new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 26

EditIQ: Automated Cinematic Editing of Static Wide-Angle Videos via Dialogue Interpretation and Saliency Cues

We present EditIQ, a completely automated framework for cinematically editing scenes captured via a stationary, large field-of-view and high-resolution camera. From the static camera feed, EditIQ initially generates multiple virtual feeds, emulating a team of cameramen. These virtual camera shots termed rushes are subsequently assembled using an automated editing algorithm, whose objective is to present the viewer with the most vivid scene content. To understand key scene elements and guide the editing process, we employ a two-pronged approach: (1) a large language model (LLM)-based dialogue understanding module to analyze conversational flow, coupled with (2) visual saliency prediction to identify meaningful scene elements and camera shots therefrom. We then formulate cinematic video editing as an energy minimization problem over shot selection, where cinematic constraints determine shot choices, transitions, and continuity. EditIQ synthesizes an aesthetically and visually compelling representation of the original narrative while maintaining cinematic coherence and a smooth viewing experience. Efficacy of EditIQ against competing baselines is demonstrated via a psychophysical study involving twenty participants on the BBC Old School dataset plus eleven theatre performance videos. Video samples from EditIQ can be found at https://editiq-ave.github.io/.

  • 4 authors
·
Feb 4

What it takes to solve the Origin(s) of Life: An integrated review of techniques

Understanding the origin(s) of life (OoL) is a fundamental challenge for science in the 21st century. Research on OoL spans many disciplines, including chemistry, physics, biology, planetary sciences, computer science, mathematics and philosophy. The sheer number of different scientific perspectives relevant to the problem has resulted in the coexistence of diverse tools, techniques, data, and software in OoL studies. This has made communication between the disciplines relevant to the OoL extremely difficult because the interpretation of data, analyses, or standards of evidence can vary dramatically. Here, we hope to bridge this wide field of study by providing common ground via the consolidation of tools and techniques rather than positing a unifying view on how life emerges. We review the common tools and techniques that have been used significantly in OoL studies in recent years. In particular, we aim to identify which information is most relevant for comparing and integrating the results of experimental analyses into mathematical and computational models. This review aims to provide a baseline expectation and understanding of technical aspects of origins research, rather than being a primer on any particular topic. As such, it spans broadly -- from analytical chemistry to mathematical models -- and highlights areas of future work that will benefit from a multidisciplinary approach to tackling the mystery of life's origin. Ultimately, we hope to empower a new generation of OoL scientists by reviewing how they can investigate life's origin, rather than dictating how to think about the problem.

  • 38 authors
·
Aug 22, 2023

Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis

Photorealistic frontal view synthesis from a single face image has a wide range of applications in the field of face recognition. Although data-driven deep learning methods have been proposed to address this problem by seeking solutions from ample face data, this problem is still challenging because it is intrinsically ill-posed. This paper proposes a Two-Pathway Generative Adversarial Network (TP-GAN) for photorealistic frontal view synthesis by simultaneously perceiving global structures and local details. Four landmark located patch networks are proposed to attend to local textures in addition to the commonly used global encoder-decoder network. Except for the novel architecture, we make this ill-posed problem well constrained by introducing a combination of adversarial loss, symmetry loss and identity preserving loss. The combined loss function leverages both frontal face distribution and pre-trained discriminative deep face models to guide an identity preserving inference of frontal views from profiles. Different from previous deep learning methods that mainly rely on intermediate features for recognition, our method directly leverages the synthesized identity preserving image for downstream tasks like face recognition and attribution estimation. Experimental results demonstrate that our method not only presents compelling perceptual results but also outperforms state-of-the-art results on large pose face recognition.

