File size: 14,074 Bytes
b26156a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
#!/usr/bin/env python3
"""
Use MediaPipe to detect poses in images and extract landmark coordinates.
Features:
1. Run MediaPipe pose detection on images in the train folder
2. Use the nose as the head reference point (headPos)
3. Process coordinates as: pos = (pos - headPos) * 100 and round to 2 decimals
4. Save processed landmarks into JSON files named after the image files
Usage:
python pose_detection.py [--input INPUT_DIR] [--output OUTPUT_DIR]
"""
import os
import json
import argparse
from pathlib import Path
import cv2
import mediapipe as mp
class PoseDetector:
def __init__(self):
"""Initialize MediaPipe pose detector."""
self.mp_pose = mp.solutions.pose
self.pose = self.mp_pose.Pose(
static_image_mode=True,
model_complexity=2,
enable_segmentation=False,
min_detection_confidence=0.5
)
# MediaPipe pose landmark name mapping
self.landmark_names = [
'nose', 'left_eye_inner', 'left_eye', 'left_eye_outer',
'right_eye_inner', 'right_eye', 'right_eye_outer',
'left_ear', 'right_ear', 'mouth_left', 'mouth_right',
'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow',
'left_wrist', 'right_wrist', 'left_pinky', 'right_pinky',
'left_index', 'right_index', 'left_thumb', 'right_thumb',
'left_hip', 'right_hip', 'left_knee', 'right_knee',
'left_ankle', 'right_ankle', 'left_heel', 'right_heel',
'left_foot_index', 'right_foot_index'
]
def get_head_position(self, landmarks):
"""
Compute the head reference position (use the nose landmark).
Args:
landmarks: MediaPipe detected landmarks
Returns:
tuple: (x, y, z) head coordinates
"""
# use nose as the head reference point
nose = landmarks[0] # nose is the 0th landmark
return (nose.x, nose.y, nose.z)
def process_landmarks(self, landmarks, head_pos):
"""
Process landmarks: pos = (pos - headPos) * 100 and round to 2 decimals.
Args:
landmarks: MediaPipe detected landmarks
head_pos: head coordinates (x, y, z)
Returns:
dict: processed landmarks dictionary
"""
processed_landmarks = {}
head_pos_x = head_pos[0]
head_pos_y = head_pos[1]
head_pos_z = head_pos[2]
for i, landmark in enumerate(landmarks):
if i < len(self.landmark_names):
name = self.landmark_names[i]
# Calculate coordinates relative to head and multiply by 100
rel_x = round((landmark.x - head_pos_x) * 100, 2)
rel_y = round((landmark.y - head_pos_y) * 100, 2)
rel_z = round((landmark.z - head_pos_z) * 100, 2)
processed_landmarks[name] = {
'x': rel_x,
'y': rel_y,
'z': rel_z,
'visibility': round(landmark.visibility, 3)
}
return processed_landmarks
def detect_pose(self, image_path):
"""
Detect pose for a single image.
Args:
image_path: path to the image file
Returns:
dict: processed landmarks and metadata, or None on failure
"""
try:
# Read image
image = cv2.imread(str(image_path))
if image is None:
print(f"Unable to read image: {image_path}")
return None
# Convert color space (BGR -> RGB)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Run pose detection
results = self.pose.process(image_rgb)
if results.pose_landmarks is None:
print(f"No pose detected: {image_path}")
return None
# Get keypoints
landmarks = results.pose_landmarks.landmark
# Get head position
head_pos = self.get_head_position(landmarks)
# Process keypoint coordinates
processed_landmarks = self.process_landmarks(landmarks, head_pos)
# extract label from parent folder name
label = image_path.parent.name
# Add metadata
result = {
'image_path': str(image_path),
'image_name': image_path.name,
'label': label,
'head_position': {
'x': round(head_pos[0], 4),
'y': round(head_pos[1], 4),
'z': round(head_pos[2], 4)
},
'landmarks': processed_landmarks,
'total_landmarks': len(processed_landmarks)
}
return result
except Exception as e:
print(f"Error processing image {image_path}: {e}")
return None
def close(self):
"""Close MediaPipe resources."""
self.pose.close()
def process_all_training_data(input_dir, output_dir, batch_size=100):
"""
Process all images in the training dataset and write JSON files.
Args:
input_dir: input images directory (TrainData/train)
output_dir: output JSON directory (PoseData)
batch_size: progress report batch size
"""
input_path = Path(input_dir)
output_path = Path(output_dir)
output_path.mkdir(parents=True, exist_ok=True)
# Supported image formats
image_extensions = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff'}
detector = PoseDetector()
try:
# statistics
total_images = 0
success_count = 0
failed_count = 0
label_stats = {}
print(f"Starting processing dataset: {input_path}")
print(f"Output directory: {output_path}")
# first count all images
print("Counting images...")
label_dirs = []
for item in input_path.iterdir():
if item.is_dir() and item.name.startswith('label_'):
label = item.name
image_files = [f for f in item.iterdir()
if f.is_file() and f.suffix.lower() in image_extensions]
if image_files:
label_dirs.append((item, label, image_files))
total_images += len(image_files)
label_stats[label] = {'total': len(image_files), 'success': 0, 'failed': 0}
print(f"Found {len(label_dirs)} label directories, total {total_images} images")
for label, stats in label_stats.items():
print(f" {label}: {stats['total']} images")
print("\nStarting to process images...")
