Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeReducing Unintended Identity Bias in Russian Hate Speech Detection
Toxicity has become a grave problem for many online communities and has been growing across many languages, including Russian. Hate speech creates an environment of intimidation, discrimination, and may even incite some real-world violence. Both researchers and social platforms have been focused on developing models to detect toxicity in online communication for a while now. A common problem of these models is the presence of bias towards some words (e.g. woman, black, jew) that are not toxic, but serve as triggers for the classifier due to model caveats. In this paper, we describe our efforts towards classifying hate speech in Russian, and propose simple techniques of reducing unintended bias, such as generating training data with language models using terms and words related to protected identities as context and applying word dropout to such words.
Entropy-based Attention Regularization Frees Unintended Bias Mitigation from Lists
Natural Language Processing (NLP) models risk overfitting to specific terms in the training data, thereby reducing their performance, fairness, and generalizability. E.g., neural hate speech detection models are strongly influenced by identity terms like gay, or women, resulting in false positives, severe unintended bias, and lower performance. Most mitigation techniques use lists of identity terms or samples from the target domain during training. However, this approach requires a-priori knowledge and introduces further bias if important terms are neglected. Instead, we propose a knowledge-free Entropy-based Attention Regularization (EAR) to discourage overfitting to training-specific terms. An additional objective function penalizes tokens with low self-attention entropy. We fine-tune BERT via EAR: the resulting model matches or exceeds state-of-the-art performance for hate speech classification and bias metrics on three benchmark corpora in English and Italian. EAR also reveals overfitting terms, i.e., terms most likely to induce bias, to help identify their effect on the model, task, and predictions.
Survey on Sociodemographic Bias in Natural Language Processing
Deep neural networks often learn unintended bias during training, which might have harmful effects when deployed in real-world settings. This work surveys 214 papers related to sociodemographic bias in natural language processing (NLP). In this study, we aim to provide a more comprehensive understanding of the similarities and differences among approaches to sociodemographic bias in NLP. To better understand the distinction between bias and real-world harm, we turn to ideas from psychology and behavioral economics to propose a definition for sociodemographic bias. We identify three main categories of NLP bias research: types of bias, quantifying bias, and debiasing techniques. We highlight the current trends in quantifying bias and debiasing techniques, offering insights into their strengths and weaknesses. We conclude that current approaches on quantifying bias face reliability issues, that many of the bias metrics do not relate to real-world bias, and that debiasing techniques need to focus more on training methods. Finally, we provide recommendations for future work.
Evaluate Bias without Manual Test Sets: A Concept Representation Perspective for LLMs
Bias in Large Language Models (LLMs) significantly undermines their reliability and fairness. We focus on a common form of bias: when two reference concepts in the model's concept space, such as sentiment polarities (e.g., "positive" and "negative"), are asymmetrically correlated with a third, target concept, such as a reviewing aspect, the model exhibits unintended bias. For instance, the understanding of "food" should not skew toward any particular sentiment. Existing bias evaluation methods assess behavioral differences of LLMs by constructing labeled data for different social groups and measuring model responses across them, a process that requires substantial human effort and captures only a limited set of social concepts. To overcome these limitations, we propose BiasLens, a test-set-free bias analysis framework based on the structure of the model's vector space. BiasLens combines Concept Activation Vectors (CAVs) with Sparse Autoencoders (SAEs) to extract interpretable concept representations, and quantifies bias by measuring the variation in representational similarity between the target concept and each of the reference concepts. Even without labeled data, BiasLens shows strong agreement with traditional bias evaluation metrics (Spearman correlation r > 0.85). Moreover, BiasLens reveals forms of bias that are difficult to detect using existing methods. For example, in simulated clinical scenarios, a patient's insurance status can cause the LLM to produce biased diagnostic assessments. Overall, BiasLens offers a scalable, interpretable, and efficient paradigm for bias discovery, paving the way for improving fairness and transparency in LLMs.
