new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 4

Bridge Diffusion Model: bridge non-English language-native text-to-image diffusion model with English communities

Text-to-Image generation (TTI) technologies are advancing rapidly, especially in the English language communities. However, English-native TTI models inherently carry biases from English world centric training data, which creates a dilemma for development of other language-native TTI models. One common choice is fine-tuning the English-native TTI model with translated samples from non-English communities. It falls short of fully addressing the model bias problem. Alternatively, training non-English language native models from scratch can effectively resolve the English world bias, but diverges from the English TTI communities, thus not able to utilize the strides continuously gaining in the English TTI communities any more. To build non-English language native TTI model meanwhile keep compatability with the English TTI communities, we propose a novel model structure referred as "Bridge Diffusion Model" (BDM). The proposed BDM employs a backbone-branch network structure to learn the non-English language semantics while keep the latent space compatible with the English-native TTI backbone, in an end-to-end manner. The unique advantages of the proposed BDM are that it's not only adept at generating images that precisely depict non-English language semantics, but also compatible with various English-native TTI plugins, such as different checkpoints, LoRA, ControlNet, Dreambooth, and Textual Inversion, etc. Moreover, BDM can concurrently generate content seamlessly combining both non-English native and English-native semantics within a single image, fostering cultural interaction. We verify our method by applying BDM to build a Chinese-native TTI model, whereas the method is generic and applicable to any other language.

  • 3 authors
·
Sep 2, 2023

EzAudio: Enhancing Text-to-Audio Generation with Efficient Diffusion Transformer

Latent diffusion models have shown promising results in text-to-audio (T2A) generation tasks, yet previous models have encountered difficulties in generation quality, computational cost, diffusion sampling, and data preparation. In this paper, we introduce EzAudio, a transformer-based T2A diffusion model, to handle these challenges. Our approach includes several key innovations: (1) We build the T2A model on the latent space of a 1D waveform Variational Autoencoder (VAE), avoiding the complexities of handling 2D spectrogram representations and using an additional neural vocoder. (2) We design an optimized diffusion transformer architecture specifically tailored for audio latent representations and diffusion modeling, which enhances convergence speed, training stability, and memory usage, making the training process easier and more efficient. (3) To tackle data scarcity, we adopt a data-efficient training strategy that leverages unlabeled data for learning acoustic dependencies, audio caption data annotated by audio-language models for text-to-audio alignment learning, and human-labeled data for fine-tuning. (4) We introduce a classifier-free guidance (CFG) rescaling method that simplifies EzAudio by achieving strong prompt alignment while preserving great audio quality when using larger CFG scores, eliminating the need to struggle with finding the optimal CFG score to balance this trade-off. EzAudio surpasses existing open-source models in both objective metrics and subjective evaluations, delivering realistic listening experiences while maintaining a streamlined model structure, low training costs, and an easy-to-follow training pipeline. Code, data, and pre-trained models are released at: https://haidog-yaqub.github.io/EzAudio-Page/.

  • 7 authors
·
Sep 16, 2024 3

GlyphDraw: Seamlessly Rendering Text with Intricate Spatial Structures in Text-to-Image Generation

Recent breakthroughs in the field of language-guided image generation have yielded impressive achievements, enabling the creation of high-quality and diverse images based on user instructions.Although the synthesis performance is fascinating, one significant limitation of current image generation models is their insufficient ability to generate text coherently within images, particularly for complex glyph structures like Chinese characters. To address this problem, we introduce GlyphDraw, a general learning framework aiming to endow image generation models with the capacity to generate images coherently embedded with text for any specific language.We first sophisticatedly design the image-text dataset's construction strategy, then build our model specifically on a diffusion-based image generator and carefully modify the network structure to allow the model to learn drawing language characters with the help of glyph and position information.Furthermore, we maintain the model's open-domain image synthesis capability by preventing catastrophic forgetting by using parameter-efficient fine-tuning techniques.Extensive qualitative and quantitative experiments demonstrate that our method not only produces accurate language characters as in prompts, but also seamlessly blends the generated text into the background.Please refer to our https://1073521013.github.io/glyph-draw.github.io/{project page}. abstract

  • 7 authors
·
Mar 31, 2023

STARFlow-V: End-to-End Video Generative Modeling with Normalizing Flow

Normalizing flows (NFs) are end-to-end likelihood-based generative models for continuous data, and have recently regained attention with encouraging progress on image generation. Yet in the video generation domain, where spatiotemporal complexity and computational cost are substantially higher, state-of-the-art systems almost exclusively rely on diffusion-based models. In this work, we revisit this design space by presenting STARFlow-V, a normalizing flow-based video generator with substantial benefits such as end-to-end learning, robust causal prediction, and native likelihood estimation. Building upon the recently proposed STARFlow, STARFlow-V operates in the spatiotemporal latent space with a global-local architecture which restricts causal dependencies to a global latent space while preserving rich local within-frame interactions. This eases error accumulation over time, a common pitfall of standard autoregressive diffusion model generation. Additionally, we propose flow-score matching, which equips the model with a light-weight causal denoiser to improve the video generation consistency in an autoregressive fashion. To improve the sampling efficiency, STARFlow-V employs a video-aware Jacobi iteration scheme that recasts inner updates as parallelizable iterations without breaking causality. Thanks to the invertible structure, the same model can natively support text-to-video, image-to-video as well as video-to-video generation tasks. Empirically, STARFlow-V achieves strong visual fidelity and temporal consistency with practical sampling throughput relative to diffusion-based baselines. These results present the first evidence, to our knowledge, that NFs are capable of high-quality autoregressive video generation, establishing them as a promising research direction for building world models. Code and generated samples are available at https://github.com/apple/ml-starflow.

apple Apple
·
Nov 25 2

Plug-and-Play Diffusion Features for Text-Driven Image-to-Image Translation

Large-scale text-to-image generative models have been a revolutionary breakthrough in the evolution of generative AI, allowing us to synthesize diverse images that convey highly complex visual concepts. However, a pivotal challenge in leveraging such models for real-world content creation tasks is providing users with control over the generated content. In this paper, we present a new framework that takes text-to-image synthesis to the realm of image-to-image translation -- given a guidance image and a target text prompt, our method harnesses the power of a pre-trained text-to-image diffusion model to generate a new image that complies with the target text, while preserving the semantic layout of the source image. Specifically, we observe and empirically demonstrate that fine-grained control over the generated structure can be achieved by manipulating spatial features and their self-attention inside the model. This results in a simple and effective approach, where features extracted from the guidance image are directly injected into the generation process of the target image, requiring no training or fine-tuning and applicable for both real or generated guidance images. We demonstrate high-quality results on versatile text-guided image translation tasks, including translating sketches, rough drawings and animations into realistic images, changing of the class and appearance of objects in a given image, and modifications of global qualities such as lighting and color.

