--- pipeline_tag: image-text-to-text library_name: transformers --- # PaddleOCR-VL-0.9B Duplicated from https://huggingface.co/PaddlePaddle/PaddleOCR-VL Example use with transformers: ```py from transformers import AutoModelForCausalLM, AutoProcessor import torch DEVICE="cuda" if torch.cuda.is_available() else "mps" if torch.mps.is_available() else "cpu" model_id = "pcuenq/PaddleOCR-VL-0.9B" model = AutoModelForCausalLM.from_pretrained( model_id, trust_remote_code=True, dtype=torch.bfloat16 ).to(DEVICE).eval() processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) from transformers.image_utils import load_image image_url = "https://fiverr-res.cloudinary.com/images/t_main1,q_auto,f_auto,q_auto,f_auto/gigs/154456946/original/41556aac80fc43dcb29ce656d786c0a6f9b4073f/do-handwritten-text-image-or-pdf-to-word-means-typing-form.jpg" image = load_image(image_url) messages = [{"role": "user", "content": "OCR"}] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor(text=[text], images=[image], return_tensors="pt").to(DEVICE) generated = model.generate(**inputs, max_new_tokens=200, do_sample=False) resp = processor.batch_decode(generated, skip_special_tokens=True)[0] answer = resp.split(text)[-1].strip() print(answer) ```