time Scaling: we provide an in-depth analysis of two test-time scaling axes; execution-based and execution-free verifiers, demonstrating that they exhibit complementary strengths and limitations. Test-based verifiers suffer from low distinguishability, while execution-free verifiers are biased and often rely on stylistic features. Surprisingly, we find that while each approach individually saturates around 42-43%, significantly higher gains can be obtained by leveraging their complementary strengths. Overall, our approach achieves 51% on the SWE-Bench Verified benchmark, reflecting a new state-of-the-art for open-weight SWE-agents and for the first time showing competitive performance with proprietary models such as o1, o1-preview and sonnet-3.5-v2 (with tools). We will open-source our environments, models, and agent trajectories.
Kinetics: Rethinking Test-Time Scaling Laws
We rethink test-time scaling laws from a practical efficiency perspective, revealing that the effectiveness of smaller models is significantly overestimated. Prior work, grounded in compute-optimality, overlooks critical memory access bottlenecks introduced by inference-time strategies (e.g., Best-of-N, long CoTs). Our holistic analysis, spanning models from 0.6B to 32B parameters, reveals a new Kinetics Scaling Law that better guides resource allocation by incorporating both computation and memory access costs. Kinetics Scaling Law suggests that test-time compute is more effective when used on models above a threshold than smaller ones. A key reason is that in TTS, attention, rather than parameter count, emerges as the dominant cost factor. Motivated by this, we propose a new scaling paradigm centered on sparse attention, which lowers per-token cost and enables longer generations and more parallel samples within the same resource budget. Empirically, we show that sparse attention models consistently outperform dense counterparts, achieving over 60 points gains in low-cost regimes and over 5 points gains in high-cost regimes for problem-solving accuracy on AIME, encompassing evaluations on state-of-the-art MoEs. These results suggest that sparse attention is essential for realizing the full potential of test-time scaling because, unlike training, where parameter scaling saturates, test-time accuracy continues to improve through increased generation. The code is available at https://github.com/Infini-AI-Lab/Kinetics.
Faster and Better LLMs via Latency-Aware Test-Time Scaling
Test-Time Scaling (TTS) has proven effective in improving the performance of Large Language Models (LLMs) during inference. However, existing research has overlooked the efficiency of TTS from a latency-sensitive perspective. Through a latency-aware evaluation of representative TTS methods, we demonstrate that a compute-optimal TTS does not always result in the lowest latency in scenarios where latency is critical. To address this gap and achieve latency-optimal TTS, we propose two key approaches by optimizing the concurrency configurations: (1) branch-wise parallelism, which leverages multiple concurrent inference branches, and (2) sequence-wise parallelism, enabled by speculative decoding. By integrating these two approaches and allocating computational resources properly to each, our latency-optimal TTS enables a 32B model to reach 82.3% accuracy on MATH-500 within 1 minute and a smaller 3B model to achieve 72.4% within 10 seconds. Our work emphasizes the importance of latency-aware TTS and demonstrates its ability to deliver both speed and accuracy in latency-sensitive scenarios.
Scaling Test-Time Compute Without Verification or RL is Suboptimal
Despite substantial advances in scaling test-time compute, an ongoing debate in the community is how it should be scaled up to enable continued and efficient improvements with scaling. There are largely two approaches: first, distilling successful search or thinking traces; and second, using verification (e.g., 0/1 outcome rewards, reward models, or verifiers) to guide reinforcement learning (RL) and search algorithms. In this paper, we prove that finetuning LLMs with verifier-based (VB) methods based on RL or search is far superior to verifier-free (VF) approaches based on distilling or cloning search traces, given a fixed amount of compute/data budget. Further, we show that as we scale test-time compute (measured as the output token length) and training data, suboptimality of VF methods scales poorly compared to VB when the base pre-trained LLM presents a heterogeneous distribution over correct solution traces (e.g., different lengths, styles, etc.) and admits a non-sharp distribution over rewards on traces sampled from it. We formalize this condition using anti-concentration [Erdos, 1945]. This implies a stronger result that VB methods scale better asymptotically, with the performance gap between VB and VF methods widening as test-time budget grows. We corroborate our theory empirically on both didactic and math reasoning problems with 3/8/32B-sized pre-trained LLMs, where we find verification is crucial for scaling test-time compute.
Budget-aware Test-time Scaling via Discriminative Verification
Test-time scaling is a powerful strategy for boosting the performance of large language models on complex reasoning tasks. While state-of-the-art approaches often employ generative verifiers to select the best solution from a pool of candidates, this method incurs prohibitive computational costs, limiting its practicality. In this work, we shift the focus to a more budget-aware paradigm: discriminative verification. We conduct a thorough empirical analysis and demonstrate that while discriminative verifiers may underperform in isolation, combining them with self-consistency in a hybrid approach creates a powerful and efficient test-time scaling mechanism. Notably, under a fixed compute budget, this hybrid approach surpasses state-of-the-art generative verification by a significant margin: achieving up to 15.3\% higher accuracy on AIME2025. Our findings establish that for practical, real-world applications, budget-aware scaling with discriminative verifiers is not only a "free" upgrade over self-consistency, but also a more effective and efficient alternative to costly generative techniques. Code is available at https://github.com/wang-research-lab/verification.
Test-time Computing: from System-1 Thinking to System-2 Thinking
The remarkable performance of the o1 model in complex reasoning demonstrates that test-time computing scaling can further unlock the model's potential, enabling powerful System-2 thinking. However, there is still a lack of comprehensive surveys for test-time computing scaling. We trace the concept of test-time computing back to System-1 models. In System-1 models, test-time computing addresses distribution shifts and improves robustness and generalization through parameter updating, input modification, representation editing, and output calibration. In System-2 models, it enhances the model's reasoning ability to solve complex problems through repeated sampling, self-correction, and tree search. We organize this survey according to the trend of System-1 to System-2 thinking, highlighting the key role of test-time computing in the transition from System-1 models to weak System-2 models, and then to strong System-2 models. We also point out a few possible future directions.
Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters
Enabling LLMs to improve their outputs by using more test-time computation is a critical step towards building generally self-improving agents that can operate on open-ended natural language. In this paper, we study the scaling of inference-time computation in LLMs, with a focus on answering the question: if an LLM is allowed to use a fixed but non-trivial amount of inference-time compute, how much can it improve its performance on a challenging prompt? Answering this question has implications not only on the achievable performance of LLMs, but also on the future of LLM pretraining and how one should tradeoff inference-time and pre-training compute. Despite its importance, little research attempted to understand the scaling behaviors of various test-time inference methods. Moreover, current work largely provides negative results for a number of these strategies. In this work, we analyze two primary mechanisms to scale test-time computation: (1) searching against dense, process-based verifier reward models; and (2) updating the model's distribution over a response adaptively, given the prompt at test time. We find that in both cases, the effectiveness of different approaches to scaling test-time compute critically varies depending on the difficulty of the prompt. This observation motivates applying a "compute-optimal" scaling strategy, which acts to most effectively allocate test-time compute adaptively per prompt. Using this compute-optimal strategy, we can improve the efficiency of test-time compute scaling by more than 4x compared to a best-of-N baseline. Additionally, in a FLOPs-matched evaluation, we find that on problems where a smaller base model attains somewhat non-trivial success rates, test-time compute can be used to outperform a 14x larger model.
LATTS: Locally Adaptive Test-Time Scaling
One common strategy for improving the performance of Large Language Models (LLMs) on downstream tasks involves using a verifier model to either select the best answer from a pool of candidates or to steer the auto-regressive generation process towards better outputs. This class of methods typically results in improved accuracy at the cost of increased computation at test-time, a paradigm known as test-time scaling. However, most existing approaches increase computation uniformly across all samples and generation steps, without considering the complexity of individual instances, leading to inefficient resource use. We address this limitation by proposing an approach, called Locally Adaptive Test-Time Scaling (LATTS), that allocates variable compute across generation steps. Specifically, at each generation step, LATTS employs a verifier-based acceptance criterion to decide whether to resample, backtrack, restart, or stop the generation process. This criterion effectively adjusts the per-step computational effort based on a precise notion of local difficulty derived from the verifier model. Empirical results show that LATTS achieves significantly superior accuracy--compute tradeoffs compared to standard verifier-based methods.
Step-level Verifier-guided Hybrid Test-Time Scaling for Large Language Models
Test-Time Scaling (TTS) is a promising approach to progressively elicit the model's intelligence during inference. Recently, training-based TTS methods, such as continued reinforcement learning (RL), have further surged in popularity, while training-free TTS methods are gradually fading from prominence. However, the additional computation overhead of training amplifies the burden on test-time scaling. In this paper, we focus on training-free TTS methods for reasoning. We first design Conditional Step-level Self-refinement, a fine-grained sequential scaling method guided by process verification. On top of its effectiveness, we further combine it with other classical parallel scaling methods at the step level, to introduce a novel inference paradigm called Hybrid Test-Time Scaling. Extensive experiments on five instruction-tuned LLMs across different scales (3B-14B) and families demonstrate that hybrid strategy incorporating various training-free TTS methods at a fine granularity has considerable potential for expanding the reasoning performance boundaries of LLMs.
Noise Hypernetworks: Amortizing Test-Time Compute in Diffusion Models
The new paradigm of test-time scaling has yielded remarkable breakthroughs in Large Language Models (LLMs) (e.g. reasoning models) and in generative vision models, allowing models to allocate additional computation during inference to effectively tackle increasingly complex problems. Despite the improvements of this approach, an important limitation emerges: the substantial increase in computation time makes the process slow and impractical for many applications. Given the success of this paradigm and its growing usage, we seek to preserve its benefits while eschewing the inference overhead. In this work we propose one solution to the critical problem of integrating test-time scaling knowledge into a model during post-training. Specifically, we replace reward guided test-time noise optimization in diffusion models with a Noise Hypernetwork that modulates initial input noise. We propose a theoretically grounded framework for learning this reward-tilted distribution for distilled generators, through a tractable noise-space objective that maintains fidelity to the base model while optimizing for desired characteristics. We show that our approach recovers a substantial portion of the quality gains from explicit test-time optimization at a fraction of the computational cost. Code is available at https://github.com/ExplainableML/HyperNoise
First Finish Search: Efficient Test-Time Scaling in Large Language Models
Test-time scaling (TTS), which involves dynamic allocation of compute during inference, offers a promising way to improve reasoning in large language models. While existing TTS methods work well, they often rely on long decoding paths or require a large number of samples to be generated, increasing the token usage and inference latency. We observe the surprising fact that for reasoning tasks, shorter traces are much more likely to be correct than longer ones. Motivated by this, we introduce First Finish Search (FFS), a training-free parallel decoding strategy that launches n independent samples and returns as soon as any one completes. We evaluate FFS alongside simple decoding, beam search, majority voting, and budget forcing on four reasoning models (DeepSeek-R1, R1-Distill-Qwen-32B, QwQ-32B and Phi-4-Reasoning-Plus) and across four datasets (AIME24, AIME25-I, AIME25-II and GPQA Diamond). With DeepSeek-R1, FFS achieves 82.23% accuracy on the AIME datasets, a 15% improvement over DeepSeek-R1's standalone accuracy, nearly matching OpenAI's o4-mini performance. Our theoretical analysis explains why stopping at the shortest trace is likely to yield a correct answer and identifies the conditions under which early stopping may be suboptimal. The elegance and simplicity of FFS demonstrate that straightforward TTS strategies can perform remarkably well, revealing the untapped potential of simple approaches at inference time.
On Pitfalls of Test-Time Adaptation
Test-Time Adaptation (TTA) has recently emerged as a promising approach for tackling the robustness challenge under distribution shifts. However, the lack of consistent settings and systematic studies in prior literature hinders thorough assessments of existing methods. To address this issue, we present TTAB, a test-time adaptation benchmark that encompasses ten state-of-the-art algorithms, a diverse array of distribution shifts, and two evaluation protocols. Through extensive experiments, our benchmark reveals three common pitfalls in prior efforts. First, selecting appropriate hyper-parameters, especially for model selection, is exceedingly difficult due to online batch dependency. Second, the effectiveness of TTA varies greatly depending on the quality and properties of the model being adapted. Third, even under optimal algorithmic conditions, none of the existing methods are capable of addressing all common types of distribution shifts. Our findings underscore the need for future research in the field to conduct rigorous evaluations on a broader set of models and shifts, and to re-examine the assumptions behind the empirical success of TTA. Our code is available at https://github.com/lins-lab/ttab.
Thinking vs. Doing: Agents that Reason by Scaling Test-Time Interaction
The current paradigm of test-time scaling relies on generating long reasoning traces ("thinking" more) before producing a response. In agent problems that require interaction, this can be done by generating thinking traces before acting in the world. However, this process does not allow agents to acquire new information from the environment or adapt their behavior over time. In this work, we propose to scale test-time interaction, an untapped dimension of test-time scaling that increases the agent's interaction horizon to enable running rich behaviors such as exploration, backtracking, and dynamic re-planning within a single rollout. To demonstrate the promise of this scaling dimension, we study the domain of web agents. We first show that even prompting-based interaction scaling without any training can improve task success on web benchmarks non-trivially. Building on this, we introduce TTI (Test-Time Interaction), a curriculum-based online reinforcement learning (RL) approach that trains agents by adaptively adjusting their rollout lengths. Using a Gemma 3 12B model, TTI produces state-of-the-art open-source, open-data web agents on WebVoyager and WebArena benchmarks. We further show that TTI enables agents to balance exploration and exploitation adaptively. Our results establish interaction scaling as a powerful, complementary axis to scaling per-step compute, offering new avenues for training adaptive agents.
When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning
Scaling test-time compute has emerged as a key strategy for enhancing the reasoning capabilities of large language models (LLMs), particularly in tasks like mathematical problem-solving. A traditional approach, Self-Consistency (SC), generates multiple solutions to a problem and selects the most common answer via majority voting. Another common method involves scoring each solution with a reward model (verifier) and choosing the best one. Recent advancements in Generative Reward Models (GenRM) reframe verification as a next-token prediction task, enabling inference-time scaling along a new axis. Specifically, GenRM generates multiple verification chains-of-thought to score each solution. Under a limited inference budget, this introduces a fundamental trade-off: should you spend the budget on scaling solutions via SC or generate fewer solutions and allocate compute to verification via GenRM? To address this, we evaluate GenRM against SC under a fixed inference budget. Interestingly, we find that SC is more compute-efficient than GenRM for most practical inference budgets across diverse models and datasets. For instance, GenRM first matches SC after consuming up to 8x the inference compute and requires significantly more compute to outperform it. Furthermore, we derive inference scaling laws for the GenRM paradigm, revealing that compute-optimal inference favors scaling solution generation more aggressively than scaling the number of verifications. Our work provides practical guidance on optimizing test-time scaling by balancing solution generation and verification. The code is available at https://github.com/nishadsinghi/sc-genrm-scaling.
Can Test-Time Scaling Improve World Foundation Model?
World foundation models, which simulate the physical world by predicting future states from current observations and inputs, have become central to many applications in physical intelligence, including autonomous driving and robotics. However, these models require substantial computational resources for pretraining and are further constrained by available data during post-training. As such, scaling computation at test time emerges as both a critical and practical alternative to traditional model enlargement or re-training. In this work, we introduce SWIFT, a test-time scaling framework tailored for WFMs. SWIFT integrates our extensible WFM evaluation toolkit with process-level inference strategies, including fast tokenization, probability-based Top-K pruning, and efficient beam search. Empirical results on the COSMOS model demonstrate that test-time scaling exists even in a compute-optimal way. Our findings reveal that test-time scaling laws hold for WFMs and that SWIFT provides a scalable and effective pathway for improving WFM inference without retraining or increasing model size. The code is available at https://github.com/Mia-Cong/SWIFT.git.
Multi-Agent Verification: Scaling Test-Time Compute with Multiple Verifiers
By utilizing more computational resources at test-time, large language models (LLMs) can improve without additional training. One common strategy uses verifiers to evaluate candidate outputs. In this work, we propose a novel scaling dimension for test-time compute: scaling the number of verifiers. We introduce Multi-Agent Verification (MAV) as a test-time compute paradigm that combines multiple verifiers to improve performance. We propose using Aspect Verifiers (AVs), off-the-shelf LLMs prompted to verify different aspects of outputs, as one possible choice for the verifiers in a MAV system. AVs are a convenient building block for MAV since they can be easily combined without additional training. Moreover, we introduce BoN-MAV, a simple multi-agent verification algorithm that combines best-of-n sampling with multiple verifiers. BoN-MAV demonstrates stronger scaling patterns than self-consistency and reward model verification, and we demonstrate both weak-to-strong generalization, where combining weak verifiers improves even stronger LLMs, and self-improvement, where the same base model is used to both generate and verify outputs. Our results establish scaling the number of verifiers as a promising new dimension for improving language model performance at test-time.
A Theoretical Study on Bridging Internal Probability and Self-Consistency for LLM Reasoning
Test-time scaling seeks to improve the reasoning performance of large language models (LLMs) by adding computational resources. A prevalent approach within the field is sampling-based test-time scaling methods, which enhance reasoning by generating multiple reasoning paths for a given input during inference. However, despite its practical success, the theoretical foundations remain underexplored. In this paper, we provide the first theoretical framework for analyzing sampling-based test-time scaling methods, grounded in the perspective of confidence estimation. Based on the framework, we analyze two dominant paradigms: self-consistency and perplexity, and reveal key limitations: self-consistency suffers from high estimation error while perplexity exhibits substantial modeling error and possible degradation of the estimation error convergence. To address these limitations, we introduce RPC, a hybrid method that leverages our theoretical insights through two key components: Perplexity Consistency and Reasoning Pruning. Perplexity Consistency combines the strengths of self-consistency and perplexity, boosting the convergence rate of estimation error from linear to exponential while preserving model error. Reasoning Pruning prevents degradation by eliminating low-probability reasoning paths. Both theoretical analysis and empirical results across seven benchmark datasets demonstrate that RPC has a strong potential for reducing reasoning error. Notably, RPC achieves reasoning performance comparable to self-consistency while not only enhancing confidence reliability but also reducing sampling costs by 50%. The code and resources are available at https://wnjxyk.github.io/RPC.
SoftCoT++: Test-Time Scaling with Soft Chain-of-Thought Reasoning
Test-Time Scaling (TTS) refers to approaches that improve reasoning performance by allocating extra computation during inference, without altering the model's parameters. While existing TTS methods operate in a discrete token space by generating more intermediate steps, recent studies in Coconut and SoftCoT have demonstrated that thinking in the continuous latent space can further enhance the reasoning performance. Such latent thoughts encode informative thinking without the information loss associated with autoregressive token generation, sparking increased interest in continuous-space reasoning. Unlike discrete decoding, where repeated sampling enables exploring diverse reasoning paths, latent representations in continuous space are fixed for a given input, which limits diverse exploration, as all decoded paths originate from the same latent thought. To overcome this limitation, we introduce SoftCoT++ to extend SoftCoT to the Test-Time Scaling paradigm by enabling diverse exploration of thinking paths. Specifically, we perturb latent thoughts via multiple specialized initial tokens and apply contrastive learning to promote diversity among soft thought representations. Experiments across five reasoning benchmarks and two distinct LLM architectures demonstrate that SoftCoT++ significantly boosts SoftCoT and also outperforms SoftCoT with self-consistency scaling. Moreover, it shows strong compatibility with conventional scaling techniques such as self-consistency. Source code is available at https://github.com/xuyige/SoftCoT.
m1: Unleash the Potential of Test-Time Scaling for Medical Reasoning with Large Language Models
Test-time scaling has emerged as a powerful technique for enhancing the reasoning capabilities of large language models. However, its effectiveness in medical reasoning remains uncertain, as the medical domain fundamentally differs from mathematical tasks in terms of knowledge representation and decision-making processes. In this paper, we provide the first comprehensive investigation of test-time scaling for medical reasoning and present m1, a simple yet effective approach that increases a model's medical reasoning capability at inference. Our evaluation across diverse medical tasks demonstrates that test-time scaling consistently enhances medical reasoning, enabling lightweight fine-tuned models under 10B parameters to establish new state-of-the-art performance, while our 32B model rivals previous 70B-scale medical LLMs. However, we identify an optimal reasoning token budget of approximately 4K, beyond which performance may degrade due to overthinking. Budget forcing, which extends test-time computation through iterative prompts, helps models double-check answers but does not necessarily improve the overall medical QA performance and, in some cases, even introduces errors into previously correct responses. Our case-by-case analysis identifies insufficient medical knowledge as a key bottleneck that prevents further performance gains through test-time scaling. We find that increasing data scale, improving data quality, and expanding model capacity consistently enhance medical knowledge grounding, enabling continued performance improvements, particularly on challenging medical benchmarks where smaller models reach saturation. These findings underscore fundamental differences between medical and mathematical reasoning in LLMs, highlighting that enriched medical knowledge, other than increased reasoning depth alone, is essential for realizing the benefits of test-time scaling.
T1: Tool-integrated Self-verification for Test-time Compute Scaling in Small Language Models
Recent studies have demonstrated that test-time compute scaling effectively improves the performance of small language models (sLMs). However, prior research has mainly examined test-time compute scaling with an additional larger model as a verifier, leaving self-verification by sLMs underexplored. In this work, we investigate whether sLMs can reliably self-verify their outputs under test-time scaling. We find that even with knowledge distillation from larger verifiers, sLMs struggle with verification tasks requiring memorization, such as numerical calculations and fact-checking. To address this limitation, we propose Tool-integrated self-verification (T1), which delegates memorization-heavy verification steps to external tools, such as a code interpreter. Our theoretical analysis shows that tool integration reduces memorization demands and improves test-time scaling performance. Experiments on the MATH benchmark demonstrate that, with T1, a Llama-3.2 1B model under test-time scaling outperforms the significantly larger Llama-3.1 8B model. Moreover, T1 generalizes effectively to both mathematical (MATH500) and multi-domain knowledge-intensive tasks (MMLU-Pro). Our findings highlight the potential of tool integration to substantially improve the self-verification abilities of sLMs.
