Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAnalyzing the Efficacy of an LLM-Only Approach for Image-based Document Question Answering
Recent document question answering models consist of two key components: the vision encoder, which captures layout and visual elements in images, and a Large Language Model (LLM) that helps contextualize questions to the image and supplements them with external world knowledge to generate accurate answers. However, the relative contributions of the vision encoder and the language model in these tasks remain unclear. This is especially interesting given the effectiveness of instruction-tuned LLMs, which exhibit remarkable adaptability to new tasks. To this end, we explore the following aspects in this work: (1) The efficacy of an LLM-only approach on document question answering tasks (2) strategies for serializing textual information within document images and feeding it directly to an instruction-tuned LLM, thus bypassing the need for an explicit vision encoder (3) thorough quantitative analysis on the feasibility of such an approach. Our comprehensive analysis encompasses six diverse benchmark datasets, utilizing LLMs of varying scales. Our findings reveal that a strategy exclusively reliant on the LLM yields results that are on par with or closely approach state-of-the-art performance across a range of datasets. We posit that this evaluation framework will serve as a guiding resource for selecting appropriate datasets for future research endeavors that emphasize the fundamental importance of layout and image content information.
Hanfu-Bench: A Multimodal Benchmark on Cross-Temporal Cultural Understanding and Transcreation
Culture is a rich and dynamic domain that evolves across both geography and time. However, existing studies on cultural understanding with vision-language models (VLMs) primarily emphasize geographic diversity, often overlooking the critical temporal dimensions. To bridge this gap, we introduce Hanfu-Bench, a novel, expert-curated multimodal dataset. Hanfu, a traditional garment spanning ancient Chinese dynasties, serves as a representative cultural heritage that reflects the profound temporal aspects of Chinese culture while remaining highly popular in Chinese contemporary society. Hanfu-Bench comprises two core tasks: cultural visual understanding and cultural image transcreation.The former task examines temporal-cultural feature recognition based on single- or multi-image inputs through multiple-choice visual question answering, while the latter focuses on transforming traditional attire into modern designs through cultural element inheritance and modern context adaptation. Our evaluation shows that closed VLMs perform comparably to non-experts on visual cutural understanding but fall short by 10\% to human experts, while open VLMs lags further behind non-experts. For the transcreation task, multi-faceted human evaluation indicates that the best-performing model achieves a success rate of only 42\%. Our benchmark provides an essential testbed, revealing significant challenges in this new direction of temporal cultural understanding and creative adaptation.
Generating Natural Questions About an Image
There has been an explosion of work in the vision & language community during the past few years from image captioning to video transcription, and answering questions about images. These tasks have focused on literal descriptions of the image. To move beyond the literal, we choose to explore how questions about an image are often directed at commonsense inference and the abstract events evoked by objects in the image. In this paper, we introduce the novel task of Visual Question Generation (VQG), where the system is tasked with asking a natural and engaging question when shown an image. We provide three datasets which cover a variety of images from object-centric to event-centric, with considerably more abstract training data than provided to state-of-the-art captioning systems thus far. We train and test several generative and retrieval models to tackle the task of VQG. Evaluation results show that while such models ask reasonable questions for a variety of images, there is still a wide gap with human performance which motivates further work on connecting images with commonsense knowledge and pragmatics. Our proposed task offers a new challenge to the community which we hope furthers interest in exploring deeper connections between vision & language.
Investigating Prompting Techniques for Zero- and Few-Shot Visual Question Answering
Visual question answering (VQA) is a challenging task that requires the ability to comprehend and reason with visual information. While recent vision-language models have made strides, they continue to struggle with zero-shot VQA, particularly in handling complex compositional questions and adapting to new domains i.e. knowledge-based reasoning. This paper explores the use of various prompting strategies, focusing on the BLIP2 model, to enhance zero-shot VQA performance. We conduct a comprehensive investigation across several VQA datasets, examining the effectiveness of different question templates, the role of few-shot exemplars, the impact of chain-of-thought (CoT) reasoning, and the benefits of incorporating image captions as additional visual cues. Despite the varied outcomes, our findings demonstrate that carefully designed question templates and the integration of additional visual cues, like image captions, can contribute to improved VQA performance, especially when used in conjunction with few-shot examples. However, we also identify a limitation in the use of chain-of-thought rationalization, which negatively affects VQA accuracy. Our study thus provides critical insights into the potential of prompting for improving zero-shot VQA performance.
VQA: Visual Question Answering
We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can be provided in a multiple-choice format. We provide a dataset containing ~0.25M images, ~0.76M questions, and ~10M answers (www.visualqa.org), and discuss the information it provides. Numerous baselines and methods for VQA are provided and compared with human performance. Our VQA demo is available on CloudCV (http://cloudcv.org/vqa).
InfographicVQA
Infographics are documents designed to effectively communicate information using a combination of textual, graphical and visual elements. In this work, we explore the automatic understanding of infographic images by using Visual Question Answering technique.To this end, we present InfographicVQA, a new dataset that comprises a diverse collection of infographics along with natural language questions and answers annotations. The collected questions require methods to jointly reason over the document layout, textual content, graphical elements, and data visualizations. We curate the dataset with emphasis on questions that require elementary reasoning and basic arithmetic skills. Finally, we evaluate two strong baselines based on state of the art multi-modal VQA models, and establish baseline performance for the new task. The dataset, code and leaderboard will be made available at http://docvqa.org
Towards VQA Models That Can Read
Studies have shown that a dominant class of questions asked by visually impaired users on images of their surroundings involves reading text in the image. But today's VQA models can not read! Our paper takes a first step towards addressing this problem. First, we introduce a new "TextVQA" dataset to facilitate progress on this important problem. Existing datasets either have a small proportion of questions about text (e.g., the VQA dataset) or are too small (e.g., the VizWiz dataset). TextVQA contains 45,336 questions on 28,408 images that require reasoning about text to answer. Second, we introduce a novel model architecture that reads text in the image, reasons about it in the context of the image and the question, and predicts an answer which might be a deduction based on the text and the image or composed of the strings found in the image. Consequently, we call our approach Look, Read, Reason & Answer (LoRRA). We show that LoRRA outperforms existing state-of-the-art VQA models on our TextVQA dataset. We find that the gap between human performance and machine performance is significantly larger on TextVQA than on VQA 2.0, suggesting that TextVQA is well-suited to benchmark progress along directions complementary to VQA 2.0.
SQ-LLaVA: Self-Questioning for Large Vision-Language Assistant
Recent advances in vision-language models have shown notable generalization in broad tasks through visual instruction tuning. However, bridging the gap between the pre-trained vision encoder and the large language models (LLMs) becomes the whole network's bottleneck. To improve cross-modality alignment, existing works usually consider more visual instruction data covering a broader range of vision tasks to fine-tune the model for question-answering, which, however, is costly to obtain and has not thoroughly explored the rich contextual information contained in images. This paper first attempts to harness the overlooked context within visual instruction data, training the model to self-supervised "learning" how to ask high-quality questions. In this way, we introduce a novel framework named SQ-LLaVA: Self-Questioning for Large Vision-Language Assistant. SQ-LLaVA exhibits proficiency in generating flexible and meaningful image-related questions while analyzing the visual clue and prior language knowledge, signifying an advanced level of generalized visual understanding. Moreover, fine-tuning SQ-LLaVA on higher-quality instruction data shows a performance improvement compared with traditional visual-instruction tuning methods. This improvement highlights the efficacy of self-questioning techniques in achieving a deeper and more nuanced comprehension of visual content across various contexts.
From Known to the Unknown: Transferring Knowledge to Answer Questions about Novel Visual and Semantic Concepts
Current Visual Question Answering (VQA) systems can answer intelligent questions about `Known' visual content. However, their performance drops significantly when questions about visually and linguistically `Unknown' concepts are presented during inference (`Open-world' scenario). A practical VQA system should be able to deal with novel concepts in real world settings. To address this problem, we propose an exemplar-based approach that transfers learning (i.e., knowledge) from previously `Known' concepts to answer questions about the `Unknown'. We learn a highly discriminative joint embedding space, where visual and semantic features are fused to give a unified representation. Once novel concepts are presented to the model, it looks for the closest match from an exemplar set in the joint embedding space. This auxiliary information is used alongside the given Image-Question pair to refine visual attention in a hierarchical fashion. Since handling the high dimensional exemplars on large datasets can be a significant challenge, we introduce an efficient matching scheme that uses a compact feature description for search and retrieval. To evaluate our model, we propose a new split for VQA, separating Unknown visual and semantic concepts from the training set. Our approach shows significant improvements over state-of-the-art VQA models on the proposed Open-World VQA dataset and standard VQA datasets.
MM-BrowseComp: A Comprehensive Benchmark for Multimodal Browsing Agents
AI agents with advanced reasoning and tool use capabilities have demonstrated impressive performance in web browsing for deep search. While existing benchmarks such as BrowseComp evaluate these browsing abilities, they primarily focus on textual information, overlooking the prevalence of multimodal content. To bridge this gap, we introduce MM-BrowseComp, a novel benchmark comprising 224 challenging, hand-crafted questions specifically designed to assess agents' multimodal retrieval and reasoning capabilities. These questions often incorporate images in prompts, and crucial information encountered during the search and reasoning process may also be embedded within images or videos on webpages. Consequently, methods relying solely on text prove insufficient for our benchmark. Additionally, we provide a verified checklist for each question, enabling fine-grained analysis of multimodal dependencies and reasoning paths. Our comprehensive evaluation of state-of-the-art models on MM-BrowseComp reveals that even top models like OpenAI o3 with tools achieve only 29.02\% accuracy, highlighting the suboptimal multimodal capabilities and lack of native multimodal reasoning in current models.
Interactive Text-to-Image Retrieval with Large Language Models: A Plug-and-Play Approach
In this paper, we primarily address the issue of dialogue-form context query within the interactive text-to-image retrieval task. Our methodology, PlugIR, actively utilizes the general instruction-following capability of LLMs in two ways. First, by reformulating the dialogue-form context, we eliminate the necessity of fine-tuning a retrieval model on existing visual dialogue data, thereby enabling the use of any arbitrary black-box model. Second, we construct the LLM questioner to generate non-redundant questions about the attributes of the target image, based on the information of retrieval candidate images in the current context. This approach mitigates the issues of noisiness and redundancy in the generated questions. Beyond our methodology, we propose a novel evaluation metric, Best log Rank Integral (BRI), for a comprehensive assessment of the interactive retrieval system. PlugIR demonstrates superior performance compared to both zero-shot and fine-tuned baselines in various benchmarks. Additionally, the two methodologies comprising PlugIR can be flexibly applied together or separately in various situations. Our codes are available at https://github.com/Saehyung-Lee/PlugIR.
A-OKVQA: A Benchmark for Visual Question Answering using World Knowledge
The Visual Question Answering (VQA) task aspires to provide a meaningful testbed for the development of AI models that can jointly reason over visual and natural language inputs. Despite a proliferation of VQA datasets, this goal is hindered by a set of common limitations. These include a reliance on relatively simplistic questions that are repetitive in both concepts and linguistic structure, little world knowledge needed outside of the paired image, and limited reasoning required to arrive at the correct answer. We introduce A-OKVQA, a crowdsourced dataset composed of a diverse set of about 25K questions requiring a broad base of commonsense and world knowledge to answer. In contrast to the existing knowledge-based VQA datasets, the questions generally cannot be answered by simply querying a knowledge base, and instead require some form of commonsense reasoning about the scene depicted in the image. We demonstrate the potential of this new dataset through a detailed analysis of its contents and baseline performance measurements over a variety of state-of-the-art vision-language models. Project page: http://a-okvqa.allenai.org/
TVQA: Localized, Compositional Video Question Answering
Recent years have witnessed an increasing interest in image-based question-answering (QA) tasks. However, due to data limitations, there has been much less work on video-based QA. In this paper, we present TVQA, a large-scale video QA dataset based on 6 popular TV shows. TVQA consists of 152,545 QA pairs from 21,793 clips, spanning over 460 hours of video. Questions are designed to be compositional in nature, requiring systems to jointly localize relevant moments within a clip, comprehend subtitle-based dialogue, and recognize relevant visual concepts. We provide analyses of this new dataset as well as several baselines and a multi-stream end-to-end trainable neural network framework for the TVQA task. The dataset is publicly available at http://tvqa.cs.unc.edu.
Scene Text Visual Question Answering
Current visual question answering datasets do not consider the rich semantic information conveyed by text within an image. In this work, we present a new dataset, ST-VQA, that aims to highlight the importance of exploiting high-level semantic information present in images as textual cues in the VQA process. We use this dataset to define a series of tasks of increasing difficulty for which reading the scene text in the context provided by the visual information is necessary to reason and generate an appropriate answer. We propose a new evaluation metric for these tasks to account both for reasoning errors as well as shortcomings of the text recognition module. In addition we put forward a series of baseline methods, which provide further insight to the newly released dataset, and set the scene for further research.
Q&A Prompts: Discovering Rich Visual Clues through Mining Question-Answer Prompts for VQA requiring Diverse World Knowledge
With the breakthrough of multi-modal large language models, answering complex visual questions that demand advanced reasoning abilities and world knowledge has become a much more important testbed for developing AI models than ever. However, equipping AI models with robust cross-modality reasoning ability remains challenging since the cognition scheme of humans has not been understood systematically. In this paper, we believe that if we can collect visual clues in the given image as much as possible, we will recognize the image more accurately, understand the question better, recall relevant knowledge more easily, and finally reason out the answer. We discover these rich visual clues by mining question-answer pairs in images and sending them into multi-modal large language models as prompts. We call the proposed method Q&A Prompts. Specifically, we first use the image-answer pairs and the corresponding questions in the training set as inputs and outputs to train a visual question generation model. Then, we use an image tagging model to identify various instances and send packaged image-tag pairs into the visual question generation model to generate relevant questions with the extracted image tags as answers. Finally, we encode these generated question-answer pairs as prompts with a visual-aware prompting module and send them into pre-trained multi-modal large language models to reason out the final answers. Experimental results show that, compared with state-of-the-art methods, our Q&A Prompts achieves substantial improvements on the challenging visual question answering datasets requiring reasoning over diverse world knowledge, such as OK-VQA and A-OKVQA.
LiveVQA: Live Visual Knowledge Seeking
We introduce LiveVQA, an automatically collected dataset of latest visual knowledge from the Internet with synthesized VQA problems. LiveVQA consists of 3,602 single- and multi-hop visual questions from 6 news websites across 14 news categories, featuring high-quality image-text coherence and authentic information. Our evaluation across 15 MLLMs (e.g., GPT-4o, Gemma-3, and Qwen-2.5-VL family) demonstrates that stronger models perform better overall, with advanced visual reasoning capabilities proving crucial for complex multi-hop questions. Despite excellent performance on textual problems, models with tools like search engines still show significant gaps when addressing visual questions requiring latest visual knowledge, highlighting important areas for future research.
On the General Value of Evidence, and Bilingual Scene-Text Visual Question Answering
Visual Question Answering (VQA) methods have made incredible progress, but suffer from a failure to generalize. This is visible in the fact that they are vulnerable to learning coincidental correlations in the data rather than deeper relations between image content and ideas expressed in language. We present a dataset that takes a step towards addressing this problem in that it contains questions expressed in two languages, and an evaluation process that co-opts a well understood image-based metric to reflect the method's ability to reason. Measuring reasoning directly encourages generalization by penalizing answers that are coincidentally correct. The dataset reflects the scene-text version of the VQA problem, and the reasoning evaluation can be seen as a text-based version of a referring expression challenge. Experiments and analysis are provided that show the value of the dataset.
Question Aware Vision Transformer for Multimodal Reasoning
Vision-Language (VL) models have gained significant research focus, enabling remarkable advances in multimodal reasoning. These architectures typically comprise a vision encoder, a Large Language Model (LLM), and a projection module that aligns visual features with the LLM's representation space. Despite their success, a critical limitation persists: the vision encoding process remains decoupled from user queries, often in the form of image-related questions. Consequently, the resulting visual features may not be optimally attuned to the query-specific elements of the image. To address this, we introduce QA-ViT, a Question Aware Vision Transformer approach for multimodal reasoning, which embeds question awareness directly within the vision encoder. This integration results in dynamic visual features focusing on relevant image aspects to the posed question. QA-ViT is model-agnostic and can be incorporated efficiently into any VL architecture. Extensive experiments demonstrate the effectiveness of applying our method to various multimodal architectures, leading to consistent improvement across diverse tasks and showcasing its potential for enhancing visual and scene-text understanding.
FigureQA: An Annotated Figure Dataset for Visual Reasoning
We introduce FigureQA, a visual reasoning corpus of over one million question-answer pairs grounded in over 100,000 images. The images are synthetic, scientific-style figures from five classes: line plots, dot-line plots, vertical and horizontal bar graphs, and pie charts. We formulate our reasoning task by generating questions from 15 templates; questions concern various relationships between plot elements and examine characteristics like the maximum, the minimum, area-under-the-curve, smoothness, and intersection. To resolve, such questions often require reference to multiple plot elements and synthesis of information distributed spatially throughout a figure. To facilitate the training of machine learning systems, the corpus also includes side data that can be used to formulate auxiliary objectives. In particular, we provide the numerical data used to generate each figure as well as bounding-box annotations for all plot elements. We study the proposed visual reasoning task by training several models, including the recently proposed Relation Network as a strong baseline. Preliminary results indicate that the task poses a significant machine learning challenge. We envision FigureQA as a first step towards developing models that can intuitively recognize patterns from visual representations of data.
OK-VQA: A Visual Question Answering Benchmark Requiring External Knowledge
Visual Question Answering (VQA) in its ideal form lets us study reasoning in the joint space of vision and language and serves as a proxy for the AI task of scene understanding. However, most VQA benchmarks to date are focused on questions such as simple counting, visual attributes, and object detection that do not require reasoning or knowledge beyond what is in the image. In this paper, we address the task of knowledge-based visual question answering and provide a benchmark, called OK-VQA, where the image content is not sufficient to answer the questions, encouraging methods that rely on external knowledge resources. Our new dataset includes more than 14,000 questions that require external knowledge to answer. We show that the performance of the state-of-the-art VQA models degrades drastically in this new setting. Our analysis shows that our knowledge-based VQA task is diverse, difficult, and large compared to previous knowledge-based VQA datasets. We hope that this dataset enables researchers to open up new avenues for research in this domain. See http://okvqa.allenai.org to download and browse the dataset.
VoQA: Visual-only Question Answering
We propose Visual-only Question Answering (VoQA), a novel multimodal task in which questions are visually embedded within images, without any accompanying textual input. This requires models to locate, recognize, and reason over visually embedded textual questions, posing challenges for existing large vision-language models (LVLMs), which show notable performance drops even with carefully designed prompts. To bridge this gap, we introduce Guided Response Triggering Supervised Fine-tuning (GRT-SFT), a structured fine-tuning strategy that guides the model to perform step-by-step reasoning purely based on visual input, significantly improving model performance. Our work enhances models' capacity for human-like visual understanding in complex multimodal scenarios, where information, including language, is perceived visually.
Weakly Supervised Visual Question Answer Generation
Growing interest in conversational agents promote twoway human-computer communications involving asking and answering visual questions have become an active area of research in AI. Thus, generation of visual questionanswer pair(s) becomes an important and challenging task. To address this issue, we propose a weakly-supervised visual question answer generation method that generates a relevant question-answer pairs for a given input image and associated caption. Most of the prior works are supervised and depend on the annotated question-answer datasets. In our work, we present a weakly supervised method that synthetically generates question-answer pairs procedurally from visual information and captions. The proposed method initially extracts list of answer words, then does nearest question generation that uses the caption and answer word to generate synthetic question. Next, the relevant question generator converts the nearest question to relevant language question by dependency parsing and in-order tree traversal, finally, fine-tune a ViLBERT model with the question-answer pair(s) generated at end. We perform an exhaustive experimental analysis on VQA dataset and see that our model significantly outperform SOTA methods on BLEU scores. We also show the results wrt baseline models and ablation study.
V*: Guided Visual Search as a Core Mechanism in Multimodal LLMs
When we look around and perform complex tasks, how we see and selectively process what we see is crucial. However, the lack of this visual search mechanism in current multimodal LLMs (MLLMs) hinders their ability to focus on important visual details, especially when handling high-resolution and visually crowded images. To address this, we introduce V*, an LLM-guided visual search mechanism that employs the world knowledge in LLMs for efficient visual querying. When combined with an MLLM, this mechanism enhances collaborative reasoning, contextual understanding, and precise targeting of specific visual elements. This integration results in a new MLLM meta-architecture, named Show, sEArch, and TelL (SEAL). We further create V*Bench, a benchmark specifically designed to evaluate MLLMs in their ability to process high-resolution images and focus on visual details. Our study highlights the necessity of incorporating visual search capabilities into multimodal systems. The code is available https://github.com/penghao-wu/vstar.
Visual-RAG: Benchmarking Text-to-Image Retrieval Augmented Generation for Visual Knowledge Intensive Queries
Retrieval-Augmented Generation (RAG) is a popular approach for enhancing Large Language Models (LLMs) by addressing their limitations in verifying facts and answering knowledge-intensive questions. As the research in LLM extends their capability to handle input modality other than text, e.g. image, several multimodal RAG benchmarks are proposed. Nonetheless, they mainly use textual knowledge bases as the primary source of evidences for augmentation. There still lack benchmarks designed to evaluate images as augmentation in RAG systems and how they leverage visual knowledge. We propose Visual-RAG, a novel Question Answering benchmark that emphasizes visual knowledge intensive questions. Unlike prior works relying on text-based evidence, Visual-RAG necessitates text-to-image retrieval and integration of relevant clue images to extract visual knowledge as evidence. With Visual-RAG, we evaluate 5 open-sourced and 3 proprietary Multimodal LLMs (MLLMs), revealing that images can serve as good evidence in RAG; however, even the SoTA models struggle with effectively extracting and utilizing visual knowledge
Learning to Locate Visual Answer in Video Corpus Using Question
We introduce a new task, named video corpus visual answer localization (VCVAL), which aims to locate the visual answer in a large collection of untrimmed instructional videos using a natural language question. This task requires a range of skills - the interaction between vision and language, video retrieval, passage comprehension, and visual answer localization. In this paper, we propose a cross-modal contrastive global-span (CCGS) method for the VCVAL, jointly training the video corpus retrieval and visual answer localization subtasks with the global-span matrix. We have reconstructed a dataset named MedVidCQA, on which the VCVAL task is benchmarked. Experimental results show that the proposed method outperforms other competitive methods both in the video corpus retrieval and visual answer localization subtasks. Most importantly, we perform detailed analyses on extensive experiments, paving a new path for understanding the instructional videos, which ushers in further research.
