--- language: en tags: - cryptocurrency - binancecoin - price-prediction - machine-learning - time-series license: mit --- # Binance Coin (BNB) Price Prediction Models Trained ML models for predicting Binance Coin (BNB) cryptocurrency prices. ## 📊 Model Performance | Model | RMSE | MAE | |-------|------|-----| | Random Forest | 214.1828 | 172.9192 | | Gradient Boosting | 212.9135 | 171.1523 | | Linear Regression | 16.5003 | 10.2183 | | LSTM | 155.1829 | 136.7933 | ## 🎯 Training Details - **Trained on**: 2025-10-24 07:43:27 - **Data Source**: CoinGecko API - **Historical Days**: 365 - **Features**: 23 technical indicators - **GPU**: Accelerated with TensorFlow ## 📦 Files Included - `binancecoin_sklearn_models.pkl`: Scikit-learn models (RF, GB, LR) - `binancecoin_scaler.pkl`: Feature scaler - `binancecoin_lstm_model.h5`: LSTM neural network - `binancecoin_metadata.json`: Training metadata ## 🚀 Usage ```python from huggingface_hub import hf_hub_download import joblib from tensorflow.keras.models import load_model # Download models sklearn_path = hf_hub_download( repo_id="YOUR_USERNAME/YOUR_REPO", filename="binancecoin_sklearn_models.pkl" ) scaler_path = hf_hub_download( repo_id="YOUR_USERNAME/YOUR_REPO", filename="binancecoin_scaler.pkl" ) lstm_path = hf_hub_download( repo_id="YOUR_USERNAME/YOUR_REPO", filename="binancecoin_lstm_model.h5" ) # Load models models = joblib.load(sklearn_path) scaler = joblib.load(scaler_path) lstm = load_model(lstm_path) # Make predictions # (prepare your features first) predictions = models['RandomForest'].predict(scaled_features) ``` ## 📈 Features The models use 23 technical indicators including: - Moving Averages (SMA 7, 25, 99) - Exponential Moving Averages (EMA 12, 26) - RSI (Relative Strength Index) - MACD & Signal Line - Bollinger Bands - Stochastic Oscillator - Volatility measures - Lag features ## ⚠️ Disclaimer These models are for educational and research purposes only. Cryptocurrency markets are highly volatile and unpredictable. Do not use these predictions for actual trading decisions without proper risk management. ## 📄 License MIT License