Optimizing Test-Time Compute via Meta Reinforcement Fine-Tuning
Training models to effectively use test-time compute is crucial for improving the reasoning performance of LLMs. Current methods mostly do so via fine-tuning on search traces or running RL with 0/1 outcome reward, but do these approaches efficiently utilize test-time compute? Would these approaches continue to scale as the budget improves? In this paper, we try to answer these questions. We formalize the problem of optimizing test-time compute as a meta-reinforcement learning (RL) problem, which provides a principled perspective on spending test-time compute. This perspective enables us to view the long output stream from the LLM as consisting of several episodes run at test time and leads us to use a notion of cumulative regret over output tokens as a way to measure the efficacy of test-time compute. Akin to how RL algorithms can best tradeoff exploration and exploitation over training, minimizing cumulative regret would also provide the best balance between exploration and exploitation in the token stream. While we show that state-of-the-art models do not minimize regret, one can do so by maximizing a dense reward bonus in conjunction with the outcome 0/1 reward RL. This bonus is the ''progress'' made by each subsequent block in the output stream, quantified by the change in the likelihood of eventual success. Using these insights, we develop Meta Reinforcement Fine-Tuning, or MRT, a new class of fine-tuning methods for optimizing test-time compute. MRT leads to a 2-3x relative gain in performance and roughly a 1.5x gain in token efficiency for math reasoning compared to outcome-reward RL.
Seek in the Dark: Reasoning via Test-Time Instance-Level Policy Gradient in Latent Space
Reasoning ability, a core component of human intelligence, continues to pose a significant challenge for Large Language Models (LLMs) in the pursuit of AGI. Although model performance has improved under the training scaling law, significant challenges remain, particularly with respect to training algorithms, such as catastrophic forgetting, and the limited availability of novel training data. As an alternative, test-time scaling enhances reasoning performance by increasing test-time computation without parameter updating. Unlike prior methods in this paradigm focused on token space, we propose leveraging latent space for more effective reasoning and better adherence to the test-time scaling law. We introduce LatentSeek, a novel framework that enhances LLM reasoning through Test-Time Instance-level Adaptation (TTIA) within the model's latent space. Specifically, LatentSeek leverages policy gradient to iteratively update latent representations, guided by self-generated reward signals. LatentSeek is evaluated on a range of reasoning benchmarks, including GSM8K, MATH-500, and AIME2024, across multiple LLM architectures. Results show that LatentSeek consistently outperforms strong baselines, such as Chain-of-Thought prompting and fine-tuning-based methods. Furthermore, our analysis demonstrates that LatentSeek is highly efficient, typically converging within a few iterations for problems of average complexity, while also benefiting from additional iterations, thereby highlighting the potential of test-time scaling in the latent space. These findings position LatentSeek as a lightweight, scalable, and effective solution for enhancing the reasoning capabilities of LLMs.
ETS: Efficient Tree Search for Inference-Time Scaling
Test-time compute scaling has emerged as a new axis along which to improve model accuracy, where additional computation is used at inference time to allow the model to think longer for more challenging problems. One promising approach for test-time compute scaling is search against a process reward model, where a model generates multiple potential candidates at each step of the search, and these partial trajectories are then scored by a separate reward model in order to guide the search process. The diversity of trajectories in the tree search process affects the accuracy of the search, since increasing diversity promotes more exploration. However, this diversity comes at a cost, as divergent trajectories have less KV sharing, which means they consume more memory and slow down the search process. Previous search methods either do not perform sufficient exploration, or else explore diverse trajectories but have high latency. We address this challenge by proposing Efficient Tree Search (ETS), which promotes KV sharing by pruning redundant trajectories while maintaining necessary diverse trajectories. ETS incorporates a linear programming cost model to promote KV cache sharing by penalizing the number of nodes retained, while incorporating a semantic coverage term into the cost model to ensure that we retain trajectories which are semantically different. We demonstrate how ETS can achieve 1.8times reduction in average KV cache size during the search process, leading to 1.4times increased throughput relative to prior state-of-the-art methods, with minimal accuracy degradation and without requiring any custom kernel implementation. Code is available at: https://github.com/SqueezeAILab/ETS.
Rethinking Fine-Tuning when Scaling Test-Time Compute: Limiting Confidence Improves Mathematical Reasoning
Recent progress in large language models (LLMs) highlights the power of scaling test-time compute to achieve strong performance on complex tasks, such as mathematical reasoning and code generation. This raises a critical question: how should model training be modified to optimize performance under a subsequent test-time compute strategy and budget? To explore this, we focus on pass@N, a simple test-time strategy that searches for a correct answer in N independent samples. We show, surprisingly, that training with cross-entropy (CE) loss can be {it misaligned} with pass@N in that pass@N accuracy {it decreases} with longer training. We explain the origins of this misalignment in terms of model overconfidence induced by CE, and experimentally verify our prediction of overconfidence as an impediment to scaling test-time compute via pass@N. Furthermore we suggest a principled, modified training loss that is better aligned to pass@N by limiting model confidence and rescuing pass@N test performance. Our algorithm demonstrates improved mathematical reasoning on MATH and MiniF2F benchmarks under several scenarios: (1) providing answers to math questions; and (2) proving theorems by searching over proof trees of varying shapes. Overall our work underscores the importance of co-designing two traditionally separate phases of LLM development: training-time protocols and test-time search and reasoning strategies.
Can 1B LLM Surpass 405B LLM? Rethinking Compute-Optimal Test-Time Scaling
Test-Time Scaling (TTS) is an important method for improving the performance of Large Language Models (LLMs) by using additional computation during the inference phase. However, current studies do not systematically analyze how policy models, Process Reward Models (PRMs), and problem difficulty influence TTS. This lack of analysis limits the understanding and practical use of TTS methods. In this paper, we focus on two core questions: (1) What is the optimal approach to scale test-time computation across different policy models, PRMs, and problem difficulty levels? (2) To what extent can extended computation improve the performance of LLMs on complex tasks, and can smaller language models outperform larger ones through this approach? Through comprehensive experiments on MATH-500 and challenging AIME24 tasks, we have the following observations: (1) The compute-optimal TTS strategy is highly dependent on the choice of policy model, PRM, and problem difficulty. (2) With our compute-optimal TTS strategy, extremely small policy models can outperform larger models. For example, a 1B LLM can exceed a 405B LLM on MATH-500. Moreover, on both MATH-500 and AIME24, a 0.5B LLM outperforms GPT-4o, a 3B LLM surpasses a 405B LLM, and a 7B LLM beats o1 and DeepSeek-R1, while with higher inference efficiency. These findings show the significance of adapting TTS strategies to the specific characteristics of each task and model and indicate that TTS is a promising approach for enhancing the reasoning abilities of LLMs.
Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute
Recent advancements in software engineering agents have demonstrated promising capabilities in automating program improvements. However, their reliance on closed-source or resource-intensive models introduces significant deployment challenges in private environments, prompting a critical question: How can personally deployable open-source LLMs achieve comparable code reasoning performance? To this end, we propose a unified Test-Time Compute scaling framework that leverages increased inference-time computation instead of larger models. Our framework incorporates two complementary strategies: internal TTC and external TTC. Internally, we introduce a development-contextualized trajectory synthesis method leveraging real-world software repositories to bootstrap multi-stage reasoning processes, such as fault localization and patch generation. We further enhance trajectory quality through rejection sampling, rigorously evaluating trajectories along accuracy and complexity. Externally, we propose a novel development-process-based search strategy guided by reward models and execution verification. This approach enables targeted computational allocation at critical development decision points, overcoming limitations of existing "end-point only" verification methods. Evaluations on SWE-bench Verified demonstrate our 32B model achieves a 46\% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1. Additionally, we provide the empirical validation of the test-time scaling phenomenon within SWE agents, revealing that models dynamically allocate more tokens to increasingly challenging problems, effectively enhancing reasoning capabilities. We publicly release all training data, models, and code to facilitate future research. https://github.com/yingweima2022/SWE-Reasoner
Technical Report: Enhancing LLM Reasoning with Reward-guided Tree Search
Recently, test-time scaling has garnered significant attention from the research community, largely due to the substantial advancements of the o1 model released by OpenAI. By allocating more computational resources during the inference phase, large language models~(LLMs) can extensively explore the solution space by generating more thought tokens or diverse solutions, thereby producing more accurate responses. However, developing an o1-like reasoning approach is challenging, and researchers have been making various attempts to advance this open area of research. In this paper, we present a preliminary exploration into enhancing the reasoning abilities of LLMs through reward-guided tree search algorithms. This framework is implemented by integrating the policy model, reward model, and search algorithm. It is primarily constructed around a tree search algorithm, where the policy model navigates a dynamically expanding tree guided by a specially trained reward model. We thoroughly explore various design considerations necessary for implementing this framework and provide a detailed report of the technical aspects. To assess the effectiveness of our approach, we focus on mathematical reasoning tasks and conduct extensive evaluations on four challenging datasets, significantly enhancing the reasoning abilities of LLMs.
Rethinking Optimal Verification Granularity for Compute-Efficient Test-Time Scaling
Test-time scaling (TTS) has proven effective in enhancing the reasoning capabilities of large language models (LLMs). Verification plays a key role in TTS, simultaneously influencing (1) reasoning performance and (2) compute efficiency, due to the quality and computational cost of verification. In this work, we challenge the conventional paradigms of verification, and make the first attempt toward systematically investigating the impact of verification granularity-that is, how frequently the verifier is invoked during generation, beyond verifying only the final output or individual generation steps. To this end, we introduce Variable Granularity Search (VG-Search), a unified algorithm that generalizes beam search and Best-of-N sampling via a tunable granularity parameter g. Extensive experiments with VG-Search under varying compute budgets, generator-verifier configurations, and task attributes reveal that dynamically selecting g can improve the compute efficiency and scaling behavior. Building on these findings, we propose adaptive VG-Search strategies that achieve accuracy gains of up to 3.1\% over Beam Search and 3.6\% over Best-of-N, while reducing FLOPs by over 52\%. We will open-source the code to support future research.
Sampling-Efficient Test-Time Scaling: Self-Estimating the Best-of-N Sampling in Early Decoding
Test-time scaling improves large language model performance by adding extra compute during decoding. Best-of-N (BoN) sampling serves as a common scaling technique, broadening the search space for finding better solutions from the model distribution. However, traditional BoN requires N full generations, leading to high GPU memory overhead and time latency. Moreover, some methods depend on reward models, adding computational cost and limiting domain generalization. In this paper, we propose Self-Truncation Best-of-N (ST-BoN), a novel decoding method that avoids fully generating all samplings and eliminates the need for reward models. ST-BoN introduces early sampling consistency to estimate the most promising sample, truncating suboptimal ones to free memory and accelerate inference. This pushes the sampling-efficient test-time scaling. Compared to traditional BoN, ST-BoN can reduce dynamic GPU memory overhead by over 90% and time latency by 50%, while achieving comparable or even better performance across reasoning and open-ended domains.
Towards Automated Formal Verification of Backend Systems with LLMs
Software testing plays a critical role in ensuring that systems behave as intended. However, existing automated testing approaches struggle to match the capabilities of human engineers due to key limitations such as test locality, lack of general reliability, and business logic blindness. In this work, we propose a novel framework that leverages functional programming and type systems to translate Scala backend code into formal Lean representations. Our pipeline automatically generates theorems that specify the intended behavior of APIs and database operations, and uses LLM-based provers to verify them. When a theorem is proved, the corresponding logic is guaranteed to be correct and no further testing is needed. If the negation of a theorem is proved instead, it confirms a bug. In cases where neither can be proved, human intervention is required. We evaluate our method on realistic backend systems and find that it can formally verify over 50% of the test requirements, which suggests that half of a testing engineer's workload can be automated. Additionally, with an average cost of only $2.19 per API, LLM-based verification is significantly more cost-effective than manual testing and can be scaled easily through parallel execution. Our results indicate a promising direction for scalable, AI-powered software testing, with the potential to greatly improve engineering productivity as models continue to advance.
State Tuning: State-based Test-Time Scaling on RWKV-7
Test-time scaling has emerged as a prominent research direction in machine learning, enabling models to enhance their expressive capabilities during inference.Transformers, renowned for striking a delicate balance between efficiency and expressiveness, have benefited from test-time scaling techniques that leverage an expanding key-value (KV) cache to significantly improve performance.In this paper, we introduce a novel state-based approach to test-time scaling, which we term state tuning, tailored to the RNN-based RWKV-7 model.By exploiting the unique strengths of RWKV-7, our method achieves state-of-the-art performance on the target task without altering the model's pre-trained weights. Our approach centers on three key innovations. First, we develop an observer framework that allows a smaller model to replicate and learn the state dynamics of the RWKV-7 model. Second, we employ a kernel method to dynamically upscale the state size, enhancing the model's capacity to capture intricate patterns. Third, we integrate Decorrelated Backpropagation (DBP) to optimize the upscaled state matrix, thereby improving convergence and expressivity. By tuning only the state matrix, we demonstrate that a smaller model can outperform larger models on the given task. This method preserves the efficiency of the original RWKV-7 architecture while harnessing the power of test-time scaling to deliver superior results. Our findings underscore the potential of state tuning as an effective strategy for advancing model performance in resource-constrained settings. Our code is https://github.com/TorchRWKV/flash-linear-attention.
Satori-SWE: Evolutionary Test-Time Scaling for Sample-Efficient Software Engineering
Language models (LMs) perform well on standardized coding benchmarks but struggle with real-world software engineering tasks such as resolving GitHub issues in SWE-Bench, especially when model parameters are less than 100B. While smaller models are preferable in practice due to their lower computational cost, improving their performance remains challenging. Existing approaches primarily rely on supervised fine-tuning (SFT) with high-quality data, which is expensive to curate at scale. An alternative is test-time scaling: generating multiple outputs, scoring them using a verifier, and selecting the best one. Although effective, this strategy often requires excessive sampling and costly scoring, limiting its practical application. We propose Evolutionary Test-Time Scaling (EvoScale), a sample-efficient method that treats generation as an evolutionary process. By iteratively refining outputs via selection and mutation, EvoScale shifts the output distribution toward higher-scoring regions, reducing the number of samples needed to find correct solutions. To reduce the overhead from repeatedly sampling and selection, we train the model to self-evolve using reinforcement learning (RL). Rather than relying on external verifiers at inference time, the model learns to self-improve the scores of its own generations across iterations. Evaluated on SWE-Bench-Verified, EvoScale enables our 32B model, Satori-SWE-32B, to match or exceed the performance of models with over 100B parameters while using a few samples. Code, data, and models will be fully open-sourced.
Fractional Reasoning via Latent Steering Vectors Improves Inference Time Compute
Test-time compute has emerged as a powerful paradigm for improving the performance of large language models (LLMs), where generating multiple outputs or refining individual chains can significantly boost answer accuracy. However, existing methods like Best-of-N, majority voting, and self-reflection typically apply reasoning in a uniform way across inputs, overlooking the fact that different problems may require different levels of reasoning depth. In this work, we propose Fractional Reasoning, a training-free and model-agnostic framework that enables continuous control over reasoning intensity at inference time, going beyond the limitations of fixed instructional prompts. Our method operates by extracting the latent steering vector associated with deeper reasoning and reapplying it with a tunable scaling factor, allowing the model to tailor its reasoning process to the complexity of each input. This supports two key modes of test-time scaling: (1) improving output quality in breadth-based strategies (e.g., Best-of-N, majority voting), and (2) enhancing the correctness of individual reasoning chains in depth-based strategies (e.g., self-reflection). Experiments on GSM8K, MATH500, and GPQA demonstrate that Fractional Reasoning consistently improves performance across diverse reasoning tasks and models.
Slim-SC: Thought Pruning for Efficient Scaling with Self-Consistency
Recently, Test-Time Scaling (TTS) has gained increasing attention for improving LLM reasoning performance at test time without retraining the model. A notable TTS technique is Self-Consistency (SC), which generates multiple reasoning chains in parallel and selects the final answer via majority voting. While effective, the order-of-magnitude computational overhead limits its broad deployment. Prior attempts to accelerate SC mainly rely on model-based confidence scores or heuristics with limited empirical support. For the first time, we theoretically and empirically analyze the inefficiencies of SC and reveal actionable opportunities for improvement. Building on these insights, we propose Slim-SC, a step-wise pruning strategy that identifies and removes redundant chains using inter-chain similarity at the thought level. Experiments on three STEM reasoning datasets and two recent LLM architectures show that Slim-SC reduces inference latency and KVC usage by up to 45% and 26%, respectively, with R1-Distill, while maintaining or improving accuracy, thus offering a simple yet efficient TTS alternative for SC.
ScaleRTL: Scaling LLMs with Reasoning Data and Test-Time Compute for Accurate RTL Code Generation
Recent advances in large language models (LLMs) have enabled near-human performance on software coding benchmarks, but their effectiveness in RTL code generation remains limited due to the scarcity of high-quality training data. While prior efforts have fine-tuned LLMs for RTL tasks, they do not fundamentally overcome the data bottleneck and lack support for test-time scaling due to their non-reasoning nature. In this work, we introduce ScaleRTL, the first reasoning LLM for RTL coding that scales up both high-quality reasoning data and test-time compute. Specifically, we curate a diverse set of long chain-of-thought reasoning traces averaging 56K tokens each, resulting in a dataset of 3.5B tokens that captures rich RTL knowledge. Fine-tuning a general-purpose reasoning model on this corpus yields ScaleRTL that is capable of deep RTL reasoning. Subsequently, we further enhance the performance of ScaleRTL through a novel test-time scaling strategy that extends the reasoning process via iteratively reflecting on and self-correcting previous reasoning steps. Experimental results show that ScaleRTL achieves state-of-the-art performance on VerilogEval and RTLLM, outperforming 18 competitive baselines by up to 18.4% on VerilogEval and 12.7% on RTLLM.
SETS: Leveraging Self-Verification and Self-Correction for Improved Test-Time Scaling
Recent advancements in Large Language Models (LLMs) have created new opportunities to enhance performance on complex reasoning tasks by leveraging test-time computation. However, conventional approaches such as repeated sampling with majority voting or reward model scoring, often face diminishing returns as test-time compute scales, in addition to requiring costly task-specific reward model training. In this paper, we present Self-Enhanced Test-Time Scaling (SETS), a novel method that leverages the self-verification and self-correction capabilities of recent advanced LLMs to overcome these limitations. SETS integrates sampling, self-verification, and self-correction into a unified framework, enabling efficient and scalable test-time computation for improved capabilities at complex tasks. Through extensive experiments on challenging planning and reasoning benchmarks, compared to the alternatives, we demonstrate that SETS achieves significant performance improvements and more favorable test-time scaling laws.
Sleep-time Compute: Beyond Inference Scaling at Test-time
Scaling test-time compute has emerged as a key ingredient for enabling large language models (LLMs) to solve difficult problems, but comes with high latency and inference cost. We introduce sleep-time compute, which allows models to "think" offline about contexts before queries are presented: by anticipating what queries users might ask and pre-computing useful quantities, we can significantly reduce the compute requirements at test-time. To demonstrate the efficacy of our method, we create modified versions of two reasoning tasks - Stateful GSM-Symbolic and Stateful AIME. We find that sleep-time compute can reduce the amount of test-time compute needed to achieve the same accuracy by ~ 5x on Stateful GSM-Symbolic and Stateful AIME and that by scaling sleep-time compute we can further increase accuracy by up to 13% on Stateful GSM-Symbolic and 18% on Stateful AIME. Furthermore, we introduce Multi-Query GSM-Symbolic, which extends GSM-Symbolic by including multiple related queries per context. By amortizing sleep-time compute across related queries about the same context using Multi-Query GSM-Symbolic, we can decrease the average cost per query by 2.5x. We then conduct additional analysis to understand when sleep-time compute is most effective, finding the predictability of the user query to be well correlated with the efficacy of sleep-time compute. Finally, we conduct a case-study of applying sleep-time compute to a realistic agentic SWE task.
CarBoN: Calibrated Best-of-N Sampling Improves Test-time Reasoning
Allocating more computation during inference time (test-time scaling) improves language model performance, especially for reasoning tasks. However, popular methods like Best-of-N sampling often show diminishing returns as N increases. To address this inefficiency, we introduce a general test-time calibration framework that adaptively modifies the model toward high-reward reasoning paths, with theoretical guarantees of improving the lower bound of expected reward under finite sampling, all without large language model (LLM) retraining. Within this framework, we propose CarBoN (Calibrated Best-of-N), a two-phase method that first explores the solution space and then learns a calibration of the logits via an input-specific temperature T and additive shift vector delta, guiding generation toward more reliable reasoning. Experiments on MATH-500 and AIME-2024 show that CarBoN improves efficiency, with up to 4times fewer rollouts to reach the same accuracy, while often achieving higher accuracy under fixed budgets. We also analyze the complementary roles of T and delta in balancing output diversity and correctness, and demonstrate that the framework also generalizes to step-level sampling strategies such as beam search. For more information, please refer to our project page at huggingface.co/spaces/TrustSafeAI/Test-Time-Calibration.
MUR: Momentum Uncertainty guided Reasoning for Large Language Models
Large Language Models (LLMs) have achieved impressive performance on reasoning-intensive tasks, yet optimizing their reasoning efficiency remains an open challenge. While Test-Time Scaling (TTS) improves reasoning quality, it often leads to overthinking, wasting tokens on redundant computations. This work investigates how to efficiently and adaptively guide LLM test-time scaling without additional training. Inspired by the concept of momentum in physics, we propose Momentum Uncertainty-guided Reasoning (MUR), which dynamically allocates thinking budgets to critical reasoning steps by tracking and aggregating stepwise uncertainty over time. To support flexible inference-time control, we introduce gamma-control, a simple mechanism that tunes the reasoning budget via a single hyperparameter. We provide in-depth theoretical proof to support the superiority of MUR in terms of stability and biases. MUR is comprehensively evaluated against various TTS methods across four challenging benchmarks (MATH-500, AIME24, AIME25, and GPQA-diamond) using different sizes of recent Qwen3 models (1.7B, 4B, and 8B). Results demonstrate that MUR reduces computation by over 50% on average while improving accuracy by 0.62-3.37%.
