parlange commited on
Commit
8625c7e
·
verified ·
1 Parent(s): 4d26d61

Upload Twins_SVT model from experiment b2

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. README.md +161 -0
  3. config.json +76 -0
  4. confusion_matrices/Twins_SVT_Confusion_Matrix_a.png +0 -0
  5. confusion_matrices/Twins_SVT_Confusion_Matrix_b.png +0 -0
  6. confusion_matrices/Twins_SVT_Confusion_Matrix_c.png +0 -0
  7. confusion_matrices/Twins_SVT_Confusion_Matrix_d.png +0 -0
  8. confusion_matrices/Twins_SVT_Confusion_Matrix_e.png +0 -0
  9. confusion_matrices/Twins_SVT_Confusion_Matrix_f.png +0 -0
  10. confusion_matrices/Twins_SVT_Confusion_Matrix_g.png +0 -0
  11. confusion_matrices/Twins_SVT_Confusion_Matrix_h.png +0 -0
  12. confusion_matrices/Twins_SVT_Confusion_Matrix_i.png +0 -0
  13. confusion_matrices/Twins_SVT_Confusion_Matrix_j.png +0 -0
  14. confusion_matrices/Twins_SVT_Confusion_Matrix_k.png +0 -0
  15. confusion_matrices/Twins_SVT_Confusion_Matrix_l.png +0 -0
  16. evaluation_results.csv +133 -0
  17. model.safetensors +3 -0
  18. pytorch_model.bin +3 -0
  19. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_a.png +0 -0
  20. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_b.png +0 -0
  21. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_c.png +0 -0
  22. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_d.png +0 -0
  23. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_e.png +0 -0
  24. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_f.png +0 -0
  25. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_g.png +0 -0
  26. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_h.png +0 -0
  27. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_i.png +0 -0
  28. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_j.png +0 -0
  29. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_k.png +0 -0
  30. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_l.png +0 -0
  31. roc_curves/Twins_SVT_ROC_a.png +0 -0
  32. roc_curves/Twins_SVT_ROC_b.png +0 -0
  33. roc_curves/Twins_SVT_ROC_c.png +0 -0
  34. roc_curves/Twins_SVT_ROC_d.png +0 -0
  35. roc_curves/Twins_SVT_ROC_e.png +0 -0
  36. roc_curves/Twins_SVT_ROC_f.png +0 -0
  37. roc_curves/Twins_SVT_ROC_g.png +0 -0
  38. roc_curves/Twins_SVT_ROC_h.png +0 -0
  39. roc_curves/Twins_SVT_ROC_i.png +0 -0
  40. roc_curves/Twins_SVT_ROC_j.png +0 -0
  41. roc_curves/Twins_SVT_ROC_k.png +0 -0
  42. roc_curves/Twins_SVT_ROC_l.png +0 -0
  43. training_curves/Twins_SVT_accuracy.png +0 -0
  44. training_curves/Twins_SVT_auc.png +0 -0
  45. training_curves/Twins_SVT_combined_metrics.png +3 -0
  46. training_curves/Twins_SVT_f1.png +0 -0
  47. training_curves/Twins_SVT_loss.png +0 -0
  48. training_curves/Twins_SVT_metrics.csv +101 -0
  49. training_metrics.csv +101 -0
  50. training_notebook_b2.ipynb +3 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ training_curves/Twins_SVT_combined_metrics.png filter=lfs diff=lfs merge=lfs -text
37
+ training_notebook_b2.ipynb filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - vision-transformer
5
+ - image-classification
6
+ - pytorch
7
+ - timm
8
+ - twins_svt
9
+ - gravitational-lensing
10
+ - strong-lensing
11
+ - astronomy
12
+ - astrophysics
13
+ datasets:
14
+ - J24
15
+ metrics:
16
+ - accuracy
17
+ - auc
18
+ - f1
19
+ model-index:
20
+ - name: Twins_SVT-b2
21
+ results:
22
+ - task:
23
+ type: image-classification
24
+ name: Strong Gravitational Lens Discovery
25
+ dataset:
26
+ type: common-test-sample
27
+ name: Common Test Sample (More et al. 2024)
28
+ metrics:
29
+ - type: accuracy
30
+ value: 0.7200
31
+ name: Average Accuracy
32
+ - type: auc
33
+ value: 0.6517
34
+ name: Average AUC-ROC
35
+ - type: f1
36
+ value: 0.3307
37
+ name: Average F1-Score
38
+ ---
39
+
40
+ # 🌌 twins_svt-gravit-b2
41
+
42
+ 🔭 This model is part of **GraViT**: Transfer Learning with Vision Transformers and MLP-Mixer for Strong Gravitational Lens Discovery
43
+
44
+ 🔗 **GitHub Repository**: [https://github.com/parlange/gravit](https://github.com/parlange/gravit)
45
+
46
+ ## 🛰️ Model Details
47
+
48
+ - **🤖 Model Type**: Twins_SVT
49
+ - **🧪 Experiment**: B2 - J24-half
50
+ - **🌌 Dataset**: J24
51
+ - **🪐 Fine-tuning Strategy**: half
52
+
53
+
54
+
55
+ ## 💻 Quick Start
56
+
57
+ ```python
58
+ import torch
59
+ import timm
60
+
61
+ # Load the model directly from the Hub
62
+ model = timm.create_model(
63
+ 'hf-hub:parlange/twins_svt-gravit-b2',
64
+ pretrained=True
65
+ )
66
+ model.eval()
67
+
68
+ # Example inference
69
+ dummy_input = torch.randn(1, 3, 224, 224)
70
+ with torch.no_grad():
71
+ output = model(dummy_input)
72
+ predictions = torch.softmax(output, dim=1)
73
+ print(f"Lens probability: {predictions[0][1]:.4f}")
74
+ ```
75
+
76
+ ## ⚡️ Training Configuration
77
+
78
+ **Training Dataset:** J24 (Jaelani et al. 2024)
79
+ **Fine-tuning Strategy:** half
80
+
81
+
82
+ | 🔧 Parameter | 📝 Value |
83
+ |--------------|----------|
84
+ | Batch Size | 192 |
85
+ | Learning Rate | AdamW with ReduceLROnPlateau |
86
+ | Epochs | 100 |
87
+ | Patience | 10 |
88
+ | Optimizer | AdamW |
89
+ | Scheduler | ReduceLROnPlateau |
90
+ | Image Size | 224x224 |
91
+ | Fine Tune Mode | half |
92
+ | Stochastic Depth Probability | 0.1 |
93
+
94
+
95
+ ## 📈 Training Curves
96
+
97
+ ![Combined Training Metrics](https://huggingface.co/parlange/twins_svt-gravit-b2/resolve/main/training_curves/Twins_SVT_combined_metrics.png)
98
+
99
+
100
+ ## 🏁 Final Epoch Training Metrics
101
+
102
+ | Metric | Training | Validation |
103
+ |:---------:|:-----------:|:-------------:|
104
+ | 📉 Loss | 0.2453 | 0.2262 |
105
+ | 🎯 Accuracy | 0.9036 | 0.9148 |
106
+ | 📊 AUC-ROC | 0.9625 | 0.9685 |
107
+ | ⚖️ F1 Score | 0.9020 | 0.9142 |
108
+
109
+
110
+ ## ☑️ Evaluation Results
111
+
112
+ ### ROC Curves and Confusion Matrices
113
+
114
+ Performance across all test datasets (a through l) in the Common Test Sample (More et al. 2024):
115
+
116
+ ![ROC + Confusion Matrix - Dataset A](https://huggingface.co/parlange/twins_svt-gravit-b2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_a.png)
117
+ ![ROC + Confusion Matrix - Dataset B](https://huggingface.co/parlange/twins_svt-gravit-b2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_b.png)
118
+ ![ROC + Confusion Matrix - Dataset C](https://huggingface.co/parlange/twins_svt-gravit-b2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_c.png)
119
+ ![ROC + Confusion Matrix - Dataset D](https://huggingface.co/parlange/twins_svt-gravit-b2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_d.png)
120
+ ![ROC + Confusion Matrix - Dataset E](https://huggingface.co/parlange/twins_svt-gravit-b2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_e.png)
121
+ ![ROC + Confusion Matrix - Dataset F](https://huggingface.co/parlange/twins_svt-gravit-b2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_f.png)
122
+ ![ROC + Confusion Matrix - Dataset G](https://huggingface.co/parlange/twins_svt-gravit-b2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_g.png)
123
+ ![ROC + Confusion Matrix - Dataset H](https://huggingface.co/parlange/twins_svt-gravit-b2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_h.png)