DocVQA: A Dataset for VQA on Document Images
We present a new dataset for Visual Question Answering (VQA) on document images called DocVQA. The dataset consists of 50,000 questions defined on 12,000+ document images. Detailed analysis of the dataset in comparison with similar datasets for VQA and reading comprehension is presented. We report several baseline results by adopting existing VQA and reading comprehension models. Although the existing models perform reasonably well on certain types of questions, there is large performance gap compared to human performance (94.36% accuracy). The models need to improve specifically on questions where understanding structure of the document is crucial. The dataset, code and leaderboard are available at docvqa.org
QLEVR: A Diagnostic Dataset for Quantificational Language and Elementary Visual Reasoning
Synthetic datasets have successfully been used to probe visual question-answering datasets for their reasoning abilities. CLEVR (johnson2017clevr), for example, tests a range of visual reasoning abilities. The questions in CLEVR focus on comparisons of shapes, colors, and sizes, numerical reasoning, and existence claims. This paper introduces a minimally biased, diagnostic visual question-answering dataset, QLEVR, that goes beyond existential and numerical quantification and focus on more complex quantifiers and their combinations, e.g., asking whether there are more than two red balls that are smaller than at least three blue balls in an image. We describe how the dataset was created and present a first evaluation of state-of-the-art visual question-answering models, showing that QLEVR presents a formidable challenge to our current models. Code and Dataset are available at https://github.com/zechenli03/QLEVR
Answer Mining from a Pool of Images: Towards Retrieval-Based Visual Question Answering
We study visual question answering in a setting where the answer has to be mined from a pool of relevant and irrelevant images given as a context. For such a setting, a model must first retrieve relevant images from the pool and answer the question from these retrieved images. We refer to this problem as retrieval-based visual question answering (or RETVQA in short). The RETVQA is distinctively different and more challenging than the traditionally-studied Visual Question Answering (VQA), where a given question has to be answered with a single relevant image in context. Towards solving the RETVQA task, we propose a unified Multi Image BART (MI-BART) that takes a question and retrieved images using our relevance encoder for free-form fluent answer generation. Further, we introduce the largest dataset in this space, namely RETVQA, which has the following salient features: multi-image and retrieval requirement for VQA, metadata-independent questions over a pool of heterogeneous images, expecting a mix of classification-oriented and open-ended generative answers. Our proposed framework achieves an accuracy of 76.5% and a fluency of 79.3% on the proposed dataset, namely RETVQA and also outperforms state-of-the-art methods by 4.9% and 11.8% on the image segment of the publicly available WebQA dataset on the accuracy and fluency metrics, respectively.
Evaluating GPT-4's Vision Capabilities on Brazilian University Admission Exams
Recent advancements in language models have showcased human-comparable performance in academic entrance exams. However, existing studies often overlook questions that require the integration of visual comprehension, thus compromising the full spectrum and complexity inherent in real-world scenarios. To address this gap, we present a comprehensive framework to evaluate language models on entrance exams, which incorporates both textual and visual elements. We evaluate the two most recent editions of Exame Nacional do Ensino M\'edio (ENEM), the main standardized entrance examination adopted by Brazilian universities. Our study not only reaffirms the capabilities of GPT-4 as the state of the art for handling complex multidisciplinary questions, but also pioneers in offering a realistic assessment of multimodal language models on Portuguese examinations. One of the highlights is that text captions transcribing visual content outperform the direct use of images, suggesting that the vision model has room for improvement. Yet, despite improvements afforded by images or captions, mathematical questions remain a challenge for these state-of-the-art models. The code and data used on experiments are available at https://github.com/piresramon/gpt-4-enem.
VisualMRC: Machine Reading Comprehension on Document Images
Recent studies on machine reading comprehension have focused on text-level understanding but have not yet reached the level of human understanding of the visual layout and content of real-world documents. In this study, we introduce a new visual machine reading comprehension dataset, named VisualMRC, wherein given a question and a document image, a machine reads and comprehends texts in the image to answer the question in natural language. Compared with existing visual question answering (VQA) datasets that contain texts in images, VisualMRC focuses more on developing natural language understanding and generation abilities. It contains 30,000+ pairs of a question and an abstractive answer for 10,000+ document images sourced from multiple domains of webpages. We also introduce a new model that extends existing sequence-to-sequence models, pre-trained with large-scale text corpora, to take into account the visual layout and content of documents. Experiments with VisualMRC show that this model outperformed the base sequence-to-sequence models and a state-of-the-art VQA model. However, its performance is still below that of humans on most automatic evaluation metrics. The dataset will facilitate research aimed at connecting vision and language understanding.
Prism: A Framework for Decoupling and Assessing the Capabilities of VLMs
Vision Language Models (VLMs) demonstrate remarkable proficiency in addressing a wide array of visual questions, which requires strong perception and reasoning faculties. Assessing these two competencies independently is crucial for model refinement, despite the inherent difficulty due to the intertwined nature of seeing and reasoning in existing VLMs. To tackle this issue, we present Prism, an innovative framework designed to disentangle the perception and reasoning processes involved in visual question solving. Prism comprises two distinct stages: a perception stage that utilizes a VLM to extract and articulate visual information in textual form, and a reasoning stage that formulates responses based on the extracted visual information using a Large Language Model (LLM). This modular design enables the systematic comparison and assessment of both proprietary and open-source VLM for their perception and reasoning strengths. Our analytical framework provides several valuable insights, underscoring Prism's potential as a cost-effective solution for vision-language tasks. By combining a streamlined VLM focused on perception with a powerful LLM tailored for reasoning, Prism achieves superior results in general vision-language tasks while substantially cutting down on training and operational expenses. Quantitative evaluations show that Prism, when configured with a vanilla 2B LLaVA and freely accessible GPT-3.5, delivers performance on par with VLMs 10 times larger on the rigorous multimodal benchmark MMStar. The project is released at: https://github.com/SparksJoe/Prism.
When Visualizing is the First Step to Reasoning: MIRA, a Benchmark for Visual Chain-of-Thought
We propose MIRA, a new benchmark designed to evaluate models in scenarios where generating intermediate visual images is essential for successful reasoning. Unlike traditional CoT methods that rely solely on text, tasks in MIRA require models to generate and utilize intermediate images - such as sketches, structural diagrams, or path drawings - to guide their reasoning process. This setup closely mirrors how humans solve complex problems through "drawing to think". To solve this, MIRA focuses on tasks that are intrinsically challenging and involve complex structures, spatial relationships, or reasoning steps that are difficult to express through language alone. To ensure that our evaluation data is of high-quality, we include 546 multimodal problems, annotated with intermediate visual images and final answers. We also propose a unified evaluation protocol for MIRA that spans three levels of evaluation input: direct input with image and question only, text-only CoT input with image and thinking prompts, and Visual-CoT input with both annotated image clues and textual thinking prompts. To probe the upper bound of model capacity on our benchmark, we also report pass@k and majority voting accuracies under different k settings. Experimental results show that existing multimodal large language models, including strongest private models as well as strong open-weight models, perform poorly when relying solely on textual prompts. However, when intermediate visual cues are provided, model performance improves consistently, yielding an average relative gain of 33.7% across all models and tasks. We also probe the upper bound by expanding the search space and designing textual prompts aligned with Visual-CoT, but both yield only limited improvements compared to our Visual-CoT setting. These results underscore the critical role of imagined visual information in enabling successful reasoning on MIRA.
Stacked Attention Networks for Image Question Answering
This paper presents stacked attention networks (SANs) that learn to answer natural language questions from images. SANs use semantic representation of a question as query to search for the regions in an image that are related to the answer. We argue that image question answering (QA) often requires multiple steps of reasoning. Thus, we develop a multiple-layer SAN in which we query an image multiple times to infer the answer progressively. Experiments conducted on four image QA data sets demonstrate that the proposed SANs significantly outperform previous state-of-the-art approaches. The visualization of the attention layers illustrates the progress that the SAN locates the relevant visual clues that lead to the answer of the question layer-by-layer.
Can Pre-trained Vision and Language Models Answer Visual Information-Seeking Questions?
Large language models have demonstrated an emergent capability in answering knowledge intensive questions. With recent progress on web-scale visual and language pre-training, do these models also understand how to answer visual information seeking questions? To answer this question, we present InfoSeek, a Visual Question Answering dataset that focuses on asking information-seeking questions, where the information can not be answered by common sense knowledge. We perform a multi-stage human annotation to collect a natural distribution of high-quality visual information seeking question-answer pairs. We also construct a large-scale, automatically collected dataset by combining existing visual entity recognition datasets and Wikidata, which provides over one million examples for model fine-tuning and validation. Based on InfoSeek, we analyzed various pre-trained Visual QA systems to gain insights into the characteristics of different pre-trained models. Our analysis shows that it is challenging for the state-of-the-art multi-modal pre-trained models to answer visual information seeking questions, but this capability is improved through fine-tuning on the automated InfoSeek dataset. We hope our analysis paves the way to understand and develop the next generation of multi-modal pre-training.
Exploring Advanced Techniques for Visual Question Answering: A Comprehensive Comparison
Visual Question Answering (VQA) has emerged as a pivotal task in the intersection of computer vision and natural language processing, requiring models to understand and reason about visual content in response to natural language questions. Analyzing VQA datasets is essential for developing robust models that can handle the complexities of multimodal reasoning. Several approaches have been developed to examine these datasets, each offering distinct perspectives on question diversity, answer distribution, and visual-textual correlations. Despite significant progress, existing VQA models face challenges related to dataset bias, limited model complexity, commonsense reasoning gaps, rigid evaluation methods, and generalization to real world scenarios. This paper offers a detailed study of the original VQA dataset, baseline models and methods along with a comparative study of five advanced VQA models, ABC-CNN, KICNLE, Masked Vision and Language Modeling, BLIP-2, and OFA, each employing distinct methods to address these ongoing challenges.
Enhancing Visual Question Answering through Question-Driven Image Captions as Prompts
Visual question answering (VQA) is known as an AI-complete task as it requires understanding, reasoning, and inferring about the vision and the language content. Over the past few years, numerous neural architectures have been suggested for the VQA problem. However, achieving success in zero-shot VQA remains a challenge due to its requirement for advanced generalization and reasoning skills. This study explores the impact of incorporating image captioning as an intermediary process within the VQA pipeline. Specifically, we explore the efficacy of utilizing image captions instead of images and leveraging large language models (LLMs) to establish a zero-shot setting. Since image captioning is the most crucial step in this process, we compare the impact of state-of-the-art image captioning models on VQA performance across various question types in terms of structure and semantics. We propose a straightforward and efficient question-driven image captioning approach within this pipeline to transfer contextual information into the question-answering (QA) model. This method involves extracting keywords from the question, generating a caption for each image-question pair using the keywords, and incorporating the question-driven caption into the LLM prompt. We evaluate the efficacy of using general-purpose and question-driven image captions in the VQA pipeline. Our study highlights the potential of employing image captions and harnessing the capabilities of LLMs to achieve competitive performance on GQA under the zero-shot setting. Our code is available at https://github.com/ovguyo/captions-in-VQA.
2nd Place Solution to the GQA Challenge 2019
We present a simple method that achieves unexpectedly superior performance for Complex Reasoning involved Visual Question Answering. Our solution collects statistical features from high-frequency words of all the questions asked about an image and use them as accurate knowledge for answering further questions of the same image. We are fully aware that this setting is not ubiquitously applicable, and in a more common setting one should assume the questions are asked separately and they cannot be gathered to obtain a knowledge base. Nonetheless, we use this method as an evidence to demonstrate our observation that the bottleneck effect is more severe on the feature extraction part than it is on the knowledge reasoning part. We show significant gaps when using the same reasoning model with 1) ground-truth features; 2) statistical features; 3) detected features from completely learned detectors, and analyze what these gaps mean to researches on visual reasoning topics. Our model with the statistical features achieves the 2nd place in the GQA Challenge 2019.
COLUMBUS: Evaluating COgnitive Lateral Understanding through Multiple-choice reBUSes
While visual question-answering (VQA) benchmarks have catalyzed the development of reasoning techniques, they have focused on vertical thinking. Effective problem-solving also necessitates lateral thinking, which remains understudied in AI and has not been used to test visual perception systems. To bridge this gap, we formulate visual lateral thinking as a multiple-choice question-answering task and describe a three-step taxonomy-driven methodology for instantiating task examples. Then, we develop COLUMBUS, a synthetic benchmark that applies the task pipeline to create QA sets with text and icon rebus puzzles based on publicly available collections of compounds and common phrases. COLUMBUS comprises over 1,000 puzzles, each with four answer candidates. While the SotA vision-language models (VLMs) achieve decent performance, our evaluation demonstrates a substantial gap between humans and models. VLMs benefit from human-curated descriptions but struggle to self-generate such representations at the right level of abstraction.
Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent
Multimodal Retrieval Augmented Generation (mRAG) plays an important role in mitigating the "hallucination" issue inherent in multimodal large language models (MLLMs). Although promising, existing heuristic mRAGs typically predefined fixed retrieval processes, which causes two issues: (1) Non-adaptive Retrieval Queries. (2) Overloaded Retrieval Queries. However, these flaws cannot be adequately reflected by current knowledge-seeking visual question answering (VQA) datasets, since the most required knowledge can be readily obtained with a standard two-step retrieval. To bridge the dataset gap, we first construct Dyn-VQA dataset, consisting of three types of "dynamic" questions, which require complex knowledge retrieval strategies variable in query, tool, and time: (1) Questions with rapidly changing answers. (2) Questions requiring multi-modal knowledge. (3) Multi-hop questions. Experiments on Dyn-VQA reveal that existing heuristic mRAGs struggle to provide sufficient and precisely relevant knowledge for dynamic questions due to their rigid retrieval processes. Hence, we further propose the first self-adaptive planning agent for multimodal retrieval, OmniSearch. The underlying idea is to emulate the human behavior in question solution which dynamically decomposes complex multimodal questions into sub-question chains with retrieval action. Extensive experiments prove the effectiveness of our OmniSearch, also provide direction for advancing mRAG. The code and dataset will be open-sourced at https://github.com/Alibaba-NLP/OmniSearch.
Visual Text Matters: Improving Text-KVQA with Visual Text Entity Knowledge-aware Large Multimodal Assistant
We revisit knowledge-aware text-based visual question answering, also known as Text-KVQA, in the light of modern advancements in large multimodal models (LMMs), and make the following contributions: (i) We propose VisTEL - a principled approach to perform visual text entity linking. The proposed VisTEL module harnesses a state-of-the-art visual text recognition engine and the power of a large multimodal model to jointly reason using textual and visual context obtained using surrounding cues in the image to link the visual text entity to the correct knowledge base entity. (ii) We present KaLMA - a knowledge-aware large multimodal assistant that augments an LMM with knowledge associated with visual text entity in the image to arrive at an accurate answer. Further, we provide a comprehensive experimental analysis and comparison of our approach with traditional visual question answering, pre-large multimodal models, and large multimodal models, as well as prior top-performing approaches. Averaging over three splits of Text-KVQA, our proposed approach surpasses the previous best approach by a substantial 23.3% on an absolute scale and establishes a new state of the art. We make our implementation publicly available.
FALCONEye: Finding Answers and Localizing Content in ONE-hour-long videos with multi-modal LLMs
Information retrieval in hour-long videos presents a significant challenge, even for state-of-the-art Vision-Language Models (VLMs), particularly when the desired information is localized within a small subset of frames. Long video data presents challenges for VLMs due to context window limitations and the difficulty of pinpointing frames containing the answer. Our novel video agent, FALCONEye, combines a VLM and a Large Language Model (LLM) to search relevant information along the video, and locate the frames with the answer. FALCONEye novelty relies on 1) the proposed meta-architecture, which is better suited to tackle hour-long videos compared to short video approaches in the state-of-the-art; 2) a new efficient exploration algorithm to locate the information using short clips, captions and answer confidence; and 3) our state-of-the-art VLMs calibration analysis for the answer confidence. Our agent is built over a small-size VLM and a medium-size LLM being accessible to run on standard computational resources. We also release FALCON-Bench, a benchmark to evaluate long (average > 1 hour) Video Answer Search challenges, highlighting the need for open-ended question evaluation. Our experiments show FALCONEye's superior performance than the state-of-the-art in FALCON-Bench, and similar or better performance in related benchmarks.
TGIF-QA: Toward Spatio-Temporal Reasoning in Visual Question Answering
Vision and language understanding has emerged as a subject undergoing intense study in Artificial Intelligence. Among many tasks in this line of research, visual question answering (VQA) has been one of the most successful ones, where the goal is to learn a model that understands visual content at region-level details and finds their associations with pairs of questions and answers in the natural language form. Despite the rapid progress in the past few years, most existing work in VQA have focused primarily on images. In this paper, we focus on extending VQA to the video domain and contribute to the literature in three important ways. First, we propose three new tasks designed specifically for video VQA, which require spatio-temporal reasoning from videos to answer questions correctly. Next, we introduce a new large-scale dataset for video VQA named TGIF-QA that extends existing VQA work with our new tasks. Finally, we propose a dual-LSTM based approach with both spatial and temporal attention, and show its effectiveness over conventional VQA techniques through empirical evaluations.
Encyclopedic VQA: Visual questions about detailed properties of fine-grained categories
We propose Encyclopedic-VQA, a large scale visual question answering (VQA) dataset featuring visual questions about detailed properties of fine-grained categories and instances. It contains 221k unique question+answer pairs each matched with (up to) 5 images, resulting in a total of 1M VQA samples. Moreover, our dataset comes with a controlled knowledge base derived from Wikipedia, marking the evidence to support each answer. Empirically, we show that our dataset poses a hard challenge for large vision+language models as they perform poorly on our dataset: PaLI [14] is state-of-the-art on OK-VQA [37], yet it only achieves 13.0% accuracy on our dataset. Moreover, we experimentally show that progress on answering our encyclopedic questions can be achieved by augmenting large models with a mechanism that retrieves relevant information from the knowledge base. An oracle experiment with perfect retrieval achieves 87.0% accuracy on the single-hop portion of our dataset, and an automatic retrieval-augmented prototype yields 48.8%. We believe that our dataset enables future research on retrieval-augmented vision+language models. It is available at https://github.com/google-research/google-research/tree/master/encyclopedic_vqa .
ViDoRAG: Visual Document Retrieval-Augmented Generation via Dynamic Iterative Reasoning Agents
Understanding information from visually rich documents remains a significant challenge for traditional Retrieval-Augmented Generation (RAG) methods. Existing benchmarks predominantly focus on image-based question answering (QA), overlooking the fundamental challenges of efficient retrieval, comprehension, and reasoning within dense visual documents. To bridge this gap, we introduce ViDoSeek, a novel dataset designed to evaluate RAG performance on visually rich documents requiring complex reasoning. Based on it, we identify key limitations in current RAG approaches: (i) purely visual retrieval methods struggle to effectively integrate both textual and visual features, and (ii) previous approaches often allocate insufficient reasoning tokens, limiting their effectiveness. To address these challenges, we propose ViDoRAG, a novel multi-agent RAG framework tailored for complex reasoning across visual documents. ViDoRAG employs a Gaussian Mixture Model (GMM)-based hybrid strategy to effectively handle multi-modal retrieval. To further elicit the model's reasoning capabilities, we introduce an iterative agent workflow incorporating exploration, summarization, and reflection, providing a framework for investigating test-time scaling in RAG domains. Extensive experiments on ViDoSeek validate the effectiveness and generalization of our approach. Notably, ViDoRAG outperforms existing methods by over 10% on the competitive ViDoSeek benchmark.
Right this way: Can VLMs Guide Us to See More to Answer Questions?
In question-answering scenarios, humans can assess whether the available information is sufficient and seek additional information if necessary, rather than providing a forced answer. In contrast, Vision Language Models (VLMs) typically generate direct, one-shot responses without evaluating the sufficiency of the information. To investigate this gap, we identify a critical and challenging task in the Visual Question Answering (VQA) scenario: can VLMs indicate how to adjust an image when the visual information is insufficient to answer a question? This capability is especially valuable for assisting visually impaired individuals who often need guidance to capture images correctly. To evaluate this capability of current VLMs, we introduce a human-labeled dataset as a benchmark for this task. Additionally, we present an automated framework that generates synthetic training data by simulating ``where to know'' scenarios. Our empirical results show significant performance improvements in mainstream VLMs when fine-tuned with this synthetic data. This study demonstrates the potential to narrow the gap between information assessment and acquisition in VLMs, bringing their performance closer to humans.
Visual Riddles: a Commonsense and World Knowledge Challenge for Large Vision and Language Models
Imagine observing someone scratching their arm; to understand why, additional context would be necessary. However, spotting a mosquito nearby would immediately offer a likely explanation for the person's discomfort, thereby alleviating the need for further information. This example illustrates how subtle visual cues can challenge our cognitive skills and demonstrates the complexity of interpreting visual scenarios. To study these skills, we present Visual Riddles, a benchmark aimed to test vision and language models on visual riddles requiring commonsense and world knowledge. The benchmark comprises 400 visual riddles, each featuring a unique image created by a variety of text-to-image models, question, ground-truth answer, textual hint, and attribution. Human evaluation reveals that existing models lag significantly behind human performance, which is at 82\% accuracy, with Gemini-Pro-1.5 leading with 40\% accuracy. Our benchmark comes with automatic evaluation tasks to make assessment scalable. These findings underscore the potential of Visual Riddles as a valuable resource for enhancing vision and language models' capabilities in interpreting complex visual scenarios.