Video-T1: Test-Time Scaling for Video Generation
With the scale capability of increasing training data, model size, and computational cost, video generation has achieved impressive results in digital creation, enabling users to express creativity across various domains. Recently, researchers in Large Language Models (LLMs) have expanded the scaling to test-time, which can significantly improve LLM performance by using more inference-time computation. Instead of scaling up video foundation models through expensive training costs, we explore the power of Test-Time Scaling (TTS) in video generation, aiming to answer the question: if a video generation model is allowed to use non-trivial amount of inference-time compute, how much can it improve generation quality given a challenging text prompt. In this work, we reinterpret the test-time scaling of video generation as a searching problem to sample better trajectories from Gaussian noise space to the target video distribution. Specifically, we build the search space with test-time verifiers to provide feedback and heuristic algorithms to guide searching process. Given a text prompt, we first explore an intuitive linear search strategy by increasing noise candidates at inference time. As full-step denoising all frames simultaneously requires heavy test-time computation costs, we further design a more efficient TTS method for video generation called Tree-of-Frames (ToF) that adaptively expands and prunes video branches in an autoregressive manner. Extensive experiments on text-conditioned video generation benchmarks demonstrate that increasing test-time compute consistently leads to significant improvements in the quality of videos. Project page: https://liuff19.github.io/Video-T1
Efficient Test-Time Scaling via Self-Calibration
Increasing test-time computation is a straightforward approach to enhancing the quality of responses in Large Language Models (LLMs). While Best-of-N sampling and Self-Consistency with majority voting are simple and effective, they require a fixed number of sampling responses for each query, regardless of its complexity. This could result in wasted computation for simpler questions and insufficient exploration for more challenging ones. In this work, we argue that model confidence of responses can be used for improving the efficiency of test-time scaling. Unfortunately, LLMs are known to be overconfident and provide unreliable confidence estimation. To address this limitation, we introduce Self-Calibration by distilling Self-Consistency-derived confidence into the model itself. This enables reliable confidence estimation at test time with one forward pass. We then design confidence-based efficient test-time scaling methods to handle queries of various difficulty, such as Early-Stopping for Best-of-N and Self-Consistency with calibrated confidence. Experiments on three LLMs across six datasets demonstrate the effectiveness of our approach. Specifically, applying confidence-based Early Stopping to Best-of-N improves MathQA accuracy from 81.0 to 83.6 with a sample budget of 16 responses, indicating the efficacy of confidence-based sampling strategy at inference time.
Dynamic Experts Search: Enhancing Reasoning in Mixture-of-Experts LLMs at Test Time
Test-Time Scaling (TTS) enhances the reasoning ability of large language models (LLMs) by allocating additional computation during inference. However, existing approaches primarily rely on output-level sampling while overlooking the role of model architecture. In mainstream Mixture-of-Experts (MoE) LLMs, we observe that varying the number of activated experts yields complementary solution sets with stable accuracy, revealing a new and underexplored source of diversity. Motivated by this observation, we propose Dynamic Experts Search (DES), a TTS strategy that elevates expert activation into a controllable dimension of the search space. DES integrates two key components: (1) Dynamic MoE, which enables direct control of expert counts during inference to generate diverse reasoning trajectories without additional cost; and (2) Expert Configuration Inheritance, which preserves consistent expert counts within a reasoning path while varying them across runs, thereby balancing stability and diversity throughout the search. Extensive experiments across MoE architectures, verifiers and reasoning benchmarks (i.e., math, code and knowledge) demonstrate that DES reliably outperforms TTS baselines, enhancing accuracy and stability without additional cost. These results highlight DES as a practical and scalable form of architecture-aware TTS, illustrating how structural flexibility in modern LLMs can advance reasoning.
TimeSeriesGym: A Scalable Benchmark for (Time Series) Machine Learning Engineering Agents
We introduce TimeSeriesGym, a scalable benchmarking framework for evaluating Artificial Intelligence (AI) agents on time series machine learning engineering challenges. Existing benchmarks lack scalability, focus narrowly on model building in well-defined settings, and evaluate only a limited set of research artifacts (e.g., CSV submission files). To make AI agent benchmarking more relevant to the practice of machine learning engineering, our framework scales along two critical dimensions. First, recognizing that effective ML engineering requires a range of diverse skills, TimeSeriesGym incorporates challenges from diverse sources spanning multiple domains and tasks. We design challenges to evaluate both isolated capabilities (including data handling, understanding research repositories, and code translation) and their combinations, and rather than addressing each challenge independently, we develop tools that support designing multiple challenges at scale. Second, we implement evaluation mechanisms for multiple research artifacts, including submission files, code, and models, using both precise numeric measures and more flexible LLM-based evaluation approaches. This dual strategy balances objective assessment with contextual judgment. Although our initial focus is on time series applications, our framework can be readily extended to other data modalities, broadly enhancing the comprehensiveness and practical utility of agentic AI evaluation. We open-source our benchmarking framework to facilitate future research on the ML engineering capabilities of AI agents.
Learning a Continue-Thinking Token for Enhanced Test-Time Scaling
Test-time scaling has emerged as an effective approach for improving language model performance by utilizing additional compute at inference time. Recent studies have shown that overriding end-of-thinking tokens (e.g., replacing "</think>" with "Wait") can extend reasoning steps and improve accuracy. In this work, we explore whether a dedicated continue-thinking token can be learned to trigger extended reasoning. We augment a distilled version of DeepSeek-R1 with a single learned "<|continue-thinking|>" token, training only its embedding via reinforcement learning while keeping the model weights frozen. Our experiments show that this learned token achieves improved accuracy on standard math benchmarks compared to both the baseline model and a test-time scaling approach that uses a fixed token (e.g., "Wait") for budget forcing. In particular, we observe that in cases where the fixed-token approach enhances the base model's accuracy, our method achieves a markedly greater improvement. For example, on the GSM8K benchmark, the fixed-token approach yields a 1.3% absolute improvement in accuracy, whereas our learned-token method achieves a 4.2% improvement over the base model that does not use budget forcing.
Uncovering Adversarial Risks of Test-Time Adaptation
Recently, test-time adaptation (TTA) has been proposed as a promising solution for addressing distribution shifts. It allows a base model to adapt to an unforeseen distribution during inference by leveraging the information from the batch of (unlabeled) test data. However, we uncover a novel security vulnerability of TTA based on the insight that predictions on benign samples can be impacted by malicious samples in the same batch. To exploit this vulnerability, we propose Distribution Invading Attack (DIA), which injects a small fraction of malicious data into the test batch. DIA causes models using TTA to misclassify benign and unperturbed test data, providing an entirely new capability for adversaries that is infeasible in canonical machine learning pipelines. Through comprehensive evaluations, we demonstrate the high effectiveness of our attack on multiple benchmarks across six TTA methods. In response, we investigate two countermeasures to robustify the existing insecure TTA implementations, following the principle of "security by design". Together, we hope our findings can make the community aware of the utility-security tradeoffs in deploying TTA and provide valuable insights for developing robust TTA approaches.
Sample, Don't Search: Rethinking Test-Time Alignment for Language Models
Increasing test-time computation has emerged as a promising direction for improving language model performance, particularly in scenarios where model finetuning is impractical or impossible due to computational constraints or private model weights. However, existing test-time search methods using a reward model (RM) often degrade in quality as compute scales, due to the over-optimization of what are inherently imperfect reward proxies. We introduce QAlign, a new test-time alignment approach. As we scale test-time compute, QAlign converges to sampling from the optimal aligned distribution for each individual prompt. By adopting recent advances in Markov chain Monte Carlo for text generation, our method enables better-aligned outputs without modifying the underlying model or even requiring logit access. We demonstrate the effectiveness of QAlign on mathematical reasoning benchmarks (GSM8K and GSM-Symbolic) using a task-specific RM, showing consistent improvements over existing test-time compute methods like best-of-n and majority voting. Furthermore, when applied with more realistic RMs trained on the Tulu 3 preference dataset, QAlign outperforms direct preference optimization (DPO), best-of-n, majority voting, and weighted majority voting on a diverse range of datasets (GSM8K, MATH500, IFEval, MMLU-Redux, and TruthfulQA). A practical solution to aligning language models at test time using additional computation without degradation, our approach expands the limits of the capability that can be obtained from off-the-shelf language models without further training.
Scaling Evaluation-time Compute with Reasoning Models as Process Evaluators
As language model (LM) outputs get more and more natural, it is becoming more difficult than ever to evaluate their quality. Simultaneously, increasing LMs' "thinking" time through scaling test-time compute has proven an effective technique to solve challenging problems in domains such as math and code. This raises a natural question: can an LM's evaluation capability also be improved by spending more test-time compute? To answer this, we investigate employing reasoning models-LMs that natively generate long chain-of-thought reasoning-as evaluators. Specifically, we examine methods to leverage more test-time compute by (1) using reasoning models, and (2) prompting these models to evaluate not only the response as a whole (i.e., outcome evaluation) but also assess each step in the response separately (i.e., process evaluation). In experiments, we observe that the evaluator's performance improves monotonically when generating more reasoning tokens, similar to the trends observed in LM-based generation. Furthermore, we use these more accurate evaluators to rerank multiple generations, and demonstrate that spending more compute at evaluation time can be as effective as using more compute at generation time in improving an LM's problem-solving capability.
Do We Truly Need So Many Samples? Multi-LLM Repeated Sampling Efficiently Scales Test-Time Compute
This paper presents a simple, effective, and cost-efficient strategy to improve LLM performance by scaling test-time compute. Our strategy builds upon the repeated-sampling-then-voting framework, with a novel twist: incorporating multiple models, even weaker ones, to leverage their complementary strengths that potentially arise from diverse training data and paradigms. By using consistency as a signal, our strategy dynamically switches between models. Theoretical analysis highlights the efficiency and performance advantages of our strategy. Extensive experiments on six datasets demonstrate that our strategy not only outperforms self-consistency and state-of-the-art multi-agent debate approaches, but also significantly reduces inference costs. Additionally, ModelSwitch requires only a few comparable LLMs to achieve optimal performance and can be extended with verification methods, demonstrating the potential of leveraging multiple LLMs in the generation-verification paradigm.
Learning to Reason Across Parallel Samples for LLM Reasoning
Scaling test-time compute brings substantial performance gains for large language models (LLMs). By sampling multiple answers and heuristically aggregate their answers (e.g., either through majority voting or using verifiers to rank the answers), one can achieve consistent performance gains in math domains. In this paper, we propose a new way to leverage such multiple sample set. We train a compact LLM, called Sample Set Aggregator (SSA), that takes a concatenated sequence of multiple samples and output the final answer, optimizing it for the answer accuracy with reinforcement learning. Experiments on multiple reasoning datasets show that SSA outperforms other test-time scaling methods such as reward model-based re-ranking. Our approach also shows a promising generalization ability, across sample set sizes, base model families and scales, and tasks. By separating LLMs to generate answers and LLMs to analyze and aggregate sampled answers, our approach can work with the outputs from premier black box models easily and efficiently.
To Backtrack or Not to Backtrack: When Sequential Search Limits Model Reasoning
Recent advancements in large language models have significantly improved their reasoning abilities, particularly through techniques involving search and backtracking. Backtracking naturally scales test-time compute by enabling sequential, linearized exploration via long chain-of-thought (CoT) generation. However, this is not the only strategy for scaling test-time compute: parallel sampling with best-of-n selection provides an alternative that generates diverse solutions simultaneously. Despite the growing adoption of sequential search, its advantages over parallel sampling--especially under a fixed compute budget remain poorly understood. In this paper, we systematically compare these two approaches on two challenging reasoning tasks: CountDown and Sudoku. Surprisingly, we find that sequential search underperforms parallel sampling on CountDown but outperforms it on Sudoku, suggesting that backtracking is not universally beneficial. We identify two factors that can cause backtracking to degrade performance: (1) training on fixed search traces can lock models into suboptimal strategies, and (2) explicit CoT supervision can discourage "implicit" (non-verbalized) reasoning. Extending our analysis to reinforcement learning (RL), we show that models with backtracking capabilities benefit significantly from RL fine-tuning, while models without backtracking see limited, mixed gains. Together, these findings challenge the assumption that backtracking universally enhances LLM reasoning, instead revealing a complex interaction between task structure, training data, model scale, and learning paradigm.
Test-Time Scaling in Reasoning Models Is Not Effective for Knowledge-Intensive Tasks Yet
Test-time scaling increases inference-time computation by allowing models to generate long reasoning chains, and has shown strong performance across many domains. However, in this work, we show that this approach is not yet effective for knowledge-intensive tasks, where high factual accuracy and low hallucination rates are essential. We conduct a comprehensive evaluation of test-time scaling using 12 reasoning models on two knowledge-intensive benchmarks. Our results reveal that increasing test-time computation does not consistently improve accuracy and, in many cases, it even leads to more hallucinations. We then analyze how extended reasoning affects hallucination behavior. We find that reduced hallucinations often result from the model choosing to abstain after thinking more, rather than from improved factual recall. Conversely, for some models, longer reasoning encourages attempts on previously unanswered questions, many of which result in hallucinations. Case studies show that extended reasoning can induce confirmation bias, leading to overconfident hallucinations. Despite these limitations, we observe that compared to non-thinking, enabling thinking remains beneficial. Code and data are available at https://github.com/XuZhao0/tts-knowledge
Putting the Value Back in RL: Better Test-Time Scaling by Unifying LLM Reasoners With Verifiers
Prevalent reinforcement learning~(RL) methods for fine-tuning LLM reasoners, such as GRPO or Leave-one-out PPO, abandon the learned value function in favor of empirically estimated returns. This hinders test-time compute scaling that relies on using the value-function for verification. In this work, we propose RL^V that augments any ``value-free'' RL method by jointly training the LLM as both a reasoner and a generative verifier using RL-generated data, adding verification capabilities without significant overhead. Empirically, RL^V boosts MATH accuracy by over 20\% with parallel sampling and enables 8-32times efficient test-time compute scaling compared to the base RL method. RL^V also exhibits strong generalization capabilities for both easy-to-hard and out-of-domain tasks. Furthermore, RL^V achieves 1.2-1.6times higher performance when jointly scaling parallel and sequential test-time compute with a long reasoning R1 model.
EconProver: Towards More Economical Test-Time Scaling for Automated Theorem Proving
Large Language Models (LLMs) have recently advanced the field of Automated Theorem Proving (ATP), attaining substantial performance gains through widely adopted test-time scaling strategies, notably reflective Chain-of-Thought (CoT) reasoning and increased sampling passes. However, they both introduce significant computational overhead for inference. Moreover, existing cost analyses typically regulate only the number of sampling passes, while neglecting the substantial disparities in sampling costs introduced by different scaling strategies. In this paper, we systematically compare the efficiency of different test-time scaling strategies for ATP models and demonstrate the inefficiency of the current state-of-the-art (SOTA) open-source approaches. We then investigate approaches to significantly reduce token usage and sample passes while maintaining the original performance. Specifically, we propose two complementary methods that can be integrated into a unified EconRL pipeline for amplified benefits: (1) a dynamic Chain-of-Thought (CoT) switching mechanism designed to mitigate unnecessary token consumption, and (2) Diverse parallel-scaled reinforcement learning (RL) with trainable prefixes to enhance pass rates under constrained sampling passes. Experiments on miniF2F and ProofNet demonstrate that our EconProver achieves comparable performance to baseline methods with only 12% of the computational cost. This work provides actionable insights for deploying lightweight ATP models without sacrificing performance.
Iterative Deepening Sampling for Large Language Models
The recent release of OpenAI's o1 models and other similar frameworks showcasing test-time scaling laws has demonstrated their exceptional capability to tackle complex reasoning tasks. Inspired by this, subsequent research has revealed that such test-time scaling laws hinge on the model's ability to search both within a single response (intra-response) and across multiple responses (inter-response) during training. Crucially, beyond selecting a single optimal response, the model must also develop robust self-correction capabilities within its own outputs. However, training models to achieve effective self-evaluation and self-correction remains a significant challenge, heavily dependent on the quality of self-reflection data. In this paper, we address this challenge by focusing on enhancing the quality of self-reflection data generation for complex problem-solving, which can subsequently improve the training of next-generation large language models (LLMs). Specifically, we explore how manually triggering a model's self-correction mechanisms can improve performance on challenging reasoning tasks. To this end, we propose a novel iterative deepening sampling algorithm framework designed to enhance self-correction and generate higher-quality samples. Through extensive experiments on Math500 and AIME benchmarks, we demonstrate that our method achieves a higher success rate on difficult tasks and provide detailed ablation studies to analyze its effectiveness across diverse settings.
Atom of Thoughts for Markov LLM Test-Time Scaling
Large Language Models (LLMs) achieve superior performance through training-time scaling, and test-time scaling further enhances their capabilities by conducting effective reasoning during inference. However, as the scale of reasoning increases, existing test-time scaling methods suffer from accumulated historical information, which not only wastes computational resources but also interferes with effective reasoning. To address this issue, we observe that complex reasoning progress is often achieved by solving a sequence of independent subquestions, each being self-contained and verifiable. These subquestions are essentially atomic questions, relying primarily on their current state rather than accumulated history, similar to the memoryless transitions in a Markov process. Based on this observation, we propose Atom of Thoughts (AoT), where each state transition in the reasoning process consists of decomposing the current question into a dependency-based directed acyclic graph and contracting its subquestions, forming a new atomic question state. This iterative decomposition-contraction process continues until reaching directly solvable atomic questions, naturally realizing Markov transitions between question states. Furthermore, these atomic questions can be seamlessly integrated into existing test-time scaling methods, enabling AoT to serve as a plug-in enhancement for improving reasoning capabilities. Experiments across six benchmarks demonstrate the effectiveness of AoT both as a standalone framework and a plug-in enhancement. Notably, on HotpotQA, when applied to gpt-4o-mini, AoT achieves an 80.6% F1 score, surpassing o3-mini by 3.4% and DeepSeek-R1 by 10.6%. The code will be available at https://github.com/qixucen/atom.
Sample, Scrutinize and Scale: Effective Inference-Time Search by Scaling Verification
Sampling-based search, a simple paradigm for utilizing test-time compute, involves generating multiple candidate responses and selecting the best one -- typically by verifying each response for correctness. In this paper, we study the scaling trends governing sampling-based search. Among our findings is that simply scaling up a minimalist implementation that uses only random sampling and direct self-verification results in sustained performance improvements that, for example, elevate the Gemini v1.5 Pro model's reasoning capabilities past that of o1-Preview on popular benchmarks. We partially attribute the scalability of sampling-based search to a phenomenon of implicit scaling, where sampling a larger pool of responses in turn improves verification accuracy. We further identify two useful principles for improving self-verification capabilities with test-time compute: (1) comparing across responses provides helpful signals about the locations of errors and hallucinations, and (2) different model output styles are useful for different contexts -- chains of thought are useful for reasoning but harder to verify. We also find that, though accurate verification can be elicited, frontier models demonstrate remarkably weak out-of-box verification capabilities and introduce a benchmark to measure progress on these deficiencies.
Linguistic Generalizability of Test-Time Scaling in Mathematical Reasoning
Scaling pre-training compute has proven effective for achieving mulitlinguality, but does the same hold for test-time scaling? In this work, we introduce MCLM, a multilingual math benchmark featuring competition-level problems in 55 languages. We test three test-time scaling methods-Outcome Reward Modeling (ORM), Process Reward Modeling (ORM), and Budget Forcing (BF)-on both Qwen2.5-1.5B Math and MR1-1.5B, a multilingual LLM we trained for extended reasoning. Our experiments show that using Qwen2.5-1.5B Math with ORM achieves a score of 35.8 on MCLM, while BF on MR1-1.5B attains 35.2. Although "thinking LLMs" have recently garnered significant attention, we find that their performance is comparable to traditional scaling methods like best-of-N once constrained to similar levels of inference FLOPs. Moreover, while BF yields a 20-point improvement on English AIME, it provides only a 1.94-point average gain across other languages-a pattern consistent across the other test-time scaling methods we studied-higlighting that test-time scaling may not generalize as effectively to multilingual tasks. To foster further research, we release MCLM, MR1-1.5B, and evaluation results.
TestNUC: Enhancing Test-Time Computing Approaches through Neighboring Unlabeled Data Consistency
Test-time computing approaches, which leverage additional computational resources during inference, have been proven effective in enhancing large language model performance. This work introduces a novel, linearly scaling approach, TestNUC, that improves test-time predictions by leveraging the local consistency of neighboring unlabeled data-it classifies an input instance by considering not only the model's prediction on that instance but also on neighboring unlabeled instances. We evaluate TestNUC across eight diverse datasets, spanning intent classification, topic mining, domain discovery, and emotion detection, demonstrating its consistent superiority over baseline methods such as standard prompting and self-consistency. Furthermore, TestNUC can be seamlessly integrated with existing test-time computing approaches, substantially boosting their performance. Our analysis reveals that TestNUC scales effectively with increasing amounts of unlabeled data and performs robustly across different embedding models, making it practical for real-world applications. Our code is available at https://github.com/HenryPengZou/TestNUC.
