parlange commited on
Commit
212506a
·
verified ·
1 Parent(s): c9a61eb

Upload ViT model from experiment c1

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. README.md +166 -0
  3. config.json +76 -0
  4. confusion_matrices/ViT_Confusion_Matrix_a.png +0 -0
  5. confusion_matrices/ViT_Confusion_Matrix_b.png +0 -0
  6. confusion_matrices/ViT_Confusion_Matrix_c.png +0 -0
  7. confusion_matrices/ViT_Confusion_Matrix_d.png +0 -0
  8. confusion_matrices/ViT_Confusion_Matrix_e.png +0 -0
  9. confusion_matrices/ViT_Confusion_Matrix_f.png +0 -0
  10. confusion_matrices/ViT_Confusion_Matrix_g.png +0 -0
  11. confusion_matrices/ViT_Confusion_Matrix_h.png +0 -0
  12. confusion_matrices/ViT_Confusion_Matrix_i.png +0 -0
  13. confusion_matrices/ViT_Confusion_Matrix_j.png +0 -0
  14. confusion_matrices/ViT_Confusion_Matrix_k.png +0 -0
  15. confusion_matrices/ViT_Confusion_Matrix_l.png +0 -0
  16. evaluation_results.csv +133 -0
  17. model.safetensors +3 -0
  18. pytorch_model.bin +3 -0
  19. roc_confusion_matrix/ViT_roc_confusion_matrix_a.png +0 -0
  20. roc_confusion_matrix/ViT_roc_confusion_matrix_b.png +0 -0
  21. roc_confusion_matrix/ViT_roc_confusion_matrix_c.png +0 -0
  22. roc_confusion_matrix/ViT_roc_confusion_matrix_d.png +0 -0
  23. roc_confusion_matrix/ViT_roc_confusion_matrix_e.png +0 -0
  24. roc_confusion_matrix/ViT_roc_confusion_matrix_f.png +0 -0
  25. roc_confusion_matrix/ViT_roc_confusion_matrix_g.png +0 -0
  26. roc_confusion_matrix/ViT_roc_confusion_matrix_h.png +0 -0
  27. roc_confusion_matrix/ViT_roc_confusion_matrix_i.png +0 -0
  28. roc_confusion_matrix/ViT_roc_confusion_matrix_j.png +0 -0
  29. roc_confusion_matrix/ViT_roc_confusion_matrix_k.png +0 -0
  30. roc_confusion_matrix/ViT_roc_confusion_matrix_l.png +0 -0
  31. roc_curves/ViT_ROC_a.png +0 -0
  32. roc_curves/ViT_ROC_b.png +0 -0
  33. roc_curves/ViT_ROC_c.png +0 -0
  34. roc_curves/ViT_ROC_d.png +0 -0
  35. roc_curves/ViT_ROC_e.png +0 -0
  36. roc_curves/ViT_ROC_f.png +0 -0
  37. roc_curves/ViT_ROC_g.png +0 -0
  38. roc_curves/ViT_ROC_h.png +0 -0
  39. roc_curves/ViT_ROC_i.png +0 -0
  40. roc_curves/ViT_ROC_j.png +0 -0
  41. roc_curves/ViT_ROC_k.png +0 -0
  42. roc_curves/ViT_ROC_l.png +0 -0
  43. training_curves/ViT_accuracy.png +0 -0
  44. training_curves/ViT_auc.png +0 -0
  45. training_curves/ViT_combined_metrics.png +3 -0
  46. training_curves/ViT_f1.png +0 -0
  47. training_curves/ViT_loss.png +0 -0
  48. training_curves/ViT_metrics.csv +36 -0
  49. training_metrics.csv +36 -0
  50. training_notebook_c1.ipynb +3 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ training_curves/ViT_combined_metrics.png filter=lfs diff=lfs merge=lfs -text
37
+ training_notebook_c1.ipynb filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - image-classification
5
+ - pytorch
6
+ - timm
7
+ - vit
8
+ - vision-transformer
9
+ - transformer
10
+ - gravitational-lensing
11
+ - strong-lensing
12
+ - astronomy
13
+ - astrophysics
14
+ datasets:
15
+ - parlange/gravit-c21-j24
16
+ metrics:
17
+ - accuracy
18
+ - auc
19
+ - f1
20
+ paper:
21
+ - title: "GraViT: A Gravitational Lens Discovery Toolkit with Vision Transformers"
22
+ url: "https://arxiv.org/abs/2509.00226"
23
+ authors: "Parlange et al."