CFL: Causally Fair Language Models Through Token-level Attribute Controlled Generation
We propose a method to control the attributes of Language Models (LMs) for the text generation task using Causal Average Treatment Effect (ATE) scores and counterfactual augmentation. We explore this method, in the context of LM detoxification, and propose the Causally Fair Language (CFL) architecture for detoxifying pre-trained LMs in a plug-and-play manner. Our architecture is based on a Structural Causal Model (SCM) that is mathematically transparent and computationally efficient as compared with many existing detoxification techniques. We also propose several new metrics that aim to better understand the behaviour of LMs in the context of toxic text generation. Further, we achieve state of the art performance for toxic degeneration, which are computed using \RTP (RTP) benchmark. Our experiments show that CFL achieves such a detoxification without much impact on the model perplexity. We also show that CFL mitigates the unintended bias problem through experiments on the BOLD dataset.
Cyberbullying Detection with Fairness Constraints
Cyberbullying is a widespread adverse phenomenon among online social interactions in today's digital society. While numerous computational studies focus on enhancing the cyberbullying detection performance of machine learning algorithms, proposed models tend to carry and reinforce unintended social biases. In this study, we try to answer the research question of "Can we mitigate the unintended bias of cyberbullying detection models by guiding the model training with fairness constraints?". For this purpose, we propose a model training scheme that can employ fairness constraints and validate our approach with different datasets. We demonstrate that various types of unintended biases can be successfully mitigated without impairing the model quality. We believe our work contributes to the pursuit of unbiased, transparent, and ethical machine learning solutions for cyber-social health.
One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion Schedule Flaws and Enhancing Low-Frequency Controls
It is well known that many open-released foundational diffusion models have difficulty in generating images that substantially depart from average brightness, despite such images being present in the training data. This is due to an inconsistency: while denoising starts from pure Gaussian noise during inference, the training noise schedule retains residual data even in the final timestep distribution, due to difficulties in numerical conditioning in mainstream formulation, leading to unintended bias during inference. To mitigate this issue, certain epsilon-prediction models are combined with an ad-hoc offset-noise methodology. In parallel, some contemporary models have adopted zero-terminal SNR noise schedules together with v-prediction, which necessitate major alterations to pre-trained models. However, such changes risk destabilizing a large multitude of community-driven applications anchored on these pre-trained models. In light of this, our investigation revisits the fundamental causes, leading to our proposal of an innovative and principled remedy, called One More Step (OMS). By integrating a compact network and incorporating an additional simple yet effective step during inference, OMS elevates image fidelity and harmonizes the dichotomy between training and inference, while preserving original model parameters. Once trained, various pre-trained diffusion models with the same latent domain can share the same OMS module.
UPB at SemEval-2021 Task 5: Virtual Adversarial Training for Toxic Spans Detection
The real-world impact of polarization and toxicity in the online sphere marked the end of 2020 and the beginning of this year in a negative way. Semeval-2021, Task 5 - Toxic Spans Detection is based on a novel annotation of a subset of the Jigsaw Unintended Bias dataset and is the first language toxicity detection task dedicated to identifying the toxicity-level spans. For this task, participants had to automatically detect character spans in short comments that render the message as toxic. Our model considers applying Virtual Adversarial Training in a semi-supervised setting during the fine-tuning process of several Transformer-based models (i.e., BERT and RoBERTa), in combination with Conditional Random Fields. Our approach leads to performance improvements and more robust models, enabling us to achieve an F1-score of 65.73% in the official submission and an F1-score of 66.13% after further tuning during post-evaluation.
