parlange commited on
Commit
21e24b6
·
verified ·
1 Parent(s): 77bb8d6

Upload PiT model from experiment s1

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. README.md +165 -0
  3. config.json +76 -0
  4. confusion_matrices/PiT_Confusion_Matrix_a.png +0 -0
  5. confusion_matrices/PiT_Confusion_Matrix_b.png +0 -0
  6. confusion_matrices/PiT_Confusion_Matrix_c.png +0 -0
  7. confusion_matrices/PiT_Confusion_Matrix_d.png +0 -0
  8. confusion_matrices/PiT_Confusion_Matrix_e.png +0 -0
  9. confusion_matrices/PiT_Confusion_Matrix_f.png +0 -0
  10. confusion_matrices/PiT_Confusion_Matrix_g.png +0 -0
  11. confusion_matrices/PiT_Confusion_Matrix_h.png +0 -0
  12. confusion_matrices/PiT_Confusion_Matrix_i.png +0 -0
  13. confusion_matrices/PiT_Confusion_Matrix_j.png +0 -0
  14. confusion_matrices/PiT_Confusion_Matrix_k.png +0 -0
  15. confusion_matrices/PiT_Confusion_Matrix_l.png +0 -0
  16. evaluation_results.csv +133 -0
  17. model.safetensors +3 -0
  18. pit-gravit-s1.pth +3 -0
  19. pytorch_model.bin +3 -0
  20. roc_confusion_matrix/PiT_roc_confusion_matrix_a.png +0 -0
  21. roc_confusion_matrix/PiT_roc_confusion_matrix_b.png +0 -0
  22. roc_confusion_matrix/PiT_roc_confusion_matrix_c.png +0 -0
  23. roc_confusion_matrix/PiT_roc_confusion_matrix_d.png +0 -0
  24. roc_confusion_matrix/PiT_roc_confusion_matrix_e.png +0 -0
  25. roc_confusion_matrix/PiT_roc_confusion_matrix_f.png +0 -0
  26. roc_confusion_matrix/PiT_roc_confusion_matrix_g.png +0 -0
  27. roc_confusion_matrix/PiT_roc_confusion_matrix_h.png +0 -0
  28. roc_confusion_matrix/PiT_roc_confusion_matrix_i.png +0 -0
  29. roc_confusion_matrix/PiT_roc_confusion_matrix_j.png +0 -0
  30. roc_confusion_matrix/PiT_roc_confusion_matrix_k.png +0 -0
  31. roc_confusion_matrix/PiT_roc_confusion_matrix_l.png +0 -0
  32. roc_curves/PiT_ROC_a.png +0 -0
  33. roc_curves/PiT_ROC_b.png +0 -0
  34. roc_curves/PiT_ROC_c.png +0 -0
  35. roc_curves/PiT_ROC_d.png +0 -0
  36. roc_curves/PiT_ROC_e.png +0 -0
  37. roc_curves/PiT_ROC_f.png +0 -0
  38. roc_curves/PiT_ROC_g.png +0 -0
  39. roc_curves/PiT_ROC_h.png +0 -0
  40. roc_curves/PiT_ROC_i.png +0 -0
  41. roc_curves/PiT_ROC_j.png +0 -0
  42. roc_curves/PiT_ROC_k.png +0 -0
  43. roc_curves/PiT_ROC_l.png +0 -0
  44. training_curves/PiT_accuracy.png +0 -0
  45. training_curves/PiT_auc.png +0 -0
  46. training_curves/PiT_combined_metrics.png +3 -0
  47. training_curves/PiT_f1.png +0 -0
  48. training_curves/PiT_loss.png +0 -0
  49. training_curves/PiT_metrics.csv +101 -0
  50. training_metrics.csv +101 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ training_curves/PiT_combined_metrics.png filter=lfs diff=lfs merge=lfs -text
37
+ training_notebook_s1.ipynb filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - vision-transformer
5
+ - image-classification
6
+ - pytorch
7
+ - timm
8
+ - pit
9
+ - gravitational-lensing
10
+ - strong-lensing
11
+ - astronomy
12
+ - astrophysics
13
+ datasets:
14
+ - parlange/gravit-c21
15
+ metrics:
16
+ - accuracy
17
+ - auc
18
+ - f1
19
+ paper:
20
+ - title: "GraViT: A Gravitational Lens Discovery Toolkit with Vision Transformers"
21
+ url: "https://arxiv.org/abs/2509.00226"
22
+ authors: "Parlange et al."
23
+ model-index:
24
+ - name: PiT-s1
25
+ results:
26
+ - task:
27
+ type: image-classification
28
+ name: Strong Gravitational Lens Discovery
29
+ dataset:
30
+ type: common-test-sample
31
+ name: Common Test Sample (More et al. 2024)
32
+ metrics:
33
+ - type: accuracy
34
+ value: 0.7887
35
+ name: Average Accuracy
36
+ - type: auc
37
+ value: 0.8150
38
+ name: Average AUC-ROC
39
+ - type: f1
40
+ value: 0.4919
41
+ name: Average F1-Score
42
+ ---
43
+
44
+ # 🌌 pit-gravit-s1
45
+
46
+ 🔭 This model is part of **GraViT**: Transfer Learning with Vision Transformers and MLP-Mixer for Strong Gravitational Lens Discovery
47
+
48
+ 🔗 **GitHub Repository**: [https://github.com/parlange/gravit](https://github.com/parlange/gravit)
49
+
50
+ ## 🛰️ Model Details
51
+
52
+ - **🤖 Model Type**: PiT
53
+ - **🧪 Experiment**: S1 - C21-classification-head-18660
54
+ - **🌌 Dataset**: C21
55
+ - **🪐 Fine-tuning Strategy**: classification-head
56
+
57
+ - **🎲 Random Seed**: 18660
58
+
59
+ ## 💻 Quick Start
60
+
61
+ ```python
62
+ import torch
63
+ import timm
64
+
65
+ # Load the model directly from the Hub
66
+ model = timm.create_model(
67
+ 'hf-hub:parlange/pit-gravit-s1',
68
+ pretrained=True
69
+ )
70
+ model.eval()
71
+
72
+ # Example inference
73
+ dummy_input = torch.randn(1, 3, 224, 224)
74
+ with torch.no_grad():
75
+ output = model(dummy_input)
76
+ predictions = torch.softmax(output, dim=1)
77
+ print(f"Lens probability: {predictions[0][1]:.4f}")
78
+ ```
79
+
80
+ ## ⚡️ Training Configuration
81
+
82
+ **Training Dataset:** C21 (Cañameras et al. 2021)
83
+ **Fine-tuning Strategy:** classification-head
84
+
85
+
86
+ | 🔧 Parameter | 📝 Value |
87
+ |--------------|----------|
88
+ | Batch Size | 192 |
89
+ | Learning Rate | AdamW with ReduceLROnPlateau |
90
+ | Epochs | 100 |
91
+ | Patience | 10 |
92
+ | Optimizer | AdamW |
93
+ | Scheduler | ReduceLROnPlateau |
94
+ | Image Size | 224x224 |
95
+ | Fine Tune Mode | classification_head |
96
+ | Stochastic Depth Probability | 0.1 |
97
+
98
+
99
+ ## 📈 Training Curves
100
+
101
+ ![Combined Training Metrics](https://huggingface.co/parlange/pit-gravit-s1/resolve/main/training_curves/PiT_combined_metrics.png)
102
+
103
+
104
+ ## 🏁 Final Epoch Training Metrics
105
+
106
+ | Metric | Training | Validation |
107
+ |:---------:|:-----------:|:-------------:|
108
+ | 📉 Loss | 0.2209 | 0.2665 |
109
+ | 🎯 Accuracy | 0.9115 | 0.9130 |
110
+ | 📊 AUC-ROC | 0.9716 | 0.9634 |
111
+ | ⚖️ F1 Score | 0.9115 | 0.9138 |
112
+
113
+
114
+ ## ☑️ Evaluation Results
115
+
116
+ ### ROC Curves and Confusion Matrices
117
+
118
+ Performance across all test datasets (a through l) in the Common Test Sample (More et al. 2024):
119
+
120
+ ![ROC + Confusion Matrix - Dataset A](https://huggingface.co/parlange/pit-gravit-s1/resolve/main/roc_confusion_matrix/PiT_roc_confusion_matrix_a.png)
121
+ ![ROC + Confusion Matrix - Dataset B](https://huggingface.co/parlange/pit-gravit-s1/resolve/main/roc_confusion_matrix/PiT_roc_confusion_matrix_b.png)
122
+ ![ROC + Confusion Matrix - Dataset C](https://huggingface.co/parlange/pit-gravit-s1/resolve/main/roc_confusion_matrix/PiT_roc_confusion_matrix_c.png)
123
+ ![ROC + Confusion Matrix - Dataset D](https://huggingface.co/parlange/pit-gravit-s1/resolve/main/roc_confusion_matrix/PiT_roc_confusion_matrix_d.png)
124
+ ![ROC + Confusion Matrix - Dataset E](https://huggingface.co/parlange/pit-gravit-s1/resolve/main/roc_confusion_matrix/PiT_roc_confusion_matrix_e.png)