24
+ model-index:
25
+ - name: ViT-c1
26
+ results:
27
+ - task:
28
+ type: image-classification
29
+ name: Strong Gravitational Lens Discovery
30
+ dataset:
31
+ type: common-test-sample
32
+ name: Common Test Sample (More et al. 2024)
33
+ metrics:
34
+ - type: accuracy
35
+ value: 0.8028
36
+ name: Average Accuracy
37
+ - type: auc
38
+ value: 0.8562
39
+ name: Average AUC-ROC
40
+ - type: f1
41
+ value: 0.5517
42
+ name: Average F1-Score
43
+ ---
44
+
45
+ # 🌌 vit-gravit-c1
46
+
47
+ 🔭 This model is part of **GraViT**: Transfer Learning with Vision Transformers and MLP-Mixer for Strong Gravitational Lens Discovery
48
+
49
+ 🔗 **GitHub Repository**: [https://github.com/parlange/gravit](https://github.com/parlange/gravit)
50
+
51
+ ## 🛰️ Model Details
52
+
53
+ - **🤖 Model Type**: ViT
54
+ - **🧪 Experiment**: C1 - C21+J24-classification-head
55
+ - **🌌 Dataset**: C21+J24
56
+ - **🪐 Fine-tuning Strategy**: classification-head
57
+
58
+
59
+
60
+ ## 💻 Quick Start
61
+
62
+ ```python
63
+ import torch
64
+ import timm
65
+
66
+ # Load the model directly from the Hub
67
+ model = timm.create_model(
68
+ 'hf-hub:parlange/vit-gravit-c1',
69
+ pretrained=True
70
+ )
71
+ model.eval()
72
+
73
+ # Example inference
74
+ dummy_input = torch.randn(1, 3, 224, 224)
75
+ with torch.no_grad():
76
+ output = model(dummy_input)
77
+ predictions = torch.softmax(output, dim=1)
78
+ print(f"Lens probability: {predictions[0][1]:.4f}")
79
+ ```
80
+
81
+ ## ⚡️ Training Configuration
82
+
83
+ **Training Dataset:** C21+J24 (Cañameras et al. 2021 + Jaelani et al. 2024)
84
+ **Fine-tuning Strategy:** classification-head
85
+
86
+
87
+ | 🔧 Parameter | 📝 Value |
88
+ |--------------|----------|
89
+ | Batch Size | 192 |
90
+ | Learning Rate | AdamW with ReduceLROnPlateau |
91
+ | Epochs | 100 |
92
+ | Patience | 10 |
93
+ | Optimizer | AdamW |
94
+ | Scheduler | ReduceLROnPlateau |
95
+ | Image Size | 224x224 |
96
+ | Fine Tune Mode | classification_head |
97
+ | Stochastic Depth Probability | 0.1 |
98
+
99
+
100
+ ## 📈 Training Curves
101
+
102
+ ![Combined Training Metrics](https://huggingface.co/parlange/vit-gravit-c1/resolve/main/training_curves/ViT_combined_metrics.png)
103
+
104
+
105
+ ## 🏁 Final Epoch Training Metrics
106
+
107
+ | Metric | Training | Validation |
108
+ |:---------:|:-----------:|:-------------:|
109
+ | 📉 Loss | 0.3578 | 0.3397 |
110
+ | 🎯 Accuracy | 0.8453 | 0.8666 |
111
+ | 📊 AUC-ROC | 0.9223 | 0.9388 |
112
+ | ⚖️ F1 Score | 0.8453 | 0.8721 |
113
+
114
+
115
+ ## ☑️ Evaluation Results
116
+
117
+ ### ROC Curves and Confusion Matrices
118
+
119
+ Performance across all test datasets (a through l) in the Common Test Sample (More et al. 2024):
120
+
121
+ ![ROC + Confusion Matrix - Dataset A](https://huggingface.co/parlange/vit-gravit-c1/resolve/main/roc_confusion_matrix/ViT_roc_confusion_matrix_a.png)
122
+ ![ROC + Confusion Matrix - Dataset B](https://huggingface.co/parlange/vit-gravit-c1/resolve/main/roc_confusion_matrix/ViT_roc_confusion_matrix_b.png)
123
+ ![ROC + Confusion Matrix - Dataset C](https://huggingface.co/parlange/vit-gravit-c1/resolve/main/roc_confusion_matrix/ViT_roc_confusion_matrix_c.png)
124
+ ![ROC + Confusion Matrix - Dataset D](https://huggingface.co/parlange/vit-gravit-c1/resolve/main/roc_confusion_matrix/ViT_roc_confusion_matrix_d.png)
125
+ ![ROC + Confusion Matrix - Dataset E](https://huggingface.co/parlange/vit-gravit-c1/resolve/main/roc_confusion_matrix/ViT_roc_confusion_matrix_e.png)
126
+ ![ROC + Confusion Matrix - Dataset F](https://huggingface.co/parlange/vit-gravit-c1/resolve/main/roc_confusion_matrix/ViT_roc_confusion_matrix_f.png)
127
+ ![ROC + Confusion Matrix - Dataset G](https://huggingface.co/parlange/vit-gravit-c1/resolve/main/roc_confusion_matrix/ViT_roc_confusion_matrix_g.png)
128
+ ![ROC + Confusion Matrix - Dataset H](https://huggingface.co/parlange/vit-gravit-c1/resolve/main/roc_confusion_matrix/ViT_roc_confusion_matrix_h.png)
129
+ ![ROC + Confusion Matrix - Dataset I](https://huggingface.co/parlange/vit-gravit-c1/resolve/main/roc_confusion_matrix/ViT_roc_confusion_matrix_i.png)
130
+ ![ROC + Confusion Matrix - Dataset J](https://huggingface.co/parlange/vit-gravit-c1/resolve/main/roc_confusion_matrix/ViT_roc_confusion_matrix_j.png)
131
+ ![ROC + Confusion Matrix - Dataset K](https://huggingface.co/parlange/vit-gravit-c1/resolve/main/roc_confusion_matrix/ViT_roc_confusion_matrix_k.png)
132
+ ![ROC + Confusion Matrix - Dataset L](https://huggingface.co/parlange/vit-gravit-c1/resolve/main/roc_confusion_matrix/ViT_roc_confusion_matrix_l.png)
133
+
134
+ ### 📋 Performance Summary
135
+
136
+ Average performance across 12 test datasets from the Common Test Sample (More et al. 2024):
