Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeInternLM-XComposer: A Vision-Language Large Model for Advanced Text-image Comprehension and Composition
We propose InternLM-XComposer, a vision-language large model that enables advanced image-text comprehension and composition. The innovative nature of our model is highlighted by three appealing properties: 1) Interleaved Text-Image Composition: InternLM-XComposer can effortlessly generate coherent and contextual articles that seamlessly integrate images, providing a more engaging and immersive reading experience. Simply provide a title, and our system will generate the corresponding manuscript. It can intelligently identify the areas in the text where images would enhance the content and automatically insert the most appropriate visual candidates. 2) Comprehension with Rich Multilingual Knowledge: The text-image comprehension is empowered by training on extensive multi-modal multilingual concepts with carefully crafted strategies, resulting in a deep understanding of visual content. 3) State-of-the-art Performance: Our model consistently achieves state-of-the-art results across various mainstream benchmarks for vision-language foundational models, including MME Benchmark, MMBench, MMBench-CN, Seed-Bench, and CCBench (Chinese Cultural Benchmark). Collectively, InternLM-XComposer seamlessly blends advanced text-image comprehension and composition, revolutionizing vision-language interaction and offering new insights and opportunities. The InternLM-XComposer model series with 7B parameters are publicly available at https://github.com/InternLM/InternLM-XComposer.
PDV: Prompt Directional Vectors for Zero-shot Composed Image Retrieval
Zero-shot composed image retrieval (ZS-CIR) enables image search using a reference image and text prompt without requiring specialized text-image composition networks trained on large-scale paired data. However, current ZS-CIR approaches face three critical limitations in their reliance on composed text embeddings: static query embedding representations, insufficient utilization of image embeddings, and suboptimal performance when fusing text and image embeddings. To address these challenges, we introduce the Prompt Directional Vector (PDV), a simple yet effective training-free enhancement that captures semantic modifications induced by user prompts. PDV enables three key improvements: (1) dynamic composed text embeddings where prompt adjustments are controllable via a scaling factor, (2) composed image embeddings through semantic transfer from text prompts to image features, and (3) weighted fusion of composed text and image embeddings that enhances retrieval by balancing visual and semantic similarity. Our approach serves as a plug-and-play enhancement for existing ZS-CIR methods with minimal computational overhead. Extensive experiments across multiple benchmarks demonstrate that PDV consistently improves retrieval performance when integrated with state-of-the-art ZS-CIR approaches, particularly for methods that generate accurate compositional embeddings. The code will be publicly available.
InternLM-XComposer-2.5: A Versatile Large Vision Language Model Supporting Long-Contextual Input and Output
We present InternLM-XComposer-2.5 (IXC-2.5), a versatile large-vision language model that supports long-contextual input and output. IXC-2.5 excels in various text-image comprehension and composition applications, achieving GPT-4V level capabilities with merely 7B LLM backend. Trained with 24K interleaved image-text contexts, it can seamlessly extend to 96K long contexts via RoPE extrapolation. This long-context capability allows IXC-2.5 to excel in tasks requiring extensive input and output contexts. Compared to its previous 2.0 version, InternLM-XComposer-2.5 features three major upgrades in vision-language comprehension: (1) Ultra-High Resolution Understanding, (2) Fine-Grained Video Understanding, and (3) Multi-Turn Multi-Image Dialogue. In addition to comprehension, IXC-2.5 extends to two compelling applications using extra LoRA parameters for text-image composition: (1) Crafting Webpages and (2) Composing High-Quality Text-Image Articles. IXC-2.5 has been evaluated on 28 benchmarks, outperforming existing open-source state-of-the-art models on 16 benchmarks. It also surpasses or competes closely with GPT-4V and Gemini Pro on 16 key tasks. The InternLM-XComposer-2.5 is publicly available at https://github.com/InternLM/InternLM-XComposer.
Improving Compositional Text-to-image Generation with Large Vision-Language Models
Recent advancements in text-to-image models, particularly diffusion models, have shown significant promise. However, compositional text-to-image models frequently encounter difficulties in generating high-quality images that accurately align with input texts describing multiple objects, variable attributes, and intricate spatial relationships. To address this limitation, we employ large vision-language models (LVLMs) for multi-dimensional assessment of the alignment between generated images and their corresponding input texts. Utilizing this assessment, we fine-tune the diffusion model to enhance its alignment capabilities. During the inference phase, an initial image is produced using the fine-tuned diffusion model. The LVLM is then employed to pinpoint areas of misalignment in the initial image, which are subsequently corrected using the image editing algorithm until no further misalignments are detected by the LVLM. The resultant image is consequently more closely aligned with the input text. Our experimental results validate that the proposed methodology significantly improves text-image alignment in compositional image generation, particularly with respect to object number, attribute binding, spatial relationships, and aesthetic quality.
Training-Free Structured Diffusion Guidance for Compositional Text-to-Image Synthesis
Large-scale diffusion models have achieved state-of-the-art results on text-to-image synthesis (T2I) tasks. Despite their ability to generate high-quality yet creative images, we observe that attribution-binding and compositional capabilities are still considered major challenging issues, especially when involving multiple objects. In this work, we improve the compositional skills of T2I models, specifically more accurate attribute binding and better image compositions. To do this, we incorporate linguistic structures with the diffusion guidance process based on the controllable properties of manipulating cross-attention layers in diffusion-based T2I models. We observe that keys and values in cross-attention layers have strong semantic meanings associated with object layouts and content. Therefore, we can better preserve the compositional semantics in the generated image by manipulating the cross-attention representations based on linguistic insights. Built upon Stable Diffusion, a SOTA T2I model, our structured cross-attention design is efficient that requires no additional training samples. We achieve better compositional skills in qualitative and quantitative results, leading to a 5-8% advantage in head-to-head user comparison studies. Lastly, we conduct an in-depth analysis to reveal potential causes of incorrect image compositions and justify the properties of cross-attention layers in the generation process.
Does FLUX Already Know How to Perform Physically Plausible Image Composition?
Image composition aims to seamlessly insert a user-specified object into a new scene, but existing models struggle with complex lighting (e.g., accurate shadows, water reflections) and diverse, high-resolution inputs. Modern text-to-image diffusion models (e.g., SD3.5, FLUX) already encode essential physical and resolution priors, yet lack a framework to unleash them without resorting to latent inversion, which often locks object poses into contextually inappropriate orientations, or brittle attention surgery. We propose SHINE, a training-free framework for Seamless, High-fidelity Insertion with Neutralized Errors. SHINE introduces manifold-steered anchor loss, leveraging pretrained customization adapters (e.g., IP-Adapter) to guide latents for faithful subject representation while preserving background integrity. Degradation-suppression guidance and adaptive background blending are proposed to further eliminate low-quality outputs and visible seams. To address the lack of rigorous benchmarks, we introduce ComplexCompo, featuring diverse resolutions and challenging conditions such as low lighting, strong illumination, intricate shadows, and reflective surfaces. Experiments on ComplexCompo and DreamEditBench show state-of-the-art performance on standard metrics (e.g., DINOv2) and human-aligned scores (e.g., DreamSim, ImageReward, VisionReward). Code and benchmark will be publicly available upon publication.
TALE: Training-free Cross-domain Image Composition via Adaptive Latent Manipulation and Energy-guided Optimization
We present TALE, a novel training-free framework harnessing the generative capabilities of text-to-image diffusion models to address the cross-domain image composition task that focuses on flawlessly incorporating user-specified objects into a designated visual contexts regardless of domain disparity. Previous methods often involve either training auxiliary networks or finetuning diffusion models on customized datasets, which are expensive and may undermine the robust textual and visual priors of pre-trained diffusion models. Some recent works attempt to break the barrier by proposing training-free workarounds that rely on manipulating attention maps to tame the denoising process implicitly. However, composing via attention maps does not necessarily yield desired compositional outcomes. These approaches could only retain some semantic information and usually fall short in preserving identity characteristics of input objects or exhibit limited background-object style adaptation in generated images. In contrast, TALE is a novel method that operates directly on latent space to provide explicit and effective guidance for the composition process to resolve these problems. Specifically, we equip TALE with two mechanisms dubbed Adaptive Latent Manipulation and Energy-guided Latent Optimization. The former formulates noisy latents conducive to initiating and steering the composition process by directly leveraging background and foreground latents at corresponding timesteps, and the latter exploits designated energy functions to further optimize intermediate latents conforming to specific conditions that complement the former to generate desired final results. Our experiments demonstrate that TALE surpasses prior baselines and attains state-of-the-art performance in image-guided composition across various photorealistic and artistic domains.
Good Seed Makes a Good Crop: Discovering Secret Seeds in Text-to-Image Diffusion Models
Recent advances in text-to-image (T2I) diffusion models have facilitated creative and photorealistic image synthesis. By varying the random seeds, we can generate various images for a fixed text prompt. Technically, the seed controls the initial noise and, in multi-step diffusion inference, the noise used for reparameterization at intermediate timesteps in the reverse diffusion process. However, the specific impact of the random seed on the generated images remains relatively unexplored. In this work, we conduct a large-scale scientific study into the impact of random seeds during diffusion inference. Remarkably, we reveal that the best 'golden' seed achieved an impressive FID of 21.60, compared to the worst 'inferior' seed's FID of 31.97. Additionally, a classifier can predict the seed number used to generate an image with over 99.9% accuracy in just a few epochs, establishing that seeds are highly distinguishable based on generated images. Encouraged by these findings, we examined the influence of seeds on interpretable visual dimensions. We find that certain seeds consistently produce grayscale images, prominent sky regions, or image borders. Seeds also affect image composition, including object location, size, and depth. Moreover, by leveraging these 'golden' seeds, we demonstrate improved image generation such as high-fidelity inference and diversified sampling. Our investigation extends to inpainting tasks, where we uncover some seeds that tend to insert unwanted text artifacts. Overall, our extensive analyses highlight the importance of selecting good seeds and offer practical utility for image generation.
Unpacking SDXL Turbo: Interpreting Text-to-Image Models with Sparse Autoencoders
Sparse autoencoders (SAEs) have become a core ingredient in the reverse engineering of large-language models (LLMs). For LLMs, they have been shown to decompose intermediate representations that often are not interpretable directly into sparse sums of interpretable features, facilitating better control and subsequent analysis. However, similar analyses and approaches have been lacking for text-to-image models. We investigated the possibility of using SAEs to learn interpretable features for a few-step text-to-image diffusion models, such as SDXL Turbo. To this end, we train SAEs on the updates performed by transformer blocks within SDXL Turbo's denoising U-net. We find that their learned features are interpretable, causally influence the generation process, and reveal specialization among the blocks. In particular, we find one block that deals mainly with image composition, one that is mainly responsible for adding local details, and one for color, illumination, and style. Therefore, our work is an important first step towards better understanding the internals of generative text-to-image models like SDXL Turbo and showcases the potential of features learned by SAEs for the visual domain. Code is available at https://github.com/surkovv/sdxl-unbox
ELBO-T2IAlign: A Generic ELBO-Based Method for Calibrating Pixel-level Text-Image Alignment in Diffusion Models
Diffusion models excel at image generation. Recent studies have shown that these models not only generate high-quality images but also encode text-image alignment information through attention maps or loss functions. This information is valuable for various downstream tasks, including segmentation, text-guided image editing, and compositional image generation. However, current methods heavily rely on the assumption of perfect text-image alignment in diffusion models, which is not the case. In this paper, we propose using zero-shot referring image segmentation as a proxy task to evaluate the pixel-level image and class-level text alignment of popular diffusion models. We conduct an in-depth analysis of pixel-text misalignment in diffusion models from the perspective of training data bias. We find that misalignment occurs in images with small sized, occluded, or rare object classes. Therefore, we propose ELBO-T2IAlign, a simple yet effective method to calibrate pixel-text alignment in diffusion models based on the evidence lower bound (ELBO) of likelihood. Our method is training-free and generic, eliminating the need to identify the specific cause of misalignment and works well across various diffusion model architectures. Extensive experiments on commonly used benchmark datasets on image segmentation and generation have verified the effectiveness of our proposed calibration approach.
Multimodal Large Language Model is a Human-Aligned Annotator for Text-to-Image Generation
Recent studies have demonstrated the exceptional potentials of leveraging human preference datasets to refine text-to-image generative models, enhancing the alignment between generated images and textual prompts. Despite these advances, current human preference datasets are either prohibitively expensive to construct or suffer from a lack of diversity in preference dimensions, resulting in limited applicability for instruction tuning in open-source text-to-image generative models and hinder further exploration. To address these challenges and promote the alignment of generative models through instruction tuning, we leverage multimodal large language models to create VisionPrefer, a high-quality and fine-grained preference dataset that captures multiple preference aspects. We aggregate feedback from AI annotators across four aspects: prompt-following, aesthetic, fidelity, and harmlessness to construct VisionPrefer. To validate the effectiveness of VisionPrefer, we train a reward model VP-Score over VisionPrefer to guide the training of text-to-image generative models and the preference prediction accuracy of VP-Score is comparable to human annotators. Furthermore, we use two reinforcement learning methods to supervised fine-tune generative models to evaluate the performance of VisionPrefer, and extensive experimental results demonstrate that VisionPrefer significantly improves text-image alignment in compositional image generation across diverse aspects, e.g., aesthetic, and generalizes better than previous human-preference metrics across various image distributions. Moreover, VisionPrefer indicates that the integration of AI-generated synthetic data as a supervisory signal is a promising avenue for achieving improved alignment with human preferences in vision generative models.
AltCanvas: A Tile-Based Image Editor with Generative AI for Blind or Visually Impaired People
People with visual impairments often struggle to create content that relies heavily on visual elements, particularly when conveying spatial and structural information. Existing accessible drawing tools, which construct images line by line, are suitable for simple tasks like math but not for more expressive artwork. On the other hand, emerging generative AI-based text-to-image tools can produce expressive illustrations from descriptions in natural language, but they lack precise control over image composition and properties. To address this gap, our work integrates generative AI with a constructive approach that provides users with enhanced control and editing capabilities. Our system, AltCanvas, features a tile-based interface enabling users to construct visual scenes incrementally, with each tile representing an object within the scene. Users can add, edit, move, and arrange objects while receiving speech and audio feedback. Once completed, the scene can be rendered as a color illustration or as a vector for tactile graphic generation. Involving 14 blind or low-vision users in design and evaluation, we found that participants effectively used the AltCanvas workflow to create illustrations.
Seedream 4.0: Toward Next-generation Multimodal Image Generation
We introduce Seedream 4.0, an efficient and high-performance multimodal image generation system that unifies text-to-image (T2I) synthesis, image editing, and multi-image composition within a single framework. We develop a highly efficient diffusion transformer with a powerful VAE which also can reduce the number of image tokens considerably. This allows for efficient training of our model, and enables it to fast generate native high-resolution images (e.g., 1K-4K). Seedream 4.0 is pretrained on billions of text-image pairs spanning diverse taxonomies and knowledge-centric concepts. Comprehensive data collection across hundreds of vertical scenarios, coupled with optimized strategies, ensures stable and large-scale training, with strong generalization. By incorporating a carefully fine-tuned VLM model, we perform multi-modal post-training for training both T2I and image editing tasks jointly. For inference acceleration, we integrate adversarial distillation, distribution matching, and quantization, as well as speculative decoding. It achieves an inference time of up to 1.8 seconds for generating a 2K image (without a LLM/VLM as PE model). Comprehensive evaluations reveal that Seedream 4.0 can achieve state-of-the-art results on both T2I and multimodal image editing. In particular, it demonstrates exceptional multimodal capabilities in complex tasks, including precise image editing and in-context reasoning, and also allows for multi-image reference, and can generate multiple output images. This extends traditional T2I systems into an more interactive and multidimensional creative tool, pushing the boundary of generative AI for both creativity and professional applications. Seedream 4.0 is now accessible on https://www.volcengine.com/experience/ark?launch=seedream.
Compositional Text-to-Image Generation with Dense Blob Representations
Existing text-to-image models struggle to follow complex text prompts, raising the need for extra grounding inputs for better controllability. In this work, we propose to decompose a scene into visual primitives - denoted as dense blob representations - that contain fine-grained details of the scene while being modular, human-interpretable, and easy-to-construct. Based on blob representations, we develop a blob-grounded text-to-image diffusion model, termed BlobGEN, for compositional generation. Particularly, we introduce a new masked cross-attention module to disentangle the fusion between blob representations and visual features. To leverage the compositionality of large language models (LLMs), we introduce a new in-context learning approach to generate blob representations from text prompts. Our extensive experiments show that BlobGEN achieves superior zero-shot generation quality and better layout-guided controllability on MS-COCO. When augmented by LLMs, our method exhibits superior numerical and spatial correctness on compositional image generation benchmarks. Project page: https://blobgen-2d.github.io.
ComCLIP: Training-Free Compositional Image and Text Matching
Contrastive Language-Image Pretraining (CLIP) has demonstrated great zero-shot performance for matching images and text. However, it is still challenging to adapt vision-lanaguage pretrained models like CLIP to compositional image and text matching -- a more challenging image and text matching task requiring the model understanding of compositional word concepts and visual components. Towards better compositional generalization in zero-shot image and text matching, in this paper, we study the problem from a causal perspective: the erroneous semantics of individual entities are essentially confounders that cause the matching failure. Therefore, we propose a novel \textit{training-free} compositional CLIP model (ComCLIP). ComCLIP disentangles input images into subjects, objects, and action sub-images and composes CLIP's vision encoder and text encoder to perform evolving matching over compositional text embedding and sub-image embeddings. In this way, ComCLIP can mitigate spurious correlations introduced by the pretrained CLIP models and dynamically evaluate the importance of each component. Experiments on four compositional image-text matching datasets: SVO, ComVG, Winoground, and VL-checklist, and two general image-text retrieval datasets: Flick30K, and MSCOCO demonstrate the effectiveness of our plug-and-play method, which boosts the \textit{zero-shot} inference ability of CLIP, SLIP, and BLIP2 even without further training or fine-tuning. Our codes can be found at https://github.com/eric-ai-lab/ComCLIP.
Understanding and Mitigating Compositional Issues in Text-to-Image Generative Models
Recent text-to-image diffusion-based generative models have the stunning ability to generate highly detailed and photo-realistic images and achieve state-of-the-art low FID scores on challenging image generation benchmarks. However, one of the primary failure modes of these text-to-image generative models is in composing attributes, objects, and their associated relationships accurately into an image. In our paper, we investigate this compositionality-based failure mode and highlight that imperfect text conditioning with CLIP text-encoder is one of the primary reasons behind the inability of these models to generate high-fidelity compositional scenes. In particular, we show that (i) there exists an optimal text-embedding space that can generate highly coherent compositional scenes which shows that the output space of the CLIP text-encoder is sub-optimal, and (ii) we observe that the final token embeddings in CLIP are erroneous as they often include attention contributions from unrelated tokens in compositional prompts. Our main finding shows that the best compositional improvements can be achieved (without harming the model's FID scores) by fine-tuning {\it only} a simple linear projection on CLIP's representation space in Stable-Diffusion variants using a small set of compositional image-text pairs. This result demonstrates that the sub-optimality of the CLIP's output space is a major error source. We also show that re-weighting the erroneous attention contributions in CLIP can also lead to improved compositional performances, however these improvements are often less significant than those achieved by solely learning a linear projection head, highlighting erroneous attentions to be only a minor error source.
S$^2$Edit: Text-Guided Image Editing with Precise Semantic and Spatial Control
Recent advances in diffusion models have enabled high-quality generation and manipulation of images guided by texts, as well as concept learning from images. However, naive applications of existing methods to editing tasks that require fine-grained control, e.g., face editing, often lead to suboptimal solutions with identity information and high-frequency details lost during the editing process, or irrelevant image regions altered due to entangled concepts. In this work, we propose S^2Edit, a novel method based on a pre-trained text-to-image diffusion model that enables personalized editing with precise semantic and spatial control. We first fine-tune our model to embed the identity information into a learnable text token. During fine-tuning, we disentangle the learned identity token from attributes to be edited by enforcing an orthogonality constraint in the textual feature space. To ensure that the identity token only affects regions of interest, we apply object masks to guide the cross-attention maps. At inference time, our method performs localized editing while faithfully preserving the original identity with semantically disentangled and spatially focused identity token learned. Extensive experiments demonstrate the superiority of S^2Edit over state-of-the-art methods both quantitatively and qualitatively. Additionally, we showcase several compositional image editing applications of S^2Edit such as makeup transfer.
OSPO: Object-centric Self-improving Preference Optimization for Text-to-Image Generation
Recent advances in Multimodal Large Language Models (MLLMs) have enabled models to perform both understanding and generation of multimodal data in a unified manner. However, achieving a fine-grained alignment between input prompts and generated images remains a major challenge especially in text-to-image generation. Therefore, recent works have introduced self-improving mechanisms based on self-generated data and self-feedback to efficiently mitigate this challenge without relying on external large-scale data or models. However, existing self-improving approaches have not focused on fine-grained visual details especially at the object level in generating training data or providing a feedback, and thus they still struggle to resolve the object hallucination problem in text-to-image generation. To tackle this problem, we propose an Object-centric Self-improving Preference Optimization (OSPO), a self-improving framework for enhancing object-level text-image alignment. OSPO is designed to explicitly address the need for constructing and leveraging object-level hard negative data and an object-centric optimization in improving object-specific fidelity. In specific, OSPO consists of: (1) Initial Prompt Generation (2) Hard Preference Pair Generation (3) Filtering and Selection (4) Object-centric Preference Optimization with Conditional Preference Loss. Extensive experiments on compositional image generation benchmarks demonstrate that OSPO significantly improves fine-grained alignment in text-to-image generation, surpassing not only prior self-improving methods but also diffusion-based specialized image generation models.
VideoComp: Advancing Fine-Grained Compositional and Temporal Alignment in Video-Text Models
We introduce VideoComp, a benchmark and learning framework for advancing video-text compositionality understanding, aimed at improving vision-language models (VLMs) in fine-grained temporal alignment. Unlike existing benchmarks focused on static image-text compositionality or isolated single-event videos, our benchmark targets alignment in continuous multi-event videos. Leveraging video-text datasets with temporally localized event captions (e.g. ActivityNet-Captions, YouCook2), we construct two compositional benchmarks, ActivityNet-Comp and YouCook2-Comp. We create challenging negative samples with subtle temporal disruptions such as reordering, action word replacement, partial captioning, and combined disruptions. These benchmarks comprehensively test models' compositional sensitivity across extended, cohesive video-text sequences. To improve model performance, we propose a hierarchical pairwise preference loss that strengthens alignment with temporally accurate pairs and gradually penalizes increasingly disrupted ones, encouraging fine-grained compositional learning. To mitigate the limited availability of densely annotated video data, we introduce a pretraining strategy that concatenates short video-caption pairs to simulate multi-event sequences. We evaluate video-text foundational models and large multimodal models (LMMs) on our benchmark, identifying both strengths and areas for improvement in compositionality. Overall, our work provides a comprehensive framework for evaluating and enhancing model capabilities in achieving fine-grained, temporally coherent video-text alignment.
Object-level Visual Prompts for Compositional Image Generation
We introduce a method for composing object-level visual prompts within a text-to-image diffusion model. Our approach addresses the task of generating semantically coherent compositions across diverse scenes and styles, similar to the versatility and expressiveness offered by text prompts. A key challenge in this task is to preserve the identity of the objects depicted in the input visual prompts, while also generating diverse compositions across different images. To address this challenge, we introduce a new KV-mixed cross-attention mechanism, in which keys and values are learned from distinct visual representations. The keys are derived from an encoder with a small bottleneck for layout control, whereas the values come from a larger bottleneck encoder that captures fine-grained appearance details. By mixing keys and values from these complementary sources, our model preserves the identity of the visual prompts while supporting flexible variations in object arrangement, pose, and composition. During inference, we further propose object-level compositional guidance to improve the method's identity preservation and layout correctness. Results show that our technique produces diverse scene compositions that preserve the unique characteristics of each visual prompt, expanding the creative potential of text-to-image generation.
Vision-by-Language for Training-Free Compositional Image Retrieval
Given an image and a target modification (e.g an image of the Eiffel tower and the text "without people and at night-time"), Compositional Image Retrieval (CIR) aims to retrieve the relevant target image in a database. While supervised approaches rely on annotating triplets that is costly (i.e. query image, textual modification, and target image), recent research sidesteps this need by using large-scale vision-language models (VLMs), performing Zero-Shot CIR (ZS-CIR). However, state-of-the-art approaches in ZS-CIR still require training task-specific, customized models over large amounts of image-text pairs. In this work, we propose to tackle CIR in a training-free manner via our Compositional Image Retrieval through Vision-by-Language (CIReVL), a simple, yet human-understandable and scalable pipeline that effectively recombines large-scale VLMs with large language models (LLMs). By captioning the reference image using a pre-trained generative VLM and asking a LLM to recompose the caption based on the textual target modification for subsequent retrieval via e.g. CLIP, we achieve modular language reasoning. In four ZS-CIR benchmarks, we find competitive, in-part state-of-the-art performance - improving over supervised methods. Moreover, the modularity of CIReVL offers simple scalability without re-training, allowing us to both investigate scaling laws and bottlenecks for ZS-CIR while easily scaling up to in parts more than double of previously reported results. Finally, we show that CIReVL makes CIR human-understandable by composing image and text in a modular fashion in the language domain, thereby making it intervenable, allowing to post-hoc re-align failure cases. Code will be released upon acceptance.
LAION-SG: An Enhanced Large-Scale Dataset for Training Complex Image-Text Models with Structural Annotations
Recent advances in text-to-image (T2I) generation have shown remarkable success in producing high-quality images from text. However, existing T2I models show decayed performance in compositional image generation involving multiple objects and intricate relationships. We attribute this problem to limitations in existing datasets of image-text pairs, which lack precise inter-object relationship annotations with prompts only. To address this problem, we construct LAION-SG, a large-scale dataset with high-quality structural annotations of scene graphs (SG), which precisely describe attributes and relationships of multiple objects, effectively representing the semantic structure in complex scenes. Based on LAION-SG, we train a new foundation model SDXL-SG to incorporate structural annotation information into the generation process. Extensive experiments show advanced models trained on our LAION-SG boast significant performance improvements in complex scene generation over models on existing datasets. We also introduce CompSG-Bench, a benchmark that evaluates models on compositional image generation, establishing a new standard for this domain.
ComposeAnything: Composite Object Priors for Text-to-Image Generation
Generating images from text involving complex and novel object arrangements remains a significant challenge for current text-to-image (T2I) models. Although prior layout-based methods improve object arrangements using spatial constraints with 2D layouts, they often struggle to capture 3D positioning and sacrifice quality and coherence. In this work, we introduce ComposeAnything, a novel framework for improving compositional image generation without retraining existing T2I models. Our approach first leverages the chain-of-thought reasoning abilities of LLMs to produce 2.5D semantic layouts from text, consisting of 2D object bounding boxes enriched with depth information and detailed captions. Based on this layout, we generate a spatial and depth aware coarse composite of objects that captures the intended composition, serving as a strong and interpretable prior that replaces stochastic noise initialization in diffusion-based T2I models. This prior guides the denoising process through object prior reinforcement and spatial-controlled denoising, enabling seamless generation of compositional objects and coherent backgrounds, while allowing refinement of inaccurate priors. ComposeAnything outperforms state-of-the-art methods on the T2I-CompBench and NSR-1K benchmarks for prompts with 2D/3D spatial arrangements, high object counts, and surreal compositions. Human evaluations further demonstrate that our model generates high-quality images with compositions that faithfully reflect the text.