Understanding the World's Museums through Vision-Language Reasoning
Museums serve as vital repositories of cultural heritage and historical artifacts spanning diverse epochs, civilizations, and regions, preserving well-documented collections. Data reveal key attributes such as age, origin, material, and cultural significance. Understanding museum exhibits from their images requires reasoning beyond visual features. In this work, we facilitate such reasoning by (a) collecting and curating a large-scale dataset of 65M images and 200M question-answer pairs in the standard museum catalog format for exhibits from all around the world; (b) training large vision-language models on the collected dataset; (c) benchmarking their ability on five visual question answering tasks. The complete dataset is labeled by museum experts, ensuring the quality as well as the practical significance of the labels. We train two VLMs from different categories: the BLIP model, with vision-language aligned embeddings, but lacking the expressive power of large language models, and the LLaVA model, a powerful instruction-tuned LLM enriched with vision-language reasoning capabilities. Through exhaustive experiments, we provide several insights on the complex and fine-grained understanding of museum exhibits. In particular, we show that some questions whose answers can often be derived directly from visual features are well answered by both types of models. On the other hand, questions that require the grounding of the visual features in repositories of human knowledge are better answered by the large vision-language models, thus demonstrating their superior capacity to perform the desired reasoning. Find our dataset, benchmarks, and source code at: https://github.com/insait-institute/Museum-65
AVIS: Autonomous Visual Information Seeking with Large Language Models
In this paper, we propose an autonomous information seeking visual question answering framework, AVIS. Our method leverages a Large Language Model (LLM) to dynamically strategize the utilization of external tools and to investigate their outputs, thereby acquiring the indispensable knowledge needed to provide answers to the posed questions. Responding to visual questions that necessitate external knowledge, such as "What event is commemorated by the building depicted in this image?", is a complex task. This task presents a combinatorial search space that demands a sequence of actions, including invoking APIs, analyzing their responses, and making informed decisions. We conduct a user study to collect a variety of instances of human decision-making when faced with this task. This data is then used to design a system comprised of three components: an LLM-powered planner that dynamically determines which tool to use next, an LLM-powered reasoner that analyzes and extracts key information from the tool outputs, and a working memory component that retains the acquired information throughout the process. The collected user behavior serves as a guide for our system in two key ways. First, we create a transition graph by analyzing the sequence of decisions made by users. This graph delineates distinct states and confines the set of actions available at each state. Second, we use examples of user decision-making to provide our LLM-powered planner and reasoner with relevant contextual instances, enhancing their capacity to make informed decisions. We show that AVIS achieves state-of-the-art results on knowledge-intensive visual question answering benchmarks such as Infoseek and OK-VQA.
VISREAS: Complex Visual Reasoning with Unanswerable Questions
Verifying a question's validity before answering is crucial in real-world applications, where users may provide imperfect instructions. In this scenario, an ideal model should address the discrepancies in the query and convey them to the users rather than generating the best possible answer. Addressing this requirement, we introduce a new compositional visual question-answering dataset, VISREAS, that consists of answerable and unanswerable visual queries formulated by traversing and perturbing commonalities and differences among objects, attributes, and relations. VISREAS contains 2.07M semantically diverse queries generated automatically using Visual Genome scene graphs. The unique feature of this task, validating question answerability with respect to an image before answering, and the poor performance of state-of-the-art models inspired the design of a new modular baseline, LOGIC2VISION that reasons by producing and executing pseudocode without any external modules to generate the answer. LOGIC2VISION outperforms generative models in VISREAS (+4.82% over LLaVA-1.5; +12.23% over InstructBLIP) and achieves a significant gain in performance against the classification models.
VDocRAG: Retrieval-Augmented Generation over Visually-Rich Documents
We aim to develop a retrieval-augmented generation (RAG) framework that answers questions over a corpus of visually-rich documents presented in mixed modalities (e.g., charts, tables) and diverse formats (e.g., PDF, PPTX). In this paper, we introduce a new RAG framework, VDocRAG, which can directly understand varied documents and modalities in a unified image format to prevent missing information that occurs by parsing documents to obtain text. To improve the performance, we propose novel self-supervised pre-training tasks that adapt large vision-language models for retrieval by compressing visual information into dense token representations while aligning them with textual content in documents. Furthermore, we introduce OpenDocVQA, the first unified collection of open-domain document visual question answering datasets, encompassing diverse document types and formats. OpenDocVQA provides a comprehensive resource for training and evaluating retrieval and question answering models on visually-rich documents in an open-domain setting. Experiments show that VDocRAG substantially outperforms conventional text-based RAG and has strong generalization capability, highlighting the potential of an effective RAG paradigm for real-world documents.
Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering
Problems at the intersection of vision and language are of significant importance both as challenging research questions and for the rich set of applications they enable. However, inherent structure in our world and bias in our language tend to be a simpler signal for learning than visual modalities, resulting in models that ignore visual information, leading to an inflated sense of their capability. We propose to counter these language priors for the task of Visual Question Answering (VQA) and make vision (the V in VQA) matter! Specifically, we balance the popular VQA dataset by collecting complementary images such that every question in our balanced dataset is associated with not just a single image, but rather a pair of similar images that result in two different answers to the question. Our dataset is by construction more balanced than the original VQA dataset and has approximately twice the number of image-question pairs. Our complete balanced dataset is publicly available at www.visualqa.org as part of the 2nd iteration of the Visual Question Answering Dataset and Challenge (VQA v2.0). We further benchmark a number of state-of-art VQA models on our balanced dataset. All models perform significantly worse on our balanced dataset, suggesting that these models have indeed learned to exploit language priors. This finding provides the first concrete empirical evidence for what seems to be a qualitative sense among practitioners. Finally, our data collection protocol for identifying complementary images enables us to develop a novel interpretable model, which in addition to providing an answer to the given (image, question) pair, also provides a counter-example based explanation. Specifically, it identifies an image that is similar to the original image, but it believes has a different answer to the same question. This can help in building trust for machines among their users.
Dynamic Double Space Tower
The Visual Question Answering (VQA) task requires the simultaneous understanding of image content and question semantics. However, existing methods often have difficulty handling complex reasoning scenarios due to insufficient cross-modal interaction and capturing the entity spatial relationships in the image.huang2023adaptiveliu2021comparingguibas2021adaptivezhang2022vsaWe studied a brand-new approach to replace the attention mechanism in order to enhance the reasoning ability of the model and its understanding of spatial relationships.Specifically, we propose a dynamic bidirectional spatial tower, which is divided into four layers to observe the image according to the principle of human gestalt vision. This naturally provides a powerful structural prior for the spatial organization between entities, enabling the model to no longer blindly search for relationships between pixels but make judgments based on more meaningful perceptual units. Change from "seeing images" to "perceiving and organizing image content".A large number of experiments have shown that our module can be used in any other multimodal model and achieve advanced results, demonstrating its potential in spatial relationship processing.Meanwhile, the multimodal visual question-answering model July trained by our method has achieved state-of-the-art results with only 3B parameters, especially on the question-answering dataset of spatial relations.
PDF-MVQA: A Dataset for Multimodal Information Retrieval in PDF-based Visual Question Answering
Document Question Answering (QA) presents a challenge in understanding visually-rich documents (VRD), particularly those dominated by lengthy textual content like research journal articles. Existing studies primarily focus on real-world documents with sparse text, while challenges persist in comprehending the hierarchical semantic relations among multiple pages to locate multimodal components. To address this gap, we propose PDF-MVQA, which is tailored for research journal articles, encompassing multiple pages and multimodal information retrieval. Unlike traditional machine reading comprehension (MRC) tasks, our approach aims to retrieve entire paragraphs containing answers or visually rich document entities like tables and figures. Our contributions include the introduction of a comprehensive PDF Document VQA dataset, allowing the examination of semantically hierarchical layout structures in text-dominant documents. We also present new VRD-QA frameworks designed to grasp textual contents and relations among document layouts simultaneously, extending page-level understanding to the entire multi-page document. Through this work, we aim to enhance the capabilities of existing vision-and-language models in handling challenges posed by text-dominant documents in VRD-QA.
SeePhys: Does Seeing Help Thinking? -- Benchmarking Vision-Based Physics Reasoning
We present SeePhys, a large-scale multimodal benchmark for LLM reasoning grounded in physics questions ranging from middle school to PhD qualifying exams. The benchmark covers 7 fundamental domains spanning the physics discipline, incorporating 21 categories of highly heterogeneous diagrams. In contrast to prior works where visual elements mainly serve auxiliary purposes, our benchmark features a substantial proportion of vision-essential problems (75\%) that mandate visual information extraction for correct solutions. Through extensive evaluation, we observe that even the most advanced visual reasoning models (e.g., Gemini-2.5-pro and o4-mini) achieve sub-60\% accuracy on our benchmark. These results reveal fundamental challenges in current large language models' visual understanding capabilities, particularly in: (i) establishing rigorous coupling between diagram interpretation and physics reasoning, and (ii) overcoming their persistent reliance on textual cues as cognitive shortcuts.
MMMU-Pro: A More Robust Multi-discipline Multimodal Understanding Benchmark
This paper introduces MMMU-Pro, a robust version of the Massive Multi-discipline Multimodal Understanding and Reasoning (MMMU) benchmark. MMMU-Pro rigorously assesses multimodal models' true understanding and reasoning capabilities through a three-step process based on MMMU: (1) filtering out questions answerable by text-only models, (2) augmenting candidate options, and (3) introducing a vision-only input setting where questions are embedded within images. This setting challenges AI to truly "see" and "read" simultaneously, testing a fundamental human cognitive skill of seamlessly integrating visual and textual information. Results show that model performance is substantially lower on MMMU-Pro than on MMMU, ranging from 16.8% to 26.9% across models. We explore the impact of OCR prompts and Chain of Thought (CoT) reasoning, finding that OCR prompts have minimal effect while CoT generally improves performance. MMMU-Pro provides a more rigorous evaluation tool, closely mimicking real-world scenarios and offering valuable directions for future research in multimodal AI.
REVIVE: Regional Visual Representation Matters in Knowledge-Based Visual Question Answering
This paper revisits visual representation in knowledge-based visual question answering (VQA) and demonstrates that using regional information in a better way can significantly improve the performance. While visual representation is extensively studied in traditional VQA, it is under-explored in knowledge-based VQA even though these two tasks share the common spirit, i.e., rely on visual input to answer the question. Specifically, we observe that in most state-of-the-art knowledge-based VQA methods: 1) visual features are extracted either from the whole image or in a sliding window manner for retrieving knowledge, and the important relationship within/among object regions is neglected; 2) visual features are not well utilized in the final answering model, which is counter-intuitive to some extent. Based on these observations, we propose a new knowledge-based VQA method REVIVE, which tries to utilize the explicit information of object regions not only in the knowledge retrieval stage but also in the answering model. The key motivation is that object regions and inherent relationship are important for knowledge-based VQA. We perform extensive experiments on the standard OK-VQA dataset and achieve new state-of-the-art performance, i.e., 58.0% accuracy, surpassing previous state-of-the-art method by a large margin (+3.6%). We also conduct detailed analysis and show the necessity of regional information in different framework components for knowledge-based VQA. Code is publicly available at https://github.com/yzleroy/REVIVE.
VisualWebInstruct: Scaling up Multimodal Instruction Data through Web Search
Vision-Language Models have made significant progress on many perception-focused tasks, however, their progress on reasoning-focused tasks seem to be limited due to the lack of high-quality and diverse training data. In this work, we aim to address the scarcity issue of reasoning-focused multimodal datasets. We propose VisualWebInstruct - a novel approach that leverages search engine to create a diverse, and high-quality dataset spanning multiple disciplines like math, physics, finance, chemistry, etc. Starting with meticulously selected 30,000 seed images, we employ Google Image search to identify websites containing similar images. We collect and process the HTMLs from over 700K unique URL sources. Through a pipeline of content extraction, filtering and synthesis, we build a dataset of approximately 900K question-answer pairs, with 40% being visual QA pairs and the rest as text QA pairs. Models fine-tuned on VisualWebInstruct demonstrate significant performance gains: (1) training from Llava-OV-mid shows 10-20% absolute point gains across benchmarks, (2) training from MAmmoTH-VL shows 5% absoluate gain. Our best model MAmmoTH-VL2 shows state-of-the-art performance within the 10B parameter class on MMMU-Pro-std (40.7%), MathVerse (42.6%), and DynaMath (55.7%). These remarkable results highlight the effectiveness of our dataset in enhancing VLMs' reasoning capabilities for complex multimodal tasks.
Vision Search Assistant: Empower Vision-Language Models as Multimodal Search Engines
Search engines enable the retrieval of unknown information with texts. However, traditional methods fall short when it comes to understanding unfamiliar visual content, such as identifying an object that the model has never seen before. This challenge is particularly pronounced for large vision-language models (VLMs): if the model has not been exposed to the object depicted in an image, it struggles to generate reliable answers to the user's question regarding that image. Moreover, as new objects and events continuously emerge, frequently updating VLMs is impractical due to heavy computational burdens. To address this limitation, we propose Vision Search Assistant, a novel framework that facilitates collaboration between VLMs and web agents. This approach leverages VLMs' visual understanding capabilities and web agents' real-time information access to perform open-world Retrieval-Augmented Generation via the web. By integrating visual and textual representations through this collaboration, the model can provide informed responses even when the image is novel to the system. Extensive experiments conducted on both open-set and closed-set QA benchmarks demonstrate that the Vision Search Assistant significantly outperforms the other models and can be widely applied to existing VLMs.
VisualOverload: Probing Visual Understanding of VLMs in Really Dense Scenes
Is basic visual understanding really solved in state-of-the-art VLMs? We present VisualOverload, a slightly different visual question answering (VQA) benchmark comprising 2,720 question-answer pairs, with privately held ground-truth responses. Unlike prior VQA datasets that typically focus on near global image understanding, VisualOverload challenges models to perform simple, knowledge-free vision tasks in densely populated (or, overloaded) scenes. Our dataset consists of high-resolution scans of public-domain paintings that are populated with multiple figures, actions, and unfolding subplots set against elaborately detailed backdrops. We manually annotated these images with questions across six task categories to probe for a thorough understanding of the scene. We hypothesize that current benchmarks overestimate the performance of VLMs, and encoding and reasoning over details is still a challenging task for them, especially if they are confronted with densely populated scenes. Indeed, we observe that even the best model (o3) out of 37 tested models only achieves 19.6% accuracy on our hardest test split and overall 69.5% accuracy on all questions. Beyond a thorough evaluation, we complement our benchmark with an error analysis that reveals multiple failure modes, including a lack of counting skills, failure in OCR, and striking logical inconsistencies under complex tasks. Altogether, VisualOverload exposes a critical gap in current vision models and offers a crucial resource for the community to develop better models. Benchmark: http://paulgavrikov.github.io/visualoverload
MUST-VQA: MUltilingual Scene-text VQA
In this paper, we present a framework for Multilingual Scene Text Visual Question Answering that deals with new languages in a zero-shot fashion. Specifically, we consider the task of Scene Text Visual Question Answering (STVQA) in which the question can be asked in different languages and it is not necessarily aligned to the scene text language. Thus, we first introduce a natural step towards a more generalized version of STVQA: MUST-VQA. Accounting for this, we discuss two evaluation scenarios in the constrained setting, namely IID and zero-shot and we demonstrate that the models can perform on a par on a zero-shot setting. We further provide extensive experimentation and show the effectiveness of adapting multilingual language models into STVQA tasks.
RealCQA: Scientific Chart Question Answering as a Test-bed for First-Order Logic
We present a comprehensive study of chart visual question-answering(QA) task, to address the challenges faced in comprehending and extracting data from chart visualizations within documents. Despite efforts to tackle this problem using synthetic charts, solutions are limited by the shortage of annotated real-world data. To fill this gap, we introduce a benchmark and dataset for chart visual QA on real-world charts, offering a systematic analysis of the task and a novel taxonomy for template-based chart question creation. Our contribution includes the introduction of a new answer type, 'list', with both ranked and unranked variations. Our study is conducted on a real-world chart dataset from scientific literature, showcasing higher visual complexity compared to other works. Our focus is on template-based QA and how it can serve as a standard for evaluating the first-order logic capabilities of models. The results of our experiments, conducted on a real-world out-of-distribution dataset, provide a robust evaluation of large-scale pre-trained models and advance the field of chart visual QA and formal logic verification for neural networks in general.
FALCON: Fast Visual Concept Learning by Integrating Images, Linguistic descriptions, and Conceptual Relations
We present a meta-learning framework for learning new visual concepts quickly, from just one or a few examples, guided by multiple naturally occurring data streams: simultaneously looking at images, reading sentences that describe the objects in the scene, and interpreting supplemental sentences that relate the novel concept with other concepts. The learned concepts support downstream applications, such as answering questions by reasoning about unseen images. Our model, namely FALCON, represents individual visual concepts, such as colors and shapes, as axis-aligned boxes in a high-dimensional space (the "box embedding space"). Given an input image and its paired sentence, our model first resolves the referential expression in the sentence and associates the novel concept with particular objects in the scene. Next, our model interprets supplemental sentences to relate the novel concept with other known concepts, such as "X has property Y" or "X is a kind of Y". Finally, it infers an optimal box embedding for the novel concept that jointly 1) maximizes the likelihood of the observed instances in the image, and 2) satisfies the relationships between the novel concepts and the known ones. We demonstrate the effectiveness of our model on both synthetic and real-world datasets.
Sentence Attention Blocks for Answer Grounding
Answer grounding is the task of locating relevant visual evidence for the Visual Question Answering task. While a wide variety of attention methods have been introduced for this task, they suffer from the following three problems: designs that do not allow the usage of pre-trained networks and do not benefit from large data pre-training, custom designs that are not based on well-grounded previous designs, therefore limiting the learning power of the network, or complicated designs that make it challenging to re-implement or improve them. In this paper, we propose a novel architectural block, which we term Sentence Attention Block, to solve these problems. The proposed block re-calibrates channel-wise image feature-maps by explicitly modeling inter-dependencies between the image feature-maps and sentence embedding. We visually demonstrate how this block filters out irrelevant feature-maps channels based on sentence embedding. We start our design with a well-known attention method, and by making minor modifications, we improve the results to achieve state-of-the-art accuracy. The flexibility of our method makes it easy to use different pre-trained backbone networks, and its simplicity makes it easy to understand and be re-implemented. We demonstrate the effectiveness of our method on the TextVQA-X, VQS, VQA-X, and VizWiz-VQA-Grounding datasets. We perform multiple ablation studies to show the effectiveness of our design choices.
U-MATH: A University-Level Benchmark for Evaluating Mathematical Skills in LLMs
The current evaluation of mathematical skills in LLMs is limited, as existing benchmarks are either relatively small, primarily focus on elementary and high-school problems, or lack diversity in topics. Additionally, the inclusion of visual elements in tasks remains largely under-explored. To address these gaps, we introduce U-MATH, a novel benchmark of 1,100 unpublished open-ended university-level problems sourced from teaching materials. It is balanced across six core subjects, with 20% of multimodal problems. Given the open-ended nature of U-MATH problems, we employ an LLM to judge the correctness of generated solutions. To this end, we release mu-MATH, a dataset to evaluate the LLMs' capabilities in judging solutions. The evaluation of general domain, math-specific, and multimodal LLMs highlights the challenges presented by U-MATH. Our findings reveal that LLMs achieve a maximum accuracy of only 63% on text-based tasks, with even lower 45% on visual problems. The solution assessment proves challenging for LLMs, with the best LLM judge having an F1-score of 80% on mu-MATH.
Object-centric Video Question Answering with Visual Grounding and Referring
Video Large Language Models (VideoLLMs) have recently demonstrated remarkable progress in general video understanding. However, existing models primarily focus on high-level comprehension and are limited to text-only responses, restricting the flexibility for object-centric, multiround interactions. In this paper, we make three contributions: (i) we address these limitations by introducing a VideoLLM model, capable of performing both object referring for input and grounding for output in video reasoning tasks, i.e., allowing users to interact with videos using both textual and visual prompts; (ii) we propose STOM (Spatial-Temporal Overlay Module), a novel approach that propagates arbitrary visual prompts input at any single timestamp to the remaining frames within a video; (iii) we present VideoInfer, a manually curated object-centric video instruction dataset featuring questionanswering pairs that require reasoning. We conduct comprehensive experiments on VideoInfer and other existing benchmarks across video question answering and referring object segmentation. The results on 12 benchmarks of 6 tasks show that our proposed model consistently outperforms baselines in both video question answering and segmentation, underscoring its robustness in multimodal, object-centric video and image understanding. Project page: https://qirui-chen.github.io/RGA3-release/.
MRAG-Bench: Vision-Centric Evaluation for Retrieval-Augmented Multimodal Models
Existing multimodal retrieval benchmarks primarily focus on evaluating whether models can retrieve and utilize external textual knowledge for question answering. However, there are scenarios where retrieving visual information is either more beneficial or easier to access than textual data. In this paper, we introduce a multimodal retrieval-augmented generation benchmark, MRAG-Bench, in which we systematically identify and categorize scenarios where visually augmented knowledge is better than textual knowledge, for instance, more images from varying viewpoints. MRAG-Bench consists of 16,130 images and 1,353 human-annotated multiple-choice questions across 9 distinct scenarios. With MRAG-Bench, we conduct an evaluation of 10 open-source and 4 proprietary large vision-language models (LVLMs). Our results show that all LVLMs exhibit greater improvements when augmented with images compared to textual knowledge, confirming that MRAG-Bench is vision-centric. Additionally, we conduct extensive analysis with MRAG-Bench, which offers valuable insights into retrieval-augmented LVLMs. Notably, the top-performing model, GPT-4o, faces challenges in effectively leveraging retrieved knowledge, achieving only a 5.82% improvement with ground-truth information, in contrast to a 33.16% improvement observed in human participants. These findings highlight the importance of MRAG-Bench in encouraging the community to enhance LVLMs' ability to utilize retrieved visual knowledge more effectively.
Guiding Vision-Language Model Selection for Visual Question-Answering Across Tasks, Domains, and Knowledge Types
Visual Question-Answering (VQA) has become a key use-case in several applications to aid user experience, particularly after Vision-Language Models (VLMs) achieving good results in zero-shot inference. But evaluating different VLMs for an application requirement using a standardized framework in practical settings is still challenging. This paper introduces a comprehensive framework for evaluating VLMs tailored to VQA tasks in practical settings. We present a novel dataset derived from established VQA benchmarks, annotated with task types, application domains, and knowledge types, three key practical aspects on which tasks can vary. We also introduce GoEval, a multimodal evaluation metric developed using GPT-4o, achieving a correlation factor of 56.71% with human judgments. Our experiments with ten state-of-the-art VLMs reveals that no single model excelling universally, making appropriate selection a key design decision. Proprietary models such as Gemini-1.5-Pro and GPT-4o-mini generally outperform others, though open-source models like InternVL-2-8B and CogVLM-2-Llama-3-19B demonstrate competitive strengths in specific contexts, while providing additional advantages. This study guides the selection of VLMs based on specific task requirements and resource constraints, and can also be extended to other vision-language tasks.
Visual Haystacks: Answering Harder Questions About Sets of Images
Recent advancements in Large Multimodal Models (LMMs) have made significant progress in the field of single-image visual question answering. However, these models face substantial challenges when tasked with queries that span extensive collections of images, similar to real-world scenarios like searching through large photo albums, finding specific information across the internet, or monitoring environmental changes through satellite imagery. This paper explores the task of Multi-Image Visual Question Answering (MIQA): given a large set of images and a natural language query, the task is to generate a relevant and grounded response. We propose a new public benchmark, dubbed "Visual Haystacks (VHs)," specifically designed to evaluate LMMs' capabilities in visual retrieval and reasoning over sets of unrelated images, where we perform comprehensive evaluations demonstrating that even robust closed-source models struggle significantly. Towards addressing these shortcomings, we introduce MIRAGE (Multi-Image Retrieval Augmented Generation), a novel retrieval/QA framework tailored for LMMs that confronts the challenges of MIQA with marked efficiency and accuracy improvements over baseline methods. Our evaluation shows that MIRAGE surpasses closed-source GPT-4o models by up to 11% on the VHs benchmark and offers up to 3.4x improvements in efficiency over text-focused multi-stage approaches.
