bart-large-cnn-samsum
	
If you want to use the model you should try a newer fine-tuned FLAN-T5 version philschmid/flan-t5-base-samsum out socring the BART version with
+6onROGUE1achieving47.24.
TRY philschmid/flan-t5-base-samsum
This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container.
For more information look at:
- π€ Transformers Documentation: Amazon SageMaker
 - Example Notebooks
 - Amazon SageMaker documentation for Hugging Face
 - Python SDK SageMaker documentation for Hugging Face
 - Deep Learning Container
 
Hyperparameters
{
    "dataset_name": "samsum",
    "do_eval": true,
    "do_predict": true,
    "do_train": true,
    "fp16": true,
    "learning_rate": 5e-05,
    "model_name_or_path": "facebook/bart-large-cnn",
    "num_train_epochs": 3,
    "output_dir": "/opt/ml/model",
    "per_device_eval_batch_size": 4,
    "per_device_train_batch_size": 4,
    "predict_with_generate": true,
    "seed": 7
}
Usage
from transformers import pipeline
summarizer = pipeline("summarization", model="philschmid/bart-large-cnn-samsum")
conversation = '''Jeff: Can I train a π€ Transformers model on Amazon SageMaker? 
Philipp: Sure you can use the new Hugging Face Deep Learning Container. 
Jeff: ok.
Jeff: and how can I get started? 
Jeff: where can I find documentation? 
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face                                           
'''
summarizer(conversation)
Results
| key | value | 
|---|---|
| eval_rouge1 | 42.621 | 
| eval_rouge2 | 21.9825 | 
| eval_rougeL | 33.034 | 
| eval_rougeLsum | 39.6783 | 
| test_rouge1 | 41.3174 | 
| test_rouge2 | 20.8716 | 
| test_rougeL | 32.1337 | 
| test_rougeLsum | 38.4149 | 
- Downloads last month
 - 182,700
 
Model tree for philschmid/bart-large-cnn-samsum
Spaces using philschmid/bart-large-cnn-samsum 93
Evaluation results
- Validation ROGUE-1 on SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarizationself-reported42.621
 - Validation ROGUE-2 on SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarizationself-reported21.983
 - Validation ROGUE-L on SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarizationself-reported33.034
 - Test ROGUE-1 on SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarizationself-reported41.317
 - Test ROGUE-2 on SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarizationself-reported20.872
 - Test ROGUE-L on SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarizationself-reported32.134
 - ROUGE-1 on samsumtest set verified41.328
 - ROUGE-2 on samsumtest set verified20.875
 - ROUGE-L on samsumtest set verified32.135
 - ROUGE-LSUM on samsumtest set verified38.401