  • 4 authors
·
Nov 22, 2022

PanGu-Draw: Advancing Resource-Efficient Text-to-Image Synthesis with Time-Decoupled Training and Reusable Coop-Diffusion

Current large-scale diffusion models represent a giant leap forward in conditional image synthesis, capable of interpreting diverse cues like text, human poses, and edges. However, their reliance on substantial computational resources and extensive data collection remains a bottleneck. On the other hand, the integration of existing diffusion models, each specialized for different controls and operating in unique latent spaces, poses a challenge due to incompatible image resolutions and latent space embedding structures, hindering their joint use. Addressing these constraints, we present "PanGu-Draw", a novel latent diffusion model designed for resource-efficient text-to-image synthesis that adeptly accommodates multiple control signals. We first propose a resource-efficient Time-Decoupling Training Strategy, which splits the monolithic text-to-image model into structure and texture generators. Each generator is trained using a regimen that maximizes data utilization and computational efficiency, cutting data preparation by 48% and reducing training resources by 51%. Secondly, we introduce "Coop-Diffusion", an algorithm that enables the cooperative use of various pre-trained diffusion models with different latent spaces and predefined resolutions within a unified denoising process. This allows for multi-control image synthesis at arbitrary resolutions without the necessity for additional data or retraining. Empirical validations of Pangu-Draw show its exceptional prowess in text-to-image and multi-control image generation, suggesting a promising direction for future model training efficiencies and generation versatility. The largest 5B T2I PanGu-Draw model is released on the Ascend platform. Project page: https://pangu-draw.github.io

  • 10 authors
·
Dec 27, 2023 1

Appearance Matching Adapter for Exemplar-based Semantic Image Synthesis

Exemplar-based semantic image synthesis aims to generate images aligned with given semantic content while preserving the appearance of an exemplar image. Conventional structure-guidance models, such as ControlNet, are limited in that they cannot directly utilize exemplar images as input, relying instead solely on text prompts to control appearance. Recent tuning-free approaches address this limitation by transferring local appearance from the exemplar image to the synthesized image through implicit cross-image matching in the augmented self-attention mechanism of pre-trained diffusion models. However, these methods face challenges when applied to content-rich scenes with significant geometric deformations, such as driving scenes. In this paper, we propose the Appearance Matching Adapter (AM-Adapter), a learnable framework that enhances cross-image matching within augmented self-attention by incorporating semantic information from segmentation maps. To effectively disentangle generation and matching processes, we adopt a stage-wise training approach. Initially, we train the structure-guidance and generation networks, followed by training the AM-Adapter while keeping the other networks frozen. During inference, we introduce an automated exemplar retrieval method to efficiently select exemplar image-segmentation pairs. Despite utilizing a limited number of learnable parameters, our method achieves state-of-the-art performance, excelling in both semantic alignment preservation and local appearance fidelity. Extensive ablation studies further validate our design choices. Code and pre-trained weights will be publicly available.: https://cvlab-kaist.github.io/AM-Adapter/

  • 8 authors
·
Dec 4, 2024

Easier Painting Than Thinking: Can Text-to-Image Models Set the Stage, but Not Direct the Play?

Text-to-image (T2I) generation aims to synthesize images from textual prompts, which jointly specify what must be shown and imply what can be inferred, thereby corresponding to two core capabilities: composition and reasoning. However, with the emerging advances of T2I models in reasoning beyond composition, existing benchmarks reveal clear limitations in providing comprehensive evaluations across and within these capabilities. Meanwhile, these advances also enable models to handle more complex prompts, whereas current benchmarks remain limited to low scene density and simplified one-to-one reasoning. To address these limitations, we propose T2I-CoReBench, a comprehensive and complex benchmark that evaluates both composition and reasoning capabilities of T2I models. To ensure comprehensiveness, we structure composition around scene graph elements (instance, attribute, and relation) and reasoning around the philosophical framework of inference (deductive, inductive, and abductive), formulating a 12-dimensional evaluation taxonomy. To increase complexity, driven by the inherent complexities of real-world scenarios, we curate each prompt with high compositional density for composition and multi-step inference for reasoning. We also pair each prompt with a checklist that specifies individual yes/no questions to assess each intended element independently to facilitate fine-grained and reliable evaluation. In statistics, our benchmark comprises 1,080 challenging prompts and around 13,500 checklist questions. Experiments across 27 current T2I models reveal that their composition capability still remains limited in complex high-density scenarios, while the reasoning capability lags even further behind as a critical bottleneck, with all models struggling to infer implicit elements from prompts. Our project page: https://t2i-corebench.github.io/.

  • 9 authors
·
Sep 3 2

APT: Architectural Planning and Text-to-Blueprint Construction Using Large Language Models for Open-World Agents

We present APT, an advanced Large Language Model (LLM)-driven framework that enables autonomous agents to construct complex and creative structures within the Minecraft environment. Unlike previous approaches that primarily concentrate on skill-based open-world tasks or rely on image-based diffusion models for generating voxel-based structures, our method leverages the intrinsic spatial reasoning capabilities of LLMs. By employing chain-of-thought decomposition along with multimodal inputs, the framework generates detailed architectural layouts and blueprints that the agent can execute under zero-shot or few-shot learning scenarios. Our agent incorporates both memory and reflection modules to facilitate lifelong learning, adaptive refinement, and error correction throughout the building process. To rigorously evaluate the agent's performance in this emerging research area, we introduce a comprehensive benchmark consisting of diverse construction tasks designed to test creativity, spatial reasoning, adherence to in-game rules, and the effective integration of multimodal instructions. Experimental results using various GPT-based LLM backends and agent configurations demonstrate the agent's capacity to accurately interpret extensive instructions involving numerous items, their positions, and orientations. The agent successfully produces complex structures complete with internal functionalities such as Redstone-powered systems. A/B testing indicates that the inclusion of a memory module leads to a significant increase in performance, emphasizing its role in enabling continuous learning and the reuse of accumulated experience. Additionally, the agent's unexpected emergence of scaffolding behavior highlights the potential of future LLM-driven agents to utilize subroutine planning and leverage the emergence ability of LLMs to autonomously develop human-like problem-solving techniques.

  • 2 authors
·
Nov 26, 2024

MTVG : Multi-text Video Generation with Text-to-Video Models

Recently, video generation has attracted massive attention and yielded noticeable outcomes. Concerning the characteristics of video, multi-text conditioning incorporating sequential events is necessary for next-step video generation. In this work, we propose a novel multi-text video generation~(MTVG) by directly utilizing a pre-trained diffusion-based text-to-video~(T2V) generation model without additional fine-tuning. To generate consecutive video segments, visual consistency generated by distinct prompts is necessary with diverse variations, such as motion and content-related transitions. Our proposed MTVG includes Dynamic Noise and Last Frame Aware Inversion which reinitialize the noise latent to preserve visual coherence between videos of different prompts and prevent repetitive motion or contents. Furthermore, we present Structure Guiding Sampling to maintain the global appearance across the frames in a single video clip, where we leverage iterative latent updates across the preceding frame. Additionally, our Prompt Generator allows for arbitrary format of text conditions consisting of diverse events. As a result, our extensive experiments, including diverse transitions of descriptions, demonstrate that our proposed methods show superior generated outputs in terms of semantically coherent and temporally seamless video.Video examples are available in our project page: https://kuai-lab.github.io/mtvg-page.