Probing Visual Language Priors in VLMs
Despite recent advances in Vision-Language Models (VLMs), many still over-rely on visual language priors present in their training data rather than true visual reasoning. To examine the situation, we introduce ViLP, a visual question answering (VQA) benchmark that pairs each question with three potential answers and three corresponding images: one image whose answer can be inferred from text alone, and two images that demand visual reasoning. By leveraging image generative models, we ensure significant variation in texture, shape, conceptual combinations, hallucinated elements, and proverb-based contexts, making our benchmark images distinctly out-of-distribution. While humans achieve near-perfect accuracy, modern VLMs falter; for instance, GPT-4 achieves only 66.17% on ViLP. To alleviate this, we propose a self-improving framework in which models generate new VQA pairs and images, then apply pixel-level and semantic corruptions to form "good-bad" image pairs for self-training. Our training objectives compel VLMs to focus more on actual visual inputs and have demonstrated their effectiveness in enhancing the performance of open-source VLMs, including LLaVA-v1.5 and Cambrian.
Segment Everything Everywhere All at Once
In this work, we present SEEM, a promptable and interactive model for segmenting everything everywhere all at once in an image, as shown in Fig.1. In SEEM, we propose a novel decoding mechanism that enables diverse prompting for all types of segmentation tasks, aiming at a universal segmentation interface that behaves like large language models (LLMs). More specifically, SEEM is designed with four desiderata: i) Versatility. We introduce a new visual prompt to unify different spatial queries including points, boxes, scribbles and masks, which can further generalize to a different referring image; ii) Compositionality. We learn a joint visual-semantic space between text and visual prompts, which facilitates the dynamic composition of two prompt types required for various segmentation tasks; iii) Interactivity. We further incorporate learnable memory prompts into the decoder to retain segmentation history through mask-guided cross-attention from decoder to image features; and iv) Semantic-awareness. We use a text encoder to encode text queries and mask labels into the same semantic space for open-vocabulary segmentation. We conduct a comprehensive empirical study to validate the effectiveness of SEEM across diverse segmentation tasks. Notably, our single SEEM model achieves competitive performance across interactive segmentation, generic segmentation, referring segmentation, and video object segmentation on 9 datasets with minimum 1/100 supervision. Furthermore, SEEM showcases a remarkable capacity for generalization to novel prompts or their combinations, rendering it a readily universal image segmentation interface.
Are Language Models Puzzle Prodigies? Algorithmic Puzzles Unveil Serious Challenges in Multimodal Reasoning
This paper introduces the novel task of multimodal puzzle solving, framed within the context of visual question-answering. We present a new dataset, AlgoPuzzleVQA designed to challenge and evaluate the capabilities of multimodal language models in solving algorithmic puzzles that necessitate both visual understanding, language understanding, and complex algorithmic reasoning. We create the puzzles to encompass a diverse array of mathematical and algorithmic topics such as boolean logic, combinatorics, graph theory, optimization, search, etc., aiming to evaluate the gap between visual data interpretation and algorithmic problem-solving skills. The dataset is generated automatically from code authored by humans. All our puzzles have exact solutions that can be found from the algorithm without tedious human calculations. It ensures that our dataset can be scaled up arbitrarily in terms of reasoning complexity and dataset size. Our investigation reveals that large language models (LLMs) such as GPT4V and Gemini exhibit limited performance in puzzle-solving tasks. We find that their performance is near random in a multi-choice question-answering setup for a significant number of puzzles. The findings emphasize the challenges of integrating visual, language, and algorithmic knowledge for solving complex reasoning problems.
"What is the value of {templates}?" Rethinking Document Information Extraction Datasets for LLMs
The rise of large language models (LLMs) for visually rich document understanding (VRDU) has kindled a need for prompt-response, document-based datasets. As annotating new datasets from scratch is labor-intensive, the existing literature has generated prompt-response datasets from available resources using simple templates. For the case of key information extraction (KIE), one of the most common VRDU tasks, past work has typically employed the template "What is the value for the {key}?". However, given the variety of questions encountered in the wild, simple and uniform templates are insufficient for creating robust models in research and industrial contexts. In this work, we present K2Q, a diverse collection of five datasets converted from KIE to a prompt-response format using a plethora of bespoke templates. The questions in K2Q can span multiple entities and be extractive or boolean. We empirically compare the performance of seven baseline generative models on K2Q with zero-shot prompting. We further compare three of these models when training on K2Q versus training on simpler templates to motivate the need of our work. We find that creating diverse and intricate KIE questions enhances the performance and robustness of VRDU models. We hope this work encourages future studies on data quality for generative model training.
Target Prompting for Information Extraction with Vision Language Model
The recent trend in the Large Vision and Language model has brought a new change in how information extraction systems are built. VLMs have set a new benchmark with their State-of-the-art techniques in understanding documents and building question-answering systems across various industries. They are significantly better at generating text from document images and providing accurate answers to questions. However, there are still some challenges in effectively utilizing these models to build a precise conversational system. General prompting techniques used with large language models are often not suitable for these specially designed vision language models. The output generated by such generic input prompts is ordinary and may contain information gaps when compared with the actual content of the document. To obtain more accurate and specific answers, a well-targeted prompt is required by the vision language model, along with the document image. In this paper, a technique is discussed called Target prompting, which focuses on explicitly targeting parts of document images and generating related answers from those specific regions only. The paper also covers the evaluation of response for each prompting technique using different user queries and input prompts.
TVQA+: Spatio-Temporal Grounding for Video Question Answering
We present the task of Spatio-Temporal Video Question Answering, which requires intelligent systems to simultaneously retrieve relevant moments and detect referenced visual concepts (people and objects) to answer natural language questions about videos. We first augment the TVQA dataset with 310.8K bounding boxes, linking depicted objects to visual concepts in questions and answers. We name this augmented version as TVQA+. We then propose Spatio-Temporal Answerer with Grounded Evidence (STAGE), a unified framework that grounds evidence in both spatial and temporal domains to answer questions about videos. Comprehensive experiments and analyses demonstrate the effectiveness of our framework and how the rich annotations in our TVQA+ dataset can contribute to the question answering task. Moreover, by performing this joint task, our model is able to produce insightful and interpretable spatio-temporal attention visualizations. Dataset and code are publicly available at: http: //tvqa.cs.unc.edu, https://github.com/jayleicn/TVQAplus
MathVista: Evaluating Mathematical Reasoning of Foundation Models in Visual Contexts
Although Large Language Models (LLMs) and Large Multimodal Models (LMMs) exhibit impressive skills in various domains, their ability for mathematical reasoning within visual contexts has not been formally examined. Equipping LLMs and LMMs with this capability is vital for general-purpose AI assistants and showcases promising potential in education, data analysis, and scientific discovery. To bridge this gap, we present MathVista, a benchmark designed to amalgamate challenges from diverse mathematical and visual tasks. We first taxonomize the key task types, reasoning skills, and visual contexts from the literature to guide our selection from 28 existing math-focused and visual question answering datasets. Then, we construct three new datasets, IQTest, FunctionQA, and PaperQA, to accommodate for missing types of visual contexts. The problems featured often require deep visual understanding beyond OCR or image captioning, and compositional reasoning with rich domain-specific tools, thus posing a notable challenge to existing models. We conduct a comprehensive evaluation of 11 prominent open-source and proprietary foundation models (LLMs, LLMs augmented with tools, and LMMs), and early experiments with GPT-4V. The best-performing model, Multimodal Bard, achieves only 58% of human performance (34.8% vs 60.3%), indicating ample room for further improvement. Given this significant gap, MathVista fuels future research in the development of general-purpose AI agents capable of tackling mathematically intensive and visually rich real-world tasks. Preliminary tests show that MathVista also presents challenges to GPT-4V, underscoring the benchmark's importance. The project is available at https://mathvista.github.io/.
Simple Baselines for Interactive Video Retrieval with Questions and Answers
To date, the majority of video retrieval systems have been optimized for a "single-shot" scenario in which the user submits a query in isolation, ignoring previous interactions with the system. Recently, there has been renewed interest in interactive systems to enhance retrieval, but existing approaches are complex and deliver limited gains in performance. In this work, we revisit this topic and propose several simple yet effective baselines for interactive video retrieval via question-answering. We employ a VideoQA model to simulate user interactions and show that this enables the productive study of the interactive retrieval task without access to ground truth dialogue data. Experiments on MSR-VTT, MSVD, and AVSD show that our framework using question-based interaction significantly improves the performance of text-based video retrieval systems.
Good Questions Help Zero-Shot Image Reasoning
Aligning the recent large language models (LLMs) with computer vision models leads to large vision-language models (LVLMs), which have paved the way for zero-shot image reasoning tasks. However, LVLMs are usually trained on short high-level captions only referring to sparse focus regions in images. Such a ``tunnel vision'' limits LVLMs to exploring other relevant contexts in complex scenes. To address this challenge, we introduce Question-Driven Visual Exploration (QVix), a novel prompting strategy that enhances the exploratory capabilities of LVLMs in zero-shot reasoning tasks. QVix leverages LLMs' strong language prior to generate input-exploratory questions with more details than the original query, guiding LVLMs to explore visual content more comprehensively and uncover subtle or peripheral details. QVix enables a wider exploration of visual scenes, improving the LVLMs' reasoning accuracy and depth in tasks such as visual question answering and visual entailment. Our evaluations on various challenging zero-shot vision-language benchmarks, including ScienceQA and fine-grained visual classification, demonstrate that QVix significantly outperforms existing methods, highlighting its effectiveness in bridging the gap between complex visual data and LVLMs' exploratory abilities.
PromptCap: Prompt-Guided Image Captioning for VQA with GPT-3
Knowledge-based visual question answering (VQA) involves questions that require world knowledge beyond the image to yield the correct answer. Large language models (LMs) like GPT-3 are particularly helpful for this task because of their strong knowledge retrieval and reasoning capabilities. To enable LM to understand images, prior work uses a captioning model to convert images into text. However, when summarizing an image in a single caption sentence, which visual entities to describe are often underspecified. Generic image captions often miss visual details essential for the LM to answer visual questions correctly. To address this challenge, we propose PromptCap (Prompt-guided image Captioning), a captioning model designed to serve as a better connector between images and black-box LMs. Different from generic captions, PromptCap takes a natural-language prompt to control the visual entities to describe in the generated caption. The prompt contains a question that the caption should aid in answering. To avoid extra annotation, PromptCap is trained by examples synthesized with GPT-3 and existing datasets. We demonstrate PromptCap's effectiveness on an existing pipeline in which GPT-3 is prompted with image captions to carry out VQA. PromptCap outperforms generic captions by a large margin and achieves state-of-the-art accuracy on knowledge-based VQA tasks (60.4% on OK-VQA and 59.6% on A-OKVQA). Zero-shot results on WebQA show that PromptCap generalizes well to unseen domains.
Breaking Down Video LLM Benchmarks: Knowledge, Spatial Perception, or True Temporal Understanding?
Existing video understanding benchmarks often conflate knowledge-based and purely image-based questions, rather than clearly isolating a model's temporal reasoning ability, which is the key aspect that distinguishes video understanding from other modalities. We identify two major limitations that obscure whether higher scores truly indicate stronger understanding of the dynamic content in videos: (1) strong language priors, where models can answer questions without watching the video; and (2) shuffling invariance, where models maintain similar performance on certain questions even when video frames are temporally shuffled. To alleviate these issues, we propose VBenchComp, an automated pipeline that categorizes questions into different domains: LLM-Answerable, Semantic, and Temporal. Specifically, LLM-Answerable questions can be answered without viewing the video; Semantic questions remain answerable even when the video frames are shuffled; and Temporal questions require understanding the correct temporal order of frames. The rest of the questions are labeled as Others. This can enable fine-grained evaluation of different capabilities of a video LLM. Our analysis reveals nuanced model weaknesses that are hidden by traditional overall scores, and we offer insights and recommendations for designing future benchmarks that more accurately assess video LLMs.
Sunny and Dark Outside?! Improving Answer Consistency in VQA through Entailed Question Generation
While models for Visual Question Answering (VQA) have steadily improved over the years, interacting with one quickly reveals that these models lack consistency. For instance, if a model answers "red" to "What color is the balloon?", it might answer "no" if asked, "Is the balloon red?". These responses violate simple notions of entailment and raise questions about how effectively VQA models ground language. In this work, we introduce a dataset, ConVQA, and metrics that enable quantitative evaluation of consistency in VQA. For a given observable fact in an image (e.g. the balloon's color), we generate a set of logically consistent question-answer (QA) pairs (e.g. Is the balloon red?) and also collect a human-annotated set of common-sense based consistent QA pairs (e.g. Is the balloon the same color as tomato sauce?). Further, we propose a consistency-improving data augmentation module, a Consistency Teacher Module (CTM). CTM automatically generates entailed (or similar-intent) questions for a source QA pair and fine-tunes the VQA model if the VQA's answer to the entailed question is consistent with the source QA pair. We demonstrate that our CTM-based training improves the consistency of VQA models on the ConVQA datasets and is a strong baseline for further research.
Wiki-LLaVA: Hierarchical Retrieval-Augmented Generation for Multimodal LLMs
Multimodal LLMs are the natural evolution of LLMs, and enlarge their capabilities so as to work beyond the pure textual modality. As research is being carried out to design novel architectures and vision-and-language adapters, in this paper we concentrate on endowing such models with the capability of answering questions that require external knowledge. Our approach, termed Wiki-LLaVA, aims at integrating an external knowledge source of multimodal documents, which is accessed through a hierarchical retrieval pipeline. Relevant passages, using this approach, are retrieved from the external knowledge source and employed as additional context for the LLM, augmenting the effectiveness and precision of generated dialogues. We conduct extensive experiments on datasets tailored for visual question answering with external data and demonstrate the appropriateness of our approach.
QACE: Asking Questions to Evaluate an Image Caption
In this paper, we propose QACE, a new metric based on Question Answering for Caption Evaluation. QACE generates questions on the evaluated caption and checks its content by asking the questions on either the reference caption or the source image. We first develop QACE-Ref that compares the answers of the evaluated caption to its reference, and report competitive results with the state-of-the-art metrics. To go further, we propose QACE-Img, which asks the questions directly on the image, instead of reference. A Visual-QA system is necessary for QACE-Img. Unfortunately, the standard VQA models are framed as a classification among only a few thousand categories. Instead, we propose Visual-T5, an abstractive VQA system. The resulting metric, QACE-Img is multi-modal, reference-less, and explainable. Our experiments show that QACE-Img compares favorably w.r.t. other reference-less metrics. We will release the pre-trained models to compute QACE.
Vision LLMs Are Bad at Hierarchical Visual Understanding, and LLMs Are the Bottleneck
This paper reveals that many state-of-the-art large language models (LLMs) lack hierarchical knowledge about our visual world, unaware of even well-established biology taxonomies. This shortcoming makes LLMs a bottleneck for vision LLMs' hierarchical visual understanding (e.g., recognizing Anemone Fish but not Vertebrate). We arrive at these findings using about one million four-choice visual question answering (VQA) tasks constructed from six taxonomies and four image datasets. Interestingly, finetuning a vision LLM using our VQA tasks reaffirms LLMs' bottleneck effect to some extent because the VQA tasks improve the LLM's hierarchical consistency more than the vision LLM's. We conjecture that one cannot make vision LLMs understand visual concepts fully hierarchical until LLMs possess corresponding taxonomy knowledge.
Weakly Supervised Gaussian Contrastive Grounding with Large Multimodal Models for Video Question Answering
Video Question Answering (VideoQA) aims to answer natural language questions based on the information observed in videos. Despite the recent success of Large Multimodal Models (LMMs) in image-language understanding and reasoning, they deal with VideoQA insufficiently by simply taking uniformly sampled frames as visual inputs, which ignores question-relevant visual clues. Moreover, there are no human annotations for question-critical timestamps in existing VideoQA datasets. In light of this, we propose a novel weakly supervised framework to enforce the LMMs to reason out the answers with question-critical moments as visual inputs. Specifically, we fuse the question and answer pairs as event descriptions to find multiple keyframes as target moments, which will be pseudo-labels. With these pseudo-labels as additionally weak supervision, we devise a lightweight Gaussian-based Contrastive Grounding (GCG) module. GCG learns multiple Gaussian functions to characterize the temporal structure of the video, and sample question-critical frames as positive moments to be the visual inputs of LMMs. Extensive experiments on several VideoQA benchmarks verify the effectiveness of our framework, and we achieve substantial improvements compared to previous state-of-the-art methods.
Discovering Divergent Representations between Text-to-Image Models
In this paper, we investigate when and how visual representations learned by two different generative models diverge. Given two text-to-image models, our goal is to discover visual attributes that appear in images generated by one model but not the other, along with the types of prompts that trigger these attribute differences. For example, "flames" might appear in one model's outputs when given prompts expressing strong emotions, while the other model does not produce this attribute given the same prompts. We introduce CompCon (Comparing Concepts), an evolutionary search algorithm that discovers visual attributes more prevalent in one model's output than the other, and uncovers the prompt concepts linked to these visual differences. To evaluate CompCon's ability to find diverging representations, we create an automated data generation pipeline to produce ID2, a dataset of 60 input-dependent differences, and compare our approach to several LLM- and VLM-powered baselines. Finally, we use CompCon to compare popular text-to-image models, finding divergent representations such as how PixArt depicts prompts mentioning loneliness with wet streets and Stable Diffusion 3.5 depicts African American people in media professions. Code at: https://github.com/adobe-research/CompCon
Harnessing the Power of Prompt-based Techniques for Generating School-Level Questions using Large Language Models
Designing high-quality educational questions is a challenging and time-consuming task. In this work, we propose a novel approach that utilizes prompt-based techniques to generate descriptive and reasoning-based questions. However, current question-answering (QA) datasets are inadequate for conducting our experiments on prompt-based question generation (QG) in an educational setting. Therefore, we curate a new QG dataset called EduProbe for school-level subjects, by leveraging the rich content of NCERT textbooks. We carefully annotate this dataset as quadruples of 1) Context: a segment upon which the question is formed; 2) Long Prompt: a long textual cue for the question (i.e., a longer sequence of words or phrases, covering the main theme of the context); 3) Short Prompt: a short textual cue for the question (i.e., a condensed representation of the key information or focus of the context); 4) Question: a deep question that aligns with the context and is coherent with the prompts. We investigate several prompt-based QG methods by fine-tuning pre-trained transformer-based large language models (LLMs), namely PEGASUS, T5, MBART, and BART. Moreover, we explore the performance of two general-purpose pre-trained LLMs such as Text-Davinci-003 and GPT-3.5-Turbo without any further training. By performing automatic evaluation, we show that T5 (with long prompt) outperforms all other models, but still falls short of the human baseline. Under human evaluation criteria, TextDavinci-003 usually shows better results than other models under various prompt settings. Even in the case of human evaluation criteria, QG models mostly fall short of the human baseline. Our code and dataset are available at: https://github.com/my625/PromptQG
Making the V in Text-VQA Matter
Text-based VQA aims at answering questions by reading the text present in the images. It requires a large amount of scene-text relationship understanding compared to the VQA task. Recent studies have shown that the question-answer pairs in the dataset are more focused on the text present in the image but less importance is given to visual features and some questions do not require understanding the image. The models trained on this dataset predict biased answers due to the lack of understanding of visual context. For example, in questions like "What is written on the signboard?", the answer predicted by the model is always "STOP" which makes the model to ignore the image. To address these issues, we propose a method to learn visual features (making V matter in TextVQA) along with the OCR features and question features using VQA dataset as external knowledge for Text-based VQA. Specifically, we combine the TextVQA dataset and VQA dataset and train the model on this combined dataset. Such a simple, yet effective approach increases the understanding and correlation between the image features and text present in the image, which helps in the better answering of questions. We further test the model on different datasets and compare their qualitative and quantitative results.
Visual Clues: Bridging Vision and Language Foundations for Image Paragraph Captioning
People say, "A picture is worth a thousand words". Then how can we get the rich information out of the image? We argue that by using visual clues to bridge large pretrained vision foundation models and language models, we can do so without any extra cross-modal training. Thanks to the strong zero-shot capability of foundation models, we start by constructing a rich semantic representation of the image (e.g., image tags, object attributes / locations, captions) as a structured textual prompt, called visual clues, using a vision foundation model. Based on visual clues, we use large language model to produce a series of comprehensive descriptions for the visual content, which is then verified by the vision model again to select the candidate that aligns best with the image. We evaluate the quality of generated descriptions by quantitative and qualitative measurement. The results demonstrate the effectiveness of such a structured semantic representation.
Visual-Text Cross Alignment: Refining the Similarity Score in Vision-Language Models
It has recently been discovered that using a pre-trained vision-language model (VLM), e.g., CLIP, to align a whole query image with several finer text descriptions generated by a large language model can significantly enhance zero-shot performance. However, in this paper, we empirically find that the finer descriptions tend to align more effectively with local areas of the query image rather than the whole image, and then we theoretically validate this finding. Thus, we present a method called weighted visual-text cross alignment (WCA). This method begins with a localized visual prompting technique, designed to identify local visual areas within the query image. The local visual areas are then cross-aligned with the finer descriptions by creating a similarity matrix using the pre-trained VLM. To determine how well a query image aligns with each category, we develop a score function based on the weighted similarities in this matrix. Extensive experiments demonstrate that our method significantly improves zero-shot performance across various datasets, achieving results that are even comparable to few-shot learning methods.
Fully Authentic Visual Question Answering Dataset from Online Communities
Visual Question Answering (VQA) entails answering questions about images. We introduce the first VQA dataset in which all contents originate from an authentic use case. Sourced from online question answering community forums, we call it VQAonline. We then characterize our dataset and how it relates to eight other VQA datasets. Observing that answers in our dataset tend to be much longer (e.g., with a mean of 173 words) and thus incompatible with standard VQA evaluation metrics, we next analyze which of the six popular metrics for longer text evaluation align best with human judgments. We then use the best-suited metrics to evaluate six state-of-the-art vision and language foundation models on VQAonline and reveal where they struggle most. We will release the dataset soon to facilitate future extensions.
Is GPT-3 all you need for Visual Question Answering in Cultural Heritage?