124
+ ![ROC + Confusion Matrix - Dataset I](https://huggingface.co/parlange/twins_svt-gravit-b2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_i.png)
125
+ ![ROC + Confusion Matrix - Dataset J](https://huggingface.co/parlange/twins_svt-gravit-b2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_j.png)
126
+ ![ROC + Confusion Matrix - Dataset K](https://huggingface.co/parlange/twins_svt-gravit-b2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_k.png)
127
+ ![ROC + Confusion Matrix - Dataset L](https://huggingface.co/parlange/twins_svt-gravit-b2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_l.png)
128
+
129
+ ### 📋 Performance Summary
130
+
131
+ Average performance across 12 test datasets from the Common Test Sample (More et al. 2024):
132
+
133
+ | Metric | Value |
134
+ |-----------|----------|
135
+ | 🎯 Average Accuracy | 0.7200 |
136
+ | 📈 Average AUC-ROC | 0.6517 |
137
+ | ⚖️ Average F1-Score | 0.3307 |
138
+
139
+
140
+ ## 📘 Citation
141
+
142
+ If you use this model in your research, please cite:
143
+
144
+ ```bibtex
145
+ @misc{parlange2025gravit,
146
+ title={GraViT: Transfer Learning with Vision Transformers and MLP-Mixer for Strong Gravitational Lens Discovery},
147
+ author={René Parlange and Juan C. Cuevas-Tello and Octavio Valenzuela and Omar de J. Cabrera-Rosas and Tomás Verdugo and Anupreeta More and Anton T. Jaelani},
148
+ year={2025},
149
+ eprint={2509.00226},
150
+ archivePrefix={arXiv},
151
+ primaryClass={cs.CV},
152
+ url={https://arxiv.org/abs/2509.00226},
153
+ }
154
+ ```
155
+
156
+ ---
157
+
158
+
159
+ ## Model Card Contact
160
+
161
+ For questions about this model, please contact the author through: https://github.com/parlange/
config.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architecture": "vit_base_patch16_224",
3
+ "num_classes": 2,
4
+ "num_features": 1000,
5
+ "global_pool": "avg",
6
+ "crop_pct": 0.875,
7
+ "interpolation": "bicubic",
8
+ "mean": [
9
+ 0.485,
10
+ 0.456,
11
+ 0.406
12
+ ],
13
+ "std": [
14
+ 0.229,
15
+ 0.224,
16
+ 0.225
17
+ ],
18
+ "first_conv": "conv1",
19
+ "classifier": "fc",
20
+ "input_size": [
21
+ 3,
22
+ 224,
23
+ 224
24
+ ],
25
+ "pool_size": [
26
+ 7,
27
+ 7
28
+ ],
29
+ "pretrained_cfg": {
30
+ "tag": "gravit_b2",
31
+ "custom_load": false,
32
+ "input_size": [
33
+ 3,
34
+ 224,
35
+ 224
36
+ ],
37
+ "fixed_input_size": true,
38
+ "interpolation": "bicubic",
39
+ "crop_pct": 0.875,
40
+ "crop_mode": "center",
41
+ "mean": [
42
+ 0.485,
43
+ 0.456,
44
+ 0.406
45
+ ],
46
+ "std": [
47
+ 0.229,
48
+ 0.224,
49
+ 0.225
50
+ ],
51
+ "num_classes": 2,
52
+ "pool_size": [
53
+ 7,
54
+ 7
55
+ ],
56
+ "first_conv": "conv1",
57
+ "classifier": "fc"
58
+ },
59
+ "model_name": "twins_svt_gravit_b2",
60
+ "experiment": "b2",
61
+ "training_strategy": "half",
62
+ "dataset": "J24",
63
+ "hyperparameters": {
64
+ "batch_size": "192",
65
+ "learning_rate": "AdamW with ReduceLROnPlateau",
66
+ "epochs": "100",
67
+ "patience": "10",
68
+ "optimizer": "AdamW",
69
+ "scheduler": "ReduceLROnPlateau",
70
+ "image_size": "224x224",
71
+ "fine_tune_mode": "half",
72
+ "stochastic_depth_probability": "0.1"
73
+ },
74
+ "hf_hub_id": "parlange/twins_svt-gravit-b2",
75
+ "license": "apache-2.0"
76
+ }
confusion_matrices/Twins_SVT_Confusion_Matrix_a.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_b.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_c.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_d.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_e.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_f.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_g.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_h.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_i.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_j.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_k.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_l.png ADDED
evaluation_results.csv ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Model,Dataset,Loss,Accuracy,AUCROC,F1
2
+ ViT,a,0.3504258575622333,0.8975165042439485,0.7724705340699815,0.3607843137254902
3
+ ViT,b,0.6139323879378804,0.8443885570575291,0.7591445672191528,0.2709867452135493
4
+ ViT,c,0.2921286642045504,0.9195221628418736,0.7922799263351749,0.41818181818181815
5
+ ViT,d,0.26607740657091966,0.9192077962904747,0.7989585635359117,0.41723356009070295
6
+ ViT,e,0.5051617136084026,0.8562019758507134,0.8035646711571935,0.5841269841269842
7
+ ViT,f,0.29864826543026823,0.9141042521880567,0.7820238007404096,0.1423047177107502
8
+ ViT,g,1.732062186717987,0.5718333333333333,0.6607354444444444,0.3945321706339854
9
+ ViT,h,1.5614525699615478,0.6116666666666667,0.696484388888889,0.4180819180819181
10
+ ViT,i,1.5476410572528838,0.6115,0.7046536666666666,0.41797752808988764
11
+ ViT,j,0.45324009704589846,0.8708333333333333,0.9427406111111111,0.8716249792943515
12
+ ViT,k,0.2688189628124237,0.9105,0.9655912222222223,0.9073978272115882
13
+ ViT,l,0.7289746560802081,0.8074665538575432,0.8200002274918716,0.6616485456741938
14
+ MLP-Mixer,a,0.47016938226997235,0.8553913863564917,0.726208103130755,0.2966360856269113
15
+ MLP-Mixer,b,0.648904620120826,0.8333857277585665,0.7598747697974219,0.26795580110497236
16
+ MLP-Mixer,c,0.3869087039131445,0.8874567745991826,0.733244935543278,0.35144927536231885
17
+ MLP-Mixer,d,0.3633993222574062,0.8997170701037409,0.7682688766114181,0.37816764132553604
18
+ MLP-Mixer,e,0.5312218908486329,0.8474204171240395,0.8186331643078787,0.5825825825825826
19
+ MLP-Mixer,f,0.3886312065722082,0.8861435984819146,0.7510127466766198,0.11658653846153846
20
+ MLP-Mixer,g,1.9292033066749572,0.5541666666666667,0.6170044444444445,0.36566279345506286
21
+ MLP-Mixer,h,1.7903018260002137,0.5828333333333333,0.5599299999999999,0.3812113720642769
22
+ MLP-Mixer,i,1.7778379353284837,0.5893333333333334,0.6098859999999999,0.3849226160758862
23
+ MLP-Mixer,j,0.5891341290473938,0.8386666666666667,0.9153434444444444,0.8365968939905469
24
+ MLP-Mixer,k,0.4377687557935715,0.8738333333333334,0.9274168333333332,0.8674951864169438
25
+ MLP-Mixer,l,0.8833867266855338,0.7767965734228756,0.7550110803792328,0.6132135984605517
26
+ CvT,a,0.710060378377897,0.7095253065073877,0.4610672191528545,0.09941520467836257
27
+ CvT,b,0.6279841153848774,0.7516504243948444,0.5819742173112339,0.11434977578475336
28
+ CvT,c,0.7670251699747135,0.6592266582835586,0.4085635359116022,0.08600337268128162
29
+ CvT,d,0.45408995114606493,0.8179817667400189,0.5189116022099447,0.14977973568281938
30
+ CvT,e,0.6853549914551096,0.756311745334797,0.6546734276848558,0.3148148148148148
31
+ CvT,f,0.5548892200417859,0.7615211834869491,0.5019215495653457,0.03206538824269098
32
+ CvT,g,1.6338303427696228,0.46316666666666667,0.5036535,0.21419858502073677
33
+ CvT,h,1.7075452818870545,0.4141666666666667,0.3043033333333333,0.1998634190758024
34
+ CvT,i,1.5416374638080597,0.49833333333333335,0.4133462222222223,0.22582304526748972
35
+ CvT,j,0.6718657946586609,0.7025,0.7951043333333334,0.6775067750677507
36
+ CvT,k,0.5796729214191437,0.7376666666666667,0.8160571111111111,0.7043576258452291