Skywork-SWE: Unveiling Data Scaling Laws for Software Engineering in LLMs
Software engineering (SWE) has recently emerged as a crucial testbed for next-generation LLM agents, demanding inherent capabilities in two critical dimensions: sustained iterative problem-solving (e.g., >50 interaction rounds) and long-context dependency resolution (e.g., >32k tokens). However, the data curation process in SWE remains notoriously time-consuming, as it heavily relies on manual annotation for code file filtering and the setup of dedicated runtime environments to execute and validate unit tests. Consequently, most existing datasets are limited to only a few thousand GitHub-sourced instances. To this end, we propose an incremental, automated data-curation pipeline that systematically scales both the volume and diversity of SWE datasets. Our dataset comprises 10,169 real-world Python task instances from 2,531 distinct GitHub repositories, each accompanied by a task specified in natural language and a dedicated runtime-environment image for automated unit-test validation. We have carefully curated over 8,000 successfully runtime-validated training trajectories from our proposed SWE dataset. When fine-tuning the Skywork-SWE model on these trajectories, we uncover a striking data scaling phenomenon: the trained model's performance for software engineering capabilities in LLMs continues to improve as the data size increases, showing no signs of saturation. Notably, our Skywork-SWE model achieves 38.0% pass@1 accuracy on the SWE-bench Verified benchmark without using verifiers or multiple rollouts, establishing a new state-of-the-art (SOTA) among the Qwen2.5-Coder-32B-based LLMs built on the OpenHands agent framework. Furthermore, with the incorporation of test-time scaling techniques, the performance further improves to 47.0% accuracy, surpassing the previous SOTA results for sub-32B parameter models. We release the Skywork-SWE-32B model checkpoint to accelerate future research.
Think Twice: Enhancing LLM Reasoning by Scaling Multi-round Test-time Thinking
Recent advances in large language models (LLMs), such as OpenAI-o1 and DeepSeek-R1, have demonstrated the effectiveness of test-time scaling, where extended reasoning processes substantially enhance model performance. Despite this, current models are constrained by limitations in handling long texts and reinforcement learning (RL) training efficiency. To address these issues, we propose a simple yet effective test-time scaling approach Multi-round Thinking. This method iteratively refines model reasoning by leveraging previous answers as prompts for subsequent rounds. Extensive experiments across multiple models, including QwQ-32B and DeepSeek-R1, consistently show performance improvements on various benchmarks such as AIME 2024, MATH-500, GPQA-diamond, and LiveCodeBench. For instance, the accuracy of QwQ-32B improved from 80.3% (Round 1) to 82.1% (Round 2) on the AIME 2024 dataset, while DeepSeek-R1 showed a similar increase from 79.7% to 82.0%. These results confirm that Multi-round Thinking is a broadly applicable, straightforward approach to achieving stable enhancements in model performance, underscoring its potential for future developments in test-time scaling techniques. The key prompt: {Original question prompt} The assistant's previous answer is: <answer> {last round answer} </answer>, and please re-answer.
Parallel Scaling Law for Language Models
It is commonly believed that scaling language models should commit a significant space or time cost, by increasing the parameters (parameter scaling) or output tokens (inference-time scaling). We introduce the third and more inference-efficient scaling paradigm: increasing the model's parallel computation during both training and inference time. We apply P diverse and learnable transformations to the input, execute forward passes of the model in parallel, and dynamically aggregate the P outputs. This method, namely parallel scaling (ParScale), scales parallel computation by reusing existing parameters and can be applied to any model structure, optimization procedure, data, or task. We theoretically propose a new scaling law and validate it through large-scale pre-training, which shows that a model with P parallel streams is similar to scaling the parameters by O(log P) while showing superior inference efficiency. For example, ParScale can use up to 22times less memory increase and 6times less latency increase compared to parameter scaling that achieves the same performance improvement. It can also recycle an off-the-shelf pre-trained model into a parallelly scaled one by post-training on a small amount of tokens, further reducing the training budget. The new scaling law we discovered potentially facilitates the deployment of more powerful models in low-resource scenarios, and provides an alternative perspective for the role of computation in machine learning.
CLOVER: A Test Case Generation Benchmark with Coverage, Long-Context, and Verification
Software testing is a critical aspect of software development, yet generating test cases remains a routine task for engineers. This paper presents a benchmark, CLOVER, to evaluate models' capabilities in generating and completing test cases under specific conditions. Spanning from simple assertion completions to writing test cases that cover specific code blocks across multiple files, these tasks are based on 12 python repositories, analyzing 845 problems with context lengths ranging from 4k to 128k tokens. Utilizing code testing frameworks, we propose a method to construct retrieval contexts using coverage information. While models exhibit comparable performance with short contexts, notable differences emerge with 16k contexts. Notably, models like GPT-4o and Claude 3.5 can effectively leverage relevant snippets; however, all models score below 35\% on the complex Task III, even with the oracle context provided, underscoring the benchmark's significance and the potential for model improvement. The benchmark is containerized for code execution across tasks, and we will release the code, data, and construction methodologies.
Learning to Refine: Self-Refinement of Parallel Reasoning in LLMs
To further enhance the ability of Large Language Models (LLMs) to solve complex, multi-step reasoning problems, test-time scaling (TTS) methods have gained widespread attention. Existing approaches such as Best-of-N and majority voting are limited as their performance depends on the quality of candidate responses, making them unable to produce a correct solution when all candidates are incorrect. Introducing an additional model to select the best response also incurs significant deployment costs. To this end, we introduce Generative Self-Refinement (GSR), a novel parallel test-time scaling framework where a unified model first generates a set of candidate responses in parallel and then performs self-refinement to synthesize a new superior solution based on a prompt consisting of the problem and these candidates. However, LLMs struggle to perform refinement effectively when prompted directly. Therefore, we design a hybrid training pipeline by jointly optimizing for two complementary objectives, solving problems directly and refining candidate responses. Experimental results demonstrate that our method achieves state-of-the-art performance across five mathematical benchmarks. We further show that this learned self-refinement skill is a model-agnostic enhancement, robust across different model scales and generalizing to out-of-distribution reasoning tasks.
Guided by Gut: Efficient Test-Time Scaling with Reinforced Intrinsic Confidence
Test-Time Scaling (TTS) methods for enhancing Large Language Model (LLM) reasoning often incur substantial computational costs, primarily due to extensive reliance on external Process Reward Models (PRMs) or sampling methods like Best-of-N (BoN). This paper introduces Guided by Gut (GG), an efficient self-guided TTS framework that achieves PRM-level performance without costly external verifier models. Our method employs a lightweight tree search guided solely by intrinsic LLM signals, token-level confidence and step novelty. One critical innovation is improving the reliability of internal confidence estimates via a targeted reinforcement learning fine-tuning phase. Empirical evaluations on challenging mathematical reasoning benchmarks demonstrate that GG enables smaller models (e.g., 1.5B parameters) to achieve accuracy matching or surpassing significantly larger models (e.g., 32B-70B parameters), while reducing GPU memory usage by up to 10x. Compared to PRM-based methods, GG achieves comparable accuracy with 8x faster inference speeds and 4-5x lower memory usage. Additionally, GG reduces KV cache memory usage by approximately 50% compared to the BoN strategy, facilitating more efficient and practical deployment of TTS techniques.
Is That Your Final Answer? Test-Time Scaling Improves Selective Question Answering
Scaling the test-time compute of large language models has demonstrated impressive performance on reasoning benchmarks. However, existing evaluations of test-time scaling make the strong assumption that a reasoning system should always give an answer to any question provided. This overlooks concerns about whether a model is confident in its answer, and whether it is appropriate to always provide a response. To address these concerns, we extract confidence scores during reasoning for thresholding model responses. We find that increasing compute budget at inference time not only helps models answer more questions correctly, but also increases confidence in correct responses. We then extend the current paradigm of zero-risk responses during evaluation by considering settings with non-zero levels of response risk, and suggest a recipe for reporting evaluations under these settings.
Revisiting Realistic Test-Time Training: Sequential Inference and Adaptation by Anchored Clustering
Deploying models on target domain data subject to distribution shift requires adaptation. Test-time training (TTT) emerges as a solution to this adaptation under a realistic scenario where access to full source domain data is not available and instant inference on target domain is required. Despite many efforts into TTT, there is a confusion over the experimental settings, thus leading to unfair comparisons. In this work, we first revisit TTT assumptions and categorize TTT protocols by two key factors. Among the multiple protocols, we adopt a realistic sequential test-time training (sTTT) protocol, under which we further develop a test-time anchored clustering (TTAC) approach to enable stronger test-time feature learning. TTAC discovers clusters in both source and target domain and match the target clusters to the source ones to improve generalization. Pseudo label filtering and iterative updating are developed to improve the effectiveness and efficiency of anchored clustering. We demonstrate that under all TTT protocols TTAC consistently outperforms the state-of-the-art methods on six TTT datasets. We hope this work will provide a fair benchmarking of TTT methods and future research should be compared within respective protocols. A demo code is available at https://github.com/Gorilla-Lab-SCUT/TTAC.
DiffTester: Accelerating Unit Test Generation for Diffusion LLMs via Repetitive Pattern
Software development relies heavily on extensive unit testing, which makes the efficiency of automated Unit Test Generation (UTG) particularly important. However, most existing LLMs generate test cases one token at a time in each forward pass, which leads to inefficient UTG. Recently, diffusion LLMs (dLLMs) have emerged, offering promising parallel generation capabilities and showing strong potential for efficient UTG. Despite this advantage, their application to UTG is still constrained by a clear trade-off between efficiency and test quality, since increasing the number of tokens generated in each step often causes a sharp decline in the quality of test cases. To overcome this limitation, we present DiffTester, an acceleration framework specifically tailored for dLLMs in UTG. The key idea of DiffTester is that unit tests targeting the same focal method often share repetitive structural patterns. By dynamically identifying these common patterns through abstract syntax tree analysis during generation, DiffTester adaptively increases the number of tokens produced at each step without compromising the quality of the output. To enable comprehensive evaluation, we extend the original TestEval benchmark, which was limited to Python, by introducing additional programming languages including Java and C++. Extensive experiments on three benchmarks with two representative models show that DiffTester delivers significant acceleration while preserving test coverage. Moreover, DiffTester generalizes well across different dLLMs and programming languages, providing a practical and scalable solution for efficient UTG in software development. Code and data are publicly available at https://github.com/wellbeingyang/DLM4UTG-open .
Windows Agent Arena: Evaluating Multi-Modal OS Agents at Scale
Large language models (LLMs) show remarkable potential to act as computer agents, enhancing human productivity and software accessibility in multi-modal tasks that require planning and reasoning. However, measuring agent performance in realistic environments remains a challenge since: (i) most benchmarks are limited to specific modalities or domains (e.g. text-only, web navigation, Q&A, coding) and (ii) full benchmark evaluations are slow (on order of magnitude of days) given the multi-step sequential nature of tasks. To address these challenges, we introduce the Windows Agent Arena: a reproducible, general environment focusing exclusively on the Windows operating system (OS) where agents can operate freely within a real Windows OS and use the same wide range of applications, tools, and web browsers available to human users when solving tasks. We adapt the OSWorld framework (Xie et al., 2024) to create 150+ diverse Windows tasks across representative domains that require agent abilities in planning, screen understanding, and tool usage. Our benchmark is scalable and can be seamlessly parallelized in Azure for a full benchmark evaluation in as little as 20 minutes. To demonstrate Windows Agent Arena's capabilities, we also introduce a new multi-modal agent, Navi. Our agent achieves a success rate of 19.5% in the Windows domain, compared to 74.5% performance of an unassisted human. Navi also demonstrates strong performance on another popular web-based benchmark, Mind2Web. We offer extensive quantitative and qualitative analysis of Navi's performance, and provide insights into the opportunities for future research in agent development and data generation using Windows Agent Arena. Webpage: https://microsoft.github.io/WindowsAgentArena Code: https://github.com/microsoft/WindowsAgentArena
Scalable Fingerprinting of Large Language Models
Model fingerprinting has emerged as a powerful tool for model owners to identify their shared model given API access. However, to lower false discovery rate, fight fingerprint leakage, and defend against coalitions of model users attempting to bypass detection, we argue that {\em scalability} is critical, i.e., scaling up the number of fingerprints one can embed into a model. Hence, we pose scalability as a crucial requirement for fingerprinting schemes. We experiment with fingerprint design at a scale significantly larger than previously considered, and introduce a new method, dubbed Perinucleus sampling, to generate scalable, persistent, and harmless fingerprints. We demonstrate that this scheme can add 24,576 fingerprints to a Llama-3.1-8B model -- two orders of magnitude more than existing schemes -- without degrading the model's utility. Our inserted fingerprints persist even after supervised fine-tuning on standard post-training data. We further address security risks for fingerprinting, and theoretically and empirically show how a scalable fingerprinting scheme like ours can mitigate these risks.
Not All Bits Are Equal: Scale-Dependent Memory Optimization Strategies for Reasoning Models
While 4-bit quantization has emerged as a memory-optimal choice for non-reasoning models and zero-shot tasks across scales, we show that this universal prescription fails for reasoning models, where the KV cache rather than model size can dominate memory. Through systematic experiments across 1,700 inference scenarios on AIME25 and GPQA-Diamond, we find a scale-dependent trade-off: models with an effective size below 8-bit 4B parameters achieve better accuracy by allocating memory to more weights rather than longer generation, while larger models achieve better accuracy by allocating memory to longer generations. This scale threshold also determines when parallel scaling becomes memory-efficient and whether KV cache eviction outperforms KV quantization. Our findings show that memory optimization for LLMs cannot be scale-agnostic, while providing principled guidelines: for small reasoning models, prioritize model capacity over test-time compute, while for larger ones, maximize test-time compute. Our results suggest that optimizing reasoning models for deployment requires fundamentally different strategies from those established for non-reasoning models.
TestForge: Feedback-Driven, Agentic Test Suite Generation
Automated test generation holds great promise for alleviating the burdens of manual test creation. However, existing search-based techniques compromise on test readability, while LLM-based approaches are prohibitively expensive in practice. We present TestForge, an agentic unit testing framework designed to cost-effectively generate high-quality test suites for real-world code. Our key insight is to reframe LLM-based test generation as an iterative process. TestForge thus begins with tests generated via zero-shot prompting, and then continuously refines those tests based on feedback from test executions and coverage reports. We evaluate TestForge on TestGenEval, a real world unit test generation benchmark sourced from 11 large scale open source repositories; we show that TestForge achieves a pass@1 rate of 84.3%, 44.4% line coverage and 33.8% mutation score on average, outperforming prior classical approaches and a one-iteration LLM-based baseline. TestForge produces more natural and understandable tests compared to state-of-the-art search-based techniques, and offers substantial cost savings over LLM-based techniques (at $0.63 per file). Finally, we release a version of TestGenEval integrated with the OpenHands platform, a popular open-source framework featuring a diverse set of software engineering agents and agentic benchmarks, for future extension and development.
A Survey on LLM Test-Time Compute via Search: Tasks, LLM Profiling, Search Algorithms, and Relevant Frameworks
LLM test-time compute (or LLM inference) via search has emerged as a promising research area with rapid developments. However, current frameworks often adopt distinct perspectives on three key aspects (task definition, LLM profiling, and search procedures), making direct comparisons challenging. Moreover, the search algorithms employed often diverge from standard implementations, and their specific characteristics are not thoroughly specified. In this survey, we provide a comprehensive technical review that unifies task definitions and provides modular definitions of LLM profiling and search procedures. The definitions enable precise comparisons of various LLM inference frameworks while highlighting their departures from conventional search algorithms. We also discuss the applicability, performance, and efficiency of these methods. For further details and ongoing updates, please refer to our GitHub repository: https://github.com/xinzhel/LLM-Agent-Survey/blob/main/search.md
Robust Test-Time Adaptation in Dynamic Scenarios
Test-time adaptation (TTA) intends to adapt the pretrained model to test distributions with only unlabeled test data streams. Most of the previous TTA methods have achieved great success on simple test data streams such as independently sampled data from single or multiple distributions. However, these attempts may fail in dynamic scenarios of real-world applications like autonomous driving, where the environments gradually change and the test data is sampled correlatively over time. In this work, we explore such practical test data streams to deploy the model on the fly, namely practical test-time adaptation (PTTA). To do so, we elaborate a Robust Test-Time Adaptation (RoTTA) method against the complex data stream in PTTA. More specifically, we present a robust batch normalization scheme to estimate the normalization statistics. Meanwhile, a memory bank is utilized to sample category-balanced data with consideration of timeliness and uncertainty. Further, to stabilize the training procedure, we develop a time-aware reweighting strategy with a teacher-student model. Extensive experiments prove that RoTTA enables continual testtime adaptation on the correlatively sampled data streams. Our method is easy to implement, making it a good choice for rapid deployment. The code is publicly available at https://github.com/BIT-DA/RoTTA
GraphFM: A Comprehensive Benchmark for Graph Foundation Model
Foundation Models (FMs) serve as a general class for the development of artificial intelligence systems, offering broad potential for generalization across a spectrum of downstream tasks. Despite extensive research into self-supervised learning as the cornerstone of FMs, several outstanding issues persist in Graph Foundation Models that rely on graph self-supervised learning, namely: 1) Homogenization. The extent of generalization capability on downstream tasks remains unclear. 2) Scalability. It is unknown how effectively these models can scale to large datasets. 3) Efficiency. The training time and memory usage of these models require evaluation. 4) Training Stop Criteria. Determining the optimal stopping strategy for pre-training across multiple tasks to maximize performance on downstream tasks. To address these questions, we have constructed a rigorous benchmark that thoroughly analyzes and studies the generalization and scalability of self-supervised Graph Neural Network (GNN) models. Regarding generalization, we have implemented and compared the performance of various self-supervised GNN models, trained to generate node representations, across tasks such as node classification, link prediction, and node clustering. For scalability, we have compared the performance of various models after training using full-batch and mini-batch strategies. Additionally, we have assessed the training efficiency of these models by conducting experiments to test their GPU memory usage and throughput. Through these experiments, we aim to provide insights to motivate future research. The code for this benchmark is publicly available at https://github.com/NYUSHCS/GraphFM.
Dynamic Scaling of Unit Tests for Code Reward Modeling
Current large language models (LLMs) often struggle to produce accurate responses on the first attempt for complex reasoning tasks like code generation. Prior research tackles this challenge by generating multiple candidate solutions and validating them with LLM-generated unit tests. The execution results of unit tests serve as reward signals to identify correct solutions. As LLMs always confidently make mistakes, these unit tests are not reliable, thereby diminishing the quality of reward signals. Motivated by the observation that scaling the number of solutions improves LLM performance, we explore the impact of scaling unit tests to enhance reward signal quality. Our pioneer experiment reveals a positive correlation between the number of unit tests and reward signal quality, with greater benefits observed in more challenging problems. Based on these insights, we propose CodeRM-8B, a lightweight yet effective unit test generator that enables efficient and high-quality unit test scaling. Additionally, we implement a dynamic scaling mechanism that adapts the number of unit tests based on problem difficulty, further improving efficiency. Experimental results show that our approach significantly improves performance across various models on three benchmarks (e.g., with gains of 18.43% for Llama3-8B and 3.42% for GPT-4o-mini on HumanEval Plus).
TestGenEval: A Real World Unit Test Generation and Test Completion Benchmark
Code generation models can help improve many common software tasks ranging from code completion to defect prediction. Most of the existing benchmarks for code generation LLMs focus on code authoring or code completion. Surprisingly, there has been far less effort dedicated to benchmarking software testing, despite the strong correlation between well-tested software and effective bug detection. To address this gap, we create and release TestGenEval, a large-scale benchmark to measure test generation performance. Based on SWEBench, TestGenEval comprises 68,647 tests from 1,210 code and test file pairs across 11 well-maintained Python repositories. It covers initial tests authoring, test suite completion, and code coverage improvements. Test authoring simulates the process of a developer writing a test suite from scratch, while test completion mimics the scenario where a developer aims to improve the coverage of an existing test suite. We evaluate several popular models, with sizes ranging from 7B to 405B parameters. Our detailed analysis highlights TestGenEval's contribution to a comprehensive evaluation of test generation performance. In particular, models struggle to generate high-coverage test suites, with the best model, GPT-4o, achieving an average coverage of only 35.2%. This is primarily due to models struggling to reason about execution, and their frequent assertion errors when addressing complex code paths.
Variation in Verification: Understanding Verification Dynamics in Large Language Models
Recent advances have shown that scaling test-time computation enables large language models (LLMs) to solve increasingly complex problems across diverse domains. One effective paradigm for test-time scaling (TTS) involves LLM generators producing multiple solution candidates, with LLM verifiers assessing the correctness of these candidates without reference answers. In this paper, we study generative verifiers, which perform verification by generating chain-of-thought (CoT) reasoning followed by a binary verdict. We systematically analyze verification dynamics across three dimensions - problem difficulty, generator capability, and verifier generation capability - with empirical studies on 12 benchmarks across mathematical reasoning, knowledge, and natural language reasoning tasks using 14 open-source models (2B to 72B parameter range) and GPT-4o. Our experiments reveal three key findings about verification effectiveness: (1) Easy problems allow verifiers to more reliably certify correct responses; (2) Weak generators produce errors that are easier to detect than strong generators; (3) Verification ability is generally correlated with the verifier's own problem-solving capability, but this relationship varies with problem difficulty. These findings reveal opportunities to optimize basic verification strategies in TTS applications. First, given the same verifier, some weak generators can nearly match stronger ones in post-verification TTS performance (e.g., the Gemma2-9B to Gemma2-27B performance gap shrinks by 75.5%). Second, we identify cases where strong verifiers offer limited advantage over weak ones, as both fail to provide meaningful verification gains, suggesting that verifier scaling alone cannot overcome fundamental verification challenges.