137
+
138
+ | Metric | Value |
139
+ |-----------|----------|
140
+ | 🎯 Average Accuracy | 0.8028 |
141
+ | 📈 Average AUC-ROC | 0.8562 |
142
+ | ⚖️ Average F1-Score | 0.5517 |
143
+
144
+
145
+ ## 📘 Citation
146
+
147
+ If you use this model in your research, please cite:
148
+
149
+ ```bibtex
150
+ @misc{parlange2025gravit,
151
+ title={GraViT: Transfer Learning with Vision Transformers and MLP-Mixer for Strong Gravitational Lens Discovery},
152
+ author={René Parlange and Juan C. Cuevas-Tello and Octavio Valenzuela and Omar de J. Cabrera-Rosas and Tomás Verdugo and Anupreeta More and Anton T. Jaelani},
153
+ year={2025},
154
+ eprint={2509.00226},
155
+ archivePrefix={arXiv},
156
+ primaryClass={cs.CV},
157
+ url={https://arxiv.org/abs/2509.00226},
158
+ }
159
+ ```
160
+
161
+ ---
162
+
163
+
164
+ ## Model Card Contact
165
+
166
+ For questions about this model, please contact the author through: https://github.com/parlange/
config.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architecture": "vit_base_patch16_224",
3
+ "num_classes": 2,
4
+ "num_features": 768,
5
+ "global_pool": "token",
6
+ "crop_pct": 0.875,
7
+ "interpolation": "bicubic",
8
+ "mean": [
9
+ 0.485,
10
+ 0.456,
11
+ 0.406
12
+ ],
13
+ "std": [
14
+ 0.229,
15
+ 0.224,
16
+ 0.225
17
+ ],
18
+ "first_conv": "patch_embed.proj",
19
+ "classifier": "head",
20
+ "input_size": [
21
+ 3,
22
+ 224,
23
+ 224
24
+ ],
25
+ "pool_size": [
26
+ 7,
27
+ 7
28
+ ],
29
+ "pretrained_cfg": {
30
+ "tag": "gravit_c1",
31
+ "custom_load": false,
32
+ "input_size": [
33
+ 3,
34
+ 224,
35
+ 224
36
+ ],
37
+ "fixed_input_size": true,
38
+ "interpolation": "bicubic",
39
+ "crop_pct": 0.875,
40
+ "crop_mode": "center",
41
+ "mean": [
42
+ 0.485,
43
+ 0.456,
44
+ 0.406
45
+ ],
46
+ "std": [
47
+ 0.229,
48
+ 0.224,
49
+ 0.225
50
+ ],
51
+ "num_classes": 2,
52
+ "pool_size": [
53
+ 7,
54
+ 7
55
+ ],
56
+ "first_conv": "patch_embed.proj",
57
+ "classifier": "head"
58
+ },
59
+ "model_name": "vit_gravit_c1",
60
+ "experiment": "c1",
61
+ "training_strategy": "classification-head",
62
+ "dataset": "C21+J24",
63
+ "hyperparameters": {
64
+ "batch_size": "192",
65
+ "learning_rate": "AdamW with ReduceLROnPlateau",
66
+ "epochs": "100",
67
+ "patience": "10",
68
+ "optimizer": "AdamW",
69
+ "scheduler": "ReduceLROnPlateau",
70
+ "image_size": "224x224",
71
+ "fine_tune_mode": "classification_head",
72
+ "stochastic_depth_probability": "0.1"
73
+ },
74
+ "hf_hub_id": "parlange/vit-gravit-c1",
75
+ "license": "apache-2.0"
76
+ }
confusion_matrices/ViT_Confusion_Matrix_a.png ADDED
confusion_matrices/ViT_Confusion_Matrix_b.png ADDED
confusion_matrices/ViT_Confusion_Matrix_c.png ADDED
confusion_matrices/ViT_Confusion_Matrix_d.png ADDED
confusion_matrices/ViT_Confusion_Matrix_e.png ADDED
confusion_matrices/ViT_Confusion_Matrix_f.png ADDED
confusion_matrices/ViT_Confusion_Matrix_g.png ADDED
confusion_matrices/ViT_Confusion_Matrix_h.png ADDED
confusion_matrices/ViT_Confusion_Matrix_i.png ADDED
confusion_matrices/ViT_Confusion_Matrix_j.png ADDED
confusion_matrices/ViT_Confusion_Matrix_k.png ADDED
confusion_matrices/ViT_Confusion_Matrix_l.png ADDED
evaluation_results.csv ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Model,Dataset,Loss,Accuracy,AUCROC,F1
2
+ ViT,a,0.4575504291374072,0.7920353982300885,0.8256229797574562,0.5688073394495413
3
+ ViT,b,0.35027294130266856,0.854133920150896,0.8602099447513812,0.34831460674157305
4
+ ViT,c,0.5165887196384036,0.7544797233574347,0.786182320441989,0.24101068999028183
5
+ ViT,d,0.2510994746836054,0.9016032694121345,0.9034125230202578,0.44206773618538325
6
+ ViT,e,0.4143968988721117,0.8177826564215148,0.8443351244986,0.5990338164251208
7
+ ViT,f,0.3670418868224962,0.841640022569118,0.8478622806743998,0.12836438923395446
8
+ ViT,g,0.2497027156352997,0.9033333333333333,0.9734338888888888,0.9069618222649984
9
+ ViT,h,0.3378777855237325,0.8505,0.9529537222222222,0.8630743397954511
10
+ ViT,i,0.19712424822648367,0.9285,0.9841957777777779,0.9294755877034359
11
+ ViT,j,0.7854293506145478,0.5983333333333334,0.6951524444444445,0.4527702089009991
12
+ ViT,k,0.7328508781194687,0.6235,0.7771344444444446,0.46884552080884084
13
+ ViT,l,0.487411656158395,0.7679451725381748,0.8238313924596774,0.6716570261993875
14
+ MLP-Mixer,a,0.3996943971224591,0.8086283185840708,0.8391867831243361,0.5685785536159601
15
+ MLP-Mixer,b,0.3412993300058526,0.8704809808236403,0.8364769797421732,0.35625
16
+ MLP-Mixer,c,0.3957880755634062,0.8242690977679975,0.80653591160221,0.289707750952986
17
+ MLP-Mixer,d,0.30740130081636957,0.8868280414963848,0.8505101289134438,0.3877551020408163
18