  • 8 authors
·
Dec 7, 2023

CosmicMan: A Text-to-Image Foundation Model for Humans

We present CosmicMan, a text-to-image foundation model specialized for generating high-fidelity human images. Unlike current general-purpose foundation models that are stuck in the dilemma of inferior quality and text-image misalignment for humans, CosmicMan enables generating photo-realistic human images with meticulous appearance, reasonable structure, and precise text-image alignment with detailed dense descriptions. At the heart of CosmicMan's success are the new reflections and perspectives on data and models: (1) We found that data quality and a scalable data production flow are essential for the final results from trained models. Hence, we propose a new data production paradigm, Annotate Anyone, which serves as a perpetual data flywheel to produce high-quality data with accurate yet cost-effective annotations over time. Based on this, we constructed a large-scale dataset, CosmicMan-HQ 1.0, with 6 Million high-quality real-world human images in a mean resolution of 1488x1255, and attached with precise text annotations deriving from 115 Million attributes in diverse granularities. (2) We argue that a text-to-image foundation model specialized for humans must be pragmatic -- easy to integrate into down-streaming tasks while effective in producing high-quality human images. Hence, we propose to model the relationship between dense text descriptions and image pixels in a decomposed manner, and present Decomposed-Attention-Refocusing (Daring) training framework. It seamlessly decomposes the cross-attention features in existing text-to-image diffusion model, and enforces attention refocusing without adding extra modules. Through Daring, we show that explicitly discretizing continuous text space into several basic groups that align with human body structure is the key to tackling the misalignment problem in a breeze.

  • 6 authors
·
Apr 1, 2024 1

Localizing and Editing Knowledge in Text-to-Image Generative Models

Text-to-Image Diffusion Models such as Stable-Diffusion and Imagen have achieved unprecedented quality of photorealism with state-of-the-art FID scores on MS-COCO and other generation benchmarks. Given a caption, image generation requires fine-grained knowledge about attributes such as object structure, style, and viewpoint amongst others. Where does this information reside in text-to-image generative models? In our paper, we tackle this question and understand how knowledge corresponding to distinct visual attributes is stored in large-scale text-to-image diffusion models. We adapt Causal Mediation Analysis for text-to-image models and trace knowledge about distinct visual attributes to various (causal) components in the (i) UNet and (ii) text-encoder of the diffusion model. In particular, we show that unlike generative large-language models, knowledge about different attributes is not localized in isolated components, but is instead distributed amongst a set of components in the conditional UNet. These sets of components are often distinct for different visual attributes. Remarkably, we find that the CLIP text-encoder in public text-to-image models such as Stable-Diffusion contains only one causal state across different visual attributes, and this is the first self-attention layer corresponding to the last subject token of the attribute in the caption. This is in stark contrast to the causal states in other language models which are often the mid-MLP layers. Based on this observation of only one causal state in the text-encoder, we introduce a fast, data-free model editing method Diff-QuickFix which can effectively edit concepts in text-to-image models. DiffQuickFix can edit (ablate) concepts in under a second with a closed-form update, providing a significant 1000x speedup and comparable editing performance to existing fine-tuning based editing methods.

  • 5 authors
·
Oct 20, 2023 2

All but One: Surgical Concept Erasing with Model Preservation in Text-to-Image Diffusion Models

Text-to-Image models such as Stable Diffusion have shown impressive image generation synthesis, thanks to the utilization of large-scale datasets. However, these datasets may contain sexually explicit, copyrighted, or undesirable content, which allows the model to directly generate them. Given that retraining these large models on individual concept deletion requests is infeasible, fine-tuning algorithms have been developed to tackle concept erasing in diffusion models. While these algorithms yield good concept erasure, they all present one of the following issues: 1) the corrupted feature space yields synthesis of disintegrated objects, 2) the initially synthesized content undergoes a divergence in both spatial structure and semantics in the generated images, and 3) sub-optimal training updates heighten the model's susceptibility to utility harm. These issues severely degrade the original utility of generative models. In this work, we present a new approach that solves all of these challenges. We take inspiration from the concept of classifier guidance and propose a surgical update on the classifier guidance term while constraining the drift of the unconditional score term. Furthermore, our algorithm empowers the user to select an alternative to the erasing concept, allowing for more controllability. Our experimental results show that our algorithm not only erases the target concept effectively but also preserves the model's generation capability.

  • 3 authors
·
Dec 20, 2023

Enhancing Visually-Rich Document Understanding via Layout Structure Modeling

In recent years, the use of multi-modal pre-trained Transformers has led to significant advancements in visually-rich document understanding. However, existing models have mainly focused on features such as text and vision while neglecting the importance of layout relationship between text nodes. In this paper, we propose GraphLayoutLM, a novel document understanding model that leverages the modeling of layout structure graph to inject document layout knowledge into the model. GraphLayoutLM utilizes a graph reordering algorithm to adjust the text sequence based on the graph structure. Additionally, our model uses a layout-aware multi-head self-attention layer to learn document layout knowledge. The proposed model enables the understanding of the spatial arrangement of text elements, improving document comprehension. We evaluate our model on various benchmarks, including FUNSD, XFUND and CORD, and achieve state-of-the-art results among these datasets. Our experimental results demonstrate that our proposed method provides a significant improvement over existing approaches and showcases the importance of incorporating layout information into document understanding models. We also conduct an ablation study to investigate the contribution of each component of our model. The results show that both the graph reordering algorithm and the layout-aware multi-head self-attention layer play a crucial role in achieving the best performance.

  • 5 authors
·
Aug 15, 2023

Single-Reference Text-to-Image Manipulation with Dual Contrastive Denoising Score

Large-scale text-to-image generative models have shown remarkable ability to synthesize diverse and high-quality images. However, it is still challenging to directly apply these models for editing real images for two reasons. First, it is difficult for users to come up with a perfect text prompt that accurately describes every visual detail in the input image. Second, while existing models can introduce desirable changes in certain regions, they often dramatically alter the input content and introduce unexpected changes in unwanted regions. To address these challenges, we present Dual Contrastive Denoising Score, a simple yet powerful framework that leverages the rich generative prior of text-to-image diffusion models. Inspired by contrastive learning approaches for unpaired image-to-image translation, we introduce a straightforward dual contrastive loss within the proposed framework. Our approach utilizes the extensive spatial information from the intermediate representations of the self-attention layers in latent diffusion models without depending on auxiliary networks. Our method achieves both flexible content modification and structure preservation between input and output images, as well as zero-shot image-to-image translation. Through extensive experiments, we show that our approach outperforms existing methods in real image editing while maintaining the capability to directly utilize pretrained text-to-image diffusion models without further training.

  • 2 authors
·
Aug 18

Hierarchical Spatio-temporal Decoupling for Text-to-Video Generation

Despite diffusion models having shown powerful abilities to generate photorealistic images, generating videos that are realistic and diverse still remains in its infancy. One of the key reasons is that current methods intertwine spatial content and temporal dynamics together, leading to a notably increased complexity of text-to-video generation (T2V). In this work, we propose HiGen, a diffusion model-based method that improves performance by decoupling the spatial and temporal factors of videos from two perspectives, i.e., structure level and content level. At the structure level, we decompose the T2V task into two steps, including spatial reasoning and temporal reasoning, using a unified denoiser. Specifically, we generate spatially coherent priors using text during spatial reasoning and then generate temporally coherent motions from these priors during temporal reasoning. At the content level, we extract two subtle cues from the content of the input video that can express motion and appearance changes, respectively. These two cues then guide the model's training for generating videos, enabling flexible content variations and enhancing temporal stability. Through the decoupled paradigm, HiGen can effectively reduce the complexity of this task and generate realistic videos with semantics accuracy and motion stability. Extensive experiments demonstrate the superior performance of HiGen over the state-of-the-art T2V methods.