ArcMemo: Abstract Reasoning Composition with Lifelong LLM Memory
While inference-time scaling enables LLMs to carry out increasingly long and capable reasoning traces, the patterns and insights uncovered during these traces are immediately discarded once the context window is reset for a new query. External memory is a natural way to persist these discoveries, and recent work has shown clear benefits for reasoning-intensive tasks. We see an opportunity to make such memories more broadly reusable and scalable by moving beyond instance-based memory entries (e.g. exact query/response pairs, or summaries tightly coupled with the original problem context) toward concept-level memory: reusable, modular abstractions distilled from solution traces and stored in natural language. For future queries, relevant concepts are selectively retrieved and integrated into the prompt, enabling test-time continual learning without weight updates. Our design introduces new strategies for abstracting takeaways from rollouts and retrieving entries for new queries, promoting reuse and allowing memory to expand with additional experiences. We evaluate on ARC-AGI, a benchmark that stresses compositional generalization and abstract reasoning, making it a natural fit for concept memory. Our method yields a 7.5% relative gain over a strong no-memory baseline with performance continuing to scale with inference compute. We find abstract concepts to be the most consistent memory design, outscoring the baseline at all tested inference compute scales. Moreover, dynamically updating memory during test-time outperforms fixed settings, supporting the hypothesis that accumulating and abstracting patterns enables further solutions in a form of self-improvement. Code is available at https://github.com/matt-seb-ho/arc_memo.
RoboChallenge: Large-scale Real-robot Evaluation of Embodied Policies
Testing on real machines is indispensable for robotic control algorithms. In the context of learning-based algorithms, especially VLA models, demand for large-scale evaluation, i.e. testing a large number of models on a large number of tasks, is becoming increasingly urgent. However, doing this right is highly non-trivial, especially when scalability and reproducibility is taken into account. In this report, we describe our methodology for constructing RoboChallenge, an online evaluation system to test robotic control algorithms, and our survey of recent state-of-the-art VLA models using our initial benchmark Table30.
A Simple and Provable Scaling Law for the Test-Time Compute of Large Language Models
We propose a general two-stage algorithm that enjoys a provable scaling law for the test-time compute of large language models (LLMs). Given an input problem, the proposed algorithm first generates N candidate solutions, and then chooses the best one via a multiple-round knockout tournament where each pair of candidates are compared for K times and only the winners move on to the next round. In a minimalistic implementation, both stages can be executed with a black-box LLM alone and nothing else (e.g., no external verifier or reward model), and a total of N times (K + 1) highly parallelizable LLM calls are needed for solving an input problem. Assuming that a generated candidate solution is correct with probability p_{gen} > 0 and a comparison between a pair of correct and incorrect solutions identifies the right winner with probability p_{comp} > 0.5 (i.e., better than a random guess), we prove theoretically that the failure probability of the proposed algorithm decays to zero exponentially with respect to N and K: $P(final output is incorrect) le (1 - p_{gen})^N + lceil log_2 N rceil e^{-2 K (p_{comp} - 0.5)^2}.$ Our empirical results with the challenging MMLU-Pro benchmark validate the technical assumptions, as well as the efficacy of the proposed algorithm and the gains from scaling up its test-time compute.
MCTS-Judge: Test-Time Scaling in LLM-as-a-Judge for Code Correctness Evaluation
The LLM-as-a-Judge paradigm shows promise for evaluating generative content but lacks reliability in reasoning-intensive scenarios, such as programming. Inspired by recent advances in reasoning models and shifts in scaling laws, we pioneer bringing test-time computation into LLM-as-a-Judge, proposing MCTS-Judge, a resource-efficient, System-2 thinking framework for code correctness evaluation. MCTS-Judge leverages Monte Carlo Tree Search (MCTS) to decompose problems into simpler, multi-perspective evaluations. Through a node-selection strategy that combines self-assessment based on historical actions in the current trajectory and the Upper Confidence Bound for Trees based on prior rollouts, MCTS-Judge balances global optimization and refinement of the current trajectory. We further designed a high-precision, unit-test-level reward mechanism to encourage the Large Language Model (LLM) to perform line-by-line analysis. Extensive experiments on three benchmarks and five LLMs demonstrate the effectiveness of MCTS-Judge, which improves the base model's accuracy from 41% to 80%, surpassing the o1-series models with 3x fewer tokens. Further evaluations validate the superiority of its reasoning trajectory in logic, analytics, thoroughness, and overall quality, while revealing the test-time scaling law of the LLM-as-a-Judge paradigm.
ONEBench to Test Them All: Sample-Level Benchmarking Over Open-Ended Capabilities
Traditional fixed test sets fall short in evaluating open-ended capabilities of foundation models. To address this, we propose ONEBench(OpeN-Ended Benchmarking), a new testing paradigm that consolidates individual evaluation datasets into a unified, ever-expanding sample pool. ONEBench allows users to generate custom, open-ended evaluation benchmarks from this pool, corresponding to specific capabilities of interest. By aggregating samples across test sets, ONEBench enables the assessment of diverse capabilities beyond those covered by the original test sets, while mitigating overfitting and dataset bias. Most importantly, it frames model evaluation as a collective process of selecting and aggregating sample-level tests. The shift from task-specific benchmarks to ONEBench introduces two challenges: (1)heterogeneity and (2)incompleteness. Heterogeneity refers to the aggregation over diverse metrics, while incompleteness describes comparing models evaluated on different data subsets. To address these challenges, we explore algorithms to aggregate sparse measurements into reliable model scores. Our aggregation algorithm ensures identifiability(asymptotically recovering ground-truth scores) and rapid convergence, enabling accurate model ranking with less data. On homogenous datasets, we show our aggregation algorithm provides rankings that highly correlate with those produced by average scores. We also demonstrate robustness to ~95% of measurements missing, reducing evaluation cost by up to 20x with little-to-no change in model rankings. We introduce ONEBench-LLM for language models and ONEBench-LMM for vision-language models, unifying evaluations across these domains. Overall, we present a technique for open-ended evaluation, which can aggregate over incomplete, heterogeneous sample-level measurements to continually grow a benchmark alongside the rapidly developing foundation models.
From Long to Short: LLMs Excel at Trimming Own Reasoning Chains
O1/R1 style large reasoning models (LRMs) signal a substantial leap forward over conventional instruction-following LLMs. By applying test-time scaling to generate extended reasoning paths, they establish many SOTAs across a wide range of complex reasoning tasks. However, recent studies show that LRMs are prone to suffer from overthinking -- the tendency to overcomplicate simple problems, leading to excessive strategy switching and long, convoluted reasoning traces that hinder their interpretability. To mitigate this issue, we conduct a systematic investigation into the reasoning efficiency of a broad set of LRMs and uncover a common dilemma: the difficulty in balancing multiple generation objectives such as correctness and brevity. Based on this discovery, we propose a test-time scaling method, EDIT (Efficient Dynamic Inference Trimming), which efficiently guides LRMs to identify the shortest correct reasoning paths at test time. EDIT employs constraint-guided generation while jointly tracking length and answer distributions under varying constraints, allowing it to select responses that strike an optimal balance between conciseness and correctness. Extensive experiments across diverse models and datasets show that EDIT substantially enhance the reasoning efficiency, producing compact yet informative outputs that improve readability and user experience.
Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs
The remarkable performance of models like the OpenAI o1 can be attributed to their ability to emulate human-like long-time thinking during inference. These models employ extended chain-of-thought (CoT) processes, exploring multiple strategies to enhance problem-solving capabilities. However, a critical question remains: How to intelligently and efficiently scale computational resources during testing. This paper presents the first comprehensive study on the prevalent issue of overthinking in these models, where excessive computational resources are allocated for simple problems with minimal benefit. We introduce novel efficiency metrics from both outcome and process perspectives to evaluate the rational use of computational resources by o1-like models. Using a self-training paradigm, we propose strategies to mitigate overthinking, streamlining reasoning processes without compromising accuracy. Experimental results show that our approach successfully reduces computational overhead while preserving model performance across a range of testsets with varying difficulty levels, such as GSM8K, MATH500, GPQA, and AIME.
Using Sequential Runtime Distributions for the Parallel Speedup Prediction of SAT Local Search
This paper presents a detailed analysis of the scalability and parallelization of local search algorithms for the Satisfiability problem. We propose a framework to estimate the parallel performance of a given algorithm by analyzing the runtime behavior of its sequential version. Indeed, by approximating the runtime distribution of the sequential process with statistical methods, the runtime behavior of the parallel process can be predicted by a model based on order statistics. We apply this approach to study the parallel performance of two SAT local search solvers, namely Sparrow and CCASAT, and compare the predicted performances to the results of an actual experimentation on parallel hardware up to 384 cores. We show that the model is accurate and predicts performance close to the empirical data. Moreover, as we study different types of instances (random and crafted), we observe that the local search solvers exhibit different behaviors and that their runtime distributions can be approximated by two types of distributions: exponential (shifted and non-shifted) and lognormal.
TrimR: Verifier-based Training-Free Thinking Compression for Efficient Test-Time Scaling
Large Reasoning Models (LRMs) demonstrate exceptional capability in tackling complex mathematical, logical, and coding tasks by leveraging extended Chain-of-Thought (CoT) reasoning. Test-time scaling methods, such as prolonging CoT with explicit token-level exploration, can push LRMs' accuracy boundaries, but they incur significant decoding overhead. A key inefficiency source is LRMs often generate redundant thinking CoTs, which demonstrate clear structured overthinking and underthinking patterns. Inspired by human cognitive reasoning processes and numerical optimization theories, we propose TrimR, a verifier-based, training-free, efficient framework for dynamic CoT compression to trim reasoning and enhance test-time scaling, explicitly tailored for production-level deployment. Our method employs a lightweight, pretrained, instruction-tuned verifier to detect and truncate redundant intermediate thoughts of LRMs without any LRM or verifier fine-tuning. We present both the core algorithm and asynchronous online system engineered for high-throughput industrial applications. Empirical evaluations on Ascend NPUs and vLLM show that our framework delivers substantial gains in inference efficiency under large-batch workloads. In particular, on the four MATH500, AIME24, AIME25, and GPQA benchmarks, the reasoning runtime of Pangu Pro MoE, Pangu-R-38B, QwQ-32B, and DeepSeek-R1-Distill-Qwen-32B is improved by up to 70% with negligible impact on accuracy.
NLP-based Cross-Layer 5G Vulnerabilities Detection via Fuzzing Generated Run-Time Profiling
The effectiveness and efficiency of 5G software stack vulnerability and unintended behavior detection are essential for 5G assurance, especially for its applications in critical infrastructures. Scalability and automation are the main challenges in testing approaches and cybersecurity research. In this paper, we propose an innovative approach for automatically detecting vulnerabilities, unintended emergent behaviors, and performance degradation in 5G stacks via run-time profiling documents corresponding to fuzz testing in code repositories. Piloting on srsRAN, we map the run-time profiling via Logging Information (LogInfo) generated by fuzzing test to a high dimensional metric space first and then construct feature spaces based on their timestamp information. Lastly, we further leverage machine learning-based classification algorithms, including Logistic Regression, K-Nearest Neighbors, and Random Forest to categorize the impacts on performance and security attributes. The performance of the proposed approach has high accuracy, ranging from 93.4 % to 95.9 % , in detecting the fuzzing impacts. In addition, the proof of concept could identify and prioritize real-time vulnerabilities on 5G infrastructures and critical applications in various verticals.
Solving Inequality Proofs with Large Language Models
Inequality proving, crucial across diverse scientific and mathematical fields, tests advanced reasoning skills such as discovering tight bounds and strategic theorem application. This makes it a distinct, demanding frontier for large language models (LLMs), offering insights beyond general mathematical problem-solving. Progress in this area is hampered by existing datasets that are often scarce, synthetic, or rigidly formal. We address this by proposing an informal yet verifiable task formulation, recasting inequality proving into two automatically checkable subtasks: bound estimation and relation prediction. Building on this, we release IneqMath, an expert-curated dataset of Olympiad-level inequalities, including a test set and training corpus enriched with step-wise solutions and theorem annotations. We also develop a novel LLM-as-judge evaluation framework, combining a final-answer judge with four step-wise judges designed to detect common reasoning flaws. A systematic evaluation of 29 leading LLMs on IneqMath reveals a surprising reality: even top models like o1 achieve less than 10% overall accuracy under step-wise scrutiny; this is a drop of up to 65.5% from their accuracy considering only final answer equivalence. This discrepancy exposes fragile deductive chains and a critical gap for current LLMs between merely finding an answer and constructing a rigorous proof. Scaling model size and increasing test-time computation yield limited gains in overall proof correctness. Instead, our findings highlight promising research directions such as theorem-guided reasoning and self-refinement. Code and data are available at https://ineqmath.github.io/.
ProjectTest: A Project-level LLM Unit Test Generation Benchmark and Impact of Error Fixing Mechanisms
Unit test generation has become a promising and important use case of LLMs. However, existing evaluation benchmarks for assessing LLM unit test generation capabilities focus on function- or class-level code rather than more practical and challenging project-level codebases. To address such limitation, we propose ProjectTest, a project-level benchmark for unit test generation covering Python, Java, and JavaScript. ProjectTest features 20 moderate-sized and high-quality projects per language. We evaluate nine frontier LLMs on ProjectTest and the results show that all frontier LLMs tested exhibit moderate performance on ProjectTest on Python and Java, highlighting the difficulty of ProjectTest. We also conduct a thorough error analysis, which shows that even frontier LLMs, such as Claude-3.5-Sonnet, have significant basic yet critical errors, including compilation and cascade errors. Motivated by this observation, we further evaluate all frontier LLMs under manual error-fixing and self-error-fixing scenarios to assess their potential when equipped with error-fixing mechanisms. Our code and dataset is available at https://github.com/YiboWANG214/ProjectTest{ProjectTest}.
Inference Scaling for Long-Context Retrieval Augmented Generation
The scaling of inference computation has unlocked the potential of long-context large language models (LLMs) across diverse settings. For knowledge-intensive tasks, the increased compute is often allocated to incorporate more external knowledge. However, without effectively utilizing such knowledge, solely expanding context does not always enhance performance. In this work, we investigate inference scaling for retrieval augmented generation (RAG), exploring strategies beyond simply increasing the quantity of knowledge. We focus on two inference scaling strategies: in-context learning and iterative prompting. These strategies provide additional flexibility to scale test-time computation (e.g., by increasing retrieved documents or generation steps), thereby enhancing LLMs' ability to effectively acquire and utilize contextual information. We address two key questions: (1) How does RAG performance benefit from the scaling of inference computation when optimally configured? (2) Can we predict the optimal test-time compute allocation for a given budget by modeling the relationship between RAG performance and inference parameters? Our observations reveal that increasing inference computation leads to nearly linear gains in RAG performance when optimally allocated, a relationship we describe as the inference scaling laws for RAG. Building on this, we further develop the computation allocation model to estimate RAG performance across different inference configurations. The model predicts optimal inference parameters under various computation constraints, which align closely with the experimental results. By applying these optimal configurations, we demonstrate that scaling inference compute on long-context LLMs achieves up to 58.9% gains on benchmark datasets compared to standard RAG.
Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach
We study a novel language model architecture that is capable of scaling test-time computation by implicitly reasoning in latent space. Our model works by iterating a recurrent block, thereby unrolling to arbitrary depth at test-time. This stands in contrast to mainstream reasoning models that scale up compute by producing more tokens. Unlike approaches based on chain-of-thought, our approach does not require any specialized training data, can work with small context windows, and can capture types of reasoning that are not easily represented in words. We scale a proof-of-concept model to 3.5 billion parameters and 800 billion tokens. We show that the resulting model can improve its performance on reasoning benchmarks, sometimes dramatically, up to a computation load equivalent to 50 billion parameters.
Inference-Time Scaling for Complex Tasks: Where We Stand and What Lies Ahead
Inference-time scaling can enhance the reasoning capabilities of large language models (LLMs) on complex problems that benefit from step-by-step problem solving. Although lengthening generated scratchpads has proven effective for mathematical tasks, the broader impact of this approach on other tasks remains less clear. In this work, we investigate the benefits and limitations of scaling methods across nine state-of-the-art models and eight challenging tasks, including math and STEM reasoning, calendar planning, NP-hard problems, navigation, and spatial reasoning. We compare conventional models (e.g., GPT-4o) with models fine-tuned for inference-time scaling (e.g., o1) through evaluation protocols that involve repeated model calls, either independently or sequentially with feedback. These evaluations approximate lower and upper performance bounds and potential for future performance improvements for each model, whether through enhanced training or multi-model inference systems. Our extensive empirical analysis reveals that the advantages of inference-time scaling vary across tasks and diminish as problem complexity increases. In addition, simply using more tokens does not necessarily translate to higher accuracy in these challenging regimes. Results from multiple independent runs with conventional models using perfect verifiers show that, for some tasks, these models can achieve performance close to the average performance of today's most advanced reasoning models. However, for other tasks, a significant performance gap remains, even in very high scaling regimes. Encouragingly, all models demonstrate significant gains when inference is further scaled with perfect verifiers or strong feedback, suggesting ample potential for future improvements.
Adaptive Termination for Multi-round Parallel Reasoning: An Universal Semantic Entropy-Guided Framework
Recent advances in large language models (LLMs) have accelerated progress toward artificial general intelligence, with inference-time scaling emerging as a key technique. Contemporary approaches leverage either sequential reasoning (iteratively extending chains of thought) or parallel reasoning (generating multiple solutions simultaneously) to scale inference. However, both paradigms face fundamental limitations: sequential scaling typically relies on arbitrary token budgets for termination, leading to inefficiency or premature cutoff; while parallel scaling often lacks coordination among parallel branches and requires intrusive fine-tuning to perform effectively. In light of these challenges, we aim to design a flexible test-time collaborative inference framework that exploits the complementary strengths of both sequential and parallel reasoning paradigms. Towards this goal, the core challenge lies in developing an efficient and accurate intrinsic quality metric to assess model responses during collaborative inference, enabling dynamic control and early termination of the reasoning trace. To address this challenge, we introduce semantic entropy (SE), which quantifies the semantic diversity of parallel model responses and serves as a robust indicator of reasoning quality due to its strong negative correlation with accuracy...
Z1: Efficient Test-time Scaling with Code
Large Language Models (LLMs) can achieve enhanced complex problem-solving through test-time computing scaling, yet this often entails longer contexts and numerous reasoning token costs. In this paper, we propose an efficient test-time scaling method that trains LLMs on code-related reasoning trajectories, facilitating their reduction of excess thinking tokens while maintaining performance. First, we create Z1-Code-Reasoning-107K, a curated dataset of simple and complex coding problems paired with their short and long solution trajectories. Second, we present a novel Shifted Thinking Window to mitigate overthinking overhead by removing context-delimiting tags (e.g., <think>. . . </think>) and capping reasoning tokens. Trained with long and short trajectory data and equipped with Shifted Thinking Window, our model, Z1-7B, demonstrates the ability to adjust its reasoning level as the complexity of problems and exhibits efficient test-time scaling across different reasoning tasks that matches R1-Distill-Qwen-7B performance with about 30% of its average thinking tokens. Notably, fine-tuned with only code trajectories, Z1-7B demonstrates generalization to broader reasoning tasks (47.5% on GPQA Diamond). Our analysis of efficient reasoning elicitation also provides valuable insights for future research.
Optimizing Anytime Reasoning via Budget Relative Policy Optimization
Scaling test-time compute is crucial for enhancing the reasoning capabilities of large language models (LLMs). Existing approaches typically employ reinforcement learning (RL) to maximize a verifiable reward obtained at the end of reasoning traces. However, such methods optimize only the final performance under a large and fixed token budget, which hinders efficiency in both training and deployment. In this work, we present a novel framework, AnytimeReasoner, to optimize anytime reasoning performance, which aims to improve token efficiency and the flexibility of reasoning under varying token budget constraints. To achieve this, we truncate the complete thinking process to fit within sampled token budgets from a prior distribution, compelling the model to summarize the optimal answer for each truncated thinking for verification. This introduces verifiable dense rewards into the reasoning process, facilitating more effective credit assignment in RL optimization. We then optimize the thinking and summary policies in a decoupled manner to maximize the cumulative reward. Additionally, we introduce a novel variance reduction technique, Budget Relative Policy Optimization (BRPO), to enhance the robustness and efficiency of the learning process when reinforcing the thinking policy. Empirical results in mathematical reasoning tasks demonstrate that our method consistently outperforms GRPO across all thinking budgets under various prior distributions, enhancing both training and token efficiency.
DeepSpeed-FastGen: High-throughput Text Generation for LLMs via MII and DeepSpeed-Inference
The deployment and scaling of large language models (LLMs) have become critical as they permeate various applications, demanding high-throughput and low-latency serving systems. Existing frameworks struggle to balance these requirements, especially for workloads with long prompts. This paper introduces DeepSpeed-FastGen, a system that employs Dynamic SplitFuse, a novel prompt and generation composition strategy, to deliver up to 2.3x higher effective throughput, 2x lower latency on average, and up to 3.7x lower (token-level) tail latency, compared to state-of-the-art systems like vLLM. We leverage a synergistic combination of DeepSpeed-MII and DeepSpeed-Inference to provide an efficient and easy-to-use serving system for LLMs. DeepSpeed-FastGen's advanced implementation supports a range of models and offers both non-persistent and persistent deployment options, catering to diverse user scenarios from interactive sessions to long-running applications. We present a detailed benchmarking methodology, analyze the performance through latency-throughput curves, and investigate scalability via load balancing. Our evaluations demonstrate substantial improvements in throughput and latency across various models and hardware configurations. We discuss our roadmap for future enhancements, including broader model support and new hardware backends. The DeepSpeed-FastGen code is readily available for community engagement and contribution.
SWE-bench Goes Live!