  • 4 authors
·
Apr 13, 2017

NeRSemble: Multi-view Radiance Field Reconstruction of Human Heads

We focus on reconstructing high-fidelity radiance fields of human heads, capturing their animations over time, and synthesizing re-renderings from novel viewpoints at arbitrary time steps. To this end, we propose a new multi-view capture setup composed of 16 calibrated machine vision cameras that record time-synchronized images at 7.1 MP resolution and 73 frames per second. With our setup, we collect a new dataset of over 4700 high-resolution, high-framerate sequences of more than 220 human heads, from which we introduce a new human head reconstruction benchmark. The recorded sequences cover a wide range of facial dynamics, including head motions, natural expressions, emotions, and spoken language. In order to reconstruct high-fidelity human heads, we propose Dynamic Neural Radiance Fields using Hash Ensembles (NeRSemble). We represent scene dynamics by combining a deformation field and an ensemble of 3D multi-resolution hash encodings. The deformation field allows for precise modeling of simple scene movements, while the ensemble of hash encodings helps to represent complex dynamics. As a result, we obtain radiance field representations of human heads that capture motion over time and facilitate re-rendering of arbitrary novel viewpoints. In a series of experiments, we explore the design choices of our method and demonstrate that our approach outperforms state-of-the-art dynamic radiance field approaches by a significant margin.

  • 5 authors
·
May 4, 2023

SMERF: Streamable Memory Efficient Radiance Fields for Real-Time Large-Scene Exploration

Recent techniques for real-time view synthesis have rapidly advanced in fidelity and speed, and modern methods are capable of rendering near-photorealistic scenes at interactive frame rates. At the same time, a tension has arisen between explicit scene representations amenable to rasterization and neural fields built on ray marching, with state-of-the-art instances of the latter surpassing the former in quality while being prohibitively expensive for real-time applications. In this work, we introduce SMERF, a view synthesis approach that achieves state-of-the-art accuracy among real-time methods on large scenes with footprints up to 300 m^2 at a volumetric resolution of 3.5 mm^3. Our method is built upon two primary contributions: a hierarchical model partitioning scheme, which increases model capacity while constraining compute and memory consumption, and a distillation training strategy that simultaneously yields high fidelity and internal consistency. Our approach enables full six degrees of freedom (6DOF) navigation within a web browser and renders in real-time on commodity smartphones and laptops. Extensive experiments show that our method exceeds the current state-of-the-art in real-time novel view synthesis by 0.78 dB on standard benchmarks and 1.78 dB on large scenes, renders frames three orders of magnitude faster than state-of-the-art radiance field models, and achieves real-time performance across a wide variety of commodity devices, including smartphones. We encourage readers to explore these models interactively at our project website: https://smerf-3d.github.io.

  • 8 authors
·
Dec 12, 2023

NeRFool: Uncovering the Vulnerability of Generalizable Neural Radiance Fields against Adversarial Perturbations

Generalizable Neural Radiance Fields (GNeRF) are one of the most promising real-world solutions for novel view synthesis, thanks to their cross-scene generalization capability and thus the possibility of instant rendering on new scenes. While adversarial robustness is essential for real-world applications, little study has been devoted to understanding its implication on GNeRF. We hypothesize that because GNeRF is implemented by conditioning on the source views from new scenes, which are often acquired from the Internet or third-party providers, there are potential new security concerns regarding its real-world applications. Meanwhile, existing understanding and solutions for neural networks' adversarial robustness may not be applicable to GNeRF, due to its 3D nature and uniquely diverse operations. To this end, we present NeRFool, which to the best of our knowledge is the first work that sets out to understand the adversarial robustness of GNeRF. Specifically, NeRFool unveils the vulnerability patterns and important insights regarding GNeRF's adversarial robustness. Built upon the above insights gained from NeRFool, we further develop NeRFool+, which integrates two techniques capable of effectively attacking GNeRF across a wide range of target views, and provide guidelines for defending against our proposed attacks. We believe that our NeRFool/NeRFool+ lays the initial foundation for future innovations in developing robust real-world GNeRF solutions. Our codes are available at: https://github.com/GATECH-EIC/NeRFool.

  • 6 authors
·
Jun 10, 2023