  • 8 authors
·
Dec 7, 2023 1

Graphix-T5: Mixing Pre-Trained Transformers with Graph-Aware Layers for Text-to-SQL Parsing

The task of text-to-SQL parsing, which aims at converting natural language questions into executable SQL queries, has garnered increasing attention in recent years, as it can assist end users in efficiently extracting vital information from databases without the need for technical background. One of the major challenges in text-to-SQL parsing is domain generalization, i.e., how to generalize well to unseen databases. Recently, the pre-trained text-to-text transformer model, namely T5, though not specialized for text-to-SQL parsing, has achieved state-of-the-art performance on standard benchmarks targeting domain generalization. In this work, we explore ways to further augment the pre-trained T5 model with specialized components for text-to-SQL parsing. Such components are expected to introduce structural inductive bias into text-to-SQL parsers thus improving model's capacity on (potentially multi-hop) reasoning, which is critical for generating structure-rich SQLs. To this end, we propose a new architecture GRAPHIX-T5, a mixed model with the standard pre-trained transformer model augmented by some specially-designed graph-aware layers. Extensive experiments and analysis demonstrate the effectiveness of GRAPHIX-T5 across four text-to-SQL benchmarks: SPIDER, SYN, REALISTIC and DK. GRAPHIX-T5 surpass all other T5-based parsers with a significant margin, achieving new state-of-the-art performance. Notably, GRAPHIX-T5-large reach performance superior to the original T5-large by 5.7% on exact match (EM) accuracy and 6.6% on execution accuracy (EX). This even outperforms the T5-3B by 1.2% on EM and 1.5% on EX.

  • 10 authors
·
Jan 18, 2023

Detecting fake news by enhanced text representation with multi-EDU-structure awareness

Since fake news poses a serious threat to society and individuals, numerous studies have been brought by considering text, propagation and user profiles. Due to the data collection problem, these methods based on propagation and user profiles are less applicable in the early stages. A good alternative method is to detect news based on text as soon as they are released, and a lot of text-based methods were proposed, which usually utilized words, sentences or paragraphs as basic units. But, word is a too fine-grained unit to express coherent information well, sentence or paragraph is too coarse to show specific information. Which granularity is better and how to utilize it to enhance text representation for fake news detection are two key problems. In this paper, we introduce Elementary Discourse Unit (EDU) whose granularity is between word and sentence, and propose a multi-EDU-structure awareness model to improve text representation for fake news detection, namely EDU4FD. For the multi-EDU-structure awareness, we build the sequence-based EDU representations and the graph-based EDU representations. The former is gotten by modeling the coherence between consecutive EDUs with TextCNN that reflect the semantic coherence. For the latter, we first extract rhetorical relations to build the EDU dependency graph, which can show the global narrative logic and help deliver the main idea truthfully. Then a Relation Graph Attention Network (RGAT) is set to get the graph-based EDU representation. Finally, the two EDU representations are incorporated as the enhanced text representation for fake news detection, using a gated recursive unit combined with a global attention mechanism. Experiments on four cross-source fake news datasets show that our model outperforms the state-of-the-art text-based methods.

  • 4 authors
·
May 30, 2022

DiffuseHigh: Training-free Progressive High-Resolution Image Synthesis through Structure Guidance

Recent surge in large-scale generative models has spurred the development of vast fields in computer vision. In particular, text-to-image diffusion models have garnered widespread adoption across diverse domain due to their potential for high-fidelity image generation. Nonetheless, existing large-scale diffusion models are confined to generate images of up to 1K resolution, which is far from meeting the demands of contemporary commercial applications. Directly sampling higher-resolution images often yields results marred by artifacts such as object repetition and distorted shapes. Addressing the aforementioned issues typically necessitates training or fine-tuning models on higher resolution datasets. However, this undertaking poses a formidable challenge due to the difficulty in collecting large-scale high-resolution contents and substantial computational resources. While several preceding works have proposed alternatives, they often fail to produce convincing results. In this work, we probe the generative ability of diffusion models at higher resolution beyond its original capability and propose a novel progressive approach that fully utilizes generated low-resolution image to guide the generation of higher resolution image. Our method obviates the need for additional training or fine-tuning which significantly lowers the burden of computational costs. Extensive experiments and results validate the efficiency and efficacy of our method. Project page: https://yhyun225.github.io/DiffuseHigh/

  • 4 authors
·
Jun 26, 2024

Tuning-Free Image Editing with Fidelity and Editability via Unified Latent Diffusion Model

Balancing fidelity and editability is essential in text-based image editing (TIE), where failures commonly lead to over- or under-editing issues. Existing methods typically rely on attention injections for structure preservation and leverage the inherent text alignment capabilities of pre-trained text-to-image (T2I) models for editability, but they lack explicit and unified mechanisms to properly balance these two objectives. In this work, we introduce UnifyEdit, a tuning-free method that performs diffusion latent optimization to enable a balanced integration of fidelity and editability within a unified framework. Unlike direct attention injections, we develop two attention-based constraints: a self-attention (SA) preservation constraint for structural fidelity, and a cross-attention (CA) alignment constraint to enhance text alignment for improved editability. However, simultaneously applying both constraints can lead to gradient conflicts, where the dominance of one constraint results in over- or under-editing. To address this challenge, we introduce an adaptive time-step scheduler that dynamically adjusts the influence of these constraints, guiding the diffusion latent toward an optimal balance. Extensive quantitative and qualitative experiments validate the effectiveness of our approach, demonstrating its superiority in achieving a robust balance between structure preservation and text alignment across various editing tasks, outperforming other state-of-the-art methods. The source code will be available at https://github.com/CUC-MIPG/UnifyEdit.

Unifying Structure and Language Semantic for Efficient Contrastive Knowledge Graph Completion with Structured Entity Anchors

The goal of knowledge graph completion (KGC) is to predict missing links in a KG using trained facts that are already known. In recent, pre-trained language model (PLM) based methods that utilize both textual and structural information are emerging, but their performances lag behind state-of-the-art (SOTA) structure-based methods or some methods lose their inductive inference capabilities in the process of fusing structure embedding to text encoder. In this paper, we propose a novel method to effectively unify structure information and language semantics without losing the power of inductive reasoning. We adopt entity anchors and these anchors and textual description of KG elements are fed together into the PLM-based encoder to learn unified representations. In addition, the proposed method utilizes additional random negative samples which can be reused in the each mini-batch during contrastive learning to learn a generalized entity representations. We verify the effectiveness of the our proposed method through various experiments and analysis. The experimental results on standard benchmark widely used in link prediction task show that the proposed model outperforms existing the SOTA KGC models. Especially, our method show the largest performance improvement on FB15K-237, which is competitive to the SOTA of structure-based KGC methods.

  • 3 authors
·
Nov 7, 2023

Scale-DiT: Ultra-High-Resolution Image Generation with Hierarchical Local Attention

Ultra-high-resolution text-to-image generation demands both fine-grained texture synthesis and globally coherent structure, yet current diffusion models remain constrained to sub-1K times 1K resolutions due to the prohibitive quadratic complexity of attention and the scarcity of native 4K training data. We present Scale-DiT, a new diffusion framework that introduces hierarchical local attention with low-resolution global guidance, enabling efficient, scalable, and semantically coherent image synthesis at ultra-high resolutions. Specifically, high-resolution latents are divided into fixed-size local windows to reduce attention complexity from quadratic to near-linear, while a low-resolution latent equipped with scaled positional anchors injects global semantics. A lightweight LoRA adaptation bridges global and local pathways during denoising, ensuring consistency across structure and detail. To maximize inference efficiency, we repermute token sequence in Hilbert curve order and implement a fused-kernel for skipping masked operations, resulting in a GPU-friendly design. Extensive experiments demonstrate that Scale-DiT achieves more than 2times faster inference and lower memory usage compared to dense attention baselines, while reliably scaling to 4K times 4K resolution without requiring additional high-resolution training data. On both quantitative benchmarks (FID, IS, CLIP Score) and qualitative comparisons, Scale-DiT delivers superior global coherence and sharper local detail, matching or outperforming state-of-the-art methods that rely on native 4K training. Taken together, these results highlight hierarchical local attention with guided low-resolution anchors as a promising and effective approach for advancing ultra-high-resolution image generation.