37
+ CvT,l,0.9414389114699858,0.6422716937232299,0.5856238290999722,0.41148325358851673
38
+ Swin,a,0.38957844183659335,0.9173215969820812,0.7264815837937385,0.30971128608923887
39
+ Swin,b,0.506205921398323,0.8714240804778371,0.7070128913443832,0.2239089184060721
40
+ Swin,c,0.33732365382351015,0.9254951273184533,0.7497605893186002,0.3323943661971831
41
+ Swin,d,0.25108740707354066,0.9465576862621817,0.823268876611418,0.4097222222222222
42
+ Swin,e,0.7929391115167793,0.8419319429198683,0.7817982290168772,0.45038167938931295
43
+ Swin,f,0.21592594718169755,0.9430717992409573,0.7533609214757848,0.13833528722157093
44
+ Swin,g,2.702541620135307,0.5423333333333333,0.5866217222222223,0.2826541274817137
45
+ Swin,h,2.613005870103836,0.571,0.6225122222222222,0.2959518599562363
46
+ Swin,i,2.567286303862929,0.5821666666666667,0.7211619444444445,0.3014767344664252
47
+ Swin,j,0.42502203929424287,0.8855,0.9479796111111113,0.8833021912688975
48
+ Swin,k,0.28976670680940153,0.9253333333333333,0.9796539999999999,0.9206798866855525
49
+ Swin,l,1.03963865723415,0.8099518798582835,0.7976283082751249,0.6403842305383229
50
+ CaiT,a,0.3913202127339292,0.8953159383841559,0.6907965009208104,0.31901840490797545
51
+ CaiT,b,0.5226519536631019,0.8626218170386671,0.7338508287292819,0.2630691399662732
52
+ CaiT,c,0.3735890439830086,0.8984596038981453,0.6786878453038674,0.325678496868476
53
+ CaiT,d,0.2843286003735934,0.9254951273184533,0.76402394106814,0.3969465648854962
54
+ CaiT,e,0.6834587411940687,0.8463227222832053,0.7675773859078181,0.527027027027027
55
+ CaiT,f,0.27040889076227814,0.918054372240725,0.7197493196998433,0.128500823723229
56
+ CaiT,g,2.0468120236396787,0.5761666666666667,0.6781162222222221,0.38351515151515153
57
+ CaiT,h,1.967783824443817,0.5951666666666666,0.5982157777777778,0.3944153577661431
58
+ CaiT,i,1.92046093159914,0.6095,0.7142172222222223,0.40305732484076434
59
+ CaiT,j,0.30098878836631776,0.9125,0.9733297777777777,0.9145368712355526
60
+ CaiT,k,0.1746376877427101,0.9458333333333333,0.9841325555555557,0.9453138145717651
61
+ CaiT,l,0.8100430545029764,0.817143461477447,0.813651736379369,0.6802293323469576
62
+ DeiT,a,0.3698357029348677,0.9119773656082992,0.7087136279926335,0.37777777777777777
63
+ DeiT,b,0.5088012874857205,0.8833700094309965,0.7757348066298342,0.3142329020332717
64
+ DeiT,c,0.3891148048258922,0.9160641307764854,0.7151408839779005,0.3890160183066362
65
+ DeiT,d,0.32573777145838745,0.9352404904118202,0.8077476979742173,0.4521276595744681
66
+ DeiT,e,0.7152948476881215,0.862788144895719,0.814546280178612,0.576271186440678
67
+ DeiT,f,0.2608369113050038,0.9330028657733715,0.7554304661629335,0.1642512077294686
68
+ DeiT,g,2.54885491502285,0.5731666666666667,0.6792770555555556,0.35798445725745803
69
+ DeiT,h,2.485401116847992,0.5905,0.5861576111111111,0.3675675675675676
70
+ DeiT,i,2.451800708413124,0.6006666666666667,0.7191378888888889,0.37343096234309625
71
+ DeiT,j,0.43799715077877044,0.9003333333333333,0.9592409444444444,0.8995295698924731
72
+ DeiT,k,0.3409429641962051,0.9278333333333333,0.9696212777777777,0.9251771211335753
73
+ DeiT,l,1.0167739923843866,0.816297393051663,0.8008547085670262,0.6667945520813351
74
+ DeiT3,a,0.41754333621036777,0.9192077962904747,0.7515147329650091,0.43015521064301554
75
+ DeiT3,b,0.5932955155673173,0.8773970449544168,0.7794677716390424,0.3321917808219178
76
+ DeiT3,c,0.4092358484072567,0.9154353976736875,0.7444696132596684,0.4190064794816415
77
+ DeiT3,d,0.5747989024035925,0.8783401446086136,0.7588406998158379,0.33390705679862304
78
+ DeiT3,e,0.7725568269302764,0.8759604829857299,0.8239688185877545,0.6319218241042345
79
+ DeiT3,f,0.3546846674270619,0.916350398884672,0.7623233064106626,0.152276295133438
80
+ DeiT3,g,2.8653497416973113,0.5903333333333334,0.6676445555555556,0.40828117477130477
81
+ DeiT3,h,2.767767428398132,0.6105,0.5985711666666667,0.4205306223654848
82
+ DeiT3,i,2.8555434824228287,0.5908333333333333,0.6332408888888889,0.40857624668754516
83
+ DeiT3,j,0.407473158121109,0.9088333333333334,0.9701894444444443,0.9098103874690849
84
+ DeiT3,k,0.39766689217090606,0.9093333333333333,0.9684031111111111,0.9102606400527878
85
+ DeiT3,l,1.1462537638319459,0.8163502723282745,0.8007222930468951,0.6808197775939712
86
+ Twins_SVT,a,0.4471702475530552,0.8126375353662371,0.6335423572744014,0.1989247311827957
87
+ Twins_SVT,b,0.4493988096264315,0.8060358377868595,0.6959318600368325,0.1934640522875817
88
+ Twins_SVT,c,0.5063522113864807,0.7780572147123546,0.5922486187845304,0.17330210772833723
89
+ Twins_SVT,d,0.3254203815124425,0.8849418421879912,0.7219650092081031,0.28793774319066145
90
+ Twins_SVT,e,0.5195407480099591,0.7771679473106476,0.7089003254370696,0.42165242165242167
91
+ Twins_SVT,f,0.3887786737239737,0.8404461312059485,0.6636732736434142,0.06702898550724638
92
+ Twins_SVT,g,1.2475184862613677,0.4825,0.532602,0.20689655172413793
93
+ Twins_SVT,h,1.277713261127472,0.4676666666666667,0.36107222222222224,0.2022977022977023
94
+ Twins_SVT,i,1.1817892324924468,0.5243333333333333,0.5369667222222223,0.2210698689956332
95
+ Twins_SVT,j,0.5273123075962066,0.7598333333333334,0.8436975000000001,0.7417099838680767
96
+ Twins_SVT,k,0.46158305954933165,0.8016666666666666,0.8776625,0.7766516516516516
97
+ Twins_SVT,l,0.7025143162813111,0.7046163608481836,0.6522568273932748,0.47706422018348627
98
+ Twins_PCPVT,a,0.45982081515914197,0.7900031436655139,0.6319235727440148,0.17326732673267325
99
+ Twins_PCPVT,b,0.37307003830934016,0.8333857277585665,0.729316758747698,0.208955223880597
100
+ Twins_PCPVT,c,0.5298199271376273,0.7510216912920465,0.5787163904235728,0.15021459227467812
101
+ Twins_PCPVT,d,0.4890483941382786,0.7840301791889343,0.6198968692449357,0.16928657799274485
102
+ Twins_PCPVT,e,0.4528412980515138,0.8068057080131723,0.7623628244910315,0.4430379746835443
103
+ Twins_PCPVT,f,0.41534574994755774,0.8134149175121989,0.6469823751264034,0.05492349941153393
104
+ Twins_PCPVT,g,0.97830464220047,0.5461666666666667,0.6621347777777777,0.33827460510328067
105
+ Twins_PCPVT,h,1.0614082341194153,0.5025,0.47131744444444446,0.31802604523646333
106
+ Twins_PCPVT,i,1.0397925007343292,0.52,0.5257673333333334,0.3258426966292135
107
+ Twins_PCPVT,j,0.36769862127304076,0.8383333333333334,0.9181693333333335,0.834696659850034
108
+ Twins_PCPVT,k,0.42918648648262026,0.8121666666666667,0.8860434444444444,0.8129460580912863
109
+ Twins_PCPVT,l,0.6099785904964774,0.7216434879170853,0.7243182138507473,0.5498546263040875
110
+ PiT,a,0.37776082014932605,0.8651367494498585,0.6834337016574586,0.25906735751295334
111
+ PiT,b,0.44755573657390196,0.8365293932725558,0.7427127071823205,0.22388059701492538
112
+ PiT,c,0.40049510616170875,0.8528764539453002,0.6488581952117863,0.24271844660194175
113
+ PiT,d,0.23405979966281606,0.9214083621502672,0.7678987108655617,0.375
114
+ PiT,e,0.4743333708670739,0.8430296377607025,0.8043820479830468,0.5119453924914675
115
+ PiT,f,0.2892587873664891,0.8926496785686624,0.716096531011705,0.09765625
116
+ PiT,g,1.521324759721756,0.547,0.6473084444444445,0.3386861313868613
117