HateXplain: A Benchmark Dataset for Explainable Hate Speech Detection
Hate speech is a challenging issue plaguing the online social media. While better models for hate speech detection are continuously being developed, there is little research on the bias and interpretability aspects of hate speech. In this paper, we introduce HateXplain, the first benchmark hate speech dataset covering multiple aspects of the issue. Each post in our dataset is annotated from three different perspectives: the basic, commonly used 3-class classification (i.e., hate, offensive or normal), the target community (i.e., the community that has been the victim of hate speech/offensive speech in the post), and the rationales, i.e., the portions of the post on which their labelling decision (as hate, offensive or normal) is based. We utilize existing state-of-the-art models and observe that even models that perform very well in classification do not score high on explainability metrics like model plausibility and faithfulness. We also observe that models, which utilize the human rationales for training, perform better in reducing unintended bias towards target communities. We have made our code and dataset public at https://github.com/punyajoy/HateXplain
Inverse Constitutional AI: Compressing Preferences into Principles
Feedback data plays an important role in fine-tuning and evaluating state-of-the-art AI models. Often pairwise text preferences are used: given two texts, human (or AI) annotators select the "better" one. Such feedback data is widely used to align models to human preferences (e.g., reinforcement learning from human feedback), or to rank models according to human preferences (e.g., Chatbot Arena). Despite its wide-spread use, prior work has demonstrated that human-annotated pairwise text preference data often exhibits unintended biases. For example, human annotators have been shown to prefer assertive over truthful texts in certain contexts. Models trained or evaluated on this data may implicitly encode these biases in a manner hard to identify. In this paper, we formulate the interpretation of existing pairwise text preference data as a compression task: the Inverse Constitutional AI (ICAI) problem. In constitutional AI, a set of principles (or constitution) is used to provide feedback and fine-tune AI models. The ICAI problem inverts this process: given a dataset of feedback, we aim to extract a constitution that best enables a large language model (LLM) to reconstruct the original annotations. We propose a corresponding initial ICAI algorithm and validate its generated constitutions quantitatively based on reconstructed annotations. Generated constitutions have many potential use-cases -- they may help identify undesirable biases, scale feedback to unseen data or assist with adapting LLMs to individual user preferences. We demonstrate our approach on a variety of datasets: (a) synthetic feedback datasets with known underlying principles; (b) the AlpacaEval dataset of cross-annotated human feedback; and (c) the crowdsourced Chatbot Arena data set. We release the code for our algorithm and experiments at https://github.com/rdnfn/icai .
Modifying Memories in Transformer Models
Large Transformer models have achieved impressive performance in many natural language tasks. In particular, Transformer based language models have been shown to have great capabilities in encoding factual knowledge in their vast amount of parameters. While the tasks of improving the memorization and generalization of Transformers have been widely studied, it is not well known how to make transformers forget specific old facts and memorize new ones. In this paper, we propose a new task of explicitly modifying specific factual knowledge in Transformer models while ensuring the model performance does not degrade on the unmodified facts. This task is useful in many scenarios, such as updating stale knowledge, protecting privacy, and eliminating unintended biases stored in the models. We benchmarked several approaches that provide natural baseline performances on this task. This leads to the discovery of key components of a Transformer model that are especially effective for knowledge modifications. The work also provides insights into the role that different training phases (such as pretraining and fine-tuning) play towards memorization and knowledge modification.
Generalizing to the Future: Mitigating Entity Bias in Fake News Detection
The wide dissemination of fake news is increasingly threatening both individuals and society. Fake news detection aims to train a model on the past news and detect fake news of the future. Though great efforts have been made, existing fake news detection methods overlooked the unintended entity bias in the real-world data, which seriously influences models' generalization ability to future data. For example, 97\% of news pieces in 2010-2017 containing the entity `Donald Trump' are real in our data, but the percentage falls down to merely 33\% in 2018. This would lead the model trained on the former set to hardly generalize to the latter, as it tends to predict news pieces about `Donald Trump' as real for lower training loss. In this paper, we propose an entity debiasing framework (ENDEF) which generalizes fake news detection models to the future data by mitigating entity bias from a cause-effect perspective. Based on the causal graph among entities, news contents, and news veracity, we separately model the contribution of each cause (entities and contents) during training. In the inference stage, we remove the direct effect of the entities to mitigate entity bias. Extensive offline experiments on the English and Chinese datasets demonstrate that the proposed framework can largely improve the performance of base fake news detectors, and online tests verify its superiority in practice. To the best of our knowledge, this is the first work to explicitly improve the generalization ability of fake news detection models to the future data. The code has been released at https://github.com/ICTMCG/ENDEF-SIGIR2022.