  • 2 authors
·
Oct 17

APLA: Additional Perturbation for Latent Noise with Adversarial Training Enables Consistency

Diffusion models have exhibited promising progress in video generation. However, they often struggle to retain consistent details within local regions across frames. One underlying cause is that traditional diffusion models approximate Gaussian noise distribution by utilizing predictive noise, without fully accounting for the impact of inherent information within the input itself. Additionally, these models emphasize the distinction between predictions and references, neglecting information intrinsic to the videos. To address this limitation, inspired by the self-attention mechanism, we propose a novel text-to-video (T2V) generation network structure based on diffusion models, dubbed Additional Perturbation for Latent noise with Adversarial training (APLA). Our approach only necessitates a single video as input and builds upon pre-trained stable diffusion networks. Notably, we introduce an additional compact network, known as the Video Generation Transformer (VGT). This auxiliary component is designed to extract perturbations from the inherent information contained within the input, thereby refining inconsistent pixels during temporal predictions. We leverage a hybrid architecture of transformers and convolutions to compensate for temporal intricacies, enhancing consistency between different frames within the video. Experiments demonstrate a noticeable improvement in the consistency of the generated videos both qualitatively and quantitatively.

  • 5 authors
·
Aug 24, 2023

Targeted Image Data Augmentation Increases Basic Skills Captioning Robustness

Artificial neural networks typically struggle in generalizing to out-of-context examples. One reason for this limitation is caused by having datasets that incorporate only partial information regarding the potential correlational structure of the world. In this work, we propose TIDA (Targeted Image-editing Data Augmentation), a targeted data augmentation method focused on improving models' human-like abilities (e.g., gender recognition) by filling the correlational structure gap using a text-to-image generative model. More specifically, TIDA identifies specific skills in captions describing images (e.g., the presence of a specific gender in the image), changes the caption (e.g., "woman" to "man"), and then uses a text-to-image model to edit the image in order to match the novel caption (e.g., uniquely changing a woman to a man while maintaining the context identical). Based on the Flickr30K benchmark, we show that, compared with the original data set, a TIDA-enhanced dataset related to gender, color, and counting abilities induces better performance in several image captioning metrics. Furthermore, on top of relying on the classical BLEU metric, we conduct a fine-grained analysis of the improvements of our models against the baseline in different ways. We compared text-to-image generative models and found different behaviors of the image captioning models in terms of encoding visual encoding and textual decoding.

  • 6 authors
·
Sep 27, 2023

DPMesh: Exploiting Diffusion Prior for Occluded Human Mesh Recovery

The recovery of occluded human meshes presents challenges for current methods due to the difficulty in extracting effective image features under severe occlusion. In this paper, we introduce DPMesh, an innovative framework for occluded human mesh recovery that capitalizes on the profound diffusion prior about object structure and spatial relationships embedded in a pre-trained text-to-image diffusion model. Unlike previous methods reliant on conventional backbones for vanilla feature extraction, DPMesh seamlessly integrates the pre-trained denoising U-Net with potent knowledge as its image backbone and performs a single-step inference to provide occlusion-aware information. To enhance the perception capability for occluded poses, DPMesh incorporates well-designed guidance via condition injection, which produces effective controls from 2D observations for the denoising U-Net. Furthermore, we explore a dedicated noisy key-point reasoning approach to mitigate disturbances arising from occlusion and crowded scenarios. This strategy fully unleashes the perceptual capability of the diffusion prior, thereby enhancing accuracy. Extensive experiments affirm the efficacy of our framework, as we outperform state-of-the-art methods on both occlusion-specific and standard datasets. The persuasive results underscore its ability to achieve precise and robust 3D human mesh recovery, particularly in challenging scenarios involving occlusion and crowded scenes.

  • 6 authors
·
Apr 1, 2024

Text Image Inpainting via Global Structure-Guided Diffusion Models

Real-world text can be damaged by corrosion issues caused by environmental or human factors, which hinder the preservation of the complete styles of texts, e.g., texture and structure. These corrosion issues, such as graffiti signs and incomplete signatures, bring difficulties in understanding the texts, thereby posing significant challenges to downstream applications, e.g., scene text recognition and signature identification. Notably, current inpainting techniques often fail to adequately address this problem and have difficulties restoring accurate text images along with reasonable and consistent styles. Formulating this as an open problem of text image inpainting, this paper aims to build a benchmark to facilitate its study. In doing so, we establish two specific text inpainting datasets which contain scene text images and handwritten text images, respectively. Each of them includes images revamped by real-life and synthetic datasets, featuring pairs of original images, corrupted images, and other assistant information. On top of the datasets, we further develop a novel neural framework, Global Structure-guided Diffusion Model (GSDM), as a potential solution. Leveraging the global structure of the text as a prior, the proposed GSDM develops an efficient diffusion model to recover clean texts. The efficacy of our approach is demonstrated by thorough empirical study, including a substantial boost in both recognition accuracy and image quality. These findings not only highlight the effectiveness of our method but also underscore its potential to enhance the broader field of text image understanding and processing. Code and datasets are available at: https://github.com/blackprotoss/GSDM.

  • 6 authors
·
Jan 26, 2024

OmniParser V2: Structured-Points-of-Thought for Unified Visual Text Parsing and Its Generality to Multimodal Large Language Models

Visually-situated text parsing (VsTP) has recently seen notable advancements, driven by the growing demand for automated document understanding and the emergence of large language models capable of processing document-based questions. While various methods have been proposed to tackle the complexities of VsTP, existing solutions often rely on task-specific architectures and objectives for individual tasks. This leads to modal isolation and complex workflows due to the diversified targets and heterogeneous schemas. In this paper, we introduce OmniParser V2, a universal model that unifies VsTP typical tasks, including text spotting, key information extraction, table recognition, and layout analysis, into a unified framework. Central to our approach is the proposed Structured-Points-of-Thought (SPOT) prompting schemas, which improves model performance across diverse scenarios by leveraging a unified encoder-decoder architecture, objective, and input\&output representation. SPOT eliminates the need for task-specific architectures and loss functions, significantly simplifying the processing pipeline. Our extensive evaluations across four tasks on eight different datasets show that OmniParser V2 achieves state-of-the-art or competitive results in VsTP. Additionally, we explore the integration of SPOT within a multimodal large language model structure, further enhancing text localization and recognition capabilities, thereby confirming the generality of SPOT prompting technique. The code is available at https://github.com/AlibabaResearch/AdvancedLiterateMachinery{AdvancedLiterateMachinery}.