GenEval: An Object-Focused Framework for Evaluating Text-to-Image Alignment
Recent breakthroughs in diffusion models, multimodal pretraining, and efficient finetuning have led to an explosion of text-to-image generative models. Given human evaluation is expensive and difficult to scale, automated methods are critical for evaluating the increasingly large number of new models. However, most current automated evaluation metrics like FID or CLIPScore only offer a holistic measure of image quality or image-text alignment, and are unsuited for fine-grained or instance-level analysis. In this paper, we introduce GenEval, an object-focused framework to evaluate compositional image properties such as object co-occurrence, position, count, and color. We show that current object detection models can be leveraged to evaluate text-to-image models on a variety of generation tasks with strong human agreement, and that other discriminative vision models can be linked to this pipeline to further verify properties like object color. We then evaluate several open-source text-to-image models and analyze their relative generative capabilities on our benchmark. We find that recent models demonstrate significant improvement on these tasks, though they are still lacking in complex capabilities such as spatial relations and attribute binding. Finally, we demonstrate how GenEval might be used to help discover existing failure modes, in order to inform development of the next generation of text-to-image models. Our code to run the GenEval framework is publicly available at https://github.com/djghosh13/geneval.
Inversion-DPO: Precise and Efficient Post-Training for Diffusion Models
Recent advancements in diffusion models (DMs) have been propelled by alignment methods that post-train models to better conform to human preferences. However, these approaches typically require computation-intensive training of a base model and a reward model, which not only incurs substantial computational overhead but may also compromise model accuracy and training efficiency. To address these limitations, we propose Inversion-DPO, a novel alignment framework that circumvents reward modeling by reformulating Direct Preference Optimization (DPO) with DDIM inversion for DMs. Our method conducts intractable posterior sampling in Diffusion-DPO with the deterministic inversion from winning and losing samples to noise and thus derive a new post-training paradigm. This paradigm eliminates the need for auxiliary reward models or inaccurate appromixation, significantly enhancing both precision and efficiency of training. We apply Inversion-DPO to a basic task of text-to-image generation and a challenging task of compositional image generation. Extensive experiments show substantial performance improvements achieved by Inversion-DPO compared to existing post-training methods and highlight the ability of the trained generative models to generate high-fidelity compositionally coherent images. For the post-training of compostitional image geneation, we curate a paired dataset consisting of 11,140 images with complex structural annotations and comprehensive scores, designed to enhance the compositional capabilities of generative models. Inversion-DPO explores a new avenue for efficient, high-precision alignment in diffusion models, advancing their applicability to complex realistic generation tasks. Our code is available at https://github.com/MIGHTYEZ/Inversion-DPO
DreamCom: Finetuning Text-guided Inpainting Model for Image Composition
The goal of image composition is merging a foreground object into a background image to obtain a realistic composite image. Recently, generative composition methods are built on large pretrained diffusion models, due to their unprecedented image generation ability. They train a model on abundant pairs of foregrounds and backgrounds, so that it can be directly applied to a new pair of foreground and background at test time. However, the generated results often lose the foreground details and exhibit noticeable artifacts. In this work, we propose an embarrassingly simple approach named DreamCom inspired by DreamBooth. Specifically, given a few reference images for a subject, we finetune text-guided inpainting diffusion model to associate this subject with a special token and inpaint this subject in the specified bounding box. We also construct a new dataset named MureCom well-tailored for this task.
Training-free Subject-Enhanced Attention Guidance for Compositional Text-to-image Generation
Existing subject-driven text-to-image generation models suffer from tedious fine-tuning steps and struggle to maintain both text-image alignment and subject fidelity. For generating compositional subjects, it often encounters problems such as object missing and attribute mixing, where some subjects in the input prompt are not generated or their attributes are incorrectly combined. To address these limitations, we propose a subject-driven generation framework and introduce training-free guidance to intervene in the generative process during inference time. This approach strengthens the attention map, allowing for precise attribute binding and feature injection for each subject. Notably, our method exhibits exceptional zero-shot generation ability, especially in the challenging task of compositional generation. Furthermore, we propose a novel metric GroundingScore to evaluate subject alignment thoroughly. The obtained quantitative results serve as compelling evidence showcasing the effectiveness of our proposed method. The code will be released soon.
SILMM: Self-Improving Large Multimodal Models for Compositional Text-to-Image Generation
Large Multimodal Models (LMMs) have demonstrated impressive capabilities in multimodal understanding and generation, pushing forward advancements in text-to-image generation. However, achieving accurate text-image alignment for LMMs, particularly in compositional scenarios, remains challenging. Existing approaches, such as layout planning for multi-step generation and learning from human feedback or AI feedback, depend heavily on prompt engineering, costly human annotations, and continual upgrading, limiting flexibility and scalability. In this work, we introduce a model-agnostic iterative self-improvement framework (SILMM) that can enable LMMs to provide helpful and scalable self-feedback and optimize text-image alignment via Direct Preference Optimization (DPO). DPO can readily applied to LMMs that use discrete visual tokens as intermediate image representations; while it is less suitable for LMMs with continuous visual features, as obtaining generation probabilities is challenging. To adapt SILMM to LMMs with continuous features, we propose a diversity mechanism to obtain diverse representations and a kernel-based continuous DPO for alignment. Extensive experiments on three compositional text-to-image generation benchmarks validate the effectiveness and superiority of SILMM, showing improvements exceeding 30% on T2I-CompBench++ and around 20% on DPG-Bench.
ComplexBench-Edit: Benchmarking Complex Instruction-Driven Image Editing via Compositional Dependencies
Text-driven image editing has achieved remarkable success in following single instructions. However, real-world scenarios often involve complex, multi-step instructions, particularly ``chain'' instructions where operations are interdependent. Current models struggle with these intricate directives, and existing benchmarks inadequately evaluate such capabilities. Specifically, they often overlook multi-instruction and chain-instruction complexities, and common consistency metrics are flawed. To address this, we introduce ComplexBench-Edit, a novel benchmark designed to systematically assess model performance on complex, multi-instruction, and chain-dependent image editing tasks. ComplexBench-Edit also features a new vision consistency evaluation method that accurately assesses non-modified regions by excluding edited areas. Furthermore, we propose a simple yet powerful Chain-of-Thought (CoT)-based approach that significantly enhances the ability of existing models to follow complex instructions. Our extensive experiments demonstrate ComplexBench-Edit's efficacy in differentiating model capabilities and highlight the superior performance of our CoT-based method in handling complex edits. The data and code are released at https://github.com/llllly26/ComplexBench-Edit.
Multi-LoRA Composition for Image Generation
Low-Rank Adaptation (LoRA) is extensively utilized in text-to-image models for the accurate rendition of specific elements like distinct characters or unique styles in generated images. Nonetheless, existing methods face challenges in effectively composing multiple LoRAs, especially as the number of LoRAs to be integrated grows, thus hindering the creation of complex imagery. In this paper, we study multi-LoRA composition through a decoding-centric perspective. We present two training-free methods: LoRA Switch, which alternates between different LoRAs at each denoising step, and LoRA Composite, which simultaneously incorporates all LoRAs to guide more cohesive image synthesis. To evaluate the proposed approaches, we establish ComposLoRA, a new comprehensive testbed as part of this research. It features a diverse range of LoRA categories with 480 composition sets. Utilizing an evaluation framework based on GPT-4V, our findings demonstrate a clear improvement in performance with our methods over the prevalent baseline, particularly evident when increasing the number of LoRAs in a composition.
TF-ICON: Diffusion-Based Training-Free Cross-Domain Image Composition
Text-driven diffusion models have exhibited impressive generative capabilities, enabling various image editing tasks. In this paper, we propose TF-ICON, a novel Training-Free Image COmpositioN framework that harnesses the power of text-driven diffusion models for cross-domain image-guided composition. This task aims to seamlessly integrate user-provided objects into a specific visual context. Current diffusion-based methods often involve costly instance-based optimization or finetuning of pretrained models on customized datasets, which can potentially undermine their rich prior. In contrast, TF-ICON can leverage off-the-shelf diffusion models to perform cross-domain image-guided composition without requiring additional training, finetuning, or optimization. Moreover, we introduce the exceptional prompt, which contains no information, to facilitate text-driven diffusion models in accurately inverting real images into latent representations, forming the basis for compositing. Our experiments show that equipping Stable Diffusion with the exceptional prompt outperforms state-of-the-art inversion methods on various datasets (CelebA-HQ, COCO, and ImageNet), and that TF-ICON surpasses prior baselines in versatile visual domains. Code is available at https://github.com/Shilin-LU/TF-ICON
Concept Weaver: Enabling Multi-Concept Fusion in Text-to-Image Models
While there has been significant progress in customizing text-to-image generation models, generating images that combine multiple personalized concepts remains challenging. In this work, we introduce Concept Weaver, a method for composing customized text-to-image diffusion models at inference time. Specifically, the method breaks the process into two steps: creating a template image aligned with the semantics of input prompts, and then personalizing the template using a concept fusion strategy. The fusion strategy incorporates the appearance of the target concepts into the template image while retaining its structural details. The results indicate that our method can generate multiple custom concepts with higher identity fidelity compared to alternative approaches. Furthermore, the method is shown to seamlessly handle more than two concepts and closely follow the semantic meaning of the input prompt without blending appearances across different subjects.
Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs
Diffusion models have exhibit exceptional performance in text-to-image generation and editing. However, existing methods often face challenges when handling complex text prompts that involve multiple objects with multiple attributes and relationships. In this paper, we propose a brand new training-free text-to-image generation/editing framework, namely Recaption, Plan and Generate (RPG), harnessing the powerful chain-of-thought reasoning ability of multimodal LLMs to enhance the compositionality of text-to-image diffusion models. Our approach employs the MLLM as a global planner to decompose the process of generating complex images into multiple simpler generation tasks within subregions. We propose complementary regional diffusion to enable region-wise compositional generation. Furthermore, we integrate text-guided image generation and editing within the proposed RPG in a closed-loop fashion, thereby enhancing generalization ability. Extensive experiments demonstrate our RPG outperforms state-of-the-art text-to-image diffusion models, including DALL-E 3 and SDXL, particularly in multi-category object composition and text-image semantic alignment. Notably, our RPG framework exhibits wide compatibility with various MLLM architectures (e.g., MiniGPT-4) and diffusion backbones (e.g., ControlNet). Our code is available at: https://github.com/YangLing0818/RPG-DiffusionMaster
UNCAGE: Contrastive Attention Guidance for Masked Generative Transformers in Text-to-Image Generation
Text-to-image (T2I) generation has been actively studied using Diffusion Models and Autoregressive Models. Recently, Masked Generative Transformers have gained attention as an alternative to Autoregressive Models to overcome the inherent limitations of causal attention and autoregressive decoding through bidirectional attention and parallel decoding, enabling efficient and high-quality image generation. However, compositional T2I generation remains challenging, as even state-of-the-art Diffusion Models often fail to accurately bind attributes and achieve proper text-image alignment. While Diffusion Models have been extensively studied for this issue, Masked Generative Transformers exhibit similar limitations but have not been explored in this context. To address this, we propose Unmasking with Contrastive Attention Guidance (UNCAGE), a novel training-free method that improves compositional fidelity by leveraging attention maps to prioritize the unmasking of tokens that clearly represent individual objects. UNCAGE consistently improves performance in both quantitative and qualitative evaluations across multiple benchmarks and metrics, with negligible inference overhead. Our code is available at https://github.com/furiosa-ai/uncage.
What You See is What You Read? Improving Text-Image Alignment Evaluation
Automatically determining whether a text and a corresponding image are semantically aligned is a significant challenge for vision-language models, with applications in generative text-to-image and image-to-text tasks. In this work, we study methods for automatic text-image alignment evaluation. We first introduce SeeTRUE: a comprehensive evaluation set, spanning multiple datasets from both text-to-image and image-to-text generation tasks, with human judgements for whether a given text-image pair is semantically aligned. We then describe two automatic methods to determine alignment: the first involving a pipeline based on question generation and visual question answering models, and the second employing an end-to-end classification approach by finetuning multimodal pretrained models. Both methods surpass prior approaches in various text-image alignment tasks, with significant improvements in challenging cases that involve complex composition or unnatural images. Finally, we demonstrate how our approaches can localize specific misalignments between an image and a given text, and how they can be used to automatically re-rank candidates in text-to-image generation.
Category-Aware 3D Object Composition with Disentangled Texture and Shape Multi-view Diffusion
In this paper, we tackle a new task of 3D object synthesis, where a 3D model is composited with another object category to create a novel 3D model. However, most existing text/image/3D-to-3D methods struggle to effectively integrate multiple content sources, often resulting in inconsistent textures and inaccurate shapes. To overcome these challenges, we propose a straightforward yet powerful approach, category+3D-to-3D (C33D), for generating novel and structurally coherent 3D models. Our method begins by rendering multi-view images and normal maps from the input 3D model, then generating a novel 2D object using adaptive text-image harmony (ATIH) with the front-view image and a text description from another object category as inputs. To ensure texture consistency, we introduce texture multi-view diffusion, which refines the textures of the remaining multi-view RGB images based on the novel 2D object. For enhanced shape accuracy, we propose shape multi-view diffusion to improve the 2D shapes of both the multi-view RGB images and the normal maps, also conditioned on the novel 2D object. Finally, these outputs are used to reconstruct a complete and novel 3D model. Extensive experiments demonstrate the effectiveness of our method, yielding impressive 3D creations, such as shark(3D)-crocodile(text) in the first row of Fig. 1. A project page is available at: https://xzr52.github.io/C33D/
TTOM: Test-Time Optimization and Memorization for Compositional Video Generation
Video Foundation Models (VFMs) exhibit remarkable visual generation performance, but struggle in compositional scenarios (e.g., motion, numeracy, and spatial relation). In this work, we introduce Test-Time Optimization and Memorization (TTOM), a training-free framework that aligns VFM outputs with spatiotemporal layouts during inference for better text-image alignment. Rather than direct intervention to latents or attention per-sample in existing work, we integrate and optimize new parameters guided by a general layout-attention objective. Furthermore, we formulate video generation within a streaming setting, and maintain historical optimization contexts with a parametric memory mechanism that supports flexible operations, such as insert, read, update, and delete. Notably, we found that TTOM disentangles compositional world knowledge, showing powerful transferability and generalization. Experimental results on the T2V-CompBench and Vbench benchmarks establish TTOM as an effective, practical, scalable, and efficient framework to achieve cross-modal alignment for compositional video generation on the fly.
Illiterate DALL-E Learns to Compose
Although DALL-E has shown an impressive ability of composition-based systematic generalization in image generation, it requires the dataset of text-image pairs and the compositionality is provided by the text. In contrast, object-centric representation models like the Slot Attention model learn composable representations without the text prompt. However, unlike DALL-E its ability to systematically generalize for zero-shot generation is significantly limited. In this paper, we propose a simple but novel slot-based autoencoding architecture, called SLATE, for combining the best of both worlds: learning object-centric representations that allows systematic generalization in zero-shot image generation without text. As such, this model can also be seen as an illiterate DALL-E model. Unlike the pixel-mixture decoders of existing object-centric representation models, we propose to use the Image GPT decoder conditioned on the slots for capturing complex interactions among the slots and pixels. In experiments, we show that this simple and easy-to-implement architecture not requiring a text prompt achieves significant improvement in in-distribution and out-of-distribution (zero-shot) image generation and qualitatively comparable or better slot-attention structure than the models based on mixture decoders.
VisualGPTScore: Visio-Linguistic Reasoning with Multimodal Generative Pre-Training Scores
Vision-language models (VLMs) discriminatively pre-trained with contrastive image-text matching losses such as P(match|text, image) have been criticized for lacking compositional understanding. This means they might output similar scores even if the original caption is rearranged into a different semantic statement. To address this, we propose to use the {bf V}isual {bf G}enerative {bf P}re-{bf T}raining Score ({bf VisualGPTScore}) of P(text|image), a multimodal generative score that captures the likelihood of a text caption conditioned on an image using an image-conditioned language model. Contrary to the belief that VLMs are mere bag-of-words models, our off-the-shelf VisualGPTScore demonstrates top-tier performance on recently proposed image-text retrieval benchmarks like ARO and Crepe that assess compositional reasoning. Furthermore, we factorize VisualGPTScore into a product of the marginal P(text) and the Pointwise Mutual Information (PMI). This helps to (a) diagnose datasets with strong language bias, and (b) debias results on other benchmarks like Winoground using an information-theoretic framework. VisualGPTScore provides valuable insights and serves as a strong baseline for future evaluation of visio-linguistic compositionality.
Adapt-$\infty$: Scalable Lifelong Multimodal Instruction Tuning via Dynamic Data Selection
Visual instruction datasets from various distributors are released at different times and often contain a significant number of semantically redundant text-image pairs, depending on their task compositions (i.e., skills) or reference sources. This redundancy greatly limits the efficient deployment of lifelong adaptable multimodal large language models, hindering their ability to refine existing skills and acquire new competencies over time. To address this, we reframe the problem of Lifelong Instruction Tuning (LiIT) via data selection, where the model automatically selects beneficial samples to learn from earlier and new datasets based on the current state of acquired knowledge in the model. Based on empirical analyses that show that selecting the best data subset using a static importance measure is often ineffective for multi-task datasets with evolving distributions, we propose Adapt-infty, a new multi-way and adaptive data selection approach that dynamically balances sample efficiency and effectiveness during LiIT. We construct pseudo-skill clusters by grouping gradient-based sample vectors. Next, we select the best-performing data selector for each skill cluster from a pool of selector experts, including our newly proposed scoring function, Image Grounding score. This data selector samples a subset of the most important samples from each skill cluster for training. To prevent the continuous increase in the size of the dataset pool during LiIT, which would result in excessive computation, we further introduce a cluster-wise permanent data pruning strategy to remove the most semantically redundant samples from each cluster, keeping computational requirements manageable. Training with samples selected by Adapt-infty alleviates catastrophic forgetting, especially for rare tasks, and promotes forward transfer across the continuum using only a fraction of the original datasets.
Generating Compositional Scenes via Text-to-image RGBA Instance Generation
Text-to-image diffusion generative models can generate high quality images at the cost of tedious prompt engineering. Controllability can be improved by introducing layout conditioning, however existing methods lack layout editing ability and fine-grained control over object attributes. The concept of multi-layer generation holds great potential to address these limitations, however generating image instances concurrently to scene composition limits control over fine-grained object attributes, relative positioning in 3D space and scene manipulation abilities. In this work, we propose a novel multi-stage generation paradigm that is designed for fine-grained control, flexibility and interactivity. To ensure control over instance attributes, we devise a novel training paradigm to adapt a diffusion model to generate isolated scene components as RGBA images with transparency information. To build complex images, we employ these pre-generated instances and introduce a multi-layer composite generation process that smoothly assembles components in realistic scenes. Our experiments show that our RGBA diffusion model is capable of generating diverse and high quality instances with precise control over object attributes. Through multi-layer composition, we demonstrate that our approach allows to build and manipulate images from highly complex prompts with fine-grained control over object appearance and location, granting a higher degree of control than competing methods.
Unsupervised Compositional Concepts Discovery with Text-to-Image Generative Models
Text-to-image generative models have enabled high-resolution image synthesis across different domains, but require users to specify the content they wish to generate. In this paper, we consider the inverse problem -- given a collection of different images, can we discover the generative concepts that represent each image? We present an unsupervised approach to discover generative concepts from a collection of images, disentangling different art styles in paintings, objects, and lighting from kitchen scenes, and discovering image classes given ImageNet images. We show how such generative concepts can accurately represent the content of images, be recombined and composed to generate new artistic and hybrid images, and be further used as a representation for downstream classification tasks.
VSC: Visual Search Compositional Text-to-Image Diffusion Model
Text-to-image diffusion models have shown impressive capabilities in generating realistic visuals from natural-language prompts, yet they often struggle with accurately binding attributes to corresponding objects, especially in prompts containing multiple attribute-object pairs. This challenge primarily arises from the limitations of commonly used text encoders, such as CLIP, which can fail to encode complex linguistic relationships and modifiers effectively. Existing approaches have attempted to mitigate these issues through attention map control during inference and the use of layout information or fine-tuning during training, yet they face performance drops with increased prompt complexity. In this work, we introduce a novel compositional generation method that leverages pairwise image embeddings to improve attribute-object binding. Our approach decomposes complex prompts into sub-prompts, generates corresponding images, and computes visual prototypes that fuse with text embeddings to enhance representation. By applying segmentation-based localization training, we address cross-attention misalignment, achieving improved accuracy in binding multiple attributes to objects. Our approaches outperform existing compositional text-to-image diffusion models on the benchmark T2I CompBench, achieving better image quality, evaluated by humans, and emerging robustness under scaling number of binding pairs in the prompt.
Diffusion Beats Autoregressive: An Evaluation of Compositional Generation in Text-to-Image Models
Text-to-image (T2I) generative models, such as Stable Diffusion and DALL-E, have shown remarkable proficiency in producing high-quality, realistic, and natural images from textual descriptions. However, these models sometimes fail to accurately capture all the details specified in the input prompts, particularly concerning entities, attributes, and spatial relationships. This issue becomes more pronounced when the prompt contains novel or complex compositions, leading to what are known as compositional generation failure modes. Recently, a new open-source diffusion-based T2I model, FLUX, has been introduced, demonstrating strong performance in high-quality image generation. Additionally, autoregressive T2I models like LlamaGen have claimed competitive visual quality performance compared to diffusion-based models. In this study, we evaluate the compositional generation capabilities of these newly introduced models against established models using the T2I-CompBench benchmark. Our findings reveal that LlamaGen, as a vanilla autoregressive model, is not yet on par with state-of-the-art diffusion models for compositional generation tasks under the same criteria, such as model size and inference time. On the other hand, the open-source diffusion-based model FLUX exhibits compositional generation capabilities comparable to the state-of-the-art closed-source model DALL-E3.
Generating Intermediate Representations for Compositional Text-To-Image Generation
Text-to-image diffusion models have demonstrated an impressive ability to produce high-quality outputs. However, they often struggle to accurately follow fine-grained spatial information in an input text. To this end, we propose a compositional approach for text-to-image generation based on two stages. In the first stage, we design a diffusion-based generative model to produce one or more aligned intermediate representations (such as depth or segmentation maps) conditioned on text. In the second stage, we map these representations, together with the text, to the final output image using a separate diffusion-based generative model. Our findings indicate that such compositional approach can improve image generation, resulting in a notable improvement in FID score and a comparable CLIP score, when compared to the standard non-compositional baseline.
Direct Consistency Optimization for Compositional Text-to-Image Personalization
Text-to-image (T2I) diffusion models, when fine-tuned on a few personal images, are able to generate visuals with a high degree of consistency. However, they still lack in synthesizing images of different scenarios or styles that are possible in the original pretrained models. To address this, we propose to fine-tune the T2I model by maximizing consistency to reference images, while penalizing the deviation from the pretrained model. We devise a novel training objective for T2I diffusion models that minimally fine-tunes the pretrained model to achieve consistency. Our method, dubbed Direct Consistency Optimization, is as simple as regular diffusion loss, while significantly enhancing the compositionality of personalized T2I models. Also, our approach induces a new sampling method that controls the tradeoff between image fidelity and prompt fidelity. Lastly, we emphasize the necessity of using a comprehensive caption for reference images to further enhance the image-text alignment. We show the efficacy of the proposed method on the T2I personalization for subject, style, or both. In particular, our method results in a superior Pareto frontier to the baselines. Generated examples and codes are in our project page( https://dco-t2i.github.io/).
Fine-Grained Alignment and Noise Refinement for Compositional Text-to-Image Generation
Text-to-image generative models have made significant advancements in recent years; however, accurately capturing intricate details in textual prompts, such as entity missing, attribute binding errors, and incorrect relationships remains a formidable challenge. In response, we present an innovative, training-free method that directly addresses these challenges by incorporating tailored objectives to account for textual constraints. Unlike layout-based approaches that enforce rigid structures and limit diversity, our proposed approach offers a more flexible arrangement of the scene by imposing just the extracted constraints from the text, without any unnecessary additions. These constraints are formulated as losses-entity missing, entity mixing, attribute binding, and spatial relationships, integrated into a unified loss that is applied in the first generation stage. Furthermore, we introduce a feedback-driven system for fine-grained initial noise refinement. This system integrates a verifier that evaluates the generated image, identifies inconsistencies, and provides corrective feedback. Leveraging this feedback, our refinement method first targets the unmet constraints by refining the faulty attention maps caused by initial noise, through the optimization of selective losses associated with these constraints. Subsequently, our unified loss function is reapplied to proceed the second generation phase. Experimental results demonstrate that our method, relying solely on our proposed objective functions, significantly enhances compositionality, achieving a 24% improvement in human evaluation and a 25% gain in spatial relationships. Furthermore, our fine-grained noise refinement proves effective, boosting performance by up to 5%. Code is available at https://github.com/hadi-hosseini/noise-refinement.
Progressive Compositionality In Text-to-Image Generative Models
Despite the impressive text-to-image (T2I) synthesis capabilities of diffusion models, they often struggle to understand compositional relationships between objects and attributes, especially in complex settings. Existing solutions have tackled these challenges by optimizing the cross-attention mechanism or learning from the caption pairs with minimal semantic changes. However, can we generate high-quality complex contrastive images that diffusion models can directly discriminate based on visual representations? In this work, we leverage large-language models (LLMs) to compose realistic, complex scenarios and harness Visual-Question Answering (VQA) systems alongside diffusion models to automatically curate a contrastive dataset, ConPair, consisting of 15k pairs of high-quality contrastive images. These pairs feature minimal visual discrepancies and cover a wide range of attribute categories, especially complex and natural scenarios. To learn effectively from these error cases, i.e., hard negative images, we propose EvoGen, a new multi-stage curriculum for contrastive learning of diffusion models. Through extensive experiments across a wide range of compositional scenarios, we showcase the effectiveness of our proposed framework on compositional T2I benchmarks.
CSGO: Content-Style Composition in Text-to-Image Generation
The diffusion model has shown exceptional capabilities in controlled image generation, which has further fueled interest in image style transfer. Existing works mainly focus on training free-based methods (e.g., image inversion) due to the scarcity of specific data. In this study, we present a data construction pipeline for content-style-stylized image triplets that generates and automatically cleanses stylized data triplets. Based on this pipeline, we construct a dataset IMAGStyle, the first large-scale style transfer dataset containing 210k image triplets, available for the community to explore and research. Equipped with IMAGStyle, we propose CSGO, a style transfer model based on end-to-end training, which explicitly decouples content and style features employing independent feature injection. The unified CSGO implements image-driven style transfer, text-driven stylized synthesis, and text editing-driven stylized synthesis. Extensive experiments demonstrate the effectiveness of our approach in enhancing style control capabilities in image generation. Additional visualization and access to the source code can be located on the project page: https://csgo-gen.github.io/.
T2I-FineEval: Fine-Grained Compositional Metric for Text-to-Image Evaluation
Although recent text-to-image generative models have achieved impressive performance, they still often struggle with capturing the compositional complexities of prompts including attribute binding, and spatial relationships between different entities. This misalignment is not revealed by common evaluation metrics such as CLIPScore. Recent works have proposed evaluation metrics that utilize Visual Question Answering (VQA) by decomposing prompts into questions about the generated image for more robust compositional evaluation. Although these methods align better with human evaluations, they still fail to fully cover the compositionality within the image. To address this, we propose a novel metric that breaks down images into components, and texts into fine-grained questions about the generated image for evaluation. Our method outperforms previous state-of-the-art metrics, demonstrating its effectiveness in evaluating text-to-image generative models. Code is available at https://github.com/hadi-hosseini/ T2I-FineEval.