125
+ ![ROC + Confusion Matrix - Dataset F](https://huggingface.co/parlange/pit-gravit-s1/resolve/main/roc_confusion_matrix/PiT_roc_confusion_matrix_f.png)
126
+ ![ROC + Confusion Matrix - Dataset G](https://huggingface.co/parlange/pit-gravit-s1/resolve/main/roc_confusion_matrix/PiT_roc_confusion_matrix_g.png)
127
+ ![ROC + Confusion Matrix - Dataset H](https://huggingface.co/parlange/pit-gravit-s1/resolve/main/roc_confusion_matrix/PiT_roc_confusion_matrix_h.png)
128
+ ![ROC + Confusion Matrix - Dataset I](https://huggingface.co/parlange/pit-gravit-s1/resolve/main/roc_confusion_matrix/PiT_roc_confusion_matrix_i.png)
129
+ ![ROC + Confusion Matrix - Dataset J](https://huggingface.co/parlange/pit-gravit-s1/resolve/main/roc_confusion_matrix/PiT_roc_confusion_matrix_j.png)
130
+ ![ROC + Confusion Matrix - Dataset K](https://huggingface.co/parlange/pit-gravit-s1/resolve/main/roc_confusion_matrix/PiT_roc_confusion_matrix_k.png)
131
+ ![ROC + Confusion Matrix - Dataset L](https://huggingface.co/parlange/pit-gravit-s1/resolve/main/roc_confusion_matrix/PiT_roc_confusion_matrix_l.png)
132
+
133
+ ### 📋 Performance Summary
134
+
135
+ Average performance across 12 test datasets from the Common Test Sample (More et al. 2024):
136
+
137
+ | Metric | Value |
138
+ |-----------|----------|
139
+ | 🎯 Average Accuracy | 0.7887 |
140
+ | 📈 Average AUC-ROC | 0.8150 |
141
+ | ⚖️ Average F1-Score | 0.4919 |
142
+
143
+
144
+ ## 📘 Citation
145
+
146
+ If you use this model in your research, please cite:
147
+
148
+ ```bibtex
149
+ @misc{parlange2025gravit,
150
+ title={GraViT: Transfer Learning with Vision Transformers and MLP-Mixer for Strong Gravitational Lens Discovery},
151
+ author={René Parlange and Juan C. Cuevas-Tello and Octavio Valenzuela and Omar de J. Cabrera-Rosas and Tomás Verdugo and Anupreeta More and Anton T. Jaelani},
152
+ year={2025},
153
+ eprint={2509.00226},
154
+ archivePrefix={arXiv},
155
+ primaryClass={cs.CV},
156
+ url={https://arxiv.org/abs/2509.00226},
157
+ }
158
+ ```
159
+
160
+ ---
161
+
162
+
163
+ ## Model Card Contact
164
+
165
+ For questions about this model, please contact the author through: https://github.com/parlange/
config.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architecture": "vit_base_patch16_224",
3
+ "num_classes": 2,
4
+ "num_features": 1000,
5
+ "global_pool": "avg",
6
+ "crop_pct": 0.875,
7
+ "interpolation": "bicubic",
8
+ "mean": [
9
+ 0.485,
10
+ 0.456,
11
+ 0.406
12
+ ],
13
+ "std": [
14
+ 0.229,
15
+ 0.224,
16
+ 0.225
17
+ ],
18
+ "first_conv": "conv1",
19
+ "classifier": "fc",
20
+ "input_size": [
21
+ 3,
22
+ 224,
23
+ 224
24
+ ],
25
+ "pool_size": [
26
+ 7,
27
+ 7
28
+ ],
29
+ "pretrained_cfg": {
30
+ "tag": "gravit_s1",
31
+ "custom_load": false,
32
+ "input_size": [
33
+ 3,
34
+ 224,
35
+ 224
36
+ ],
37
+ "fixed_input_size": true,
38
+ "interpolation": "bicubic",
39
+ "crop_pct": 0.875,
40
+ "crop_mode": "center",
41
+ "mean": [
42
+ 0.485,
43
+ 0.456,
44
+ 0.406
45
+ ],
46
+ "std": [
47
+ 0.229,
48
+ 0.224,
49
+ 0.225
50
+ ],
51
+ "num_classes": 2,
52
+ "pool_size": [
53
+ 7,
54
+ 7
55
+ ],
56
+ "first_conv": "conv1",
57
+ "classifier": "fc"
58
+ },
59
+ "model_name": "pit_gravit_s1",
60
+ "experiment": "s1",
61
+ "training_strategy": "classification-head",
62
+ "dataset": "C21",
63
+ "hyperparameters": {
64
+ "batch_size": "192",
65
+ "learning_rate": "AdamW with ReduceLROnPlateau",
66
+ "epochs": "100",
67
+ "patience": "10",
68
+ "optimizer": "AdamW",
69
+ "scheduler": "ReduceLROnPlateau",
70
+ "image_size": "224x224",
71
+ "fine_tune_mode": "classification_head",
72
+ "stochastic_depth_probability": "0.1"
73
+ },
74
+ "hf_hub_id": "parlange/pit-gravit-s1",
75
+ "license": "apache-2.0"
76
+ }
confusion_matrices/PiT_Confusion_Matrix_a.png ADDED
confusion_matrices/PiT_Confusion_Matrix_b.png ADDED
confusion_matrices/PiT_Confusion_Matrix_c.png ADDED
confusion_matrices/PiT_Confusion_Matrix_d.png ADDED
confusion_matrices/PiT_Confusion_Matrix_e.png ADDED
confusion_matrices/PiT_Confusion_Matrix_f.png ADDED
confusion_matrices/PiT_Confusion_Matrix_g.png ADDED
confusion_matrices/PiT_Confusion_Matrix_h.png ADDED
confusion_matrices/PiT_Confusion_Matrix_i.png ADDED
confusion_matrices/PiT_Confusion_Matrix_j.png ADDED
confusion_matrices/PiT_Confusion_Matrix_k.png ADDED
confusion_matrices/PiT_Confusion_Matrix_l.png ADDED
evaluation_results.csv ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Model,Dataset,Loss,Accuracy,AUCROC,F1
2
+ ViT,a,0.26315986707277245,0.8814838101226029,0.8802053406998158,0.37061769616026713
3
+ ViT,b,0.30821478139657116,0.8535051870480981,0.8585727440147328,0.3226744186046512
4
+ ViT,c,0.32154841358951713,0.8440741905061302,0.8492302025782689,0.30919220055710306
5
+ ViT,d,0.1950328929530716,0.9154353976736875,0.9096243093922652,0.45213849287169044
6
+ ViT,e,0.36122991375289815,0.8430296377607025,0.8589192461969272,0.6082191780821918
7
+ ViT,f,0.24952035127625294,0.8860661451475486,0.8735195062778576,0.13112817483756645
8
+ ViT,g,0.19669366574287414,0.916,0.9827302222222222,0.9198473282442748
9
+ ViT,h,0.203762713432312,0.911,0.9825112777777777,0.9154795821462488
10
+ ViT,i,0.1366884006857872,0.9488333333333333,0.9922694444444444,0.9495977671975045
11
+ ViT,j,1.57635924577713,0.486,0.5059887777777778,0.16828478964401294
12
+ ViT,k,1.5163539797663688,0.5188333333333334,0.6224591666666666,0.17772714326402733
13
+ ViT,l,0.6442371365946608,0.7743641266987468,0.7633667424422179,0.608424336973479
14
+ MLP-Mixer,a,0.22847961928345278,0.912920465262496,0.8933425414364641,0.4168421052631579
15
+ MLP-Mixer,b,0.308874304322318,0.8733102797862308,0.8441639042357274,0.32945091514143093
16
+ MLP-Mixer,c,0.25873182687284213,0.9022320025149324,0.8739318600368325,0.3889980353634578
17
+ MLP-Mixer,d,0.24134267476867183,0.9072618673373153,0.8846279926335174,0.40162271805273836
18
+ MLP-Mixer,e,0.45694336393269436,0.7914379802414928,0.7893513963520775,0.5103092783505154
19
+ MLP-Mixer,f,0.24329905936612914,0.9110835721477809,0.8691614622438839,0.14710252600297177
20
+ MLP-Mixer,g,0.21700521993637084,0.92,0.9806271111111111,0.9221032132424537
21
+ MLP-Mixer,h,0.19042134284973145,0.9353333333333333,0.9861884444444444,0.9360790774299835
22
+ MLP-Mixer,i,0.18120218813419342,0.938,0.9869838888888888,0.9385530227948464
23
+ MLP-Mixer,j,1.2323926267623901,0.5038333333333334,0.5222455555555556,0.18772169167803546
24
+ MLP-Mixer,k,1.1965896054506302,0.5218333333333334,0.6055765555555556,0.19342142254709024
25
+ MLP-Mixer,l,0.5372594293260314,0.7904394267886415,0.777564815166667,0.6236824613047194
26