+ MLP-Mixer,e,0.4771155259938978,0.7793633369923162,0.7879361235147202,0.5314685314685315
19
+ MLP-Mixer,f,0.3381275081289247,0.8648674064321986,0.8287089328554598,0.13693693693693693
20
+ MLP-Mixer,g,0.26878669277826944,0.9036666666666666,0.9679408888888887,0.9054319371727748
21
+ MLP-Mixer,h,0.29767482439676923,0.8791666666666667,0.9592756666666666,0.8841667998082761
22
+ MLP-Mixer,i,0.2508150982062022,0.9123333333333333,0.9736637777777777,0.9132013201320132
23
+ MLP-Mixer,j,0.6541107538541158,0.6641666666666667,0.7743557777777779,0.5689839572192513
24
+ MLP-Mixer,k,0.6361391656398773,0.6728333333333333,0.7940376666666666,0.5753839498161367
25
+ MLP-Mixer,l,0.4342376798394926,0.7992064446314777,0.8634144024748618,0.716034687978235
26
+ CvT,a,0.6301151535152334,0.6548672566371682,0.7049165921612678,0.41353383458646614
27
+ CvT,b,0.6147656698190952,0.6692863879283244,0.7044972375690608,0.17295597484276728
28
+ CvT,c,0.6944268911336811,0.6001257466205596,0.6591786372007367,0.14745308310991956
29
+ CvT,d,0.2650476947487693,0.9000314366551398,0.8999226519337017,0.40892193308550184
30
+ CvT,e,0.6509704625828991,0.6465422612513722,0.6885869976538257,0.4059040590405904
31
+ CvT,f,0.5340885097132559,0.7186383298852737,0.7464956265694429,0.0684931506849315
32
+ CvT,g,0.42030701192220055,0.8028333333333333,0.9186497222222223,0.825490485322319
33
+ CvT,h,0.4625407474835714,0.7661666666666667,0.8991485555555555,0.799542791827404
34
+ CvT,i,0.2348982002735138,0.9251666666666667,0.9787946666666666,0.9257237386269644
35
+ CvT,j,1.2669325167338052,0.438,0.3431898888888889,0.265359477124183
36
+ CvT,k,1.08152370317777,0.5603333333333333,0.6091516666666666,0.3158713692946058
37
+ CvT,l,0.7296624132198569,0.6642419141517374,0.6727565192585612,0.5574134242016008
38
+ Swin,a,0.3518127097492724,0.8573008849557522,0.92351161137984,0.7074829931972789
39
+ Swin,b,0.3482047942909419,0.8509902546369066,0.9245285451197054,0.3969465648854962
40
+ Swin,c,0.3979874673372393,0.8255265639735933,0.9125395948434623,0.35986159169550175
41
+ Swin,d,0.17529730912425615,0.9415278214397989,0.9671712707182321,0.6265060240963856
42
+ Swin,e,0.5681350649908005,0.7387486278814489,0.8579505032922122,0.5672727272727273
43
+ Swin,f,0.329795688788694,0.8606356968215159,0.9286062369152528,0.17391304347826086
44
+ Swin,g,0.2527379404703776,0.9035,0.9724114444444445,0.9083715777812945
45
+ Swin,h,0.2791310551166534,0.89,0.9682955555555556,0.896875
46
+ Swin,i,0.16106815997759502,0.9515,0.9900552222222222,0.9517492953075776
47
+ Swin,j,0.907479268391927,0.5803333333333334,0.6390204444444445,0.42511415525114155
48
+ Swin,k,0.8158094821770986,0.6283333333333333,0.7901601111111112,0.4550342130987292
49
+ Swin,l,0.503966703916006,0.7787062642779848,0.8190682128691764,0.682535575679172
50
+ CaiT,a,0.42890300766556666,0.8130530973451328,0.8644880523906682,0.6060606060606061
51
+ CaiT,b,0.3192856568973119,0.8893429739075762,0.903804788213628,0.42483660130718953
52
+ CaiT,c,0.48953707897974164,0.7730273498899717,0.8254953959484346,0.26476578411405294
53
+ CaiT,d,0.31145547537899587,0.867966048412449,0.9025340699815839,0.38235294117647056
54
+ CaiT,e,0.4548946529397849,0.7870472008781558,0.8492999318852645,0.5726872246696035
55
+ CaiT,f,0.3738367850840574,0.8445552003009216,0.8744395460236903,0.1359121798222687
56
+ CaiT,g,0.3011642297108968,0.8948333333333334,0.9556216666666666,0.8943225590353374
57
+ CaiT,h,0.39142585277557373,0.8331666666666667,0.9202581666666666,0.8421384639646743
58
+ CaiT,i,0.2970129141012828,0.8835,0.9525210000000002,0.8842523596621957
59
+ CaiT,j,0.7035526345570882,0.661,0.7364068888888889,0.5547285464098074
60
+ CaiT,k,0.6994013291200002,0.6496666666666666,0.7619980555555556,0.5465918895599655
61
+ CaiT,l,0.4910164130440666,0.7766021401947818,0.8205470707913558,0.6864135021097046
62
+ DeiT,a,0.4880231645254962,0.7798672566371682,0.8260661913604304,0.5664488017429193
63
+ DeiT,b,0.31241170634304494,0.8758252121974222,0.8908674033149171,0.3969465648854962
64
+ DeiT,c,0.5076334938917547,0.7563659226658284,0.8106298342541435,0.25120772946859904
65
+ DeiT,d,0.21307693347358284,0.9264382269726501,0.9316758747697976,0.5263157894736842
66
+ DeiT,e,0.41276343642814756,0.8155872667398463,0.8614016498902596,0.6074766355140186
67
+ DeiT,f,0.347494895568754,0.852642467556893,0.8730114223466999,0.1423097974822113
68
+ DeiT,g,0.21456254084904988,0.9195,0.9812000000000001,0.9221595487510073
69
+ DeiT,h,0.31806263717015587,0.8561666666666666,0.9641542222222222,0.8689445709946849
70
+ DeiT,i,0.1618985648949941,0.9463333333333334,0.9902026666666668,0.9467240238252813
71
+ DeiT,j,0.7059943490028381,0.6493333333333333,0.7624447777777776,0.5410122164048866
72