+ PiT,h,1.4963747837543488,0.5556666666666666,0.5119071111111111,0.3430261212419911
118
+ PiT,i,1.408136343061924,0.592,0.658547,0.3625
119
+ PiT,j,0.6195285122394562,0.7638333333333334,0.8635346666666667,0.7381260395490667
120
+ PiT,k,0.5063400955796242,0.8088333333333333,0.902523,0.7768916553199766
121
+ PiT,l,0.7616236460134194,0.7518375548622495,0.7319390263322477,0.5412063740346075
122
+ Ensemble,a,,0.9179503300848789,0.7188591160220995,0.38588235294117645
123
+ Ensemble,b,,0.8682804149638479,0.760756906077348,0.28130360205831906
124
+ Ensemble,c,,0.9358692235146181,0.6998213627992634,0.44565217391304346
125
+ Ensemble,d,,0.9440427538509902,0.7630147329650093,0.47953216374269003
126
+ Ensemble,e,,0.8770581778265643,0.808151063346704,0.5942028985507246
127
+ Ensemble,f,,0.9397413058632174,0.7397727124771607,0.1740976645435244
128
+ Ensemble,g,,0.5465,0.6648292222222223,0.30569022709874966
129
+ Ensemble,h,,0.5823333333333334,0.5448976666666666,0.3234341252699784
130
+ Ensemble,i,,0.5866666666666667,0.6481456666666666,0.32572050027188687
131
+ Ensemble,j,,0.8898333333333334,0.9515273333333334,0.8894463957183476
132
+ Ensemble,k,,0.93,0.9758612222222223,0.926803764377832
133
+ Ensemble,l,,0.8138649463275343,0.7884954119718932,0.6549019607843137
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a9487c6503785a0c4c140ab4e74497b56641341ed68cd16f4fca4cccee4d6f6
3
+ size 221250080
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81905d6bcd06e542c6a4453ce8bf80ae825e0238ba48e19a73a2e20548fbadce
3
+ size 221357966
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_a.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_b.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_c.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_d.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_e.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_f.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_g.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_h.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_i.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_j.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_k.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_l.png ADDED
roc_curves/Twins_SVT_ROC_a.png ADDED
roc_curves/Twins_SVT_ROC_b.png ADDED
roc_curves/Twins_SVT_ROC_c.png ADDED
roc_curves/Twins_SVT_ROC_d.png ADDED
roc_curves/Twins_SVT_ROC_e.png ADDED
roc_curves/Twins_SVT_ROC_f.png ADDED
roc_curves/Twins_SVT_ROC_g.png ADDED
roc_curves/Twins_SVT_ROC_h.png ADDED
roc_curves/Twins_SVT_ROC_i.png ADDED
roc_curves/Twins_SVT_ROC_j.png ADDED
roc_curves/Twins_SVT_ROC_k.png ADDED
roc_curves/Twins_SVT_ROC_l.png ADDED
training_curves/Twins_SVT_accuracy.png ADDED
training_curves/Twins_SVT_auc.png ADDED
training_curves/Twins_SVT_combined_metrics.png ADDED

Git LFS Details

  • SHA256: 433f67bda6f3a99b817caa3220daf312b11d061f0fcfa0dafd60e198863352d9
  • Pointer size: 131 Bytes
  • Size of remote file: 154 kB
training_curves/Twins_SVT_f1.png ADDED
training_curves/Twins_SVT_loss.png ADDED
training_curves/Twins_SVT_metrics.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,train_loss,val_loss,train_accuracy,val_accuracy,train_auc,val_auc,train_f1,val_f1
2
+ 1,0.568838938074601,0.47921543690552665,0.7441755514187398,0.8210075026795284,0.826991172589849,0.8986087130337087,0.7435389922524459,0.8215811965811965
3
+ 2,0.4535355633548682,0.40767138669345154,0.8269024651661308,0.8413719185423365,0.8988555654022834,0.9220053326348754,0.8233194184540089,0.8382513661202186
4
+ 3,0.4052859369944671,0.37119259174997016,0.8421898798443053,0.8531618435155413,0.9151584296417161,0.9314867850139404,0.8389974389226209,0.8509249183895539
5
+ 4,0.3780174373137929,0.34765720846568654,0.8520900321543409,0.8622722400857449,0.9235538079722115,0.9369544014915753,0.8486842105263158,0.8597926895799236
6
+ 5,0.3602214081070713,0.3330698953372489,0.8579849946409432,0.8670953912111469,0.9284315102172538,0.9415460735287866,0.855336876885505,0.8670953912111469
7
+ 6,0.34456564118604327,0.3198054958003127,0.8647543295537881,0.8708467309753484,0.9340393446318702,0.9442583421502166,0.8625404925035117,0.8698001080497029
8
+ 7,0.33429634161035027,0.3125846759682683,0.8681389970102105,0.87513397642015,0.9368457877222887,0.9466719280772071,0.8657110849395341,0.8754676643506146
9
+ 8,0.32457240406763616,0.3020663546020962,0.871890336774412,0.8837084673097535,0.9399013139139558,0.9488207203077811,0.869527749052051,0.8820010875475802
10
+ 9,0.3186033424043599,0.29592588812208637,0.8733288204433914,0.8831725616291533,0.9414838914577159,0.9506133908642154,0.8710038776389487,0.8815217391304347
11
+ 10,0.31403523931690513,0.29077598577143676,0.8756416765386135,0.8869239013933548,0.9430696639452778,0.9517799765419208,0.8731989301429353,0.8852637302882002
12
+ 11,0.3087620988304108,0.28660941718092303,0.8785750550008462,0.8906752411575563,0.9444136406038075,0.9525829734781255,0.8762611020091403,0.8887677208287895
13
+ 12,0.30414948529611285,0.28227290146987155,0.8808879110960681,0.8912111468381565,0.9459215586117102,0.9537978078987788,0.8787643900898573,0.8890103881902679
14
+ 13,0.29939155353973673,0.2779263400763177,0.881875105770858,0.897642015005359,0.9474677045677089,0.9550993751787787,0.8798278335724534,0.8949972512369434
15
+ 14,0.29726751226371345,0.274929059375904,0.8815930501494895,0.897642015005359,0.947793817954947,0.9558380404577198,0.8794440296364368,0.8947658402203856
16
+ 15,0.2945351651889416,0.27250667601536327,0.8842725785524905,0.8971061093247589,0.9484117579545326,0.9567174312369253,0.8824456350456981,0.8951965065502183
17
+ 16,0.29160430385368813,0.269760230346508,0.8849213064816381,0.8992497320471597,0.9495177017531989,0.9571051443498998,0.8829133903460943,0.896361631753032
18
+ 17,0.2873767672062808,0.2673322898590296,0.8862469679020702,0.9013933547695605,0.9507578570581443,0.957717443873501,0.884185739310226,0.8989010989010989
19
+ 18,0.2855798396201359,0.26506707944287367,0.8881931516895132,0.9019292604501608,0.9513519177168064,0.9583349129052751,0.8860264519838988,0.899505766062603
20
+ 19,0.2845952840379136,0.26308382851134543,0.8861623512156598,0.9046087888531619,0.951442265572327,0.9590977025556899,0.884428154172155,0.9023051591657519
21
+ 20,0.2844996111639907,0.2629080550846946,0.8881931516895132,0.8992497320471597,0.9513184439978333,0.9594601425175965,0.8863597270798693,0.8981581798483207
22
+ 21,0.28157687918004864,0.2609382155336368,0.8885316184351554,0.8992497320471597,0.952295177141002,0.9596376289648693,0.8868659109126302,0.8978260869565218
23
+ 22,0.28010369891502224,0.25853100486123676,0.889377785299261,0.9040728831725616,0.9527444247443063,0.9601844480516123,0.8876668385175002,0.9019178082191781
24
+ 23,0.2795206490058668,0.2574875275709238,0.889377785299261,0.9035369774919614,0.9530235988700452,0.9602395894721244,0.8875444431700883,0.9013157894736842
25
+ 24,0.2761004953305518,0.2577134914145209,0.8897162520449032,0.9008574490889604,0.9539976350860505,0.9607283951893705,0.8877855584892664,0.9000540248514317
26
+ 25,0.27506982883254694,0.2558343067908977,0.8898572798555875,0.9040728831725616,0.9545260593793224,0.961077624185946,0.8880543531232978,0.9028757460661965