+ CvT,a,0.4961560229785185,0.7673687519647909,0.7706933701657459,0.25553319919517103
27
+ CvT,b,0.6305947303959349,0.6743162527507073,0.7143572744014733,0.19689922480620156
28
+ CvT,c,0.5749199690214682,0.7104684061615844,0.7343406998158379,0.21617021276595744
29
+ CvT,d,0.2502037138496319,0.9066331342345174,0.88390423572744,0.46098003629764067
30
+ CvT,e,0.6621606105899706,0.6673984632272228,0.7029970483614622,0.45601436265709155
31
+ CvT,f,0.48457372206111116,0.761366276818217,0.7716476500891878,0.07616191904047977
32
+ CvT,g,0.3797014901638031,0.8183333333333334,0.9470018333333333,0.8414314809426826
33
+ CvT,h,0.35018461680412294,0.8375,0.9547355555555556,0.8557478916999556
34
+ CvT,i,0.17803085923194886,0.9415,0.9873593333333333,0.9427872860635697
35
+ CvT,j,1.7653251061439514,0.3695,0.2353647777777778,0.09519253767041377
36
+ CvT,k,1.563654477596283,0.49266666666666664,0.47404,0.11563044741429401
37
+ CvT,l,0.8139470364313578,0.6832531330971392,0.6364384025088667,0.5179462417511669
38
+ Swin,a,0.4244807099572745,0.7994341402074819,0.9241427255985267,0.33541666666666664
39
+ Swin,b,0.4810227568851856,0.7566802892172273,0.9117495395948434,0.2937956204379562
40
+ Swin,c,0.4452463163590514,0.7780572147123546,0.9212744014732965,0.3132295719844358
41
+ Swin,d,0.16072181945081704,0.9478151524677775,0.9794033149171271,0.6598360655737705
42
+ Swin,e,0.7496543030707425,0.6223929747530187,0.8337546355861651,0.48348348348348347
43
+ Swin,f,0.4095544809800577,0.8026489040353187,0.9283857681641228,0.11219512195121951
44
+ Swin,g,0.28872427535057066,0.8653333333333333,0.9764562777777777,0.8794029850746269
45
+ Swin,h,0.26975679993629453,0.8766666666666667,0.9806434444444446,0.8884197828709288
46
+ Swin,i,0.11891139948368072,0.9666666666666667,0.9962078888888889,0.9671700590938936
47
+ Swin,j,1.7894430661201477,0.41833333333333333,0.32609222222222223,0.13140866102538576
48
+ Swin,k,1.6196301728487015,0.5196666666666667,0.4911376111111111,0.15483870967741936
49
+ Swin,l,0.7825117225050895,0.7177304214478346,0.6720947858227574,0.5581125827814569
50
+ CaiT,a,0.36344499544541214,0.8670229487582521,0.9042090239410681,0.3931133428981349
51
+ CaiT,b,0.3451070358115373,0.8569632191134863,0.9043241252302027,0.37585733882030176
52
+ CaiT,c,0.4147965498256893,0.8314995284501729,0.8842854511970534,0.33827160493827163
53
+ CaiT,d,0.20214099403036273,0.9292675259352405,0.9528655616942909,0.5490981963927856
54
+ CaiT,e,0.46807248656495865,0.7881448957189902,0.8598047377582684,0.5867237687366167
55
+ CaiT,f,0.33189451447963236,0.8717372782898304,0.9084611111352224,0.14196891191709846
56
+ CaiT,g,0.26180643439292905,0.9065,0.9720913333333334,0.9103977000479156
57
+ CaiT,h,0.2987534849643707,0.893,0.9683315555555556,0.8987701040681173
58
+ CaiT,i,0.18601059591770172,0.9448333333333333,0.9854460000000002,0.9451168960371414
59
+ CaiT,j,1.6506993849277496,0.48183333333333334,0.34697766666666663,0.16267169404793966
60
+ CaiT,k,1.574903560757637,0.5201666666666667,0.5048928888888888,0.1734137238013207
61
+ CaiT,l,0.7267414200728917,0.7618317381418223,0.6645970858418337,0.5935751669373759
62
+ DeiT,a,0.4225463437531887,0.8160955674316253,0.8606252302025783,0.3189755529685681
63
+ DeiT,b,0.28503696175912235,0.8912291732159698,0.9134290976058932,0.44193548387096776
64
+ DeiT,c,0.42643982024921334,0.8120088022634392,0.8579410681399632,0.31422018348623854
65
+ DeiT,d,0.12440414894202415,0.9647909462433197,0.9714051565377532,0.7098445595854922
66
+ DeiT,e,0.4247265181347777,0.8090010976948409,0.865806402785136,0.6116071428571429
67
+ DeiT,f,0.31040949583164384,0.8730539849740532,0.8988405602114465,0.1432305279665447
68
+ DeiT,g,0.1708750183582306,0.9426666666666667,0.9906654444444445,0.9450479233226837
69
+ DeiT,h,0.24584209990501404,0.9006666666666666,0.9862077777777778,0.9084766584766585
70
+ DeiT,i,0.08571285915374756,0.9816666666666667,0.9978546666666669,0.9817457683372054
71
+ DeiT,j,1.7561096608638764,0.4831666666666667,0.4035137777777778,0.11475877819012276
72
+ DeiT,k,1.670947504758835,0.5221666666666667,0.5711906111111111,0.122973386356684
73
+ DeiT,l,0.7375253889821799,0.7631008407804981,0.683066801399469,0.5953757225433526
74
+ DeiT3,a,0.3272812338941167,0.8742533794404276,0.8889272559852671,0.38461538461538464
75
+ DeiT3,b,0.302752211469781,0.8830556428795976,0.8988692449355432,0.40192926045016075
76
+ DeiT3,c,0.3779786174794257,0.8509902546369066,0.8669705340699815,0.3453038674033149
77
+ DeiT3,d,0.2892885809141823,0.8827412763281987,0.9035414364640885,0.4012841091492777
78
+ DeiT3,e,0.4438039068333011,0.7936333699231614,0.8470824188299402,0.5707762557077626
79
+ DeiT3,f,0.3186716425059684,0.8773913716985516,0.8871402655232126,0.13638843426077468
80
+ DeiT3,g,0.20343285512924195,0.9306666666666666,0.9835892777777778,0.9330759330759331
81
+ DeiT3,h,0.24331540274620056,0.9136666666666666,0.9804273333333333,0.9180120291231403
82
+ DeiT3,i,0.19629489994049074,0.9305,0.9853729999999999,0.9329258484799743
83
+ DeiT3,j,1.628210746049881,0.507,0.44630250000000005,0.19488296135002722
84
+ DeiT3,k,1.6210727927684785,0.5068333333333334,0.4399586666666666,0.1948299319727891
85
+ DeiT3,l,0.7078656159200684,0.77129712865528,0.6966556724971096,0.610044179965738
86
+ Twins_SVT,a,0.4276486189063335,0.8186104998428168,0.8859069981583795,0.3405714285714286
87
+ Twins_SVT,b,0.40632258404804006,0.8069789374410563,0.8843020257826889,0.3267543859649123
88
+ Twins_SVT,c,0.4567012440498727,0.8041496384784659,0.8755709023941068,0.32356134636264927
89
+ Twins_SVT,d,0.11709285881610383,0.9710782772712984,0.9813554327808472,0.764102564102564
90
+ Twins_SVT,e,0.5975801944732666,0.7091108671789242,0.8069098615000379,0.5293072824156305
91
+ Twins_SVT,f,0.36285793083715506,0.8417628378901711,0.901056581008884,0.12729602733874412
92
+ Twins_SVT,g,0.25314079570770265,0.8945,0.9818073333333334,0.9030776297657327
93
+ Twins_SVT,h,0.2798499059677124,0.893,0.9842226666666666,0.9018348623853211
94
+ Twins_SVT,i,0.09980085110664368,0.9815,0.998151888888889,0.9815277084373439
95
+ Twins_SVT,j,2.5178700201511384,0.4161666666666667,0.19147722222222224,0.0431576072111445
96
+ Twins_SVT,k,2.3645300617218017,0.5031666666666667,0.3970505555555556,0.05033450143357757
97
+ Twins_SVT,l,0.9991390130179593,0.7348104277933478,0.5996797066956194,0.5588882047673498
98
+ Twins_PCPVT,a,0.39934646092994674,0.8198679660484125,0.8680267034990792,0.3170441001191895
99
+ Twins_PCPVT,b,0.3152278492432726,0.8704809808236403,0.9038011049723758,0.39233038348082594
100
+ Twins_PCPVT,c,0.42980134720436547,0.7988054071046841,0.8538581952117864,0.293598233995585
101