IterComp: Iterative Composition-Aware Feedback Learning from Model Gallery for Text-to-Image Generation
Advanced diffusion models like RPG, Stable Diffusion 3 and FLUX have made notable strides in compositional text-to-image generation. However, these methods typically exhibit distinct strengths for compositional generation, with some excelling in handling attribute binding and others in spatial relationships. This disparity highlights the need for an approach that can leverage the complementary strengths of various models to comprehensively improve the composition capability. To this end, we introduce IterComp, a novel framework that aggregates composition-aware model preferences from multiple models and employs an iterative feedback learning approach to enhance compositional generation. Specifically, we curate a gallery of six powerful open-source diffusion models and evaluate their three key compositional metrics: attribute binding, spatial relationships, and non-spatial relationships. Based on these metrics, we develop a composition-aware model preference dataset comprising numerous image-rank pairs to train composition-aware reward models. Then, we propose an iterative feedback learning method to enhance compositionality in a closed-loop manner, enabling the progressive self-refinement of both the base diffusion model and reward models over multiple iterations. Theoretical proof demonstrates the effectiveness and extensive experiments show our significant superiority over previous SOTA methods (e.g., Omost and FLUX), particularly in multi-category object composition and complex semantic alignment. IterComp opens new research avenues in reward feedback learning for diffusion models and compositional generation. Code: https://github.com/YangLing0818/IterComp
RealCompo: Dynamic Equilibrium between Realism and Compositionality Improves Text-to-Image Diffusion Models
Diffusion models have achieved remarkable advancements in text-to-image generation. However, existing models still have many difficulties when faced with multiple-object compositional generation. In this paper, we propose a new training-free and transferred-friendly text-to-image generation framework, namely RealCompo, which aims to leverage the advantages of text-to-image and layout-to-image models to enhance both realism and compositionality of the generated images. An intuitive and novel balancer is proposed to dynamically balance the strengths of the two models in denoising process, allowing plug-and-play use of any model without extra training. Extensive experiments show that our RealCompo consistently outperforms state-of-the-art text-to-image models and layout-to-image models in multiple-object compositional generation while keeping satisfactory realism and compositionality of the generated images. Code is available at https://github.com/YangLing0818/RealCompo
No Concept Left Behind: Test-Time Optimization for Compositional Text-to-Image Generation
Despite recent advances in text-to-image (T2I) models, they often fail to faithfully render all elements of complex prompts, frequently omitting or misrepresenting specific objects and attributes. Test-time optimization has emerged as a promising approach to address this limitation by refining generation without the need for retraining. In this paper, we propose a fine-grained test-time optimization framework that enhances compositional faithfulness in T2I generation. Unlike most of prior approaches that rely solely on a global image/text similarity score, our method decomposes the input prompt into semantic concepts and evaluates alignment at both the global and concept levels. A fine-grained variant of CLIP is used to compute concept-level correspondence, producing detailed feedback on missing or inaccurate concepts. This feedback is fed into an iterative prompt refinement loop, enabling the large language model to propose improved prompts. Experiments on DrawBench and CompBench prompts demonstrate that our method significantly improves concept coverage and human-judged faithfulness over both standard test-time optimization and the base T2I model. Code is available at: https://github.com/AmirMansurian/NoConceptLeftBehind
BiVLC: Extending Vision-Language Compositionality Evaluation with Text-to-Image Retrieval
Existing Vision-Language Compositionality (VLC) benchmarks like SugarCrepe are formulated as image-to-text retrieval problems, where, given an image, the models need to select between the correct textual description and a synthetic hard negative text. In this work we present the Bidirectional Vision-Language Compositionality (BiVLC) dataset. The novelty of BiVLC is to add a synthetic hard negative image generated from the synthetic text, resulting in two image-to-text retrieval examples (one for each image) and, more importantly, two text-to-image retrieval examples (one for each text). Human annotators filter out ill-formed examples ensuring the validity of the benchmark. The experiments on BiVLC uncover a weakness of current multimodal models, as they perform poorly in the text-to-image direction. In fact, when considering both retrieval directions, the conclusions obtained in previous works change significantly. In addition to the benchmark, we show that a contrastive model trained using synthetic images and texts improves the state of the art in SugarCrepe and in BiVLC for both retrieval directions. The gap to human performance in BiVLC confirms that Vision-Language Compositionality is still a challenging problem. BiVLC and code are available at https://imirandam.github.io/BiVLC_project_page.
Divide and Conquer: Language Models can Plan and Self-Correct for Compositional Text-to-Image Generation
Despite significant advancements in text-to-image models for generating high-quality images, these methods still struggle to ensure the controllability of text prompts over images in the context of complex text prompts, especially when it comes to retaining object attributes and relationships. In this paper, we propose CompAgent, a training-free approach for compositional text-to-image generation, with a large language model (LLM) agent as its core. The fundamental idea underlying CompAgent is premised on a divide-and-conquer methodology. Given a complex text prompt containing multiple concepts including objects, attributes, and relationships, the LLM agent initially decomposes it, which entails the extraction of individual objects, their associated attributes, and the prediction of a coherent scene layout. These individual objects can then be independently conquered. Subsequently, the agent performs reasoning by analyzing the text, plans and employs the tools to compose these isolated objects. The verification and human feedback mechanism is finally incorporated into our agent to further correct the potential attribute errors and refine the generated images. Guided by the LLM agent, we propose a tuning-free multi-concept customization model and a layout-to-image generation model as the tools for concept composition, and a local image editing method as the tool to interact with the agent for verification. The scene layout controls the image generation process among these tools to prevent confusion among multiple objects. Extensive experiments demonstrate the superiority of our approach for compositional text-to-image generation: CompAgent achieves more than 10\% improvement on T2I-CompBench, a comprehensive benchmark for open-world compositional T2I generation. The extension to various related tasks also illustrates the flexibility of our CompAgent for potential applications.
T2I-CompBench: A Comprehensive Benchmark for Open-world Compositional Text-to-image Generation
Despite the stunning ability to generate high-quality images by recent text-to-image models, current approaches often struggle to effectively compose objects with different attributes and relationships into a complex and coherent scene. We propose T2I-CompBench, a comprehensive benchmark for open-world compositional text-to-image generation, consisting of 6,000 compositional text prompts from 3 categories (attribute binding, object relationships, and complex compositions) and 6 sub-categories (color binding, shape binding, texture binding, spatial relationships, non-spatial relationships, and complex compositions). We further propose several evaluation metrics specifically designed to evaluate compositional text-to-image generation. We introduce a new approach, Generative mOdel fine-tuning with Reward-driven Sample selection (GORS), to boost the compositional text-to-image generation abilities of pretrained text-to-image models. Extensive experiments and evaluations are conducted to benchmark previous methods on T2I-CompBench, and to validate the effectiveness of our proposed evaluation metrics and GORS approach. Project page is available at https://karine-h.github.io/T2I-CompBench/.
SceneWiz3D: Towards Text-guided 3D Scene Composition
We are witnessing significant breakthroughs in the technology for generating 3D objects from text. Existing approaches either leverage large text-to-image models to optimize a 3D representation or train 3D generators on object-centric datasets. Generating entire scenes, however, remains very challenging as a scene contains multiple 3D objects, diverse and scattered. In this work, we introduce SceneWiz3D, a novel approach to synthesize high-fidelity 3D scenes from text. We marry the locality of objects with globality of scenes by introducing a hybrid 3D representation: explicit for objects and implicit for scenes. Remarkably, an object, being represented explicitly, can be either generated from text using conventional text-to-3D approaches, or provided by users. To configure the layout of the scene and automatically place objects, we apply the Particle Swarm Optimization technique during the optimization process. Furthermore, it is difficult for certain parts of the scene (e.g., corners, occlusion) to receive multi-view supervision, leading to inferior geometry. We incorporate an RGBD panorama diffusion model to mitigate it, resulting in high-quality geometry. Extensive evaluation supports that our approach achieves superior quality over previous approaches, enabling the generation of detailed and view-consistent 3D scenes.
Interleaved Scene Graph for Interleaved Text-and-Image Generation Assessment
Many real-world user queries (e.g. "How do to make egg fried rice?") could benefit from systems capable of generating responses with both textual steps with accompanying images, similar to a cookbook. Models designed to generate interleaved text and images face challenges in ensuring consistency within and across these modalities. To address these challenges, we present ISG, a comprehensive evaluation framework for interleaved text-and-image generation. ISG leverages a scene graph structure to capture relationships between text and image blocks, evaluating responses on four levels of granularity: holistic, structural, block-level, and image-specific. This multi-tiered evaluation allows for a nuanced assessment of consistency, coherence, and accuracy, and provides interpretable question-answer feedback. In conjunction with ISG, we introduce a benchmark, ISG-Bench, encompassing 1,150 samples across 8 categories and 21 subcategories. This benchmark dataset includes complex language-vision dependencies and golden answers to evaluate models effectively on vision-centric tasks such as style transfer, a challenging area for current models. Using ISG-Bench, we demonstrate that recent unified vision-language models perform poorly on generating interleaved content. While compositional approaches that combine separate language and image models show a 111% improvement over unified models at the holistic level, their performance remains suboptimal at both block and image levels. To facilitate future work, we develop ISG-Agent, a baseline agent employing a "plan-execute-refine" pipeline to invoke tools, achieving a 122% performance improvement.
Text-to-Image Generation Via Energy-Based CLIP
Joint Energy Models (JEMs), while drawing significant research attention, have not been successfully scaled to real-world, high-resolution datasets. We present EB-CLIP, a novel approach extending JEMs to the multimodal vision-language domain using CLIP, integrating both generative and discriminative objectives. For the generative objective, we introduce an image-text joint-energy function based on Cosine similarity in the CLIP space, training CLIP to assign low energy to real image-caption pairs and high energy otherwise. For the discriminative objective, we employ contrastive adversarial loss, extending the adversarial training objective to the multimodal domain. EB-CLIP not only generates realistic images from text but also achieves competitive results on the compositionality benchmark, outperforming leading methods with fewer parameters. Additionally, we demonstrate the superior guidance capability of EB-CLIP by enhancing CLIP-based generative frameworks and converting unconditional diffusion models to text-based ones. Lastly, we show that EB-CLIP can serve as a more robust evaluation metric for text-to-image generative tasks than CLIP.
Compose Your Aesthetics: Empowering Text-to-Image Models with the Principles of Art
Text-to-Image (T2I) diffusion models (DM) have garnered widespread adoption due to their capability in generating high-fidelity outputs and accessibility to anyone able to put imagination into words. However, DMs are often predisposed to generate unappealing outputs, much like the random images on the internet they were trained on. Existing approaches to address this are founded on the implicit premise that visual aesthetics is universal, which is limiting. Aesthetics in the T2I context should be about personalization and we propose the novel task of aesthetics alignment which seeks to align user-specified aesthetics with the T2I generation output. Inspired by how artworks provide an invaluable perspective to approach aesthetics, we codify visual aesthetics using the compositional framework artists employ, known as the Principles of Art (PoA). To facilitate this study, we introduce CompArt, a large-scale compositional art dataset building on top of WikiArt with PoA analysis annotated by a capable Multimodal LLM. Leveraging the expressive power of LLMs and training a lightweight and transferrable adapter, we demonstrate that T2I DMs can effectively offer 10 compositional controls through user-specified PoA conditions. Additionally, we design an appropriate evaluation framework to assess the efficacy of our approach.
DiffMorph: Text-less Image Morphing with Diffusion Models
Text-conditioned image generation models are a prevalent use of AI image synthesis, yet intuitively controlling output guided by an artist remains challenging. Current methods require multiple images and textual prompts for each object to specify them as concepts to generate a single customized image. On the other hand, our work, \verb|DiffMorph|, introduces a novel approach that synthesizes images that mix concepts without the use of textual prompts. Our work integrates a sketch-to-image module to incorporate user sketches as input. \verb|DiffMorph| takes an initial image with conditioning artist-drawn sketches to generate a morphed image. We employ a pre-trained text-to-image diffusion model and fine-tune it to reconstruct each image faithfully. We seamlessly merge images and concepts from sketches into a cohesive composition. The image generation capability of our work is demonstrated through our results and a comparison of these with prompt-based image generation.
Easier Painting Than Thinking: Can Text-to-Image Models Set the Stage, but Not Direct the Play?
Text-to-image (T2I) generation aims to synthesize images from textual prompts, which jointly specify what must be shown and imply what can be inferred, thereby corresponding to two core capabilities: composition and reasoning. However, with the emerging advances of T2I models in reasoning beyond composition, existing benchmarks reveal clear limitations in providing comprehensive evaluations across and within these capabilities. Meanwhile, these advances also enable models to handle more complex prompts, whereas current benchmarks remain limited to low scene density and simplified one-to-one reasoning. To address these limitations, we propose T2I-CoReBench, a comprehensive and complex benchmark that evaluates both composition and reasoning capabilities of T2I models. To ensure comprehensiveness, we structure composition around scene graph elements (instance, attribute, and relation) and reasoning around the philosophical framework of inference (deductive, inductive, and abductive), formulating a 12-dimensional evaluation taxonomy. To increase complexity, driven by the inherent complexities of real-world scenarios, we curate each prompt with high compositional density for composition and multi-step inference for reasoning. We also pair each prompt with a checklist that specifies individual yes/no questions to assess each intended element independently to facilitate fine-grained and reliable evaluation. In statistics, our benchmark comprises 1,080 challenging prompts and around 13,500 checklist questions. Experiments across 27 current T2I models reveal that their composition capability still remains limited in complex high-density scenarios, while the reasoning capability lags even further behind as a critical bottleneck, with all models struggling to infer implicit elements from prompts. Our project page: https://t2i-corebench.github.io/.
Hierarchical Vision-Language Alignment for Text-to-Image Generation via Diffusion Models
Text-to-image generation has witnessed significant advancements with the integration of Large Vision-Language Models (LVLMs), yet challenges remain in aligning complex textual descriptions with high-quality, visually coherent images. This paper introduces the Vision-Language Aligned Diffusion (VLAD) model, a generative framework that addresses these challenges through a dual-stream strategy combining semantic alignment and hierarchical diffusion. VLAD utilizes a Contextual Composition Module (CCM) to decompose textual prompts into global and local representations, ensuring precise alignment with visual features. Furthermore, it incorporates a multi-stage diffusion process with hierarchical guidance to generate high-fidelity images. Experiments conducted on MARIO-Eval and INNOVATOR-Eval benchmarks demonstrate that VLAD significantly outperforms state-of-the-art methods in terms of image quality, semantic alignment, and text rendering accuracy. Human evaluations further validate the superior performance of VLAD, making it a promising approach for text-to-image generation in complex scenarios.
FreeCustom: Tuning-Free Customized Image Generation for Multi-Concept Composition
Benefiting from large-scale pre-trained text-to-image (T2I) generative models, impressive progress has been achieved in customized image generation, which aims to generate user-specified concepts. Existing approaches have extensively focused on single-concept customization and still encounter challenges when it comes to complex scenarios that involve combining multiple concepts. These approaches often require retraining/fine-tuning using a few images, leading to time-consuming training processes and impeding their swift implementation. Furthermore, the reliance on multiple images to represent a singular concept increases the difficulty of customization. To this end, we propose FreeCustom, a novel tuning-free method to generate customized images of multi-concept composition based on reference concepts, using only one image per concept as input. Specifically, we introduce a new multi-reference self-attention (MRSA) mechanism and a weighted mask strategy that enables the generated image to access and focus more on the reference concepts. In addition, MRSA leverages our key finding that input concepts are better preserved when providing images with context interactions. Experiments show that our method's produced images are consistent with the given concepts and better aligned with the input text. Our method outperforms or performs on par with other training-based methods in terms of multi-concept composition and single-concept customization, but is simpler. Codes can be found at https://github.com/aim-uofa/FreeCustom.
Region-Aware Text-to-Image Generation via Hard Binding and Soft Refinement
In this paper, we present RAG, a Regional-Aware text-to-image Generation method conditioned on regional descriptions for precise layout composition. Regional prompting, or compositional generation, which enables fine-grained spatial control, has gained increasing attention for its practicality in real-world applications. However, previous methods either introduce additional trainable modules, thus only applicable to specific models, or manipulate on score maps within cross-attention layers using attention masks, resulting in limited control strength when the number of regions increases. To handle these limitations, we decouple the multi-region generation into two sub-tasks, the construction of individual region (Regional Hard Binding) that ensures the regional prompt is properly executed, and the overall detail refinement (Regional Soft Refinement) over regions that dismiss the visual boundaries and enhance adjacent interactions. Furthermore, RAG novelly makes repainting feasible, where users can modify specific unsatisfied regions in the last generation while keeping all other regions unchanged, without relying on additional inpainting models. Our approach is tuning-free and applicable to other frameworks as an enhancement to the prompt following property. Quantitative and qualitative experiments demonstrate that RAG achieves superior performance over attribute binding and object relationship than previous tuning-free methods.
ECLIPSE: A Resource-Efficient Text-to-Image Prior for Image Generations
Text-to-image (T2I) diffusion models, notably the unCLIP models (e.g., DALL-E-2), achieve state-of-the-art (SOTA) performance on various compositional T2I benchmarks, at the cost of significant computational resources. The unCLIP stack comprises T2I prior and diffusion image decoder. The T2I prior model alone adds a billion parameters compared to the Latent Diffusion Models, which increases the computational and high-quality data requirements. We introduce ECLIPSE, a novel contrastive learning method that is both parameter and data-efficient. ECLIPSE leverages pre-trained vision-language models (e.g., CLIP) to distill the knowledge into the prior model. We demonstrate that the ECLIPSE trained prior, with only 3.3% of the parameters and trained on a mere 2.8% of the data, surpasses the baseline T2I priors with an average of 71.6% preference score under resource-limited setting. It also attains performance on par with SOTA big models, achieving an average of 63.36% preference score in terms of the ability to follow the text compositions. Extensive experiments on two unCLIP diffusion image decoders, Karlo and Kandinsky, affirm that ECLIPSE priors consistently deliver high performance while significantly reducing resource dependency.
ReNO: Enhancing One-step Text-to-Image Models through Reward-based Noise Optimization
Text-to-Image (T2I) models have made significant advancements in recent years, but they still struggle to accurately capture intricate details specified in complex compositional prompts. While fine-tuning T2I models with reward objectives has shown promise, it suffers from "reward hacking" and may not generalize well to unseen prompt distributions. In this work, we propose Reward-based Noise Optimization (ReNO), a novel approach that enhances T2I models at inference by optimizing the initial noise based on the signal from one or multiple human preference reward models. Remarkably, solving this optimization problem with gradient ascent for 50 iterations yields impressive results on four different one-step models across two competitive benchmarks, T2I-CompBench and GenEval. Within a computational budget of 20-50 seconds, ReNO-enhanced one-step models consistently surpass the performance of all current open-source Text-to-Image models. Extensive user studies demonstrate that our model is preferred nearly twice as often compared to the popular SDXL model and is on par with the proprietary Stable Diffusion 3 with 8B parameters. Moreover, given the same computational resources, a ReNO-optimized one-step model outperforms widely-used open-source models such as SDXL and PixArt-alpha, highlighting the efficiency and effectiveness of ReNO in enhancing T2I model performance at inference time. Code is available at https://github.com/ExplainableML/ReNO.
Compositional Image Retrieval via Instruction-Aware Contrastive Learning
Composed Image Retrieval (CIR) involves retrieving a target image based on a composed query of an image paired with text that specifies modifications or changes to the visual reference. CIR is inherently an instruction-following task, as the model needs to interpret and apply modifications to the image. In practice, due to the scarcity of annotated data in downstream tasks, Zero-Shot CIR (ZS-CIR) is desirable. While existing ZS-CIR models based on CLIP have shown promising results, their capability in interpreting and following modification instructions remains limited. Some research attempts to address this by incorporating Large Language Models (LLMs). However, these approaches still face challenges in effectively integrating multimodal information and instruction understanding. To tackle above challenges, we propose a novel embedding method utilizing an instruction-tuned Multimodal LLM (MLLM) to generate composed representation, which significantly enhance the instruction following capability for a comprehensive integration between images and instructions. Nevertheless, directly applying MLLMs introduces a new challenge since MLLMs are primarily designed for text generation rather than embedding extraction as required in CIR. To address this, we introduce a two-stage training strategy to efficiently learn a joint multimodal embedding space and further refining the ability to follow modification instructions by tuning the model in a triplet dataset similar to the CIR format. Extensive experiments on four public datasets: FashionIQ, CIRR, GeneCIS, and CIRCO demonstrates the superior performance of our model, outperforming state-of-the-art baselines by a significant margin. Codes are available at the GitHub repository.
Cached Multi-Lora Composition for Multi-Concept Image Generation
Low-Rank Adaptation (LoRA) has emerged as a widely adopted technique in text-to-image models, enabling precise rendering of multiple distinct elements, such as characters and styles, in multi-concept image generation. However, current approaches face significant challenges when composing these LoRAs for multi-concept image generation, resulting in diminished generated image quality. In this paper, we initially investigate the role of LoRAs in the denoising process through the lens of the Fourier frequency domain. Based on the hypothesis that applying multiple LoRAs could lead to "semantic conflicts", we find that certain LoRAs amplify high-frequency features such as edges and textures, whereas others mainly focus on low-frequency elements, including the overall structure and smooth color gradients. Building on these insights, we devise a frequency domain based sequencing strategy to determine the optimal order in which LoRAs should be integrated during inference. This strategy offers a methodical and generalizable solution compared to the naive integration commonly found in existing LoRA fusion techniques. To fully leverage our proposed LoRA order sequence determination method in multi-LoRA composition tasks, we introduce a novel, training-free framework, Cached Multi-LoRA (CMLoRA), designed to efficiently integrate multiple LoRAs while maintaining cohesive image generation. With its flexible backbone for multi-LoRA fusion and a non-uniform caching strategy tailored to individual LoRAs, CMLoRA has the potential to reduce semantic conflicts in LoRA composition and improve computational efficiency. Our experimental evaluations demonstrate that CMLoRA outperforms state-of-the-art training-free LoRA fusion methods by a significant margin -- it achieves an average improvement of 2.19% in CLIPScore, and 11.25% in MLLM win rate compared to LoraHub, LoRA Composite, and LoRA Switch.
Evaluating Text to Image Synthesis: Survey and Taxonomy of Image Quality Metrics
Recent advances in text-to-image synthesis have been enabled by exploiting a combination of language and vision through foundation models. These models are pre-trained on tremendous amounts of text-image pairs sourced from the World Wide Web or other large-scale databases. As the demand for high-quality image generation shifts towards ensuring content alignment between text and image, novel evaluation metrics have been developed with the aim of mimicking human judgments. Thus, researchers have started to collect datasets with increasingly complex annotations to study the compositionality of vision-language models and their incorporation as a quality measure of compositional alignment between text and image contents. In this work, we provide a comprehensive overview of existing text-to-image evaluation metrics and propose a new taxonomy for categorizing these metrics. We also review frequently adopted text-image benchmark datasets before discussing techniques to optimize text-to-image synthesis models towards quality and human preferences. Ultimately, we derive guidelines for improving text-to-image evaluation and discuss the open challenges and current limitations.
Ablating Concepts in Text-to-Image Diffusion Models
Large-scale text-to-image diffusion models can generate high-fidelity images with powerful compositional ability. However, these models are typically trained on an enormous amount of Internet data, often containing copyrighted material, licensed images, and personal photos. Furthermore, they have been found to replicate the style of various living artists or memorize exact training samples. How can we remove such copyrighted concepts or images without retraining the model from scratch? To achieve this goal, we propose an efficient method of ablating concepts in the pretrained model, i.e., preventing the generation of a target concept. Our algorithm learns to match the image distribution for a target style, instance, or text prompt we wish to ablate to the distribution corresponding to an anchor concept. This prevents the model from generating target concepts given its text condition. Extensive experiments show that our method can successfully prevent the generation of the ablated concept while preserving closely related concepts in the model.
Detail++: Training-Free Detail Enhancer for Text-to-Image Diffusion Models
Recent advances in text-to-image (T2I) generation have led to impressive visual results. However, these models still face significant challenges when handling complex prompt, particularly those involving multiple subjects with distinct attributes. Inspired by the human drawing process, which first outlines the composition and then incrementally adds details, we propose Detail++, a training-free framework that introduces a novel Progressive Detail Injection (PDI) strategy to address this limitation. Specifically, we decompose a complex prompt into a sequence of simplified sub-prompts, guiding the generation process in stages. This staged generation leverages the inherent layout-controlling capacity of self-attention to first ensure global composition, followed by precise refinement. To achieve accurate binding between attributes and corresponding subjects, we exploit cross-attention mechanisms and further introduce a Centroid Alignment Loss at test time to reduce binding noise and enhance attribute consistency. Extensive experiments on T2I-CompBench and a newly constructed style composition benchmark demonstrate that Detail++ significantly outperforms existing methods, particularly in scenarios involving multiple objects and complex stylistic conditions.
ArtAdapter: Text-to-Image Style Transfer using Multi-Level Style Encoder and Explicit Adaptation
This work introduces ArtAdapter, a transformative text-to-image (T2I) style transfer framework that transcends traditional limitations of color, brushstrokes, and object shape, capturing high-level style elements such as composition and distinctive artistic expression. The integration of a multi-level style encoder with our proposed explicit adaptation mechanism enables ArtAdapte to achieve unprecedented fidelity in style transfer, ensuring close alignment with textual descriptions. Additionally, the incorporation of an Auxiliary Content Adapter (ACA) effectively separates content from style, alleviating the borrowing of content from style references. Moreover, our novel fast finetuning approach could further enhance zero-shot style representation while mitigating the risk of overfitting. Comprehensive evaluations confirm that ArtAdapter surpasses current state-of-the-art methods.
Grounded Text-to-Image Synthesis with Attention Refocusing
Driven by scalable diffusion models trained on large-scale paired text-image datasets, text-to-image synthesis methods have shown compelling results. However, these models still fail to precisely follow the text prompt when multiple objects, attributes, and spatial compositions are involved in the prompt. In this paper, we identify the potential reasons in both the cross-attention and self-attention layers of the diffusion model. We propose two novel losses to refocus the attention maps according to a given layout during the sampling process. We perform comprehensive experiments on the DrawBench and HRS benchmarks using layouts synthesized by Large Language Models, showing that our proposed losses can be integrated easily and effectively into existing text-to-image methods and consistently improve their alignment between the generated images and the text prompts.
Mini-DALLE3: Interactive Text to Image by Prompting Large Language Models
The revolution of artificial intelligence content generation has been rapidly accelerated with the booming text-to-image (T2I) diffusion models. Within just two years of development, it was unprecedentedly of high-quality, diversity, and creativity that the state-of-the-art models could generate. However, a prevalent limitation persists in the effective communication with these popular T2I models, such as Stable Diffusion, using natural language descriptions. This typically makes an engaging image hard to obtain without expertise in prompt engineering with complex word compositions, magic tags, and annotations. Inspired by the recently released DALLE3 - a T2I model directly built-in ChatGPT that talks human language, we revisit the existing T2I systems endeavoring to align human intent and introduce a new task - interactive text to image (iT2I), where people can interact with LLM for interleaved high-quality image generation/edit/refinement and question answering with stronger images and text correspondences using natural language. In addressing the iT2I problem, we present a simple approach that augments LLMs for iT2I with prompting techniques and off-the-shelf T2I models. We evaluate our approach for iT2I in a variety of common-used scenarios under different LLMs, e.g., ChatGPT, LLAMA, Baichuan, and InternLM. We demonstrate that our approach could be a convenient and low-cost way to introduce the iT2I ability for any existing LLMs and any text-to-image models without any training while bringing little degradation on LLMs' inherent capabilities in, e.g., question answering and code generation. We hope this work could draw broader attention and provide inspiration for boosting user experience in human-machine interactions alongside the image quality of the next-generation T2I systems.
DetailMaster: Can Your Text-to-Image Model Handle Long Prompts?