The use of Deep Learning and Computer Vision in the Cultural Heritage domain is becoming highly relevant in the last few years with lots of applications about audio smart guides, interactive museums and augmented reality. All these technologies require lots of data to work effectively and be useful for the user. In the context of artworks, such data is annotated by experts in an expensive and time consuming process. In particular, for each artwork, an image of the artwork and a description sheet have to be collected in order to perform common tasks like Visual Question Answering. In this paper we propose a method for Visual Question Answering that allows to generate at runtime a description sheet that can be used for answering both visual and contextual questions about the artwork, avoiding completely the image and the annotation process. For this purpose, we investigate on the use of GPT-3 for generating descriptions for artworks analyzing the quality of generated descriptions through captioning metrics. Finally we evaluate the performance for Visual Question Answering and captioning tasks.
Making Large Multimodal Models Understand Arbitrary Visual Prompts
While existing large vision-language multimodal models focus on whole image understanding, there is a prominent gap in achieving region-specific comprehension. Current approaches that use textual coordinates or spatial encodings often fail to provide a user-friendly interface for visual prompting. To address this challenge, we introduce a novel multimodal model capable of decoding arbitrary visual prompts. This allows users to intuitively mark images and interact with the model using natural cues like a "red bounding box" or "pointed arrow". Our simple design directly overlays visual markers onto the RGB image, eliminating the need for complex region encodings, yet achieves state-of-the-art performance on region-understanding tasks like Visual7W, PointQA, and Visual Commonsense Reasoning benchmark. Furthermore, we present ViP-Bench, a comprehensive benchmark to assess the capability of models in understanding visual prompts across multiple dimensions, enabling future research in this domain. Code, data, and model are publicly available.
Toloka Visual Question Answering Benchmark
In this paper, we present Toloka Visual Question Answering, a new crowdsourced dataset allowing comparing performance of machine learning systems against human level of expertise in the grounding visual question answering task. In this task, given an image and a textual question, one has to draw the bounding box around the object correctly responding to that question. Every image-question pair contains the response, with only one correct response per image. Our dataset contains 45,199 pairs of images and questions in English, provided with ground truth bounding boxes, split into train and two test subsets. Besides describing the dataset and releasing it under a CC BY license, we conducted a series of experiments on open source zero-shot baseline models and organized a multi-phase competition at WSDM Cup that attracted 48 participants worldwide. However, by the time of paper submission, no machine learning model outperformed the non-expert crowdsourcing baseline according to the intersection over union evaluation score.
MiCo: Multi-image Contrast for Reinforcement Visual Reasoning
This work explores enabling Chain-of-Thought (CoT) reasoning to link visual cues across multiple images. A straightforward solution is to adapt rule-based reinforcement learning for Vision-Language Models (VLMs). However, such methods typically rely on manually curated question-answer pairs, which can be particularly challenging when dealing with fine grained visual details and complex logic across images. Inspired by self-supervised visual representation learning, we observe that images contain inherent constraints that can serve as supervision. Based on this insight, we construct image triplets comprising two augmented views of the same image and a third, similar but distinct image. During training, the model is prompted to generate a reasoning process to compare these images (i.e., determine same or different). Then we optimize the model with rule-based reinforcement learning. Due to the high visual similarity and the presence of augmentations, the model must attend to subtle visual changes and perform logical reasoning to succeed. Experiments show that, although trained solely on visual comparison tasks, the learned reasoning ability generalizes effectively to a wide range of questions. Without relying on any human-annotated question-answer pairs, our method achieves significant improvements on multi-image reasoning benchmarks and shows strong performance on general vision tasks.
I Can't Believe There's No Images! Learning Visual Tasks Using only Language Supervision
Many high-level skills that are required for computer vision tasks, such as parsing questions, comparing and contrasting semantics, and writing descriptions, are also required in other domains such as natural language processing. In this paper, we ask whether it is possible to learn those skills from text data and then transfer them to vision tasks without ever training on visual training data. Key to our approach is exploiting the joint embedding space of contrastively trained vision and language encoders. In practice, there can be systematic differences between embedding spaces for different modalities in contrastive models, and we analyze how these differences affect our approach and study strategies to mitigate this concern. We produce models using only text training data on four representative tasks: image captioning, visual entailment, visual question answering and visual news captioning, and evaluate them on standard benchmarks using images. We find these models perform close to models trained on images, while surpassing prior work for captioning and visual entailment in this text-only setting by over 9 points, and outperforming all prior work on visual news by over 30 points. We also showcase a variety of stylistic image captioning models that are trained using no image data and no human-curated language data, but instead using readily-available text data from books, the web, or language models.
Enhancing Document VQA Models via Retrieval-Augmented Generation
Document Visual Question Answering (Document VQA) must cope with documents that span dozens of pages, yet leading systems still concatenate every page or rely on very large vision-language models, both of which are memory-hungry. Retrieval-Augmented Generation (RAG) offers an attractive alternative, first retrieving a concise set of relevant segments before generating answers from this selected evidence. In this paper, we systematically evaluate the impact of incorporating RAG into Document VQA through different retrieval variants - text-based retrieval using OCR tokens and purely visual retrieval without OCR - across multiple models and benchmarks. Evaluated on the multi-page datasets MP-DocVQA, DUDE, and InfographicVQA, the text-centric variant improves the "concatenate-all-pages" baseline by up to +22.5 ANLS, while the visual variant achieves +5.0 ANLS improvement without requiring any text extraction. An ablation confirms that retrieval and reranking components drive most of the gain, whereas the layout-guided chunking strategy - proposed in several recent works to leverage page structure - fails to help on these datasets. Our experiments demonstrate that careful evidence selection consistently boosts accuracy across multiple model sizes and multi-page benchmarks, underscoring its practical value for real-world Document VQA.
VQA Therapy: Exploring Answer Differences by Visually Grounding Answers
Visual question answering is a task of predicting the answer to a question about an image. Given that different people can provide different answers to a visual question, we aim to better understand why with answer groundings. We introduce the first dataset that visually grounds each unique answer to each visual question, which we call VQAAnswerTherapy. We then propose two novel problems of predicting whether a visual question has a single answer grounding and localizing all answer groundings. We benchmark modern algorithms for these novel problems to show where they succeed and struggle. The dataset and evaluation server can be found publicly at https://vizwiz.org/tasks-and-datasets/vqa-answer-therapy/.
Zero-Shot Visual Reasoning by Vision-Language Models: Benchmarking and Analysis
Vision-language models (VLMs) have shown impressive zero- and few-shot performance on real-world visual question answering (VQA) benchmarks, alluding to their capabilities as visual reasoning engines. However, the benchmarks being used conflate "pure" visual reasoning with world knowledge, and also have questions that involve a limited number of reasoning steps. Thus, it remains unclear whether a VLM's apparent visual reasoning performance is due to its world knowledge, or due to actual visual reasoning capabilities. To clarify this ambiguity, we systematically benchmark and dissect the zero-shot visual reasoning capabilities of VLMs through synthetic datasets that require minimal world knowledge, and allow for analysis over a broad range of reasoning steps. We focus on two novel aspects of zero-shot visual reasoning: i) evaluating the impact of conveying scene information as either visual embeddings or purely textual scene descriptions to the underlying large language model (LLM) of the VLM, and ii) comparing the effectiveness of chain-of-thought prompting to standard prompting for zero-shot visual reasoning. We find that the underlying LLMs, when provided textual scene descriptions, consistently perform better compared to being provided visual embeddings. In particular, 18% higher accuracy is achieved on the PTR dataset. We also find that CoT prompting performs marginally better than standard prompting only for the comparatively large GPT-3.5-Turbo (175B) model, and does worse for smaller-scale models. This suggests the emergence of CoT abilities for visual reasoning in LLMs at larger scales even when world knowledge is limited. Overall, we find limitations in the abilities of VLMs and LLMs for more complex visual reasoning, and highlight the important role that LLMs can play in visual reasoning.
Advancing Large Multi-modal Models with Explicit Chain-of-Reasoning and Visual Question Generation
The increasing demand for intelligent systems capable of interpreting and reasoning about visual content requires the development of Large Multi-Modal Models (LMMs) that are not only accurate but also have explicit reasoning capabilities. This paper presents a novel approach to imbue an LMM with the ability to conduct explicit reasoning based on visual content and textual instructions. We introduce a system that can ask a question to acquire necessary knowledge, thereby enhancing the robustness and explicability of the reasoning process. Our method comprises the development of a novel dataset generated by a Large Language Model (LLM), designed to promote chain-of-thought reasoning combined with a question-asking mechanism. We designed an LMM, which has high capabilities on region awareness to address the intricate requirements of image-text alignment. The model undergoes a three-stage training phase, starting with large-scale image-text alignment using a large-scale datasets, followed by instruction tuning, and fine-tuning with a focus on chain-of-thought reasoning. The results demonstrate a stride toward a more robust, accurate, and interpretable LMM, capable of reasoning explicitly and seeking information proactively when confronted with ambiguous visual input.
CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning
When building artificial intelligence systems that can reason and answer questions about visual data, we need diagnostic tests to analyze our progress and discover shortcomings. Existing benchmarks for visual question answering can help, but have strong biases that models can exploit to correctly answer questions without reasoning. They also conflate multiple sources of error, making it hard to pinpoint model weaknesses. We present a diagnostic dataset that tests a range of visual reasoning abilities. It contains minimal biases and has detailed annotations describing the kind of reasoning each question requires. We use this dataset to analyze a variety of modern visual reasoning systems, providing novel insights into their abilities and limitations.
RoD-TAL: A Benchmark for Answering Questions in Romanian Driving License Exams
The intersection of AI and legal systems presents a growing need for tools that support legal education, particularly in under-resourced languages such as Romanian. In this work, we aim to evaluate the capabilities of Large Language Models (LLMs) and Vision-Language Models (VLMs) in understanding and reasoning about Romanian driving law through textual and visual question-answering tasks. To facilitate this, we introduce RoD-TAL, a novel multimodal dataset comprising Romanian driving test questions, text-based and image-based, alongside annotated legal references and human explanations. We implement and assess retrieval-augmented generation (RAG) pipelines, dense retrievers, and reasoning-optimized models across tasks including Information Retrieval (IR), Question Answering (QA), Visual IR, and Visual QA. Our experiments demonstrate that domain-specific fine-tuning significantly enhances retrieval performance. At the same time, chain-of-thought prompting and specialized reasoning models improve QA accuracy, surpassing the minimum grades required to pass driving exams. However, visual reasoning remains challenging, highlighting the potential and the limitations of applying LLMs and VLMs to legal education.
CLEVR-Math: A Dataset for Compositional Language, Visual and Mathematical Reasoning
We introduce CLEVR-Math, a multi-modal math word problems dataset consisting of simple math word problems involving addition/subtraction, represented partly by a textual description and partly by an image illustrating the scenario. The text describes actions performed on the scene that is depicted in the image. Since the question posed may not be about the scene in the image, but about the state of the scene before or after the actions are applied, the solver envision or imagine the state changes due to these actions. Solving these word problems requires a combination of language, visual and mathematical reasoning. We apply state-of-the-art neural and neuro-symbolic models for visual question answering on CLEVR-Math and empirically evaluate their performances. Our results show how neither method generalise to chains of operations. We discuss the limitations of the two in addressing the task of multi-modal word problem solving.
ChartQA: A Benchmark for Question Answering about Charts with Visual and Logical Reasoning
Charts are very popular for analyzing data. When exploring charts, people often ask a variety of complex reasoning questions that involve several logical and arithmetic operations. They also commonly refer to visual features of a chart in their questions. However, most existing datasets do not focus on such complex reasoning questions as their questions are template-based and answers come from a fixed-vocabulary. In this work, we present a large-scale benchmark covering 9.6K human-written questions as well as 23.1K questions generated from human-written chart summaries. To address the unique challenges in our benchmark involving visual and logical reasoning over charts, we present two transformer-based models that combine visual features and the data table of the chart in a unified way to answer questions. While our models achieve the state-of-the-art results on the previous datasets as well as on our benchmark, the evaluation also reveals several challenges in answering complex reasoning questions.
WebSRC: A Dataset for Web-Based Structural Reading Comprehension
Web search is an essential way for humans to obtain information, but it's still a great challenge for machines to understand the contents of web pages. In this paper, we introduce the task of structural reading comprehension (SRC) on web. Given a web page and a question about it, the task is to find the answer from the web page. This task requires a system not only to understand the semantics of texts but also the structure of the web page. Moreover, we proposed WebSRC, a novel Web-based Structural Reading Comprehension dataset. WebSRC consists of 400K question-answer pairs, which are collected from 6.4K web pages. Along with the QA pairs, corresponding HTML source code, screenshots, and metadata are also provided in our dataset. Each question in WebSRC requires a certain structural understanding of a web page to answer, and the answer is either a text span on the web page or yes/no. We evaluate various baselines on our dataset to show the difficulty of our task. We also investigate the usefulness of structural information and visual features. Our dataset and baselines have been publicly available at https://x-lance.github.io/WebSRC/.
VisText: A Benchmark for Semantically Rich Chart Captioning
Captions that describe or explain charts help improve recall and comprehension of the depicted data and provide a more accessible medium for people with visual disabilities. However, current approaches for automatically generating such captions struggle to articulate the perceptual or cognitive features that are the hallmark of charts (e.g., complex trends and patterns). In response, we introduce VisText: a dataset of 12,441 pairs of charts and captions that describe the charts' construction, report key statistics, and identify perceptual and cognitive phenomena. In VisText, a chart is available as three representations: a rasterized image, a backing data table, and a scene graph -- a hierarchical representation of a chart's visual elements akin to a web page's Document Object Model (DOM). To evaluate the impact of VisText, we fine-tune state-of-the-art language models on our chart captioning task and apply prefix-tuning to produce captions that vary the semantic content they convey. Our models generate coherent, semantically rich captions and perform on par with state-of-the-art chart captioning models across machine translation and text generation metrics. Through qualitative analysis, we identify six broad categories of errors that our models make that can inform future work.
WebQuest: A Benchmark for Multimodal QA on Web Page Sequences
The rise of powerful multimodal LLMs has enhanced the viability of building web agents which can, with increasing levels of autonomy, assist users to retrieve information and complete tasks on various human-computer interfaces. It is hence necessary to build challenging benchmarks that span a wide-variety of use cases reflecting real-world usage. In this work, we present WebQuest, a multi-page question-answering dataset that requires reasoning across multiple related web pages. In contrast to existing UI benchmarks that focus on multi-step web navigation and task completion, our dataset evaluates information extraction, multimodal retrieval and composition of information from many web pages. WebQuest includes three question categories: single-screen QA, multi-screen QA, and QA based on navigation traces. We evaluate leading proprietary multimodal models like GPT-4V, Gemini Flash, Claude 3, and open source models like InstructBLIP, PaliGemma on our dataset, revealing a significant gap between single-screen and multi-screen reasoning. Finally, we investigate inference time techniques like Chain-of-Thought prompting to improve model capabilities on multi-screen reasoning.
VisR-Bench: An Empirical Study on Visual Retrieval-Augmented Generation for Multilingual Long Document Understanding
Most organizational data in this world are stored as documents, and visual retrieval plays a crucial role in unlocking the collective intelligence from all these documents. However, existing benchmarks focus on English-only document retrieval or only consider multilingual question-answering on a single-page image. To bridge this gap, we introduce VisR-Bench, a multilingual benchmark designed for question-driven multimodal retrieval in long documents. Our benchmark comprises over 35K high-quality QA pairs across 1.2K documents, enabling fine-grained evaluation of multimodal retrieval. VisR-Bench spans sixteen languages with three question types (figures, text, and tables), offering diverse linguistic and question coverage. Unlike prior datasets, we include queries without explicit answers, preventing models from relying on superficial keyword matching. We evaluate various retrieval models, including text-based methods, multimodal encoders, and MLLMs, providing insights into their strengths and limitations. Our results show that while MLLMs significantly outperform text-based and multimodal encoder models, they still struggle with structured tables and low-resource languages, highlighting key challenges in multilingual visual retrieval.
Knowledge-based Visual Question Answer with Multimodal Processing, Retrieval and Filtering
Knowledge-based visual question answering (KB-VQA) requires visual language models (VLMs) to integrate visual understanding with external knowledge retrieval. Although retrieval-augmented generation (RAG) achieves significant advances in this task by combining knowledge-base querying, it still struggles with the quality of multimodal queries and the relevance of retrieved results. To overcome these challenges, we propose a novel three-stage method, termed Wiki-PRF, including Processing, Retrieval and Filtering stages. The processing stage dynamically invokes visual tools to extract precise multimodal information for retrieval. The retrieval stage integrates visual and text features to achieve multimodal knowledge retrieval. The filtering stage performs relevance filtering and concentration on retrieval results. To this end, we introduce a visual language model trained with answer accuracy and format consistency as reward signals via a reinforcement learning manner. This enhances the model's reasoning, tool invocation for accurate queries, and filtering of irrelevant content. Experiments on benchmark datasets (E-VQA and InfoSeek) show significant improvements~(36.0 and 42.8) in answer quality, achieving state-of-the-art performance. Code is available at https://github.com/cqu-student/Wiki-PRF
SPIQA: A Dataset for Multimodal Question Answering on Scientific Papers
Seeking answers to questions within long scientific research articles is a crucial area of study that aids readers in quickly addressing their inquiries. However, existing question-answering (QA) datasets based on scientific papers are limited in scale and focus solely on textual content. To address this limitation, we introduce SPIQA (Scientific Paper Image Question Answering), the first large-scale QA dataset specifically designed to interpret complex figures and tables within the context of scientific research articles across various domains of computer science. Leveraging the breadth of expertise and ability of multimodal large language models (MLLMs) to understand figures, we employ automatic and manual curation to create the dataset. We craft an information-seeking task involving multiple images that cover a wide variety of plots, charts, tables, schematic diagrams, and result visualizations. SPIQA comprises 270K questions divided into training, validation, and three different evaluation splits. Through extensive experiments with 12 prominent foundational models, we evaluate the ability of current multimodal systems to comprehend the nuanced aspects of research articles. Additionally, we propose a Chain-of-Thought (CoT) evaluation strategy with in-context retrieval that allows fine-grained, step-by-step assessment and improves model performance. We further explore the upper bounds of performance enhancement with additional textual information, highlighting its promising potential for future research and the dataset's impact on revolutionizing how we interact with scientific literature.
VER-Bench: Evaluating MLLMs on Reasoning with Fine-Grained Visual Evidence
With the rapid development of MLLMs, evaluating their visual capabilities has become increasingly crucial. Current benchmarks primarily fall into two main types: basic perception benchmarks, which focus on local details but lack deep reasoning (e.g., "what is in the image?"), and mainstream reasoning benchmarks, which concentrate on prominent image elements but may fail to assess subtle clues requiring intricate analysis. However, profound visual understanding and complex reasoning depend more on interpreting subtle, inconspicuous local details than on perceiving salient, macro-level objects. These details, though occupying minimal image area, often contain richer, more critical information for robust analysis. To bridge this gap, we introduce the VER-Bench, a novel framework to evaluate MLLMs' ability to: 1) identify fine-grained visual clues, often occupying on average just 0.25% of the image area; 2) integrate these clues with world knowledge for complex reasoning. Comprising 374 carefully designed questions across Geospatial, Temporal, Situational, Intent, System State, and Symbolic reasoning, each question in VER-Bench is accompanied by structured evidence: visual clues and question-related reasoning derived from them. VER-Bench reveals current models' limitations in extracting subtle visual evidence and constructing evidence-based arguments, highlighting the need to enhance models's capabilities in fine-grained visual evidence extraction, integration, and reasoning for genuine visual understanding and human-like analysis. Dataset and additional materials are available https://github.com/verbta/ACMMM-25-Materials.
MyVLM: Personalizing VLMs for User-Specific Queries
Recent large-scale vision-language models (VLMs) have demonstrated remarkable capabilities in understanding and generating textual descriptions for visual content. However, these models lack an understanding of user-specific concepts. In this work, we take a first step toward the personalization of VLMs, enabling them to learn and reason over user-provided concepts. For example, we explore whether these models can learn to recognize you in an image and communicate what you are doing, tailoring the model to reflect your personal experiences and relationships. To effectively recognize a variety of user-specific concepts, we augment the VLM with external concept heads that function as toggles for the model, enabling the VLM to identify the presence of specific target concepts in a given image. Having recognized the concept, we learn a new concept embedding in the intermediate feature space of the VLM. This embedding is tasked with guiding the language model to naturally integrate the target concept in its generated response. We apply our technique to BLIP-2 and LLaVA for personalized image captioning and further show its applicability for personalized visual question-answering. Our experiments demonstrate our ability to generalize to unseen images of learned concepts while preserving the model behavior on unrelated inputs.
MapQA: A Dataset for Question Answering on Choropleth Maps
Choropleth maps are a common visual representation for region-specific tabular data and are used in a number of different venues (newspapers, articles, etc). These maps are human-readable but are often challenging to deal with when trying to extract data for screen readers, analyses, or other related tasks. Recent research into Visual-Question Answering (VQA) has studied question answering on human-generated charts (ChartQA), such as bar, line, and pie charts. However, little work has paid attention to understanding maps; general VQA models, and ChartQA models, suffer when asked to perform this task. To facilitate and encourage research in this area, we present MapQA, a large-scale dataset of ~800K question-answer pairs over ~60K map images. Our task tests various levels of map understanding, from surface questions about map styles to complex questions that require reasoning on the underlying data. We present the unique challenges of MapQA that frustrate most strong baseline algorithms designed for ChartQA and general VQA tasks. We also present a novel algorithm, Visual Multi-Output Data Extraction based QA (V-MODEQA) for MapQA. V-MODEQA extracts the underlying structured data from a map image with a multi-output model and then performs reasoning on the extracted data. Our experimental results show that V-MODEQA has better overall performance and robustness on MapQA than the state-of-the-art ChartQA and VQA algorithms by capturing the unique properties in map question answering.
Visual CoT: Unleashing Chain-of-Thought Reasoning in Multi-Modal Language Models
This paper presents Visual CoT, a novel pipeline that leverages the reasoning capabilities of multi-modal large language models (MLLMs) by incorporating visual Chain-of-Thought (CoT) reasoning. While MLLMs have shown promise in various visual tasks, they often lack interpretability and struggle with complex visual inputs. To address these challenges, we propose a multi-turn processing pipeline that dynamically focuses on visual inputs and provides interpretable thoughts. We collect and introduce the Visual CoT dataset comprising 373k question-answer pairs, annotated with intermediate bounding boxes highlighting key regions essential for answering the questions. Importantly, the introduced benchmark is capable of evaluating MLLMs in scenarios requiring specific local region identification. Extensive experiments demonstrate the effectiveness of our framework and shed light on better inference strategies. The Visual CoT dataset, benchmark, and pre-trained models are available to foster further research in this direction.