  • 8 authors
·
Feb 22

SAMGPT: Text-free Graph Foundation Model for Multi-domain Pre-training and Cross-domain Adaptation

Graphs are able to model interconnected entities in many online services, supporting a wide range of applications on the Web. This raises an important question: How can we train a graph foundational model on multiple source domains and adapt to an unseen target domain? A major obstacle is that graphs from different domains often exhibit divergent characteristics. Some studies leverage large language models to align multiple domains based on textual descriptions associated with the graphs, limiting their applicability to text-attributed graphs. For text-free graphs, a few recent works attempt to align different feature distributions across domains, while generally neglecting structural differences. In this work, we propose a novel Structure Alignment framework for text-free Multi-domain Graph Pre-Training and cross-domain adaptation (SAMGPT). It is designed to learn multi-domain knowledge from graphs originating in multiple source domains, which can then be adapted to address applications in an unseen target domain. Specifically, we introduce a set of structure tokens to harmonize structure-based aggregation across source domains during the pre-training phase. Next, for cross-domain adaptation, we design dual prompts, namely, holistic prompts and specific prompts, which adapt unified multi-domain structural knowledge and fine-grained, domain-specific information, respectively, to a target domain. Finally, we conduct comprehensive experiments on seven public datasets to evaluate and analyze the effectiveness of SAMGPT.

  • 5 authors
·
Feb 7

XF2T: Cross-lingual Fact-to-Text Generation for Low-Resource Languages

Multiple business scenarios require an automated generation of descriptive human-readable text from structured input data. Hence, fact-to-text generation systems have been developed for various downstream tasks like generating soccer reports, weather and financial reports, medical reports, person biographies, etc. Unfortunately, previous work on fact-to-text (F2T) generation has focused primarily on English mainly due to the high availability of relevant datasets. Only recently, the problem of cross-lingual fact-to-text (XF2T) was proposed for generation across multiple languages alongwith a dataset, XALIGN for eight languages. However, there has been no rigorous work on the actual XF2T generation problem. We extend XALIGN dataset with annotated data for four more languages: Punjabi, Malayalam, Assamese and Oriya. We conduct an extensive study using popular Transformer-based text generation models on our extended multi-lingual dataset, which we call XALIGNV2. Further, we investigate the performance of different text generation strategies: multiple variations of pretraining, fact-aware embeddings and structure-aware input encoding. Our extensive experiments show that a multi-lingual mT5 model which uses fact-aware embeddings with structure-aware input encoding leads to best results on average across the twelve languages. We make our code, dataset and model publicly available, and hope that this will help advance further research in this critical area.

  • 6 authors
·
Sep 22, 2022

NT-LLM: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models

Graphs are a fundamental data structure for representing relationships in real-world scenarios. With the success of Large Language Models (LLMs) across various natural language processing (NLP) tasks, there has been growing interest in integrating LLMs for graph learning. However, applying LLMs to graph-related tasks poses significant challenges, as these models are not inherently designed to capture the complex structural information present in graphs. Existing approaches address this challenge through two strategies: the chain of tasks approach, which uses Graph Neural Networks (GNNs) to encode the graph structure so that LLMs are relieved from understanding spatial positions; and Graph-to-Text Conversion, which translates graph structures into semantic text representations that LLMs can process. Despite their progress, these methods often struggle to fully preserve the topological information of graphs or require extensive computational resources, limiting their practical applicability. In this work, we introduce Node Tokenizer for Large Language Models (NT-LLM), a novel framework that efficiently encodes graph structures by selecting key nodes as anchors and representing each node based on its relative distance to these anchors. This position-anchored encoding effectively captures the graph topology, enabling enhanced reasoning capabilities in LLMs over graph data. Additionally, we implement a task-specific tuning procedure to further improve structural understanding within LLMs. Through extensive empirical evaluations, NT-LLM demonstrates significant performance improvements across a variety of graph-related tasks.

  • 8 authors
·
Oct 14, 2024

Mug-STAN: Adapting Image-Language Pretrained Models for General Video Understanding

Large-scale image-language pretrained models, e.g., CLIP, have demonstrated remarkable proficiency in acquiring general multi-modal knowledge through web-scale image-text data. Despite the impressive performance of image-language models on various image tasks, how to effectively expand them on general video understanding remains an area of ongoing exploration. In this paper, we investigate the image-to-video transferring from the perspective of the model and the data, unveiling two key obstacles impeding the adaptation of image-language models: non-generalizable temporal modeling and partially misaligned video-text data. To address these challenges, we propose Spatial-Temporal Auxiliary Network with Mutual-guided alignment module (Mug-STAN), a simple yet effective framework extending image-text model to diverse video tasks and video-text data.Specifically, STAN adopts a branch structure with decomposed spatial-temporal modules to enable generalizable temporal modeling, while Mug suppresses misalignment by introducing token-wise feature aggregation of either modality from the other. Extensive experimental results verify Mug-STAN significantly improves adaptation of language-image pretrained models such as CLIP and CoCa at both video-text post-pretraining and finetuning stages. With our solution, state-of-the-art zero-shot and finetuning results on various downstream datasets, including MSR-VTT, DiDeMo, LSMDC, Kinetics-400, Something-Something-2, HMDB-51, UCF- 101, and AVA, are achieved. Moreover, by integrating pretrained Mug-STAN with the emerging multimodal dialogue model, we can realize zero-shot video chatting. Codes are available at https://github.com/farewellthree/STAN

  • 5 authors
·
Nov 25, 2023

3D-MolT5: Towards Unified 3D Molecule-Text Modeling with 3D Molecular Tokenization

The integration of molecule and language has garnered increasing attention in molecular science. Recent advancements in Language Models (LMs) have demonstrated potential for the comprehensive modeling of molecule and language. However, existing works exhibit notable limitations. Most existing works overlook the modeling of 3D information, which is crucial for understanding molecular structures and also functions. While some attempts have been made to leverage external structure encoding modules to inject the 3D molecular information into LMs, there exist obvious difficulties that hinder the integration of molecular structure and language text, such as modality alignment and separate tuning. To bridge this gap, we propose 3D-MolT5, a unified framework designed to model both 1D molecular sequence and 3D molecular structure. The key innovation lies in our methodology for mapping fine-grained 3D substructure representations (based on 3D molecular fingerprints) to a specialized 3D token vocabulary for 3D-MolT5. This 3D structure token vocabulary enables the seamless combination of 1D sequence and 3D structure representations in a tokenized format, allowing 3D-MolT5 to encode molecular sequence (SELFIES), molecular structure, and text sequences within a unified architecture. Alongside, we further introduce 1D and 3D joint pre-training to enhance the model's comprehension of these diverse modalities in a joint representation space and better generalize to various tasks for our foundation model. Through instruction tuning on multiple downstream datasets, our proposed 3D-MolT5 shows superior performance than existing methods in molecular property prediction, molecule captioning, and text-based molecule generation tasks. Our code will be available on GitHub soon.

  • 5 authors
·
Jun 9, 2024

AutoMat: Enabling Automated Crystal Structure Reconstruction from Microscopy via Agentic Tool Use

Machine learning-based interatomic potentials and force fields depend critically on accurate atomic structures, yet such data are scarce due to the limited availability of experimentally resolved crystals. Although atomic-resolution electron microscopy offers a potential source of structural data, converting these images into simulation-ready formats remains labor-intensive and error-prone, creating a bottleneck for model training and validation. We introduce AutoMat, an end-to-end, agent-assisted pipeline that automatically transforms scanning transmission electron microscopy (STEM) images into atomic crystal structures and predicts their physical properties. AutoMat combines pattern-adaptive denoising, physics-guided template retrieval, symmetry-aware atomic reconstruction, fast relaxation and property prediction via MatterSim, and coordinated orchestration across all stages. We propose the first dedicated STEM2Mat-Bench for this task and evaluate performance using lattice RMSD, formation energy MAE, and structure-matching success rate. By orchestrating external tool calls, AutoMat enables a text-only LLM to outperform vision-language models in this domain, achieving closed-loop reasoning throughout the pipeline. In large-scale experiments over 450 structure samples, AutoMat substantially outperforms existing multimodal large language models and tools. These results validate both AutoMat and STEM2Mat-Bench, marking a key step toward bridging microscopy and atomistic simulation in materials science.The code and dataset are publicly available at https://github.com/yyt-2378/AutoMat and https://huggingface.co/datasets/yaotianvector/STEM2Mat.