Should ChatGPT be Biased? Challenges and Risks of Bias in Large Language Models
As the capabilities of generative language models continue to advance, the implications of biases ingrained within these models have garnered increasing attention from researchers, practitioners, and the broader public. This article investigates the challenges and risks associated with biases in large-scale language models like ChatGPT. We discuss the origins of biases, stemming from, among others, the nature of training data, model specifications, algorithmic constraints, product design, and policy decisions. We explore the ethical concerns arising from the unintended consequences of biased model outputs. We further analyze the potential opportunities to mitigate biases, the inevitability of some biases, and the implications of deploying these models in various applications, such as virtual assistants, content generation, and chatbots. Finally, we review the current approaches to identify, quantify, and mitigate biases in language models, emphasizing the need for a multi-disciplinary, collaborative effort to develop more equitable, transparent, and responsible AI systems. This article aims to stimulate a thoughtful dialogue within the artificial intelligence community, encouraging researchers and developers to reflect on the role of biases in generative language models and the ongoing pursuit of ethical AI.
Robustness Over Time: Understanding Adversarial Examples' Effectiveness on Longitudinal Versions of Large Language Models
Large Language Models (LLMs) have led to significant improvements in many tasks across various domains, such as code interpretation, response generation, and ambiguity handling. These LLMs, however, when upgrading, primarily prioritize enhancing user experience while neglecting security, privacy, and safety implications. Consequently, unintended vulnerabilities or biases can be introduced. Previous studies have predominantly focused on specific versions of the models and disregard the potential emergence of new attack vectors targeting the updated versions. Through the lens of adversarial examples within the in-context learning framework, this longitudinal study addresses this gap by conducting a comprehensive assessment of the robustness of successive versions of LLMs, vis-\`a-vis GPT-3.5. We conduct extensive experiments to analyze and understand the impact of the robustness in two distinct learning categories: zero-shot learning and few-shot learning. Our findings indicate that, in comparison to earlier versions of LLMs, the updated versions do not exhibit the anticipated level of robustness against adversarial attacks. In addition, our study emphasizes the increased effectiveness of synergized adversarial queries in most zero-shot learning and few-shot learning cases. We hope that our study can lead to a more refined assessment of the robustness of LLMs over time and provide valuable insights of these models for both developers and users.
Does Liking Yellow Imply Driving a School Bus? Semantic Leakage in Language Models
Despite their wide adoption, the biases and unintended behaviors of language models remain poorly understood. In this paper, we identify and characterize a phenomenon never discussed before, which we call semantic leakage, where models leak irrelevant information from the prompt into the generation in unexpected ways. We propose an evaluation setting to detect semantic leakage both by humans and automatically, curate a diverse test suite for diagnosing this behavior, and measure significant semantic leakage in 13 flagship models. We also show that models exhibit semantic leakage in languages besides English and across different settings and generation scenarios. This discovery highlights yet another type of bias in language models that affects their generation patterns and behavior.