27
+ 26,0.27520170692089024,0.25312300395352283,0.888982907429345,0.9046087888531619,0.9540787879314969,0.9614722299764844,0.8870976995008892,0.9024122807017544
28
+ 27,0.27027207459163133,0.25203923976881326,0.8930727139391889,0.9046087888531619,0.9557627476610888,0.9616255920522833,0.8913161893294343,0.9026258205689278
29
+ 28,0.27174062765901474,0.2509159007831402,0.8931291250634625,0.905144694533762,0.9552918530406425,0.9618892369691058,0.8914171084682619,0.90311986863711
30
+ 29,0.26986658563567895,0.2502191269896038,0.8922547526372201,0.9062165058949625,0.9558902956092794,0.9621063563123716,0.8904942093796583,0.9044238121245222
31
+ 30,0.26933191379509835,0.25011338806229005,0.8929034805663677,0.9046087888531619,0.9557645026526291,0.9625762071663169,0.8911628973543153,0.903470715835141
32
+ 31,0.2696371873707351,0.24839966655544146,0.892649630507136,0.9078242229367631,0.9557889166056628,0.9624946438151429,0.8908705126734717,0.9061135371179039
33
+ 32,0.26833484407699054,0.24909686414566837,0.894003497489705,0.9056806002143623,0.9562653546445377,0.962414229243563,0.8923209169054441,0.90465872156013
34
+ 33,0.26510304860161693,0.24810834511683302,0.8949060754780843,0.9067524115755627,0.9571135597173135,0.9629593251609153,0.8931949779281086,0.9058441558441559
35
+ 34,0.26752474186615727,0.24604544628088115,0.8935804140576522,0.9088960342979635,0.9563704313819166,0.963113261626511,0.8916769544371393,0.9072052401746725
36
+ 35,0.2678318122081253,0.24522127580029404,0.8942009364246629,0.9094319399785638,0.956221303243098,0.9633206163432277,0.8923580222113812,0.9075997813012575
37
+ 36,0.26589398711723083,0.24395259865035582,0.8948778699159474,0.909967845659164,0.9568614726051596,0.9635739222437044,0.8931938673162344,0.9078947368421053
38
+ 37,0.26533000539111334,0.24331648585497376,0.895357364472274,0.9094319399785638,0.9568378892102257,0.9636663990010211,0.8936414196433691,0.9070918086860913
39
+ 38,0.26372926658655227,0.24241413271887127,0.8947086365431263,0.9121114683815649,0.9574224366373192,0.9641086791447107,0.8928068916008615,0.9097909790979097
40
+ 39,0.26268954676184925,0.24255498965836797,0.8964009702713375,0.909967845659164,0.9579502388075702,0.9641620973958315,0.8948799404710798,0.9067702552719201
41
+ 40,0.2609460468289412,0.24176394987336308,0.8989112653015174,0.9094319399785638,0.9583701861667977,0.9642091973591853,0.8971238303002469,0.9075997813012575
42
+ 41,0.26177221984503374,0.24255867288043645,0.8958368590286004,0.9067524115755627,0.9581297523257608,0.9642258546632985,0.894216722522987,0.9056399132321041
43
+ 42,0.2624057028817735,0.24023487723142004,0.8942009364246629,0.9105037513397642,0.9578021942129391,0.9646239067926189,0.8925861229632599,0.9084931506849315
44
+ 43,0.26034469855358244,0.23976223549275535,0.8974163705082643,0.909967845659164,0.9585069084406657,0.964579104388453,0.8956354558236965,0.9076923076923077
45
+ 44,0.2600783422163122,0.240142804441728,0.8990804986743386,0.9078242229367631,0.958502956129708,0.9646262043518069,0.8974491258240184,0.906318082788671
46
+ 45,0.2589876052640904,0.23867122503147248,0.8956112145315056,0.9094319399785638,0.9587970023369774,0.9650529759709773,0.8938963905851323,0.9077007099945386
47
+ 46,0.26175061657578436,0.23805052559475423,0.8960342979635584,0.909967845659164,0.9579227953859117,0.965132241762963,0.8941656138738946,0.9079956188389924
48
+ 47,0.2590766431595755,0.23799412613704657,0.8982061262480961,0.9088960342979635,0.9585641628518989,0.9650920344771732,0.8965398618238111,0.9063876651982379
49
+ 48,0.2600360791944251,0.23766895903460084,0.8972471371354431,0.9078242229367631,0.9583642736114358,0.965143729558903,0.8956608907346413,0.9057017543859649
50
+ 49,0.25656178866743656,0.23793892538432523,0.8970496982004852,0.9088960342979635,0.9595182529446491,0.9653660184103418,0.8953074804956402,0.9075081610446137
51
+ 50,0.2562024511899979,0.23642131384354312,0.9007728324025498,0.9094319399785638,0.9597759773505725,0.9656566596476233,0.8993131081854608,0.9064748201438849
52
+ 51,0.2570282413428317,0.23639273657867763,0.899193320922886,0.9094319399785638,0.9593516942234865,0.9656560852578263,0.89762832263978,0.9077007099945386
53
+ 52,0.2554327674597164,0.2376634941415388,0.8974445760704011,0.9067524115755627,0.9599328159961953,0.9653378733102889,0.8958345270154128,0.9053318824809575
54
+ 53,0.25617182688788526,0.23554448131771333,0.8979804817510013,0.9088960342979635,0.9596178499078983,0.9657020364415864,0.8963877510097683,0.9064906490649065
55
+ 54,0.2575573201993735,0.23524488834514495,0.8964009702713375,0.9078242229367631,0.9590997168977482,0.9657284583722482,0.8947413669580169,0.9055982436882547
56
+ 55,0.2583299104100981,0.2354972006998645,0.896683025892706,0.9094319399785638,0.9588568613911405,0.965861716805152,0.8950700392448938,0.9080021774632553
57
+ 56,0.2544899871202467,0.2347581531744678,0.8988266486151069,0.9094319399785638,0.9600337622185797,0.9661276592811627,0.8970347618910928,0.9079019073569482
58
+ 57,0.25453091414169643,0.2337486927915616,0.8995035821063914,0.9105037513397642,0.9600681205933065,0.9661414446362907,0.8978468419392758,0.9079889807162534
59
+ 58,0.25453966245229204,0.23760567653409154,0.8979804817510013,0.9078242229367631,0.9599005769766196,0.9661718872955316,0.8963521219589077,0.9075268817204301
60
+ 59,0.25480491171070396,0.23291853075050464,0.8982625373723698,0.9094319399785638,0.9599102986432668,0.9663901554183912,0.8968042800331875,0.9072956664838179
61
+ 60,0.253227874994742,0.23231954484507203,0.8999830766627179,0.9115755627009646,0.9604134863809426,0.9665573028493181,0.8982496413199426,0.9092908191313909
62
+ 61,0.25336782928044915,0.2332325430640837,0.9002087211598128,0.909967845659164,0.9604440738309634,0.9665004382594151,0.8985897729878468,0.9087947882736156
63
+ 62,0.2544182864849812,0.23413288008745076,0.8990804986743386,0.9115755627009646,0.960133494425964,0.9665573028493182,0.8975196196368219,0.9107625743645213
64
+ 63,0.25162435715261866,0.23269184029562298,0.9006882157161392,0.9105037513397642,0.9609068808521352,0.9667031978577558,0.8990220539734435,0.909386869234943
65
+ 64,0.2524781167471867,0.23209638572582478,0.9008292435268235,0.9105037513397642,0.9606705186551161,0.9667221527210568,0.8992203623022242,0.9092884302009777
66
+ 65,0.25191478054724,0.2319211412185258,0.902070288260845,0.909967845659164,0.9608195115497999,0.966518818732919,0.9005100578829732,0.9082969432314411
67
+ 66,0.2525652031049972,0.23134394344601217,0.8997292266034862,0.9078242229367631,0.9604292860781287,0.9666647137413569,0.8980820503999312,0.9057017543859649
68
+ 67,0.2492985537177638,0.23078310705266197,0.9027472217521295,0.9088960342979635,0.9615401909498896,0.9668134806987796,0.9011807864266881,0.9067982456140351
69
+ 68,0.2506145351347453,0.23052536238619753,0.9000112822248547,0.909967845659164,0.9611985181226935,0.9669702891133604,0.8983454248272302,0.9081967213114754
70
+ 69,0.2505023028871133,0.23042188350027398,0.9010548880239183,0.9094319399785638,0.9612115254262681,0.9669869464174733,0.8995418098510882,0.9077007099945386