While recent text-to-image (T2I) models show impressive capabilities in synthesizing images from brief descriptions, their performance significantly degrades when confronted with long, detail-intensive prompts required in professional applications. We present DetailMaster, the first comprehensive benchmark specifically designed to evaluate T2I models' systematical abilities to handle extended textual inputs that contain complex compositional requirements. Our benchmark introduces four critical evaluation dimensions: Character Attributes, Structured Character Locations, Multi-Dimensional Scene Attributes, and Explicit Spatial/Interactive Relationships. The benchmark comprises long and detail-rich prompts averaging 284.89 tokens, with high quality validated by expert annotators. Evaluation on 7 general-purpose and 5 long-prompt-optimized T2I models reveals critical performance limitations: state-of-the-art models achieve merely ~50% accuracy in key dimensions like attribute binding and spatial reasoning, while all models showing progressive performance degradation as prompt length increases. Our analysis highlights systemic failures in structural comprehension and detail overload handling, motivating future research into architectures with enhanced compositional reasoning. We open-source the dataset, data curation code, and evaluation tools to advance detail-rich T2I generation and enable broad applications that would otherwise be infeasible due to the lack of a dedicated benchmark.
Investigating and Improving Counter-Stereotypical Action Relation in Text-to-Image Diffusion Models
Text-to-image diffusion models consistently fail at generating counter-stereotypical action relationships (e.g., "mouse chasing cat"), defaulting to frequent stereotypes even when explicitly prompted otherwise. Through systematic investigation, we discover this limitation stems from distributional biases rather than inherent model constraints. Our key insight reveals that while models fail on rare compositions when their inversions are common, they can successfully generate similar intermediate compositions (e.g., "mouse chasing boy"). To test this hypothesis, we develop a Role-Bridging Decomposition framework that leverages these intermediates to gradually teach rare relationships without architectural modifications. We introduce ActionBench, a comprehensive benchmark specifically designed to evaluate action-based relationship generation across stereotypical and counter-stereotypical configurations. Our experiments validate that intermediate compositions indeed facilitate counter-stereotypical generation, with both automatic metrics and human evaluations showing significant improvements over existing approaches. This work not only identifies fundamental biases in current text-to-image systems but demonstrates a promising direction for addressing them through compositional reasoning.
Boosting Text-To-Image Generation via Multilingual Prompting in Large Multimodal Models
Previous work on augmenting large multimodal models (LMMs) for text-to-image (T2I) generation has focused on enriching the input space of in-context learning (ICL). This includes providing a few demonstrations and optimizing image descriptions to be more detailed and logical. However, as demand for more complex and flexible image descriptions grows, enhancing comprehension of input text within the ICL paradigm remains a critical yet underexplored area. In this work, we extend this line of research by constructing parallel multilingual prompts aimed at harnessing the multilingual capabilities of LMMs. More specifically, we translate the input text into several languages and provide the models with both the original text and the translations. Experiments on two LMMs across 3 benchmarks show that our method, PMT2I, achieves superior performance in general, compositional, and fine-grained assessments, especially in human preference alignment. Additionally, with its advantage of generating more diverse images, PMT2I significantly outperforms baseline prompts when incorporated with reranking methods. Our code and parallel multilingual data can be found at https://github.com/takagi97/PMT2I.
PreciseControl: Enhancing Text-To-Image Diffusion Models with Fine-Grained Attribute Control
Recently, we have seen a surge of personalization methods for text-to-image (T2I) diffusion models to learn a concept using a few images. Existing approaches, when used for face personalization, suffer to achieve convincing inversion with identity preservation and rely on semantic text-based editing of the generated face. However, a more fine-grained control is desired for facial attribute editing, which is challenging to achieve solely with text prompts. In contrast, StyleGAN models learn a rich face prior and enable smooth control towards fine-grained attribute editing by latent manipulation. This work uses the disentangled W+ space of StyleGANs to condition the T2I model. This approach allows us to precisely manipulate facial attributes, such as smoothly introducing a smile, while preserving the existing coarse text-based control inherent in T2I models. To enable conditioning of the T2I model on the W+ space, we train a latent mapper to translate latent codes from W+ to the token embedding space of the T2I model. The proposed approach excels in the precise inversion of face images with attribute preservation and facilitates continuous control for fine-grained attribute editing. Furthermore, our approach can be readily extended to generate compositions involving multiple individuals. We perform extensive experiments to validate our method for face personalization and fine-grained attribute editing.
FLUX-Reason-6M & PRISM-Bench: A Million-Scale Text-to-Image Reasoning Dataset and Comprehensive Benchmark
The advancement of open-source text-to-image (T2I) models has been hindered by the absence of large-scale, reasoning-focused datasets and comprehensive evaluation benchmarks, resulting in a performance gap compared to leading closed-source systems. To address this challenge, We introduce FLUX-Reason-6M and PRISM-Bench (Precise and Robust Image Synthesis Measurement Benchmark). FLUX-Reason-6M is a massive dataset consisting of 6 million high-quality FLUX-generated images and 20 million bilingual (English and Chinese) descriptions specifically designed to teach complex reasoning. The image are organized according to six key characteristics: Imagination, Entity, Text rendering, Style, Affection, and Composition, and design explicit Generation Chain-of-Thought (GCoT) to provide detailed breakdowns of image generation steps. The whole data curation takes 15,000 A100 GPU days, providing the community with a resource previously unattainable outside of large industrial labs. PRISM-Bench offers a novel evaluation standard with seven distinct tracks, including a formidable Long Text challenge using GCoT. Through carefully designed prompts, it utilizes advanced vision-language models for nuanced human-aligned assessment of prompt-image alignment and image aesthetics. Our extensive evaluation of 19 leading models on PRISM-Bench reveals critical performance gaps and highlights specific areas requiring improvement. Our dataset, benchmark, and evaluation code are released to catalyze the next wave of reasoning-oriented T2I generation. Project page: https://flux-reason-6m.github.io/ .
VMix: Improving Text-to-Image Diffusion Model with Cross-Attention Mixing Control
While diffusion models show extraordinary talents in text-to-image generation, they may still fail to generate highly aesthetic images. More specifically, there is still a gap between the generated images and the real-world aesthetic images in finer-grained dimensions including color, lighting, composition, etc. In this paper, we propose Cross-Attention Value Mixing Control (VMix) Adapter, a plug-and-play aesthetics adapter, to upgrade the quality of generated images while maintaining generality across visual concepts by (1) disentangling the input text prompt into the content description and aesthetic description by the initialization of aesthetic embedding, and (2) integrating aesthetic conditions into the denoising process through value-mixed cross-attention, with the network connected by zero-initialized linear layers. Our key insight is to enhance the aesthetic presentation of existing diffusion models by designing a superior condition control method, all while preserving the image-text alignment. Through our meticulous design, VMix is flexible enough to be applied to community models for better visual performance without retraining. To validate the effectiveness of our method, we conducted extensive experiments, showing that VMix outperforms other state-of-the-art methods and is compatible with other community modules (e.g., LoRA, ControlNet, and IPAdapter) for image generation. The project page is https://vmix-diffusion.github.io/VMix/.
RedCaps: web-curated image-text data created by the people, for the people
Large datasets of paired images and text have become increasingly popular for learning generic representations for vision and vision-and-language tasks. Such datasets have been built by querying search engines or collecting HTML alt-text -- since web data is noisy, they require complex filtering pipelines to maintain quality. We explore alternate data sources to collect high quality data with minimal filtering. We introduce RedCaps -- a large-scale dataset of 12M image-text pairs collected from Reddit. Images and captions from Reddit depict and describe a wide variety of objects and scenes. We collect data from a manually curated set of subreddits, which give coarse image labels and allow us to steer the dataset composition without labeling individual instances. We show that captioning models trained on RedCaps produce rich and varied captions preferred by humans, and learn visual representations that transfer to many downstream tasks.
RePrompt: Reasoning-Augmented Reprompting for Text-to-Image Generation via Reinforcement Learning
Despite recent progress in text-to-image (T2I) generation, existing models often struggle to faithfully capture user intentions from short and under-specified prompts. While prior work has attempted to enhance prompts using large language models (LLMs), these methods frequently generate stylistic or unrealistic content due to insufficient grounding in visual semantics and real-world composition. Inspired by recent advances in reasoning for language model, we propose RePrompt, a novel reprompting framework that introduces explicit reasoning into the prompt enhancement process via reinforcement learning. Instead of relying on handcrafted rules or stylistic rewrites, our method trains a language model to generate structured, self-reflective prompts by optimizing for image-level outcomes. The tailored reward models assesse the generated images in terms of human preference, semantic alignment, and visual composition, providing indirect supervision to refine prompt generation. Our approach enables end-to-end training without human-annotated data. Experiments on GenEval and T2I-Compbench show that RePrompt significantly boosts spatial layout fidelity and compositional generalization across diverse T2I backbones, establishing new state-of-the-art results.
Evaluating Text-to-Visual Generation with Image-to-Text Generation
Despite significant progress in generative AI, comprehensive evaluation remains challenging because of the lack of effective metrics and standardized benchmarks. For instance, the widely-used CLIPScore measures the alignment between a (generated) image and text prompt, but it fails to produce reliable scores for complex prompts involving compositions of objects, attributes, and relations. One reason is that text encoders of CLIP can notoriously act as a "bag of words", conflating prompts such as "the horse is eating the grass" with "the grass is eating the horse". To address this, we introduce the VQAScore, which uses a visual-question-answering (VQA) model to produce an alignment score by computing the probability of a "Yes" answer to a simple "Does this figure show '{text}'?" question. Though simpler than prior art, VQAScore computed with off-the-shelf models produces state-of-the-art results across many (8) image-text alignment benchmarks. We also compute VQAScore with an in-house model that follows best practices in the literature. For example, we use a bidirectional image-question encoder that allows image embeddings to depend on the question being asked (and vice versa). Our in-house model, CLIP-FlanT5, outperforms even the strongest baselines that make use of the proprietary GPT-4V. Interestingly, although we train with only images, VQAScore can also align text with video and 3D models. VQAScore allows researchers to benchmark text-to-visual generation using complex texts that capture the compositional structure of real-world prompts. We introduce GenAI-Bench, a more challenging benchmark with 1,600 compositional text prompts that require parsing scenes, objects, attributes, relationships, and high-order reasoning like comparison and logic. GenAI-Bench also offers over 15,000 human ratings for leading image and video generation models such as Stable Diffusion, DALL-E 3, and Gen2.
ConceptBed: Evaluating Concept Learning Abilities of Text-to-Image Diffusion Models
The ability to understand visual concepts and replicate and compose these concepts from images is a central goal for computer vision. Recent advances in text-to-image (T2I) models have lead to high definition and realistic image quality generation by learning from large databases of images and their descriptions. However, the evaluation of T2I models has focused on photorealism and limited qualitative measures of visual understanding. To quantify the ability of T2I models in learning and synthesizing novel visual concepts, we introduce ConceptBed, a large-scale dataset that consists of 284 unique visual concepts, 5K unique concept compositions, and 33K composite text prompts. Along with the dataset, we propose an evaluation metric, Concept Confidence Deviation (CCD), that uses the confidence of oracle concept classifiers to measure the alignment between concepts generated by T2I generators and concepts contained in ground truth images. We evaluate visual concepts that are either objects, attributes, or styles, and also evaluate four dimensions of compositionality: counting, attributes, relations, and actions. Our human study shows that CCD is highly correlated with human understanding of concepts. Our results point to a trade-off between learning the concepts and preserving the compositionality which existing approaches struggle to overcome.
$λ$-ECLIPSE: Multi-Concept Personalized Text-to-Image Diffusion Models by Leveraging CLIP Latent Space
Despite the recent advances in personalized text-to-image (P-T2I) generative models, subject-driven T2I remains challenging. The primary bottlenecks include 1) Intensive training resource requirements, 2) Hyper-parameter sensitivity leading to inconsistent outputs, and 3) Balancing the intricacies of novel visual concept and composition alignment. We start by re-iterating the core philosophy of T2I diffusion models to address the above limitations. Predominantly, contemporary subject-driven T2I approaches hinge on Latent Diffusion Models (LDMs), which facilitate T2I mapping through cross-attention layers. While LDMs offer distinct advantages, P-T2I methods' reliance on the latent space of these diffusion models significantly escalates resource demands, leading to inconsistent results and necessitating numerous iterations for a single desired image. Recently, ECLIPSE has demonstrated a more resource-efficient pathway for training UnCLIP-based T2I models, circumventing the need for diffusion text-to-image priors. Building on this, we introduce lambda-ECLIPSE. Our method illustrates that effective P-T2I does not necessarily depend on the latent space of diffusion models. lambda-ECLIPSE achieves single, multi-subject, and edge-guided T2I personalization with just 34M parameters and is trained on a mere 74 GPU hours using 1.6M image-text interleaved data. Through extensive experiments, we also establish that lambda-ECLIPSE surpasses existing baselines in composition alignment while preserving concept alignment performance, even with significantly lower resource utilization.
DreamStyler: Paint by Style Inversion with Text-to-Image Diffusion Models
Recent progresses in large-scale text-to-image models have yielded remarkable accomplishments, finding various applications in art domain. However, expressing unique characteristics of an artwork (e.g. brushwork, colortone, or composition) with text prompts alone may encounter limitations due to the inherent constraints of verbal description. To this end, we introduce DreamStyler, a novel framework designed for artistic image synthesis, proficient in both text-to-image synthesis and style transfer. DreamStyler optimizes a multi-stage textual embedding with a context-aware text prompt, resulting in prominent image quality. In addition, with content and style guidance, DreamStyler exhibits flexibility to accommodate a range of style references. Experimental results demonstrate its superior performance across multiple scenarios, suggesting its promising potential in artistic product creation.
DeCoT: Decomposing Complex Instructions for Enhanced Text-to-Image Generation with Large Language Models
Despite remarkable advancements, current Text-to-Image (T2I) models struggle with complex, long-form textual instructions, frequently failing to accurately render intricate details, spatial relationships, or specific constraints. This limitation is highlighted by benchmarks such as LongBench-T2I, which reveal deficiencies in handling composition, specific text, and fine textures. To address this, we propose DeCoT (Decomposition-CoT), a novel framework that leverages Large Language Models (LLMs) to significantly enhance T2I models' understanding and execution of complex instructions. DeCoT operates in two core stages: first, Complex Instruction Decomposition and Semantic Enhancement, where an LLM breaks down raw instructions into structured, actionable semantic units and clarifies ambiguities; second, Multi-Stage Prompt Integration and Adaptive Generation, which transforms these units into a hierarchical or optimized single prompt tailored for existing T2I models. Extensive experiments on the LongBench-T2I dataset demonstrate that DeCoT consistently and substantially improves the performance of leading T2I models across all evaluated dimensions, particularly in challenging aspects like "Text" and "Composition". Quantitative results, validated by multiple MLLM evaluators (Gemini-2.0-Flash and InternVL3-78B), show that DeCoT, when integrated with Infinity-8B, achieves an average score of 3.52, outperforming the baseline Infinity-8B (3.44). Ablation studies confirm the critical contribution of each DeCoT component and the importance of sophisticated LLM prompting. Furthermore, human evaluations corroborate these findings, indicating superior perceptual quality and instruction fidelity. DeCoT effectively bridges the gap between high-level user intent and T2I model requirements, leading to more faithful and accurate image generation.
PromptEnhancer: A Simple Approach to Enhance Text-to-Image Models via Chain-of-Thought Prompt Rewriting
Recent advancements in text-to-image (T2I) diffusion models have demonstrated remarkable capabilities in generating high-fidelity images. However, these models often struggle to faithfully render complex user prompts, particularly in aspects like attribute binding, negation, and compositional relationships. This leads to a significant mismatch between user intent and the generated output. To address this challenge, we introduce PromptEnhancer, a novel and universal prompt rewriting framework that enhances any pretrained T2I model without requiring modifications to its weights. Unlike prior methods that rely on model-specific fine-tuning or implicit reward signals like image-reward scores, our framework decouples the rewriter from the generator. We achieve this by training a Chain-of-Thought (CoT) rewriter through reinforcement learning, guided by a dedicated reward model we term the AlignEvaluator. The AlignEvaluator is trained to provide explicit and fine-grained feedback based on a systematic taxonomy of 24 key points, which are derived from a comprehensive analysis of common T2I failure modes. By optimizing the CoT rewriter to maximize the reward from our AlignEvaluator, our framework learns to generate prompts that are more precisely interpreted by T2I models. Extensive experiments on the HunyuanImage 2.1 model demonstrate that PromptEnhancer significantly improves image-text alignment across a wide range of semantic and compositional challenges. Furthermore, we introduce a new, high-quality human preference benchmark to facilitate future research in this direction.
SingleInsert: Inserting New Concepts from a Single Image into Text-to-Image Models for Flexible Editing
Recent progress in text-to-image (T2I) models enables high-quality image generation with flexible textual control. To utilize the abundant visual priors in the off-the-shelf T2I models, a series of methods try to invert an image to proper embedding that aligns with the semantic space of the T2I model. However, these image-to-text (I2T) inversion methods typically need multiple source images containing the same concept or struggle with the imbalance between editing flexibility and visual fidelity. In this work, we point out that the critical problem lies in the foreground-background entanglement when learning an intended concept, and propose a simple and effective baseline for single-image I2T inversion, named SingleInsert. SingleInsert adopts a two-stage scheme. In the first stage, we regulate the learned embedding to concentrate on the foreground area without being associated with the irrelevant background. In the second stage, we finetune the T2I model for better visual resemblance and devise a semantic loss to prevent the language drift problem. With the proposed techniques, SingleInsert excels in single concept generation with high visual fidelity while allowing flexible editing. Additionally, SingleInsert can perform single-image novel view synthesis and multiple concepts composition without requiring joint training. To facilitate evaluation, we design an editing prompt list and introduce a metric named Editing Success Rate (ESR) for quantitative assessment of editing flexibility. Our project page is: https://jarrentwu1031.github.io/SingleInsert-web/
LLMScore: Unveiling the Power of Large Language Models in Text-to-Image Synthesis Evaluation
Existing automatic evaluation on text-to-image synthesis can only provide an image-text matching score, without considering the object-level compositionality, which results in poor correlation with human judgments. In this work, we propose LLMScore, a new framework that offers evaluation scores with multi-granularity compositionality. LLMScore leverages the large language models (LLMs) to evaluate text-to-image models. Initially, it transforms the image into image-level and object-level visual descriptions. Then an evaluation instruction is fed into the LLMs to measure the alignment between the synthesized image and the text, ultimately generating a score accompanied by a rationale. Our substantial analysis reveals the highest correlation of LLMScore with human judgments on a wide range of datasets (Attribute Binding Contrast, Concept Conjunction, MSCOCO, DrawBench, PaintSkills). Notably, our LLMScore achieves Kendall's tau correlation with human evaluations that is 58.8% and 31.2% higher than the commonly-used text-image matching metrics CLIP and BLIP, respectively.
LayerFusion: Harmonized Multi-Layer Text-to-Image Generation with Generative Priors
Large-scale diffusion models have achieved remarkable success in generating high-quality images from textual descriptions, gaining popularity across various applications. However, the generation of layered content, such as transparent images with foreground and background layers, remains an under-explored area. Layered content generation is crucial for creative workflows in fields like graphic design, animation, and digital art, where layer-based approaches are fundamental for flexible editing and composition. In this paper, we propose a novel image generation pipeline based on Latent Diffusion Models (LDMs) that generates images with two layers: a foreground layer (RGBA) with transparency information and a background layer (RGB). Unlike existing methods that generate these layers sequentially, our approach introduces a harmonized generation mechanism that enables dynamic interactions between the layers for more coherent outputs. We demonstrate the effectiveness of our method through extensive qualitative and quantitative experiments, showing significant improvements in visual coherence, image quality, and layer consistency compared to baseline methods.
Attention Calibration for Disentangled Text-to-Image Personalization
Recent thrilling progress in large-scale text-to-image (T2I) models has unlocked unprecedented synthesis quality of AI-generated content (AIGC) including image generation, 3D and video composition. Further, personalized techniques enable appealing customized production of a novel concept given only several images as reference. However, an intriguing problem persists: Is it possible to capture multiple, novel concepts from one single reference image? In this paper, we identify that existing approaches fail to preserve visual consistency with the reference image and eliminate cross-influence from concepts. To alleviate this, we propose an attention calibration mechanism to improve the concept-level understanding of the T2I model. Specifically, we first introduce new learnable modifiers bound with classes to capture attributes of multiple concepts. Then, the classes are separated and strengthened following the activation of the cross-attention operation, ensuring comprehensive and self-contained concepts. Additionally, we suppress the attention activation of different classes to mitigate mutual influence among concepts. Together, our proposed method, dubbed DisenDiff, can learn disentangled multiple concepts from one single image and produce novel customized images with learned concepts. We demonstrate that our method outperforms the current state of the art in both qualitative and quantitative evaluations. More importantly, our proposed techniques are compatible with LoRA and inpainting pipelines, enabling more interactive experiences.
Scaling Autoregressive Models for Content-Rich Text-to-Image Generation
We present the Pathways Autoregressive Text-to-Image (Parti) model, which generates high-fidelity photorealistic images and supports content-rich synthesis involving complex compositions and world knowledge. Parti treats text-to-image generation as a sequence-to-sequence modeling problem, akin to machine translation, with sequences of image tokens as the target outputs rather than text tokens in another language. This strategy can naturally tap into the rich body of prior work on large language models, which have seen continued advances in capabilities and performance through scaling data and model sizes. Our approach is simple: First, Parti uses a Transformer-based image tokenizer, ViT-VQGAN, to encode images as sequences of discrete tokens. Second, we achieve consistent quality improvements by scaling the encoder-decoder Transformer model up to 20B parameters, with a new state-of-the-art zero-shot FID score of 7.23 and finetuned FID score of 3.22 on MS-COCO. Our detailed analysis on Localized Narratives as well as PartiPrompts (P2), a new holistic benchmark of over 1600 English prompts, demonstrate the effectiveness of Parti across a wide variety of categories and difficulty aspects. We also explore and highlight limitations of our models in order to define and exemplify key areas of focus for further improvements. See https://parti.research.google/ for high-resolution images.
A Neural Space-Time Representation for Text-to-Image Personalization
A key aspect of text-to-image personalization methods is the manner in which the target concept is represented within the generative process. This choice greatly affects the visual fidelity, downstream editability, and disk space needed to store the learned concept. In this paper, we explore a new text-conditioning space that is dependent on both the denoising process timestep (time) and the denoising U-Net layers (space) and showcase its compelling properties. A single concept in the space-time representation is composed of hundreds of vectors, one for each combination of time and space, making this space challenging to optimize directly. Instead, we propose to implicitly represent a concept in this space by optimizing a small neural mapper that receives the current time and space parameters and outputs the matching token embedding. In doing so, the entire personalized concept is represented by the parameters of the learned mapper, resulting in a compact, yet expressive, representation. Similarly to other personalization methods, the output of our neural mapper resides in the input space of the text encoder. We observe that one can significantly improve the convergence and visual fidelity of the concept by introducing a textual bypass, where our neural mapper additionally outputs a residual that is added to the output of the text encoder. Finally, we show how one can impose an importance-based ordering over our implicit representation, providing users control over the reconstruction and editability of the learned concept using a single trained model. We demonstrate the effectiveness of our approach over a range of concepts and prompts, showing our method's ability to generate high-quality and controllable compositions without fine-tuning any parameters of the generative model itself.
The Factuality Tax of Diversity-Intervened Text-to-Image Generation: Benchmark and Fact-Augmented Intervention
Prompt-based "diversity interventions" are commonly adopted to improve the diversity of Text-to-Image (T2I) models depicting individuals with various racial or gender traits. However, will this strategy result in nonfactual demographic distribution, especially when generating real historical figures? In this work, we propose DemOgraphic FActualIty Representation (DoFaiR), a benchmark to systematically quantify the trade-off between using diversity interventions and preserving demographic factuality in T2I models. DoFaiR consists of 756 meticulously fact-checked test instances to reveal the factuality tax of various diversity prompts through an automated evidence-supported evaluation pipeline. Experiments on DoFaiR unveil that diversity-oriented instructions increase the number of different gender and racial groups in DALLE-3's generations at the cost of historically inaccurate demographic distributions. To resolve this issue, we propose Fact-Augmented Intervention (FAI), which instructs a Large Language Model (LLM) to reflect on verbalized or retrieved factual information about gender and racial compositions of generation subjects in history, and incorporate it into the generation context of T2I models. By orienting model generations using the reflected historical truths, FAI significantly improves the demographic factuality under diversity interventions while preserving diversity.
3DIS: Depth-Driven Decoupled Instance Synthesis for Text-to-Image Generation
The increasing demand for controllable outputs in text-to-image generation has spurred advancements in multi-instance generation (MIG), allowing users to define both instance layouts and attributes. However, unlike image-conditional generation methods such as ControlNet, MIG techniques have not been widely adopted in state-of-the-art models like SD2 and SDXL, primarily due to the challenge of building robust renderers that simultaneously handle instance positioning and attribute rendering. In this paper, we introduce Depth-Driven Decoupled Instance Synthesis (3DIS), a novel framework that decouples the MIG process into two stages: (i) generating a coarse scene depth map for accurate instance positioning and scene composition, and (ii) rendering fine-grained attributes using pre-trained ControlNet on any foundational model, without additional training. Our 3DIS framework integrates a custom adapter into LDM3D for precise depth-based layouts and employs a finetuning-free method for enhanced instance-level attribute rendering. Extensive experiments on COCO-Position and COCO-MIG benchmarks demonstrate that 3DIS significantly outperforms existing methods in both layout precision and attribute rendering. Notably, 3DIS offers seamless compatibility with diverse foundational models, providing a robust, adaptable solution for advanced multi-instance generation. The code is available at: https://github.com/limuloo/3DIS.
Reason out Your Layout: Evoking the Layout Master from Large Language Models for Text-to-Image Synthesis
Recent advancements in text-to-image (T2I) generative models have shown remarkable capabilities in producing diverse and imaginative visuals based on text prompts. Despite the advancement, these diffusion models sometimes struggle to translate the semantic content from the text into images entirely. While conditioning on the layout has shown to be effective in improving the compositional ability of T2I diffusion models, they typically require manual layout input. In this work, we introduce a novel approach to improving T2I diffusion models using Large Language Models (LLMs) as layout generators. Our method leverages the Chain-of-Thought prompting of LLMs to interpret text and generate spatially reasonable object layouts. The generated layout is then used to enhance the generated images' composition and spatial accuracy. Moreover, we propose an efficient adapter based on a cross-attention mechanism, which explicitly integrates the layout information into the stable diffusion models. Our experiments demonstrate significant improvements in image quality and layout accuracy, showcasing the potential of LLMs in augmenting generative image models.
Rewards Are Enough for Fast Photo-Realistic Text-to-image Generation
Aligning generated images to complicated text prompts and human preferences is a central challenge in Artificial Intelligence-Generated Content (AIGC). With reward-enhanced diffusion distillation emerging as a promising approach that boosts controllability and fidelity of text-to-image models, we identify a fundamental paradigm shift: as conditions become more specific and reward signals stronger, the rewards themselves become the dominant force in generation. In contrast, the diffusion losses serve as an overly expensive form of regularization. To thoroughly validate our hypothesis, we introduce R0, a novel conditional generation approach via regularized reward maximization. Instead of relying on tricky diffusion distillation losses, R0 proposes a new perspective that treats image generations as an optimization problem in data space which aims to search for valid images that have high compositional rewards. By innovative designs of the generator parameterization and proper regularization techniques, we train state-of-the-art few-step text-to-image generative models with R0 at scales. Our results challenge the conventional wisdom of diffusion post-training and conditional generation by demonstrating that rewards play a dominant role in scenarios with complex conditions. We hope our findings can contribute to further research into human-centric and reward-centric generation paradigms across the broader field of AIGC. Code is available at https://github.com/Luo-Yihong/R0.