T2I-FineEval: Fine-Grained Compositional Metric for Text-to-Image Evaluation
Although recent text-to-image generative models have achieved impressive performance, they still often struggle with capturing the compositional complexities of prompts including attribute binding, and spatial relationships between different entities. This misalignment is not revealed by common evaluation metrics such as CLIPScore. Recent works have proposed evaluation metrics that utilize Visual Question Answering (VQA) by decomposing prompts into questions about the generated image for more robust compositional evaluation. Although these methods align better with human evaluations, they still fail to fully cover the compositionality within the image. To address this, we propose a novel metric that breaks down images into components, and texts into fine-grained questions about the generated image for evaluation. Our method outperforms previous state-of-the-art metrics, demonstrating its effectiveness in evaluating text-to-image generative models. Code is available at https://github.com/hadi-hosseini/ T2I-FineEval.
GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering
We introduce GQA, a new dataset for real-world visual reasoning and compositional question answering, seeking to address key shortcomings of previous VQA datasets. We have developed a strong and robust question engine that leverages scene graph structures to create 22M diverse reasoning questions, all come with functional programs that represent their semantics. We use the programs to gain tight control over the answer distribution and present a new tunable smoothing technique to mitigate question biases. Accompanying the dataset is a suite of new metrics that evaluate essential qualities such as consistency, grounding and plausibility. An extensive analysis is performed for baselines as well as state-of-the-art models, providing fine-grained results for different question types and topologies. Whereas a blind LSTM obtains mere 42.1%, and strong VQA models achieve 54.1%, human performance tops at 89.3%, offering ample opportunity for new research to explore. We strongly hope GQA will provide an enabling resource for the next generation of models with enhanced robustness, improved consistency, and deeper semantic understanding for images and language.
Look, Remember and Reason: Visual Reasoning with Grounded Rationales
Large language models have recently shown human level performance on a variety of reasoning tasks. However, the ability of these models to perform complex visual reasoning has not been studied in detail yet. A key challenge in many visual reasoning tasks is that the visual information needs to be tightly integrated in the reasoning process. We propose to address this challenge by drawing inspiration from human visual problem solving which depends on a variety of low-level visual capabilities. It can often be cast as the three step-process of ``Look, Remember, Reason'': visual information is incrementally extracted using low-level visual routines in a step-by-step fashion until a final answer is reached. We follow the same paradigm to enable existing large language models, with minimal changes to the architecture, to solve visual reasoning problems. To this end, we introduce rationales over the visual input that allow us to integrate low-level visual capabilities, such as object recognition and tracking, as surrogate tasks. We show competitive performance on diverse visual reasoning tasks from the CLEVR, CATER, and ACRE datasets over state-of-the-art models designed specifically for these tasks.
SlideVQA: A Dataset for Document Visual Question Answering on Multiple Images
Visual question answering on document images that contain textual, visual, and layout information, called document VQA, has received much attention recently. Although many datasets have been proposed for developing document VQA systems, most of the existing datasets focus on understanding the content relationships within a single image and not across multiple images. In this study, we propose a new multi-image document VQA dataset, SlideVQA, containing 2.6k+ slide decks composed of 52k+ slide images and 14.5k questions about a slide deck. SlideVQA requires complex reasoning, including single-hop, multi-hop, and numerical reasoning, and also provides annotated arithmetic expressions of numerical answers for enhancing the ability of numerical reasoning. Moreover, we developed a new end-to-end document VQA model that treats evidence selection and question answering in a unified sequence-to-sequence format. Experiments on SlideVQA show that our model outperformed existing state-of-the-art QA models, but that it still has a large gap behind human performance. We believe that our dataset will facilitate research on document VQA.
VLR-Bench: Multilingual Benchmark Dataset for Vision-Language Retrieval Augmented Generation
We propose the VLR-Bench, a visual question answering (VQA) benchmark for evaluating vision language models (VLMs) based on retrieval augmented generation (RAG). Unlike existing evaluation datasets for external knowledge-based VQA, the proposed VLR-Bench includes five input passages. This allows testing of the ability to determine which passage is useful for answering a given query, a capability lacking in previous research. In this context, we constructed a dataset of 32,000 automatically generated instruction-following examples, which we denote as VLR-IF. This dataset is specifically designed to enhance the RAG capabilities of VLMs by enabling them to learn how to generate appropriate answers based on input passages. We evaluated the validity of the proposed benchmark and training data and verified its performance using the state-of-the-art Llama3-based VLM, the Llava-Llama-3 model. The proposed VLR-Bench and VLR-IF datasets are publicly available online.
VisOnlyQA: Large Vision Language Models Still Struggle with Visual Perception of Geometric Information
Errors in understanding visual information in images (i.e., visual perception errors) remain a major source of mistakes in Large Vision Language Models (LVLMs). While further analysis is essential, there is a deficiency in datasets for evaluating the visual perception of LVLMs. In this work, we introduce VisOnlyQA, a new dataset designed to directly evaluate the visual perception capabilities of LVLMs on questions about geometric and numerical information in scientific figures. Our dataset enables us to analyze the visual perception of LVLMs for fine-grained visual information, independent of other capabilities such as reasoning. The evaluation set of VisOnlyQA includes 1,200 multiple-choice questions in 12 tasks on four categories of figures. We also provide synthetic training data consisting of 70k instances. Our experiments on VisOnlyQA highlight the following findings: (i) 20 LVLMs we evaluate, including GPT-4o and Gemini 1.5 Pro, work poorly on the visual perception tasks in VisOnlyQA, while human performance is nearly perfect. (ii) Fine-tuning on synthetic training data demonstrates the potential for enhancing the visual perception of LVLMs, but observed improvements are limited to certain tasks and specific models. (iii) Stronger language models improve the visual perception of LVLMs. In summary, our experiments suggest that both training data and model architectures should be improved to enhance the visual perception capabilities of LVLMs. The datasets, code, and model responses are provided at https://github.com/psunlpgroup/VisOnlyQA.
Tackling Data Bias in MUSIC-AVQA: Crafting a Balanced Dataset for Unbiased Question-Answering
In recent years, there has been a growing emphasis on the intersection of audio, vision, and text modalities, driving forward the advancements in multimodal research. However, strong bias that exists in any modality can lead to the model neglecting the others. Consequently, the model's ability to effectively reason across these diverse modalities is compromised, impeding further advancement. In this paper, we meticulously review each question type from the original dataset, selecting those with pronounced answer biases. To counter these biases, we gather complementary videos and questions, ensuring that no answers have outstanding skewed distribution. In particular, for binary questions, we strive to ensure that both answers are almost uniformly spread within each question category. As a result, we construct a new dataset, named MUSIC-AVQA v2.0, which is more challenging and we believe could better foster the progress of AVQA task. Furthermore, we present a novel baseline model that delves deeper into the audio-visual-text interrelation. On MUSIC-AVQA v2.0, this model surpasses all the existing benchmarks, improving accuracy by 2% on MUSIC-AVQA v2.0, setting a new state-of-the-art performance.
Where do Large Vision-Language Models Look at when Answering Questions?
Large Vision-Language Models (LVLMs) have shown promising performance in vision-language understanding and reasoning tasks. However, their visual understanding behaviors remain underexplored. A fundamental question arises: to what extent do LVLMs rely on visual input, and which image regions contribute to their responses? It is non-trivial to interpret the free-form generation of LVLMs due to their complicated visual architecture (e.g., multiple encoders and multi-resolution) and variable-length outputs. In this paper, we extend existing heatmap visualization methods (e.g., iGOS++) to support LVLMs for open-ended visual question answering. We propose a method to select visually relevant tokens that reflect the relevance between generated answers and input image. Furthermore, we conduct a comprehensive analysis of state-of-the-art LVLMs on benchmarks designed to require visual information to answer. Our findings offer several insights into LVLM behavior, including the relationship between focus region and answer correctness, differences in visual attention across architectures, and the impact of LLM scale on visual understanding. The code and data are available at https://github.com/bytedance/LVLM_Interpretation.
EduQG: A Multi-format Multiple Choice Dataset for the Educational Domain
We introduce a high-quality dataset that contains 3,397 samples comprising (i) multiple choice questions, (ii) answers (including distractors), and (iii) their source documents, from the educational domain. Each question is phrased in two forms, normal and close. Correct answers are linked to source documents with sentence-level annotations. Thus, our versatile dataset can be used for both question and distractor generation, as well as to explore new challenges such as question format conversion. Furthermore, 903 questions are accompanied by their cognitive complexity level as per Bloom's taxonomy. All questions have been generated by educational experts rather than crowd workers to ensure they are maintaining educational and learning standards. Our analysis and experiments suggest distinguishable differences between our dataset and commonly used ones for question generation for educational purposes. We believe this new dataset can serve as a valuable resource for research and evaluation in the educational domain. The dataset and baselines will be released to support further research in question generation.
VisDoM: Multi-Document QA with Visually Rich Elements Using Multimodal Retrieval-Augmented Generation
Understanding information from a collection of multiple documents, particularly those with visually rich elements, is important for document-grounded question answering. This paper introduces VisDoMBench, the first comprehensive benchmark designed to evaluate QA systems in multi-document settings with rich multimodal content, including tables, charts, and presentation slides. We propose VisDoMRAG, a novel multimodal Retrieval Augmented Generation (RAG) approach that simultaneously utilizes visual and textual RAG, combining robust visual retrieval capabilities with sophisticated linguistic reasoning. VisDoMRAG employs a multi-step reasoning process encompassing evidence curation and chain-of-thought reasoning for concurrent textual and visual RAG pipelines. A key novelty of VisDoMRAG is its consistency-constrained modality fusion mechanism, which aligns the reasoning processes across modalities at inference time to produce a coherent final answer. This leads to enhanced accuracy in scenarios where critical information is distributed across modalities and improved answer verifiability through implicit context attribution. Through extensive experiments involving open-source and proprietary large language models, we benchmark state-of-the-art document QA methods on VisDoMBench. Extensive results show that VisDoMRAG outperforms unimodal and long-context LLM baselines for end-to-end multimodal document QA by 12-20%.
Towards Retrieval Augmented Generation over Large Video Libraries
Video content creators need efficient tools to repurpose content, a task that often requires complex manual or automated searches. Crafting a new video from large video libraries remains a challenge. In this paper we introduce the task of Video Library Question Answering (VLQA) through an interoperable architecture that applies Retrieval Augmented Generation (RAG) to video libraries. We propose a system that uses large language models (LLMs) to generate search queries, retrieving relevant video moments indexed by speech and visual metadata. An answer generation module then integrates user queries with this metadata to produce responses with specific video timestamps. This approach shows promise in multimedia content retrieval, and AI-assisted video content creation.
Track the Answer: Extending TextVQA from Image to Video with Spatio-Temporal Clues
Video text-based visual question answering (Video TextVQA) is a practical task that aims to answer questions by jointly reasoning textual and visual information in a given video. Inspired by the development of TextVQA in image domain, existing Video TextVQA approaches leverage a language model (e.g. T5) to process text-rich multiple frames and generate answers auto-regressively. Nevertheless, the spatio-temporal relationships among visual entities (including scene text and objects) will be disrupted and models are susceptible to interference from unrelated information, resulting in irrational reasoning and inaccurate answering. To tackle these challenges, we propose the TEA (stands for ``Track thE Answer'') method that better extends the generative TextVQA framework from image to video. TEA recovers the spatio-temporal relationships in a complementary way and incorporates OCR-aware clues to enhance the quality of reasoning questions. Extensive experiments on several public Video TextVQA datasets validate the effectiveness and generalization of our framework. TEA outperforms existing TextVQA methods, video-language pretraining methods and video large language models by great margins.
Can LLMs Design Good Questions Based on Context?
This paper evaluates questions generated by LLMs from context, comparing them to human-generated questions across six dimensions. We introduce an automated LLM-based evaluation method, focusing on aspects like question length, type, context coverage, and answerability. Our findings highlight unique characteristics of LLM-generated questions, contributing insights that can support further research in question quality and downstream applications.
Why does in-context learning fail sometimes? Evaluating in-context learning on open and closed questions
We measure the performance of in-context learning as a function of task novelty and difficulty for open and closed questions. For that purpose, we created a novel benchmark consisting of hard scientific questions, each paired with a context of various relevancy. We show that counter-intuitively, a context that is more aligned with the topic does not always help more than a less relevant context. This effect is especially visible for open questions and questions of high difficulty or novelty. This result reveals a fundamental difference between the treatment of close-form and open-form questions by large-language models and shows a need for a more robust evaluation of in-context learning on the variety of different types of questions. It also poses a new question of how to optimally select a context for large language models, especially in the context of Retrieval Augmented Generation (RAG) systems. Our results suggest that the answer to this question can be highly application-dependent and might be contingent on factors including the format of the question, the perceived difficulty level of the questions, and the novelty or popularity of the information we seek.
Tangram: Benchmark for Evaluating Geometric Element Recognition in Large Multimodal Models
Significant advancements in Large Multimodal Models (LMMs) have enabled them to tackle complex problems involving visual-mathematical reasoning. However, their ability to identify geometric elements remains underexplored. To address this gap, we introduce Tangram, a novel benchmark designed to evaluate the performance of LMMs on geometric element recognition. Tangram comprises 1,080 diverse geometric diagrams sourced from primary and secondary school exams, competitions, and textbooks, ranging from simple geometric shapes to complex combinations. Each diagram is paired with four questions, resulting in 4,320 visual-question-answer pairs. Unlike existing benchmarks that emphasize higher-level cognition and reasoning, Tangram focuses on understanding geometric elements, requiring models to perform a ``simple yet challenging" counting task. Systematic evaluation of 13 prominent LMMs, such as GPT-4o and Claude 3.5 Sonnet, reveals that these models face significant challenges even in seemingly straightforward tasks. The top-performing model achieves an accuracy of only 53.0%, highlighting a substantial gap compared to human performance. These findings underscore the limitations of current multimodal AI systems in handling basic perception tasks and serve to inspire the development of the next generation of expert-level multimodal foundational models. The data and code will be released soon.
Tailored Visions: Enhancing Text-to-Image Generation with Personalized Prompt Rewriting
Despite significant progress in the field, it is still challenging to create personalized visual representations that align closely with the desires and preferences of individual users. This process requires users to articulate their ideas in words that are both comprehensible to the models and accurately capture their vision, posing difficulties for many users. In this paper, we tackle this challenge by leveraging historical user interactions with the system to enhance user prompts. We propose a novel approach that involves rewriting user prompts based on a newly collected large-scale text-to-image dataset with over 300k prompts from 3115 users. Our rewriting model enhances the expressiveness and alignment of user prompts with their intended visual outputs. Experimental results demonstrate the superiority of our methods over baseline approaches, as evidenced in our new offline evaluation method and online tests. Our code and dataset are available at https://github.com/zzjchen/Tailored-Visions .
CUS-QA: Local-Knowledge-Oriented Open-Ended Question Answering Dataset
We introduce a benchmark for open-ended regional question answering that encompasses both textual and visual modalities. We also provide strong baselines using state-of-the-art large language models (LLMs). Our dataset consists of manually curated questions and answers grounded in Wikipedia, created by native speakers from Czechia, Slovakia, and Ukraine, with accompanying English translations. It includes both purely textual questions and those requiring visual understanding. As a baseline, we evaluate state-of-the-art LLMs through prompting and complement this with human judgments of answer correctness. Using these human evaluations, we analyze the reliability of existing automatic evaluation metrics. Our baseline results highlight a significant gap in regional knowledge among current LLMs. Moreover, apart from LLM-based evaluation, there is minimal correlation between automated metrics and human judgment. We release this dataset as a resource to (1) assess regional knowledge in LLMs, (2) study cross-lingual generation consistency in a challenging setting, and (3) advance the development of evaluation metrics for open-ended question answering.
CMRAG: Co-modality-based visual document retrieval and question answering
Retrieval-Augmented Generation (RAG) has become a core paradigm in document question answering tasks. However, existing methods have limitations when dealing with multimodal documents: one category of methods relies on layout analysis and text extraction, which can only utilize explicit text information and struggle to capture images or unstructured content; the other category treats document segmentation as visual input and directly passes it to visual language models (VLMs) for processing, yet it ignores the semantic advantages of text, leading to suboptimal retrieval and generation results. To address these research gaps, we propose the Co-Modality-based RAG (CMRAG) framework, which can simultaneously leverage texts and images for more accurate retrieval and generation. Our framework includes two key components: (1) a Unified Encoding Model (UEM) that projects queries, parsed text, and images into a shared embedding space via triplet-based training, and (2) a Unified Co-Modality-informed Retrieval (UCMR) method that statistically normalizes similarity scores to effectively fuse cross-modal signals. To support research in this direction, we further construct and release a large-scale triplet dataset of (query, text, image) examples. Experiments demonstrate that our proposed framework consistently outperforms single-modality--based RAG in multiple visual document question-answering (VDQA) benchmarks. The findings of this paper show that integrating co-modality information into the RAG framework in a unified manner is an effective approach to improving the performance of complex VDQA systems.
ReSee: Responding through Seeing Fine-grained Visual Knowledge in Open-domain Dialogue
Incorporating visual knowledge into text-only dialogue systems has become a potential direction to imitate the way humans think, imagine, and communicate. However, existing multimodal dialogue systems are either confined by the scale and quality of available datasets or the coarse concept of visual knowledge. To address these issues, we provide a new paradigm of constructing multimodal dialogues as well as two datasets extended from text-only dialogues under such paradigm (ReSee-WoW, ReSee-DD). We propose to explicitly split the visual knowledge into finer granularity (``turn-level'' and ``entity-level''). To further boost the accuracy and diversity of augmented visual information, we retrieve them from the Internet or a large image dataset. To demonstrate the superiority and universality of the provided visual knowledge, we propose a simple but effective framework ReSee to add visual representation into vanilla dialogue models by modality concatenations. We also conduct extensive experiments and ablations w.r.t. different model configurations and visual knowledge settings. Empirical, encouraging results not only demonstrate the effectiveness of introducing visual knowledge at both entity and turn level but also verify the proposed model ReSee outperforms several state-of-the-art methods on automatic and human evaluations. By leveraging text and vision knowledge, ReSee can produce informative responses with real-world visual concepts. Our code is available at https://github.com/ImKeTT/ReSee.
ChitroJera: A Regionally Relevant Visual Question Answering Dataset for Bangla
Visual Question Answer (VQA) poses the problem of answering a natural language question about a visual context. Bangla, despite being a widely spoken language, is considered low-resource in the realm of VQA due to the lack of proper benchmarks, challenging models known to be performant in other languages. Furthermore, existing Bangla VQA datasets offer little regional relevance and are largely adapted from their foreign counterparts. To address these challenges, we introduce a large-scale Bangla VQA dataset, ChitroJera, totaling over 15k samples from diverse and locally relevant data sources. We assess the performance of text encoders, image encoders, multimodal models, and our novel dual-encoder models. The experiments reveal that the pre-trained dual-encoders outperform other models of their scale. We also evaluate the performance of current large vision language models (LVLMs) using prompt-based techniques, achieving the overall best performance. Given the underdeveloped state of existing datasets, we envision ChitroJera expanding the scope of Vision-Language tasks in Bangla.
Recoverable Compression: A Multimodal Vision Token Recovery Mechanism Guided by Text Information
With the advancement of large-scale language modeling techniques, large multimodal models combining visual encoders with large language models have demonstrated exceptional performance in various visual tasks. Most of the current large-scale multimodal models achieve this by mapping visual features obtained from the visual encoder into a large language model and using them as inputs alongside text for downstream tasks. Therefore, the number of visual tokens directly affects the training and inference speed of the model. There has been significant work on token pruning for visual transformers, but for large multimodal models, only relying on visual information for token pruning or compression may lead to significant loss of important information. On the other hand, the textual input in the form of a question may contain valuable information that can aid in answering the question, providing additional knowledge to the model. To address the potential oversimplification and excessive pruning that can occur with most purely visual token pruning methods, we propose a text information-guided dynamic visual token recovery mechanism that does not require training. This mechanism leverages the similarity between the question text and visual tokens to recover visually meaningful tokens with important text information while merging other less important tokens. Experimental results demonstrate that our proposed method achieves comparable performance to the original approach while compressing the visual tokens to an average of 10% of the original quantity. Our source code will be made publicly available following acceptance.
A Concept-Centric Approach to Multi-Modality Learning
In an effort to create a more efficient AI system, we introduce a new multi-modality learning framework that leverages a modality-agnostic concept space possessing abstract knowledge and a set of modality-specific projection models tailored to process distinct modality inputs and map them onto the concept space. Decoupled from specific modalities and their associated projection models, the concept space focuses on learning abstract knowledge that is universally applicable across modalities. Subsequently, the knowledge embedded into the concept space streamlines the learning processes of modality-specific projection models. We evaluate our framework on two popular tasks: Image-Text Matching and Visual Question Answering. Our framework achieves performance on par with benchmark models while demonstrating more efficient learning curves.
Show or Tell? A Benchmark To Evaluate Visual and Textual Prompts in Semantic Segmentation
Prompt engineering has shown remarkable success with large language models, yet its systematic exploration in computer vision remains limited. In semantic segmentation, both textual and visual prompts offer distinct advantages: textual prompts through open-vocabulary methods allow segmentation of arbitrary categories, while visual reference prompts provide intuitive reference examples. However, existing benchmarks evaluate these modalities in isolation, without direct comparison under identical conditions. We present Show or Tell (SoT), a novel benchmark specifically designed to evaluate both visual and textual prompts for semantic segmentation across 14 datasets spanning 7 diverse domains (common scenes, urban, food, waste, parts, tools, and land-cover). We evaluate 5 open-vocabulary methods and 4 visual reference prompt approaches, adapting the latter to handle multi-class segmentation through a confidence-based mask merging strategy. Our extensive experiments reveal that open-vocabulary methods excel with common concepts easily described by text but struggle with complex domains like tools, while visual reference prompt methods achieve good average results but exhibit high variability depending on the input prompt. Through comprehensive quantitative and qualitative analysis, we identify the strengths and weaknesses of both prompting modalities, providing valuable insights to guide future research in vision foundation models for segmentation tasks.