  • 17 authors
·
May 18 2

Text-Queried Audio Source Separation via Hierarchical Modeling

Target audio source separation with natural language queries presents a promising paradigm for extracting arbitrary audio events through arbitrary text descriptions. Existing methods mainly face two challenges, the difficulty in jointly modeling acoustic-textual alignment and semantic-aware separation within a blindly-learned single-stage architecture, and the reliance on large-scale accurately-labeled training data to compensate for inefficient cross-modal learning and separation. To address these challenges, we propose a hierarchical decomposition framework, HSM-TSS, that decouples the task into global-local semantic-guided feature separation and structure-preserving acoustic reconstruction. Our approach introduces a dual-stage mechanism for semantic separation, operating on distinct global and local semantic feature spaces. We first perform global-semantic separation through a global semantic feature space aligned with text queries. A Q-Audio architecture is employed to align audio and text modalities, serving as pretrained global-semantic encoders. Conditioned on the predicted global feature, we then perform the second-stage local-semantic separation on AudioMAE features that preserve time-frequency structures, followed by acoustic reconstruction. We also propose an instruction processing pipeline to parse arbitrary text queries into structured operations, extraction or removal, coupled with audio descriptions, enabling flexible sound manipulation. Our method achieves state-of-the-art separation performance with data-efficient training while maintaining superior semantic consistency with queries in complex auditory scenes.

  • 5 authors
·
May 27

A Named Entity Based Approach to Model Recipes

Traditional cooking recipes follow a structure which can be modelled very well if the rules and semantics of the different sections of the recipe text are analyzed and represented accurately. We propose a structure that can accurately represent the recipe as well as a pipeline to infer the best representation of the recipe in this uniform structure. The Ingredients section in a recipe typically lists down the ingredients required and corresponding attributes such as quantity, temperature, and processing state. This can be modelled by defining these attributes and their values. The physical entities which make up a recipe can be broadly classified into utensils, ingredients and their combinations that are related by cooking techniques. The instruction section lists down a series of events in which a cooking technique or process is applied upon these utensils and ingredients. We model these relationships in the form of tuples. Thus, using a combination of these methods we model cooking recipe in the dataset RecipeDB to show the efficacy of our method. This mined information model can have several applications which include translating recipes between languages, determining similarity between recipes, generation of novel recipes and estimation of the nutritional profile of recipes. For the purpose of recognition of ingredient attributes, we train the Named Entity Relationship (NER) models and analyze the inferences with the help of K-Means clustering. Our model presented with an F1 score of 0.95 across all datasets. We use a similar NER tagging model for labelling cooking techniques (F1 score = 0.88) and utensils (F1 score = 0.90) within the instructions section. Finally, we determine the temporal sequence of relationships between ingredients, utensils and cooking techniques for modeling the instruction steps.

  • 3 authors
·
Apr 25, 2020

Enhanced Generative Structure Prior for Chinese Text Image Super-resolution

Faithful text image super-resolution (SR) is challenging because each character has a unique structure and usually exhibits diverse font styles and layouts. While existing methods primarily focus on English text, less attention has been paid to more complex scripts like Chinese. In this paper, we introduce a high-quality text image SR framework designed to restore the precise strokes of low-resolution (LR) Chinese characters. Unlike methods that rely on character recognition priors to regularize the SR task, we propose a novel structure prior that offers structure-level guidance to enhance visual quality. Our framework incorporates this structure prior within a StyleGAN model, leveraging its generative capabilities for restoration. To maintain the integrity of character structures while accommodating various font styles and layouts, we implement a codebook-based mechanism that restricts the generative space of StyleGAN. Each code in the codebook represents the structure of a specific character, while the vector w in StyleGAN controls the character's style, including typeface, orientation, and location. Through the collaborative interaction between the codebook and style, we generate a high-resolution structure prior that aligns with LR characters both spatially and structurally. Experiments demonstrate that this structure prior provides robust, character-specific guidance, enabling the accurate restoration of clear strokes in degraded characters, even for real-world LR Chinese text with irregular layouts. Our code and pre-trained models will be available at https://github.com/csxmli2016/MARCONetPlusPlus

  • 3 authors
·
Aug 10

ATLANTIC: Structure-Aware Retrieval-Augmented Language Model for Interdisciplinary Science

Large language models record impressive performance on many natural language processing tasks. However, their knowledge capacity is limited to the pretraining corpus. Retrieval augmentation offers an effective solution by retrieving context from external knowledge sources to complement the language model. However, existing retrieval augmentation techniques ignore the structural relationships between these documents. Furthermore, retrieval models are not explored much in scientific tasks, especially in regard to the faithfulness of retrieved documents. In this paper, we propose a novel structure-aware retrieval augmented language model that accommodates document structure during retrieval augmentation. We create a heterogeneous document graph capturing multiple types of relationships (e.g., citation, co-authorship, etc.) that connect documents from more than 15 scientific disciplines (e.g., Physics, Medicine, Chemistry, etc.). We train a graph neural network on the curated document graph to act as a structural encoder for the corresponding passages retrieved during the model pretraining. Particularly, along with text embeddings of the retrieved passages, we obtain structural embeddings of the documents (passages) and fuse them together before feeding them to the language model. We evaluate our model extensively on various scientific benchmarks that include science question-answering and scientific document classification tasks. Experimental results demonstrate that structure-aware retrieval improves retrieving more coherent, faithful and contextually relevant passages, while showing a comparable performance in the overall accuracy.

  • 4 authors
·
Nov 20, 2023

DynamiCtrl: Rethinking the Basic Structure and the Role of Text for High-quality Human Image Animation

With diffusion transformer (DiT) excelling in video generation, its use in specific tasks has drawn increasing attention. However, adapting DiT for pose-guided human image animation faces two core challenges: (a) existing U-Net-based pose control methods may be suboptimal for the DiT backbone; and (b) removing text guidance, as in previous approaches, often leads to semantic loss and model degradation. To address these issues, we propose DynamiCtrl, a novel framework for human animation in video DiT architecture. Specifically, we use a shared VAE encoder for human images and driving poses, unifying them into a common latent space, maintaining pose fidelity, and eliminating the need for an expert pose encoder during video denoising. To integrate pose control into the DiT backbone effectively, we propose a novel Pose-adaptive Layer Norm model. It injects normalized pose features into the denoising process via conditioning on visual tokens, enabling seamless and scalable pose control across DiT blocks. Furthermore, to overcome the shortcomings of text removal, we introduce the "Joint-text" paradigm, which preserves the role of text embeddings to provide global semantic context. Through full-attention blocks, image and pose features are aligned with text features, enhancing semantic consistency, leveraging pretrained knowledge, and enabling multi-level control. Experiments verify the superiority of DynamiCtrl on benchmark and self-collected data (e.g., achieving the best LPIPS of 0.166), demonstrating strong character control and high-quality synthesis. The project page is available at https://gulucaptain.github.io/DynamiCtrl/.