+ DeiT,k,0.6533303724129995,0.6761666666666667,0.8324687777777777,0.5607054035722361
73
+ DeiT,l,0.4469874652336176,0.7916315979319466,0.8543558192306258,0.7094232059020792
74
+ DeiT3,a,0.4202683992617953,0.8163716814159292,0.8467825130097888,0.5829145728643216
75
+ DeiT3,b,0.262984538234768,0.9012889028607356,0.8990220994475138,0.4249084249084249
76
+ DeiT3,c,0.472756382524124,0.7783715812637535,0.7983001841620626,0.24759871931696906
77
+ DeiT3,d,0.33147037092037673,0.862936183590066,0.8655248618784529,0.3473053892215569
78
+ DeiT3,e,0.38950261964363536,0.814489571899012,0.86056913645652,0.5785536159600998
79
+ DeiT3,f,0.34437218432882033,0.8561218732367877,0.8542026846822373,0.13166855845629966
80
+ DeiT3,g,0.21329958017667133,0.9278333333333333,0.9798244444444444,0.9286067600989283
81
+ DeiT3,h,0.32451361187299094,0.8626666666666667,0.9527946111111111,0.872366790582404
82
+ DeiT3,i,0.24960849436124166,0.9075,0.9715454444444445,0.9102957814772911
83
+ DeiT3,j,0.5672995191415151,0.7125,0.8462789444444444,0.6385920804525456
84
+ DeiT3,k,0.6036084276040395,0.6921666666666667,0.800755,0.62267620020429
85
+ DeiT3,l,0.4151913604799968,0.8082241192737766,0.8763639318146963,0.7364072054205917
86
+ Twins_SVT,a,0.4067131507713183,0.8396017699115044,0.8804971611532671,0.6472019464720195
87
+ Twins_SVT,b,0.3369882810569267,0.8682804149638479,0.8973793738489871,0.3883211678832117
88
+ Twins_SVT,c,0.44650013615072465,0.808236403646652,0.8531749539594844,0.3036529680365297
89
+ Twins_SVT,d,0.11182147282515634,0.9789374410562716,0.9822780847145488,0.7987987987987988
90
+ Twins_SVT,e,0.48889580673234523,0.7694840834248079,0.8373949897827897,0.5588235294117647
91
+ Twins_SVT,f,0.30908069689963935,0.8816061688922324,0.903702339279268,0.17442622950819672
92
+ Twins_SVT,g,0.25526987624168396,0.9126666666666666,0.9751330000000001,0.9157285300739788
93
+ Twins_SVT,h,0.3133294117450714,0.8808333333333334,0.9663294444444444,0.8884381338742393
94
+ Twins_SVT,i,0.13589392483234405,0.9713333333333334,0.9974112222222222,0.9706784861916127
95
+ Twins_SVT,j,1.2727711579799652,0.49183333333333334,0.44312866666666667,0.1743839696723531
96
+ Twins_SVT,k,1.1533952040274937,0.5505,0.7285452777777779,0.19275665968272973
97
+ Twins_SVT,l,0.6311305313460368,0.7541180714199832,0.7295359094064597,0.6175425472227417
98
+ Twins_PCPVT,a,0.47225049058947943,0.7533185840707964,0.8392020662830595,0.5363825363825364
99
+ Twins_PCPVT,b,0.3277859269766941,0.8707953473750393,0.9017642725598527,0.38565022421524664
100
+ Twins_PCPVT,c,0.5325269242833524,0.7318453316567117,0.8134834254143647,0.23222322232223222
101
+ Twins_PCPVT,d,0.34038559299375754,0.8726815466834329,0.8983720073664826,0.3891402714932127
102
+ Twins_PCPVT,e,0.43271679039451605,0.8024149286498353,0.8658064027851359,0.589041095890411
103
+ Twins_PCPVT,f,0.40193462960922294,0.8247131841263871,0.8686157929759784,0.12158341187558906
104
+ Twins_PCPVT,g,0.28006591550509136,0.9015,0.9626466666666665,0.9035417006691693
105
+ Twins_PCPVT,h,0.3886127746899923,0.8278333333333333,0.9278962222222221,0.8427462323032425
106
+ Twins_PCPVT,i,0.28674582862854003,0.9025,0.9641564444444444,0.9044273811468714
107
+ Twins_PCPVT,j,0.5901691876252493,0.6993333333333334,0.8068135555555556,0.6328856328856329
108
+ Twins_PCPVT,k,0.5968491020202636,0.7003333333333334,0.7921438888888889,0.6336593317033414
109
+ Twins_PCPVT,l,0.4564983546913021,0.7871227606107971,0.8525991250300863,0.7154680594616312
110
+ PiT,a,0.3924222976233052,0.831858407079646,0.8797864942726362,0.6513761467889908
111
+ PiT,b,0.31899622544594736,0.8758252121974222,0.9015782688766113,0.4182621502209131
112
+ PiT,c,0.454398755605998,0.7959761081420936,0.8498250460405157,0.30439442658092175
113
+ PiT,d,0.14505015389513048,0.9597610814209369,0.9646924493554327,0.6893203883495146
114
+ PiT,e,0.3891645081087734,0.827661909989023,0.8838870809051691,0.6439909297052154
115
+ PiT,f,0.3070308875887381,0.8753996614632311,0.9020960965500401,0.17650714729645742
116
+ PiT,g,0.22340119377772014,0.9178333333333333,0.9791551111111111,0.9207268049525648
117
+ PiT,h,0.2951871022383372,0.8755,0.9678674444444444,0.8845975590916113
118
+ PiT,i,0.13118078410625458,0.9623333333333334,0.9941626666666668,0.9620295698924731
119
+ PiT,j,1.1235656504631042,0.5436666666666666,0.5612956111111111,0.3110216406643181
120
+ PiT,k,1.0313452566862107,0.5881666666666666,0.7460636666666667,0.33342325330455896
121
+ PiT,l,0.5711348351591465,0.7689070578333533,0.7784629383878745,0.6533814247069432
122
+ Ensemble,a,,0.8628318584070797,0.9054087098721564,0.6836734693877551
123
+ Ensemble,b,,0.9182646966362779,0.931486187845304,0.5075757575757576
124
+ Ensemble,c,,0.8340144608613643,0.8768360957642726,0.33668341708542715