+ Twins_PCPVT,d,0.2833813248153604,0.9050613014775228,0.9209023941068141,0.46830985915492956
102
+ Twins_PCPVT,e,0.4493741169326523,0.7859495060373216,0.8551426625293271,0.5770065075921909
103
+ Twins_PCPVT,f,0.3539412874965329,0.8505150646735342,0.8848404820908543,0.12112932604735883
104
+ Twins_PCPVT,g,0.25227656292915346,0.9118333333333334,0.9704105555555556,0.9146636554282949
105
+ Twins_PCPVT,h,0.313019651889801,0.8738333333333334,0.9576457777777778,0.8822156527151082
106
+ Twins_PCPVT,i,0.23539256691932678,0.9301666666666667,0.9794358888888889,0.9311873870914764
107
+ Twins_PCPVT,j,1.431565274477005,0.49783333333333335,0.47991933333333336,0.1889636608344549
108
+ Twins_PCPVT,k,1.414681277513504,0.5161666666666667,0.4520573888888889,0.19472954230235784
109
+ Twins_PCPVT,l,0.6799205145486147,0.7491407117550631,0.698161293770421,0.5832015463011773
110
+ PiT,a,0.4008407433783997,0.835586293618359,0.8945662983425414,0.3535228677379481
111
+ PiT,b,0.40754776930741565,0.8085507701980509,0.8903941068139963,0.3195530726256983
112
+ PiT,c,0.46416402532034273,0.794718641936498,0.8741344383057089,0.3045793397231097
113
+ PiT,d,0.11194977302927522,0.9663627790003144,0.9798121546961326,0.727735368956743
114
+ PiT,e,0.5034745501111028,0.7639956092206367,0.8569817603874971,0.5708582834331337
115
+ PiT,f,0.3524643323883321,0.8485787313143831,0.9067020958018862,0.12762159750111557
116
+ PiT,g,0.23545815777778625,0.898,0.9860943333333333,0.9062787136294027
117
+ PiT,h,0.2654742214679718,0.8906666666666667,0.9867604444444446,0.9002129601460298
118
+ PiT,i,0.07874196857213973,0.9816666666666667,0.9984063333333333,0.9817518248175182
119
+ PiT,j,2.064411908388138,0.425,0.2541995,0.06554712892741062
120
+ PiT,k,1.9076957294344903,0.5086666666666667,0.5137791111111111,0.07586206896551724
121
+ PiT,l,0.8414742159576168,0.7422135265189572,0.6380633426333875,0.5693843300061832
122
+ Ensemble,a,,0.9091480666457089,0.9356988950276244,0.4956369982547993
123
+ Ensemble,b,,0.8827412763281987,0.9258600368324126,0.4322678843226788
124
+ Ensemble,c,,0.8843131090851933,0.9218287292817678,0.43558282208588955
125
+ Ensemble,d,,0.9698208110657026,0.9801325966850829,0.7473684210526316
126
+ Ensemble,e,,0.8430296377607025,0.8939907666691894,0.6651053864168618
127
+ Ensemble,f,,0.9137944388505925,0.93819120448933,0.2032927702219041
128
+ Ensemble,g,,0.939,0.9941475555555555,0.9419231989844494
129
+ Ensemble,h,,0.9398333333333333,0.9950692222222223,0.9426711132285215
130
+ Ensemble,i,,0.9851666666666666,0.9989964444444445,0.9852282157676349
131
+ Ensemble,j,,0.4665,0.3454607777777778,0.07672339198154024
132
+ Ensemble,k,,0.5126666666666667,0.5158666666666667,0.08338557993730407
133
+ Ensemble,l,,0.7878483422346783,0.6748540842988286,0.6178319679939036
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2ba4f29e52e4156dd94943930b6912861d23d1e4ab0453dc0526467d1ee7a70
3
+ size 290985688
pit-gravit-s1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de2f6ae3a249a6ffecbfce70c7a5c74f94a34d5a6f837be593360578c5c76a08
3
+ size 291039882
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de2f6ae3a249a6ffecbfce70c7a5c74f94a34d5a6f837be593360578c5c76a08
3
+ size 291039882
roc_confusion_matrix/PiT_roc_confusion_matrix_a.png ADDED
roc_confusion_matrix/PiT_roc_confusion_matrix_b.png ADDED
roc_confusion_matrix/PiT_roc_confusion_matrix_c.png ADDED
roc_confusion_matrix/PiT_roc_confusion_matrix_d.png ADDED
roc_confusion_matrix/PiT_roc_confusion_matrix_e.png ADDED
roc_confusion_matrix/PiT_roc_confusion_matrix_f.png ADDED
roc_confusion_matrix/PiT_roc_confusion_matrix_g.png ADDED
roc_confusion_matrix/PiT_roc_confusion_matrix_h.png ADDED
roc_confusion_matrix/PiT_roc_confusion_matrix_i.png ADDED
roc_confusion_matrix/PiT_roc_confusion_matrix_j.png ADDED
roc_confusion_matrix/PiT_roc_confusion_matrix_k.png ADDED
roc_confusion_matrix/PiT_roc_confusion_matrix_l.png ADDED
roc_curves/PiT_ROC_a.png ADDED
roc_curves/PiT_ROC_b.png ADDED
roc_curves/PiT_ROC_c.png ADDED
roc_curves/PiT_ROC_d.png ADDED
roc_curves/PiT_ROC_e.png ADDED
roc_curves/PiT_ROC_f.png ADDED
roc_curves/PiT_ROC_g.png ADDED
roc_curves/PiT_ROC_h.png ADDED
roc_curves/PiT_ROC_i.png ADDED
roc_curves/PiT_ROC_j.png ADDED
roc_curves/PiT_ROC_k.png ADDED
roc_curves/PiT_ROC_l.png ADDED
training_curves/PiT_accuracy.png ADDED
training_curves/PiT_auc.png ADDED
training_curves/PiT_combined_metrics.png ADDED

Git LFS Details

  • SHA256: 0e81fc2c0dc185487621f54fd65c1c35a8972dbd41678460aa10f144c5992f79
  • Pointer size: 131 Bytes
  • Size of remote file: 149 kB
training_curves/PiT_f1.png ADDED
training_curves/PiT_loss.png ADDED
training_curves/PiT_metrics.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,train_loss,val_loss,train_accuracy,val_accuracy,train_auc,val_auc,train_f1,val_f1
2
+ 1,0.5563018193007282,0.6356939783096314,0.7416934619506966,0.628,0.8266205158824522,0.706058,0.7504530157908361,0.6725352112676056
3
+ 2,0.4346736864836653,0.5875706753730774,0.814951768488746,0.686,0.9007071413309071,0.7638480000000001,0.8205021573010345,0.7032136105860114
4
+ 3,0.39249228687531695,0.550831443309784,0.8339764201500536,0.719,0.9165568016942203,0.799888,0.8368443227301453,0.7247796278158668
5
+ 4,0.3700454133499857,0.5237129969596863,0.845016077170418,0.748,0.9241545743254653,0.82782,0.8470165044435041,0.7567567567567568
6
+ 5,0.35595158246552444,0.502943284034729,0.8471061093247588,0.763,0.9287223215916571,0.845384,0.8483978957436633,0.7718960538979788
7
+ 6,0.3411155789228114,0.4818972487449646,0.855064308681672,0.773,0.9345332910582442,0.858866,0.8563995008893727,0.7754698318496538
8
+ 7,0.33232957603847096,0.4679823491573334,0.8596730975348339,0.787,0.9377416228120056,0.870266,0.8601788813242558,0.7917888563049853
9
+ 8,0.3253171303552063,0.45304868030548096,0.8617095391211147,0.792,0.9401251667166386,0.8800739999999999,0.8621638223432951,0.7956777996070727
10
+ 9,0.31797896333254416,0.4406982364654541,0.8662379421221865,0.811,0.9425090078679914,0.886862,0.8669012957926732,0.8057553956834532
11
+ 10,0.3133630326514842,0.43188963317871093,0.8695605573419078,0.811,0.944024862749558,0.89248,0.8699786324786325,0.8100502512562814
12
+ 11,0.30521433575743645,0.4226424345970154,0.872374062165059,0.819,0.9471080134269358,0.8990580000000001,0.8725482325867652,0.8220255653883972
13
+ 12,0.3009603566199637,0.41616519522666934,0.8751875669882101,0.82,0.948247928750392,0.9036220000000001,0.8756141850032044,0.8238747553816047
14
+ 13,0.2982578276054652,0.4043726959228516,0.8759378349410504,0.832,0.9491255633327935,0.909134,0.8764608570361279,0.8330019880715706
15
+ 14,0.2953203454469944,0.4025894486904144,0.8770900321543408,0.826,0.9500662673508798,0.91052,0.8772643352152624,0.8294117647058824