# process each label directory
for label_dir, label_name, image_files in label_dirs:
print(f"\n--- Processing {label_name} ({len(image_files)} images) ---")
# create output folder for this label
output_label_dir = output_path / label_name
output_label_dir.mkdir(parents=True, exist_ok=True)
# process every image in this label
for i, image_file in enumerate(image_files, 1):
json_filename = image_file.stem + '.json'
json_path = output_label_dir / json_filename
# detect pose
result = detector.detect_pose(image_file)
if result is not None:
# save JSON
try:
with open(json_path, 'w', encoding='utf-8') as f:
json.dump(result, f, ensure_ascii=False, indent=2)
success_count += 1
label_stats[label_name]['success'] += 1
# progress
if success_count % batch_size == 0:
progress = (success_count / total_images) * 100 if total_images else 0
print(f" Progress: {success_count}/{total_images} ({progress:.1f}%) - Current: {label_name} {i}/{len(image_files)}")
except Exception as e:
print(f" Failed to save JSON {json_path}: {e}")
failed_count += 1
label_stats[label_name]['failed'] += 1
else:
failed_count += 1
label_stats[label_name]['failed'] += 1
if failed_count % 10 == 0: # print every 10 failures
print(f" Detection failed: {image_file.name}")
# report for this label
stats = label_stats[label_name]
success_rate = (stats['success'] / stats['total']) * 100 if stats['total'] > 0 else 0
print(f" {label_name} Done: Success {stats['success']}, Failed {stats['failed']}, Success rate: {success_rate:.1f}%")
print("\n" + "=" * 60)
print("Processing complete!")
print(f"Total images: {total_images}")
print(f"Successfully processed: {success_count}")
print(f"Failed: {failed_count}")
total_success_rate = (success_count / total_images) * 100 if total_images > 0 else 0
print(f"Overall success rate: {total_success_rate:.1f}%")
print("\nPer-label statistics:")
for label, stats in label_stats.items():
success_rate = (stats['success'] / stats['total']) * 100 if stats['total'] > 0 else 0
print(f" {label}: {stats['success']}/{stats['total']} ({success_rate:.1f}%)")
print(f"\nJSON files saved to: {output_path.absolute()}")
print("Directory structure:")
print("PoseData/")
for label in sorted(label_stats.keys()):
print(f"βββ {label}/")
print("β βββ *.json")
finally:
detector.close()
def process_directory(input_dir, output_dir):
"""
Process all images in a directory tree and write JSON files.
Args:
input_dir: input images directory
output_dir: output JSON directory
"""
input_path = Path(input_dir)
output_path = Path(output_dir)
output_path.mkdir(parents=True, exist_ok=True)
# Supported image formats
image_extensions = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff'}
detector = PoseDetector()
try:
# statistics
total_images = 0
success_count = 0
failed_count = 0
print(f"Starting to process directory: {input_path}")
print(f"Output directory: {output_path}")
# walk through the tree
for root, dirs, files in os.walk(input_path):
root_path = Path(root)
# create corresponding output folder
relative_path = root_path.relative_to(input_path)
current_output_dir = output_path / relative_path
current_output_dir.mkdir(parents=True, exist_ok=True)
# collect image files in this folder
image_files = [f for f in files if Path(f).suffix.lower() in image_extensions]
if image_files:
print(f"\nProcessing directory: {root_path}")
print(f"Found {len(image_files)} images")
for filename in image_files:
total_images += 1
image_path = root_path / filename
# generate JSON filename (replace extension with .json)
json_filename = Path(filename).stem + '.json'
json_path = current_output_dir / json_filename
# detect pose
result = detector.detect_pose(image_path)
if result is not None:
# save JSON file
try:
with open(json_path, 'w', encoding='utf-8') as f:
json.dump(result, f, ensure_ascii=False, indent=2)
success_count += 1
if success_count % 50 == 0:
print(f"Successfully processed {success_count} images...")
except Exception as e:
print(f"Failed to save JSON {json_path}: {e}")
failed_count += 1
else:
failed_count += 1
print("\nProcessing complete!")
print(f"Total images: {total_images}")
print(f"Successfully processed: {success_count}")
print(f"Failed: {failed_count}")
print(f"Success rate: {success_count/total_images*100:.1f}%")
finally:
detector.close()
def main():
parser = argparse.ArgumentParser(description="Run MediaPipe pose detection and save landmark data")
parser.add_argument("--input", "-i", default="TrainData/train",
help="input images directory (default: TrainData/train)")
parser.add_argument("--output", "-o", default="PoseData",
help="output JSON directory (default: PoseData)")
parser.add_argument("--batch-size", "-b", type=int, default=100,
help="batch size for progress reporting (default: 100)")
args = parser.parse_args()
# check input directory exists
if not Path(args.input).exists():
print(f"Error: input directory does not exist: {args.input}")
return
print("MediaPipe pose detection tool")
print("=" * 60)
print(f"Input directory: {args.input}")
print(f"Output directory: {args.output}")
print("Processing rule: pos = (pos - headPos) * 100, round to 2 decimals")
print("Head reference: nose")
print(f"Batch size: show progress every {args.batch_size} images")
print("=" * 60)
# Start processing the entire training dataset
process_all_training_data(args.input, args.output, args.batch_size)
if __name__ == "__main__":
main()
|