Bias Runs Deep: Implicit Reasoning Biases in Persona-Assigned LLMs
Recent works have showcased the ability of LLMs to embody diverse personas in their responses, exemplified by prompts like 'You are Yoda. Explain the Theory of Relativity.' While this ability allows personalization of LLMs and enables human behavior simulation, its effect on LLMs' capabilities remains unclear. To fill this gap, we present the first extensive study of the unintended side-effects of persona assignment on the ability of LLMs to perform basic reasoning tasks. Our study covers 24 reasoning datasets, 4 LLMs, and 19 diverse personas (e.g. an Asian person) spanning 5 socio-demographic groups. Our experiments unveil that LLMs harbor deep rooted bias against various socio-demographics underneath a veneer of fairness. While they overtly reject stereotypes when explicitly asked ('Are Black people less skilled at mathematics?'), they manifest stereotypical and erroneous presumptions when asked to answer questions while adopting a persona. These can be observed as abstentions in responses, e.g., 'As a Black person, I can't answer this question as it requires math knowledge', and generally result in a substantial performance drop. Our experiments with ChatGPT-3.5 show that this bias is ubiquitous - 80% of our personas demonstrate bias; it is significant - some datasets show performance drops of 70%+; and can be especially harmful for certain groups - some personas suffer statistically significant drops on 80%+ of the datasets. Overall, all 4 LLMs exhibit this bias to varying extents, with GPT-4-Turbo showing the least but still a problematic amount of bias (evident in 42% of the personas). Further analysis shows that these persona-induced errors can be hard-to-discern and hard-to-avoid. Our findings serve as a cautionary tale that the practice of assigning personas to LLMs - a trend on the rise - can surface their deep-rooted biases and have unforeseeable and detrimental side-effects.
Smoothie-Qwen: Post-Hoc Smoothing to Reduce Language Bias in Multilingual LLMs
Multilingual large language models (LLMs) often exhibit language confusion, a tendency to generate responses in a dominant language irrespective of the prompt's language. To address this, we propose Smoothie-Qwen, a lightweight, post-hoc method that mitigates language bias without retraining. This technique selectively adjusts token-level output probabilities to effectively suppress undesired language generation. Applied to the Qwen model, our method reduces unintended Chinese output by over 95% while preserving task accuracy on multilingual benchmarks. This work provides a practical and efficient solution for enhancing the language controllability of LLMs, making them more reliable for global applications.
Bias Assessment and Mitigation in LLM-based Code Generation
Utilizing state-of-the-art Large Language Models (LLMs), automatic code generation models play a pivotal role in enhancing the productivity and efficiency of software development coding procedures. As the adoption of LLMs becomes more widespread in software coding ecosystems, a pressing issue has emerged: does the generated code contain social biases, such as those related to age, gender, and race? This issue concerns the integrity, fairness, and ethical foundation of software applications that depend on the code generated by these models, yet is under-explored in the literature. This paper presents a novel bias assessment framework that is specifically designed for code generation tasks. Based on this framework, we conduct an extensive evaluation on the bias of nine state-of-the-art LLM-based code generation models. Our findings reveal that first, 31.45\% to 79.93\% code functions generated by our evaluated code generation models are biased, and 9.68\% to 37.37\% code functions' functionality are affected by the bias, which means biases not only exist in code generation models but in some cases, directly affect the functionality of the generated code, posing risks of unintended and possibly harmful software behaviors. To mitigate bias from code generation models, we propose three mitigation strategies, which can decrease the biased code ratio to a very low level of 0.4\% to 4.57\%.
Fighting Fire with Fire: Contrastive Debiasing without Bias-free Data via Generative Bias-transformation
Despite their remarkable ability to generalize with over-capacity networks, deep neural networks often learn to abuse spurious biases in the data instead of using the actual task-related information. Since such shortcuts are only effective within the collected dataset, the resulting biased model underperforms on real-world inputs, or cause unintended social repercussions such as gender discrimination. To counteract the influence of bias, existing methods either exploit auxiliary information which is rarely obtainable in practice, or sift for bias-free samples in the training data, hoping for the sufficient existence of clean samples. However, such presumptions about the data are not always guaranteed. In this paper, we propose Contrastive Debiasing via Generative Bias-transformation~(CDvG) which is capable of operating in more general environments where existing methods break down due to unmet presumptions such as insufficient bias-free samples. Motivated by our observation that not only discriminative models, as previously known, but also generative models tend to focus on the bias when possible, CDvG uses a translation model to transform the bias in the sample to another mode of bias while preserving task-relevant information. Through contrastive learning, we set transformed biased views against another, learning bias-invariant representations. Experimental results on synthetic and real-world datasets demonstrate that our framework outperforms the current state-of-the-arts, and effectively prevents the models from being biased even when bias-free samples are extremely scarce.