16
+ 15,0.2921696385769982,0.39444496870040896,0.877706323687031,0.837,0.9511011210365667,0.913562,0.8781373491402328,0.8368368368368369
17
+ 16,0.28897848921765085,0.38718288373947146,0.8821007502679529,0.836,0.9520550647394741,0.9188020000000001,0.8823906767881963,0.8376237623762376
18
+ 17,0.2865084092333386,0.382424058675766,0.8809217577706324,0.838,0.9528117428824487,0.9218719999999999,0.8811891776280611,0.8411764705882353
19
+ 18,0.282787588871177,0.37585934782028196,0.8829314040728832,0.842,0.954131775358448,0.9234399999999999,0.8832723289427984,0.8416833667334669
20
+ 19,0.2776282165594806,0.3711166687011719,0.8843247588424438,0.846,0.9559690530265172,0.925468,0.884618468528665,0.844758064516129
21
+ 20,0.2789704781061583,0.3660940396785736,0.8836280814576635,0.844,0.9551937876297116,0.928622,0.8838304132673532,0.8449304174950298
22
+ 21,0.27606981944807857,0.36546334075927733,0.8879689174705252,0.85,0.9563648822673232,0.931052,0.8880139279496451,0.8540856031128404
23
+ 22,0.2709929521827452,0.35965540742874147,0.8908896034297964,0.853,0.9582642055212645,0.931164,0.8912276952665883,0.851963746223565
24
+ 23,0.2720126974333521,0.3557676236629486,0.8885048231511254,0.858,0.95748469251191,0.93307,0.8886867660041198,0.8553971486761711
25
+ 24,0.26866769612410446,0.3527928652763367,0.8912111468381565,0.853,0.958830301129595,0.9345719999999998,0.8914612628990002,0.8534396809571286
26
+ 25,0.2666037176966284,0.3493557932376862,0.8912915326902465,0.857,0.9593711523063473,0.936462,0.8914050161942236,0.8585558852621167
27
+ 26,0.26798737595318983,0.34803735160827637,0.8917470525187567,0.862,0.9583583451370437,0.936496,0.892036344200962,0.8600405679513184
28
+ 27,0.26222484914819527,0.3453840818405151,0.8928188638799571,0.863,0.9606873363707066,0.9378219999999999,0.8930767174552259,0.8597748208802457
29
+ 28,0.2633070344710273,0.3410758285522461,0.8938638799571276,0.866,0.960175247763039,0.939484,0.8939122050512897,0.8657314629258517
30
+ 29,0.263034733861589,0.33974080872535706,0.8931672025723473,0.86,0.9601339879079459,0.940854,0.8933187060177133,0.8622047244094488
31
+ 30,0.26001829623792716,0.337381427526474,0.895016077170418,0.867,0.9611620738458498,0.9405639999999998,0.8952966328166756,0.8663316582914573
32
+ 31,0.2562834031712204,0.3343487160205841,0.8957931404072883,0.868,0.9624103004173515,0.9418839999999999,0.8959798860566507,0.8677354709418837
33
+ 32,0.2575110454459666,0.3327103006839752,0.8941854233654877,0.87,0.9616846307075678,0.942252,0.8944145878452447,0.8694779116465864
34
+ 33,0.2609030827257028,0.3310863990783691,0.894908896034298,0.87,0.9603747290316134,0.9427719999999999,0.8951673259916604,0.8697394789579158
35
+ 34,0.2571547552320352,0.32836717438697816,0.8953912111468382,0.871,0.9617914097708299,0.944942,0.8956038078938924,0.8721506442021804
36
+ 35,0.2534322022241795,0.32579121804237365,0.8983118971061094,0.874,0.9631155319021837,0.944922,0.8985971943887776,0.8727272727272727
37
+ 36,0.2549814079543785,0.32286046051979067,0.8972668810289389,0.873,0.9623552020760745,0.9464119999999999,0.8974482426576793,0.8723618090452261
38
+ 37,0.2535841320680269,0.3230294668674469,0.897374062165059,0.874,0.9628455586457727,0.945886,0.897757608115323,0.8724696356275303
39
+ 38,0.2510210835569541,0.32089749002456663,0.8979099678456591,0.874,0.9636662166322607,0.946576,0.8980192719486081,0.8729838709677419
40
+ 39,0.250330284113286,0.31907110691070556,0.897508038585209,0.876,0.9638379778492318,0.9476419999999999,0.8978338096637196,0.8755020080321285
41
+ 40,0.24869302685621084,0.31579874610900877,0.8986066452304394,0.88,0.9644441342739541,0.949042,0.8987477255699454,0.8804780876494024
42
+ 41,0.2476668908569207,0.3128743948936462,0.9008038585209003,0.88,0.9646481359902308,0.9499159999999999,0.9009842730287793,0.8787878787878788
43
+ 42,0.24812654042167295,0.31418897581100463,0.89989281886388,0.883,0.964469981814819,0.9493379999999999,0.899935718877223,0.8828828828828829
44
+ 43,0.2479906425982043,0.3134040071964264,0.90021436227224,0.88,0.9643357167637959,0.9495680000000001,0.9003051881993896,0.8804780876494024
45
+ 44,0.2476815341178244,0.3102829327583313,0.9006698821007503,0.882,0.9644659998575513,0.951028,0.900858495359846,0.8817635270541082
46
+ 45,0.24231451711470675,0.3103407230377197,0.9020632368703109,0.883,0.9664163834924967,0.9506519999999999,0.9021025847060399,0.8809766022380467
47
+ 46,0.24373830530037835,0.30950546884536745,0.9033494105037514,0.883,0.9657659760778137,0.9506260000000001,0.9033882415963573,0.8821752265861027
48
+ 47,0.24495664570492565,0.3072328684329987,0.90021436227224,0.884,0.9650968406837996,0.9515759999999999,0.9004065040650406,0.8830645161290323
49
+ 48,0.24204588349417475,0.3074375329017639,0.9027331189710611,0.885,0.966072183278594,0.9519599999999999,0.9028736554824209,0.8813209494324046
50
+ 49,0.24022879257462798,0.3035993115901947,0.9034833869239014,0.891,0.9669272213663814,0.952958,0.9035609103078983,0.8882051282051282
51
+ 50,0.2410309330826787,0.30354714369773866,0.9028670953912111,0.89,0.9664141634759313,0.9524699999999998,0.9028384572087164,0.8882113821138211
52
+ 51,0.23729827810330406,0.3017928522825241,0.904849946409432,0.889,0.9675301540283678,0.953922,0.9049594518641437,0.889990089197225
53
+ 52,0.24066262718565595,0.30168111610412596,0.9038049303322615,0.889,0.9665423040957439,0.9531359999999999,0.9040876302431204,0.8877654196157735
54
+ 53,0.23881069751414455,0.29872149443626406,0.9046355841371918,0.89,0.9670320173488695,0.954292,0.9049031396125584,0.8891129032258065
55
+ 54,0.2385296888769248,0.29784558463096616,0.9039389067524116,0.892,0.9670059041527233,0.9548119999999999,0.9040032132815637,0.8904665314401623
56
+ 55,0.2386614551689847,0.29643762373924254,0.9034833869239014,0.889,0.9669932072662607,0.955346,0.9035712373507523,0.8882175226586103
57
+ 56,0.2388136667837284,0.2939836466312408,0.9046355841371918,0.891,0.9668521428760157,0.9559819999999999,0.9048675523241827,0.8897876643073812
58
+ 57,0.23735327579775808,0.2936938996315002,0.9035369774919614,0.894,0.9674211750521833,0.9560980000000001,0.9036350982386637,0.8922764227642277
59
+ 58,0.2326323373333051,0.2947395453453064,0.9054930332261522,0.893,0.9688327422862322,0.9554459999999999,0.9056270569662591,0.8933200398803589
60
+ 59,0.23771076658531018,0.29332517862319946,0.9043408360128617,0.891,0.9670615409844352,0.956232,0.904514817588531,0.8888888888888888
61
+ 60,0.23285520724544956,0.2919388960599899,0.9069935691318328,0.893,0.9688660741261521,0.9563720000000001,0.9070259555888892,0.890927624872579
62