125
+ Ensemble,d,,0.9682489783087079,0.9682486187845304,0.7262872628726287
126
+ Ensemble,e,,0.8309549945115258,0.8953757662907742,0.6350710900473934
127
+ Ensemble,f,,0.9079368064698138,0.922026931389281,0.214915797914996
128
+ Ensemble,g,,0.9488333333333333,0.9909529999999999,0.9498284033338781
129
+ Ensemble,h,,0.9041666666666667,0.9819358888888887,0.9099733834351026
130
+ Ensemble,i,,0.9753333333333334,0.9972660000000001,0.9751677852348993
131
+ Ensemble,j,,0.5953333333333334,0.7440818888888889,0.39269634817408705
132
+ Ensemble,k,,0.6218333333333333,0.8487693333333335,0.408960666840323
133
+ Ensemble,l,,0.802332571840808,0.8579947764427092,0.6993965990126165
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3ef5c4fd58e320b23726b5612ec2180d0eb81eba5a3265b7c74ac67d1318ada
3
+ size 343214864
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2e0c4ab92be37dec3f4b1f575a69daa65b8ec3b8778968adea53a5692e2c759
3
+ size 343259038
roc_confusion_matrix/ViT_roc_confusion_matrix_a.png ADDED
roc_confusion_matrix/ViT_roc_confusion_matrix_b.png ADDED
roc_confusion_matrix/ViT_roc_confusion_matrix_c.png ADDED
roc_confusion_matrix/ViT_roc_confusion_matrix_d.png ADDED
roc_confusion_matrix/ViT_roc_confusion_matrix_e.png ADDED
roc_confusion_matrix/ViT_roc_confusion_matrix_f.png ADDED
roc_confusion_matrix/ViT_roc_confusion_matrix_g.png ADDED
roc_confusion_matrix/ViT_roc_confusion_matrix_h.png ADDED
roc_confusion_matrix/ViT_roc_confusion_matrix_i.png ADDED
roc_confusion_matrix/ViT_roc_confusion_matrix_j.png ADDED
roc_confusion_matrix/ViT_roc_confusion_matrix_k.png ADDED
roc_confusion_matrix/ViT_roc_confusion_matrix_l.png ADDED
roc_curves/ViT_ROC_a.png ADDED
roc_curves/ViT_ROC_b.png ADDED
roc_curves/ViT_ROC_c.png ADDED
roc_curves/ViT_ROC_d.png ADDED
roc_curves/ViT_ROC_e.png ADDED
roc_curves/ViT_ROC_f.png ADDED
roc_curves/ViT_ROC_g.png ADDED
roc_curves/ViT_ROC_h.png ADDED
roc_curves/ViT_ROC_i.png ADDED
roc_curves/ViT_ROC_j.png ADDED
roc_curves/ViT_ROC_k.png ADDED
roc_curves/ViT_ROC_l.png ADDED
training_curves/ViT_accuracy.png ADDED
training_curves/ViT_auc.png ADDED
training_curves/ViT_combined_metrics.png ADDED

Git LFS Details

  • SHA256: 8f7d690250b7dbb1fdfcf19b9ccee12e538963e0f9840f83747372ce616a051e
  • Pointer size: 131 Bytes
  • Size of remote file: 159 kB
training_curves/ViT_f1.png ADDED
training_curves/ViT_loss.png ADDED
training_curves/ViT_metrics.csv ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,train_loss,val_loss,train_accuracy,val_accuracy,train_auc,val_auc,train_f1,val_f1
2
+ 1,0.5323386875501054,0.4755117762888138,0.7353011594896878,0.7711370262390671,0.81348677488557,0.885203019150184,0.7361674564483688,0.7931488801054019
3
+ 2,0.43781517835478373,0.4284092179192746,0.8014929712350788,0.8192419825072886,0.8830454485545415,0.9047898834669228,0.8016473141431488,0.8299039780521262
4
+ 3,0.41427445929300877,0.4113463647337766,0.815388035708178,0.8221574344023324,0.8951539429236054,0.9151671497420293,0.8154827020374675,0.8349120433017592
5
+ 4,0.4023083928608962,0.40359135593339235,0.8228101378390396,0.8192419825072886,0.9012251468093784,0.9179381040212836,0.8228828336011488,0.8322056833558863
6
+ 5,0.3954562406641524,0.38841467365926624,0.8263587235352464,0.8301749271137027,0.9046182985878689,0.9236914465911312,0.8263661470847263,0.8409556313993174
7
+ 6,0.3872764221428153,0.3705469915540156,0.8305058658549098,0.8542274052478134,0.9087822170114311,0.9251704221880339,0.8304159608507434,0.8585572842998586
8
+ 7,0.384070718126755,0.39311501870349963,0.8321219687382426,0.8163265306122449,0.9101693789104086,0.9269139559197275,0.8320286098063876,0.8328912466843501
9
+ 8,0.3805712183671957,0.35730582684191603,0.8340116975065841,0.8651603498542274,0.9117416777986673,0.9309142024156603,0.8339662663792808,0.8687012065294535
10
+ 9,0.3776779572743212,0.357522688349899,0.8343024250094059,0.8556851311953353,0.9130646675394666,0.932449489583422,0.8342825867583423,0.861731843575419
11
+ 10,0.374850532579802,0.3752483752482834,0.8371327427574649,0.8345481049562682,0.9144322412803798,0.9314040068338874,0.8371090643199836,0.8469318948078219
12
+ 11,0.3697774252474999,0.34939942624061515,0.8396039265314499,0.8680758017492711,0.9168827815351508,0.9343598330627545,0.8393401623899415,0.8722653493295696
13
+ 12,0.3697715133579435,0.3443179043666962,0.8393217498375346,0.8658892128279884,0.9166875088673295,0.936127803891236,0.8393066351967299,0.8702397743300423
14
+ 13,0.36852555068119747,0.3601747573551562,0.8397150870472346,0.8513119533527697,0.9173666724458207,0.9336883441423217,0.8394831262470136,0.859504132231405
15