The issue-resolving task, where a model generates patches to fix real-world bugs, has emerged as a critical benchmark for evaluating the capabilities of large language models (LLMs). While SWE-bench and its variants have become standard in this domain, they suffer from key limitations: they have not been updated since their initial releases, cover a narrow set of repositories, and depend heavily on manual effort for instance construction and environment setup. These factors hinder scalability and introduce risks of overfitting and data contamination. In this work, we present SWE-bench-Live, a live-updatable benchmark designed to overcome these challenges. Our initial release consists of 1,319 tasks derived from real GitHub issues created since 2024, spanning 93 repositories. Each task is accompanied by a dedicated Docker image to ensure reproducible execution. Central to our benchmark is \method, an automated curation pipeline that streamlines the entire process from instance creation to environment setup, removing manual bottlenecks and enabling scalability and continuous updates. We evaluate a range of state-of-the-art agent frameworks and LLMs on SWE-bench-Live, revealing a substantial performance gap compared to static benchmarks like SWE-bench, even under controlled evaluation conditions. To better understand this discrepancy, we perform detailed analyses across repository origin, issue recency, and task difficulty. By providing a fresh, diverse, and executable benchmark grounded in live repository activity, SWE-bench-Live facilitates rigorous, contamination-resistant evaluation of LLMs and agents in dynamic, real-world software development settings.
LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content
The large-scale training of multi-modal models on data scraped from the web has shown outstanding utility in infusing these models with the required world knowledge to perform effectively on multiple downstream tasks. However, one downside of scraping data from the web can be the potential sacrifice of the benchmarks on which the abilities of these models are often evaluated. To safeguard against test data contamination and to truly test the abilities of these foundation models we propose LiveXiv: A scalable evolving live benchmark based on scientific ArXiv papers. LiveXiv accesses domain-specific manuscripts at any given timestamp and proposes to automatically generate visual question-answer pairs (VQA). This is done without any human-in-the-loop, using the multi-modal content in the manuscripts, like graphs, charts, and tables. Moreover, we introduce an efficient evaluation approach that estimates the performance of all models on the evolving benchmark using evaluations of only a subset of models. This significantly reduces the overall evaluation cost. We benchmark multiple open and proprietary Large Multi-modal Models (LMMs) on the first version of our benchmark, showing its challenging nature and exposing the models true abilities, avoiding contamination. Lastly, in our commitment to high quality, we have collected and evaluated a manually verified subset. By comparing its overall results to our automatic annotations, we have found that the performance variance is indeed minimal (<2.5%). Our dataset is available online on HuggingFace, and our code will be available here.
GSO: Challenging Software Optimization Tasks for Evaluating SWE-Agents
Developing high-performance software is a complex task that requires specialized expertise. We introduce GSO, a benchmark for evaluating language models' capabilities in developing high-performance software. We develop an automated pipeline that generates and executes performance tests to analyze repository commit histories to identify 102 challenging optimization tasks across 10 codebases, spanning diverse domains and programming languages. An agent is provided with a codebase and performance test as a precise specification, and tasked to improve the runtime efficiency, which is measured against the expert developer optimization. Our quantitative evaluation reveals that leading SWE-Agents struggle significantly, achieving less than 5% success rate, with limited improvements even with inference-time scaling. Our qualitative analysis identifies key failure modes, including difficulties with low-level languages, practicing lazy optimization strategies, and challenges in accurately localizing bottlenecks. We release the code and artifacts of our benchmark along with agent trajectories to enable future research.
Tests as Prompt: A Test-Driven-Development Benchmark for LLM Code Generation
We introduce WebApp1K, a novel benchmark for evaluating large language models (LLMs) in test-driven development (TDD) tasks, where test cases serve as both prompt and verification for code generation. Unlike traditional approaches relying on natural language prompts, our benchmark emphasizes the ability of LLMs to interpret and implement functionality directly from test cases, reflecting real-world software development practices. Comprising 1000 diverse challenges across 20 application domains, the benchmark evaluates LLMs on their ability to generate compact, functional code under the constraints of context length and multi-feature complexity. Our findings highlight instruction following and in-context learning as critical capabilities for TDD success, surpassing the importance of general coding proficiency or pretraining knowledge. Through comprehensive evaluation of 19 frontier models, we reveal performance bottlenecks, such as instruction loss in long prompts, and provide a detailed error analysis spanning multiple root causes. This work underscores the practical value of TDD-specific benchmarks and lays the foundation for advancing LLM capabilities in rigorous, application-driven coding scenarios.
TESTEVAL: Benchmarking Large Language Models for Test Case Generation
Testing plays a crucial role in the software development cycle, enabling the detection of bugs, vulnerabilities, and other undesirable behaviors. To perform software testing, testers need to write code snippets that execute the program under test. Recently, researchers have recognized the potential of large language models (LLMs) in software testing. However, there remains a lack of fair comparisons between different LLMs in terms of test case generation capabilities. In this paper, we propose TESTEVAL, a novel benchmark for test case generation with LLMs. We collect 210 Python programs from an online programming platform, LeetCode, and design three different tasks: overall coverage, targeted line/branch coverage, and targeted path coverage. We further evaluate sixteen popular LLMs, including both commercial and open-source ones, on TESTEVAL. We find that generating test cases to cover specific program lines/branches/paths is still challenging for current LLMs, indicating a lack of ability to comprehend program logic and execution paths. We have open-sourced our dataset and benchmark pipelines at https://llm4softwaretesting.github.io to contribute and accelerate future research on LLMs for software testing.
Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training
The success of Transformer models has pushed the deep learning model scale to billions of parameters. Due to the limited memory resource of a single GPU, However, the best practice for choosing the optimal parallel strategy is still lacking, since it requires domain expertise in both deep learning and parallel computing. The Colossal-AI system addressed the above challenge by introducing a unified interface to scale your sequential code of model training to distributed environments. It supports parallel training methods such as data, pipeline, tensor, and sequence parallelism, as well as heterogeneous training methods integrated with zero redundancy optimizer. Compared to the baseline system, Colossal-AI can achieve up to 2.76 times training speedup on large-scale models.
Dedicated Feedback and Edit Models Empower Inference-Time Scaling for Open-Ended General-Domain Tasks
Inference-Time Scaling has been critical to the success of recent models such as OpenAI o1 and DeepSeek R1. However, many techniques used to train models for inference-time scaling require tasks to have answers that can be verified, limiting their application to domains such as math, coding and logical reasoning. We take inspiration from how humans make first attempts, ask for detailed feedback from others and make improvements based on such feedback across a wide spectrum of open-ended endeavors. To this end, we collect data for and train dedicated Feedback and Edit Models that are capable of performing inference-time scaling for open-ended general-domain tasks. In our setup, one model generates an initial response, which are given feedback by a second model, that are then used by a third model to edit the response. We show that performance on Arena Hard, a benchmark strongly predictive of Chatbot Arena Elo can be boosted by scaling the number of initial response drafts, effective feedback and edited responses. When scaled optimally, our setup based on 70B models from the Llama 3 family can reach SoTA performance on Arena Hard at 92.7 as of 5 Mar 2025, surpassing OpenAI o1-preview-2024-09-12 with 90.4 and DeepSeek R1 with 92.3.
Active Test-Time Adaptation: Theoretical Analyses and An Algorithm
Test-time adaptation (TTA) addresses distribution shifts for streaming test data in unsupervised settings. Currently, most TTA methods can only deal with minor shifts and rely heavily on heuristic and empirical studies. To advance TTA under domain shifts, we propose the novel problem setting of active test-time adaptation (ATTA) that integrates active learning within the fully TTA setting. We provide a learning theory analysis, demonstrating that incorporating limited labeled test instances enhances overall performances across test domains with a theoretical guarantee. We also present a sample entropy balancing for implementing ATTA while avoiding catastrophic forgetting (CF). We introduce a simple yet effective ATTA algorithm, known as SimATTA, using real-time sample selection techniques. Extensive experimental results confirm consistency with our theoretical analyses and show that the proposed ATTA method yields substantial performance improvements over TTA methods while maintaining efficiency and shares similar effectiveness to the more demanding active domain adaptation (ADA) methods. Our code is available at https://github.com/divelab/ATTA
Making, not Taking, the Best of N
Obtaining high-quality generations in modern LLMs has largely been framed as a selection problem: identifying a single winning generation from a diverse pool of N samples, the Best-of-N (BoN). Yet, this approach is inherently zero-sum, discarding diverse and potentially useful information from the pool. Instead, we explore a collaborative setup, where all candidates can potentially contribute to the final winning generation. To this end, we propose Fusion-of-N (FusioN): a method that uses a general LLM judge to synthesize the most informative elements of each sample into a single final answer. We compare FusioN to BoN in two settings, (i) test-time scaling, where we sample and aggregate from a single model at test-time (ii) synthetic data generation, where we fuse samples from a pool of diverse teachers to improve a student model. We extensively benchmark both setups across 11 languages, 3 diverse tasks and varying model scales. Across the bench, FusioN consistently outperforms BoN showing versatility and robustness both in test-time scaling and in downstream gains from synthetic data generation. We also perform extensive analysis on FusioN, where it shows surprising strengths and robustness under challenging settings. These results show that we should shift how we think about evaluating and utilizing LLM generations from a monolithic measure of quality, to embracing their polylithic nature. This shift allows us to integrate diverse strengths, unlock latent potential, and achieve improvements that were previously inaccessible through selection alone.
The Art of Scaling Reinforcement Learning Compute for LLMs
Reinforcement learning (RL) has become central to training large language models (LLMs), yet the field lacks predictive scaling methodologies comparable to those established for pre-training. Despite rapidly rising compute budgets, there is no principled understanding of how to evaluate algorithmic improvements for scaling RL compute. We present the first large-scale systematic study, amounting to more than 400,000 GPU-hours, that defines a principled framework for analyzing and predicting RL scaling in LLMs. We fit sigmoidal compute-performance curves for RL training and ablate a wide range of common design choices to analyze their effects on asymptotic performance and compute efficiency. We observe: (1) Not all recipes yield similar asymptotic performance, (2) Details such as loss aggregation, normalization, curriculum, and off-policy algorithm primarily modulate compute efficiency without materially shifting the asymptote, and (3) Stable, scalable recipes follow predictable scaling trajectories, enabling extrapolation from smaller-scale runs. Combining these insights, we propose a best-practice recipe, ScaleRL, and demonstrate its effectiveness by successfully scaling and predicting validation performance on a single RL run scaled up to 100,000 GPU-hours. Our work provides both a scientific framework for analyzing scaling in RL and a practical recipe that brings RL training closer to the predictability long achieved in pre-training.
The Ever-Evolving Science Exam
As foundation models grow rapidly in capability and deployment, evaluating their scientific understanding becomes increasingly critical. Existing science benchmarks have made progress towards broad **Range**, wide **Reach**, and high **Rigor**, yet they often face two major challenges: **data leakage risks** that compromise benchmarking validity, and **evaluation inefficiency** due to large-scale testing. To address these issues, we introduce the **Ever-Evolving Science Exam (EESE)**, a dynamic benchmark designed to reliably assess scientific capabilities in foundation models. Our approach consists of two components: 1) a non-public **EESE-Pool** with over 100K expertly constructed science instances (question-answer pairs) across 5 disciplines and 500+ subfields, built through a multi-stage pipeline ensuring **Range**, **Reach**, and **Rigor**, 2) a periodically updated 500-instance subset **EESE**, sampled and validated to enable leakage-resilient, low-overhead evaluations. Experiments on 32 open- and closed-source models demonstrate that EESE effectively differentiates the strengths and weaknesses of models in scientific fields and cognitive dimensions. Overall, EESE provides a robust, scalable, and forward-compatible solution for science benchmark design, offering a realistic measure of how well foundation models handle science questions. The project page is at: https://github.com/aiben-ch/EESE.
LLM-I: LLMs are Naturally Interleaved Multimodal Creators
We propose LLM-Interleaved (LLM-I), a flexible and dynamic framework that reframes interleaved image-text generation as a tool-use problem. LLM-I is designed to overcome the "one-tool" bottleneck of current unified models, which are limited to synthetic imagery and struggle with tasks requiring factual grounding or programmatic precision. Our framework empowers a central LLM or MLLM agent to intelligently orchestrate a diverse toolkit of specialized visual tools, including online image search, diffusion-based generation, code execution, and image editing. The agent is trained to select and apply these tools proficiently via a Reinforcement Learning (RL) framework that features a hybrid reward system combining rule-based logic with judgments from LLM and MLLM evaluators. Trained on a diverse new dataset using four different model backbones, LLM-I demonstrates state-of-the-art performance, outperforming existing methods by a large margin across four benchmarks. We also introduce a novel test-time scaling strategy that provides further performance gains. Project Page: https://github.com/ByteDance-BandAI/LLM-I.
DETERRENT: Detecting Trojans using Reinforcement Learning
Insertion of hardware Trojans (HTs) in integrated circuits is a pernicious threat. Since HTs are activated under rare trigger conditions, detecting them using random logic simulations is infeasible. In this work, we design a reinforcement learning (RL) agent that circumvents the exponential search space and returns a minimal set of patterns that is most likely to detect HTs. Experimental results on a variety of benchmarks demonstrate the efficacy and scalability of our RL agent, which obtains a significant reduction (169times) in the number of test patterns required while maintaining or improving coverage (95.75%) compared to the state-of-the-art techniques.
Unified Scaling Laws for Routed Language Models
The performance of a language model has been shown to be effectively modeled as a power-law in its parameter count. Here we study the scaling behaviors of Routing Networks: architectures that conditionally use only a subset of their parameters while processing an input. For these models, parameter count and computational requirement form two independent axes along which an increase leads to better performance. In this work we derive and justify scaling laws defined on these two variables which generalize those known for standard language models and describe the performance of a wide range of routing architectures trained via three different techniques. Afterwards we provide two applications of these laws: first deriving an Effective Parameter Count along which all models scale at the same rate, and then using the scaling coefficients to give a quantitative comparison of the three routing techniques considered. Our analysis derives from an extensive evaluation of Routing Networks across five orders of magnitude of size, including models with hundreds of experts and hundreds of billions of parameters.
Decentralized and Self-adaptive Core Maintenance on Temporal Graphs
Key graph-based problems play a central role in understanding network topology and uncovering patterns of similarity in homogeneous and temporal data. Such patterns can be revealed by analyzing communities formed by nodes, which in turn can be effectively modeled through temporal k-cores. This paper introduces a novel decentralized and incremental algorithm for computing the core decomposition of temporal networks. Decentralized solutions leverage the ability of network nodes to communicate and coordinate locally, addressing complex problems in a scalable, adaptive, and timely manner. By leveraging previously computed coreness values, our approach significantly reduces the activation of nodes and the volume of message exchanges when the network changes over time. This enables scalability with only a minimal trade-off in precision. Experimental evaluations on large real-world networks under varying levels of dynamism demonstrate the efficiency of our solution compared to a state-of-the-art approach, particularly in terms of active nodes, communication overhead, and convergence speed.
Ray: A Distributed Framework for Emerging AI Applications
The next generation of AI applications will continuously interact with the environment and learn from these interactions. These applications impose new and demanding systems requirements, both in terms of performance and flexibility. In this paper, we consider these requirements and present Ray---a distributed system to address them. Ray implements a unified interface that can express both task-parallel and actor-based computations, supported by a single dynamic execution engine. To meet the performance requirements, Ray employs a distributed scheduler and a distributed and fault-tolerant store to manage the system's control state. In our experiments, we demonstrate scaling beyond 1.8 million tasks per second and better performance than existing specialized systems for several challenging reinforcement learning applications.
SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores
The ever-growing complexity of reinforcement learning (RL) tasks demands a distributed RL system to efficiently generate and process a massive amount of data to train intelligent agents. However, existing open-source libraries suffer from various limitations, which impede their practical use in challenging scenarios where large-scale training is necessary. While industrial systems from OpenAI and DeepMind have achieved successful large-scale RL training, their system architecture and implementation details remain undisclosed to the community. In this paper, we present a novel abstraction on the dataflows of RL training, which unifies practical RL training across diverse applications into a general framework and enables fine-grained optimizations. Following this abstraction, we develop a scalable, efficient, and extensible distributed RL system called ReaLly Scalable RL (SRL). The system architecture of SRL separates major RL computation components and allows massively parallelized training. Moreover, SRL offers user-friendly and extensible interfaces for customized algorithms. Our evaluation shows that SRL outperforms existing academic libraries in both a single machine and a medium-sized cluster. In a large-scale cluster, the novel architecture of SRL leads to up to 3.7x speedup compared to the design choices adopted by the existing libraries. We also conduct a direct benchmark comparison to OpenAI's industrial system, Rapid, in the challenging hide-and-seek environment. SRL reproduces the same solution as reported by OpenAI with up to 5x speedup in wall-clock time. Furthermore, we also examine the performance of SRL in a much harder variant of the hide-and-seek environment and achieve substantial learning speedup by scaling SRL to over 15k CPU cores and 32 A100 GPUs. Notably, SRL is the first in the academic community to perform RL experiments at such a large scale.
Test-Time Scaling with Reflective Generative Model
We introduce our first reflective generative model MetaStone-S1, which obtains OpenAI o3's performance via the self-supervised process reward model (SPRM). Through sharing the backbone network and using task-specific heads for next token prediction and process scoring respectively, SPRM successfully integrates the policy model and process reward model(PRM) into a unified interface without extra process annotation, reducing over 99% PRM parameters for efficient reasoning. Equipped with SPRM, MetaStone-S1 is naturally suitable for test time scaling (TTS), and we provide three reasoning effort modes (low, medium, and high), based on the controllable thinking length. Moreover, we empirically establish a scaling law that reveals the relationship between total thinking computation and TTS performance. Experiments demonstrate that our MetaStone-S1 achieves comparable performance to OpenAI-o3-mini's series with only 32B parameter size. To support the research community, we have open-sourced MetaStone-S1 at https://github.com/MetaStone-AI/MetaStone-S1.
ScaleLLM: A Resource-Frugal LLM Serving Framework by Optimizing End-to-End Efficiency
Large language models (LLMs) have surged in popularity and are extensively used in commercial applications, where the efficiency of model serving is crucial for the user experience. Most current research focuses on optimizing individual sub-procedures, e.g. local inference and communication, however, there is no comprehensive framework that provides a holistic system view for optimizing LLM serving in an end-to-end manner. In this work, we conduct a detailed analysis to identify major bottlenecks that impact end-to-end latency in LLM serving systems. Our analysis reveals that a comprehensive LLM serving endpoint must address a series of efficiency bottlenecks that extend beyond LLM inference. We then propose ScaleLLM, an optimized system for resource-efficient LLM serving. Our extensive experiments reveal that with 64 concurrent requests, ScaleLLM achieves a 4.3x speed up over vLLM and outperforms state-of-the-arts with 1.5x higher throughput.
Is GPT-OSS Good? A Comprehensive Evaluation of OpenAI's Latest Open Source Models
In August 2025, OpenAI released GPT-OSS models, its first open weight large language models since GPT-2 in 2019, comprising two mixture of experts architectures with 120B and 20B parameters. We evaluated both variants against six contemporary open source large language models ranging from 14.7B to 235B parameters, representing both dense and sparse designs, across ten benchmarks covering general knowledge, mathematical reasoning, code generation, multilingual understanding, and conversational ability. All models were tested in unquantised form under standardised inference settings, with statistical validation using McNemars test and effect size analysis. Results show that gpt-oss-20B consistently outperforms gpt-oss-120B on several benchmarks, such as HumanEval and MMLU, despite requiring substantially less memory and energy per response. Both models demonstrate mid-tier overall performance within the current open source landscape, with relative strength in code generation and notable weaknesses in multilingual tasks. These findings provide empirical evidence that scaling in sparse architectures may not yield proportional performance gains, underscoring the need for further investigation into optimisation strategies and informing more efficient model selection for future open source deployments.
Afterburner: Reinforcement Learning Facilitates Self-Improving Code Efficiency Optimization
Large Language Models (LLMs) generate functionally correct solutions but often fall short in code efficiency, a critical bottleneck for real-world deployment. In this paper, we introduce a novel test-time iterative optimization framework to address this, employing a closed-loop system where LLMs iteratively refine code based on empirical performance feedback from an execution sandbox. We explore three training strategies: Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and Group Relative Policy Optimization~(GRPO). Experiments on our Venus dataset and the APPS benchmark show that SFT and DPO rapidly saturate in efficiency gains. In contrast, GRPO, using reinforcement learning (RL) with execution feedback, continuously optimizes code performance, significantly boosting both pass@1 (from 47% to 62%) and the likelihood of outperforming human submissions in efficiency (from 31% to 45%). Our work demonstrates effective test-time code efficiency improvement and critically reveals the power of RL in teaching LLMs to truly self-improve code efficiency.
Inverse Scaling in Test-Time Compute
We construct evaluation tasks where extending the reasoning length of Large Reasoning Models (LRMs) deteriorates performance, exhibiting an inverse scaling relationship between test-time compute and accuracy. Our evaluation tasks span four categories: simple counting tasks with distractors, regression tasks with spurious features, deduction tasks with constraint tracking, and advanced AI risks. We identify five distinct failure modes when models reason for longer: 1) Claude models become increasingly distracted by irrelevant information; 2) OpenAI o-series models resist distractors but overfit to problem framings; 3) models shift from reasonable priors to spurious correlations; 4) all models show difficulties in maintaining focus on complex deductive tasks; and 5) extended reasoning may amplify concerning behaviors, with Claude Sonnet 4 showing increased expressions of self-preservation. These findings suggest that while test-time compute scaling remains promising for improving model capabilities, it may inadvertently reinforce problematic reasoning patterns. Our results demonstrate the importance of evaluating models across diverse reasoning lengths to identify and address these failure modes in LRMs.
AgentTTS: Large Language Model Agent for Test-time Compute-optimal Scaling Strategy in Complex Tasks
Test-time scaling (TTS) enhances the performance of large language models (LLMs) by allocating additional compute resources during inference. However, existing research primarily investigates TTS in single-stage tasks; while many real-world problems are multi-stage complex tasks, composed of a sequence of heterogeneous subtasks with each subtask requires LLM of specific capability. Therefore, we study a novel problem: the test-time compute-optimal scaling in multi-stage complex tasks, aiming to select suitable models and allocate budgets per subtask to maximize overall performance. TTS in multi-stage tasks introduces two fundamental challenges: (i) The combinatorial search space of model and budget allocations, combined with the high cost of inference, makes brute-force search impractical. (ii) The optimal model and budget allocations across subtasks are interdependent, increasing the complexity of the compute-optimal search. To address this gap, we conduct extensive pilot experiments on four tasks across six datasets, deriving three empirical insights characterizing the behavior of LLMs in multi-stage complex tasks. Informed by these insights, we propose AgentTTS, an LLM-agent-based framework that autonomously searches for compute-optimal allocations through iterative feedback-driven interactions with the execution environment. Experimental results demonstrate that AgentTTS significantly outperforms traditional and other LLM-based baselines in search efficiency, and shows improved robustness to varying training set sizes and enhanced interpretability.