71
+ 70,0.2481333319205563,0.2299554611996439,0.9021266993851187,0.9088960342979635,0.962082125336697,0.9669030855071116,0.9006641474865453,0.9063876651982379
72
+ 71,0.2500460681212818,0.22926270449084868,0.9013651492074237,0.9110396570203644,0.9612179089494414,0.9672281901322131,0.899710344432017,0.9087912087912088
73
+ 72,0.25011531951403654,0.22901892532681345,0.9019574660122976,0.909967845659164,0.96127405913209,0.967344216871207,0.900509473925239,0.9078947368421053
74
+ 73,0.2513938461953481,0.23036082429134577,0.9022677271958031,0.9110396570203644,0.9606779157137484,0.9670690841584443,0.9004853671845832,0.9095860566448801
75
+ 74,0.25072215927708347,0.23083938619906497,0.9020138771365713,0.9121114683815649,0.9609241602792692,0.967287926671101,0.9002984731948112,0.9113513513513514
76
+ 75,0.24803012546941822,0.22875182507889064,0.9021831105093925,0.9105037513397642,0.9618970843111525,0.9672948193486649,0.9005163511187607,0.9080902586681343
77
+ 76,0.24649769018337517,0.22925320833058985,0.9030010718113612,0.9110396570203644,0.9623053163460717,0.9674803472530956,0.9014641414286123,0.9095860566448801
78
+ 77,0.2491157387724825,0.22852669589197522,0.9016472048287922,0.9153269024651661,0.9615065676668143,0.9673040095854168,0.9002089116561257,0.9123196448390677
79
+ 78,0.24847395183733825,0.22798092960353067,0.9009984768996446,0.9110396570203644,0.9617956050677652,0.9675504228083296,0.8995823081764605,0.9092896174863389
80
+ 79,0.2461913156416598,0.22770071657332577,0.9020138771365713,0.9121114683815649,0.962554157598985,0.9676457715146314,0.9003785271851342,0.9103825136612022
81
+ 80,0.24826853788026115,0.2277499971569926,0.9022113160715293,0.9094319399785638,0.9618219315319787,0.9674998765061937,0.9006675643927456,0.9072956664838179
82
+ 81,0.2452710651745145,0.22701407576105603,0.902860044000677,0.9115755627009646,0.9629225673961223,0.9677118263412864,0.9013406668958405,0.9093904448105437
83
+ 82,0.24708871673783145,0.22679734570228785,0.9022677271958031,0.9115755627009646,0.9621144534582912,0.9679932773418158,0.9007191771009426,0.9097867687260798
84
+ 83,0.24973351883997186,0.22805154165462665,0.9014215603316974,0.9121114683815649,0.9611853087484701,0.9677709884903771,0.8998079293638735,0.9108695652173913
85
+ 84,0.24673464378844182,0.22679966721695718,0.9017882326394765,0.9115755627009646,0.9621527036818918,0.9677497360678882,0.9001777421019437,0.9093904448105437
86
+ 85,0.24806612305359543,0.2264819248217095,0.9013369436452868,0.9131832797427653,0.9619653682793741,0.967921478617191,0.8997535392904225,0.9113785557986871
87
+ 86,0.2461018886163082,0.22746177760351124,0.903424155243414,0.9110396570203644,0.9623511306945893,0.9679846614948608,0.9017503586800574,0.9099783080260304
88
+ 87,0.24837690437731758,0.22628422268333925,0.9017600270773396,0.9137191854233655,0.9615893386685586,0.967912288380439,0.9002491622991666,0.9110005527915975
89
+ 88,0.24666722076993078,0.22638937921961022,0.9019292604501608,0.9121114683815649,0.9621146841688744,0.967946751768259,0.9002037828994576,0.9104803493449781
90
+ 89,0.24551859774662568,0.2263040659511971,0.9033113329948665,0.912647374062165,0.9627605162824249,0.9679950005112069,0.9016412257546196,0.9110747408619749
91
+ 90,0.24732280352995628,0.22546146345291873,0.901111299148192,0.9115755627009646,0.9618400160594932,0.9680788614215687,0.8996163316726794,0.9090909090909091
92
+ 91,0.24772436053624994,0.22788318110048963,0.9028882495628138,0.9115755627009646,0.9619269764472083,0.9680869028787268,0.9012759856630824,0.9107625743645213
93
+ 92,0.24762899641822006,0.22498880312373784,0.9034805663676877,0.9121114683815649,0.9617962733329029,0.9681983344993444,0.9019540427482666,0.9097909790979097
94
+ 93,0.24469923025905269,0.2258100575764463,0.9036780053026456,0.9110396570203644,0.9626281870562841,0.9683178075771205,0.9020732371748917,0.9097826086956522
95
+ 94,0.2432926873438329,0.22533494325121117,0.9048626389123935,0.9115755627009646,0.9632206231942183,0.9682707076137665,0.9035210663310546,0.9100817438692098
96
+ 95,0.24846385958523975,0.22700474461558548,0.9005753934675919,0.9115755627009646,0.9614011408857916,0.9682804722403155,0.8988028593575058,0.9106659447753113
97
+ 96,0.24522118033098275,0.2245573677434032,0.9038472386754668,0.9137191854233655,0.9623907810927641,0.9684453221120541,0.9023293126665329,0.9118773946360154
98
+ 97,0.24514540165466067,0.22389707692758062,0.9025779883793084,0.9153269024651661,0.9626766028655164,0.968613618322575,0.9010712035286704,0.9130913091309131
99
+ 98,0.24377569405434196,0.22456633963193925,0.9039600609240143,0.9131832797427653,0.9630530891241761,0.9684700208733252,0.9024047694115623,0.9115720524017468
100
+ 99,0.24604450989080215,0.2238196889208061,0.9022113160715293,0.9115755627009646,0.9621380161688278,0.9686291268470941,0.9006106126193275,0.9097867687260798
101
+ 100,0.24528946001117333,0.22620836197371652,0.9035933886162352,0.9147909967845659,0.962518545431571,0.9685326293611981,0.9019956417020301,0.9141932002158661
training_metrics.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,train_loss,val_loss,train_accuracy,val_accuracy,train_auc,val_auc,train_f1,val_f1
2
+ 1,0.568838938074601,0.47921543690552665,0.7441755514187398,0.8210075026795284,0.826991172589849,0.8986087130337087,0.7435389922524459,0.8215811965811965
3
+ 2,0.4535355633548682,0.40767138669345154,0.8269024651661308,0.8413719185423365,0.8988555654022834,0.9220053326348754,0.8233194184540089,0.8382513661202186
4
+ 3,0.4052859369944671,0.37119259174997016,0.8421898798443053,0.8531618435155413,0.9151584296417161,0.9314867850139404,0.8389974389226209,0.8509249183895539
5
+ 4,0.3780174373137929,0.34765720846568654,0.8520900321543409,0.8622722400857449,0.9235538079722115,0.9369544014915753,0.8486842105263158,0.8597926895799236
6
+ 5,0.3602214081070713,0.3330698953372489,0.8579849946409432,0.8670953912111469,0.9284315102172538,0.9415460735287866,0.855336876885505,0.8670953912111469
7
+ 6,0.34456564118604327,0.3198054958003127,0.8647543295537881,0.8708467309753484,0.9340393446318702,0.9442583421502166,0.8625404925035117,0.8698001080497029
8
+ 7,0.33429634161035027,0.3125846759682683,0.8681389970102105,0.87513397642015,0.9368457877222887,0.9466719280772071,0.8657110849395341,0.8754676643506146
9
+ 8,0.32457240406763616,0.3020663546020962,0.871890336774412,0.8837084673097535,0.9399013139139558,0.9488207203077811,0.869527749052051,0.8820010875475802
10
+ 9,0.3186033424043599,0.29592588812208637,0.8733288204433914,0.8831725616291533,0.9414838914577159,0.9506133908642154,0.8710038776389487,0.8815217391304347
11
+ 10,0.31403523931690513,0.29077598577143676,0.8756416765386135,0.8869239013933548,0.9430696639452778,0.9517799765419208,0.8731989301429353,0.8852637302882002
12
+ 11,0.3087620988304108,0.28660941718092303,0.8785750550008462,0.8906752411575563,0.9444136406038075,0.9525829734781255,0.8762611020091403,0.8887677208287895
13
+ 12,0.30414948529611285,0.28227290146987155,0.8808879110960681,0.8912111468381565,0.9459215586117102,0.9537978078987788,0.8787643900898573,0.8890103881902679
14