Automatically Detecting Online Deceptive Patterns
Deceptive patterns in digital interfaces manipulate users into making unintended decisions, exploiting cognitive biases and psychological vulnerabilities. These patterns have become ubiquitous on various digital platforms. While efforts to mitigate deceptive patterns have emerged from legal and technical perspectives, a significant gap remains in creating usable and scalable solutions. We introduce our AutoBot framework to address this gap and help web stakeholders navigate and mitigate online deceptive patterns. AutoBot accurately identifies and localizes deceptive patterns from a screenshot of a website without relying on the underlying HTML code. AutoBot employs a two-stage pipeline that leverages the capabilities of specialized vision models to analyze website screenshots, identify interactive elements, and extract textual features. Next, using a large language model, AutoBot understands the context surrounding these elements to determine the presence of deceptive patterns. We also use AutoBot, to create a synthetic dataset to distill knowledge from 'teacher' LLMs to smaller language models. Through extensive evaluation, we demonstrate AutoBot's effectiveness in detecting deceptive patterns on the web, achieving an F1-score of 0.93 when detecting deceptive patterns, underscoring its potential as an essential tool for mitigating online deceptive patterns. We implement AutoBot, across three downstream applications targeting different web stakeholders: (1) a local browser extension providing users with real-time feedback, (2) a Lighthouse audit to inform developers of potential deceptive patterns on their sites, and (3) as a measurement tool designed for researchers and regulators.
SelecMix: Debiased Learning by Contradicting-pair Sampling
Neural networks trained with ERM (empirical risk minimization) sometimes learn unintended decision rules, in particular when their training data is biased, i.e., when training labels are strongly correlated with undesirable features. To prevent a network from learning such features, recent methods augment training data such that examples displaying spurious correlations (i.e., bias-aligned examples) become a minority, whereas the other, bias-conflicting examples become prevalent. However, these approaches are sometimes difficult to train and scale to real-world data because they rely on generative models or disentangled representations. We propose an alternative based on mixup, a popular augmentation that creates convex combinations of training examples. Our method, coined SelecMix, applies mixup to contradicting pairs of examples, defined as showing either (i) the same label but dissimilar biased features, or (ii) different labels but similar biased features. Identifying such pairs requires comparing examples with respect to unknown biased features. For this, we utilize an auxiliary contrastive model with the popular heuristic that biased features are learned preferentially during training. Experiments on standard benchmarks demonstrate the effectiveness of the method, in particular when label noise complicates the identification of bias-conflicting examples.
Fair Generation without Unfair Distortions: Debiasing Text-to-Image Generation with Entanglement-Free Attention
Recent advancements in diffusion-based text-to-image (T2I) models have enabled the generation of high-quality and photorealistic images from text. However, they often exhibit societal biases related to gender, race, and socioeconomic status, thereby potentially reinforcing harmful stereotypes and shaping public perception in unintended ways. While existing bias mitigation methods demonstrate effectiveness, they often encounter attribute entanglement, where adjustments to attributes relevant to the bias (i.e., target attributes) unintentionally alter attributes unassociated with the bias (i.e., non-target attributes), causing undesirable distribution shifts. To address this challenge, we introduce Entanglement-Free Attention (EFA), a method that accurately incorporates target attributes (e.g., White, Black, and Asian) while preserving non-target attributes (e.g., background) during bias mitigation. At inference time, EFA randomly samples a target attribute with equal probability and adjusts the cross-attention in selected layers to incorporate the sampled attribute, achieving a fair distribution of target attributes. Extensive experiments demonstrate that EFA outperforms existing methods in mitigating bias while preserving non-target attributes, thereby maintaining the original model's output distribution and generative capacity.