MaxFusion: Plug&Play Multi-Modal Generation in Text-to-Image Diffusion Models
Large diffusion-based Text-to-Image (T2I) models have shown impressive generative powers for text-to-image generation as well as spatially conditioned image generation. For most applications, we can train the model end-toend with paired data to obtain photorealistic generation quality. However, to add an additional task, one often needs to retrain the model from scratch using paired data across all modalities to retain good generation performance. In this paper, we tackle this issue and propose a novel strategy to scale a generative model across new tasks with minimal compute. During our experiments, we discovered that the variance maps of intermediate feature maps of diffusion models capture the intensity of conditioning. Utilizing this prior information, we propose MaxFusion, an efficient strategy to scale up text-to-image generation models to accommodate new modality conditions. Specifically, we combine aligned features of multiple models, hence bringing a compositional effect. Our fusion strategy can be integrated into off-the-shelf models to enhance their generative prowess.
MULAN: A Multi Layer Annotated Dataset for Controllable Text-to-Image Generation
Text-to-image generation has achieved astonishing results, yet precise spatial controllability and prompt fidelity remain highly challenging. This limitation is typically addressed through cumbersome prompt engineering, scene layout conditioning, or image editing techniques which often require hand drawn masks. Nonetheless, pre-existing works struggle to take advantage of the natural instance-level compositionality of scenes due to the typically flat nature of rasterized RGB output images. Towards adressing this challenge, we introduce MuLAn: a novel dataset comprising over 44K MUlti-Layer ANnotations of RGB images as multilayer, instance-wise RGBA decompositions, and over 100K instance images. To build MuLAn, we developed a training free pipeline which decomposes a monocular RGB image into a stack of RGBA layers comprising of background and isolated instances. We achieve this through the use of pretrained general-purpose models, and by developing three modules: image decomposition for instance discovery and extraction, instance completion to reconstruct occluded areas, and image re-assembly. We use our pipeline to create MuLAn-COCO and MuLAn-LAION datasets, which contain a variety of image decompositions in terms of style, composition and complexity. With MuLAn, we provide the first photorealistic resource providing instance decomposition and occlusion information for high quality images, opening up new avenues for text-to-image generative AI research. With this, we aim to encourage the development of novel generation and editing technology, in particular layer-wise solutions. MuLAn data resources are available at https://MuLAn-dataset.github.io/.
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Models
Recently, DALL-E, a multimodal transformer language model, and its variants (including diffusion models) have shown high-quality text-to-image generation capabilities. However, despite the interesting image generation results, there has not been a detailed analysis on how to evaluate such models. In this work, we investigate the visual reasoning capabilities and social biases of different text-to-image models, covering both multimodal transformer language models and diffusion models. First, we measure three visual reasoning skills: object recognition, object counting, and spatial relation understanding. For this, we propose PaintSkills, a compositional diagnostic dataset and evaluation toolkit that measures these skills. In our experiments, there exists a large gap between the performance of recent text-to-image models and the upper bound accuracy in object counting and spatial relation understanding skills. Second, we assess gender and skin tone biases by measuring the variance of the gender/skin tone distribution based on automated and human evaluation. We demonstrate that recent text-to-image models learn specific gender/skin tone biases from web image-text pairs. We hope that our work will help guide future progress in improving text-to-image generation models on visual reasoning skills and learning socially unbiased representations. Code and data: https://github.com/j-min/DallEval
InstantStyle-Plus: Style Transfer with Content-Preserving in Text-to-Image Generation
Style transfer is an inventive process designed to create an image that maintains the essence of the original while embracing the visual style of another. Although diffusion models have demonstrated impressive generative power in personalized subject-driven or style-driven applications, existing state-of-the-art methods still encounter difficulties in achieving a seamless balance between content preservation and style enhancement. For example, amplifying the style's influence can often undermine the structural integrity of the content. To address these challenges, we deconstruct the style transfer task into three core elements: 1) Style, focusing on the image's aesthetic characteristics; 2) Spatial Structure, concerning the geometric arrangement and composition of visual elements; and 3) Semantic Content, which captures the conceptual meaning of the image. Guided by these principles, we introduce InstantStyle-Plus, an approach that prioritizes the integrity of the original content while seamlessly integrating the target style. Specifically, our method accomplishes style injection through an efficient, lightweight process, utilizing the cutting-edge InstantStyle framework. To reinforce the content preservation, we initiate the process with an inverted content latent noise and a versatile plug-and-play tile ControlNet for preserving the original image's intrinsic layout. We also incorporate a global semantic adapter to enhance the semantic content's fidelity. To safeguard against the dilution of style information, a style extractor is employed as discriminator for providing supplementary style guidance. Codes will be available at https://github.com/instantX-research/InstantStyle-Plus.
LumiGen: An LVLM-Enhanced Iterative Framework for Fine-Grained Text-to-Image Generation
Text-to-Image (T2I) generation has made significant advancements with diffusion models, yet challenges persist in handling complex instructions, ensuring fine-grained content control, and maintaining deep semantic consistency. Existing T2I models often struggle with tasks like accurate text rendering, precise pose generation, or intricate compositional coherence. Concurrently, Vision-Language Models (LVLMs) have demonstrated powerful capabilities in cross-modal understanding and instruction following. We propose LumiGen, a novel LVLM-enhanced iterative framework designed to elevate T2I model performance, particularly in areas requiring fine-grained control, through a closed-loop, LVLM-driven feedback mechanism. LumiGen comprises an Intelligent Prompt Parsing & Augmentation (IPPA) module for proactive prompt enhancement and an Iterative Visual Feedback & Refinement (IVFR) module, which acts as a "visual critic" to iteratively correct and optimize generated images. Evaluated on the challenging LongBench-T2I Benchmark, LumiGen achieves a superior average score of 3.08, outperforming state-of-the-art baselines. Notably, our framework demonstrates significant improvements in critical dimensions such as text rendering and pose expression, validating the effectiveness of LVLM integration for more controllable and higher-quality image generation.
Crafting Parts for Expressive Object Composition
Text-to-image generation from large generative models like Stable Diffusion, DALLE-2, etc., have become a common base for various tasks due to their superior quality and extensive knowledge bases. As image composition and generation are creative processes the artists need control over various parts of the images being generated. We find that just adding details about parts in the base text prompt either leads to an entirely different image (e.g., missing/incorrect identity) or the extra part details simply being ignored. To mitigate these issues, we introduce PartCraft, which enables image generation based on fine-grained part-level details specified for objects in the base text prompt. This allows more control for artists and enables novel object compositions by combining distinctive object parts. PartCraft first localizes object parts by denoising the object region from a specific diffusion process. This enables each part token to be localized to the right object region. After obtaining part masks, we run a localized diffusion process in each of the part regions based on fine-grained part descriptions and combine them to produce the final image. All the stages of PartCraft are based on repurposing a pre-trained diffusion model, which enables it to generalize across various domains without training. We demonstrate the effectiveness of part-level control provided by PartCraft qualitatively through visual examples and quantitatively in comparison to the contemporary baselines.
GraPE: A Generate-Plan-Edit Framework for Compositional T2I Synthesis
Text-to-image (T2I) generation has seen significant progress with diffusion models, enabling generation of photo-realistic images from text prompts. Despite this progress, existing methods still face challenges in following complex text prompts, especially those requiring compositional and multi-step reasoning. Given such complex instructions, SOTA models often make mistakes in faithfully modeling object attributes, and relationships among them. In this work, we present an alternate paradigm for T2I synthesis, decomposing the task of complex multi-step generation into three steps, (a) Generate: we first generate an image using existing diffusion models (b) Plan: we make use of Multi-Modal LLMs (MLLMs) to identify the mistakes in the generated image expressed in terms of individual objects and their properties, and produce a sequence of corrective steps required in the form of an edit-plan. (c) Edit: we make use of an existing text-guided image editing models to sequentially execute our edit-plan over the generated image to get the desired image which is faithful to the original instruction. Our approach derives its strength from the fact that it is modular in nature, is training free, and can be applied over any combination of image generation and editing models. As an added contribution, we also develop a model capable of compositional editing, which further helps improve the overall accuracy of our proposed approach. Our method flexibly trades inference time compute with performance on compositional text prompts. We perform extensive experimental evaluation across 3 benchmarks and 10 T2I models including DALLE-3 and the latest -- SD-3.5-Large. Our approach not only improves the performance of the SOTA models, by upto 3 points, it also reduces the performance gap between weaker and stronger models. https://dair-iitd.github.io/GraPE/{https://dair-iitd.github.io/GraPE/}
GraphDreamer: Compositional 3D Scene Synthesis from Scene Graphs
As pretrained text-to-image diffusion models become increasingly powerful, recent efforts have been made to distill knowledge from these text-to-image pretrained models for optimizing a text-guided 3D model. Most of the existing methods generate a holistic 3D model from a plain text input. This can be problematic when the text describes a complex scene with multiple objects, because the vectorized text embeddings are inherently unable to capture a complex description with multiple entities and relationships. Holistic 3D modeling of the entire scene further prevents accurate grounding of text entities and concepts. To address this limitation, we propose GraphDreamer, a novel framework to generate compositional 3D scenes from scene graphs, where objects are represented as nodes and their interactions as edges. By exploiting node and edge information in scene graphs, our method makes better use of the pretrained text-to-image diffusion model and is able to fully disentangle different objects without image-level supervision. To facilitate modeling of object-wise relationships, we use signed distance fields as representation and impose a constraint to avoid inter-penetration of objects. To avoid manual scene graph creation, we design a text prompt for ChatGPT to generate scene graphs based on text inputs. We conduct both qualitative and quantitative experiments to validate the effectiveness of GraphDreamer in generating high-fidelity compositional 3D scenes with disentangled object entities.
Gen4Gen: Generative Data Pipeline for Generative Multi-Concept Composition
Recent text-to-image diffusion models are able to learn and synthesize images containing novel, personalized concepts (e.g., their own pets or specific items) with just a few examples for training. This paper tackles two interconnected issues within this realm of personalizing text-to-image diffusion models. First, current personalization techniques fail to reliably extend to multiple concepts -- we hypothesize this to be due to the mismatch between complex scenes and simple text descriptions in the pre-training dataset (e.g., LAION). Second, given an image containing multiple personalized concepts, there lacks a holistic metric that evaluates performance on not just the degree of resemblance of personalized concepts, but also whether all concepts are present in the image and whether the image accurately reflects the overall text description. To address these issues, we introduce Gen4Gen, a semi-automated dataset creation pipeline utilizing generative models to combine personalized concepts into complex compositions along with text-descriptions. Using this, we create a dataset called MyCanvas, that can be used to benchmark the task of multi-concept personalization. In addition, we design a comprehensive metric comprising two scores (CP-CLIP and TI-CLIP) for better quantifying the performance of multi-concept, personalized text-to-image diffusion methods. We provide a simple baseline built on top of Custom Diffusion with empirical prompting strategies for future researchers to evaluate on MyCanvas. We show that by improving data quality and prompting strategies, we can significantly increase multi-concept personalized image generation quality, without requiring any modifications to model architecture or training algorithms.
Draw Like an Artist: Complex Scene Generation with Diffusion Model via Composition, Painting, and Retouching
Recent advances in text-to-image diffusion models have demonstrated impressive capabilities in image quality. However, complex scene generation remains relatively unexplored, and even the definition of `complex scene' itself remains unclear. In this paper, we address this gap by providing a precise definition of complex scenes and introducing a set of Complex Decomposition Criteria (CDC) based on this definition. Inspired by the artists painting process, we propose a training-free diffusion framework called Complex Diffusion (CxD), which divides the process into three stages: composition, painting, and retouching. Our method leverages the powerful chain-of-thought capabilities of large language models (LLMs) to decompose complex prompts based on CDC and to manage composition and layout. We then develop an attention modulation method that guides simple prompts to specific regions to complete the complex scene painting. Finally, we inject the detailed output of the LLM into a retouching model to enhance the image details, thus implementing the retouching stage. Extensive experiments demonstrate that our method outperforms previous SOTA approaches, significantly improving the generation of high-quality, semantically consistent, and visually diverse images for complex scenes, even with intricate prompts.
SCOT: Self-Supervised Contrastive Pretraining For Zero-Shot Compositional Retrieval
Compositional image retrieval (CIR) is a multimodal learning task where a model combines a query image with a user-provided text modification to retrieve a target image. CIR finds applications in a variety of domains including product retrieval (e-commerce) and web search. Existing methods primarily focus on fully-supervised learning, wherein models are trained on datasets of labeled triplets such as FashionIQ and CIRR. This poses two significant challenges: (i) curating such triplet datasets is labor intensive; and (ii) models lack generalization to unseen objects and domains. In this work, we propose SCOT (Self-supervised COmpositional Training), a novel zero-shot compositional pretraining strategy that combines existing large image-text pair datasets with the generative capabilities of large language models to contrastively train an embedding composition network. Specifically, we show that the text embedding from a large-scale contrastively-pretrained vision-language model can be utilized as proxy target supervision during compositional pretraining, replacing the target image embedding. In zero-shot settings, this strategy surpasses SOTA zero-shot compositional retrieval methods as well as many fully-supervised methods on standard benchmarks such as FashionIQ and CIRR.
Boundary Attention Constrained Zero-Shot Layout-To-Image Generation
Recent text-to-image diffusion models excel at generating high-resolution images from text but struggle with precise control over spatial composition and object counting. To address these challenges, several studies developed layout-to-image (L2I) approaches that incorporate layout instructions into text-to-image models. However, existing L2I methods typically require either fine-tuning pretrained parameters or training additional control modules for the diffusion models. In this work, we propose a novel zero-shot L2I approach, BACON (Boundary Attention Constrained generation), which eliminates the need for additional modules or fine-tuning. Specifically, we use text-visual cross-attention feature maps to quantify inconsistencies between the layout of the generated images and the provided instructions, and then compute loss functions to optimize latent features during the diffusion reverse process. To enhance spatial controllability and mitigate semantic failures in complex layout instructions, we leverage pixel-to-pixel correlations in the self-attention feature maps to align cross-attention maps and combine three loss functions constrained by boundary attention to update latent features. Comprehensive experimental results on both L2I and non-L2I pretrained diffusion models demonstrate that our method outperforms existing zero-shot L2I techniuqes both quantitatively and qualitatively in terms of image composition on the DrawBench and HRS benchmarks.
LayoutGPT: Compositional Visual Planning and Generation with Large Language Models
Attaining a high degree of user controllability in visual generation often requires intricate, fine-grained inputs like layouts. However, such inputs impose a substantial burden on users when compared to simple text inputs. To address the issue, we study how Large Language Models (LLMs) can serve as visual planners by generating layouts from text conditions, and thus collaborate with visual generative models. We propose LayoutGPT, a method to compose in-context visual demonstrations in style sheet language to enhance the visual planning skills of LLMs. LayoutGPT can generate plausible layouts in multiple domains, ranging from 2D images to 3D indoor scenes. LayoutGPT also shows superior performance in converting challenging language concepts like numerical and spatial relations to layout arrangements for faithful text-to-image generation. When combined with a downstream image generation model, LayoutGPT outperforms text-to-image models/systems by 20-40% and achieves comparable performance as human users in designing visual layouts for numerical and spatial correctness. Lastly, LayoutGPT achieves comparable performance to supervised methods in 3D indoor scene synthesis, demonstrating its effectiveness and potential in multiple visual domains.
Scene-Conditional 3D Object Stylization and Composition
Recently, 3D generative models have made impressive progress, enabling the generation of almost arbitrary 3D assets from text or image inputs. However, these approaches generate objects in isolation without any consideration for the scene where they will eventually be placed. In this paper, we propose a framework that allows for the stylization of an existing 3D asset to fit into a given 2D scene, and additionally produce a photorealistic composition as if the asset was placed within the environment. This not only opens up a new level of control for object stylization, for example, the same assets can be stylized to reflect changes in the environment, such as summer to winter or fantasy versus futuristic settings-but also makes the object-scene composition more controllable. We achieve this by combining modeling and optimizing the object's texture and environmental lighting through differentiable ray tracing with image priors from pre-trained text-to-image diffusion models. We demonstrate that our method is applicable to a wide variety of indoor and outdoor scenes and arbitrary objects.
Diffusion Classifiers Understand Compositionality, but Conditions Apply
Understanding visual scenes is fundamental to human intelligence. While discriminative models have significantly advanced computer vision, they often struggle with compositional understanding. In contrast, recent generative text-to-image diffusion models excel at synthesizing complex scenes, suggesting inherent compositional capabilities. Building on this, zero-shot diffusion classifiers have been proposed to repurpose diffusion models for discriminative tasks. While prior work offered promising results in discriminative compositional scenarios, these results remain preliminary due to a small number of benchmarks and a relatively shallow analysis of conditions under which the models succeed. To address this, we present a comprehensive study of the discriminative capabilities of diffusion classifiers on a wide range of compositional tasks. Specifically, our study covers three diffusion models (SD 1.5, 2.0, and, for the first time, 3-m) spanning 10 datasets and over 30 tasks. Further, we shed light on the role that target dataset domains play in respective performance; to isolate the domain effects, we introduce a new diagnostic benchmark Self-Bench comprised of images created by diffusion models themselves. Finally, we explore the importance of timestep weighting and uncover a relationship between domain gap and timestep sensitivity, particularly for SD3-m. To sum up, diffusion classifiers understand compositionality, but conditions apply! Code and dataset are available at https://github.com/eugene6923/Diffusion-Classifiers-Compositionality.
Contrasting Intra-Modal and Ranking Cross-Modal Hard Negatives to Enhance Visio-Linguistic Compositional Understanding
Vision-Language Models (VLMs), such as CLIP, exhibit strong image-text comprehension abilities, facilitating advances in several downstream tasks such as zero-shot image classification, image-text retrieval, and text-to-image generation. However, the compositional reasoning abilities of existing VLMs remains subpar. The root of this limitation lies in the inadequate alignment between the images and captions in the pretraining datasets. Additionally, the current contrastive learning objective fails to focus on fine-grained grounding components like relations, actions, and attributes, resulting in "bag-of-words" representations. We introduce a simple and effective method to improve compositional reasoning in VLMs. Our method better leverages available datasets by refining and expanding the standard image-text contrastive learning framework. Our approach does not require specific annotations and does not incur extra parameters. When integrated with CLIP, our technique yields notable improvement over state-of-the-art baselines across five vision-language compositional benchmarks. We open-source our code at https://github.com/lezhang7/Enhance-FineGrained.
Dense and Aligned Captions (DAC) Promote Compositional Reasoning in VL Models
Vision and Language (VL) models offer an effective method for aligning representation spaces of images and text, leading to numerous applications such as cross-modal retrieval, visual question answering, captioning, and more. However, the aligned image-text spaces learned by all the popular VL models are still suffering from the so-called `object bias' - their representations behave as `bags of nouns', mostly ignoring or downsizing the attributes, relations, and states of objects described/appearing in texts/images. Although some great attempts at fixing these `compositional reasoning' issues were proposed in the recent literature, the problem is still far from being solved. In this paper, we uncover two factors limiting the VL models' compositional reasoning performance. These two factors are properties of the paired VL dataset used for finetuning and pre-training the VL model: (i) the caption quality, or in other words `image-alignment', of the texts; and (ii) the `density' of the captions in the sense of mentioning all the details appearing on the image. We propose a fine-tuning approach for automatically treating these factors leveraging a standard VL dataset (CC3M). Applied to CLIP, we demonstrate its significant compositional reasoning performance increase of up to sim27% over the base model, up to sim20% over the strongest baseline, and by 6.7% on average.
TripletCLIP: Improving Compositional Reasoning of CLIP via Synthetic Vision-Language Negatives
Contrastive Language-Image Pretraining (CLIP) models maximize the mutual information between text and visual modalities to learn representations. This makes the nature of the training data a significant factor in the efficacy of CLIP for downstream tasks. However, the lack of compositional diversity in contemporary image-text datasets limits the compositional reasoning ability of CLIP. We show that generating ``hard'' negative captions via in-context learning and synthesizing corresponding negative images with text-to-image generators offers a solution. We introduce a novel contrastive pre-training strategy that leverages these hard negative captions and images in an alternating fashion to train CLIP. We demonstrate that our method, named TripletCLIP, when applied to existing datasets such as CC3M and CC12M, enhances the compositional capabilities of CLIP, resulting in an absolute improvement of over 9% on the SugarCrepe benchmark on an equal computational budget, as well as improvements in zero-shot image classification and image retrieval. Our code, models, and data are available at: https://tripletclip.github.io
ImageScope: Unifying Language-Guided Image Retrieval via Large Multimodal Model Collective Reasoning
With the proliferation of images in online content, language-guided image retrieval (LGIR) has emerged as a research hotspot over the past decade, encompassing a variety of subtasks with diverse input forms. While the development of large multimodal models (LMMs) has significantly facilitated these tasks, existing approaches often address them in isolation, requiring the construction of separate systems for each task. This not only increases system complexity and maintenance costs, but also exacerbates challenges stemming from language ambiguity and complex image content, making it difficult for retrieval systems to provide accurate and reliable results. To this end, we propose ImageScope, a training-free, three-stage framework that leverages collective reasoning to unify LGIR tasks. The key insight behind the unification lies in the compositional nature of language, which transforms diverse LGIR tasks into a generalized text-to-image retrieval process, along with the reasoning of LMMs serving as a universal verification to refine the results. To be specific, in the first stage, we improve the robustness of the framework by synthesizing search intents across varying levels of semantic granularity using chain-of-thought (CoT) reasoning. In the second and third stages, we then reflect on retrieval results by verifying predicate propositions locally, and performing pairwise evaluations globally. Experiments conducted on six LGIR datasets demonstrate that ImageScope outperforms competitive baselines. Comprehensive evaluations and ablation studies further confirm the effectiveness of our design.
CineVerse: Consistent Keyframe Synthesis for Cinematic Scene Composition
We present CineVerse, a novel framework for the task of cinematic scene composition. Similar to traditional multi-shot generation, our task emphasizes the need for consistency and continuity across frames. However, our task also focuses on addressing challenges inherent to filmmaking, such as multiple characters, complex interactions, and visual cinematic effects. In order to learn to generate such content, we first create the CineVerse dataset. We use this dataset to train our proposed two-stage approach. First, we prompt a large language model (LLM) with task-specific instructions to take in a high-level scene description and generate a detailed plan for the overall setting and characters, as well as the individual shots. Then, we fine-tune a text-to-image generation model to synthesize high-quality visual keyframes. Experimental results demonstrate that CineVerse yields promising improvements in generating visually coherent and contextually rich movie scenes, paving the way for further exploration in cinematic video synthesis.
Align Your Gaussians: Text-to-4D with Dynamic 3D Gaussians and Composed Diffusion Models
Text-guided diffusion models have revolutionized image and video generation and have also been successfully used for optimization-based 3D object synthesis. Here, we instead focus on the underexplored text-to-4D setting and synthesize dynamic, animated 3D objects using score distillation methods with an additional temporal dimension. Compared to previous work, we pursue a novel compositional generation-based approach, and combine text-to-image, text-to-video, and 3D-aware multiview diffusion models to provide feedback during 4D object optimization, thereby simultaneously enforcing temporal consistency, high-quality visual appearance and realistic geometry. Our method, called Align Your Gaussians (AYG), leverages dynamic 3D Gaussian Splatting with deformation fields as 4D representation. Crucial to AYG is a novel method to regularize the distribution of the moving 3D Gaussians and thereby stabilize the optimization and induce motion. We also propose a motion amplification mechanism as well as a new autoregressive synthesis scheme to generate and combine multiple 4D sequences for longer generation. These techniques allow us to synthesize vivid dynamic scenes, outperform previous work qualitatively and quantitatively and achieve state-of-the-art text-to-4D performance. Due to the Gaussian 4D representation, different 4D animations can be seamlessly combined, as we demonstrate. AYG opens up promising avenues for animation, simulation and digital content creation as well as synthetic data generation.
Any-Size-Diffusion: Toward Efficient Text-Driven Synthesis for Any-Size HD Images
Stable diffusion, a generative model used in text-to-image synthesis, frequently encounters resolution-induced composition problems when generating images of varying sizes. This issue primarily stems from the model being trained on pairs of single-scale images and their corresponding text descriptions. Moreover, direct training on images of unlimited sizes is unfeasible, as it would require an immense number of text-image pairs and entail substantial computational expenses. To overcome these challenges, we propose a two-stage pipeline named Any-Size-Diffusion (ASD), designed to efficiently generate well-composed images of any size, while minimizing the need for high-memory GPU resources. Specifically, the initial stage, dubbed Any Ratio Adaptability Diffusion (ARAD), leverages a selected set of images with a restricted range of ratios to optimize the text-conditional diffusion model, thereby improving its ability to adjust composition to accommodate diverse image sizes. To support the creation of images at any desired size, we further introduce a technique called Fast Seamless Tiled Diffusion (FSTD) at the subsequent stage. This method allows for the rapid enlargement of the ASD output to any high-resolution size, avoiding seaming artifacts or memory overloads. Experimental results on the LAION-COCO and MM-CelebA-HQ benchmarks demonstrate that ASD can produce well-structured images of arbitrary sizes, cutting down the inference time by 2x compared to the traditional tiled algorithm.
Comp4D: LLM-Guided Compositional 4D Scene Generation
Recent advancements in diffusion models for 2D and 3D content creation have sparked a surge of interest in generating 4D content. However, the scarcity of 3D scene datasets constrains current methodologies to primarily object-centric generation. To overcome this limitation, we present Comp4D, a novel framework for Compositional 4D Generation. Unlike conventional methods that generate a singular 4D representation of the entire scene, Comp4D innovatively constructs each 4D object within the scene separately. Utilizing Large Language Models (LLMs), the framework begins by decomposing an input text prompt into distinct entities and maps out their trajectories. It then constructs the compositional 4D scene by accurately positioning these objects along their designated paths. To refine the scene, our method employs a compositional score distillation technique guided by the pre-defined trajectories, utilizing pre-trained diffusion models across text-to-image, text-to-video, and text-to-3D domains. Extensive experiments demonstrate our outstanding 4D content creation capability compared to prior arts, showcasing superior visual quality, motion fidelity, and enhanced object interactions.
Object-centric Binding in Contrastive Language-Image Pretraining
Recent advances in vision language models (VLM) have been driven by contrastive models such as CLIP, which learn to associate visual information with their corresponding text descriptions. However, these models have limitations in understanding complex compositional scenes involving multiple objects and their spatial relationships. To address these challenges, we propose a novel approach that diverges from commonly used strategies, which rely on the design of hard-negative augmentations. Instead, our work focuses on integrating inductive biases into pre-trained CLIP-like models to improve their compositional understanding without using any additional hard-negatives. To that end, we introduce a binding module that connects a scene graph, derived from a text description, with a slot-structured image representation, facilitating a structured similarity assessment between the two modalities. We also leverage relationships as text-conditioned visual constraints, thereby capturing the intricate interactions between objects and their contextual relationships more effectively. Our resulting model not only enhances the performance of CLIP-based models in multi-object compositional understanding but also paves the way towards more accurate and sample-efficient image-text matching of complex scenes.