+ 14,0.3676681494243527,0.35326992744259517,0.8404504566131956,0.8564139941690962,0.9176733040671543,0.9359365570468088,0.8402742704525805,0.8632893823733518
16
+ 15,0.3650746907724517,0.3343106554739677,0.8426907685467045,0.8731778425655977,0.9190811037822717,0.9378840874125578,0.8424954838488737,0.8760683760683761
17
+ 16,0.3633183905273226,0.36100645167834555,0.8436655607620481,0.8462099125364432,0.9197041046581621,0.9356390619554776,0.8434554032416881,0.8563648740639891
18
+ 17,0.3629737127773999,0.3471138860498156,0.8429643944317132,0.8637026239067055,0.9197510415418706,0.936129928856174,0.8429899031350723,0.8693221523410203
19
+ 18,0.363794944664887,0.35338963598621137,0.8428874371515546,0.8527696793002916,0.919400791056018,0.937946773878231,0.8427179812021708,0.8620218579234973
20
+ 19,0.3612006870932197,0.3544301845937012,0.8441957109142525,0.8483965014577259,0.9205795272438061,0.9371031627978137,0.8440797186400938,0.8583106267029973
21
+ 20,0.35985265280425144,0.34653563688864863,0.8451876047474091,0.8629737609329446,0.9212270520689332,0.9376503412693691,0.8448732338854092,0.869625520110957
22
+ 21,0.3582611175785762,0.3465235511346044,0.8451705031295961,0.8564139941690962,0.9218992112489598,0.9386681994747087,0.8448534388950295,0.8646048109965636
23
+ 22,0.35836609831110994,0.3376696258348904,0.8452816636453808,0.8658892128279884,0.9218332174704624,0.9389146954075258,0.845069698941672,0.8711484593837535
24
+ 23,0.357339754399447,0.3394383715123546,0.8458716694599309,0.8658892128279884,0.9223462758024424,0.9387999473008696,0.8455904398852101,0.8713286713286713
25
+ 24,0.35804432434826455,0.344140861628702,0.8449738345247461,0.8637026239067055,0.9219979159587275,0.9382708310312879,0.8446922971491229,0.8702290076335878
26
+ 25,0.3563122466666781,0.34014157038562154,0.8465728357902658,0.8658892128279884,0.922973728878079,0.9390262560667749,0.846171651963684,0.8715083798882681
27
+ 26,0.35848609832751505,0.3428510632094419,0.8452474604097547,0.8622448979591837,0.9218336656735835,0.9383760167957229,0.8450699402468882,0.8688410825815406
28
+ 27,0.3563769290565641,0.3381501745552085,0.8467353011594897,0.8673469387755102,0.9227351969318646,0.9387680728267983,0.8464569627192983,0.8725490196078431
29
+ 28,0.35655961564249594,0.3393103123232505,0.845905872695557,0.8658892128279884,0.9226312293084508,0.9387829475813649,0.8456749419814512,0.8713286713286713
30
+ 29,0.3574257842763429,0.33912095592598873,0.8468037076307419,0.8666180758017493,0.9223738257442348,0.9387500106248245,0.8466122155442544,0.8719384184744576
31
+ 30,0.3562603021361586,0.3389132391259552,0.8461880493894722,0.8666180758017493,0.9229400096725773,0.9387276984929749,0.8459905135361907,0.8719384184744576
32
+ 31,0.35629812248557524,0.34000008781345525,0.8464360228477614,0.8658892128279884,0.9229673904231751,0.9387000739487797,0.8461400066824876,0.8715083798882681
33
+ 32,0.3569562033858007,0.3386197740934333,0.8463163115230701,0.8666180758017493,0.9226200321269892,0.9387914474411172,0.8462913391887384,0.8719384184744576
34
+ 33,0.35738727149768645,0.3403620165569094,0.8466412422615179,0.8658892128279884,0.9223608182023694,0.9387330109053201,0.8463166553842726,0.8715083798882681
35
+ 34,0.3566963535374173,0.3399086983836427,0.8461452953449397,0.8666180758017493,0.9228278941112513,0.9387478856598866,0.8463148184528131,0.8721174004192872
36
+ 35,0.3577859981623435,0.3396764656545122,0.8452560112186613,0.8666180758017493,0.9222524587733002,0.9387659478618602,0.8453181759904269,0.8721174004192872
training_metrics.csv ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,train_loss,val_loss,train_accuracy,val_accuracy,train_auc,val_auc,train_f1,val_f1
2
+ 1,0.5323386875501054,0.4755117762888138,0.7353011594896878,0.7711370262390671,0.81348677488557,0.885203019150184,0.7361674564483688,0.7931488801054019
3
+ 2,0.43781517835478373,0.4284092179192746,0.8014929712350788,0.8192419825072886,0.8830454485545415,0.9047898834669228,0.8016473141431488,0.8299039780521262
4
+ 3,0.41427445929300877,0.4113463647337766,0.815388035708178,0.8221574344023324,0.8951539429236054,0.9151671497420293,0.8154827020374675,0.8349120433017592
5
+ 4,0.4023083928608962,0.40359135593339235,0.8228101378390396,0.8192419825072886,0.9012251468093784,0.9179381040212836,0.8228828336011488,0.8322056833558863
6
+ 5,0.3954562406641524,0.38841467365926624,0.8263587235352464,0.8301749271137027,0.9046182985878689,0.9236914465911312,0.8263661470847263,0.8409556313993174
7
+ 6,0.3872764221428153,0.3705469915540156,0.8305058658549098,0.8542274052478134,0.9087822170114311,0.9251704221880339,0.8304159608507434,0.8585572842998586
8
+ 7,0.384070718126755,0.39311501870349963,0.8321219687382426,0.8163265306122449,0.9101693789104086,0.9269139559197275,0.8320286098063876,0.8328912466843501