Power Lines: Scaling Laws for Weight Decay and Batch Size in LLM Pre-training
Efficient LLM pre-training requires well-tuned hyperparameters (HPs), including learning rate {\eta} and weight decay {\lambda}. We study scaling laws for HPs: formulas for how to scale HPs as we scale model size N, dataset size D, and batch size B. Recent work suggests the AdamW timescale, B/({\eta}{\lambda}D), should remain constant across training settings, and we verify the implication that optimal {\lambda} scales linearly with B, for a fixed N,D. However, as N,D scale, we show the optimal timescale obeys a precise power law in the tokens-per-parameter ratio, D/N. This law thus provides a method to accurately predict {\lambda}opt in advance of large-scale training. We also study scaling laws for optimal batch size Bopt (the B enabling lowest loss at a given N,D) and critical batch size Bcrit (the B beyond which further data parallelism becomes ineffective). In contrast with prior work, we find both Bopt and Bcrit scale as power laws in D, independent of model size, N. Finally, we analyze how these findings inform the real-world selection of Pareto-optimal N and D under dual training time and compute objectives.
CoThink: Token-Efficient Reasoning via Instruct Models Guiding Reasoning Models
Large language models (LLMs) benefit from increased test-time compute, a phenomenon known as test-time scaling. However, reasoning-optimized models often overthink even simple problems, producing excessively verbose outputs and leading to low token efficiency. By comparing these models with equally sized instruct models, we identify two key causes of this verbosity: (1) reinforcement learning reduces the information density of forward reasoning, and (2) backward chain-of thought training encourages redundant and often unnecessary verification steps. Since LLMs cannot assess the difficulty of a given problem, they tend to apply the same cautious reasoning strategy across all tasks, resulting in inefficient overthinking. To address this, we propose CoThink, an embarrassingly simple pipeline: an instruct model first drafts a high-level solution outline; a reasoning model then works out the solution. We observe that CoThink enables dynamic adjustment of reasoning depth based on input difficulty. Evaluated with three reasoning models DAPO, DeepSeek-R1, and QwQ on three datasets GSM8K, MATH500, and AIME24, CoThink reduces total token generation by 22.3% while maintaining pass@1 accuracy within a 0.42% margin on average. With reference to the instruct model, we formally define reasoning efficiency and observe a potential reasoning efficiency scaling law in LLMs.
Automating Benchmark Design
The rapid progress and widespread deployment of LLMs and LLM-powered agents has outpaced our ability to evaluate them. Hand-crafted, static benchmarks are the primary tool for assessing model capabilities, but these quickly become saturated. In contrast, dynamic benchmarks evolve alongside the models they evaluate, but are expensive to create and continuously update. To address these challenges, we develop BeTaL (Benchmark Tuning with an LLM-in-the-loop), a framework that leverages environment design principles to automate the process of dynamic benchmark design. BeTaL works by parameterizing key design choices in base benchmark templates and uses LLMs to reason through the resulting parameter space to obtain target properties (such as difficulty and realism) in a cost-efficient manner. We validate this approach on its ability to create benchmarks with desired difficulty levels. Using BeTaL, we create two new benchmarks and extend a popular agentic benchmark tau-bench. Extensive evaluation on these three tasks and multiple target difficulty levels shows that BeTaL produces benchmarks much closer to the desired difficulty, with average deviations ranging from 5.3% to 13.2% -- a 2-4x improvement over the baselines.
Towards Robust Agentic CUDA Kernel Benchmarking, Verification, and Optimization
Recent advances in large language models (LLMs) demonstrate their effectiveness in scaling test-time compute for software engineering tasks. However, these approaches often focus on high-level solutions, with limited attention to optimizing low-level CUDA kernel implementations. Additionally, existing kernel generation benchmarks suffer from exploitable loopholes and insufficient diversity in testing conditions, hindering true generalization assessment. To address these limitations, we introduce robust-kbench, a new benchmark for rigorous evaluation of kernel performance and correctness across varied scenarios. Furthermore, we present a comprehensive agentic framework that automates CUDA kernel discovery, verification, and optimization. This pipeline enables frontier LLMs to translate torch code to CUDA kernels and iteratively improve their runtime within our robust evaluation setting. Our sequential workflow first translates PyTorch code into equivalent CUDA kernels. It then optimizes their runtime using a novel evolutionary meta-generation procedure tailored to the CUDA ecosystem, guided by LLM-based verifiers for correctness and efficient filtering. Evaluated on robust-kbench, our approach produces CUDA kernels outperforming torch implementations for practical applications, including forward and backward passes. It can fuse operations and deploy various runtime optimization strategies. The verifier workflow accurately classifies incorrect kernels, enhancing hardware verification efficiency.
HAPO: Training Language Models to Reason Concisely via History-Aware Policy Optimization
While scaling the length of responses at test-time has been shown to markedly improve the reasoning abilities and performance of large language models (LLMs), it often results in verbose outputs and increases inference cost. Prior approaches for efficient test-time scaling, typically using universal budget constraints or query-level length optimization, do not leverage historical information from previous encounters with the same problem during training. We hypothesize that this limits their ability to progressively make solutions more concise over time. To address this, we present History-Aware Policy Optimization (HAPO), which keeps track of a history state (e.g., the minimum length over previously generated correct responses) for each problem. HAPO employs a novel length reward function based on this history state to incentivize the discovery of correct solutions that are more concise than those previously found. Crucially, this reward structure avoids overly penalizing shorter incorrect responses with the goal of facilitating exploration towards more efficient solutions. By combining this length reward with a correctness reward, HAPO jointly optimizes for correctness and efficiency. We use HAPO to train DeepSeek-R1-Distill-Qwen-1.5B, DeepScaleR-1.5B-Preview, and Qwen-2.5-1.5B-Instruct, and evaluate HAPO on several math benchmarks that span various difficulty levels. Experiment results demonstrate that HAPO effectively induces LLMs' concise reasoning abilities, producing length reductions of 33-59% with accuracy drops of only 2-5%.
Control-R: Towards controllable test-time scaling
This paper target in addressing the challenges of underthinking and overthinking in long chain-of-thought (CoT) reasoning for Large Reasoning Models (LRMs) by introducing Reasoning Control Fields (RCF)--a novel test-time approach that injects structured control signals to guide reasoning from a tree search perspective. RCF enables models to adjust reasoning effort according to given control conditions when solving complex tasks. Additionally, we present the Control-R-4K dataset, which consists of challenging problems annotated with detailed reasoning processes and corresponding control fields. To further enhance reasoning control, we propose a Conditional Distillation Finetuning (CDF) method, which trains model--particularly Control-R-32B--to effectively adjust reasoning effort during test time. Experimental results on benchmarks such as AIME2024 and MATH500 demonstrate that our approach achieves state-of-the-art performance at the 32B scale while enabling a controllable Long CoT reasoning process (L-CoT). Overall, this work introduces an effective paradigm for controllable test-time scaling reasoning.
Less is More: Improving LLM Reasoning with Minimal Test-Time Intervention
Recent progress in large language models (LLMs) has focused on test-time scaling to improve reasoning via increased inference computation, but often at the cost of efficiency. We revisit test-time behavior and uncover a simple yet underexplored phenomenon: reasoning uncertainty is highly localized-only a small subset of high-entropy tokens dominantly affects output correctness. Motivated by this, we propose Minimal Test-Time Intervention (MTI), a training-free framework that enhances reasoning accuracy and stability with minimal overhead. MTI includes: (i) Selective CFG intervention, applying classifier-free guidance only at uncertain positions; and (ii) Lightweight negative-prompt guidance, reusing the main model's KV cache to approximate unconditional decoding efficiently. MTI yields consistent gains across general, coding, and STEM tasks-e.g., +1.35% average improvement on eight benchmarks for Qwen3-8B-Base and +5% on AIME2024 using Qwen3-32B-Reasoning-while remaining highly efficient.
Diversified Sampling Improves Scaling LLM inference
While increasing training compute has significantly improved the performance of large language models (LLMs), similar gains have not been observed when scaling inference compute. We hypothesize that the primary issue lies in the uniformity of LLM outputs, which leads to inefficient sampling as models repeatedly generate similar but inaccurate responses. Motivated by an intriguing relationship between solution accuracy and response diversity, we propose DivSampling -- a novel and versatile sampling technique designed to enhance the diversity of candidate solutions by introducing prompt perturbations.DivSampling incorporates two categories of perturbations: task-agnostic approaches, which are general and not tailored to any specific task, and task-specific approaches, which are customized based on task content. Our theoretical analysis demonstrates that, under mild assumptions, the error rates of responses generated from diverse prompts are significantly lower compared to those produced by stationary prompts. Comprehensive evaluations across various tasks -- including reasoning, mathematics, and code generation -- highlight the effectiveness of DivSampling in improving solution accuracy. This scalable and efficient approach offers a new perspective on optimizing test-time inference, addressing limitations in current sampling strategies.
Generalized Parallel Scaling with Interdependent Generations
Parallel LLM inference scaling involves sampling a set of N>1 responses for a single input prompt. However, these N parallel responses tend to be generated independently from each other, partitioning compute resources and leaving potentially useful information in one generation untapped by others. This is in contrast to response length scaling where past computation is used in all future steps. For higher quality responses and response sets, we propose Bridge to generate interdependent responses in parallel by rethinking batched LLM hidden states as holistic tensors rather than independent slices. With only a small amount (2.8%-5.1%) of new parameters, Bridge improves the relative mean accuracy gains from reinforcement learning with verifiable rewards by up to 50% and boosts consistency of correct responses. Trained once, Bridge scales to any generation width, all with greater performance than independent generations, unlocking a more general mode of parallel scaling that effectively leverages information between sequences, compatible with any post-generation aggregation technique.
Expert-as-a-Service: Towards Efficient, Scalable, and Robust Large-scale MoE Serving
Mixture-of-Experts (MoE) models challenge serving infrastructures with dynamic, sparse expert utilization, causing instability on conventional systems designed for dense architectures. We propose EaaS, a novel serving system to enable efficient, scalable, and robust MoE deployment. Our system disaggregates MoE modules into independent, stateless services. This design enables fine-grained resource scaling and provides inherent fault tolerance by decoupling compute units. The architecture is powered by a high-performance, CPU-free peer-to-peer communication library that ensures minimal overhead and high throughput. Experiments confirm EaaS's scalability and efficiency, achieving performance comparable to monolithic systems while providing robust fault tolerance and strong scalability. EaaS incurs less than a 2% throughput reduction under simulated hardware failures that would otherwise halt monolithic architectures. It further saves up to 37.5% of computing resources through dynamic fine-grained adaptation to serving traffic, demonstrating strong resilience for large-scale MoE deployment in production.
Fast and Accurate Model Scaling
In this work we analyze strategies for convolutional neural network scaling; that is, the process of scaling a base convolutional network to endow it with greater computational complexity and consequently representational power. Example scaling strategies may include increasing model width, depth, resolution, etc. While various scaling strategies exist, their tradeoffs are not fully understood. Existing analysis typically focuses on the interplay of accuracy and flops (floating point operations). Yet, as we demonstrate, various scaling strategies affect model parameters, activations, and consequently actual runtime quite differently. In our experiments we show the surprising result that numerous scaling strategies yield networks with similar accuracy but with widely varying properties. This leads us to propose a simple fast compound scaling strategy that encourages primarily scaling model width, while scaling depth and resolution to a lesser extent. Unlike currently popular scaling strategies, which result in about O(s) increase in model activation w.r.t. scaling flops by a factor of s, the proposed fast compound scaling results in close to O(s) increase in activations, while achieving excellent accuracy. This leads to comparable speedups on modern memory-limited hardware (e.g., GPU, TPU). More generally, we hope this work provides a framework for analyzing and selecting scaling strategies under various computational constraints.
Is the Number of Trainable Parameters All That Actually Matters?
Recent work has identified simple empirical scaling laws for language models, linking compute budget, dataset size, model size, and autoregressive modeling loss. The validity of these simple power laws across orders of magnitude in model scale provides compelling evidence that larger models are also more capable models. However, scaling up models under the constraints of hardware and infrastructure is no easy feat, and rapidly becomes a hard and expensive engineering problem. We investigate ways to tentatively cheat scaling laws, and train larger models for cheaper. We emulate an increase in effective parameters, using efficient approximations: either by doping the models with frozen random parameters, or by using fast structured transforms in place of dense linear layers. We find that the scaling relationship between test loss and compute depends only on the actual number of trainable parameters; scaling laws cannot be deceived by spurious parameters.
MSC-Bench: A Rigorous Benchmark for Multi-Server Tool Orchestration
We introduce MSC-Bench, a large-scale benchmark for evaluating multi-hop, end-to-end tool orchestration by LLM agents in a hierarchical Model-Context Protocol (MCP) ecosystem. Existing benchmarks often evaluate tools in isolation, ignoring challenges such as functional overlap and cross-server orchestration, leading to overly optimistic assessments. MSC-Bench addresses these gaps by constructing ground truth through 'equal function sets', allowing objective metrics such as F1 score and reducing the dependency on LLM-as-a-judge evaluation. Organized as a five-level curriculum, it systematically tests agent capabilities from single-tool orchestration to complex cross-server planning, and robustness to out-of-scope requests. Experiments reveal that rigid hierarchies can hinder performance without co-designed strategies, and even state-of-the-art agents exhibit systemic weaknesses in robustness. MSC-Bench provides a diagnostic framework to expose these limitations and guide the development of more capable and efficient tool-using agents. The benchmark and resources are publicly available at https://github.com/snooow1029/MSC_Bench.
Unlock Predictable Scaling from Emergent Abilities
The scientific scale-up of large language models (LLMs) necessitates a comprehensive understanding of their scaling properties. However, the existing literature on the scaling properties only yields an incomplete answer: optimization loss decreases predictably as the model size increases, in line with established scaling law; yet no scaling law for task has been established and the task performances are far from predictable during scaling. Task performances typically show minor gains on small models until they improve dramatically once models exceed a size threshold, exemplifying the ``emergent abilities''. In this study, we discover that small models, although they exhibit minor performance, demonstrate critical and consistent task performance improvements that are not captured by conventional evaluation strategies due to insufficient measurement resolution. To measure such improvements, we introduce PassUntil, an evaluation strategy through massive sampling in the decoding phase. We conduct quantitative investigations into the scaling law of task performance. Firstly, a strict task scaling law is identified, enhancing the predictability of task performances. Remarkably, we are able to predict the performance of the 2.4B model on code generation with merely 0.05\% deviation before training starts. Secondly, underpinned by PassUntil, we observe concrete evidence of emergent abilities and ascertain that they are not in conflict with the continuity of performance improvement. Their semblance to break-through is that their scaling curve cannot be fitted by standard scaling law function. We then introduce a mathematical definition for the emergent abilities. Through the definition, we refute a prevalent ``multi-step reasoning hypothesis'' regarding the genesis of emergent abilities and propose a new hypothesis with a satisfying fit to the observed scaling curve.
A quantitative framework for evaluating architectural patterns in ML systems
Contemporary intelligent systems incorporate software components, including machine learning components. As they grow in complexity and data volume such machine learning systems face unique quality challenges like scalability and performance. To overcome them, engineers may often use specific architectural patterns, however their impact on ML systems is difficult to quantify. The effect of software architecture on traditional systems is well studied, however more work is needed in the area of machine learning systems. This study proposes a framework for quantitative assessment of architectural patterns in ML systems, focusing on scalability and performance metrics for cost-effective CPU-based inference. We integrate these metrics into a systematic evaluation process for selection of architectural patterns and demonstrate its application through a case study. The approach shown in the paper should enable software architects to objectively analyze and select optimal patterns, addressing key challenges in ML system design.
COFFE: A Code Efficiency Benchmark for Code Generation
Code generation has largely improved development efficiency in the era of large language models (LLMs). With the ability to follow instructions, current LLMs can be prompted to generate code solutions given detailed descriptions in natural language. Many research efforts are being devoted to improving the correctness of LLM-generated code, and many benchmarks are proposed to evaluate the correctness comprehensively. Despite the focus on correctness, the time efficiency of LLM-generated code solutions is under-explored. Current correctness benchmarks are not suitable for time efficiency evaluation since their test cases cannot well distinguish the time efficiency of different code solutions. Besides, the current execution time measurement is not stable and comprehensive, threatening the validity of the time efficiency evaluation. To address the challenges in the time efficiency evaluation of code generation, we propose COFFE, a code generation benchmark for evaluating the time efficiency of LLM-generated code solutions. COFFE contains 398 and 358 problems for function-level and file-level code generation, respectively. To improve the distinguishability, we design a novel stressful test case generation approach with contracts and two new formats of test cases to improve the accuracy of generation. For the time evaluation metric, we propose efficienct@k based on CPU instruction count to ensure a stable and solid comparison between different solutions. We evaluate 14 popular LLMs on COFFE and identify four findings. Based on the findings, we draw some implications for LLM researchers and software practitioners to facilitate future research and usage of LLMs in code generation.
Towards Neural Scaling Laws for Time Series Foundation Models
Scaling laws offer valuable insights into the design of time series foundation models (TSFMs). However, previous research has largely focused on the scaling laws of TSFMs for in-distribution (ID) data, leaving their out-of-distribution (OOD) scaling behavior and the influence of model architectures less explored. In this work, we examine two common TSFM architectures, encoder-only and decoder-only Transformers, and investigate their scaling behavior on both ID and OOD data. These models are trained and evaluated across varying parameter counts, compute budgets, and dataset sizes. Our experiments reveal that the log-likelihood loss of TSFMs exhibits similar scaling behavior in both OOD and ID settings. We further compare the scaling properties across different architectures, incorporating two state-of-the-art TSFMs as case studies, showing that model architecture plays a significant role in scaling. The encoder-only Transformers demonstrate better scalability than the decoder-only Transformers, while the architectural enhancements in the two advanced TSFMs primarily improve ID performance but reduce OOD scalability. While scaling up TSFMs is expected to drive performance breakthroughs, the lack of a comprehensive understanding of TSFM scaling laws has hindered the development of a robust framework to guide model scaling. We fill this gap in this work by synthesizing our findings and providing practical guidelines for designing and scaling larger TSFMs with enhanced model capabilities.
On the Robustness of Open-World Test-Time Training: Self-Training with Dynamic Prototype Expansion
Generalizing deep learning models to unknown target domain distribution with low latency has motivated research into test-time training/adaptation (TTT/TTA). Existing approaches often focus on improving test-time training performance under well-curated target domain data. As figured out in this work, many state-of-the-art methods fail to maintain the performance when the target domain is contaminated with strong out-of-distribution (OOD) data, a.k.a. open-world test-time training (OWTTT). The failure is mainly due to the inability to distinguish strong OOD samples from regular weak OOD samples. To improve the robustness of OWTTT we first develop an adaptive strong OOD pruning which improves the efficacy of the self-training TTT method. We further propose a way to dynamically expand the prototypes to represent strong OOD samples for an improved weak/strong OOD data separation. Finally, we regularize self-training with distribution alignment and the combination yields the state-of-the-art performance on 5 OWTTT benchmarks. The code is available at https://github.com/Yushu-Li/OWTTT.
S^2R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning
Recent studies have demonstrated the effectiveness of LLM test-time scaling. However, existing approaches to incentivize LLMs' deep thinking abilities generally require large-scale data or significant training efforts. Meanwhile, it remains unclear how to improve the thinking abilities of less powerful base models. In this work, we introduce S^2R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference. Specifically, we first initialize LLMs with iterative self-verification and self-correction behaviors through supervised fine-tuning on carefully curated data. The self-verification and self-correction skills are then further strengthened by both outcome-level and process-level reinforcement learning, with minimized resource requirements, enabling the model to adaptively refine its reasoning process during inference. Our results demonstrate that, with only 3.1k self-verifying and self-correcting behavior initialization samples, Qwen2.5-math-7B achieves an accuracy improvement from 51.0\% to 81.6\%, outperforming models trained on an equivalent amount of long-CoT distilled data. Extensive experiments and analysis based on three base models across both in-domain and out-of-domain benchmarks validate the effectiveness of S^2R. Our code and data are available at https://github.com/NineAbyss/S2R.
NetPress: Dynamically Generated LLM Benchmarks for Network Applications
Despite growing interest in domain-specific benchmarking of large language models (LLMs) and agents, current evaluations remain limited to static, small-scale datasets, especially in high-stakes tasks like network operations that demand reliability for deployments. We present NetPress, an automated benchmark generation framework for evaluating LLM agents in network applications. NetPress introduces a unified abstraction with state and action, enabling dynamic generation of diverse query sets along with corresponding ground truths. At runtime, users can specify benchmark configurations to generate millions of queries on the fly. In addition to dynamic benchmark construction, NetPress integrates with network emulators to provide realistic environment feedback, supporting comprehensive evaluation across correctness, safety, and latency. We instantiate NetPress on three representative applications, revealing interesting fine-grained differences in agent behavior that static, correctness-only benchmarks often miss. NetPress moves LLM evaluation toward realistic, scalable testing in infrastructure-centric domains, helping close the gap between benchmark performance and real-world deployment readiness. Code is available at https://github.com/Froot-NetSys/NetPress.