Decoupled Global-Local Alignment for Improving Compositional Understanding
Contrastive Language-Image Pre-training (CLIP) has achieved success on multiple downstream tasks by aligning image and text modalities. However, the nature of global contrastive learning limits CLIP's ability to comprehend compositional concepts, such as relations and attributes. Although recent studies employ global hard negative samples to improve compositional understanding, these methods significantly compromise the model's inherent general capabilities by forcibly distancing textual negative samples from images in the embedding space. To overcome this limitation, we introduce a Decoupled Global-Local Alignment (DeGLA) framework that improves compositional understanding while substantially mitigating losses in general capabilities. To optimize the retention of the model's inherent capabilities, we incorporate a self-distillation mechanism within the global alignment process, aligning the learnable image-text encoder with a frozen teacher model derived from an exponential moving average. Under the constraint of self-distillation, it effectively mitigates the catastrophic forgetting of pretrained knowledge during fine-tuning. To improve compositional understanding, we first leverage the in-context learning capability of Large Language Models (LLMs) to construct about 2M high-quality negative captions across five types. Subsequently, we propose the Image-Grounded Contrast (IGC) loss and Text-Grounded Contrast (TGC) loss to enhance vision-language compositionally. Extensive experimental results demonstrate the effectiveness of the DeGLA framework. Compared to previous state-of-the-art methods, DeGLA achieves an average enhancement of 3.5% across the VALSE, SugarCrepe, and ARO benchmarks. Concurrently, it obtains an average performance improvement of 13.0% on zero-shot classification tasks across eleven datasets. Our code will be released at https://github.com/xiaoxing2001/DeGLA
MMIG-Bench: Towards Comprehensive and Explainable Evaluation of Multi-Modal Image Generation Models
Recent multimodal image generators such as GPT-4o, Gemini 2.0 Flash, and Gemini 2.5 Pro excel at following complex instructions, editing images and maintaining concept consistency. However, they are still evaluated by disjoint toolkits: text-to-image (T2I) benchmarks that lacks multi-modal conditioning, and customized image generation benchmarks that overlook compositional semantics and common knowledge. We propose MMIG-Bench, a comprehensive Multi-Modal Image Generation Benchmark that unifies these tasks by pairing 4,850 richly annotated text prompts with 1,750 multi-view reference images across 380 subjects, spanning humans, animals, objects, and artistic styles. MMIG-Bench is equipped with a three-level evaluation framework: (1) low-level metrics for visual artifacts and identity preservation of objects; (2) novel Aspect Matching Score (AMS): a VQA-based mid-level metric that delivers fine-grained prompt-image alignment and shows strong correlation with human judgments; and (3) high-level metrics for aesthetics and human preference. Using MMIG-Bench, we benchmark 17 state-of-the-art models, including Gemini 2.5 Pro, FLUX, DreamBooth, and IP-Adapter, and validate our metrics with 32k human ratings, yielding in-depth insights into architecture and data design. We will release the dataset and evaluation code to foster rigorous, unified evaluation and accelerate future innovations in multi-modal image generation.
Exploring the Spectrum of Visio-Linguistic Compositionality and Recognition
Vision and language models (VLMs) such as CLIP have showcased remarkable zero-shot recognition abilities yet face challenges in visio-linguistic compositionality, particularly in linguistic comprehension and fine-grained image-text alignment. This paper explores the intricate relationship between compositionality and recognition -- two pivotal aspects of VLM capability. We conduct a comprehensive evaluation of existing VLMs, covering both pre-training approaches aimed at recognition and the fine-tuning methods designed to improve compositionality. Our evaluation employs 12 benchmarks for compositionality, along with 21 zero-shot classification and two retrieval benchmarks for recognition. In our analysis from 274 CLIP model checkpoints, we reveal patterns and trade-offs that emerge between compositional understanding and recognition accuracy. Ultimately, this necessitates strategic efforts towards developing models that improve both capabilities, as well as the meticulous formulation of benchmarks for compositionality. We open our evaluation framework at https://github.com/ytaek-oh/vl_compo.
CounterCurate: Enhancing Physical and Semantic Visio-Linguistic Compositional Reasoning via Counterfactual Examples
We propose CounterCurate, a framework to comprehensively improve the visio-linguistic compositional reasoning capability for both contrastive and generative multimodal models. In particular, we identify two under-explored critical problems: the neglect of the physically grounded reasoning (counting and position understanding) and the potential of using highly capable text and image generation models for semantic counterfactual fine-tuning. Our work pioneers an approach that addresses these gaps. We first spotlight the near-chance performance of multimodal models like CLIP and LLaVA in physically grounded compositional reasoning. We then apply simple data augmentation using a grounded image generation model, GLIGEN, to generate finetuning data, resulting in significant performance improvements: +33% and +37% for CLIP and LLaVA, respectively, on our newly curated Flickr30k-Positions benchmark. Moreover, we exploit the capabilities of high-performing text generation and image generation models, specifically GPT-4V and DALLE-3, to curate challenging semantic counterfactuals, thereby further enhancing compositional reasoning capabilities on benchmarks such as SugarCrepe, where CounterCurate outperforms GPT-4V.
Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC
Since their introduction, diffusion models have quickly become the prevailing approach to generative modeling in many domains. They can be interpreted as learning the gradients of a time-varying sequence of log-probability density functions. This interpretation has motivated classifier-based and classifier-free guidance as methods for post-hoc control of diffusion models. In this work, we build upon these ideas using the score-based interpretation of diffusion models, and explore alternative ways to condition, modify, and reuse diffusion models for tasks involving compositional generation and guidance. In particular, we investigate why certain types of composition fail using current techniques and present a number of solutions. We conclude that the sampler (not the model) is responsible for this failure and propose new samplers, inspired by MCMC, which enable successful compositional generation. Further, we propose an energy-based parameterization of diffusion models which enables the use of new compositional operators and more sophisticated, Metropolis-corrected samplers. Intriguingly we find these samplers lead to notable improvements in compositional generation across a wide set of problems such as classifier-guided ImageNet modeling and compositional text-to-image generation.
CARINOX: Inference-time Scaling with Category-Aware Reward-based Initial Noise Optimization and Exploration
Text-to-image diffusion models, such as Stable Diffusion, can produce high-quality and diverse images but often fail to achieve compositional alignment, particularly when prompts describe complex object relationships, attributes, or spatial arrangements. Recent inference-time approaches address this by optimizing or exploring the initial noise under the guidance of reward functions that score text-image alignment without requiring model fine-tuning. While promising, each strategy has intrinsic limitations when used alone: optimization can stall due to poor initialization or unfavorable search trajectories, whereas exploration may require a prohibitively large number of samples to locate a satisfactory output. Our analysis further shows that neither single reward metrics nor ad-hoc combinations reliably capture all aspects of compositionality, leading to weak or inconsistent guidance. To overcome these challenges, we present Category-Aware Reward-based Initial Noise Optimization and Exploration (CARINOX), a unified framework that combines noise optimization and exploration with a principled reward selection procedure grounded in correlation with human judgments. Evaluations on two complementary benchmarks covering diverse compositional challenges show that CARINOX raises average alignment scores by +16% on T2I-CompBench++ and +11% on the HRS benchmark, consistently outperforming state-of-the-art optimization and exploration-based methods across all major categories, while preserving image quality and diversity. The project page is available at https://amirkasaei.com/carinox/{this URL}.
COLA: How to adapt vision-language models to Compose Objects Localized with Attributes?
Compositional reasoning is a hallmark of human visual intelligence; yet despite the size of large vision-language models, they struggle to represent simple compositions by combining objects with their attributes. To measure this lack of compositional capability, we design Cola, a text-to-image retrieval benchmark to Compose Objects Localized with Attributes. Using Cola as a testbed, we explore modeling designs to adapt pre-trained vision-language models to reason compositionally about multiple attributes attached to multiple objects. We explore 6 finetuning strategies on 2 seminal vision-language models, using 3 finetuning datasets and 2 test benchmarks (Cola and CREPE). Surprisingly, our optimal finetuning strategy improves a 151M parameter CLIP, which disjointly encodes image and language during pretraining, to perform as well as a 241M parameter FLAVA, which uses a multi-modal transformer encoder during pretraining to attend over both vision and language modalities. This optimal finetuning strategy is a lightweight multi-modal adapter that jointly attends over both image and language features generated by the pretrained model. We show this works better than common strategies such as prompt/fine-tuning, or tuning a comparable number of unimodal layers.
ObjectMate: A Recurrence Prior for Object Insertion and Subject-Driven Generation
This paper introduces a tuning-free method for both object insertion and subject-driven generation. The task involves composing an object, given multiple views, into a scene specified by either an image or text. Existing methods struggle to fully meet the task's challenging objectives: (i) seamlessly composing the object into the scene with photorealistic pose and lighting, and (ii) preserving the object's identity. We hypothesize that achieving these goals requires large scale supervision, but manually collecting sufficient data is simply too expensive. The key observation in this paper is that many mass-produced objects recur across multiple images of large unlabeled datasets, in different scenes, poses, and lighting conditions. We use this observation to create massive supervision by retrieving sets of diverse views of the same object. This powerful paired dataset enables us to train a straightforward text-to-image diffusion architecture to map the object and scene descriptions to the composited image. We compare our method, ObjectMate, with state-of-the-art methods for object insertion and subject-driven generation, using a single or multiple references. Empirically, ObjectMate achieves superior identity preservation and more photorealistic composition. Differently from many other multi-reference methods, ObjectMate does not require slow test-time tuning.
TokenCompose: Grounding Diffusion with Token-level Supervision
We present TokenCompose, a Latent Diffusion Model for text-to-image generation that achieves enhanced consistency between user-specified text prompts and model-generated images. Despite its tremendous success, the standard denoising process in the Latent Diffusion Model takes text prompts as conditions only, absent explicit constraint for the consistency between the text prompts and the image contents, leading to unsatisfactory results for composing multiple object categories. TokenCompose aims to improve multi-category instance composition by introducing the token-wise consistency terms between the image content and object segmentation maps in the finetuning stage. TokenCompose can be applied directly to the existing training pipeline of text-conditioned diffusion models without extra human labeling information. By finetuning Stable Diffusion, the model exhibits significant improvements in multi-category instance composition and enhanced photorealism for its generated images.
LayerComposer: Interactive Personalized T2I via Spatially-Aware Layered Canvas
Despite their impressive visual fidelity, existing personalized generative models lack interactive control over spatial composition and scale poorly to multiple subjects. To address these limitations, we present LayerComposer, an interactive framework for personalized, multi-subject text-to-image generation. Our approach introduces two main contributions: (1) a layered canvas, a novel representation in which each subject is placed on a distinct layer, enabling occlusion-free composition; and (2) a locking mechanism that preserves selected layers with high fidelity while allowing the remaining layers to adapt flexibly to the surrounding context. Similar to professional image-editing software, the proposed layered canvas allows users to place, resize, or lock input subjects through intuitive layer manipulation. Our versatile locking mechanism requires no architectural changes, relying instead on inherent positional embeddings combined with a new complementary data sampling strategy. Extensive experiments demonstrate that LayerComposer achieves superior spatial control and identity preservation compared to the state-of-the-art methods in multi-subject personalized image generation.
Concept Arithmetics for Circumventing Concept Inhibition in Diffusion Models
Motivated by ethical and legal concerns, the scientific community is actively developing methods to limit the misuse of Text-to-Image diffusion models for reproducing copyrighted, violent, explicit, or personal information in the generated images. Simultaneously, researchers put these newly developed safety measures to the test by assuming the role of an adversary to find vulnerabilities and backdoors in them. We use compositional property of diffusion models, which allows to leverage multiple prompts in a single image generation. This property allows us to combine other concepts, that should not have been affected by the inhibition, to reconstruct the vector, responsible for target concept generation, even though the direct computation of this vector is no longer accessible. We provide theoretical and empirical evidence why the proposed attacks are possible and discuss the implications of these findings for safe model deployment. We argue that it is essential to consider all possible approaches to image generation with diffusion models that can be employed by an adversary. Our work opens up the discussion about the implications of concept arithmetics and compositional inference for safety mechanisms in diffusion models. Content Advisory: This paper contains discussions and model-generated content that may be considered offensive. Reader discretion is advised. Project page: https://cs-people.bu.edu/vpetsiuk/arc
Large-scale Reinforcement Learning for Diffusion Models
Text-to-image diffusion models are a class of deep generative models that have demonstrated an impressive capacity for high-quality image generation. However, these models are susceptible to implicit biases that arise from web-scale text-image training pairs and may inaccurately model aspects of images we care about. This can result in suboptimal samples, model bias, and images that do not align with human ethics and preferences. In this paper, we present an effective scalable algorithm to improve diffusion models using Reinforcement Learning (RL) across a diverse set of reward functions, such as human preference, compositionality, and fairness over millions of images. We illustrate how our approach substantially outperforms existing methods for aligning diffusion models with human preferences. We further illustrate how this substantially improves pretrained Stable Diffusion (SD) models, generating samples that are preferred by humans 80.3% of the time over those from the base SD model while simultaneously improving both the composition and diversity of generated samples.
MotionAgent: Fine-grained Controllable Video Generation via Motion Field Agent
We propose MotionAgent, enabling fine-grained motion control for text-guided image-to-video generation. The key technique is the motion field agent that converts motion information in text prompts into explicit motion fields, providing flexible and precise motion guidance. Specifically, the agent extracts the object movement and camera motion described in the text and converts them into object trajectories and camera extrinsics, respectively. An analytical optical flow composition module integrates these motion representations in 3D space and projects them into a unified optical flow. An optical flow adapter takes the flow to control the base image-to-video diffusion model for generating fine-grained controlled videos. The significant improvement in the Video-Text Camera Motion metrics on VBench indicates that our method achieves precise control over camera motion. We construct a subset of VBench to evaluate the alignment of motion information in the text and the generated video, outperforming other advanced models on motion generation accuracy.
Augmenting CLIP with Improved Visio-Linguistic Reasoning
Image-text contrastive models such as CLIP are useful for a variety of downstream applications including zero-shot classification, image-text retrieval and transfer learning. However, these contrastively trained vision-language models often fail on compositional visio-linguistic tasks such as Winoground with performance equivalent to random chance. In our paper, we address this issue and propose a sample-efficient light-weight method called SDS-CLIP to improve the compositional visio-linguistic reasoning capabilities of CLIP. The core idea of our method is to use differentiable image parameterizations to fine-tune CLIP with a distillation objective from large text-to-image generative models such as Stable-Diffusion which are relatively good at visio-linguistic reasoning tasks. On the challenging Winoground compositional reasoning benchmark, our method improves the absolute visio-linguistic performance of different CLIP models by up to 7%, while on the ARO dataset, our method improves the visio-linguistic performance by upto 3%. As a byproduct of inducing visio-linguistic reasoning into CLIP, we also find that the zero-shot performance improves marginally on a variety of downstream datasets. Our method reinforces that carefully designed distillation objectives from generative models can be leveraged to extend existing contrastive image-text models with improved visio-linguistic reasoning capabilities.
I Spy a Metaphor: Large Language Models and Diffusion Models Co-Create Visual Metaphors
Visual metaphors are powerful rhetorical devices used to persuade or communicate creative ideas through images. Similar to linguistic metaphors, they convey meaning implicitly through symbolism and juxtaposition of the symbols. We propose a new task of generating visual metaphors from linguistic metaphors. This is a challenging task for diffusion-based text-to-image models, such as DALLcdotE 2, since it requires the ability to model implicit meaning and compositionality. We propose to solve the task through the collaboration between Large Language Models (LLMs) and Diffusion Models: Instruct GPT-3 (davinci-002) with Chain-of-Thought prompting generates text that represents a visual elaboration of the linguistic metaphor containing the implicit meaning and relevant objects, which is then used as input to the diffusion-based text-to-image models.Using a human-AI collaboration framework, where humans interact both with the LLM and the top-performing diffusion model, we create a high-quality dataset containing 6,476 visual metaphors for 1,540 linguistic metaphors and their associated visual elaborations. Evaluation by professional illustrators shows the promise of LLM-Diffusion Model collaboration for this task . To evaluate the utility of our Human-AI collaboration framework and the quality of our dataset, we perform both an intrinsic human-based evaluation and an extrinsic evaluation using visual entailment as a downstream task.
Breaking the Modality Barrier: Universal Embedding Learning with Multimodal LLMs
The Contrastive Language-Image Pre-training (CLIP) framework has become a widely used approach for multimodal representation learning, particularly in image-text retrieval and clustering. However, its efficacy is constrained by three key limitations: (1) text token truncation, (2) isolated image-text encoding, and (3) deficient compositionality due to bag-of-words behavior. While recent Multimodal Large Language Models (MLLMs) have demonstrated significant advances in generalized vision-language understanding, their potential for learning transferable multimodal representations remains underexplored.In this work, we present UniME (Universal Multimodal Embedding), a novel two-stage framework that leverages MLLMs to learn discriminative representations for diverse downstream tasks. In the first stage, we perform textual discriminative knowledge distillation from a powerful LLM-based teacher model to enhance the embedding capability of the MLLM\'s language component. In the second stage, we introduce hard negative enhanced instruction tuning to further advance discriminative representation learning. Specifically, we initially mitigate false negative contamination and then sample multiple hard negatives per instance within each batch, forcing the model to focus on challenging samples. This approach not only improves discriminative power but also enhances instruction-following ability in downstream tasks. We conduct extensive experiments on the MMEB benchmark and multiple retrieval tasks, including short and long caption retrieval and compositional retrieval. Results demonstrate that UniME achieves consistent performance improvement across all tasks, exhibiting superior discriminative and compositional capabilities.
Discriminative Fine-tuning of LVLMs
Contrastively-trained Vision-Language Models (VLMs) like CLIP have become the de facto approach for discriminative vision-language representation learning. However, these models have limited language understanding, often exhibiting a "bag of words" behavior. At the same time, Large Vision-Language Models (LVLMs), which combine vision encoders with LLMs, have been shown capable of detailed vision-language reasoning, yet their autoregressive nature renders them less suitable for discriminative tasks. In this work, we propose to combine "the best of both worlds": a new training approach for discriminative fine-tuning of LVLMs that results in strong discriminative and compositional capabilities. Essentially, our approach converts a generative LVLM into a discriminative one, unlocking its capability for powerful image-text discrimination combined with enhanced language understanding. Our contributions include: (1) A carefully designed training/optimization framework that utilizes image-text pairs of variable length and granularity for training the model with both contrastive and next-token prediction losses. This is accompanied by ablation studies that justify the necessity of our framework's components. (2) A parameter-efficient adaptation method using a combination of soft prompting and LoRA adapters. (3) Significant improvements over state-of-the-art CLIP-like models of similar size, including standard image-text retrieval benchmarks and notable gains in compositionality.
Generative Portrait Shadow Removal
We introduce a high-fidelity portrait shadow removal model that can effectively enhance the image of a portrait by predicting its appearance under disturbing shadows and highlights. Portrait shadow removal is a highly ill-posed problem where multiple plausible solutions can be found based on a single image. While existing works have solved this problem by predicting the appearance residuals that can propagate local shadow distribution, such methods are often incomplete and lead to unnatural predictions, especially for portraits with hard shadows. We overcome the limitations of existing local propagation methods by formulating the removal problem as a generation task where a diffusion model learns to globally rebuild the human appearance from scratch as a condition of an input portrait image. For robust and natural shadow removal, we propose to train the diffusion model with a compositional repurposing framework: a pre-trained text-guided image generation model is first fine-tuned to harmonize the lighting and color of the foreground with a background scene by using a background harmonization dataset; and then the model is further fine-tuned to generate a shadow-free portrait image via a shadow-paired dataset. To overcome the limitation of losing fine details in the latent diffusion model, we propose a guided-upsampling network to restore the original high-frequency details (wrinkles and dots) from the input image. To enable our compositional training framework, we construct a high-fidelity and large-scale dataset using a lightstage capturing system and synthetic graphics simulation. Our generative framework effectively removes shadows caused by both self and external occlusions while maintaining original lighting distribution and high-frequency details. Our method also demonstrates robustness to diverse subjects captured in real environments.
Self-Training Large Language Models for Improved Visual Program Synthesis With Visual Reinforcement
Visual program synthesis is a promising approach to exploit the reasoning abilities of large language models for compositional computer vision tasks. Previous work has used few-shot prompting with frozen LLMs to synthesize visual programs. Training an LLM to write better visual programs is an attractive prospect, but it is unclear how to accomplish this. No dataset of visual programs for training exists, and acquisition of a visual program dataset cannot be easily crowdsourced due to the need for expert annotators. To get around the lack of direct supervision, we explore improving the program synthesis abilities of an LLM using feedback from interactive experience. We propose a method where we exploit existing annotations for a vision-language task to improvise a coarse reward signal for that task, treat the LLM as a policy, and apply reinforced self-training to improve the visual program synthesis ability of the LLM for that task. We describe a series of experiments on object detection, compositional visual question answering, and image-text retrieval, and show that in each case, the self-trained LLM outperforms or performs on par with few-shot frozen LLMs that are an order of magnitude larger. Website: https://zaidkhan.me/ViReP
LightBagel: A Light-weighted, Double Fusion Framework for Unified Multimodal Understanding and Generation
Unified multimodal models have recently shown remarkable gains in both capability and versatility, yet most leading systems are still trained from scratch and require substantial computational resources. In this paper, we show that competitive performance can be obtained far more efficiently by strategically fusing publicly available models specialized for either generation or understanding. Our key design is to retain the original blocks while additionally interleaving multimodal self-attention blocks throughout the networks. This double fusion mechanism (1) effectively enables rich multi-modal fusion while largely preserving the original strengths of the base models, and (2) catalyzes synergistic fusion of high-level semantic representations from the understanding encoder with low-level spatial signals from the generation encoder. By training with only ~ 35B tokens, this approach achieves strong results across multiple benchmarks: 0.91 on GenEval for compositional text-to-image generation, 82.16 on DPG-Bench for complex text-to-image generation, 6.06 on GEditBench, and 3.77 on ImgEdit-Bench for image editing. By fully releasing the entire suite of code, model weights, and datasets, we hope to support future research on unified multimodal modeling.
UniPT: Universal Parallel Tuning for Transfer Learning with Efficient Parameter and Memory
Fine-tuning pre-trained models has emerged as a powerful technique in numerous domains, owing to its ability to leverage enormous pre-existing knowledge and achieve remarkable performance on downstream tasks. However, updating the parameters of entire networks is computationally intensive. Although state-of-the-art parameter-efficient transfer learning (PETL) methods significantly reduce the trainable parameters and storage demand, almost all of them still need to back-propagate the gradients through large pre-trained networks. This memory-extensive characteristic extremely limits the applicability of PETL methods in real-world scenarios. To this end, we propose a new memory-efficient PETL strategy, dubbed Universal Parallel Tuning (UniPT). Specifically, we facilitate the transfer process via a lightweight learnable parallel network, which consists of two modules: 1) A parallel interaction module that decouples the inherently sequential connections and processes the intermediate activations detachedly of the pre-trained network. 2) A confidence aggregation module that learns optimal strategies adaptively for integrating cross-layer features. We evaluate UniPT with different backbones (e.g., VSEinfty, CLIP4Clip, Clip-ViL, and MDETR) on five challenging vision-and-language tasks (i.e., image-text retrieval, video-text retrieval, visual question answering, compositional question answering, and visual grounding). Extensive ablations on ten datasets have validated that our UniPT can not only dramatically reduce memory consumption and outperform the best memory-efficient competitor, but also achieve higher performance than existing PETL methods in a low-memory scenario on different architectures. Our code is publicly available at: https://github.com/Paranioar/UniPT.
Training-free Regional Prompting for Diffusion Transformers
Diffusion models have demonstrated excellent capabilities in text-to-image generation. Their semantic understanding (i.e., prompt following) ability has also been greatly improved with large language models (e.g., T5, Llama). However, existing models cannot perfectly handle long and complex text prompts, especially when the text prompts contain various objects with numerous attributes and interrelated spatial relationships. While many regional prompting methods have been proposed for UNet-based models (SD1.5, SDXL), but there are still no implementations based on the recent Diffusion Transformer (DiT) architecture, such as SD3 and FLUX.1.In this report, we propose and implement regional prompting for FLUX.1 based on attention manipulation, which enables DiT with fined-grained compositional text-to-image generation capability in a training-free manner. Code is available at https://github.com/antonioo-c/Regional-Prompting-FLUX.
FashionComposer: Compositional Fashion Image Generation
We present FashionComposer for compositional fashion image generation. Unlike previous methods, FashionComposer is highly flexible. It takes multi-modal input (i.e., text prompt, parametric human model, garment image, and face image) and supports personalizing the appearance, pose, and figure of the human and assigning multiple garments in one pass. To achieve this, we first develop a universal framework capable of handling diverse input modalities. We construct scaled training data to enhance the model's robust compositional capabilities. To accommodate multiple reference images (garments and faces) seamlessly, we organize these references in a single image as an "asset library" and employ a reference UNet to extract appearance features. To inject the appearance features into the correct pixels in the generated result, we propose subject-binding attention. It binds the appearance features from different "assets" with the corresponding text features. In this way, the model could understand each asset according to their semantics, supporting arbitrary numbers and types of reference images. As a comprehensive solution, FashionComposer also supports many other applications like human album generation, diverse virtual try-on tasks, etc.
Imagic: Text-Based Real Image Editing with Diffusion Models
Text-conditioned image editing has recently attracted considerable interest. However, most methods are currently either limited to specific editing types (e.g., object overlay, style transfer), or apply to synthetically generated images, or require multiple input images of a common object. In this paper we demonstrate, for the very first time, the ability to apply complex (e.g., non-rigid) text-guided semantic edits to a single real image. For example, we can change the posture and composition of one or multiple objects inside an image, while preserving its original characteristics. Our method can make a standing dog sit down or jump, cause a bird to spread its wings, etc. -- each within its single high-resolution natural image provided by the user. Contrary to previous work, our proposed method requires only a single input image and a target text (the desired edit). It operates on real images, and does not require any additional inputs (such as image masks or additional views of the object). Our method, which we call "Imagic", leverages a pre-trained text-to-image diffusion model for this task. It produces a text embedding that aligns with both the input image and the target text, while fine-tuning the diffusion model to capture the image-specific appearance. We demonstrate the quality and versatility of our method on numerous inputs from various domains, showcasing a plethora of high quality complex semantic image edits, all within a single unified framework.
Concept Lancet: Image Editing with Compositional Representation Transplant
Diffusion models are widely used for image editing tasks. Existing editing methods often design a representation manipulation procedure by curating an edit direction in the text embedding or score space. However, such a procedure faces a key challenge: overestimating the edit strength harms visual consistency while underestimating it fails the editing task. Notably, each source image may require a different editing strength, and it is costly to search for an appropriate strength via trial-and-error. To address this challenge, we propose Concept Lancet (CoLan), a zero-shot plug-and-play framework for principled representation manipulation in diffusion-based image editing. At inference time, we decompose the source input in the latent (text embedding or diffusion score) space as a sparse linear combination of the representations of the collected visual concepts. This allows us to accurately estimate the presence of concepts in each image, which informs the edit. Based on the editing task (replace/add/remove), we perform a customized concept transplant process to impose the corresponding editing direction. To sufficiently model the concept space, we curate a conceptual representation dataset, CoLan-150K, which contains diverse descriptions and scenarios of visual terms and phrases for the latent dictionary. Experiments on multiple diffusion-based image editing baselines show that methods equipped with CoLan achieve state-of-the-art performance in editing effectiveness and consistency preservation.
Towards Compositionality in Concept Learning
Concept-based interpretability methods offer a lens into the internals of foundation models by decomposing their embeddings into high-level concepts. These concept representations are most useful when they are compositional, meaning that the individual concepts compose to explain the full sample. We show that existing unsupervised concept extraction methods find concepts which are not compositional. To automatically discover compositional concept representations, we identify two salient properties of such representations, and propose Compositional Concept Extraction (CCE) for finding concepts which obey these properties. We evaluate CCE on five different datasets over image and text data. Our evaluation shows that CCE finds more compositional concept representations than baselines and yields better accuracy on four downstream classification tasks. Code and data are available at https://github.com/adaminsky/compositional_concepts .