+ 13,0.29939155353973673,0.2779263400763177,0.881875105770858,0.897642015005359,0.9474677045677089,0.9550993751787787,0.8798278335724534,0.8949972512369434
15
+ 14,0.29726751226371345,0.274929059375904,0.8815930501494895,0.897642015005359,0.947793817954947,0.9558380404577198,0.8794440296364368,0.8947658402203856
16
+ 15,0.2945351651889416,0.27250667601536327,0.8842725785524905,0.8971061093247589,0.9484117579545326,0.9567174312369253,0.8824456350456981,0.8951965065502183
17
+ 16,0.29160430385368813,0.269760230346508,0.8849213064816381,0.8992497320471597,0.9495177017531989,0.9571051443498998,0.8829133903460943,0.896361631753032
18
+ 17,0.2873767672062808,0.2673322898590296,0.8862469679020702,0.9013933547695605,0.9507578570581443,0.957717443873501,0.884185739310226,0.8989010989010989
19
+ 18,0.2855798396201359,0.26506707944287367,0.8881931516895132,0.9019292604501608,0.9513519177168064,0.9583349129052751,0.8860264519838988,0.899505766062603
20
+ 19,0.2845952840379136,0.26308382851134543,0.8861623512156598,0.9046087888531619,0.951442265572327,0.9590977025556899,0.884428154172155,0.9023051591657519
21
+ 20,0.2844996111639907,0.2629080550846946,0.8881931516895132,0.8992497320471597,0.9513184439978333,0.9594601425175965,0.8863597270798693,0.8981581798483207
22
+ 21,0.28157687918004864,0.2609382155336368,0.8885316184351554,0.8992497320471597,0.952295177141002,0.9596376289648693,0.8868659109126302,0.8978260869565218
23
+ 22,0.28010369891502224,0.25853100486123676,0.889377785299261,0.9040728831725616,0.9527444247443063,0.9601844480516123,0.8876668385175002,0.9019178082191781
24
+ 23,0.2795206490058668,0.2574875275709238,0.889377785299261,0.9035369774919614,0.9530235988700452,0.9602395894721244,0.8875444431700883,0.9013157894736842
25
+ 24,0.2761004953305518,0.2577134914145209,0.8897162520449032,0.9008574490889604,0.9539976350860505,0.9607283951893705,0.8877855584892664,0.9000540248514317
26
+ 25,0.27506982883254694,0.2558343067908977,0.8898572798555875,0.9040728831725616,0.9545260593793224,0.961077624185946,0.8880543531232978,0.9028757460661965
27
+ 26,0.27520170692089024,0.25312300395352283,0.888982907429345,0.9046087888531619,0.9540787879314969,0.9614722299764844,0.8870976995008892,0.9024122807017544
28
+ 27,0.27027207459163133,0.25203923976881326,0.8930727139391889,0.9046087888531619,0.9557627476610888,0.9616255920522833,0.8913161893294343,0.9026258205689278
29
+ 28,0.27174062765901474,0.2509159007831402,0.8931291250634625,0.905144694533762,0.9552918530406425,0.9618892369691058,0.8914171084682619,0.90311986863711
30
+ 29,0.26986658563567895,0.2502191269896038,0.8922547526372201,0.9062165058949625,0.9558902956092794,0.9621063563123716,0.8904942093796583,0.9044238121245222
31
+ 30,0.26933191379509835,0.25011338806229005,0.8929034805663677,0.9046087888531619,0.9557645026526291,0.9625762071663169,0.8911628973543153,0.903470715835141
32
+ 31,0.2696371873707351,0.24839966655544146,0.892649630507136,0.9078242229367631,0.9557889166056628,0.9624946438151429,0.8908705126734717,0.9061135371179039
33
+ 32,0.26833484407699054,0.24909686414566837,0.894003497489705,0.9056806002143623,0.9562653546445377,0.962414229243563,0.8923209169054441,0.90465872156013
34
+ 33,0.26510304860161693,0.24810834511683302,0.8949060754780843,0.9067524115755627,0.9571135597173135,0.9629593251609153,0.8931949779281086,0.9058441558441559
35
+ 34,0.26752474186615727,0.24604544628088115,0.8935804140576522,0.9088960342979635,0.9563704313819166,0.963113261626511,0.8916769544371393,0.9072052401746725
36
+ 35,0.2678318122081253,0.24522127580029404,0.8942009364246629,0.9094319399785638,0.956221303243098,0.9633206163432277,0.8923580222113812,0.9075997813012575
37
+ 36,0.26589398711723083,0.24395259865035582,0.8948778699159474,0.909967845659164,0.9568614726051596,0.9635739222437044,0.8931938673162344,0.9078947368421053
38
+ 37,0.26533000539111334,0.24331648585497376,0.895357364472274,0.9094319399785638,0.9568378892102257,0.9636663990010211,0.8936414196433691,0.9070918086860913
39
+ 38,0.26372926658655227,0.24241413271887127,0.8947086365431263,0.9121114683815649,0.9574224366373192,0.9641086791447107,0.8928068916008615,0.9097909790979097
40
+ 39,0.26268954676184925,0.24255498965836797,0.8964009702713375,0.909967845659164,0.9579502388075702,0.9641620973958315,0.8948799404710798,0.9067702552719201
41
+ 40,0.2609460468289412,0.24176394987336308,0.8989112653015174,0.9094319399785638,0.9583701861667977,0.9642091973591853,0.8971238303002469,0.9075997813012575
42
+ 41,0.26177221984503374,0.24255867288043645,0.8958368590286004,0.9067524115755627,0.9581297523257608,0.9642258546632985,0.894216722522987,0.9056399132321041
43
+ 42,0.2624057028817735,0.24023487723142004,0.8942009364246629,0.9105037513397642,0.9578021942129391,0.9646239067926189,0.8925861229632599,0.9084931506849315
44
+ 43,0.26034469855358244,0.23976223549275535,0.8974163705082643,0.909967845659164,0.9585069084406657,0.964579104388453,0.8956354558236965,0.9076923076923077
45
+ 44,0.2600783422163122,0.240142804441728,0.8990804986743386,0.9078242229367631,0.958502956129708,0.9646262043518069,0.8974491258240184,0.906318082788671
46
+ 45,0.2589876052640904,0.23867122503147248,0.8956112145315056,0.9094319399785638,0.9587970023369774,0.9650529759709773,0.8938963905851323,0.9077007099945386
47
+ 46,0.26175061657578436,0.23805052559475423,0.8960342979635584,0.909967845659164,0.9579227953859117,0.965132241762963,0.8941656138738946,0.9079956188389924
48
+ 47,0.2590766431595755,0.23799412613704657,0.8982061262480961,0.9088960342979635,0.9585641628518989,0.9650920344771732,0.8965398618238111,0.9063876651982379
49
+ 48,0.2600360791944251,0.23766895903460084,0.8972471371354431,0.9078242229367631,0.9583642736114358,0.965143729558903,0.8956608907346413,0.9057017543859649
50
+ 49,0.25656178866743656,0.23793892538432523,0.8970496982004852,0.9088960342979635,0.9595182529446491,0.9653660184103418,0.8953074804956402,0.9075081610446137
51
+ 50,0.2562024511899979,0.23642131384354312,0.9007728324025498,0.9094319399785638,0.9597759773505725,0.9656566596476233,0.8993131081854608,0.9064748201438849
52
+ 51,0.2570282413428317,0.23639273657867763,0.899193320922886,0.9094319399785638,0.9593516942234865,0.9656560852578263,0.89762832263978,0.9077007099945386
53
+ 52,0.2554327674597164,0.2376634941415388,0.8974445760704011,0.9067524115755627,0.9599328159961953,0.9653378733102889,0.8958345270154128,0.9053318824809575
54
+ 53,0.25617182688788526,0.23554448131771333,0.8979804817510013,0.9088960342979635,0.9596178499078983,0.9657020364415864,0.8963877510097683,0.9064906490649065
55
+ 54,0.2575573201993735,0.23524488834514495,0.8964009702713375,0.9078242229367631,0.9590997168977482,0.9657284583722482,0.8947413669580169,0.9055982436882547
56
+ 55,0.2583299104100981,0.2354972006998645,0.896683025892706,0.9094319399785638,0.9588568613911405,0.965861716805152,0.8950700392448938,0.9080021774632553
57
+ 56,0.2544899871202467,0.2347581531744678,0.8988266486151069,0.9094319399785638,0.9600337622185797,0.9661276592811627,0.8970347618910928,0.9079019073569482
58
+ 57,0.25453091414169643,0.2337486927915616,0.8995035821063914,0.9105037513397642,0.9600681205933065,0.9661414446362907,0.8978468419392758,0.9079889807162534