WAPITI: A Watermark for Finetuned Open-Source LLMs
Watermarking of large language models (LLMs) generation embeds an imperceptible statistical pattern within texts, making it algorithmically detectable. Watermarking is a promising method for addressing potential harm and biases from LLMs, as it enables traceability, accountability, and detection of manipulated content, helping to mitigate unintended consequences. However, for open-source models, watermarking faces two major challenges: (i) incompatibility with fine-tuned models, and (ii) vulnerability to fine-tuning attacks. In this work, we propose WAPITI, a new method that transfers watermarking from base models to fine-tuned models through parameter integration. To the best of our knowledge, we propose the first watermark for fine-tuned open-source LLMs that preserves their fine-tuned capabilities. Furthermore, our approach offers an effective defense against fine-tuning attacks. We test our method on various model architectures and watermarking strategies. Results demonstrate that our method can successfully inject watermarks and is highly compatible with fine-tuned models. Additionally, we offer an in-depth analysis of how parameter editing influences the watermark strength and overall capabilities of the resulting models.
What do we learn from inverting CLIP models?
We employ an inversion-based approach to examine CLIP models. Our examination reveals that inverting CLIP models results in the generation of images that exhibit semantic alignment with the specified target prompts. We leverage these inverted images to gain insights into various aspects of CLIP models, such as their ability to blend concepts and inclusion of gender biases. We notably observe instances of NSFW (Not Safe For Work) images during model inversion. This phenomenon occurs even for semantically innocuous prompts, like "a beautiful landscape," as well as for prompts involving the names of celebrities.
DIWALI - Diversity and Inclusivity aWare cuLture specific Items for India: Dataset and Assessment of LLMs for Cultural Text Adaptation in Indian Context
Large language models (LLMs) are widely used in various tasks and applications. However, despite their wide capabilities, they are shown to lack cultural alignment ryan-etal-2024-unintended, alkhamissi-etal-2024-investigating and produce biased generations naous-etal-2024-beer due to a lack of cultural knowledge and competence. Evaluation of LLMs for cultural awareness and alignment is particularly challenging due to the lack of proper evaluation metrics and unavailability of culturally grounded datasets representing the vast complexity of cultures at the regional and sub-regional levels. Existing datasets for culture specific items (CSIs) focus primarily on concepts at the regional level and may contain false positives. To address this issue, we introduce a novel CSI dataset for Indian culture, belonging to 17 cultural facets. The dataset comprises sim8k cultural concepts from 36 sub-regions. To measure the cultural competence of LLMs on a cultural text adaptation task, we evaluate the adaptations using the CSIs created, LLM as Judge, and human evaluations from diverse socio-demographic region. Furthermore, we perform quantitative analysis demonstrating selective sub-regional coverage and surface-level adaptations across all considered LLMs. Our dataset is available here: https://huggingface.co/datasets/nlip/DIWALI{https://huggingface.co/datasets/nlip/DIWALI}, project webpage\href{https://nlip-lab.github.io/nlip/publications/diwali/{https://nlip-lab.github.io/nlip/publications/diwali/}}, and our codebase with model outputs can be found here: https://github.com/pramitsahoo/culture-evaluation{https://github.com/pramitsahoo/culture-evaluation}.
Pretrained AI Models: Performativity, Mobility, and Change
The paradigm of pretrained deep learning models has recently emerged in artificial intelligence practice, allowing deployment in numerous societal settings with limited computational resources, but also embedding biases and enabling unintended negative uses. In this paper, we treat pretrained models as objects of study and discuss the ethical impacts of their sociological position. We discuss how pretrained models are developed and compared under the common task framework, but that this may make self-regulation inadequate. Further how pretrained models may have a performative effect on society that exacerbates biases. We then discuss how pretrained models move through actor networks as a kind of computationally immutable mobile, but that users also act as agents of technological change by reinterpreting them via fine-tuning and transfer. We further discuss how users may use pretrained models in malicious ways, drawing a novel connection between the responsible innovation and user-centered innovation literatures. We close by discussing how this sociological understanding of pretrained models can inform AI governance frameworks for fairness, accountability, and transparency.