Enhancing Multimodal Compositional Reasoning of Visual Language Models with Generative Negative Mining
Contemporary large-scale visual language models (VLMs) exhibit strong representation capacities, making them ubiquitous for enhancing image and text understanding tasks. They are often trained in a contrastive manner on a large and diverse corpus of images and corresponding text captions scraped from the internet. Despite this, VLMs often struggle with compositional reasoning tasks which require a fine-grained understanding of the complex interactions of objects and their attributes. This failure can be attributed to two main factors: 1) Contrastive approaches have traditionally focused on mining negative examples from existing datasets. However, the mined negative examples might not be difficult for the model to discriminate from the positive. An alternative to mining would be negative sample generation 2) But existing generative approaches primarily focus on generating hard negative texts associated with a given image. Mining in the other direction, i.e., generating negative image samples associated with a given text has been ignored. To overcome both these limitations, we propose a framework that not only mines in both directions but also generates challenging negative samples in both modalities, i.e., images and texts. Leveraging these generative hard negative samples, we significantly enhance VLMs' performance in tasks involving multimodal compositional reasoning. Our code and dataset are released at https://ugorsahin.github.io/enhancing-multimodal-compositional-reasoning-of-vlm.html.
The Stable Artist: Steering Semantics in Diffusion Latent Space
Large, text-conditioned generative diffusion models have recently gained a lot of attention for their impressive performance in generating high-fidelity images from text alone. However, achieving high-quality results is almost unfeasible in a one-shot fashion. On the contrary, text-guided image generation involves the user making many slight changes to inputs in order to iteratively carve out the envisioned image. However, slight changes to the input prompt often lead to entirely different images being generated, and thus the control of the artist is limited in its granularity. To provide flexibility, we present the Stable Artist, an image editing approach enabling fine-grained control of the image generation process. The main component is semantic guidance (SEGA) which steers the diffusion process along variable numbers of semantic directions. This allows for subtle edits to images, changes in composition and style, as well as optimization of the overall artistic conception. Furthermore, SEGA enables probing of latent spaces to gain insights into the representation of concepts learned by the model, even complex ones such as 'carbon emission'. We demonstrate the Stable Artist on several tasks, showcasing high-quality image editing and composition.
TC-Bench: Benchmarking Temporal Compositionality in Text-to-Video and Image-to-Video Generation
Video generation has many unique challenges beyond those of image generation. The temporal dimension introduces extensive possible variations across frames, over which consistency and continuity may be violated. In this study, we move beyond evaluating simple actions and argue that generated videos should incorporate the emergence of new concepts and their relation transitions like in real-world videos as time progresses. To assess the Temporal Compositionality of video generation models, we propose TC-Bench, a benchmark of meticulously crafted text prompts, corresponding ground truth videos, and robust evaluation metrics. The prompts articulate the initial and final states of scenes, effectively reducing ambiguities for frame development and simplifying the assessment of transition completion. In addition, by collecting aligned real-world videos corresponding to the prompts, we expand TC-Bench's applicability from text-conditional models to image-conditional ones that can perform generative frame interpolation. We also develop new metrics to measure the completeness of component transitions in generated videos, which demonstrate significantly higher correlations with human judgments than existing metrics. Our comprehensive experimental results reveal that most video generators achieve less than 20% of the compositional changes, highlighting enormous space for future improvement. Our analysis indicates that current video generation models struggle to interpret descriptions of compositional changes and synthesize various components across different time steps.
Text Slider: Efficient and Plug-and-Play Continuous Concept Control for Image/Video Synthesis via LoRA Adapters
Recent advances in diffusion models have significantly improved image and video synthesis. In addition, several concept control methods have been proposed to enable fine-grained, continuous, and flexible control over free-form text prompts. However, these methods not only require intensive training time and GPU memory usage to learn the sliders or embeddings but also need to be retrained for different diffusion backbones, limiting their scalability and adaptability. To address these limitations, we introduce Text Slider, a lightweight, efficient and plug-and-play framework that identifies low-rank directions within a pre-trained text encoder, enabling continuous control of visual concepts while significantly reducing training time, GPU memory consumption, and the number of trainable parameters. Furthermore, Text Slider supports multi-concept composition and continuous control, enabling fine-grained and flexible manipulation in both image and video synthesis. We show that Text Slider enables smooth and continuous modulation of specific attributes while preserving the original spatial layout and structure of the input. Text Slider achieves significantly better efficiency: 5times faster training than Concept Slider and 47times faster than Attribute Control, while reducing GPU memory usage by nearly 2times and 4times, respectively.
Trans4D: Realistic Geometry-Aware Transition for Compositional Text-to-4D Synthesis
Recent advances in diffusion models have demonstrated exceptional capabilities in image and video generation, further improving the effectiveness of 4D synthesis. Existing 4D generation methods can generate high-quality 4D objects or scenes based on user-friendly conditions, benefiting the gaming and video industries. However, these methods struggle to synthesize significant object deformation of complex 4D transitions and interactions within scenes. To address this challenge, we propose Trans4D, a novel text-to-4D synthesis framework that enables realistic complex scene transitions. Specifically, we first use multi-modal large language models (MLLMs) to produce a physic-aware scene description for 4D scene initialization and effective transition timing planning. Then we propose a geometry-aware 4D transition network to realize a complex scene-level 4D transition based on the plan, which involves expressive geometrical object deformation. Extensive experiments demonstrate that Trans4D consistently outperforms existing state-of-the-art methods in generating 4D scenes with accurate and high-quality transitions, validating its effectiveness. Code: https://github.com/YangLing0818/Trans4D
Language-Image Alignment with Fixed Text Encoders
Currently, the most dominant approach to establishing language-image alignment is to pre-train text and image encoders jointly through contrastive learning, such as CLIP and its variants. In this work, we question whether such a costly joint training is necessary. In particular, we investigate if a pre-trained fixed large language model (LLM) offers a good enough text encoder to guide visual representation learning. That is, we propose to learn Language-Image alignment with a Fixed Text encoder (LIFT) from an LLM by training only the image encoder. Somewhat surprisingly, through comprehensive benchmarking and ablation studies, we find that this much simplified framework LIFT is highly effective and it outperforms CLIP in most scenarios that involve compositional understanding and long captions, while achieving considerable gains in computational efficiency. Our work takes a first step towards systematically exploring how text embeddings from LLMs can guide visual learning and suggests an alternative design choice for learning language-aligned visual representations.
Mixture of Diffusers for scene composition and high resolution image generation
Diffusion methods have been proven to be very effective to generate images while conditioning on a text prompt. However, and although the quality of the generated images is unprecedented, these methods seem to struggle when trying to generate specific image compositions. In this paper we present Mixture of Diffusers, an algorithm that builds over existing diffusion models to provide a more detailed control over composition. By harmonizing several diffusion processes acting on different regions of a canvas, it allows generating larger images, where the location of each object and style is controlled by a separate diffusion process.
GenAI-Bench: Evaluating and Improving Compositional Text-to-Visual Generation
While text-to-visual models now produce photo-realistic images and videos, they struggle with compositional text prompts involving attributes, relationships, and higher-order reasoning such as logic and comparison. In this work, we conduct an extensive human study on GenAI-Bench to evaluate the performance of leading image and video generation models in various aspects of compositional text-to-visual generation. We also compare automated evaluation metrics against our collected human ratings and find that VQAScore -- a metric measuring the likelihood that a VQA model views an image as accurately depicting the prompt -- significantly outperforms previous metrics such as CLIPScore. In addition, VQAScore can improve generation in a black-box manner (without finetuning) via simply ranking a few (3 to 9) candidate images. Ranking by VQAScore is 2x to 3x more effective than other scoring methods like PickScore, HPSv2, and ImageReward at improving human alignment ratings for DALL-E 3 and Stable Diffusion, especially on compositional prompts that require advanced visio-linguistic reasoning. We will release a new GenAI-Rank benchmark with over 40,000 human ratings to evaluate scoring metrics on ranking images generated from the same prompt. Lastly, we discuss promising areas for improvement in VQAScore, such as addressing fine-grained visual details. We will release all human ratings (over 80,000) to facilitate scientific benchmarking of both generative models and automated metrics.
mPLUG-2: A Modularized Multi-modal Foundation Model Across Text, Image and Video
Recent years have witnessed a big convergence of language, vision, and multi-modal pretraining. In this work, we present mPLUG-2, a new unified paradigm with modularized design for multi-modal pretraining, which can benefit from modality collaboration while addressing the problem of modality entanglement. In contrast to predominant paradigms of solely relying on sequence-to-sequence generation or encoder-based instance discrimination, mPLUG-2 introduces a multi-module composition network by sharing common universal modules for modality collaboration and disentangling different modality modules to deal with modality entanglement. It is flexible to select different modules for different understanding and generation tasks across all modalities including text, image, and video. Empirical study shows that mPLUG-2 achieves state-of-the-art or competitive results on a broad range of over 30 downstream tasks, spanning multi-modal tasks of image-text and video-text understanding and generation, and uni-modal tasks of text-only, image-only, and video-only understanding. Notably, mPLUG-2 shows new state-of-the-art results of 48.0 top-1 accuracy and 80.3 CIDEr on the challenging MSRVTT video QA and video caption tasks with a far smaller model size and data scale. It also demonstrates strong zero-shot transferability on vision-language and video-language tasks. Code and models will be released in https://github.com/alibaba/AliceMind.
LOTS of Fashion! Multi-Conditioning for Image Generation via Sketch-Text Pairing
Fashion design is a complex creative process that blends visual and textual expressions. Designers convey ideas through sketches, which define spatial structure and design elements, and textual descriptions, capturing material, texture, and stylistic details. In this paper, we present LOcalized Text and Sketch for fashion image generation (LOTS), an approach for compositional sketch-text based generation of complete fashion outlooks. LOTS leverages a global description with paired localized sketch + text information for conditioning and introduces a novel step-based merging strategy for diffusion adaptation. First, a Modularized Pair-Centric representation encodes sketches and text into a shared latent space while preserving independent localized features; then, a Diffusion Pair Guidance phase integrates both local and global conditioning via attention-based guidance within the diffusion model's multi-step denoising process. To validate our method, we build on Fashionpedia to release Sketchy, the first fashion dataset where multiple text-sketch pairs are provided per image. Quantitative results show LOTS achieves state-of-the-art image generation performance on both global and localized metrics, while qualitative examples and a human evaluation study highlight its unprecedented level of design customization.
IP-Composer: Semantic Composition of Visual Concepts
Content creators often draw inspiration from multiple visual sources, combining distinct elements to craft new compositions. Modern computational approaches now aim to emulate this fundamental creative process. Although recent diffusion models excel at text-guided compositional synthesis, text as a medium often lacks precise control over visual details. Image-based composition approaches can capture more nuanced features, but existing methods are typically limited in the range of concepts they can capture, and require expensive training procedures or specialized data. We present IP-Composer, a novel training-free approach for compositional image generation that leverages multiple image references simultaneously, while using natural language to describe the concept to be extracted from each image. Our method builds on IP-Adapter, which synthesizes novel images conditioned on an input image's CLIP embedding. We extend this approach to multiple visual inputs by crafting composite embeddings, stitched from the projections of multiple input images onto concept-specific CLIP-subspaces identified through text. Through comprehensive evaluation, we show that our approach enables more precise control over a larger range of visual concept compositions.
ReasonGen-R1: CoT for Autoregressive Image generation models through SFT and RL
Although chain-of-thought reasoning and reinforcement learning (RL) have driven breakthroughs in NLP, their integration into generative vision models remains underexplored. We introduce ReasonGen-R1, a two-stage framework that first imbues an autoregressive image generator with explicit text-based "thinking" skills via supervised fine-tuning on a newly generated reasoning dataset of written rationales, and then refines its outputs using Group Relative Policy Optimization. To enable the model to reason through text before generating images, We automatically generate and release a corpus of model crafted rationales paired with visual prompts, enabling controlled planning of object layouts, styles, and scene compositions. Our GRPO algorithm uses reward signals from a pretrained vision language model to assess overall visual quality, optimizing the policy in each update. Evaluations on GenEval, DPG, and the T2I benchmark demonstrate that ReasonGen-R1 consistently outperforms strong baselines and prior state-of-the-art models. More: aka.ms/reasongen.
StyleBooth: Image Style Editing with Multimodal Instruction
Given an original image, image editing aims to generate an image that align with the provided instruction. The challenges are to accept multimodal inputs as instructions and a scarcity of high-quality training data, including crucial triplets of source/target image pairs and multimodal (text and image) instructions. In this paper, we focus on image style editing and present StyleBooth, a method that proposes a comprehensive framework for image editing and a feasible strategy for building a high-quality style editing dataset. We integrate encoded textual instruction and image exemplar as a unified condition for diffusion model, enabling the editing of original image following multimodal instructions. Furthermore, by iterative style-destyle tuning and editing and usability filtering, the StyleBooth dataset provides content-consistent stylized/plain image pairs in various categories of styles. To show the flexibility of StyleBooth, we conduct experiments on diverse tasks, such as text-based style editing, exemplar-based style editing and compositional style editing. The results demonstrate that the quality and variety of training data significantly enhance the ability to preserve content and improve the overall quality of generated images in editing tasks. Project page can be found at https://ali-vilab.github.io/stylebooth-page/.
Visual Lexicon: Rich Image Features in Language Space
We present Visual Lexicon, a novel visual language that encodes rich image information into the text space of vocabulary tokens while retaining intricate visual details that are often challenging to convey in natural language. Unlike traditional methods that prioritize either high-level semantics (e.g., CLIP) or pixel-level reconstruction (e.g., VAE), ViLex simultaneously captures rich semantic content and fine visual details, enabling high-quality image generation and comprehensive visual scene understanding. Through a self-supervised learning pipeline, ViLex generates tokens optimized for reconstructing input images using a frozen text-to-image (T2I) diffusion model, preserving the detailed information necessary for high-fidelity semantic-level reconstruction. As an image embedding in the language space, ViLex tokens leverage the compositionality of natural languages, allowing them to be used independently as "text tokens" or combined with natural language tokens to prompt pretrained T2I models with both visual and textual inputs, mirroring how we interact with vision-language models (VLMs). Experiments demonstrate that ViLex achieves higher fidelity in image reconstruction compared to text embeddings--even with a single ViLex token. Moreover, ViLex successfully performs various DreamBooth tasks in a zero-shot, unsupervised manner without fine-tuning T2I models. Additionally, ViLex serves as a powerful vision encoder, consistently improving vision-language model performance across 15 benchmarks relative to a strong SigLIP baseline.
Compositional Visual Generation with Composable Diffusion Models
Large text-guided diffusion models, such as DALLE-2, are able to generate stunning photorealistic images given natural language descriptions. While such models are highly flexible, they struggle to understand the composition of certain concepts, such as confusing the attributes of different objects or relations between objects. In this paper, we propose an alternative structured approach for compositional generation using diffusion models. An image is generated by composing a set of diffusion models, with each of them modeling a certain component of the image. To do this, we interpret diffusion models as energy-based models in which the data distributions defined by the energy functions may be explicitly combined. The proposed method can generate scenes at test time that are substantially more complex than those seen in training, composing sentence descriptions, object relations, human facial attributes, and even generalizing to new combinations that are rarely seen in the real world. We further illustrate how our approach may be used to compose pre-trained text-guided diffusion models and generate photorealistic images containing all the details described in the input descriptions, including the binding of certain object attributes that have been shown difficult for DALLE-2. These results point to the effectiveness of the proposed method in promoting structured generalization for visual generation. Project page: https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/
Factuality Matters: When Image Generation and Editing Meet Structured Visuals
While modern visual generation models excel at creating aesthetically pleasing natural images, they struggle with producing or editing structured visuals like charts, diagrams, and mathematical figures, which demand composition planning, text rendering, and multimodal reasoning for factual fidelity. To address this, we present the first comprehensive, systematic investigation of this domain, encompassing data construction, model training, and an evaluation benchmark. First, we construct a large-scale dataset of 1.3 million high-quality structured image pairs derived from executable drawing programs and augmented with chain-of-thought reasoning annotations. Building on it, we train a unified model that integrates a VLM with FLUX.1 Kontext via a lightweight connector for enhanced multimodal understanding. A three-stage training curriculum enables progressive feature alignment, knowledge infusion, and reasoning-augmented generation, further boosted by an external reasoner at inference time. Finally, we introduce StructBench, a novel benchmark for generation and editing with over 1,700 challenging instances, and an accompanying evaluation metric, StructScore, which employs a multi-round Q\&A protocol to assess fine-grained factual accuracy. Evaluations of 15 models reveal that even leading closed-source systems remain far from satisfactory. Our model attains strong editing performance, and inference-time reasoning yields consistent gains across diverse architectures. By releasing the dataset, model, and benchmark, we aim to advance unified multimodal foundations for structured visuals.
ComFusion: Personalized Subject Generation in Multiple Specific Scenes From Single Image
Recent advancements in personalizing text-to-image (T2I) diffusion models have shown the capability to generate images based on personalized visual concepts using a limited number of user-provided examples. However, these models often struggle with maintaining high visual fidelity, particularly in manipulating scenes as defined by textual inputs. Addressing this, we introduce ComFusion, a novel approach that leverages pretrained models generating composition of a few user-provided subject images and predefined-text scenes, effectively fusing visual-subject instances with textual-specific scenes, resulting in the generation of high-fidelity instances within diverse scenes. ComFusion integrates a class-scene prior preservation regularization, which leverages composites the subject class and scene-specific knowledge from pretrained models to enhance generation fidelity. Additionally, ComFusion uses coarse generated images, ensuring they align effectively with both the instance image and scene texts. Consequently, ComFusion maintains a delicate balance between capturing the essence of the subject and maintaining scene fidelity.Extensive evaluations of ComFusion against various baselines in T2I personalization have demonstrated its qualitative and quantitative superiority.
Beyond Color and Lines: Zero-Shot Style-Specific Image Variations with Coordinated Semantics
Traditionally, style has been primarily considered in terms of artistic elements such as colors, brushstrokes, and lighting. However, identical semantic subjects, like people, boats, and houses, can vary significantly across different artistic traditions, indicating that style also encompasses the underlying semantics. Therefore, in this study, we propose a zero-shot scheme for image variation with coordinated semantics. Specifically, our scheme transforms the image-to-image problem into an image-to-text-to-image problem. The image-to-text operation employs vision-language models e.g., BLIP) to generate text describing the content of the input image, including the objects and their positions. Subsequently, the input style keyword is elaborated into a detailed description of this style and then merged with the content text using the reasoning capabilities of ChatGPT. Finally, the text-to-image operation utilizes a Diffusion model to generate images based on the text prompt. To enable the Diffusion model to accommodate more styles, we propose a fine-tuning strategy that injects text and style constraints into cross-attention. This ensures that the output image exhibits similar semantics in the desired style. To validate the performance of the proposed scheme, we constructed a benchmark comprising images of various styles and scenes and introduced two novel metrics. Despite its simplicity, our scheme yields highly plausible results in a zero-shot manner, particularly for generating stylized images with high-fidelity semantics.
Aesthetics is Cheap, Show me the Text: An Empirical Evaluation of State-of-the-Art Generative Models for OCR
Text image is a unique and crucial information medium that integrates visual aesthetics and linguistic semantics in modern e-society. Due to their subtlety and complexity, the generation of text images represents a challenging and evolving frontier in the image generation field. The recent surge of specialized image generators (e.g., Flux-series) and unified generative models (e.g., GPT-4o), which demonstrate exceptional fidelity, raises a natural question: can they master the intricacies of text image generation and editing? Motivated by this, we assess current state-of-the-art generative models' capabilities in terms of text image generation and editing. We incorporate various typical optical character recognition (OCR) tasks into our evaluation and broaden the concept of text-based generation tasks into OCR generative tasks. We select 33 representative tasks and categorize them into five categories: document, handwritten text, scene text, artistic text, and complex \& layout-rich text. For comprehensive evaluation, we examine six models across both closed-source and open-source domains, using tailored, high-quality image inputs and prompts. Through this evaluation, we draw crucial observations and identify the weaknesses of current generative models for OCR tasks. We argue that photorealistic text image generation and editing should be internalized as foundational skills into general-domain generative models, rather than being delegated to specialized solutions, and we hope this empirical analysis can provide valuable insights for the community to achieve this goal. This evaluation is online and will be continuously updated at our GitHub repository.
Generative Photomontage
Text-to-image models are powerful tools for image creation. However, the generation process is akin to a dice roll and makes it difficult to achieve a single image that captures everything a user wants. In this paper, we propose a framework for creating the desired image by compositing it from various parts of generated images, in essence forming a Generative Photomontage. Given a stack of images generated by ControlNet using the same input condition and different seeds, we let users select desired parts from the generated results using a brush stroke interface. We introduce a novel technique that takes in the user's brush strokes, segments the generated images using a graph-based optimization in diffusion feature space, and then composites the segmented regions via a new feature-space blending method. Our method faithfully preserves the user-selected regions while compositing them harmoniously. We demonstrate that our flexible framework can be used for many applications, including generating new appearance combinations, fixing incorrect shapes and artifacts, and improving prompt alignment. We show compelling results for each application and demonstrate that our method outperforms existing image blending methods and various baselines.
ControlStyle: Text-Driven Stylized Image Generation Using Diffusion Priors
Recently, the multimedia community has witnessed the rise of diffusion models trained on large-scale multi-modal data for visual content creation, particularly in the field of text-to-image generation. In this paper, we propose a new task for ``stylizing'' text-to-image models, namely text-driven stylized image generation, that further enhances editability in content creation. Given input text prompt and style image, this task aims to produce stylized images which are both semantically relevant to input text prompt and meanwhile aligned with the style image in style. To achieve this, we present a new diffusion model (ControlStyle) via upgrading a pre-trained text-to-image model with a trainable modulation network enabling more conditions of text prompts and style images. Moreover, diffusion style and content regularizations are simultaneously introduced to facilitate the learning of this modulation network with these diffusion priors, pursuing high-quality stylized text-to-image generation. Extensive experiments demonstrate the effectiveness of our ControlStyle in producing more visually pleasing and artistic results, surpassing a simple combination of text-to-image model and conventional style transfer techniques.
CONFORM: Contrast is All You Need For High-Fidelity Text-to-Image Diffusion Models
Images produced by text-to-image diffusion models might not always faithfully represent the semantic intent of the provided text prompt, where the model might overlook or entirely fail to produce certain objects. Existing solutions often require customly tailored functions for each of these problems, leading to sub-optimal results, especially for complex prompts. Our work introduces a novel perspective by tackling this challenge in a contrastive context. Our approach intuitively promotes the segregation of objects in attention maps while also maintaining that pairs of related attributes are kept close to each other. We conduct extensive experiments across a wide variety of scenarios, each involving unique combinations of objects, attributes, and scenes. These experiments effectively showcase the versatility, efficiency, and flexibility of our method in working with both latent and pixel-based diffusion models, including Stable Diffusion and Imagen. Moreover, we publicly share our source code to facilitate further research.
Learning the Visualness of Text Using Large Vision-Language Models
Visual text evokes an image in a person's mind, while non-visual text fails to do so. A method to automatically detect visualness in text will unlock the ability to augment text with relevant images, as neural text-to-image generation and retrieval models operate on the implicit assumption that the input text is visual in nature. We curate a dataset of 3,620 English sentences and their visualness scores provided by multiple human annotators. Additionally, we use documents that contain text and visual assets to create a distantly supervised corpus of document text and associated images. We also propose a fine-tuning strategy that adapts large vision-language models like CLIP that assume a one-to-one correspondence between text and image to the task of scoring text visualness from text input alone. Our strategy involves modifying the model's contrastive learning objective to map text identified as non-visual to a common NULL image while matching visual text to their corresponding images in the document. We evaluate the proposed approach on its ability to (i) classify visual and non-visual text accurately, and (ii) attend over words that are identified as visual in psycholinguistic studies. Empirical evaluation indicates that our approach performs better than several heuristics and baseline models for the proposed task. Furthermore, to highlight the importance of modeling the visualness of text, we conduct qualitative analyses of text-to-image generation systems like DALL-E.
InstaStyle: Inversion Noise of a Stylized Image is Secretly a Style Adviser
Stylized text-to-image generation focuses on creating images from textual descriptions while adhering to a style specified by a few reference images. However, subtle style variations within different reference images can hinder the model from accurately learning the target style. In this paper, we propose InstaStyle, a novel approach that excels in generating high-fidelity stylized images with only a single reference image. Our approach is based on the finding that the inversion noise from a stylized reference image inherently carries the style signal, as evidenced by their non-zero signal-to-noise ratio. We employ DDIM inversion to extract this noise from the reference image and leverage a diffusion model to generate new stylized images from the ``style" noise. Additionally, the inherent ambiguity and bias of textual prompts impede the precise conveying of style. To address this, we introduce a learnable style token via prompt refinement, which enhances the accuracy of the style description for the reference image. Qualitative and quantitative experimental results demonstrate that InstaStyle achieves superior performance compared to current benchmarks. Furthermore, our approach also showcases its capability in the creative task of style combination with mixed inversion noise.
Multi-Concept T2I-Zero: Tweaking Only The Text Embeddings and Nothing Else
Recent advances in text-to-image diffusion models have enabled the photorealistic generation of images from text prompts. Despite the great progress, existing models still struggle to generate compositional multi-concept images naturally, limiting their ability to visualize human imagination. While several recent works have attempted to address this issue, they either introduce additional training or adopt guidance at inference time. In this work, we consider a more ambitious goal: natural multi-concept generation using a pre-trained diffusion model, and with almost no extra cost. To achieve this goal, we identify the limitations in the text embeddings used for the pre-trained text-to-image diffusion models. Specifically, we observe concept dominance and non-localized contribution that severely degrade multi-concept generation performance. We further design a minimal low-cost solution that overcomes the above issues by tweaking (not re-training) the text embeddings for more realistic multi-concept text-to-image generation. Our Correction by Similarities method tweaks the embedding of concepts by collecting semantic features from most similar tokens to localize the contribution. To avoid mixing features of concepts, we also apply Cross-Token Non-Maximum Suppression, which excludes the overlap of contributions from different concepts. Experiments show that our approach outperforms previous methods in text-to-image, image manipulation, and personalization tasks, despite not introducing additional training or inference costs to the diffusion steps.
Expressive Text-to-Image Generation with Rich Text
Plain text has become a prevalent interface for text-to-image synthesis. However, its limited customization options hinder users from accurately describing desired outputs. For example, plain text makes it hard to specify continuous quantities, such as the precise RGB color value or importance of each word. Furthermore, creating detailed text prompts for complex scenes is tedious for humans to write and challenging for text encoders to interpret. To address these challenges, we propose using a rich-text editor supporting formats such as font style, size, color, and footnote. We extract each word's attributes from rich text to enable local style control, explicit token reweighting, precise color rendering, and detailed region synthesis. We achieve these capabilities through a region-based diffusion process. We first obtain each word's region based on attention maps of a diffusion process using plain text. For each region, we enforce its text attributes by creating region-specific detailed prompts and applying region-specific guidance, and maintain its fidelity against plain-text generation through region-based injections. We present various examples of image generation from rich text and demonstrate that our method outperforms strong baselines with quantitative evaluations.
TextMatch: Enhancing Image-Text Consistency Through Multimodal Optimization
Text-to-image generative models excel in creating images from text but struggle with ensuring alignment and consistency between outputs and prompts. This paper introduces TextMatch, a novel framework that leverages multimodal optimization to address image-text discrepancies in text-to-image (T2I) generation and editing. TextMatch employs a scoring strategy powered by large language models (LLMs) and visual question-answering (VQA) models to evaluate semantic consistency between prompts and generated images. By integrating multimodal in-context learning and chain of thought reasoning, our method dynamically refines prompts through iterative optimization. This process ensures that the generated images better capture user intent of, resulting in higher fidelity and relevance. Extensive experiments demonstrate that TextMatch significantly improves text-image consistency across multiple benchmarks, establishing a reliable framework for advancing the capabilities of text-to-image generative models. Our code is available at https://anonymous.4open.science/r/TextMatch-F55C/.