+ 61,0.23559735591771902,0.2916033399105072,0.9051982851018221,0.893,0.9676301294444847,0.9566720000000001,0.90527950310559,0.8907048008171604
63
+ 62,0.23292753837307933,0.28929762172698975,0.9057877813504823,0.898,0.9685780779538857,0.9575299999999998,0.9056158058627725,0.898406374501992
64
+ 63,0.23218838023411115,0.28946579337120054,0.9070739549839228,0.898,0.9687679295775133,0.956978,0.9073074250280644,0.8977955911823647
65
+ 64,0.23362374242479012,0.2888443307876587,0.9060557341907824,0.894,0.9681763540377879,0.9571139999999999,0.9060255173153211,0.8927125506072875
66
+ 65,0.2321641012595014,0.28882792735099794,0.907341907824223,0.898,0.9688287115058317,0.9577220000000001,0.9073964972417118,0.899009900990099
67
+ 66,0.23336511353971107,0.28809220480918885,0.9083869239013933,0.897,0.9682685881154156,0.95726,0.9084678606805343,0.8966900702106319
68
+ 67,0.229885164027812,0.28403409242630007,0.9085209003215434,0.902,0.969422828720409,0.95909,0.9085454058398071,0.9021956087824351
69
+ 68,0.23174834747789758,0.2843468089103699,0.9083869239013933,0.903,0.9688792491921208,0.9586899999999999,0.9084188251680818,0.903096903096903
70
+ 69,0.22877406947482437,0.28421341788768767,0.9080921757770632,0.897,0.9697936834928413,0.958666,0.908293674135073,0.8954314720812183
71
+ 70,0.23037194221541046,0.28285752415657045,0.9077706323687031,0.899,0.9690482030789591,0.9590700000000001,0.9077211796246649,0.897876643073812
72
+ 71,0.22861045206091413,0.28116247296333313,0.9091371918542337,0.902,0.9696457594524457,0.959516,0.9092077431792016,0.9018036072144289
73
+ 72,0.23049895389670344,0.28259065794944765,0.9080653804930332,0.897,0.9690075563849745,0.959032,0.9082841027560212,0.8943589743589744
74
+ 73,0.232632557640505,0.2799533634185791,0.9067256162915327,0.902,0.9683063456287213,0.959888,0.9067281155381689,0.902
75
+ 74,0.23125796399507492,0.2795972373485565,0.907636655948553,0.901,0.9687882356928118,0.959828,0.9077083723794479,0.9005025125628141
76
+ 75,0.2257228837902523,0.27983963990211486,0.9106913183279742,0.898,0.9705750374214952,0.959484,0.9106793514672383,0.896969696969697
77
+ 76,0.2275167477092559,0.2798961126804352,0.9083601286173634,0.895,0.969817961513586,0.959548,0.9084631443712863,0.8934010152284264
78
+ 77,0.22885710424548944,0.27751326644420626,0.9087084673097535,0.902,0.9692785491832752,0.9604860000000001,0.9087598082536622,0.9021956087824351
79
+ 78,0.22986625099488778,0.27806093454360964,0.9068327974276528,0.901,0.9690309957966154,0.95991,0.9069748775985231,0.900100908173562
80
+ 79,0.22819801380205001,0.27678651285171507,0.9078242229367631,0.902,0.9695964452164243,0.960444,0.9079179827613898,0.902
81
+ 80,0.22864191616463125,0.2777956609725952,0.9078778135048231,0.903,0.9693901502488831,0.9600859999999999,0.9079715188179238,0.9032901296111665
82
+ 81,0.22962153438969823,0.2759456205368042,0.9074490889603429,0.903,0.9690958329169008,0.96074,0.9075432303656513,0.9015228426395939
83
+ 82,0.2295759210153408,0.27442347383499144,0.907556270096463,0.903,0.9690905873020798,0.961216,0.907437218287186,0.903096903096903
84
+ 83,0.2273614709783597,0.2759055495262146,0.9104769560557342,0.904,0.9697160188124146,0.9605659999999999,0.9105847718453098,0.9041916167664671
85
+ 84,0.22482680496295548,0.27407700741291047,0.9086012861736334,0.903,0.9705718710977393,0.9611959999999999,0.908672253607861,0.9015228426395939
86
+ 85,0.2286033286734026,0.2754004946947098,0.9064844587352626,0.911,0.9694013163865367,0.961478,0.9064042051062003,0.9123152709359605
87
+ 86,0.22433226265707967,0.2727320637702942,0.9113612004287246,0.904,0.9707678155611386,0.96153,0.9114703206123214,0.9020408163265307
88
+ 87,0.2249364671408172,0.2713268156051636,0.9105573419078242,0.907,0.9704762409404369,0.9621160000000001,0.9104421549688775,0.9072781655034895
89
+ 88,0.2244803028762149,0.27113855409622195,0.9108252947481243,0.911,0.9706272207345525,0.962222,0.9109398415756798,0.9117938553022795
90
+ 89,0.22125098594131962,0.2744870343208313,0.912486602357985,0.905,0.9715903905735742,0.9614240000000002,0.9125147326690239,0.9017580144777663
91
+ 90,0.22225735127159255,0.2700153822898865,0.9116827438370847,0.908,0.9711550863939692,0.96222,0.9117536813922356,0.908183632734531
92
+ 91,0.22354730338912301,0.2692434575557709,0.910048231511254,0.907,0.9706314626032035,0.962484,0.9100699188298642,0.9051987767584098
93
+ 92,0.22212617226735573,0.26861815905570985,0.912379421221865,0.91,0.9712122482305923,0.9625659999999999,0.9124451108493092,0.9087221095334685
94
+ 93,0.22053013225460358,0.268940975189209,0.9135584137191854,0.912,0.9716976664840108,0.9628260000000001,0.9136555858894063,0.9130434782608695
95
+ 94,0.2218254195915541,0.2658497998714447,0.912459807073955,0.907,0.9711686922522856,0.96351,0.9125371456107944,0.9067201604814443
96
+ 95,0.2255493539610093,0.26663191223144533,0.9109860664523044,0.912,0.9700124197433855,0.963486,0.9111004067651467,0.9112903225806451
97
+ 96,0.22365794418517415,0.2684640885591507,0.9111736334405145,0.911,0.9706843193882977,0.96313,0.9111283879788745,0.9119683481701286
98
+ 97,0.22202417601343136,0.26755897784233096,0.912352625937835,0.908,0.9709770241209251,0.9630239999999999,0.9125985303941215,0.9061224489795918
99
+ 98,0.2228296886782171,0.26736432337760924,0.9129957127545552,0.91,0.9708933570671198,0.96304,0.9129467277943109,0.9083503054989817
100
+ 99,0.22056228621021345,0.26854881739616393,0.9112540192926045,0.906,0.9715199646405639,0.963,0.9113680154142582,0.9030927835051547
101
+ 100,0.22090822191867032,0.26648762106895446,0.9114683815648446,0.913,0.9715605826150588,0.963362,0.9114873553364766,0.9137760158572844
training_metrics.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,train_loss,val_loss,train_accuracy,val_accuracy,train_auc,val_auc,train_f1,val_f1
2
+ 1,0.5563018193007282,0.6356939783096314,0.7416934619506966,0.628,0.8266205158824522,0.706058,0.7504530157908361,0.6725352112676056
3
+ 2,0.4346736864836653,0.5875706753730774,0.814951768488746,0.686,0.9007071413309071,0.7638480000000001,0.8205021573010345,0.7032136105860114
4
+ 3,0.39249228687531695,0.550831443309784,0.8339764201500536,0.719,0.9165568016942203,0.799888,0.8368443227301453,0.7247796278158668
5
+ 4,0.3700454133499857,0.5237129969596863,0.845016077170418,0.748,0.9241545743254653,0.82782,0.8470165044435041,0.7567567567567568
6
+ 5,0.35595158246552444,0.502943284034729,0.8471061093247588,0.763,0.9287223215916571,0.845384,0.8483978957436633,0.7718960538979788
7
+ 6,0.3411155789228114,0.4818972487449646,0.855064308681672,0.773,0.9345332910582442,0.858866,0.8563995008893727,0.7754698318496538
8