9
+ 8,0.3805712183671957,0.35730582684191603,0.8340116975065841,0.8651603498542274,0.9117416777986673,0.9309142024156603,0.8339662663792808,0.8687012065294535
10
+ 9,0.3776779572743212,0.357522688349899,0.8343024250094059,0.8556851311953353,0.9130646675394666,0.932449489583422,0.8342825867583423,0.861731843575419
11
+ 10,0.374850532579802,0.3752483752482834,0.8371327427574649,0.8345481049562682,0.9144322412803798,0.9314040068338874,0.8371090643199836,0.8469318948078219
12
+ 11,0.3697774252474999,0.34939942624061515,0.8396039265314499,0.8680758017492711,0.9168827815351508,0.9343598330627545,0.8393401623899415,0.8722653493295696
13
+ 12,0.3697715133579435,0.3443179043666962,0.8393217498375346,0.8658892128279884,0.9166875088673295,0.936127803891236,0.8393066351967299,0.8702397743300423
14
+ 13,0.36852555068119747,0.3601747573551562,0.8397150870472346,0.8513119533527697,0.9173666724458207,0.9336883441423217,0.8394831262470136,0.859504132231405
15
+ 14,0.3676681494243527,0.35326992744259517,0.8404504566131956,0.8564139941690962,0.9176733040671543,0.9359365570468088,0.8402742704525805,0.8632893823733518
16
+ 15,0.3650746907724517,0.3343106554739677,0.8426907685467045,0.8731778425655977,0.9190811037822717,0.9378840874125578,0.8424954838488737,0.8760683760683761
17
+ 16,0.3633183905273226,0.36100645167834555,0.8436655607620481,0.8462099125364432,0.9197041046581621,0.9356390619554776,0.8434554032416881,0.8563648740639891
18
+ 17,0.3629737127773999,0.3471138860498156,0.8429643944317132,0.8637026239067055,0.9197510415418706,0.936129928856174,0.8429899031350723,0.8693221523410203
19
+ 18,0.363794944664887,0.35338963598621137,0.8428874371515546,0.8527696793002916,0.919400791056018,0.937946773878231,0.8427179812021708,0.8620218579234973
20
+ 19,0.3612006870932197,0.3544301845937012,0.8441957109142525,0.8483965014577259,0.9205795272438061,0.9371031627978137,0.8440797186400938,0.8583106267029973
21
+ 20,0.35985265280425144,0.34653563688864863,0.8451876047474091,0.8629737609329446,0.9212270520689332,0.9376503412693691,0.8448732338854092,0.869625520110957
22
+ 21,0.3582611175785762,0.3465235511346044,0.8451705031295961,0.8564139941690962,0.9218992112489598,0.9386681994747087,0.8448534388950295,0.8646048109965636
23
+ 22,0.35836609831110994,0.3376696258348904,0.8452816636453808,0.8658892128279884,0.9218332174704624,0.9389146954075258,0.845069698941672,0.8711484593837535
24
+ 23,0.357339754399447,0.3394383715123546,0.8458716694599309,0.8658892128279884,0.9223462758024424,0.9387999473008696,0.8455904398852101,0.8713286713286713
25
+ 24,0.35804432434826455,0.344140861628702,0.8449738345247461,0.8637026239067055,0.9219979159587275,0.9382708310312879,0.8446922971491229,0.8702290076335878
26
+ 25,0.3563122466666781,0.34014157038562154,0.8465728357902658,0.8658892128279884,0.922973728878079,0.9390262560667749,0.846171651963684,0.8715083798882681
27
+ 26,0.35848609832751505,0.3428510632094419,0.8452474604097547,0.8622448979591837,0.9218336656735835,0.9383760167957229,0.8450699402468882,0.8688410825815406
28
+ 27,0.3563769290565641,0.3381501745552085,0.8467353011594897,0.8673469387755102,0.9227351969318646,0.9387680728267983,0.8464569627192983,0.8725490196078431
29
+ 28,0.35655961564249594,0.3393103123232505,0.845905872695557,0.8658892128279884,0.9226312293084508,0.9387829475813649,0.8456749419814512,0.8713286713286713
30
+ 29,0.3574257842763429,0.33912095592598873,0.8468037076307419,0.8666180758017493,0.9223738257442348,0.9387500106248245,0.8466122155442544,0.8719384184744576
31
+ 30,0.3562603021361586,0.3389132391259552,0.8461880493894722,0.8666180758017493,0.9229400096725773,0.9387276984929749,0.8459905135361907,0.8719384184744576
32
+ 31,0.35629812248557524,0.34000008781345525,0.8464360228477614,0.8658892128279884,0.9229673904231751,0.9387000739487797,0.8461400066824876,0.8715083798882681
33
+ 32,0.3569562033858007,0.3386197740934333,0.8463163115230701,0.8666180758017493,0.9226200321269892,0.9387914474411172,0.8462913391887384,0.8719384184744576
34
+ 33,0.35738727149768645,0.3403620165569094,0.8466412422615179,0.8658892128279884,0.9223608182023694,0.9387330109053201,0.8463166553842726,0.8715083798882681
35
+ 34,0.3566963535374173,0.3399086983836427,0.8461452953449397,0.8666180758017493,0.9228278941112513,0.9387478856598866,0.8463148184528131,0.8721174004192872
36
+ 35,0.3577859981623435,0.3396764656545122,0.8452560112186613,0.8666180758017493,0.9222524587733002,0.9387659478618602,0.8453181759904269,0.8721174004192872
training_notebook_c1.ipynb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f61fa8d16483db850ff07e750ecef613320fea004eca79681f0f0da3854f1df8
3
+ size 26069037