APEX: An Extensible and Dynamism-Aware Simulator for Automated Parallel Execution in LLM Serving
Efficiently serving Large Language Models (LLMs) requires selecting an optimal parallel execution plan, balancing computation, memory, and communication overhead. However, determining the best strategy is challenging due to varying parallelism techniques (data, pipeline, tensor) and workload characteristics (e.g., compute-intensive tasks with long prompts vs. memory-intensive tasks with long generation). We propose APEX, an LLM serving system simulator that efficiently identifies optimal parallel execution plans by considering key factors of LLM serving systems, such as memory usage, batching behavior, etc. APEX performs dynamism-aware simulation to model iteration-level batching, and leverages LLMs' repetitive structure to reduce design space, scaling efficiently to trillion-scale models. APEX abstracts the key components of LLM serving systems, including the model, batching module, quantization formats, and device clusters, enabling the simulator to be general and extensible. Simulating on a CPU, APEX evaluates execution plans for various device clusters, covering diverse LLMs and workloads. APEX finds plans up to 3.37x faster than heuristics, and also plans that reduce energy consumption by up to 45% compared to latency-optimal plans. APEX performs comprehensive evaluations, reporting key system metrics like time per output token and time to first token, which can help service providers meet SLOs. APEX identifies an optimal plan within 15 minutes on a CPU, making it 71x faster and 1234x more cost-effective than cloud-based GPU deployment. APEX can be accessed at https://github.com/microsoft/apex_plus
TestBench: Evaluating Class-Level Test Case Generation Capability of Large Language Models
Software testing is a crucial phase in the software life cycle, helping identify potential risks and reduce maintenance costs. With the advancement of Large Language Models (LLMs), researchers have proposed an increasing number of LLM-based software testing techniques, particularly in the area of test case generation. Despite the growing interest, limited efforts have been made to thoroughly evaluate the actual capabilities of LLMs in this task. In this paper, we introduce TestBench, a benchmark for class-level LLM-based test case generation. We construct a dataset of 108 Java programs from 9 real-world, large-scale projects on GitHub, each representing a different thematic domain. We then design three distinct types of prompts based on context descriptions, including self-contained context, full context, and simple context. Besides, we propose a fine-grained evaluation framework that considers five aspects of test cases: syntactic correctness, compilation correctness, test correctness, code coverage rate, and defect detection rate. Furthermore, we propose a heuristic algorithm to repair erroneous test cases generated by LLMs. We evaluate CodeLlama-13b, GPT-3.5, and GPT-4 on the TestBench, and our experimental results indicate that larger models demonstrate a greater ability to effectively utilize contextual information, thus generating higher-quality test cases. Smaller models may struggle with the noise introduced by the extensive information contained within the full context. However, when using the simplified version, namely the simple context, which is derived from the full context via abstract syntax tree analysis, the performance of these models improves significantly. Our analysis highlights the current progress and pinpoints future directions to further enhance the effectiveness of models by handling contextual information for test case generation.
The Larger the Better? Improved LLM Code-Generation via Budget Reallocation
It is a common belief that large language models (LLMs) are better than smaller-sized ones. However, larger models also require significantly more time and compute during inference. This begs the question: what happens when both models operate under the same budget? (e.g., compute, run-time). To address this question, we analyze code generation LLMs of various sizes and make comparisons such as running a 70B model once vs. generating five outputs from a 13B model. We consider a standard unit-test setup, which can be used to select the correct output from the smaller model. Our findings reveal that the repeated use of smaller models can yield consistent improvements, with gains of up to 15% across five tasks. On the other hand, in scenarios where unit-tests are unavailable, a ranking-based selection of candidates from the smaller model falls short of the performance of a single output from larger ones. Our results highlight the potential of using smaller models instead of larger ones, and the importance of studying approaches for ranking LLM outputs.
LiveMCPBench: Can Agents Navigate an Ocean of MCP Tools?
With the rapid development of Model Context Protocol (MCP), the number of MCP servers has surpassed 10,000. However, existing MCP benchmarks are limited to single-server settings with only a few tools, hindering effective evaluation of agent capabilities in large-scale, real-world scenarios. To address this limitation, we present LiveMCPBench, the first comprehensive benchmark comprising 95 real-world tasks grounded in the MCP ecosystem, designed to evaluate LLM agents at scale across diverse servers. To support a scalable and reproducible evaluation pipeline in large-scale MCP environments, we curate LiveMCPTool, a diverse and readily deployable collection of 70 MCP servers and 527 tools. Furthermore, we introduce LiveMCPEval, an LLM-as-a-Judge framework that enables automated and adaptive evaluation in dynamic, time-varying task environments, achieving 81% agreement with human reviewers. Finally, we propose the MCP Copilot Agent, a multi-step agent that routes tools for dynamic planning and executes tools for API interaction across the entire LiveMCPTool suite. Our evaluation covers 10 leading models, with the best-performing model (Claude-Sonnet-4) reaching a 78.95% success rate. However, we observe large performance variance across models, and several widely-used models perform poorly in LiveMCPBench's complex, tool-rich environments. Overall, LiveMCPBench offers the first unified framework for benchmarking LLM agents in realistic, tool-rich, and dynamic MCP environments, laying a solid foundation for scalable and reproducible research on agent capabilities. Our code and data will be publicly available at https://icip-cas.github.io/LiveMCPBench.
SSPO: Self-traced Step-wise Preference Optimization for Process Supervision and Reasoning Compression
Test-time scaling has proven effective in further enhancing the performance of pretrained Large Language Models (LLMs). However, mainstream post-training methods (i.e., reinforcement learning (RL) with chain-of-thought (CoT) reasoning) often incur substantial computational overhead due to auxiliary models and overthinking. In this paper, we empirically reveal that the incorrect answers partially stem from verbose reasoning processes lacking correct self-fix, where errors accumulate across multiple reasoning steps. To this end, we propose Self-traced Step-wise Preference Optimization (SSPO), a pluggable RL process supervision framework that enables fine-grained optimization of each reasoning step. Specifically, SSPO requires neither auxiliary models nor stepwise manual annotations. Instead, it leverages step-wise preference signals generated by the model itself to guide the optimization process for reasoning compression. Experiments demonstrate that the generated reasoning sequences from SSPO are both accurate and succinct, effectively mitigating overthinking behaviors without compromising model performance across diverse domains and languages.
Archon: An Architecture Search Framework for Inference-Time Techniques
Inference-time techniques are emerging as highly effective tools to enhance large language model (LLM) capabilities. However, best practices for developing systems that combine these techniques remain underdeveloped due to our limited understanding of the utility of individual inference-time techniques and the interactions between them. Additionally, efficiently and automatically searching the space of model choices, inference-time techniques, and their compositions is challenging due to the large design space. To address these challenges, we introduce Archon, a modular framework for selecting, combining, and stacking layers of inference-time techniques to construct optimized LLM systems for target benchmarks. Rather than relying on a single LLM called once, we leverage a diverse set of LLMs and inference-time techniques, creating LLM systems greater than the sum of their parts. Archon defines an extensible design space, encompassing techniques such as generation ensembling, repeated sampling, ranking, fusion, critiquing, verification, and unit testing. It transforms the problem of building LLM systems into a hyperparameter optimization objective. Given the available LLMs, inference-time techniques, and compute budget, Archon utilizes hyperparameter search techniques to discover optimized architectures for target benchmark(s). We evaluate Archon architectures across a range of instruction-following, reasoning, and coding benchmarks, including MT-Bench, Arena-Hard-Auto, AlpacaEval 2.0, MixEval, MixEval Hard, MATH, and CodeContests. Archon architectures outperform frontier models, such as GPT-4o and Claude 3.5 Sonnet, on these benchmarks, achieving an average accuracy increase of 15.1 percentage points by using all available LLMs. We make our code and datasets available publicly on Github: https://github.com/ScalingIntelligence/Archon.
Beyond Memorization: Reasoning-Driven Synthesis as a Mitigation Strategy Against Benchmark Contamination
Capability evaluation of large language models (LLMs) is increasingly shadowed by rising concerns of data contamination that cast doubts on whether static benchmarks measure genuine reasoning or mere memorization. We present an empirical study using an infinitely scalable framework to synthesize research-level QA directly from arXiv papers, harnessing the natural temporal structure of research publications where performance decay after knowledge cutoffs may indicate potential contamination. We evaluated 4 frontier model represented by 2 models of different knowledge cutoff dates per family on 1,643 multi-step reasoning questions synthesized from 20,277 arXiv papers stratified over 26 months, covering at least 6 months before and after all cutoff dates. Our results consistently showed a lack of significant performance decay near knowledge cutoff dates for models of various sizes, developers, and release dates. We further performed a comparative analysis with previous longitudinal studies that reported significant post-cutoff performance decay using directly retrieved questions based on public data. we hypothesize that the multi-step reasoning required by our synthesis pipeline offered additional complexity that goes deeper than shallow memorization, which effectively serves a mitigation strategy against benchmark contamination. We fully open source our code and dataset to aid reproducibility and advocate for a paradigm shift that prioritize reasoning-driven synthesis to construct benchmarks over simply collecting newly released questions periodically.
Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations
Scale has become a main ingredient in obtaining strong machine learning models. As a result, understanding a model's scaling properties is key to effectively designing both the right training setup as well as future generations of architectures. In this work, we argue that scale and training research has been needlessly complex due to reliance on the cosine schedule, which prevents training across different lengths for the same model size. We investigate the training behavior of a direct alternative - constant learning rate and cooldowns - and find that it scales predictably and reliably similar to cosine. Additionally, we show that stochastic weight averaging yields improved performance along the training trajectory, without additional training costs, across different scales. Importantly, with these findings we demonstrate that scaling experiments can be performed with significantly reduced compute and GPU hours by utilizing fewer but reusable training runs.
CSC-SQL: Corrective Self-Consistency in Text-to-SQL via Reinforcement Learning
Large language models (LLMs) have demonstrated strong capabilities in translating natural language questions about relational databases into SQL queries. In particular, test-time scaling techniques such as Self-Consistency and Self-Correction can enhance SQL generation accuracy by increasing computational effort during inference. However, these methods have notable limitations: Self-Consistency may select suboptimal outputs despite majority votes, while Self-Correction typically addresses only syntactic errors. To leverage the strengths of both approaches, we propose CSC-SQL, a novel method that integrates Self-Consistency and Self-Correction. CSC-SQL selects the two most frequently occurring outputs from parallel sampling and feeds them into a merge revision model for correction. Additionally, we employ the Group Relative Policy Optimization (GRPO) algorithm to fine-tune both the SQL generation and revision models via reinforcement learning, significantly enhancing output quality. Experimental results confirm the effectiveness and generalizability of CSC-SQL. On the BIRD development set, our 3B model achieves 65.28% execution accuracy, while the 7B model achieves 69.19%. The code will be open sourced at https://github.com/CycloneBoy/csc_sql.
Vulnerability Detection: From Formal Verification to Large Language Models and Hybrid Approaches: A Comprehensive Overview
Software testing and verification are critical for ensuring the reliability and security of modern software systems. Traditionally, formal verification techniques, such as model checking and theorem proving, have provided rigorous frameworks for detecting bugs and vulnerabilities. However, these methods often face scalability challenges when applied to complex, real-world programs. Recently, the advent of Large Language Models (LLMs) has introduced a new paradigm for software analysis, leveraging their ability to understand insecure coding practices. Although LLMs demonstrate promising capabilities in tasks such as bug prediction and invariant generation, they lack the formal guarantees of classical methods. This paper presents a comprehensive study of state-of-the-art software testing and verification, focusing on three key approaches: classical formal methods, LLM-based analysis, and emerging hybrid techniques, which combine their strengths. We explore each approach's strengths, limitations, and practical applications, highlighting the potential of hybrid systems to address the weaknesses of standalone methods. We analyze whether integrating formal rigor with LLM-driven insights can enhance the effectiveness and scalability of software verification, exploring their viability as a pathway toward more robust and adaptive testing frameworks.
Local Mixtures of Experts: Essentially Free Test-Time Training via Model Merging
Mixture of expert (MoE) models are a promising approach to increasing model capacity without increasing inference cost, and are core components of many state-of-the-art language models. However, current MoE models typically use only few experts due to prohibitive training and inference cost. We propose Test-Time Model Merging (TTMM) which scales the MoE paradigm to an order of magnitude more experts and uses model merging to avoid almost any test-time overhead. We show that TTMM is an approximation of test-time training (TTT), which fine-tunes an expert model for each prediction task, i.e., prompt. TTT has recently been shown to significantly improve language models, but is computationally expensive. We find that performance of TTMM improves with more experts and approaches the performance of TTT. Moreover, we find that with a 1B parameter base model, TTMM is more than 100x faster than TTT at test-time by amortizing the cost of TTT at train-time. Thus, TTMM offers a promising cost-effective approach to scale test-time training.
Efficient and Scalable Agentic AI with Heterogeneous Systems
AI agents are emerging as a dominant workload in a wide range of applications, promising to be the vehicle that delivers the promised benefits of AI to enterprises and consumers. Unlike conventional software or static inference, agentic workloads are dynamic and structurally complex. Often these agents are directed graphs of compute and IO operations that span multi-modal data input and conversion), data processing and context gathering (e.g vector DB lookups), multiple LLM inferences, tool calls, etc. To scale AI agent usage, we need efficient and scalable deployment and agent-serving infrastructure. To tackle this challenge, in this paper, we present a system design for dynamic orchestration of AI agent workloads on heterogeneous compute infrastructure spanning CPUs and accelerators, both from different vendors and across different performance tiers within a single vendor. The system delivers several building blocks: a framework for planning and optimizing agentic AI execution graphs using cost models that account for compute, memory, and bandwidth constraints of different HW; a MLIR based representation and compilation system that can decompose AI agent execution graphs into granular operators and generate code for different HW options; and a dynamic orchestration system that can place the granular components across a heterogeneous compute infrastructure and stitch them together while meeting an end-to-end SLA. Our design performs a systems level TCO optimization and preliminary results show that leveraging a heterogeneous infrastructure can deliver significant TCO benefits. A preliminary surprising finding is that for some workloads a heterogeneous combination of older generation GPUs with newer accelerators can deliver similar TCO as the latest generation homogenous GPU infrastructure design, potentially extending the life of deployed infrastructure.
A Multi-Language Object-Oriented Programming Benchmark for Large Language Models
Establishing fair and robust benchmarks is essential for evaluating intelligent code generation by large language models (LLMs). Our survey of 35 existing benchmarks uncovers three major imbalances: 85.7% focus on a single programming language; 94.3% target only function-level or statement-level tasks; and over 80% include fewer than ten test cases on average. To address these gaps, we propose MultiOOP, a multi-language object-oriented programming benchmark covering six popular languages (Python, PHP, C++, C#, Java, JavaScript) with 267 tasks per language. We design a translator that extends an existing single-language OOP benchmark and the pass@o metric to a multilingual setting. Moreover, we propose an automated framework for augmenting test cases to ensure the reliability of the evaluation results. We evaluate 14 mainstream LLMs under zero-shot prompting and report three key findings: 1) Substantial performance degradation: pass@1 scores on MultiOOP drop by up to 65.6 percentage points compared to function-level tasks (e.g., HumanEval). 2) Cross-language variability: GPT-4o mini achieves pass@1 of 48.06% in Python but only 0.12%-15.26% in other languages, indicating limited multilingual generalization. 3) Conceptual gaps: pass@o scores are consistently 1.1-19.2 points lower than pass@k, demonstrating that LLMs often generate executable code without fully capturing core OOP concepts. Our benchmark, metric extensions, and evaluation scripts will be publicly released to foster a more balanced and comprehensive assessment of LLMs in object-oriented code generation. Our code and data will be released at https://github.com/alphadl/OOP-eval and https://huggingface.co/datasets/codeai-dteam/MultiOOP respectively.
Can LLMs Generate High-Quality Test Cases for Algorithm Problems? TestCase-Eval: A Systematic Evaluation of Fault Coverage and Exposure
We introduce TestCase-Eval, a new benchmark for systematic evaluation of LLMs in test-case generation. TestCase-Eval includes 500 algorithm problems and 100,000 human-crafted solutions from the Codeforces platform. It focuses on two pivotal tasks: (1) Fault Coverage, which measures how well LLM-generated test sets probe diverse input scenarios and cover a wide range of potential failure modes. (2) Fault Exposure, which evaluates whether LLMs can craft a tailored test input that reveals a specific incorrect code implementation. We provide a comprehensive assessment of 19 state-of-the-art open-source and proprietary LLMs on TestCase-Eval, offering insights into their strengths and limitations in generating effective test cases for algorithm problems.
PaperBench: Evaluating AI's Ability to Replicate AI Research
We introduce PaperBench, a benchmark evaluating the ability of AI agents to replicate state-of-the-art AI research. Agents must replicate 20 ICML 2024 Spotlight and Oral papers from scratch, including understanding paper contributions, developing a codebase, and successfully executing experiments. For objective evaluation, we develop rubrics that hierarchically decompose each replication task into smaller sub-tasks with clear grading criteria. In total, PaperBench contains 8,316 individually gradable tasks. Rubrics are co-developed with the author(s) of each ICML paper for accuracy and realism. To enable scalable evaluation, we also develop an LLM-based judge to automatically grade replication attempts against rubrics, and assess our judge's performance by creating a separate benchmark for judges. We evaluate several frontier models on PaperBench, finding that the best-performing tested agent, Claude 3.5 Sonnet (New) with open-source scaffolding, achieves an average replication score of 21.0\%. Finally, we recruit top ML PhDs to attempt a subset of PaperBench, finding that models do not yet outperform the human baseline. We https://github.com/openai/preparedness{open-source our code} to facilitate future research in understanding the AI engineering capabilities of AI agents.
Inference-Time Computations for LLM Reasoning and Planning: A Benchmark and Insights
We examine the reasoning and planning capabilities of large language models (LLMs) in solving complex tasks. Recent advances in inference-time techniques demonstrate the potential to enhance LLM reasoning without additional training by exploring intermediate steps during inference. Notably, OpenAI's o1 model shows promising performance through its novel use of multi-step reasoning and verification. Here, we explore how scaling inference-time techniques can improve reasoning and planning, focusing on understanding the tradeoff between computational cost and performance. To this end, we construct a comprehensive benchmark, known as Sys2Bench, and perform extensive experiments evaluating existing inference-time techniques on eleven diverse tasks across five categories, including arithmetic reasoning, logical reasoning, common sense reasoning, algorithmic reasoning, and planning. Our findings indicate that simply scaling inference-time computation has limitations, as no single inference-time technique consistently performs well across all reasoning and planning tasks.
SSR: Speculative Parallel Scaling Reasoning in Test-time
Large language models (LLMs) have achieved impressive results on multi-step mathematical reasoning, yet at the cost of high computational overhead. This challenge is particularly acute for test-time scaling methods such as parallel decoding, which increase answer diversity but scale poorly in efficiency. To address this efficiency-accuracy trade-off, we propose SSR (Speculative Parallel Scaling Reasoning), a training-free framework that leverages a key insight: by introducing speculative decoding at the step level, we can accelerate reasoning without sacrificing correctness. SSR integrates two components: a Selective Parallel Module (SPM) that identifies a small set of promising reasoning strategies via model-internal scoring, and Step-level Speculative Decoding (SSD), which enables efficient draft-target collaboration for fine-grained reasoning acceleration. Experiments on three mathematical benchmarks-AIME 2024, MATH-500, and LiveMathBench - demonstrate that SSR achieves strong gains over baselines. For instance, on LiveMathBench, SSR improves pass@1 accuracy by 13.84% while reducing computation to 80.5% of the baseline FLOPs. On MATH-500, SSR reduces compute to only 30% with no loss in accuracy.
Benchmark-Driven Selection of AI: Evidence from DeepSeek-R1
Evaluation of reasoning language models gained importance after it was observed that they can combine their existing capabilities into novel traces of intermediate steps before task completion and that the traces can sometimes help them to generalize better than past models. As reasoning becomes the next scaling dimension of large language models, careful study of their capabilities in critical tasks is needed. We show that better performance is not always caused by test-time algorithmic improvements or model sizes but also by using impactful benchmarks as curricula for learning. We call this benchmark-driven selection of AI and show its effects on DeepSeek-R1 using our sequential decision-making problem from Humanity's Last Exam. Steering development of AI by impactful benchmarks trades evaluation for learning and makes novelty of test tasks key for measuring generalization capabilities of reasoning models. Consequently, some benchmarks could be seen as curricula for training rather than unseen test sets.
CloudFormer: An Attention-based Performance Prediction for Public Clouds with Unknown Workload
Cloud platforms are increasingly relied upon to host diverse, resource-intensive workloads due to their scalability, flexibility, and cost-efficiency. In multi-tenant cloud environments, virtual machines are consolidated on shared physical servers to improve resource utilization. While virtualization guarantees resource partitioning for CPU, memory, and storage, it cannot ensure performance isolation. Competition for shared resources such as last-level cache, memory bandwidth, and network interfaces often leads to severe performance degradation. Existing management techniques, including VM scheduling and resource provisioning, require accurate performance prediction to mitigate interference. However, this remains challenging in public clouds due to the black-box nature of VMs and the highly dynamic nature of workloads. To address these limitations, we propose CloudFormer, a dual-branch Transformer-based model designed to predict VM performance degradation in black-box environments. CloudFormer jointly models temporal dynamics and system-level interactions, leveraging 206 system metrics at one-second resolution across both static and dynamic scenarios. This design enables the model to capture transient interference effects and adapt to varying workload conditions without scenario-specific tuning. Complementing the methodology, we provide a fine-grained dataset that significantly expands the temporal resolution and metric diversity compared to existing benchmarks. Experimental results demonstrate that CloudFormer consistently outperforms state-of-the-art baselines across multiple evaluation metrics, achieving robust generalization across diverse and previously unseen workloads. Notably, CloudFormer attains a mean absolute error (MAE) of just 7.8%, representing a substantial improvement in predictive accuracy and outperforming existing methods at least by 28%.