+ 7,0.33232957603847096,0.4679823491573334,0.8596730975348339,0.787,0.9377416228120056,0.870266,0.8601788813242558,0.7917888563049853
9
+ 8,0.3253171303552063,0.45304868030548096,0.8617095391211147,0.792,0.9401251667166386,0.8800739999999999,0.8621638223432951,0.7956777996070727
10
+ 9,0.31797896333254416,0.4406982364654541,0.8662379421221865,0.811,0.9425090078679914,0.886862,0.8669012957926732,0.8057553956834532
11
+ 10,0.3133630326514842,0.43188963317871093,0.8695605573419078,0.811,0.944024862749558,0.89248,0.8699786324786325,0.8100502512562814
12
+ 11,0.30521433575743645,0.4226424345970154,0.872374062165059,0.819,0.9471080134269358,0.8990580000000001,0.8725482325867652,0.8220255653883972
13
+ 12,0.3009603566199637,0.41616519522666934,0.8751875669882101,0.82,0.948247928750392,0.9036220000000001,0.8756141850032044,0.8238747553816047
14
+ 13,0.2982578276054652,0.4043726959228516,0.8759378349410504,0.832,0.9491255633327935,0.909134,0.8764608570361279,0.8330019880715706
15
+ 14,0.2953203454469944,0.4025894486904144,0.8770900321543408,0.826,0.9500662673508798,0.91052,0.8772643352152624,0.8294117647058824
16
+ 15,0.2921696385769982,0.39444496870040896,0.877706323687031,0.837,0.9511011210365667,0.913562,0.8781373491402328,0.8368368368368369
17
+ 16,0.28897848921765085,0.38718288373947146,0.8821007502679529,0.836,0.9520550647394741,0.9188020000000001,0.8823906767881963,0.8376237623762376
18
+ 17,0.2865084092333386,0.382424058675766,0.8809217577706324,0.838,0.9528117428824487,0.9218719999999999,0.8811891776280611,0.8411764705882353
19
+ 18,0.282787588871177,0.37585934782028196,0.8829314040728832,0.842,0.954131775358448,0.9234399999999999,0.8832723289427984,0.8416833667334669
20
+ 19,0.2776282165594806,0.3711166687011719,0.8843247588424438,0.846,0.9559690530265172,0.925468,0.884618468528665,0.844758064516129
21
+ 20,0.2789704781061583,0.3660940396785736,0.8836280814576635,0.844,0.9551937876297116,0.928622,0.8838304132673532,0.8449304174950298
22
+ 21,0.27606981944807857,0.36546334075927733,0.8879689174705252,0.85,0.9563648822673232,0.931052,0.8880139279496451,0.8540856031128404
23
+ 22,0.2709929521827452,0.35965540742874147,0.8908896034297964,0.853,0.9582642055212645,0.931164,0.8912276952665883,0.851963746223565
24
+ 23,0.2720126974333521,0.3557676236629486,0.8885048231511254,0.858,0.95748469251191,0.93307,0.8886867660041198,0.8553971486761711
25
+ 24,0.26866769612410446,0.3527928652763367,0.8912111468381565,0.853,0.958830301129595,0.9345719999999998,0.8914612628990002,0.8534396809571286
26
+ 25,0.2666037176966284,0.3493557932376862,0.8912915326902465,0.857,0.9593711523063473,0.936462,0.8914050161942236,0.8585558852621167
27
+ 26,0.26798737595318983,0.34803735160827637,0.8917470525187567,0.862,0.9583583451370437,0.936496,0.892036344200962,0.8600405679513184
28
+ 27,0.26222484914819527,0.3453840818405151,0.8928188638799571,0.863,0.9606873363707066,0.9378219999999999,0.8930767174552259,0.8597748208802457
29
+ 28,0.2633070344710273,0.3410758285522461,0.8938638799571276,0.866,0.960175247763039,0.939484,0.8939122050512897,0.8657314629258517
30
+ 29,0.263034733861589,0.33974080872535706,0.8931672025723473,0.86,0.9601339879079459,0.940854,0.8933187060177133,0.8622047244094488
31
+ 30,0.26001829623792716,0.337381427526474,0.895016077170418,0.867,0.9611620738458498,0.9405639999999998,0.8952966328166756,0.8663316582914573
32
+ 31,0.2562834031712204,0.3343487160205841,0.8957931404072883,0.868,0.9624103004173515,0.9418839999999999,0.8959798860566507,0.8677354709418837
33
+ 32,0.2575110454459666,0.3327103006839752,0.8941854233654877,0.87,0.9616846307075678,0.942252,0.8944145878452447,0.8694779116465864
34
+ 33,0.2609030827257028,0.3310863990783691,0.894908896034298,0.87,0.9603747290316134,0.9427719999999999,0.8951673259916604,0.8697394789579158
35
+ 34,0.2571547552320352,0.32836717438697816,0.8953912111468382,0.871,0.9617914097708299,0.944942,0.8956038078938924,0.8721506442021804
36
+ 35,0.2534322022241795,0.32579121804237365,0.8983118971061094,0.874,0.9631155319021837,0.944922,0.8985971943887776,0.8727272727272727
37
+ 36,0.2549814079543785,0.32286046051979067,0.8972668810289389,0.873,0.9623552020760745,0.9464119999999999,0.8974482426576793,0.8723618090452261
38
+ 37,0.2535841320680269,0.3230294668674469,0.897374062165059,0.874,0.9628455586457727,0.945886,0.897757608115323,0.8724696356275303
39
+ 38,0.2510210835569541,0.32089749002456663,0.8979099678456591,0.874,0.9636662166322607,0.946576,0.8980192719486081,0.8729838709677419
40
+ 39,0.250330284113286,0.31907110691070556,0.897508038585209,0.876,0.9638379778492318,0.9476419999999999,0.8978338096637196,0.8755020080321285
41
+ 40,0.24869302685621084,0.31579874610900877,0.8986066452304394,0.88,0.9644441342739541,0.949042,0.8987477255699454,0.8804780876494024
42
+ 41,0.2476668908569207,0.3128743948936462,0.9008038585209003,0.88,0.9646481359902308,0.9499159999999999,0.9009842730287793,0.8787878787878788
43
+ 42,0.24812654042167295,0.31418897581100463,0.89989281886388,0.883,0.964469981814819,0.9493379999999999,0.899935718877223,0.8828828828828829
44
+ 43,0.2479906425982043,0.3134040071964264,0.90021436227224,0.88,0.9643357167637959,0.9495680000000001,0.9003051881993896,0.8804780876494024
45
+ 44,0.2476815341178244,0.3102829327583313,0.9006698821007503,0.882,0.9644659998575513,0.951028,0.900858495359846,0.8817635270541082
46
+ 45,0.24231451711470675,0.3103407230377197,0.9020632368703109,0.883,0.9664163834924967,0.9506519999999999,0.9021025847060399,0.8809766022380467
47
+ 46,0.24373830530037835,0.30950546884536745,0.9033494105037514,0.883,0.9657659760778137,0.9506260000000001,0.9033882415963573,0.8821752265861027
48
+ 47,0.24495664570492565,0.3072328684329987,0.90021436227224,0.884,0.9650968406837996,0.9515759999999999,0.9004065040650406,0.8830645161290323
49
+ 48,0.24204588349417475,0.3074375329017639,0.9027331189710611,0.885,0.966072183278594,0.9519599999999999,0.9028736554824209,0.8813209494324046
50
+ 49,0.24022879257462798,0.3035993115901947,0.9034833869239014,0.891,0.9669272213663814,0.952958,0.9035609103078983,0.8882051282051282
51
+ 50,0.2410309330826787,0.30354714369773866,0.9028670953912111,0.89,0.9664141634759313,0.9524699999999998,0.9028384572087164,0.8882113821138211
52
+ 51,0.23729827810330406,0.3017928522825241,0.904849946409432,0.889,0.9675301540283678,0.953922,0.9049594518641437,0.889990089197225
53
+ 52,0.24066262718565595,0.30168111610412596,0.9038049303322615,0.889,0.9665423040957439,0.9531359999999999,0.9040876302431204,0.8877654196157735
54
+ 53,0.23881069751414455,0.29872149443626406,0.9046355841371918,0.89,0.9670320173488695,0.954292,0.9049031396125584,0.8891129032258065
55
