--- base_model: unsloth/Qwen3-32B language: - en - ja library_name: transformers pipeline_tag: text-generation license: apache-2.0 --- # Preferred-MedRECT-32B ## Model Description Preferred-MedRECT-32B is a finetuned model based on [Qwen/Qwen3-32B](https://huggingface.co/Qwen/Qwen3-32B), which has been optimized for medical error detection and correction tasks using LoRA (Low-Rank Adaptation). The model is trained on bilingual (Japanese/English) medical reasoning data with explicit reasoning processes, enabling it to detect errors, extract erroneous sentences, and provide corrections in clinical texts. The model is released under the [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0). ## Model Performance The table below shows cross-lingual performance comparison on MedRECT-ja (Japanese) and MedRECT-en (English) benchmarks. MedRECT evaluates models on three subtasks: error detection (F1), sentence extraction (Acc.), and error correction (EC Avg. Score). | Model | MedRECT-ja Error Det. F1 | MedRECT-ja Sent. Ext. Acc. | MedRECT-ja EC Avg. Score | MedRECT-en Error Det. F1 | MedRECT-en Sent. Ext. Acc. | MedRECT-en EC Avg. Score | |:------|:------------------------:|:--------------------------:|:------------------------:|:------------------------:|:--------------------------:|:------------------------:| | Preferred-MedRECT-32B | **0.743** | **81.5%** | **0.627** | 0.728 | **90.9%** | **0.718** | | Qwen3-32B (think) | 0.723 | 72.5% | 0.549 | 0.740 | 83.5% | 0.550 | | gpt-oss-120b (medium) | 0.721 | 77.4% | 0.581 | 0.777 | 88.1% | 0.630 | | gpt-oss-20b (medium) | 0.718 | 64.3% | 0.543 | 0.762 | 87.2% | 0.590 | | GPT-4.1 | 0.658 | 52.6% | 0.655 | **0.789** | 72.8% | 0.710 | ## Training Details - **Base Model**: unsloth/Qwen3-32B - **Fine-tuning Method**: LoRA (Low-Rank Adaptation) - **Training Data**: - Japanese: 5,538 samples from JMLE (2018-2023) - English: 2,439 samples from MEDEC MS Subset - All samples include reasoning processes generated by DeepSeek-R1-0528 ## Limitations The model was developed for research purposes and is not intended for clinical diagnosis. It is the users' responsibility to ensure compliance with applicable rules and regulations. ## Contributors Preferred Networks, Inc. - Naoto Iwase - Hiroki Okuyama - Junichiro Iwasawa ## Publications Detailed evaluation results will be given in the [research paper](https://arxiv.org/abs/2511.00421). ## Citations ``` @article{medrect2025, title={MedRECT: A Medical Reasoning Benchmark for Error Correction in Clinical Texts}, author={Iwase, Naoto and Okuyama, Hiroki and Iwasawa, Junichiro}, journal={arXiv preprint arXiv:2511.00421}, year={2025} } ``` ## License [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0)