  • 8 authors
·
Mar 27

I2VGen-XL: High-Quality Image-to-Video Synthesis via Cascaded Diffusion Models

Video synthesis has recently made remarkable strides benefiting from the rapid development of diffusion models. However, it still encounters challenges in terms of semantic accuracy, clarity and spatio-temporal continuity. They primarily arise from the scarcity of well-aligned text-video data and the complex inherent structure of videos, making it difficult for the model to simultaneously ensure semantic and qualitative excellence. In this report, we propose a cascaded I2VGen-XL approach that enhances model performance by decoupling these two factors and ensures the alignment of the input data by utilizing static images as a form of crucial guidance. I2VGen-XL consists of two stages: i) the base stage guarantees coherent semantics and preserves content from input images by using two hierarchical encoders, and ii) the refinement stage enhances the video's details by incorporating an additional brief text and improves the resolution to 1280times720. To improve the diversity, we collect around 35 million single-shot text-video pairs and 6 billion text-image pairs to optimize the model. By this means, I2VGen-XL can simultaneously enhance the semantic accuracy, continuity of details and clarity of generated videos. Through extensive experiments, we have investigated the underlying principles of I2VGen-XL and compared it with current top methods, which can demonstrate its effectiveness on diverse data. The source code and models will be publicly available at https://i2vgen-xl.github.io.

  • 9 authors
·
Nov 7, 2023 3

GAugLLM: Improving Graph Contrastive Learning for Text-Attributed Graphs with Large Language Models

This work studies self-supervised graph learning for text-attributed graphs (TAGs) where nodes are represented by textual attributes. Unlike traditional graph contrastive methods that perturb the numerical feature space and alter the graph's topological structure, we aim to improve view generation through language supervision. This is driven by the prevalence of textual attributes in real applications, which complement graph structures with rich semantic information. However, this presents challenges because of two major reasons. First, text attributes often vary in length and quality, making it difficulty to perturb raw text descriptions without altering their original semantic meanings. Second, although text attributes complement graph structures, they are not inherently well-aligned. To bridge the gap, we introduce GAugLLM, a novel framework for augmenting TAGs. It leverages advanced large language models like Mistral to enhance self-supervised graph learning. Specifically, we introduce a mixture-of-prompt-expert technique to generate augmented node features. This approach adaptively maps multiple prompt experts, each of which modifies raw text attributes using prompt engineering, into numerical feature space. Additionally, we devise a collaborative edge modifier to leverage structural and textual commonalities, enhancing edge augmentation by examining or building connections between nodes. Empirical results across five benchmark datasets spanning various domains underscore our framework's ability to enhance the performance of leading contrastive methods as a plug-in tool. Notably, we observe that the augmented features and graph structure can also enhance the performance of standard generative methods, as well as popular graph neural networks. The open-sourced implementation of our GAugLLM is available at Github.

  • 4 authors
·
Jun 17, 2024

Code Structure-Aware through Line-level Semantic Learning for Code Vulnerability Detection

Different from the flow semantics of natural languages, programming languages are inherently rigid in structure and grammar. Existing fine-tuning methodologies for code vulnerability detection generally treat code as long text sequences, stripping away structural elements such as newlines ('/n') and whitespace. However, this approach inadvertently results in the loss of crucial structural information, diminishing the distinct characteristics of code and impairing the accuracy of vulnerability detection. To address these challenges, we propose a novel network architecture method based on pre-trained code models, which incorporates structural information awareness. We propose an enhanced code text processing workflow that retains structural elements prior to modeling. This refinement allows the model to retain and exploit line-level structural information and semantic information during the modeling process. Furthermore, we introduce a new network architecture, the Code Structure-Aware Network through Line-level Semantic Learning (CSLS), which integrates three key components: global vulnerability awareness, line-structural awareness, and sensitive-line awareness. We have conducted comprehensive experiments using vulnerability detection datasets from real-world projects. Extensive experiments were conducted on vulnerability detection datasets derived from real-world projects. The results demonstrate that our new code pre-processing flow significantly improves existing baselines (e.g., a 3\% accuracy improvement on the Devign dataset when applied to popular models such as CoderBert and UniXcoder). The proposed network architecture also demonstrates superior accuracy in detecting vulnerabilities, surpassing newly established benchmarks. These findings underscore the importance of structural information in enhancing the efficacy of code vulnerability detection models.

  • 6 authors
·
Jul 26, 2024

Large Language Models on Graphs: A Comprehensive Survey

Large language models (LLMs), such as ChatGPT and LLaMA, are creating significant advancements in natural language processing, due to their strong text encoding/decoding ability and newly found emergent capability (e.g., reasoning). While LLMs are mainly designed to process pure texts, there are many real-world scenarios where text data are associated with rich structure information in the form of graphs (e.g., academic networks, and e-commerce networks) or scenarios where graph data are paired with rich textual information (e.g., molecules with descriptions). Besides, although LLMs have shown their pure text-based reasoning ability, it is underexplored whether such ability can be generalized to graph scenarios (i.e., graph-based reasoning). In this paper, we provide a systematic review of scenarios and techniques related to large language models on graphs. We first summarize potential scenarios of adopting LLMs on graphs into three categories, namely pure graphs, text-rich graphs, and text-paired graphs. We then discuss detailed techniques for utilizing LLMs on graphs, including LLM as Predictor, LLM as Encoder, and LLM as Aligner, and compare the advantages and disadvantages of different schools of models. Furthermore, we mention the real-world applications of such methods and summarize open-source codes and benchmark datasets. Finally, we conclude with potential future research directions in this fast-growing field. The related source can be found at https://github.com/PeterGriffinJin/Awesome-Language-Model-on-Graphs.

  • 6 authors
·
Dec 5, 2023

Adapting Diffusion Models for Improved Prompt Compliance and Controllable Image Synthesis

Recent advances in generative modeling with diffusion processes (DPs) enabled breakthroughs in image synthesis. Despite impressive image quality, these models have various prompt compliance problems, including low recall in generating multiple objects, difficulty in generating text in images, and meeting constraints like object locations and pose. For fine-grained editing and manipulation, they also require fine-grained semantic or instance maps that are tedious to produce manually. While prompt compliance can be enhanced by addition of loss functions at inference, this is time consuming and does not scale to complex scenes. To overcome these limitations, this work introduces a new family of Factor Graph Diffusion Models (FG-DMs) that models the joint distribution of images and conditioning variables, such as semantic, sketch, depth or normal maps via a factor graph decomposition. This joint structure has several advantages, including support for efficient sampling based prompt compliance schemes, which produce images of high object recall, semi-automated fine-grained editing, text-based editing of conditions with noise inversion, explainability at intermediate levels, ability to produce labeled datasets for the training of downstream models such as segmentation or depth, training with missing data, and continual learning where new conditioning variables can be added with minimal or no modifications to the existing structure. We propose an implementation of FG-DMs by adapting a pre-trained Stable Diffusion (SD) model to implement all FG-DM factors, using only COCO dataset, and show that it is effective in generating images with 15\% higher recall than SD while retaining its generalization ability. We introduce an attention distillation loss that encourages consistency among the attention maps of all factors, improving the fidelity of the generated conditions and image.

  • 4 authors
·
Oct 28, 2024