Commit
·
d4347a5
1
Parent(s):
f1a16dd
Update handler.py
Browse files- handler.py +26 -38
handler.py
CHANGED
|
@@ -1,46 +1,34 @@
|
|
| 1 |
from typing import Dict, List, Any
|
| 2 |
-
from
|
| 3 |
-
import
|
| 4 |
-
import os
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
os.system("sudo apt install -y tesseract-ocr")
|
| 8 |
-
os.system("pip3 install pytesseract==0.3.9")
|
| 9 |
|
| 10 |
|
| 11 |
class EndpointHandler():
|
| 12 |
def __init__(self, path=""):
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
bbox=bbox,
|
| 38 |
-
attention_mask=attention_mask,
|
| 39 |
-
token_type_ids=token_type_ids,
|
| 40 |
-
labels=sequence_label,
|
| 41 |
-
)
|
| 42 |
-
|
| 43 |
-
loss = outputs.loss
|
| 44 |
-
logits = outputs.logits
|
| 45 |
-
return {"logits": logits}
|
| 46 |
-
|
|
|
|
| 1 |
from typing import Dict, List, Any
|
| 2 |
+
from optimum.onnxruntime import ORTModelForSequenceClassification
|
| 3 |
+
from transformers import pipeline, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
|
| 6 |
class EndpointHandler():
|
| 7 |
def __init__(self, path=""):
|
| 8 |
+
# load the optimized model
|
| 9 |
+
model = ORTModelForSequenceClassification.from_pretrained(path)
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(path)
|
| 11 |
+
# create inference pipeline
|
| 12 |
+
self.pipeline = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
| 13 |
|
| 14 |
|
| 15 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
| 16 |
+
"""
|
| 17 |
+
Args:
|
| 18 |
+
data (:obj:):
|
| 19 |
+
includes the input data and the parameters for the inference.
|
| 20 |
+
Return:
|
| 21 |
+
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
|
| 22 |
+
- "label": A string representing what the label/class is. There can be multiple labels.
|
| 23 |
+
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
|
| 24 |
+
"""
|
| 25 |
+
inputs = data.pop("inputs", data)
|
| 26 |
+
parameters = data.pop("parameters", None)
|
| 27 |
+
|
| 28 |
+
# pass inputs with all kwargs in data
|
| 29 |
+
if parameters is not None:
|
| 30 |
+
prediction = self.pipeline(inputs, **parameters)
|
| 31 |
+
else:
|
| 32 |
+
prediction = self.pipeline(inputs)
|
| 33 |
+
# postprocess the prediction
|
| 34 |
+
return prediction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|