Open-ended VQA benchmarking of Vision-Language models by exploiting Classification datasets and their semantic hierarchy
The evaluation of text-generative vision-language models is a challenging yet crucial endeavor. By addressing the limitations of existing Visual Question Answering (VQA) benchmarks and proposing innovative evaluation methodologies, our research seeks to advance our understanding of these models' capabilities. We propose a novel VQA benchmark based on well-known visual classification datasets which allows a granular evaluation of text-generative vision-language models and their comparison with discriminative vision-language models. To improve the assessment of coarse answers on fine-grained classification tasks, we suggest using the semantic hierarchy of the label space to ask automatically generated follow-up questions about the ground-truth category. Finally, we compare traditional NLP and LLM-based metrics for the problem of evaluating model predictions given ground-truth answers. We perform a human evaluation study upon which we base our decision on the final metric. We apply our benchmark to a suite of vision-language models and show a detailed comparison of their abilities on object, action, and attribute classification. Our contributions aim to lay the foundation for more precise and meaningful assessments, facilitating targeted progress in the exciting field of vision-language modeling.
Any Information Is Just Worth One Single Screenshot: Unifying Search With Visualized Information Retrieval
With the popularity of multimodal techniques, it receives growing interests to acquire useful information in visual forms. In this work, we formally define an emerging IR paradigm called Visualized Information Retrieval, or Vis-IR, where multimodal information, such as texts, images, tables and charts, is jointly represented by a unified visual format called Screenshots, for various retrieval applications. We further make three key contributions for Vis-IR. First, we create VIRA (Vis-IR Aggregation), a large-scale dataset comprising a vast collection of screenshots from diverse sources, carefully curated into captioned and question-answer formats. Second, we develop UniSE (Universal Screenshot Embeddings), a family of retrieval models that enable screenshots to query or be queried across arbitrary data modalities. Finally, we construct MVRB (Massive Visualized IR Benchmark), a comprehensive benchmark covering a variety of task forms and application scenarios. Through extensive evaluations on MVRB, we highlight the deficiency from existing multimodal retrievers and the substantial improvements made by UniSE. Our work will be shared with the community, laying a solid foundation for this emerging field.
VGBench: Evaluating Large Language Models on Vector Graphics Understanding and Generation
In the realm of vision models, the primary mode of representation is using pixels to rasterize the visual world. Yet this is not always the best or unique way to represent visual content, especially for designers and artists who depict the world using geometry primitives such as polygons. Vector graphics (VG), on the other hand, offer a textual representation of visual content, which can be more concise and powerful for content like cartoons or sketches. Recent studies have shown promising results on processing vector graphics with capable Large Language Models (LLMs). However, such works focus solely on qualitative results, understanding, or a specific type of vector graphics. We propose VGBench, a comprehensive benchmark for LLMs on handling vector graphics through diverse aspects, including (a) both visual understanding and generation, (b) evaluation of various vector graphics formats, (c) diverse question types, (d) wide range of prompting techniques, (e) under multiple LLMs. Evaluating on our collected 4279 understanding and 5845 generation samples, we find that LLMs show strong capability on both aspects while exhibiting less desirable performance on low-level formats (SVG). Both data and evaluation pipeline will be open-sourced at https://vgbench.github.io.
Generating Pedagogically Meaningful Visuals for Math Word Problems: A New Benchmark and Analysis of Text-to-Image Models
Visuals are valuable tools for teaching math word problems (MWPs), helping young learners interpret textual descriptions into mathematical expressions before solving them. However, creating such visuals is labor-intensive and there is a lack of automated methods to support this process. In this paper, we present Math2Visual, an automatic framework for generating pedagogically meaningful visuals from MWP text descriptions. Math2Visual leverages a pre-defined visual language and a design space grounded in interviews with math teachers, to illustrate the core mathematical relationships in MWPs. Using Math2Visual, we construct an annotated dataset of 1,903 visuals and evaluate Text-to-Image (TTI) models for their ability to generate visuals that align with our design. We further fine-tune several TTI models with our dataset, demonstrating improvements in educational visual generation. Our work establishes a new benchmark for automated generation of pedagogically meaningful visuals and offers insights into key challenges in producing multimodal educational content, such as the misrepresentation of mathematical relationships and the omission of essential visual elements.
T-Rex2: Towards Generic Object Detection via Text-Visual Prompt Synergy
We present T-Rex2, a highly practical model for open-set object detection. Previous open-set object detection methods relying on text prompts effectively encapsulate the abstract concept of common objects, but struggle with rare or complex object representation due to data scarcity and descriptive limitations. Conversely, visual prompts excel in depicting novel objects through concrete visual examples, but fall short in conveying the abstract concept of objects as effectively as text prompts. Recognizing the complementary strengths and weaknesses of both text and visual prompts, we introduce T-Rex2 that synergizes both prompts within a single model through contrastive learning. T-Rex2 accepts inputs in diverse formats, including text prompts, visual prompts, and the combination of both, so that it can handle different scenarios by switching between the two prompt modalities. Comprehensive experiments demonstrate that T-Rex2 exhibits remarkable zero-shot object detection capabilities across a wide spectrum of scenarios. We show that text prompts and visual prompts can benefit from each other within the synergy, which is essential to cover massive and complicated real-world scenarios and pave the way towards generic object detection. Model API is now available at https://github.com/IDEA-Research/T-Rex.
Unanswerable Visual Question Answering
Teaching Visual Question Answering (VQA) models to abstain from unanswerable questions is indispensable for building a trustworthy AI system. Existing studies, though have explored various aspects of VQA, yet marginally ignored this particular attribute. This paper aims to bridge the research gap by contributing a comprehensive dataset, called UNK-VQA. The dataset is specifically designed to address the challenge of questions that can be unanswerable. To this end, we first augment the existing data via deliberate perturbations on either the image or question. In specific, we carefully ensure that the question-image semantics remain close to the original unperturbed distribution. By means of this, the identification of unanswerable questions becomes challenging, setting our dataset apart from others that involve mere image replacement. We then extensively evaluate the zero- and few-shot performance of several emerging multi-modal large models and discover significant limitations of them when applied to our dataset. Additionally, we also propose a straightforward method to tackle these unanswerable questions. This dataset, we believe, will serve as a valuable benchmark for enhancing the abstention capability of VQA models, thereby leading to increased trustworthiness of AI systems.
ScreenAI: A Vision-Language Model for UI and Infographics Understanding
Screen user interfaces (UIs) and infographics, sharing similar visual language and design principles, play important roles in human communication and human-machine interaction. We introduce ScreenAI, a vision-language model that specializes in UI and infographics understanding. Our model improves upon the PaLI architecture with the flexible patching strategy of pix2struct and is trained on a unique mixture of datasets. At the heart of this mixture is a novel screen annotation task in which the model has to identify the type and location of UI elements. We use these text annotations to describe screens to Large Language Models and automatically generate question-answering (QA), UI navigation, and summarization training datasets at scale. We run ablation studies to demonstrate the impact of these design choices. At only 5B parameters, ScreenAI achieves new state-of-the-artresults on UI- and infographics-based tasks (Multi-page DocVQA, WebSRC, MoTIF and Widget Captioning), and new best-in-class performance on others (Chart QA, DocVQA, and InfographicVQA) compared to models of similar size. Finally, we release three new datasets: one focused on the screen annotation task and two others focused on question answering.
Self-Imagine: Effective Unimodal Reasoning with Multimodal Models using Self-Imagination
The potential of Vision-Language Models (VLMs) often remains underutilized in handling complex text-based problems, particularly when these problems could benefit from visual representation. Resonating with humans' ability to solve complex text-based problems by (1) creating a visual diagram from the problem and (2) deducing what steps they need to take to solve it, we propose Self-Imagine. We leverage a single Vision-Language Model (VLM) to generate a structured representation of the question using HTML, then render the HTML as an image, and finally use the same VLM to answer the question using both the question and the image. Our approach does not require any additional training data or training. We evaluate our approach on three mathematics tasks and nine general-purpose reasoning tasks using state-of-the-art (LLAVA-1.5 and GEMINI PRO) VLMs. Our approach boosts the performance of LLAVA-1.5 and GEMINI PRO on all math tasks (on average GSM8K: +3.1%; ASDIV: +3.2%; SVAMP: +6.9%) and the majority of the general-purpose reasoning tasks by 3.2% to 6.0% on average.
FashionVQA: A Domain-Specific Visual Question Answering System
Humans apprehend the world through various sensory modalities, yet language is their predominant communication channel. Machine learning systems need to draw on the same multimodal richness to have informed discourses with humans in natural language; this is particularly true for systems specialized in visually-dense information, such as dialogue, recommendation, and search engines for clothing. To this end, we train a visual question answering (VQA) system to answer complex natural language questions about apparel in fashion photoshoot images. The key to the successful training of our VQA model is the automatic creation of a visual question-answering dataset with 168 million samples from item attributes of 207 thousand images using diverse templates. The sample generation employs a strategy that considers the difficulty of the question-answer pairs to emphasize challenging concepts. Contrary to the recent trends in using several datasets for pretraining the visual question answering models, we focused on keeping the dataset fixed while training various models from scratch to isolate the improvements from model architecture changes. We see that using the same transformer for encoding the question and decoding the answer, as in language models, achieves maximum accuracy, showing that visual language models (VLMs) make the best visual question answering systems for our dataset. The accuracy of the best model surpasses the human expert level, even when answering human-generated questions that are not confined to the template formats. Our approach for generating a large-scale multimodal domain-specific dataset provides a path for training specialized models capable of communicating in natural language. The training of such domain-expert models, e.g., our fashion VLM model, cannot rely solely on the large-scale general-purpose datasets collected from the web.
Document Collection Visual Question Answering
Current tasks and methods in Document Understanding aims to process documents as single elements. However, documents are usually organized in collections (historical records, purchase invoices), that provide context useful for their interpretation. To address this problem, we introduce Document Collection Visual Question Answering (DocCVQA) a new dataset and related task, where questions are posed over a whole collection of document images and the goal is not only to provide the answer to the given question, but also to retrieve the set of documents that contain the information needed to infer the answer. Along with the dataset we propose a new evaluation metric and baselines which provide further insights to the new dataset and task.
MMEvalPro: Calibrating Multimodal Benchmarks Towards Trustworthy and Efficient Evaluation
Large Multimodal Models (LMMs) exhibit impressive cross-modal understanding and reasoning abilities, often assessed through multiple-choice questions (MCQs) that include an image, a question, and several options. However, many benchmarks used for such evaluations suffer from systematic biases. Remarkably, Large Language Models (LLMs) without any visual perception capabilities achieve non-trivial performance, undermining the credibility of these evaluations. To address this issue while maintaining the efficiency of MCQ evaluations, we propose MMEvalPro, a benchmark designed to avoid Type-I errors through a trilogy evaluation pipeline and more rigorous metrics. For each original question from existing benchmarks, human annotators augment it by creating one perception question and one knowledge anchor question through a meticulous annotation process. MMEvalPro comprises 2,138 question triplets, totaling 6,414 distinct questions. Two-thirds of these questions are manually labeled by human experts, while the rest are sourced from existing benchmarks (MMMU, ScienceQA, and MathVista). Compared with the existing benchmarks, our experiments with the latest LLMs and LMMs demonstrate that MMEvalPro is more challenging (the best LMM lags behind human performance by 31.73%, compared to an average gap of 8.03% in previous benchmarks) and more trustworthy (the best LLM trails the best LMM by 23.09%, whereas the gap for previous benchmarks is just 14.64%). Our in-depth analysis explains the reason for the large performance gap and justifies the trustworthiness of evaluation, underscoring its significant potential for advancing future research.
TVBench: Redesigning Video-Language Evaluation
Large language models have demonstrated impressive performance when integrated with vision models even enabling video understanding. However, evaluating these video models presents its own unique challenges, for which several benchmarks have been proposed. In this paper, we show that the currently most used video-language benchmarks can be solved without requiring much temporal reasoning. We identified three main issues in existing datasets: (i) static information from single frames is often sufficient to solve the tasks (ii) the text of the questions and candidate answers is overly informative, allowing models to answer correctly without relying on any visual input (iii) world knowledge alone can answer many of the questions, making the benchmarks a test of knowledge replication rather than visual reasoning. In addition, we found that open-ended question-answering benchmarks for video understanding suffer from similar issues while the automatic evaluation process with LLMs is unreliable, making it an unsuitable alternative. As a solution, we propose TVBench, a novel open-source video multiple-choice question-answering benchmark, and demonstrate through extensive evaluations that it requires a high level of temporal understanding. Surprisingly, we find that most recent state-of-the-art video-language models perform similarly to random performance on TVBench, with only Gemini-Pro and Tarsier clearly surpassing this baseline.
Modular Visual Question Answering via Code Generation
We present a framework that formulates visual question answering as modular code generation. In contrast to prior work on modular approaches to VQA, our approach requires no additional training and relies on pre-trained language models (LMs), visual models pre-trained on image-caption pairs, and fifty VQA examples used for in-context learning. The generated Python programs invoke and compose the outputs of the visual models using arithmetic and conditional logic. Our approach improves accuracy on the COVR dataset by at least 3% and on the GQA dataset by roughly 2% compared to the few-shot baseline that does not employ code generation.
EXAMS-V: A Multi-Discipline Multilingual Multimodal Exam Benchmark for Evaluating Vision Language Models
We introduce EXAMS-V, a new challenging multi-discipline multimodal multilingual exam benchmark for evaluating vision language models. It consists of 20,932 multiple-choice questions across 20 school disciplines covering natural science, social science, and other miscellaneous studies, e.g., religion, fine arts, business, etc. EXAMS-V includes a variety of multimodal features such as text, images, tables, figures, diagrams, maps, scientific symbols, and equations. The questions come in 11 languages from 7 language families. Unlike existing benchmarks, EXAMS-V is uniquely curated by gathering school exam questions from various countries, with a variety of education systems. This distinctive approach calls for intricate reasoning across diverse languages and relies on region-specific knowledge. Solving the problems in the dataset requires advanced perception and joint reasoning over the text and the visual content of the image. Our evaluation results demonstrate that this is a challenging dataset, which is difficult even for advanced vision-text models such as GPT-4V and Gemini; this underscores the inherent complexity of the dataset and its significance as a future benchmark.
V-Doc : Visual questions answers with Documents
We propose V-Doc, a question-answering tool using document images and PDF, mainly for researchers and general non-deep learning experts looking to generate, process, and understand the document visual question answering tasks. The V-Doc supports generating and using both extractive and abstractive question-answer pairs using documents images. The extractive QA selects a subset of tokens or phrases from the document contents to predict the answers, while the abstractive QA recognises the language in the content and generates the answer based on the trained model. Both aspects are crucial to understanding the documents, especially in an image format. We include a detailed scenario of question generation for the abstractive QA task. V-Doc supports a wide range of datasets and models, and is highly extensible through a declarative, framework-agnostic platform.
Measuring Multimodal Mathematical Reasoning with MATH-Vision Dataset
Recent advancements in Large Multimodal Models (LMMs) have shown promising results in mathematical reasoning within visual contexts, with models approaching human-level performance on existing benchmarks such as MathVista. However, we observe significant limitations in the diversity of questions and breadth of subjects covered by these benchmarks. To address this issue, we present the MATH-Vision (MATH-V) dataset, a meticulously curated collection of 3,040 high-quality mathematical problems with visual contexts sourced from real math competitions. Spanning 16 distinct mathematical disciplines and graded across 5 levels of difficulty, our dataset provides a comprehensive and diverse set of challenges for evaluating the mathematical reasoning abilities of LMMs. Through extensive experimentation, we unveil a notable performance gap between current LMMs and human performance on MATH-V, underscoring the imperative for further advancements in LMMs. Moreover, our detailed categorization allows for a thorough error analysis of LMMs, offering valuable insights to guide future research and development. The project is available at https://mathvision-cuhk.github.io
Benchmarking Retrieval-Augmented Multimomal Generation for Document Question Answering
Document Visual Question Answering (DocVQA) faces dual challenges in processing lengthy multimodal documents (text, images, tables) and performing cross-modal reasoning. Current document retrieval-augmented generation (DocRAG) methods remain limited by their text-centric approaches, frequently missing critical visual information. The field also lacks robust benchmarks for assessing multimodal evidence selection and integration. We introduce MMDocRAG, a comprehensive benchmark featuring 4,055 expert-annotated QA pairs with multi-page, cross-modal evidence chains. Our framework introduces innovative metrics for evaluating multimodal quote selection and enables answers that interleave text with relevant visual elements. Through large-scale experiments with 60 VLM/LLM models and 14 retrieval systems, we identify persistent challenges in multimodal evidence retrieval, selection, and integration.Key findings reveal advanced proprietary LVMs show superior performance than open-sourced alternatives. Also, they show moderate advantages using multimodal inputs over text-only inputs, while open-source alternatives show significant performance degradation. Notably, fine-tuned LLMs achieve substantial improvements when using detailed image descriptions. MMDocRAG establishes a rigorous testing ground and provides actionable insights for developing more robust multimodal DocVQA systems. Our benchmark and code are available at https://mmdocrag.github.io/MMDocRAG/.
VRAG-RL: Empower Vision-Perception-Based RAG for Visually Rich Information Understanding via Iterative Reasoning with Reinforcement Learning
Effectively retrieving, reasoning and understanding visually rich information remains a challenge for RAG methods. Traditional text-based methods cannot handle visual-related information. On the other hand, current vision-based RAG approaches are often limited by fixed pipelines and frequently struggle to reason effectively due to the insufficient activation of the fundamental capabilities of models. As RL has been proven to be beneficial for model reasoning, we introduce VRAG-RL, a novel RL framework tailored for complex reasoning across visually rich information. With this framework, VLMs interact with search engines, autonomously sampling single-turn or multi-turn reasoning trajectories with the help of visual perception tokens and undergoing continual optimization based on these samples. Our approach highlights key limitations of RL in RAG domains: (i) Prior Multi-modal RAG approaches tend to merely incorporate images into the context, leading to insufficient reasoning token allocation and neglecting visual-specific perception; and (ii) When models interact with search engines, their queries often fail to retrieve relevant information due to the inability to articulate requirements, thereby leading to suboptimal performance. To address these challenges, we define an action space tailored for visually rich inputs, with actions including cropping and scaling, allowing the model to gather information from a coarse-to-fine perspective. Furthermore, to bridge the gap between users' original inquiries and the retriever, we employ a simple yet effective reward that integrates query rewriting and retrieval performance with a model-based reward. Our VRAG-RL optimizes VLMs for RAG tasks using specially designed RL strategies, aligning the model with real-world applications. The code is available at https://github.com/Alibaba-NLP/VRAG{https://github.com/Alibaba-NLP/VRAG}.
Designing Interfaces for Multimodal Vector Search Applications
Multimodal vector search offers a new paradigm for information retrieval by exposing numerous pieces of functionality which are not possible in traditional lexical search engines. While multimodal vector search can be treated as a drop in replacement for these traditional systems, the experience can be significantly enhanced by leveraging the unique capabilities of multimodal search. Central to any information retrieval system is a user who expresses an information need, traditional user interfaces with a single search bar allow users to interact with lexical search systems effectively however are not necessarily optimal for multimodal vector search. In this paper we explore novel capabilities of multimodal vector search applications utilising CLIP models and present implementations and design patterns which better allow users to express their information needs and effectively interact with these systems in an information retrieval context.
Mapping Natural Language Commands to Web Elements
The web provides a rich, open-domain environment with textual, structural, and spatial properties. We propose a new task for grounding language in this environment: given a natural language command (e.g., "click on the second article"), choose the correct element on the web page (e.g., a hyperlink or text box). We collected a dataset of over 50,000 commands that capture various phenomena such as functional references (e.g. "find who made this site"), relational reasoning (e.g. "article by john"), and visual reasoning (e.g. "top-most article"). We also implemented and analyzed three baseline models that capture different phenomena present in the dataset.
Sequential Modeling Enables Scalable Learning for Large Vision Models
We introduce a novel sequential modeling approach which enables learning a Large Vision Model (LVM) without making use of any linguistic data. To do this, we define a common format, "visual sentences", in which we can represent raw images and videos as well as annotated data sources such as semantic segmentations and depth reconstructions without needing any meta-knowledge beyond the pixels. Once this wide variety of visual data (comprising 420 billion tokens) is represented as sequences, the model can be trained to minimize a cross-entropy loss for next token prediction. By training across various scales of model architecture and data diversity, we provide empirical evidence that our models scale effectively. Many different vision tasks can be solved by designing suitable visual prompts at test time.
A Video-grounded Dialogue Dataset and Metric for Event-driven Activities
This paper presents VDAct, a dataset for a Video-grounded Dialogue on Event-driven Activities, alongside VDEval, a session-based context evaluation metric specially designed for the task. Unlike existing datasets, VDAct includes longer and more complex video sequences that depict a variety of event-driven activities that require advanced contextual understanding for accurate response generation. The dataset comprises 3,000 dialogues with over 30,000 question-and-answer pairs, derived from 1,000 videos with diverse activity scenarios. VDAct displays a notably challenging characteristic due to its broad spectrum of activity scenarios and wide range of question types. Empirical studies on state-of-the-art vision foundation models highlight their limitations in addressing certain question types on our dataset. Furthermore, VDEval, which integrates dialogue session history and video content summaries extracted from our supplementary Knowledge Graphs to evaluate individual responses, demonstrates a significantly higher correlation with human assessments on the VDAct dataset than existing evaluation metrics that rely solely on the context of single dialogue turns.
Zebra-CoT: A Dataset for Interleaved Vision Language Reasoning
Humans often use visual aids, for example diagrams or sketches, when solving complex problems. Training multimodal models to do the same, known as Visual Chain of Thought (Visual CoT), is challenging due to: (1) poor off-the-shelf visual CoT performance, which hinders reinforcement learning, and (2) the lack of high-quality visual CoT training data. We introduce Zebra-CoT, a diverse large-scale dataset with 182,384 samples, containing logically coherent interleaved text-image reasoning traces. We focus on four categories of tasks where sketching or visual reasoning is especially natural, spanning scientific questions such as geometry, physics, and algorithms; 2D visual reasoning tasks like visual search and jigsaw puzzles; 3D reasoning tasks including 3D multi-hop inference, embodied and robot planning; visual logic problems and strategic games like chess. Fine-tuning the Anole-7B model on the Zebra-CoT training corpus results in an improvement of +12% in our test-set accuracy and yields up to +13% performance gain on standard VLM benchmark evaluations. Fine-tuning Bagel-7B yields a model that generates high-quality interleaved visual reasoning chains, underscoring Zebra-CoT's effectiveness for developing multimodal reasoning abilities. We open-source our dataset and models to support development and evaluation of visual CoT.