59
+ 58,0.25453966245229204,0.23760567653409154,0.8979804817510013,0.9078242229367631,0.9599005769766196,0.9661718872955316,0.8963521219589077,0.9075268817204301
60
+ 59,0.25480491171070396,0.23291853075050464,0.8982625373723698,0.9094319399785638,0.9599102986432668,0.9663901554183912,0.8968042800331875,0.9072956664838179
61
+ 60,0.253227874994742,0.23231954484507203,0.8999830766627179,0.9115755627009646,0.9604134863809426,0.9665573028493181,0.8982496413199426,0.9092908191313909
62
+ 61,0.25336782928044915,0.2332325430640837,0.9002087211598128,0.909967845659164,0.9604440738309634,0.9665004382594151,0.8985897729878468,0.9087947882736156
63
+ 62,0.2544182864849812,0.23413288008745076,0.8990804986743386,0.9115755627009646,0.960133494425964,0.9665573028493182,0.8975196196368219,0.9107625743645213
64
+ 63,0.25162435715261866,0.23269184029562298,0.9006882157161392,0.9105037513397642,0.9609068808521352,0.9667031978577558,0.8990220539734435,0.909386869234943
65
+ 64,0.2524781167471867,0.23209638572582478,0.9008292435268235,0.9105037513397642,0.9606705186551161,0.9667221527210568,0.8992203623022242,0.9092884302009777
66
+ 65,0.25191478054724,0.2319211412185258,0.902070288260845,0.909967845659164,0.9608195115497999,0.966518818732919,0.9005100578829732,0.9082969432314411
67
+ 66,0.2525652031049972,0.23134394344601217,0.8997292266034862,0.9078242229367631,0.9604292860781287,0.9666647137413569,0.8980820503999312,0.9057017543859649
68
+ 67,0.2492985537177638,0.23078310705266197,0.9027472217521295,0.9088960342979635,0.9615401909498896,0.9668134806987796,0.9011807864266881,0.9067982456140351
69
+ 68,0.2506145351347453,0.23052536238619753,0.9000112822248547,0.909967845659164,0.9611985181226935,0.9669702891133604,0.8983454248272302,0.9081967213114754
70
+ 69,0.2505023028871133,0.23042188350027398,0.9010548880239183,0.9094319399785638,0.9612115254262681,0.9669869464174733,0.8995418098510882,0.9077007099945386
71
+ 70,0.2481333319205563,0.2299554611996439,0.9021266993851187,0.9088960342979635,0.962082125336697,0.9669030855071116,0.9006641474865453,0.9063876651982379
72
+ 71,0.2500460681212818,0.22926270449084868,0.9013651492074237,0.9110396570203644,0.9612179089494414,0.9672281901322131,0.899710344432017,0.9087912087912088
73
+ 72,0.25011531951403654,0.22901892532681345,0.9019574660122976,0.909967845659164,0.96127405913209,0.967344216871207,0.900509473925239,0.9078947368421053
74
+ 73,0.2513938461953481,0.23036082429134577,0.9022677271958031,0.9110396570203644,0.9606779157137484,0.9670690841584443,0.9004853671845832,0.9095860566448801
75
+ 74,0.25072215927708347,0.23083938619906497,0.9020138771365713,0.9121114683815649,0.9609241602792692,0.967287926671101,0.9002984731948112,0.9113513513513514
76
+ 75,0.24803012546941822,0.22875182507889064,0.9021831105093925,0.9105037513397642,0.9618970843111525,0.9672948193486649,0.9005163511187607,0.9080902586681343
77
+ 76,0.24649769018337517,0.22925320833058985,0.9030010718113612,0.9110396570203644,0.9623053163460717,0.9674803472530956,0.9014641414286123,0.9095860566448801
78
+ 77,0.2491157387724825,0.22852669589197522,0.9016472048287922,0.9153269024651661,0.9615065676668143,0.9673040095854168,0.9002089116561257,0.9123196448390677
79
+ 78,0.24847395183733825,0.22798092960353067,0.9009984768996446,0.9110396570203644,0.9617956050677652,0.9675504228083296,0.8995823081764605,0.9092896174863389
80
+ 79,0.2461913156416598,0.22770071657332577,0.9020138771365713,0.9121114683815649,0.962554157598985,0.9676457715146314,0.9003785271851342,0.9103825136612022
81
+ 80,0.24826853788026115,0.2277499971569926,0.9022113160715293,0.9094319399785638,0.9618219315319787,0.9674998765061937,0.9006675643927456,0.9072956664838179
82
+ 81,0.2452710651745145,0.22701407576105603,0.902860044000677,0.9115755627009646,0.9629225673961223,0.9677118263412864,0.9013406668958405,0.9093904448105437
83
+ 82,0.24708871673783145,0.22679734570228785,0.9022677271958031,0.9115755627009646,0.9621144534582912,0.9679932773418158,0.9007191771009426,0.9097867687260798
84
+ 83,0.24973351883997186,0.22805154165462665,0.9014215603316974,0.9121114683815649,0.9611853087484701,0.9677709884903771,0.8998079293638735,0.9108695652173913
85
+ 84,0.24673464378844182,0.22679966721695718,0.9017882326394765,0.9115755627009646,0.9621527036818918,0.9677497360678882,0.9001777421019437,0.9093904448105437
86
+ 85,0.24806612305359543,0.2264819248217095,0.9013369436452868,0.9131832797427653,0.9619653682793741,0.967921478617191,0.8997535392904225,0.9113785557986871
87
+ 86,0.2461018886163082,0.22746177760351124,0.903424155243414,0.9110396570203644,0.9623511306945893,0.9679846614948608,0.9017503586800574,0.9099783080260304
88
+ 87,0.24837690437731758,0.22628422268333925,0.9017600270773396,0.9137191854233655,0.9615893386685586,0.967912288380439,0.9002491622991666,0.9110005527915975
89
+ 88,0.24666722076993078,0.22638937921961022,0.9019292604501608,0.9121114683815649,0.9621146841688744,0.967946751768259,0.9002037828994576,0.9104803493449781
90
+ 89,0.24551859774662568,0.2263040659511971,0.9033113329948665,0.912647374062165,0.9627605162824249,0.9679950005112069,0.9016412257546196,0.9110747408619749
91
+ 90,0.24732280352995628,0.22546146345291873,0.901111299148192,0.9115755627009646,0.9618400160594932,0.9680788614215687,0.8996163316726794,0.9090909090909091
92
+ 91,0.24772436053624994,0.22788318110048963,0.9028882495628138,0.9115755627009646,0.9619269764472083,0.9680869028787268,0.9012759856630824,0.9107625743645213
93
+ 92,0.24762899641822006,0.22498880312373784,0.9034805663676877,0.9121114683815649,0.9617962733329029,0.9681983344993444,0.9019540427482666,0.9097909790979097
94
+ 93,0.24469923025905269,0.2258100575764463,0.9036780053026456,0.9110396570203644,0.9626281870562841,0.9683178075771205,0.9020732371748917,0.9097826086956522
95
+ 94,0.2432926873438329,0.22533494325121117,0.9048626389123935,0.9115755627009646,0.9632206231942183,0.9682707076137665,0.9035210663310546,0.9100817438692098
96
+ 95,0.24846385958523975,0.22700474461558548,0.9005753934675919,0.9115755627009646,0.9614011408857916,0.9682804722403155,0.8988028593575058,0.9106659447753113
97
+ 96,0.24522118033098275,0.2245573677434032,0.9038472386754668,0.9137191854233655,0.9623907810927641,0.9684453221120541,0.9023293126665329,0.9118773946360154
98
+ 97,0.24514540165466067,0.22389707692758062,0.9025779883793084,0.9153269024651661,0.9626766028655164,0.968613618322575,0.9010712035286704,0.9130913091309131
99
+ 98,0.24377569405434196,0.22456633963193925,0.9039600609240143,0.9131832797427653,0.9630530891241761,0.9684700208733252,0.9024047694115623,0.9115720524017468
100
+ 99,0.24604450989080215,0.2238196889208061,0.9022113160715293,0.9115755627009646,0.9621380161688278,0.9686291268470941,0.9006106126193275,0.9097867687260798
101
+ 100,0.24528946001117333,0.22620836197371652,0.9035933886162352,0.9147909967845659,0.962518545431571,0.9685326293611981,0.9019956417020301,0.9141932002158661
training_notebook_b2.ipynb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86376eaa294416a058788d39e0690103d71edc7584329b0c3cbca4358a5ad8f6
3
+ size 21881414