Prompt Expansion for Adaptive Text-to-Image Generation
Text-to-image generation models are powerful but difficult to use. Users craft specific prompts to get better images, though the images can be repetitive. This paper proposes a Prompt Expansion framework that helps users generate high-quality, diverse images with less effort. The Prompt Expansion model takes a text query as input and outputs a set of expanded text prompts that are optimized such that when passed to a text-to-image model, generates a wider variety of appealing images. We conduct a human evaluation study that shows that images generated through Prompt Expansion are more aesthetically pleasing and diverse than those generated by baseline methods. Overall, this paper presents a novel and effective approach to improving the text-to-image generation experience.
Text-to-Image Synthesis for Any Artistic Styles: Advancements in Personalized Artistic Image Generation via Subdivision and Dual Binding
Recent advancements in text-to-image models, such as Stable Diffusion, have demonstrated their ability to synthesize visual images through natural language prompts. One approach of personalizing text-to-image models, exemplified by DreamBooth, fine-tunes the pre-trained model by binding unique text identifiers with a few images of a specific subject. Although existing fine-tuning methods have demonstrated competence in rendering images according to the styles of famous painters, it is still challenging to learn to produce images encapsulating distinct art styles due to abstract and broad visual perceptions of stylistic attributes such as lines, shapes, textures, and colors. In this paper, we introduce a new method, Single-StyleForge, for personalization. It fine-tunes pre-trained text-to-image diffusion models to generate diverse images in specified styles from text prompts. By using around 15-20 images of the target style, the approach establishes a foundational binding of a unique token identifier with a broad range of the target style. It also utilizes auxiliary images to strengthen this binding, resulting in offering specific guidance on representing elements such as persons in a target style-consistent manner. In addition, we present ways to improve the quality of style and text-image alignment through a method called Multi-StyleForge, which inherits the strategy used in StyleForge and learns tokens in multiple. Experimental evaluation conducted on six distinct artistic styles demonstrates substantial improvements in both the quality of generated images and the perceptual fidelity metrics, such as FID, KID, and CLIP scores.
AlignIT: Enhancing Prompt Alignment in Customization of Text-to-Image Models
We consider the problem of customizing text-to-image diffusion models with user-supplied reference images. Given new prompts, the existing methods can capture the key concept from the reference images but fail to align the generated image with the prompt. In this work, we seek to address this key issue by proposing new methods that can easily be used in conjunction with existing customization methods that optimize the embeddings/weights at various intermediate stages of the text encoding process. The first contribution of this paper is a dissection of the various stages of the text encoding process leading up to the conditioning vector for text-to-image models. We take a holistic view of existing customization methods and notice that key and value outputs from this process differs substantially from their corresponding baseline (non-customized) models (e.g., baseline stable diffusion). While this difference does not impact the concept being customized, it leads to other parts of the generated image not being aligned with the prompt. Further, we also observe that these keys and values allow independent control various aspects of the final generation, enabling semantic manipulation of the output. Taken together, the features spanning these keys and values, serve as the basis for our next contribution where we fix the aforementioned issues with existing methods. We propose a new post-processing algorithm, AlignIT, that infuses the keys and values for the concept of interest while ensuring the keys and values for all other tokens in the input prompt are unchanged. Our proposed method can be plugged in directly to existing customization methods, leading to a substantial performance improvement in the alignment of the final result with the input prompt while retaining the customization quality.
SAGA: Learning Signal-Aligned Distributions for Improved Text-to-Image Generation
State-of-the-art text-to-image models produce visually impressive results but often struggle with precise alignment to text prompts, leading to missing critical elements or unintended blending of distinct concepts. We propose a novel approach that learns a high-success-rate distribution conditioned on a target prompt, ensuring that generated images faithfully reflect the corresponding prompts. Our method explicitly models the signal component during the denoising process, offering fine-grained control that mitigates over-optimization and out-of-distribution artifacts. Moreover, our framework is training-free and seamlessly integrates with both existing diffusion and flow matching architectures. It also supports additional conditioning modalities -- such as bounding boxes -- for enhanced spatial alignment. Extensive experiments demonstrate that our approach outperforms current state-of-the-art methods. The code is available at https://github.com/grimalPaul/gsn-factory.
Best Prompts for Text-to-Image Models and How to Find Them
Recent progress in generative models, especially in text-guided diffusion models, has enabled the production of aesthetically-pleasing imagery resembling the works of professional human artists. However, one has to carefully compose the textual description, called the prompt, and augment it with a set of clarifying keywords. Since aesthetics are challenging to evaluate computationally, human feedback is needed to determine the optimal prompt formulation and keyword combination. In this paper, we present a human-in-the-loop approach to learning the most useful combination of prompt keywords using a genetic algorithm. We also show how such an approach can improve the aesthetic appeal of images depicting the same descriptions.
Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors
Recent text-to-image generation methods provide a simple yet exciting conversion capability between text and image domains. While these methods have incrementally improved the generated image fidelity and text relevancy, several pivotal gaps remain unanswered, limiting applicability and quality. We propose a novel text-to-image method that addresses these gaps by (i) enabling a simple control mechanism complementary to text in the form of a scene, (ii) introducing elements that substantially improve the tokenization process by employing domain-specific knowledge over key image regions (faces and salient objects), and (iii) adapting classifier-free guidance for the transformer use case. Our model achieves state-of-the-art FID and human evaluation results, unlocking the ability to generate high fidelity images in a resolution of 512x512 pixels, significantly improving visual quality. Through scene controllability, we introduce several new capabilities: (i) Scene editing, (ii) text editing with anchor scenes, (iii) overcoming out-of-distribution text prompts, and (iv) story illustration generation, as demonstrated in the story we wrote.
StyleTokenizer: Defining Image Style by a Single Instance for Controlling Diffusion Models
Despite the burst of innovative methods for controlling the diffusion process, effectively controlling image styles in text-to-image generation remains a challenging task. Many adapter-based methods impose image representation conditions on the denoising process to accomplish image control. However these conditions are not aligned with the word embedding space, leading to interference between image and text control conditions and the potential loss of semantic information from the text prompt. Addressing this issue involves two key challenges. Firstly, how to inject the style representation without compromising the effectiveness of text representation in control. Secondly, how to obtain the accurate style representation from a single reference image. To tackle these challenges, we introduce StyleTokenizer, a zero-shot style control image generation method that aligns style representation with text representation using a style tokenizer. This alignment effectively minimizes the impact on the effectiveness of text prompts. Furthermore, we collect a well-labeled style dataset named Style30k to train a style feature extractor capable of accurately representing style while excluding other content information. Experimental results demonstrate that our method fully grasps the style characteristics of the reference image, generating appealing images that are consistent with both the target image style and text prompt. The code and dataset are available at https://github.com/alipay/style-tokenizer.
Learning to Generate Semantic Layouts for Higher Text-Image Correspondence in Text-to-Image Synthesis
Existing text-to-image generation approaches have set high standards for photorealism and text-image correspondence, largely benefiting from web-scale text-image datasets, which can include up to 5~billion pairs. However, text-to-image generation models trained on domain-specific datasets, such as urban scenes, medical images, and faces, still suffer from low text-image correspondence due to the lack of text-image pairs. Additionally, collecting billions of text-image pairs for a specific domain can be time-consuming and costly. Thus, ensuring high text-image correspondence without relying on web-scale text-image datasets remains a challenging task. In this paper, we present a novel approach for enhancing text-image correspondence by leveraging available semantic layouts. Specifically, we propose a Gaussian-categorical diffusion process that simultaneously generates both images and corresponding layout pairs. Our experiments reveal that we can guide text-to-image generation models to be aware of the semantics of different image regions, by training the model to generate semantic labels for each pixel. We demonstrate that our approach achieves higher text-image correspondence compared to existing text-to-image generation approaches in the Multi-Modal CelebA-HQ and the Cityscapes dataset, where text-image pairs are scarce. Codes are available in this https://pmh9960.github.io/research/GCDP
Enhancing Reward Models for High-quality Image Generation: Beyond Text-Image Alignment
Contemporary image generation systems have achieved high fidelity and superior aesthetic quality beyond basic text-image alignment. However, existing evaluation frameworks have failed to evolve in parallel. This study reveals that human preference reward models fine-tuned based on CLIP and BLIP architectures have inherent flaws: they inappropriately assign low scores to images with rich details and high aesthetic value, creating a significant discrepancy with actual human aesthetic preferences. To address this issue, we design a novel evaluation score, ICT (Image-Contained-Text) score, that achieves and surpasses the objectives of text-image alignment by assessing the degree to which images represent textual content. Building upon this foundation, we further train an HP (High-Preference) score model using solely the image modality to enhance image aesthetics and detail quality while maintaining text-image alignment. Experiments demonstrate that the proposed evaluation model improves scoring accuracy by over 10\% compared to existing methods, and achieves significant results in optimizing state-of-the-art text-to-image models. This research provides theoretical and empirical support for evolving image generation technology toward higher-order human aesthetic preferences. Code is available at https://github.com/BarretBa/ICTHP.
Composite Diffusion | whole >= Σparts
For an artist or a graphic designer, the spatial layout of a scene is a critical design choice. However, existing text-to-image diffusion models provide limited support for incorporating spatial information. This paper introduces Composite Diffusion as a means for artists to generate high-quality images by composing from the sub-scenes. The artists can specify the arrangement of these sub-scenes through a flexible free-form segment layout. They can describe the content of each sub-scene primarily using natural text and additionally by utilizing reference images or control inputs such as line art, scribbles, human pose, canny edges, and more. We provide a comprehensive and modular method for Composite Diffusion that enables alternative ways of generating, composing, and harmonizing sub-scenes. Further, we wish to evaluate the composite image for effectiveness in both image quality and achieving the artist's intent. We argue that existing image quality metrics lack a holistic evaluation of image composites. To address this, we propose novel quality criteria especially relevant to composite generation. We believe that our approach provides an intuitive method of art creation. Through extensive user surveys, quantitative and qualitative analysis, we show how it achieves greater spatial, semantic, and creative control over image generation. In addition, our methods do not need to retrain or modify the architecture of the base diffusion models and can work in a plug-and-play manner with the fine-tuned models.
Visual Text Generation in the Wild
Recently, with the rapid advancements of generative models, the field of visual text generation has witnessed significant progress. However, it is still challenging to render high-quality text images in real-world scenarios, as three critical criteria should be satisfied: (1) Fidelity: the generated text images should be photo-realistic and the contents are expected to be the same as specified in the given conditions; (2) Reasonability: the regions and contents of the generated text should cohere with the scene; (3) Utility: the generated text images can facilitate related tasks (e.g., text detection and recognition). Upon investigation, we find that existing methods, either rendering-based or diffusion-based, can hardly meet all these aspects simultaneously, limiting their application range. Therefore, we propose in this paper a visual text generator (termed SceneVTG), which can produce high-quality text images in the wild. Following a two-stage paradigm, SceneVTG leverages a Multimodal Large Language Model to recommend reasonable text regions and contents across multiple scales and levels, which are used by a conditional diffusion model as conditions to generate text images. Extensive experiments demonstrate that the proposed SceneVTG significantly outperforms traditional rendering-based methods and recent diffusion-based methods in terms of fidelity and reasonability. Besides, the generated images provide superior utility for tasks involving text detection and text recognition. Code and datasets are available at AdvancedLiterateMachinery.
PALP: Prompt Aligned Personalization of Text-to-Image Models
Content creators often aim to create personalized images using personal subjects that go beyond the capabilities of conventional text-to-image models. Additionally, they may want the resulting image to encompass a specific location, style, ambiance, and more. Existing personalization methods may compromise personalization ability or the alignment to complex textual prompts. This trade-off can impede the fulfillment of user prompts and subject fidelity. We propose a new approach focusing on personalization methods for a single prompt to address this issue. We term our approach prompt-aligned personalization. While this may seem restrictive, our method excels in improving text alignment, enabling the creation of images with complex and intricate prompts, which may pose a challenge for current techniques. In particular, our method keeps the personalized model aligned with a target prompt using an additional score distillation sampling term. We demonstrate the versatility of our method in multi- and single-shot settings and further show that it can compose multiple subjects or use inspiration from reference images, such as artworks. We compare our approach quantitatively and qualitatively with existing baselines and state-of-the-art techniques.
Breaking Barriers to Creative Expression: Co-Designing and Implementing an Accessible Text-to-Image Interface
Text-to-image generation models have grown in popularity due to their ability to produce high-quality images from a text prompt. One use for this technology is to enable the creation of more accessible art creation software. In this paper, we document the development of an alternative user interface that reduces the typing effort needed to enter image prompts by providing suggestions from a large language model, developed through iterative design and testing within the project team. The results of this testing demonstrate how generative text models can support the accessibility of text-to-image models, enabling users with a range of abilities to create visual art.
The Chosen One: Consistent Characters in Text-to-Image Diffusion Models
Recent advances in text-to-image generation models have unlocked vast potential for visual creativity. However, these models struggle with generation of consistent characters, a crucial aspect for numerous real-world applications such as story visualization, game development asset design, advertising, and more. Current methods typically rely on multiple pre-existing images of the target character or involve labor-intensive manual processes. In this work, we propose a fully automated solution for consistent character generation, with the sole input being a text prompt. We introduce an iterative procedure that, at each stage, identifies a coherent set of images sharing a similar identity and extracts a more consistent identity from this set. Our quantitative analysis demonstrates that our method strikes a better balance between prompt alignment and identity consistency compared to the baseline methods, and these findings are reinforced by a user study. To conclude, we showcase several practical applications of our approach. Project page is available at https://omriavrahami.com/the-chosen-one
Zero-shot spatial layout conditioning for text-to-image diffusion models
Large-scale text-to-image diffusion models have significantly improved the state of the art in generative image modelling and allow for an intuitive and powerful user interface to drive the image generation process. Expressing spatial constraints, e.g. to position specific objects in particular locations, is cumbersome using text; and current text-based image generation models are not able to accurately follow such instructions. In this paper we consider image generation from text associated with segments on the image canvas, which combines an intuitive natural language interface with precise spatial control over the generated content. We propose ZestGuide, a zero-shot segmentation guidance approach that can be plugged into pre-trained text-to-image diffusion models, and does not require any additional training. It leverages implicit segmentation maps that can be extracted from cross-attention layers, and uses them to align the generation with input masks. Our experimental results combine high image quality with accurate alignment of generated content with input segmentations, and improve over prior work both quantitatively and qualitatively, including methods that require training on images with corresponding segmentations. Compared to Paint with Words, the previous state-of-the art in image generation with zero-shot segmentation conditioning, we improve by 5 to 10 mIoU points on the COCO dataset with similar FID scores.
ARTIST: Improving the Generation of Text-rich Images by Disentanglement
Diffusion models have demonstrated exceptional capabilities in generating a broad spectrum of visual content, yet their proficiency in rendering text is still limited: they often generate inaccurate characters or words that fail to blend well with the underlying image. To address these shortcomings, we introduce a new framework named ARTIST. This framework incorporates a dedicated textual diffusion model to specifically focus on the learning of text structures. Initially, we pretrain this textual model to capture the intricacies of text representation. Subsequently, we finetune a visual diffusion model, enabling it to assimilate textual structure information from the pretrained textual model. This disentangled architecture design and the training strategy significantly enhance the text rendering ability of the diffusion models for text-rich image generation. Additionally, we leverage the capabilities of pretrained large language models to better interpret user intentions, contributing to improved generation quality. Empirical results on the MARIO-Eval benchmark underscore the effectiveness of the proposed method, showing an improvement of up to 15\% in various metrics.
MS-Diffusion: Multi-subject Zero-shot Image Personalization with Layout Guidance
Recent advancements in text-to-image generation models have dramatically enhanced the generation of photorealistic images from textual prompts, leading to an increased interest in personalized text-to-image applications, particularly in multi-subject scenarios. However, these advances are hindered by two main challenges: firstly, the need to accurately maintain the details of each referenced subject in accordance with the textual descriptions; and secondly, the difficulty in achieving a cohesive representation of multiple subjects in a single image without introducing inconsistencies. To address these concerns, our research introduces the MS-Diffusion framework for layout-guided zero-shot image personalization with multi-subjects. This innovative approach integrates grounding tokens with the feature resampler to maintain detail fidelity among subjects. With the layout guidance, MS-Diffusion further improves the cross-attention to adapt to the multi-subject inputs, ensuring that each subject condition acts on specific areas. The proposed multi-subject cross-attention orchestrates harmonious inter-subject compositions while preserving the control of texts. Comprehensive quantitative and qualitative experiments affirm that this method surpasses existing models in both image and text fidelity, promoting the development of personalized text-to-image generation.
TextCenGen: Attention-Guided Text-Centric Background Adaptation for Text-to-Image Generation
Text-to-image (T2I) generation has made remarkable progress in producing high-quality images, but a fundamental challenge remains: creating backgrounds that naturally accommodate text placement without compromising image quality. This capability is non-trivial for real-world applications like graphic design, where clear visual hierarchy between content and text is essential. Prior work has primarily focused on arranging layouts within existing static images, leaving unexplored the potential of T2I models for generating text-friendly backgrounds. We present TextCenGen, a training-free dynamic background adaptation in the blank region for text-friendly image generation. Instead of directly reducing attention in text areas, which degrades image quality, we relocate conflicting objects before background optimization. Our method analyzes cross-attention maps to identify conflicting objects overlapping with text regions and uses a force-directed graph approach to guide their relocation, followed by attention excluding constraints to ensure smooth backgrounds. Our method is plug-and-play, requiring no additional training while well balancing both semantic fidelity and visual quality. Evaluated on our proposed text-friendly T2I benchmark of 27,000 images across four seed datasets, TextCenGen outperforms existing methods by achieving 23% lower saliency overlap in text regions while maintaining 98% of the semantic fidelity measured by CLIP score and our proposed Visual-Textual Concordance Metric (VTCM).
Text-to-image Diffusion Models in Generative AI: A Survey
This survey reviews text-to-image diffusion models in the context that diffusion models have emerged to be popular for a wide range of generative tasks. As a self-contained work, this survey starts with a brief introduction of how a basic diffusion model works for image synthesis, followed by how condition or guidance improves learning. Based on that, we present a review of state-of-the-art methods on text-conditioned image synthesis, i.e., text-to-image. We further summarize applications beyond text-to-image generation: text-guided creative generation and text-guided image editing. Beyond the progress made so far, we discuss existing challenges and promising future directions.
P+: Extended Textual Conditioning in Text-to-Image Generation
We introduce an Extended Textual Conditioning space in text-to-image models, referred to as P+. This space consists of multiple textual conditions, derived from per-layer prompts, each corresponding to a layer of the denoising U-net of the diffusion model. We show that the extended space provides greater disentangling and control over image synthesis. We further introduce Extended Textual Inversion (XTI), where the images are inverted into P+, and represented by per-layer tokens. We show that XTI is more expressive and precise, and converges faster than the original Textual Inversion (TI) space. The extended inversion method does not involve any noticeable trade-off between reconstruction and editability and induces more regular inversions. We conduct a series of extensive experiments to analyze and understand the properties of the new space, and to showcase the effectiveness of our method for personalizing text-to-image models. Furthermore, we utilize the unique properties of this space to achieve previously unattainable results in object-style mixing using text-to-image models. Project page: https://prompt-plus.github.io
DOCCI: Descriptions of Connected and Contrasting Images
Vision-language datasets are vital for both text-to-image (T2I) and image-to-text (I2T) research. However, current datasets lack descriptions with fine-grained detail that would allow for richer associations to be learned by models. To fill the gap, we introduce Descriptions of Connected and Contrasting Images (DOCCI), a dataset with long, human-annotated English descriptions for 15k images that were taken, curated and donated by a single researcher intent on capturing key challenges such as spatial relations, counting, text rendering, world knowledge, and more. We instruct human annotators to create comprehensive descriptions for each image; these average 136 words in length and are crafted to clearly distinguish each image from those that are related or similar. Each description is highly compositional and typically encompasses multiple challenges. Through both quantitative and qualitative analyses, we demonstrate that DOCCI serves as an effective training resource for image-to-text generation -- a PaLI 5B model finetuned on DOCCI shows equal or superior results compared to highly-performant larger models like LLaVA-1.5 7B and InstructBLIP 7B. Furthermore, we show that DOCCI is a useful testbed for text-to-image generation, highlighting the limitations of current text-to-image models in capturing long descriptions and fine details.
Self-Rewarding Large Vision-Language Models for Optimizing Prompts in Text-to-Image Generation
Text-to-image models are powerful for producing high-quality images based on given text prompts, but crafting these prompts often requires specialized vocabulary. To address this, existing methods train rewriting models with supervision from large amounts of manually annotated data and trained aesthetic assessment models. To alleviate the dependence on data scale for model training and the biases introduced by trained models, we propose a novel prompt optimization framework, designed to rephrase a simple user prompt into a sophisticated prompt to a text-to-image model. Specifically, we employ the large vision language models (LVLMs) as the solver to rewrite the user prompt, and concurrently, employ LVLMs as a reward model to score the aesthetics and alignment of the images generated by the optimized prompt. Instead of laborious human feedback, we exploit the prior knowledge of the LVLM to provide rewards, i.e., AI feedback. Simultaneously, the solver and the reward model are unified into one model and iterated in reinforcement learning to achieve self-improvement by giving a solution and judging itself. Results on two popular datasets demonstrate that our method outperforms other strong competitors.
ITI-GEN: Inclusive Text-to-Image Generation
Text-to-image generative models often reflect the biases of the training data, leading to unequal representations of underrepresented groups. This study investigates inclusive text-to-image generative models that generate images based on human-written prompts and ensure the resulting images are uniformly distributed across attributes of interest. Unfortunately, directly expressing the desired attributes in the prompt often leads to sub-optimal results due to linguistic ambiguity or model misrepresentation. Hence, this paper proposes a drastically different approach that adheres to the maxim that "a picture is worth a thousand words". We show that, for some attributes, images can represent concepts more expressively than text. For instance, categories of skin tones are typically hard to specify by text but can be easily represented by example images. Building upon these insights, we propose a novel approach, ITI-GEN, that leverages readily available reference images for Inclusive Text-to-Image GENeration. The key idea is learning a set of prompt embeddings to generate images that can effectively represent all desired attribute categories. More importantly, ITI-GEN requires no model fine-tuning, making it computationally efficient to augment existing text-to-image models. Extensive experiments demonstrate that ITI-GEN largely improves over state-of-the-art models to generate inclusive images from a prompt. Project page: https://czhang0528.github.io/iti-gen.
CreativeSynth: Creative Blending and Synthesis of Visual Arts based on Multimodal Diffusion
Large-scale text-to-image generative models have made impressive strides, showcasing their ability to synthesize a vast array of high-quality images. However, adapting these models for artistic image editing presents two significant challenges. Firstly, users struggle to craft textual prompts that meticulously detail visual elements of the input image. Secondly, prevalent models, when effecting modifications in specific zones, frequently disrupt the overall artistic style, complicating the attainment of cohesive and aesthetically unified artworks. To surmount these obstacles, we build the innovative unified framework CreativeSynth, which is based on a diffusion model with the ability to coordinate multimodal inputs and multitask in the field of artistic image generation. By integrating multimodal features with customized attention mechanisms, CreativeSynth facilitates the importation of real-world semantic content into the domain of art through inversion and real-time style transfer. This allows for the precise manipulation of image style and content while maintaining the integrity of the original model parameters. Rigorous qualitative and quantitative evaluations underscore that CreativeSynth excels in enhancing artistic images' fidelity and preserves their innate aesthetic essence. By bridging the gap between generative models and artistic finesse, CreativeSynth becomes a custom digital palette.
Sentence-level Prompts Benefit Composed Image Retrieval
Composed image retrieval (CIR) is the task of retrieving specific images by using a query that involves both a reference image and a relative caption. Most existing CIR models adopt the late-fusion strategy to combine visual and language features. Besides, several approaches have also been suggested to generate a pseudo-word token from the reference image, which is further integrated into the relative caption for CIR. However, these pseudo-word-based prompting methods have limitations when target image encompasses complex changes on reference image, e.g., object removal and attribute modification. In this work, we demonstrate that learning an appropriate sentence-level prompt for the relative caption (SPRC) is sufficient for achieving effective composed image retrieval. Instead of relying on pseudo-word-based prompts, we propose to leverage pretrained V-L models, e.g., BLIP-2, to generate sentence-level prompts. By concatenating the learned sentence-level prompt with the relative caption, one can readily use existing text-based image retrieval models to enhance CIR performance. Furthermore, we introduce both image-text contrastive loss and text prompt alignment loss to enforce the learning of suitable sentence-level prompts. Experiments show that our proposed method performs favorably against the state-of-the-art CIR methods on the Fashion-IQ and CIRR datasets. The source code and pretrained model are publicly available at https://github.com/chunmeifeng/SPRC
A Taxonomy of Prompt Modifiers for Text-To-Image Generation
Text-to-image generation has seen an explosion of interest since 2021. Today, beautiful and intriguing digital images and artworks can be synthesized from textual inputs ("prompts") with deep generative models. Online communities around text-to-image generation and AI generated art have quickly emerged. This paper identifies six types of prompt modifiers used by practitioners in the online community based on a 3-month ethnographic study. The novel taxonomy of prompt modifiers provides researchers a conceptual starting point for investigating the practice of text-to-image generation, but may also help practitioners of AI generated art improve their images. We further outline how prompt modifiers are applied in the practice of "prompt engineering." We discuss research opportunities of this novel creative practice in the field of Human-Computer Interaction (HCI). The paper concludes with a discussion of broader implications of prompt engineering from the perspective of Human-AI Interaction (HAI) in future applications beyond the use case of text-to-image generation and AI generated art.
LayoutLLM-T2I: Eliciting Layout Guidance from LLM for Text-to-Image Generation
In the text-to-image generation field, recent remarkable progress in Stable Diffusion makes it possible to generate rich kinds of novel photorealistic images. However, current models still face misalignment issues (e.g., problematic spatial relation understanding and numeration failure) in complex natural scenes, which impedes the high-faithfulness text-to-image generation. Although recent efforts have been made to improve controllability by giving fine-grained guidance (e.g., sketch and scribbles), this issue has not been fundamentally tackled since users have to provide such guidance information manually. In this work, we strive to synthesize high-fidelity images that are semantically aligned with a given textual prompt without any guidance. Toward this end, we propose a coarse-to-fine paradigm to achieve layout planning and image generation. Concretely, we first generate the coarse-grained layout conditioned on a given textual prompt via in-context learning based on Large Language Models. Afterward, we propose a fine-grained object-interaction diffusion method to synthesize high-faithfulness images conditioned on the prompt and the automatically generated layout. Extensive experiments demonstrate that our proposed method outperforms the state-of-the-art models in terms of layout and image generation. Our code and settings are available at https://layoutllm-t2i.github.io.
TextInVision: Text and Prompt Complexity Driven Visual Text Generation Benchmark
Generating images with embedded text is crucial for the automatic production of visual and multimodal documents, such as educational materials and advertisements. However, existing diffusion-based text-to-image models often struggle to accurately embed text within images, facing challenges in spelling accuracy, contextual relevance, and visual coherence. Evaluating the ability of such models to embed text within a generated image is complicated due to the lack of comprehensive benchmarks. In this work, we introduce TextInVision, a large-scale, text and prompt complexity driven benchmark designed to evaluate the ability of diffusion models to effectively integrate visual text into images. We crafted a diverse set of prompts and texts that consider various attributes and text characteristics. Additionally, we prepared an image dataset to test Variational Autoencoder (VAE) models across different character representations, highlighting that VAE architectures can also pose challenges in text generation within diffusion frameworks. Through extensive analysis of multiple models, we identify common errors and highlight issues such as spelling inaccuracies and contextual mismatches. By pinpointing the failure points across different prompts and texts, our research lays the foundation for future advancements in AI-generated multimodal content.