+ 54,0.2385296888769248,0.29784558463096616,0.9039389067524116,0.892,0.9670059041527233,0.9548119999999999,0.9040032132815637,0.8904665314401623
56
+ 55,0.2386614551689847,0.29643762373924254,0.9034833869239014,0.889,0.9669932072662607,0.955346,0.9035712373507523,0.8882175226586103
57
+ 56,0.2388136667837284,0.2939836466312408,0.9046355841371918,0.891,0.9668521428760157,0.9559819999999999,0.9048675523241827,0.8897876643073812
58
+ 57,0.23735327579775808,0.2936938996315002,0.9035369774919614,0.894,0.9674211750521833,0.9560980000000001,0.9036350982386637,0.8922764227642277
59
+ 58,0.2326323373333051,0.2947395453453064,0.9054930332261522,0.893,0.9688327422862322,0.9554459999999999,0.9056270569662591,0.8933200398803589
60
+ 59,0.23771076658531018,0.29332517862319946,0.9043408360128617,0.891,0.9670615409844352,0.956232,0.904514817588531,0.8888888888888888
61
+ 60,0.23285520724544956,0.2919388960599899,0.9069935691318328,0.893,0.9688660741261521,0.9563720000000001,0.9070259555888892,0.890927624872579
62
+ 61,0.23559735591771902,0.2916033399105072,0.9051982851018221,0.893,0.9676301294444847,0.9566720000000001,0.90527950310559,0.8907048008171604
63
+ 62,0.23292753837307933,0.28929762172698975,0.9057877813504823,0.898,0.9685780779538857,0.9575299999999998,0.9056158058627725,0.898406374501992
64
+ 63,0.23218838023411115,0.28946579337120054,0.9070739549839228,0.898,0.9687679295775133,0.956978,0.9073074250280644,0.8977955911823647
65
+ 64,0.23362374242479012,0.2888443307876587,0.9060557341907824,0.894,0.9681763540377879,0.9571139999999999,0.9060255173153211,0.8927125506072875
66
+ 65,0.2321641012595014,0.28882792735099794,0.907341907824223,0.898,0.9688287115058317,0.9577220000000001,0.9073964972417118,0.899009900990099
67
+ 66,0.23336511353971107,0.28809220480918885,0.9083869239013933,0.897,0.9682685881154156,0.95726,0.9084678606805343,0.8966900702106319
68
+ 67,0.229885164027812,0.28403409242630007,0.9085209003215434,0.902,0.969422828720409,0.95909,0.9085454058398071,0.9021956087824351
69
+ 68,0.23174834747789758,0.2843468089103699,0.9083869239013933,0.903,0.9688792491921208,0.9586899999999999,0.9084188251680818,0.903096903096903
70
+ 69,0.22877406947482437,0.28421341788768767,0.9080921757770632,0.897,0.9697936834928413,0.958666,0.908293674135073,0.8954314720812183
71
+ 70,0.23037194221541046,0.28285752415657045,0.9077706323687031,0.899,0.9690482030789591,0.9590700000000001,0.9077211796246649,0.897876643073812
72
+ 71,0.22861045206091413,0.28116247296333313,0.9091371918542337,0.902,0.9696457594524457,0.959516,0.9092077431792016,0.9018036072144289
73
+ 72,0.23049895389670344,0.28259065794944765,0.9080653804930332,0.897,0.9690075563849745,0.959032,0.9082841027560212,0.8943589743589744
74
+ 73,0.232632557640505,0.2799533634185791,0.9067256162915327,0.902,0.9683063456287213,0.959888,0.9067281155381689,0.902
75
+ 74,0.23125796399507492,0.2795972373485565,0.907636655948553,0.901,0.9687882356928118,0.959828,0.9077083723794479,0.9005025125628141
76
+ 75,0.2257228837902523,0.27983963990211486,0.9106913183279742,0.898,0.9705750374214952,0.959484,0.9106793514672383,0.896969696969697
77
+ 76,0.2275167477092559,0.2798961126804352,0.9083601286173634,0.895,0.969817961513586,0.959548,0.9084631443712863,0.8934010152284264
78
+ 77,0.22885710424548944,0.27751326644420626,0.9087084673097535,0.902,0.9692785491832752,0.9604860000000001,0.9087598082536622,0.9021956087824351
79
+ 78,0.22986625099488778,0.27806093454360964,0.9068327974276528,0.901,0.9690309957966154,0.95991,0.9069748775985231,0.900100908173562
80
+ 79,0.22819801380205001,0.27678651285171507,0.9078242229367631,0.902,0.9695964452164243,0.960444,0.9079179827613898,0.902
81
+ 80,0.22864191616463125,0.2777956609725952,0.9078778135048231,0.903,0.9693901502488831,0.9600859999999999,0.9079715188179238,0.9032901296111665
82
+ 81,0.22962153438969823,0.2759456205368042,0.9074490889603429,0.903,0.9690958329169008,0.96074,0.9075432303656513,0.9015228426395939
83
+ 82,0.2295759210153408,0.27442347383499144,0.907556270096463,0.903,0.9690905873020798,0.961216,0.907437218287186,0.903096903096903
84
+ 83,0.2273614709783597,0.2759055495262146,0.9104769560557342,0.904,0.9697160188124146,0.9605659999999999,0.9105847718453098,0.9041916167664671
85
+ 84,0.22482680496295548,0.27407700741291047,0.9086012861736334,0.903,0.9705718710977393,0.9611959999999999,0.908672253607861,0.9015228426395939
86
+ 85,0.2286033286734026,0.2754004946947098,0.9064844587352626,0.911,0.9694013163865367,0.961478,0.9064042051062003,0.9123152709359605
87
+ 86,0.22433226265707967,0.2727320637702942,0.9113612004287246,0.904,0.9707678155611386,0.96153,0.9114703206123214,0.9020408163265307
88
+ 87,0.2249364671408172,0.2713268156051636,0.9105573419078242,0.907,0.9704762409404369,0.9621160000000001,0.9104421549688775,0.9072781655034895
89
+ 88,0.2244803028762149,0.27113855409622195,0.9108252947481243,0.911,0.9706272207345525,0.962222,0.9109398415756798,0.9117938553022795
90
+ 89,0.22125098594131962,0.2744870343208313,0.912486602357985,0.905,0.9715903905735742,0.9614240000000002,0.9125147326690239,0.9017580144777663
91
+ 90,0.22225735127159255,0.2700153822898865,0.9116827438370847,0.908,0.9711550863939692,0.96222,0.9117536813922356,0.908183632734531
92
+ 91,0.22354730338912301,0.2692434575557709,0.910048231511254,0.907,0.9706314626032035,0.962484,0.9100699188298642,0.9051987767584098
93
+ 92,0.22212617226735573,0.26861815905570985,0.912379421221865,0.91,0.9712122482305923,0.9625659999999999,0.9124451108493092,0.9087221095334685
94
+ 93,0.22053013225460358,0.268940975189209,0.9135584137191854,0.912,0.9716976664840108,0.9628260000000001,0.9136555858894063,0.9130434782608695
95
+ 94,0.2218254195915541,0.2658497998714447,0.912459807073955,0.907,0.9711686922522856,0.96351,0.9125371456107944,0.9067201604814443
96
+ 95,0.2255493539610093,0.26663191223144533,0.9109860664523044,0.912,0.9700124197433855,0.963486,0.9111004067651467,0.9112903225806451
97
+ 96,0.22365794418517415,0.2684640885591507,0.9111736334405145,0.911,0.9706843193882977,0.96313,0.9111283879788745,0.9119683481701286
98
+ 97,0.22202417601343136,0.26755897784233096,0.912352625937835,0.908,0.9709770241209251,0.9630239999999999,0.9125985303941215,0.9061224489795918
99
+ 98,0.2228296886782171,0.26736432337760924,0.9129957127545552,0.91,0.9708933570671198,0.96304,0.9129467277943109,0.9083503054989817
100
+ 99,0.22056228621021345,0.26854881739616393,0.9112540192926045,0.906,0.9715199646405639,0.963,0.9113680154142582,0.9030927835051547
101
+ 100,0.22090822191867032,0.26648762106895446,0.9114683815648446,0.913,0.9715605826150588,0.963362,0.9114873553364766,0.9137760158572844