Multimodal ChatGPT for Medical Applications: an Experimental Study of GPT-4V
In this paper, we critically evaluate the capabilities of the state-of-the-art multimodal large language model, i.e., GPT-4 with Vision (GPT-4V), on Visual Question Answering (VQA) task. Our experiments thoroughly assess GPT-4V's proficiency in answering questions paired with images using both pathology and radiology datasets from 11 modalities (e.g. Microscopy, Dermoscopy, X-ray, CT, etc.) and fifteen objects of interests (brain, liver, lung, etc.). Our datasets encompass a comprehensive range of medical inquiries, including sixteen distinct question types. Throughout our evaluations, we devised textual prompts for GPT-4V, directing it to synergize visual and textual information. The experiments with accuracy score conclude that the current version of GPT-4V is not recommended for real-world diagnostics due to its unreliable and suboptimal accuracy in responding to diagnostic medical questions. In addition, we delineate seven unique facets of GPT-4V's behavior in medical VQA, highlighting its constraints within this complex arena. The complete details of our evaluation cases are accessible at https://github.com/ZhilingYan/GPT4V-Medical-Report.
WebVLN: Vision-and-Language Navigation on Websites
Vision-and-Language Navigation (VLN) task aims to enable AI agents to accurately understand and follow natural language instructions to navigate through real-world environments, ultimately reaching specific target locations. We recognise a promising opportunity to extend VLN to a comparable navigation task that holds substantial significance in our daily lives, albeit within the virtual realm: navigating websites on the Internet. This paper proposes a new task named Vision-and-Language Navigation on Websites (WebVLN), where we use question-based instructions to train an agent, emulating how users naturally browse websites. Unlike the existing VLN task that only pays attention to vision and instruction (language), the WebVLN agent further considers underlying web-specific content like HTML, which could not be seen on the rendered web pages yet contains rich visual and textual information. Toward this goal, we contribute a dataset, WebVLN-v1, and introduce a novel approach called Website-aware VLN Network (WebVLN-Net), which is built upon the foundation of state-of-the-art VLN techniques. Experimental results show that WebVLN-Net outperforms current VLN and web-related navigation methods. We believe that the introduction of the new WebVLN task and its dataset will establish a new dimension within the VLN domain and contribute to the broader vision-and-language research community. The code is available at: https://github.com/WebVLN/WebVLN.
From the Least to the Most: Building a Plug-and-Play Visual Reasoner via Data Synthesis
We explore multi-step reasoning in vision-language models (VLMs). The problem is challenging, as reasoning data consisting of multiple steps of visual and language processing are barely available. To overcome the challenge, we first introduce a least-to-most visual reasoning paradigm, which interleaves steps of decomposing a question into sub-questions and invoking external tools for resolving sub-questions. Based on the paradigm, we further propose a novel data synthesis approach that can automatically create questions and multi-step reasoning paths for an image in a bottom-up manner. Our approach divides the complex synthesis task into a few simple sub-tasks, and (almost entirely) relies on open-sourced models to accomplish the sub-tasks. Therefore, the entire synthesis process is reproducible and cost-efficient, and the synthesized data is quality guaranteed. With the approach, we construct 50k visual reasoning examples. Then, we develop a visual reasoner through supervised fine-tuning, which is capable of generally enhancing the reasoning abilities of a wide range of existing VLMs in a plug-and-play fashion. Extensive experiments indicate that the visual reasoner can consistently and significantly improve four VLMs on four VQA benchmarks. Our code and dataset are available at https://github.com/steven-ccq/VisualReasoner.
OpenViVQA: Task, Dataset, and Multimodal Fusion Models for Visual Question Answering in Vietnamese
In recent years, visual question answering (VQA) has attracted attention from the research community because of its highly potential applications (such as virtual assistance on intelligent cars, assistant devices for blind people, or information retrieval from document images using natural language as queries) and challenge. The VQA task requires methods that have the ability to fuse the information from questions and images to produce appropriate answers. Neural visual question answering models have achieved tremendous growth on large-scale datasets which are mostly for resource-rich languages such as English. However, available datasets narrow the VQA task as the answers selection task or answer classification task. We argue that this form of VQA is far from human ability and eliminates the challenge of the answering aspect in the VQA task by just selecting answers rather than generating them. In this paper, we introduce the OpenViVQA (Open-domain Vietnamese Visual Question Answering) dataset, the first large-scale dataset for VQA with open-ended answers in Vietnamese, consists of 11,000+ images associated with 37,000+ question-answer pairs (QAs). Moreover, we proposed FST, QuMLAG, and MLPAG which fuse information from images and answers, then use these fused features to construct answers as humans iteratively. Our proposed methods achieve results that are competitive with SOTA models such as SAAA, MCAN, LORA, and M4C. The dataset is available to encourage the research community to develop more generalized algorithms including transformers for low-resource languages such as Vietnamese.
GeomVerse: A Systematic Evaluation of Large Models for Geometric Reasoning
Large language models have shown impressive results for multi-hop mathematical reasoning when the input question is only textual. Many mathematical reasoning problems, however, contain both text and image. With the ever-increasing adoption of vision language models (VLMs), understanding their reasoning abilities for such problems is crucial. In this paper, we evaluate the reasoning capabilities of VLMs along various axes through the lens of geometry problems. We procedurally create a synthetic dataset of geometry questions with controllable difficulty levels along multiple axes, thus enabling a systematic evaluation. The empirical results obtained using our benchmark for state-of-the-art VLMs indicate that these models are not as capable in subjects like geometry (and, by generalization, other topics requiring similar reasoning) as suggested by previous benchmarks. This is made especially clear by the construction of our benchmark at various depth levels, since solving higher-depth problems requires long chains of reasoning rather than additional memorized knowledge. We release the dataset for further research in this area.
INQUIRE: A Natural World Text-to-Image Retrieval Benchmark
We introduce INQUIRE, a text-to-image retrieval benchmark designed to challenge multimodal vision-language models on expert-level queries. INQUIRE includes iNaturalist 2024 (iNat24), a new dataset of five million natural world images, along with 250 expert-level retrieval queries. These queries are paired with all relevant images comprehensively labeled within iNat24, comprising 33,000 total matches. Queries span categories such as species identification, context, behavior, and appearance, emphasizing tasks that require nuanced image understanding and domain expertise. Our benchmark evaluates two core retrieval tasks: (1) INQUIRE-Fullrank, a full dataset ranking task, and (2) INQUIRE-Rerank, a reranking task for refining top-100 retrievals. Detailed evaluation of a range of recent multimodal models demonstrates that INQUIRE poses a significant challenge, with the best models failing to achieve an mAP@50 above 50%. In addition, we show that reranking with more powerful multimodal models can enhance retrieval performance, yet there remains a significant margin for improvement. By focusing on scientifically-motivated ecological challenges, INQUIRE aims to bridge the gap between AI capabilities and the needs of real-world scientific inquiry, encouraging the development of retrieval systems that can assist with accelerating ecological and biodiversity research. Our dataset and code are available at https://inquire-benchmark.github.io
An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA
Knowledge-based visual question answering (VQA) involves answering questions that require external knowledge not present in the image. Existing methods first retrieve knowledge from external resources, then reason over the selected knowledge, the input image, and question for answer prediction. However, this two-step approach could lead to mismatches that potentially limit the VQA performance. For example, the retrieved knowledge might be noisy and irrelevant to the question, and the re-embedded knowledge features during reasoning might deviate from their original meanings in the knowledge base (KB). To address this challenge, we propose PICa, a simple yet effective method that Prompts GPT3 via the use of Image Captions, for knowledge-based VQA. Inspired by GPT-3's power in knowledge retrieval and question answering, instead of using structured KBs as in previous work, we treat GPT-3 as an implicit and unstructured KB that can jointly acquire and process relevant knowledge. Specifically, we first convert the image into captions (or tags) that GPT-3 can understand, then adapt GPT-3 to solve the VQA task in a few-shot manner by just providing a few in-context VQA examples. We further boost performance by carefully investigating: (i) what text formats best describe the image content, and (ii) how in-context examples can be better selected and used. PICa unlocks the first use of GPT-3 for multimodal tasks. By using only 16 examples, PICa surpasses the supervised state of the art by an absolute +8.6 points on the OK-VQA dataset. We also benchmark PICa on VQAv2, where PICa also shows a decent few-shot performance.
JDocQA: Japanese Document Question Answering Dataset for Generative Language Models
Document question answering is a task of question answering on given documents such as reports, slides, pamphlets, and websites, and it is a truly demanding task as paper and electronic forms of documents are so common in our society. This is known as a quite challenging task because it requires not only text understanding but also understanding of figures and tables, and hence visual question answering (VQA) methods are often examined in addition to textual approaches. We introduce Japanese Document Question Answering (JDocQA), a large-scale document-based QA dataset, essentially requiring both visual and textual information to answer questions, which comprises 5,504 documents in PDF format and annotated 11,600 question-and-answer instances in Japanese. Each QA instance includes references to the document pages and bounding boxes for the answer clues. We incorporate multiple categories of questions and unanswerable questions from the document for realistic question-answering applications. We empirically evaluate the effectiveness of our dataset with text-based large language models (LLMs) and multimodal models. Incorporating unanswerable questions in finetuning may contribute to harnessing the so-called hallucination generation.
The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision
We propose the Neuro-Symbolic Concept Learner (NS-CL), a model that learns visual concepts, words, and semantic parsing of sentences without explicit supervision on any of them; instead, our model learns by simply looking at images and reading paired questions and answers. Our model builds an object-based scene representation and translates sentences into executable, symbolic programs. To bridge the learning of two modules, we use a neuro-symbolic reasoning module that executes these programs on the latent scene representation. Analogical to human concept learning, the perception module learns visual concepts based on the language description of the object being referred to. Meanwhile, the learned visual concepts facilitate learning new words and parsing new sentences. We use curriculum learning to guide the searching over the large compositional space of images and language. Extensive experiments demonstrate the accuracy and efficiency of our model on learning visual concepts, word representations, and semantic parsing of sentences. Further, our method allows easy generalization to new object attributes, compositions, language concepts, scenes and questions, and even new program domains. It also empowers applications including visual question answering and bidirectional image-text retrieval.
MMSearch-R1: Incentivizing LMMs to Search
Robust deployment of large multimodal models (LMMs) in real-world scenarios requires access to external knowledge sources, given the complexity and dynamic nature of real-world information. Existing approaches such as retrieval-augmented generation (RAG) and prompt engineered search agents rely on rigid pipelines, often leading to inefficient or excessive search behaviors. We present MMSearch-R1, the first end-to-end reinforcement learning framework that enables LMMs to perform on-demand, multi-turn search in real-world Internet environments. Our framework integrates both image and text search tools, allowing the model to reason about when and how to invoke them guided by an outcome-based reward with a search penalty. To support training, We collect a multimodal search VQA dataset through a semi-automated pipeline that covers diverse visual and textual knowledge needs and curate a search-balanced subset with both search-required and search-free samples, which proves essential for shaping efficient and on-demand search behavior. Extensive experiments on knowledge-intensive and info-seeking VQA tasks show that our model not only outperforms RAG-based baselines of the same model size, but also matches the performance of a larger RAG-based model while reducing search calls by over 30%. We further analyze key empirical findings to offer actionable insights for advancing research in multimodal search.
VLSP2022-EVJVQA Challenge: Multilingual Visual Question Answering
Visual Question Answering (VQA) is a challenging task of natural language processing (NLP) and computer vision (CV), attracting significant attention from researchers. English is a resource-rich language that has witnessed various developments in datasets and models for visual question answering. Visual question answering in other languages also would be developed for resources and models. In addition, there is no multilingual dataset targeting the visual content of a particular country with its own objects and cultural characteristics. To address the weakness, we provide the research community with a benchmark dataset named EVJVQA, including 33,000+ pairs of question-answer over three languages: Vietnamese, English, and Japanese, on approximately 5,000 images taken from Vietnam for evaluating multilingual VQA systems or models. EVJVQA is used as a benchmark dataset for the challenge of multilingual visual question answering at the 9th Workshop on Vietnamese Language and Speech Processing (VLSP 2022). This task attracted 62 participant teams from various universities and organizations. In this article, we present details of the organization of the challenge, an overview of the methods employed by shared-task participants, and the results. The highest performances are 0.4392 in F1-score and 0.4009 in BLUE on the private test set. The multilingual QA systems proposed by the top 2 teams use ViT for the pre-trained vision model and mT5 for the pre-trained language model, a powerful pre-trained language model based on the transformer architecture. EVJVQA is a challenging dataset that motivates NLP and CV researchers to further explore the multilingual models or systems for visual question answering systems. We released the challenge on the Codalab evaluation system for further research.
Induce, Edit, Retrieve: Language Grounded Multimodal Schema for Instructional Video Retrieval
Schemata are structured representations of complex tasks that can aid artificial intelligence by allowing models to break down complex tasks into intermediate steps. We propose a novel system that induces schemata from web videos and generalizes them to capture unseen tasks with the goal of improving video retrieval performance. Our system proceeds in three major phases: (1) Given a task with related videos, we construct an initial schema for a task using a joint video-text model to match video segments with text representing steps from wikiHow; (2) We generalize schemata to unseen tasks by leveraging language models to edit the text within existing schemata. Through generalization, we can allow our schemata to cover a more extensive range of tasks with a small amount of learning data; (3) We conduct zero-shot instructional video retrieval with the unseen task names as the queries. Our schema-guided approach outperforms existing methods for video retrieval, and we demonstrate that the schemata induced by our system are better than those generated by other models.
Less Is More: Linear Layers on CLIP Features as Powerful VizWiz Model
Current architectures for multi-modality tasks such as visual question answering suffer from their high complexity. As a result, these architectures are difficult to train and require high computational resources. To address these problems we present a CLIP-based architecture that does not require any fine-tuning of the feature extractors. A simple linear classifier is used on the concatenated features of the image and text encoder. During training an auxiliary loss is added which operates on the answer types. The resulting classification is then used as an attention gate on the answer class selection. On the VizWiz 2022 Visual Question Answering Challenge we achieve 60.15 % accuracy on Task 1: Predict Answer to a Visual Question and AP score of 83.78 % on Task 2: Predict Answerability of a Visual Question.
ChatGPT Asks, BLIP-2 Answers: Automatic Questioning Towards Enriched Visual Descriptions
Asking insightful questions is crucial for acquiring knowledge and expanding our understanding of the world. However, the importance of questioning has been largely overlooked in AI research, where models have been primarily developed to answer questions. With the recent advancements of large language models (LLMs) like ChatGPT, we discover their capability to ask high-quality questions when provided with a suitable prompt. This discovery presents a new opportunity to develop an automatic questioning system. In this paper, we introduce ChatCaptioner, a novel automatic-questioning method deployed in image captioning. Here, ChatGPT is prompted to ask a series of informative questions about images to BLIP-2, a strong vision question-answering model. By keeping acquiring new visual information from BLIP-2's answers, ChatCaptioner is able to generate more enriched image descriptions. We conduct human-subject evaluations on common image caption datasets such as COCO, Conceptual Caption, and WikiArt, and compare ChatCaptioner with BLIP-2 as well as ground truth. Our results demonstrate that ChatCaptioner's captions are significantly more informative, receiving three times as many votes from human evaluators for providing the most image information. Besides, ChatCaptioner identifies 53% more objects within the image than BLIP-2 alone measured by WordNet synset matching. Code is available at https://github.com/Vision-CAIR/ChatCaptioner
TIFA: Accurate and Interpretable Text-to-Image Faithfulness Evaluation with Question Answering
Despite thousands of researchers, engineers, and artists actively working on improving text-to-image generation models, systems often fail to produce images that accurately align with the text inputs. We introduce TIFA (Text-to-Image Faithfulness evaluation with question Answering), an automatic evaluation metric that measures the faithfulness of a generated image to its text input via visual question answering (VQA). Specifically, given a text input, we automatically generate several question-answer pairs using a language model. We calculate image faithfulness by checking whether existing VQA models can answer these questions using the generated image. TIFA is a reference-free metric that allows for fine-grained and interpretable evaluations of generated images. TIFA also has better correlations with human judgments than existing metrics. Based on this approach, we introduce TIFA v1.0, a benchmark consisting of 4K diverse text inputs and 25K questions across 12 categories (object, counting, etc.). We present a comprehensive evaluation of existing text-to-image models using TIFA v1.0 and highlight the limitations and challenges of current models. For instance, we find that current text-to-image models, despite doing well on color and material, still struggle in counting, spatial relations, and composing multiple objects. We hope our benchmark will help carefully measure the research progress in text-to-image synthesis and provide valuable insights for further research.
Sightation Counts: Leveraging Sighted User Feedback in Building a BLV-aligned Dataset of Diagram Descriptions
Often, the needs and visual abilities differ between the annotator group and the end user group. Generating detailed diagram descriptions for blind and low-vision (BLV) users is one such challenging domain. Sighted annotators could describe visuals with ease, but existing studies have shown that direct generations by them are costly, bias-prone, and somewhat lacking by BLV standards. In this study, we ask sighted individuals to assess -- rather than produce -- diagram descriptions generated by vision-language models (VLM) that have been guided with latent supervision via a multi-pass inference. The sighted assessments prove effective and useful to professional educators who are themselves BLV and teach visually impaired learners. We release Sightation, a collection of diagram description datasets spanning 5k diagrams and 137k samples for completion, preference, retrieval, question answering, and reasoning training purposes and demonstrate their fine-tuning potential in various downstream tasks.
Robust Visual Question Answering: Datasets, Methods, and Future Challenges
Visual question answering requires a system to provide an accurate natural language answer given an image and a natural language question. However, it is widely recognized that previous generic VQA methods often exhibit a tendency to memorize biases present in the training data rather than learning proper behaviors, such as grounding images before predicting answers. Therefore, these methods usually achieve high in-distribution but poor out-of-distribution performance. In recent years, various datasets and debiasing methods have been proposed to evaluate and enhance the VQA robustness, respectively. This paper provides the first comprehensive survey focused on this emerging fashion. Specifically, we first provide an overview of the development process of datasets from in-distribution and out-of-distribution perspectives. Then, we examine the evaluation metrics employed by these datasets. Thirdly, we propose a typology that presents the development process, similarities and differences, robustness comparison, and technical features of existing debiasing methods. Furthermore, we analyze and discuss the robustness of representative vision-and-language pre-training models on VQA. Finally, through a thorough review of the available literature and experimental analysis, we discuss the key areas for future research from various viewpoints.
CinePile: A Long Video Question Answering Dataset and Benchmark
Current datasets for long-form video understanding often fall short of providing genuine long-form comprehension challenges, as many tasks derived from these datasets can be successfully tackled by analyzing just one or a few random frames from a video. To address this issue, we present a novel dataset and benchmark, CinePile, specifically designed for authentic long-form video understanding. This paper details our innovative approach for creating a question-answer dataset, utilizing advanced LLMs with human-in-the-loop and building upon human-generated raw data. Our comprehensive dataset comprises 305,000 multiple-choice questions (MCQs), covering various visual and multimodal aspects, including temporal comprehension, understanding human-object interactions, and reasoning about events or actions within a scene. Additionally, we fine-tuned open-source Video-LLMs on the training split and evaluated both open-source and proprietary video-centric LLMs on the test split of our dataset. The findings indicate that although current models underperform compared to humans, fine-tuning these models can lead to significant improvements in their performance.
Learning the Visualness of Text Using Large Vision-Language Models
Visual text evokes an image in a person's mind, while non-visual text fails to do so. A method to automatically detect visualness in text will unlock the ability to augment text with relevant images, as neural text-to-image generation and retrieval models operate on the implicit assumption that the input text is visual in nature. We curate a dataset of 3,620 English sentences and their visualness scores provided by multiple human annotators. Additionally, we use documents that contain text and visual assets to create a distantly supervised corpus of document text and associated images. We also propose a fine-tuning strategy that adapts large vision-language models like CLIP that assume a one-to-one correspondence between text and image to the task of scoring text visualness from text input alone. Our strategy involves modifying the model's contrastive learning objective to map text identified as non-visual to a common NULL image while matching visual text to their corresponding images in the document. We evaluate the proposed approach on its ability to (i) classify visual and non-visual text accurately, and (ii) attend over words that are identified as visual in psycholinguistic studies. Empirical evaluation indicates that our approach performs better than several heuristics and baseline models for the proposed task. Furthermore, to highlight the importance of modeling the visualness of text, we conduct qualitative analyses of text-to-image generation systems like DALL-E.
Understand, Think, and Answer: Advancing Visual Reasoning with Large Multimodal Models
Large Multimodal Models (LMMs) have recently demonstrated remarkable visual understanding performance on both vision-language and vision-centric tasks. However, they often fall short in integrating advanced, task-specific capabilities for compositional reasoning, which hinders their progress toward truly competent general vision models. To address this, we present a unified visual reasoning mechanism that enables LMMs to solve complicated compositional problems by leveraging their intrinsic capabilities (e.g. grounding and visual understanding capabilities). Different from the previous shortcut learning mechanism, our approach introduces a human-like understanding-thinking-answering process, allowing the model to complete all steps in a single pass forwarding without the need for multiple inferences or external tools. This design bridges the gap between foundational visual capabilities and general question answering, encouraging LMMs to generate faithful and traceable responses for complex visual reasoning. Meanwhile, we curate 334K visual instruction samples covering both general scenes and text-rich scenes and involving multiple foundational visual capabilities. Our trained model, Griffon-R, has the ability of end-to-end automatic understanding, self-thinking, and reasoning answers. Comprehensive experiments show that Griffon-R not only achieves advancing performance on complex visual reasoning benchmarks including VSR and CLEVR, but also enhances multimodal capabilities across various benchmarks like MMBench and ScienceQA. Data, models, and codes will be release at https://github.com/jefferyZhan/Griffon/tree/master/Griffon-R soon.
Decoupling Reasoning and Perception: An LLM-LMM Framework for Faithful Visual Reasoning
Significant advancements in the reasoning capabilities of Large Language Models (LLMs) are now driven by test-time scaling laws, particularly those leveraging extended Chain-of-Thought (CoT) reasoning. Inspired by these breakthroughs, researchers have extended these paradigms to Large Multimodal Models (LMMs). However, a critical limitation emerges: as their reasoning chains extend, LMMs increasingly rely on textual logic, progressively losing grounding in the underlying visual information. This leads to reasoning paths that diverge from the image content, culminating in erroneous conclusions. To address this, we introduce a strikingly simple yet effective training-free visual-reasoning pipeline. The core concept is to decouple the reasoning and perception processes. A powerful LLM orchestrates the high-level reasoning, strategically interrogating a LMM to extract specific visual information required for its logical chain. The LMM, in turn, functions exclusively as a visual question-answering engine, supplying the necessary perceptual details on demand. This lightweight, plug-and-play approach requires no additional training or architectural changes. Comprehensive evaluations validate that our framework effectively governs the visual reasoning process, leading to a significant reduction in visually-unfounded reasoning steps and a substantial improvement in reasoning fidelity.
